COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

ORDER TO SATISFY OR ANSWER

Black Mountain Water District ("Black Mountain") is hereby notified that it has been named as defendant in a formal complaint filed on August 17, 2006, a copy of which is attached hereto.

Pursuant to 807 KAR 5:001, Section 12, Black Mountain is HEREBY ORDERED to satisfy the matters complained of or file a written answer to the complaint within 10 days from the date of service of this Order.

Should documents of any kind be filed with the Commission in the course of this proceeding, the documents shall also be served on all parties of record.

Done at Frankfort, Kentucky, this 29th day of August, 2006.

By the Commission

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the matter of:

The complaint of Timothy Joe and Sheila Bowman _ respectfully shows:
(a) Timothy Joe and Sheila Bowman (Your Full Name) 6855 N US Hwy 119, Putney, KY 40865
(Your Address)
(b) $\frac{\text { Black Mountain Water District }}{\text { (Name of Utility) }}$
$\frac{609 \text { Four Mile Rd, Baxter, KY } 40806}{\text { (Address of Utitity) }}$
(c) That: $\frac{\text { the Black Mountain Water District has deliberately }}{\text { (Describe here, attaching additional sheets if necessary, }}$
delayed the hook up availability of water to our residence. the specific act, fully and clearly, or facts that are the reason

We signed up and paid the deposit for water hook up at the and basis for the complaint.)
initial sign up in the Putney area which was approximately

5years ago. After the water project began and was well

Formal Complaint
Timothy Joe and Sheila Bowman VS. Black Mountain Water District

Page 2 of 2

under way in the Putney area, we started inquiring as to when we
would get water hook up. About 2 years ago, we attended a monthly
meeting at the Black Mountain Water District and talked with them
about why we had not received water hook. up. After looking at
their maps they said that we were not showing up on their maps. \qquad
They assured us that they would check into this matter. (See attached pages)

Wherefore, complainant asks for immediate water hook up and compensation (Specifically state the relief desired.)
for the delay in providing us water hook up while making it available
to places that had not signed in initially During this time we
did not have access to a clean source of water. We feel that we have
been exposed to unsafe chemicals from the landfill that might harm us.
Dated at \qquad Kentucky, this _fth \qquad day
(Your City)
20
of _August .1886. (Month)

(Name and address of attorney, if any)

Timothy Joe and Sheila Bowman vs Black Mountain Water District

Formal Complaint (Continued)

We explained that we would really like to have hookup to the water because I had been diagnosed with breast cancer and we had concerns regarding the landfill $1 / 4$ mile above our house. We had our well water tested by the state and there were traces of two pesticides (dieldrin and MCPA) in our water (see enclosed report). Dieldrin is labeled as a probable carcinogen with a possible link to breast cancer in some studies and we're not sure about MCPA based on the research we've done. We attended another meeting at the Black Mountain Water District and they sent Earl out to look and see what they would have to do to get water to us. They informed us that as soon as permits and funding were available, they were planning on installing 3 bore holes. One of these bore holes was to be done for the Turners, one for us and one at Buddies Discount. They said it would take approximately $30-60$ days for this to be done. We still didn't get water. We then talked with Judge Joe Grieshop about the possible connection of pesticides in our well water and the landfill above our house and that we would really like to have water hookup. In January 2006, the first bore hole was drilled for the C V Bennett property (a supporter of County Judge Joe Grieshop) at Buddies Discount. Then in March, 2006 a bore hole was drilled at the Turners (Johnny Turner is a property owner there and he ran for judicial office this year in Harlan County). This bore hole is about $4 / 10$ mile south of our house. Instead of us getting the third bore hole as we were promised, the next bore hole was drilled for the Black Mountain ATV Park. According to a local newspaper, Judge Joe Grieshop is president of the Kentucky Mountain Trails Development Coalition. This park didn't exist at the time we paid our hookup fee for the water. This third bore hole is about $4 / 10$ north of our house.

It appears as though "political buddies and interest" are preferred over honest, hardworking taxpayers when it comes to clean water and health concerns in Harlan County. We feel that these issues have led us to be intentionally left out of receiving water hook up. We, also, feel that during the time we have been without clean water we may have been exposed to toxic substance from the county landfill. We just want to be treated fairly and we ask your help in seeing that this is done. We have tried every diplomatic way that we know of. Thank you.

ENVIRONMENTAL AND PUBLIC PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION

Ernie Fletcher
Governor

Division of Environmental Services Centralized Laboratory Facility 100 Sower Blvd., Ste. 104
Frankfort, Kentucky 40601-8272

LaJuana S. Wilcher
Secretary

To: Division of Water 14 Reilly Road Frankfort, KY 40601 ATTN: Peter Goodmann
County: Harlan
Collected By: Kevin Francis Delivered By: Kevin Francis Received By: Jennifer Clark Sample Matrix: Water Sample Identification: Tim Bowman Residence Field ID:

REPORT OF ANALYSIS

CAS NUM	TESTCODE	CONSTITUENTS	RESULT UNIT	$\underline{\mathbf{R L}}$	MDL	FLAG
	1020	Alkalinity (as CaCO 3)	$218 \mathrm{mg} / \mathrm{L}$	5		
	1030	Alkalinity, Carbonate (as CaCO 3)	Below RL mg/L	5		
	1040	Alkalinity, Bicarbonate (as CaCO 3)	$218 \mathrm{mg} / \mathrm{L}$	1		
	1140	Conductivity	$487 \mu \mathrm{mho} / \mathrm{cm}$	5.0		
24959-67-9	\$1180	Bromide	$0.056 \mathrm{mg} / \mathrm{L}$	0.025		
16887-00-6	\$1180	Chloride	$14.6 \mathrm{mg} / \mathrm{L}$	0.25		
16984-48-8	\$1180	Fluoride	$0.598 \mathrm{mg} / \mathrm{L}$	0.05		
14797-55-8	\$1180	Nitrate (as N)	Below RL mg/L	0.025		
14797-65-0	\$1180	Nitrite (as N)	Below RL mg/L	0.025		
14265-44-2	\$1180	Orthophosphate (as P)	$0.069 \mathrm{mg} / \mathrm{L}$	0.025		
14808-79-8	\$1180	Sulfate	$23.5 \mathrm{mg} / \mathrm{L}$	0.25		
	1280	pH	7.63 S.U.			
	1320	Solids, Total Suspended	$1.50 \mathrm{mg} / \mathrm{L}$	1.50		
7440-44-0	2260	Organic Carbon, Total	$0.564 \mathrm{mg} / \mathrm{L}$	0.25		
7664-41-7	2000	Ammonia (as N)	$0.361 \mathrm{mg} / \mathrm{L}$	0.025		
	2280	Total Kjeldhal Nitrogen	$0.385 \mathrm{mg} / \mathrm{L}$	0.20		
7723-14-0	2200	Phosphorus, Total	$0.101 \mathrm{mg} / \mathrm{L}$	0.010		
7440-70-2	\$3120 MINCA	Calcium	$25.9 \mathrm{mg} / \mathrm{L}$	0.150		
7439-89-6	\$3120 MINCA	Iron	$0.142 \mathrm{mg} / \mathrm{L}$	0.050		
7439-95-4	\$3120 MINCA	Magnesium	$12.1 \mathrm{mg} / \mathrm{L}$	0.500		
7440-09-7	\$3120 MINCA	Potassium	$2.04 \mathrm{mg} / \mathrm{L}$	0.150		B
7440-23-5	\$3120 MINCA	Sodium	$69.9 \mathrm{mg} / \mathrm{L}$	0.100		
7429-90-5	\$3130 CALC	Aluminum	$13.2 \mu \mathrm{~g} / \mathrm{L}$	3.0		
7440-38-2	\$3130 CALC	Arsenic	Below RL $\mu \mathrm{g} / \mathrm{L}$	0.5		
7440-39-3	\$3130 CALC	Barium	$316 \mu \mathrm{~g} / \mathrm{L}$	0.2		
7440-43-9	\$3130 CALC	Cadmium	Below RL $\mu \mathrm{g} / \mathrm{L}$	0.4		
7440-47-3	\$3130 CALC	Chromium	Below RL $\mu \mathrm{g} / \mathrm{L}$	0.2		
7440-50-8	\$3130 CALC	Copper	$14.2 \mu \mathrm{~g} / \mathrm{L}$	0.5		

CAS NUM	TESTCODE	CONSTITUENTS
7439-92-1	\$3130 CALC	Lead
7439-96-5	\$3130 CALC	Manganese
7440-02-0	\$3130 CALC	Nickel
7782-49-2	\$3130 CALC	Selenium
7440-22-4	\$3130 CALC	Silver
7440-66-6	\$3130 CALC	Zinc
7439-97-6	3340	Mercury
77-47-4	\$6260 ALL	Hexachlorocyclopentadiene
2593-15-9	\$6260 ALL	Etridiazole
118-74-1	\$6260 ALL	Hexachlorobenzene
1918-16-7	\$6260 ALL	Propachlor
1582-09-8	\$6260 ALL	Trifluralin
319-84-6	\$6260 ALL	alpha-BHC
319-85-7	\$6260 ALL	beta-BHC
58-89-9	\$6260 ALL	gamma-BHC (Lindane)
319-86-8	\$6260 ALL	delta-BHC
309-00-2	\$6260 ALL	Aldrin
1861-32-1	\$6260 ALL	DCPA
1897-45-6	\$6260 ALL	Chlorothalonil
76-44-8	\$6260 ALL	Heptachlor
2921-88-2	\$6260 ALL	Chlorpyrifos
1024-57-3	\$6260 ALL	Heptachlor epoxide
27304-13-8	\$6260 ALL	Oxychlordane
5103-74-2	\$6260 ALL	trans-Chlordane
5103-71-9	\$6260 ALL	cis-Chlordane
39765-80-5	\$6260 ALL	trans-Nonachlor
3734-48-3	\$6260 ALL	Chlordene
5103-73-1	\$6260 ALL	cis-Nonachlor
12789-03-6	\$6260 ALL	Technical Chlordane
60-57-1	\$6260 ALL	Dieldrin
72-20-8	\$6260 ALL	Endrin
3424-82-6	\$6260 ALL	2,4'-DDE
72-55-9	\$6260 ALL	4,4'-DDE
53-19-0	\$6260 ALL	2,4'-DDD
72-54-8	\$6260 ALL	4,4'- DDD
789-02-6	\$6260 ALL	2,4'-DDT
50-29-3	\$6260 ALL	4,4'-DDT
8017-34-3	\$6260 ALL	Total DDT
72-43-5	\$6260 ALL	Methoxychlor
2385-85-5	\$6260 ALL	Mirex
959-98-8	\$6260 ALL	Endosulfan I
33213-65-9	\$6260 ALL	Endosulfan II
1031-07-8	\$6260 ALL	Endosulfan sulfate
7421-93-4	\$6260 ALL	Endrin aldehyde
53494-70-5	\$6260 ALL	Endrin ketone
52645-53-1	\$6260 ALL	Permethrins (cis \& trans)
78-59-1	\$6240 ALL	Isophorone
62-73-7	\$6240 ALL	Dichlorovos
77-47-4	\$6240 ALL	Hexachlorocyclopentadiene
759-94-4	\$6240 ALL	EPTC
2008-41-5	\$6240 ALL	Butylate
7786-34-7	\$6240 ALL	Mevinphos

RESULT UNIT	RL	MDL	FLAG
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.0		
$100 \mu \mathrm{~g} / \mathrm{L}$	0.5		
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.0		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.8		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.4		
$14.4 \mu \mathrm{~g} / \mathrm{L}$	2.0		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.05		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0495		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0297		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0297		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
$0.0209 \mu \mathrm{~g} / \mathrm{L}$	0.00990		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.00990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0198		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U

CAS NUM	TESTCODE	CONSTITUENTS
30560-19-1	\$6240 ALL	Acephate
1929-77-7	\$6240 ALL	Vernolate
131-11-3	\$6240 ALL	Dimethyl phthalate
2593-15-9	\$6240 ALL	Etridiazole
208-96-8	\$6240 ALL	Acenaphthylene
1114-71-2	\$6240 ALL	Pebulate
606-20-2	\$6240 ALL	2,6-Dinitrotoluene
2051-60-7	\$6240 ALL	2-Chlorobiphenyl
2675-77-6	\$6240 ALL	Chloroneb
121-14-2	\$6240 ALL	2,4-Dinitrotoluene
2212-67-1	\$6240 ALL	Molinate
86-73-7	\$6240 ALL	Fluorene
84-66-2	\$6240 ALL	Diethyl phthalate
1918-16-7	\$6240 ALL	Propachlor
13194-48-4	\$6240 ALL	Ethoprop
1134-23-2	\$6240 ALL	Cycloate
101-21-3	\$6240 ALL	Chlorpropham
34014-18-1	\$6240 ALL	Tebuthiuron
6190-65-4	\$6240 ALL	Atrazine desethyl
1582-09-8	\$6240 ALL	Trifluralin
1861-40-1	\$6240 ALL	Benfluralin (Benefin)
319-84-6	\$6240 ALL	alpha-BHC
16605-91-7	\$6240 ALL	2,3-Dichlorobiphenyl
118-74-1	\$6240 ALL	Hexachlorobenzene
1610-17-9	\$6240 ALL	Atraton
122-34-9	\$6240 ALL	Simazine
1610-18-0	\$6240 ALL	Prometon
1912-24-9	\$6240 ALL	Atrazine
319-85-7	\$6240 ALL	beta-BHC
139-40-2	\$6240 ALL	Propazine
87-86-5	\$6240 ALL	Pentachlorophenol
58-89-9	\$6240 ALL	gamma-BHC (Lindane)
13071-79-9	\$6240 ALL	Terbufos
944-22-9	\$6240 ALL	Fonofos
23950-58-5	\$6240 ALL	Pronamide
26399-36-0	\$6240 ALL	Profluralin (Tolban)
85-01-8	\$6240 ALL	Phenanthrene
120-12-7	\$6240 ALL	Anthracene
3734-48-3	\$6240 ALL	Chlordene
333-41-5	\$6240 ALL	Diazinon
298-04-4	\$6240 ALL	Disulfoton
950-35-6	\$6240 ALL	Methyl paraoxon
319-86-8	\$6240 ALL	delta-BHC
5902-51-2	\$6240 ALL	Terbacil
1897-45-6	\$6240 ALL	Chlorothalonil
15862-07-4	\$6240 ALL	2,4,5-Trichlorobiphenyl
21087-64-9	\$6240 ALL	Metribuzin
34256-82-1	\$6240 ALL	Acetochlor
298-00-0	\$6240 ALL	Methyl parathion
1014-70-6	\$6240 ALL	Simetryn
76-44-8	\$6240 ALL	Heptachlor
15972-60-8	\$6240 ALL	Alachlor

RESULT UNIT	RL	MDL	FLAG
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.220		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
$0.101 \mu \mathrm{~g} / \mathrm{L}$	0.044		B
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.220		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U

CASNUM	TESTCODE	CONSTITUENTS
834-12-8	\$6240 ALL	Ametryn
7287-19-6	\$6240 ALL	Prometryn
886-50-0	\$6240 ALL	Terbutryn
314-40-9	\$6240 ALL	Bromacil
2437-79-8	\$6240 ALL	2, ${ }^{\prime}, 4,44^{\prime}$-Tetrachlorobiphenyl
84-74-2	\$6240 ALL	Dibutyl phthalate
309-00-2	\$6240 ALL	Aldrin
121-75-5	\$6240 ALL	Malathion
51218-45-2	\$6240 ALL	Metolachlor
2921-88-2	\$6240 ALL	Chlorpyrifos
21725-46-2	\$6240 ALL	Cyanazine
43121-43-3	\$6240 ALL	Triadimefon
1861-32-1	\$6240 ALL	DCPA
957-51-7	\$6240 ALL	Diphenamide
33820-53-0	\$6240 ALL	Isopropalin (Paarlan)
113-48-4	\$6240 ALL	MGK 264
1024-57-3	\$6240 ALL	Heptachlor epoxide
40487-42-1	\$6240 ALL	Pendimethalin (Prowl)
60233-25-2	\$6240 ALL	2, ${ }^{\prime}, 3,4^{\prime}, 6^{\prime}$-Pentachlorobiphenyl
5103-74-2	\$6240 ALL	trans-Chlordane
129-00-0	\$6240 ALL	Pyrene
959-98-8	\$6240 ALL	Endosulfan I
5103-71-9	\$6240 ALL	cis-Chlordane
22248-79-9	\$6240 ALL	Stirofos
150-50-5	\$6240 ALL	Merphos
23184-66-9	\$6240 ALL	Butachlor
41814-78-2	\$6240 ALL	Tricyclazole
39765-80-5	\$6240 ALL	trans-Nonachlor
15299-99-7	\$6240 ALL	Napropamide
22224-92-6	\$6240 ALL	Fenamiphos (Nemacur)
60-57-1	\$6240 ALL	Dieldrin
72-55-9	\$6240 ALL	4,4'-DDE
5234-68-4	\$6240 ALL	Carboxin
19666-30-9	\$6240 ALL	Oxadiazone
60145-22-4	\$6240 ALL	2,2',4,4',5,6'-Hexachlorobiphenyl
53-19-0	\$6240 ALL	2,4'-DDD
3424-82-6	\$6240 ALL	2,4'-DDE
42874-03-3	\$6240 ALL	Oxyflurfen (Goal)
72-20-8	\$6240 ALL	Endrin
33213-65-9	\$6240 ALL	Endosulfan II
510-15-6	\$6240 ALL	Chlorobenzilate
72-54-8	\$6240 ALL	4,4'-DDD
5103-73-1	\$6240 ALL	cis-Nonachlor
789-02-6	\$6240 ALL	2,4'-DDT
7421-93-4	\$6240 ALL	Endrin aldehyde
1031-07-8	\$6240 ALL	Endosulfan sulfate
27314-13-2	\$6240 ALL	Norflurazon
85-68-7	\$6240 ALL	Butyl benzyl phthalate
50-29-3	\$6240 ALL	4,4'-DDT
51235-04-2	\$6240 ALL	Hexazinone
103-23-1	\$6240 ALL	bis(2-Ethylhexyl) adipate
53494-70-5	\$6240 ALL	Endrin ketone

RESULT UNIT	RL	MDL	FLAG
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
$0.141 \mu \mathrm{~g} / \mathrm{L}$	0.044		B
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$.	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.440		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.110		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
$0.946 \mu \mathrm{~g} / \mathrm{L}$	0.044		B
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.022		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
$0.0797 \mu \mathrm{~g} / \mathrm{L}$	0.044		B
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U

CAS NUM	TESTCODE	CONSTITUENTS
56-55-3	\$6240 ALL	Benz(a)anthracene
218-01-9	\$6240 ALL	Chrysene
52663-71-5	\$6240 ALL	2,2',3,3',4,4',6-Heptachlorobiphenyl
72-43-5	\$6240 ALL	Methoxychlor
40186-71-8	\$6240 ALL	2, ${ }^{\prime}, 3,3$ ',4, $5^{\prime}, 6,6^{\prime}$-Octachlorobiphenyl
117-81-7	\$6240 ALL	bis(2-Ethylhexyl) phthalate
2385-85-5	\$6240 ALL	Mirex
60168-88-9	\$6240 ALL	Fenarimol
54774-45-7	\$6240 ALL	Permethrin-cis
51877-74-8	\$6240 ALL	Permethrin-trans
205-99-2	\$6240 ALL	Benzo(b)fluoranthene
207-08-9	\$6240 ALL	Benzo(k)fluoranthene
50-32-8	\$6240 ALL	Benzo(a)pyrene
59756-60-4	\$6240 ALL	Fluridone
193-39-5	\$6240 ALL	Indeno(1,2,3-cd)pyrene
53-70-3	$\$ 6240$ ALL	Dibenz(a,h)anthracene
191-24-2	\$6240 ALL	Benzo(g, h,i)perylene
1918-02-1	\$6230 HERB	Picloram
133-90-4	\$6230 HERB	Chloramben
100-02-7	$\$ 6230$ HERB	4-Nitrophenol
1918-00-9	\$6230 HERB	Dicamba
25057-89-0	\$6230 HERB	Bentazone
94-75-7	$\$ 6230$ HERB	2,4-Dichlorophenoxyacetic acid
51-36-5	\$6230 HERB	3,5-Dichlorobenzoic acid
120-36-5	\$6230 HERB	Dichloroprop
93-76-5	\$6230 HERB	2,4,5-Trichlorophenoxyacetic acid
94-82-6	\$6230 HERB	2,4-Dichlorophenoxybutyric acid
93-72-1	\$6230 HERB	Silvex
50594-66-6	\$6230 HERB	Acifluorfen
88-85-7	\$6230 HERB	Dinoseb
87-86-5	\$6230 HERB	Pentachlorophenol
93-65-2	\$6230 HERB	Mecoprop (MCPP)
94-74-6	\$6230 HERB	MCPA
12674-11-2	\$6300 CALC	Aroclor 1016
11104-28-2	\$6300 CALC	Aroclor 1221
11141-16-5	\$6300 CALC	Aroclor 1232
53469-21-9	\$6300 CALC	Aroclor 1242
12672-29-6	\$6300 CALC	Aroclor 1248
11097-69-1	\$6300 CALC	Aroclor 1254
11096-82-5	\$6300 CALC	Aroclor 1260
37324-23-5	\$6300 CALC	Aroclor 1262
11100-14-4	\$6300 CALC	Aroclor 1268
1336-36-3	\$6300 CALC	Total PCBs (as Decachlorobiphenyl)
8001-35-2	\$6300 CALC	Toxaphene
75-71-8	\$6320 ALL	Dichlorodifluoromethane
74-87-3	\$6320 ALL	Chloromethane
75-01-4	\$6320 ALL	Vinyl chloride
74-83-9	\$6320 ALL	Bromomethane
75-00-3	\$6320 ALL	Chloroethane
75-69-4	\$6320 ALL	Trichlorofluoromethane
60-29-7	\$6320 ALL	Diethyl ether
75-35-4	\$6320 ALL	1,1-Dichloroethene

CAS NUM TESTCODE

218-01-9 \$6240 ALL

2663-71-5 \$6240 ALL
72-43-5 \$6240 ALL
117-81-7 \$6240 ALL
2385-85-5 \$6240 ALL
60168-88-9 \$6240 ALL
54774-45-7 \$6240 ALL
51877-74-8 \$6240 ALL
205-99-2 \$6240 ALL
207-08-9 \$6240 ALL

5756-60-4 \$6240 AIL
193-39-5 \$6240 ALL
53-70-3 \$6240 ALL
191-24-2 \$6240 ALL
1918-02-1 \$6230 HERB
133-90-4 \$6230 HERB
100-02-7 \$6230 HERB
1918-00-9 \$6230 HERB
9620
915-7

20-36-5 \$6230 HERB
93-76-5 \$6230 HERB
94-82-6 \$6230 HERB
93-72-1 \$6230 HERB
50594-66-6 \$6230 HERB
88-85-7 \$6230 HERB
87-86-5 \$6230 HERB
93-65-2 \$6230 HERB

12674-11-2 86300 CALC
11104-28-2 \$6300 CALC
11141-16-5 \$6300 CALC
53469-21-9 \$6300 CALC
12672-29-6 \$6300 CALC
11097-69-1 \$6300 CALC
11096-82-5 \$6300 CALC
37324-23-5 \$6300 CALC
$1100-14-4 \$ 6300$ CALC

8001-35-2 \$6300 CALC
75-71-8 \$6320 ALL
74-87-3 \$6320 ALL
75-01-4 \$6320 ALL
74-83-9 \$6320 ALL
75-00-3 \$6320 ALL
75-69-4 \$6320 ALL

75-35-4 \$6320 ALL 1,1-Dichloroethene

RESULT UNIT	RL	MDL	FLAG
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
$0.883 \mu \mathrm{~g} / \mathrm{L}$	0.044		B
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.220		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.044		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
$0.0727 \mu \mathrm{~g} / \mathrm{L}$	0.050		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.198		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.80		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.0990		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U

CAS NUM	TESTCODE	CONSTITUENTS
67-64-1	\$6320 ALL	Acetone
74-88-4	\$6320 ALL	Methyl iodide
75-15-0	\$6320 ALL	Carbon disulfide
107-05-1	\$6320 ALL	Allyl chloride
75-09-2	\$6320 ALL	Dichloromethane (Methylene chloride)
107-13-1	\$6320 ALL	Acrylonitrile
156-60-5	\$6320 ALL	trans-1,2-Dichloroethene
1634-04-4	\$6320 ALL	Methyl-tert-butyl ether (MTBE)
75-34-3	\$6320 ALL	1,1-Dichloroethane
108-05-4	\$6320 ALL	Vinyl acetate
594-20-7	\$6320 ALL	2,2-Dichloropropane
156-59-2	\$6320 ALL	cis-1,2-Dichloroethene
78-93-3	\$6320 ALL	2-Butanone (MEK)
107-12-0	\$6320 ALL	Propionitrile
96-33-3	\$6320 ALL	Methyl acrylate
126-98-7	\$6320 ALL	Methacrylonitrile
74-97-5	\$6320 ALL	Bromochloromethane
109-99-9	\$6320 ALL	Tetrahydrofuran
67-66-3	\$6320 ALL	Chloroform
71-55-6	\$6320 ALL	1,1,1-Trichloroethane
109-69-3	\$6320 ALL	1-Chlorobutane
56-23-5	\$6320 ALL	Carbon tetrachloride
563-58-6	\$6320 ALL	1,1-Dichloropropene
71-43-2	\$6320 ALL	Benzene
107-06-2	\$6320 ALL	1,2-Dichloroethane
79-01-6	\$6320 ALL	Trichloroethene
78-87-5	\$6320 ALL	1,2-Dichloropropane
74-95-3	\$6320 ALL	Dibromomethane
80-62-6	\$6320 ALL	Methyl methacrylate
75-27-4	\$6320 ALL	Bromodichloromethane
79-46-9	\$6320 ALL	2-Nitropropane
107-14-2	\$6320 ALL	Chloroacetonitrile
10061-01-5	\$6320 ALL	cis-1,3-Dichloropropene
108-10-1	\$6320 ALL	4-Methyl-2-pentanone (MIBK)
108-88-3	\$6320 ALL	Toluene
10061-02-6	\$6320 ALL	trans-1,3-Dichloropropene
97-63-2	\$6320 ALL	Ethyl methacrylate
79-00-5	\$6320 ALL	1,1,2-Trichloroethane
127-18-4	\$6320 ALL	Tetrachloroethene
591-78-6	\$6320 ALL	2-Hexanone (Methyl butyl ketone)
124-48-1	\$6320 ALL	Dibromochloromethane
106-93-4	\$6320 ALL	1,2-Dibromoethane (EDB)
142-28-9	\$6320 ALL	1,3-Dichloropropane
108-90-7	\$6320 ALL	Chlorobenzene
630-20-6	\$6320 ALL	1,1,1,2-Tetrachloroethane
544-10-5	\$6320 ALL	1-Chlorohexane
100-41-4	\$6320 ALL	Ethylbenzene
	\$6320 ALL	1,3-Xylene \& 1,4-Xylene
95-47-6	\$6320 ALL	1,2-Xylene
100-42-5	\$6320 ALL	Styrene
75-25-2	\$6320 ALL	Bromoform
98-82-8	\$6320 ALL	Isopropylbenzene (Cumene)

CONSTITUENTS
Acetone
Methyl iodide
Carbon disulfide
Allyl chloride
(Methylene chioride)
trans-1,2-Dichloroethene
Methyl-tert-butyl ether (MTBE)
1,1-Dichloroethane
Vinyl acetate
2,2-Dichloropropane
cis-1,2-Dichloroethene
2-Butanone (MEK)
Propionitrile
Kethyl acrylate
ethacrylonitrile

Chloroform
1,1,1-Trichloroethane
-Chlorobutane
Carbon tetrachloride
1,1-Dichloropropene
Benzene
1,2-Dichloroethane
1,2-Dichloropropane
Dibromomethane
Methyl methacrylate
Bromodichloromethane
2-Nitropropane
Chloroacetonitrile
cis-1,3-Dichloropropene
-Methyl-2-pentanone (MIBK)
trans-1,3-Dichloropropene
Ethyl methacrylate
1,1,2-Trichloroethane
Tetrachloroethene
2-Hexanone (Methyl butyl ketone)
Dibromochloromethane
1,2-Dibromoethane (EDB)
1,3-Dichloropropane
1,1,1,2-Tetrachloroethane
1-Chlorohexane
Ethylbenzene
1,3-Xylene \& 1,4-Xylene
1,2-Xylene

Bromoform
Isopropylbenzene (Cumene)

RESULT UNIT	$\underline{\mathbf{R L}}$	MDL	FLAG
$0.698 \mu \mathrm{~g} / \mathrm{L}$	1.00		JF
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	2.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	- 0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	10.0		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U

CAS NUM	TESTCODE	CONSTITUENTS
108-86-1	\$6320 ALL	Bromobenzene
96-18-4	\$6320 ALL	1,2,3-Trichloropropane
79-34-5	\$6320 ALL	1,1,2,2-Tetrachloroethane
110-57-6	\$6320 ALL	trans-1,4-Dichloro-2-butene
103-65-1	\$6320 ALL	n -Propylbenzene
95-49-8	\$6320 ALL	2-Chlorotoluene
108-41-8	\$6320 ALL	3-Chlorotoluene
106-43-4	\$6320 ALL	4-Chlorotoluene
108-67-8	\$6320 ALL	1,3,5-Trimethylbenzene
76-01-7	\$6320 ALL	Pentachloroethane
98-06-6	\$6320 ALL	tert-Butylbenzene
95-63-6	\$6320 ALL	1,2,4-Trimethylbenzene
135-98-8	\$6320 ALL	sec-Butylbenzene
541-73-1	\$6320 ALL	1,3-Dichlorobenzene
99-87-6	\$6320 ALL	p-Isopropyltoluene (Cymene)
106-46-7	\$6320 ALL	1,4-Dichlorobenzene
95-50-1	\$6320 ALL	1,2-Dichlorobenzene
104-51-8	$\$ 6320$ ALL	n-Butylbenzene
67-72-1	\$6320 ALL	Hexachloroethane
96-12-8	\$6320 ALL	1,2-Dibromo-3-chloropropane
98-95-3	\$6320 ALL	Nitrobenzene
120-82-1	\$6320 ALL	1,2,4-Trichlorobenzene
87-68-3	\$6320 ALL	Hexachlorobutadiene
91-20-3	\$6320 ALL	Naphthalene
87-61-6	\$6320 ALL	1,2,3-Trichlorobenzene
	\$6320 ALL	Total Trihalomethanes
1330-20-7	\$6320 ALL	Total Xylenes
611-59-6	\$6230 CAFF	1,7-Dimethylxanthine
58-08-2	\$6230 CAFF	Caffeine
	1340D	Solids, Total Dissolved
7440-70-2	\$3120D MIN	Calcium, Dissolved
7439-89-6	\$3120D MIN	Iron, Dissolved
7439-95-4	\$3120D MIN	Magnesium, Dissolved
7440-09-7	\$3120D MIN	Potassium, Dissolved
7440-23-5	\$3120D MIN	Sodium, Dissolved
7429-90-5	\$3130D	Aluminum, Dissolved
7440-38-2	\$3130D	Arsenic, Dissolved
7440-39-3	\$3130D	Barium, Dissolved
7440-43-9	\$3130D	Cadmium, Dissolved
7440-47-3	\$3130D	Chromium, Dissolved
7440-50-8	\$3130D	Copper, Dissolved
7439-92-1	\$3130D	Lead, Dissolved
7439-96-5	\$3130D	Manganese, Dissolved
7440-02-0	\$3130D	Nickel, Dissolved
7782-49-2	\$3130D	Selenium, Dissolved
7440-22-4	\$3130D	Silver, Dissolved
7440-66-6	\$3130D	Zinc, Dissolved

RESULT UNIT	RL	MDL	FLAG
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.00		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	10.0		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.500		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.5		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.5		U
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.050		U
$0.0481 \mu \mathrm{~g} / \mathrm{L}$	0.050		
$252 \mathrm{mg} / \mathrm{L}$	20.0		
$24.7 \mathrm{mg} / \mathrm{L}$	0.150		
Below RL mg/L	0.050		
$11.5 \mathrm{mg} / \mathrm{L}$	0.500		
$2.08 \mathrm{mg} / \mathrm{L}$	0.150		B
$70.4 \mathrm{mg} / \mathrm{L}$	0.100		
Below RL $\mu \mathrm{g} / \mathrm{L}$	3.0		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.5		
$315 \mu \mathrm{~g} / \mathrm{L}$	0.2		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.4		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.2		
$7.56 \mu \mathrm{~g} / \mathrm{L}$	0.5		
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.0		
$99.4 \mu \mathrm{~g} / \mathrm{L}$	0.5		
Below RL $\mu \mathrm{g} / \mathrm{L}$	1.0		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.8		
Below RL $\mu \mathrm{g} / \mathrm{L}$	0.4		
$13.6 \mu \mathrm{~g} / \mathrm{L}$	2.0		

Data Quality Flag Description

$\mathrm{B}=$ Analyte In Method Blank
$\mathrm{F}=$ No Field Blank
$\mathrm{J}=$ Estimated Value
$\mathrm{U}=$ Analyte Not Detected
This report has been prepared and reviewed by personnel within the Division of Environmental Services. It has been approved for release.

