BOEHM, KURTZ \& LOWRY

ATTORNEYS AT LAW

 36 EAST SEVENTH STREET
Via Overnight Mail

January 26, 2006

Beth A. O'Donnell, Executive Director
Kentucky Public Service Commission
211 Sower Boulevard
Frankfort, Kentucky 40602

Re: Case No. 2005-00341

Dear Ms. O'Donnell:
It was brought to our attention that some of the attachments to the data responses of the Kentucky Industrial Utility Customers, Inc. to the Commission Staff and the Kentucky Power Company were inadvertently omitted. In that regard, please find enclosed the CD referenced in response to Staff Data Request No. 1 and the original and five copies of the attachments referenced in response to Staff Data Requests Nos. 20 and 23. I also enclose the original and five copies of the attachments to Kentucky Power Company Data Requests No. 1, 27, 29, $30,33,34,36,37,38$ and 42. Due to the voluminous nature of the responses, copies of the attachments will be made available upon request to all other parties of record.

By copy of this letter, all parties listed on the Certificate of Service have been served. Please place this document of file.

Very Truly Yours,

David F. Boehm, Esq. Michael L. Kurtz, Esq.
BOEHM, KURTZ \& LOWRY

Atachbent

CERTIFICATE OF SERVICE

I hereby certify that a copy of the foregoing was served by mailing a true and correct copy, by first-class postage prepaid mail, and electronic mail, (when available) to all parties on the $31^{\text {st }}$ day of January, 2006.

Honorable Elizabeth E. Blackford
Assistant Attorney General
Office of the Attorney General
Utility \& Rate Intervention Division
1024 Capital Center Drive, Suite 200
Frankfort, KY 40601-8204
betsy.blackford@law.state.ky.us
Honorable Joe F. Childers
201 West Short Street, Suite 310
Lexington, KY 40507
childerslawbr@yahoo.com
Honorable Kevin F. Duffy
American Electric Power
Service Corporation
1 Riverside Plaza, 29th Floor
Post Office Box 16631
Columbus, OH 43216
kfduffy@aep.com
Timothy C. Mosher, President, KY Power
American Electric Power
101A Enterprise Drive
P. O. Box 5190

Frankfort, KY 40602
Honorable Mark R. Overstreet
Stites \& Harbison
421 West Main Street
P. O. Box 634

Frankfort, KY 40602-0634
moverstreet@stites.com

Michael L. Kurtz, Esq.

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

Kentucky Power Company

Summary - KIUC Depreciation Expense Adjustments

For the Test Year Ended 6/30/05

1 - Remove $\$ 32,000,000$ million demolition costs from computation of net salvage costs.
2 - Correct Account \#312 Interim Retirements by removing additional retirements in 2007 and 2009.
3 - Use full history of additions and retirements to determine interim retirement rate for Big Sandy Assets instead of last 30 years.
4 - Use of Net Salvage percentages on overall functional account basis instead of judgement percentages based on retirements.
5 - Use full history for all Net Salvage percentages instead of just the 15 year period of 1990-2004.
6 - Delay retirement of Big Sandy Unit I five years from 2015 until 2020.

KENTUCKY POWER COMPANY REVENUE REQUIREMENT
 SUMMARY OF KIUC RECOMMENDATIONS
 REVENUE REQUIREMENT EFFECTS (\$ 000's)

Capitalization Issues	
Reduction to Reflect 13 Month Avg M\&S Inventory	(73)
Remove KPCO Reliability Capital Adjustment	(597)
Recognize Additional Pension Funding in 2005	(660)
Remove Prior Deferral of RTO Formation Costs	(129)
Operating Income Issues	$(2,035)$
Correct Error in Off-System Sales Margin Roll-In	$(5,102)$
Increase Off-System Sales Margins to 2006 Projection	$(3,620)$
Increase Off-System Sales Margins for New East/West Reallocation	(160)
Remove Amortization of Deferred RTO Formation Costs	$(6,103)$
Remove KPCO Reliability O\&M Expense Adjustment	(288)
Reduce Pension Expense to 2006 Amount	(96)
Reduce OPEB Expense to 2006 Amount	$(6,760)$
Revise Depreciation Expense for Changes in Proposed Depreciation Rates	(386)
Reduce KPCO Storm Damage Adjustment Based on 10 Year Average	(399)
Increase PJM Transmission Revenue Credits	$(2,121)$
Reduce PJM Net Congestion Costs	$(1,305)$
Remove KPCO Big Sandy Plant Maintenance Expense Adjustment	414
Remove KPCO §199 Deduction Tax Savings Included in Filing	(74)
Correct Error in Tax Expense Due to Interest Synchronization	(135)
Remove OH and WV Taxes from Gross Revenue Conversion Factor	(675)
Revise Kentucky State Income Tax Rate to 6.0\%	(548)
Include Corrected §199 Deduction Tax Savings	$(11,639)$
Rate of Return Issues	
Reflect Return on Equity of 9.350\%	$(42,492)$
Total KIUC Adjustments to KPCO Request	

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO

FIRST DATA REQUEST OF COMMISSION STAFF

The Fournal of FINA NCE

Vol. XXXIII
No. 1

THE SUPERIORITY OF ANALYST FORECASTS AS MEASURES OF EXPECTATIONS: EVIDENCE FROM EARNINGS

Lawrence D. Brown and Micianel. S. Rozeff**

Accurate measurement of earnings expectations is essential for studies of firm valuation, cost of capital and the relationship between unanticipated earnings and stock price changes. Under the rational expectations hypothesis [23]. market earnings expectations should be measured by the best available earnings forecasts. Univariate time series forecasts are often used for this purpose ([1], [3]. [4]. [5], [12]. [13], [14], [16], [18], [20]) instead of direct measures of earnings expectations such as security analysts' forecasts. Univariate time series forecasts neglect potentially useful information in other time series and therefore do not generally provide the most accurate possible forecasts [24]. Since security analysts process substantially more data than the time series of past earnings, their earnings forecasts should be superior to time series forecasts and provide better measures of market earnings expectations.

However, the mere existence of analysts as an employed factor in long run equilibrium means that analysts must make forecasts superior to those of time series models. To reach this conclusion, one need only assume that participants in the market for forecasts act in their own best interests and that both forecast producers and consumers demand forecasts solely on the basis of their predictive ability.' Since analysts' forecasts cost more than time series forecasts, the continued employment of analysts by profit-maximizing firms implies that analysts' forecasts must be superior to those of the lower cost factor, time series models.

Past comparisons of analysts' forccasts to sophisticated time series models conclude that analysts' forecasts are not more accurate than time series forecasts (Cragg and Malkiel (CM) [9]; Elton and Gruber (EG) [11]). This evidence plainly conflicts with basic economic theory. Hence, the predictive accuracy of analysts forecasts is re-examined in this paper. In contrast with other studies, the results overwhelmingly favor the superiority of analysts over time series models.

Part I considers statistical tests and experimental design. Part II contains the empirical results. Summary and implications appear in Part III.

- College of Business Administration, The University of lowa, Iowa City.

1. We assume that forecast purchasers do not derive nonnionetary benefits from forecasts.

I. Experimental Design

A. Statistical Evaluation of Forecast Methods

Without direct information on the costs of imperfect forecasts to forecast users, comparative forecast accuracy is usually evaluated by comparing the error distributions of different forecast methods statistically. However, statistical comparisons in past studies ([9], [11]) utilize test statistics improperly, particularly Theil's U [25] and Student's t. In this section, after discussing the defects of these statistics for evaluating two or more ferecast methods, the allernative statistical methods used in this study are introduced. ${ }^{2}$

Theil's U-statistic (applied to earnings) is the square root of

$$
U_{i j}^{2}=\frac{\sum_{t=1}^{T}\left(\dot{P}_{i j t}-\dot{A}_{i t}\right)^{2}}{\sum_{i=1}^{T} \dot{A}_{i t}^{2}},
$$

where $\dot{A}_{i t}=$ change in actual earnings per share of firm i from $t-1$ to t,
$\dot{P}_{y \prime}=$ predicted change in earnings per share of firm i from $t-1$ to t by forecast method j, and
$T=$ total number of time series observations.
For its computation, it requires time series data on a firm's earnings changes. ${ }^{3}$ Given forecast method j and earnings time series data on firm i, Theil's U compares the forecast accuracy of method j to that of a naive, no change, earnings forecast model. ${ }^{4,5}$ Since analysts' earnings forecasts are currently available only in short time series, use of Theil's U for comparative forecast evaluation necessarily relies on small samples. ${ }^{6}$ Larger sample sizes are possible by testing forecast methods on a cross-section of firms. Finally, no procedure is available with tests of significance which uses Theil's U to compare two forecast methods when neither is a no-change method. Direct hypothesis tests are preferable to inferences drawn from ranking the U statistics of different forecast methods.

For hypothesis tests of two forecast methods, an appropriate design is a onesample or matched pairs case with self-pairing by firm. The members of each pair
2. Past studies also contain experimental biases: CM compare analysts' live-year lorecasts with realizations over three and four-year horizons; EG compare analysts" forecasts with the "best" of nine time series models selected from the same time pefiodin which comparisons with analysts forectsis are made. This procedure introduces ex posi selection bias.
3. EG computed "Theil's U " using eammings tevets rather than changes. This statistic has unknown sampling properties.
4. $\dot{P}_{i j g}=\dot{A}_{11}$ and $U_{1 j}=0$ if prediction is nerfect in every period. If no change is precieted in each period (i.e., $P_{y i}=0$), $U_{i j}=1 ; 0<U_{i j}<1$ if prediction is less than perfect but better than the no-change prediction and $U_{y}>1$ if forecast method j is less accurate than the no-change prediction.
5. CM used cross-sectional rather than temporal data. This "Theil's U " statistic has unknown sampling properties because each error is drawn from a different error distribution, one for each firm.
6. EG's sample size in computing Theil's U varied between two and six.
users, itribuons in
U [25]
cs for sed in
are the errors from the two methods; the matched pair is reduced to a single observation by taking the difference in the errors. The usual parametric test of the mean difference is the paired t-test [17]. An alternative non-parametric west of the median difference is the Wilcoxon Signed Ranks test [8].

The parametric paired t-test is inappropriate for testing mean error differences of forecast methods applied to cross-section earnings data. If applied to error measures stated in level form (e.g., $\left|P_{i j}-A_{i d}\right|$, where $P_{i j f}=$ firm i's torecasted earnings per share for period t by method j and $A_{i f}=$ firm i 's actual earnings per share in period 1), the test's assumption that paired differences are drawn from the same population is violated since each error dilference depends upon each firm's earnings per share level. If applied to error measures stated in ratio form (e.g., $\left.\left|P_{i j t}=A_{i n}\right| /\left.\right|_{i t} \mid\right)^{\prime}$, the distributional assumptions of the paired t-test are also unlikely to be fulfilled since ratio measures applied to earnings per share data are dominated by outliers because actual earnings per share are often close to zero. ${ }^{7}$

Meaningful pairwise comparisons require test statistics which are insensitive to error definition and outliers. We adopt the Wilcoxon Signed Ranks test which meets these requirements and has power comparable to the parametric paired t-test [8, p. 213].

For tests of several forecast methods, the generalization of the paired t-test, two-way analysis of variance, is inapplicable. ${ }^{8}$ The Friedman test [8], which is based on two-way amatysis of variante by ranks and is independent of error definition, is used instead.

For an error measure, we choose relative error ignoring sign, $\left|P_{i j}-A_{i l}\right| /\left|A_{i t}\right|$, a metric which is likely to be of interest to forecast purchasers. ${ }^{9}$ In any event, the Wilcoxon test statistic is insensitive to error definition (see fn. 16).

B. Forecast Horizon

Because economic theory provides no guidance concerning the association of analyst superiority with a particular forecast horizon, several horizons should be investigated. ${ }^{10}$ Our choice of horizons reflects the following considerations: (i) micro-level information obtained by analysts often concerns earnings of the following several quarters or fiscal year; (ii) current fiscal and monetary policies affect earnings of the subsequent one to five quarters; (iii) published forecasts are available mainly for short horizons. We thus investigate point estimates of quarterly earnings per share for forecast horizons of one to five quarters. We also examine annual earnings forecasts. The basic time series data are quarterly primary
7. EG's cross-section parametric 1 -test is inappropriate. Their use of an error measure stated in terms of levels squared (mean square error) appears to compound the inherent difficulty in applying the paired f -test to cross-section earnings data (see fn. 16).
8. Preliminary tests indicated serious violation of the homogeneity of variances and additivity assumptions, basically because of crror oulliers. Violation of the ANOVA assumptions also prevents application below of a factorial design with sample year and forecast horizon as factors, forecast method as treatment and firm as replication.
9. For a disctussion of the deficiencies of using $\left|P_{i j l}\right|$ or $\left|P_{i j l}+A_{i l}\right| / 2$ in the denominator see [25].
10. The forecast horizons studied in the past have been five years (CM) and one year (EG)
earnings per share before extraordinary items, adjusted for stock splits, stock dividends and other capitalization changes for the years 1951-1975.

Ex ante conditional predictions of all forecast methods are determined as follows for a sample of 50 firms for each of the four years 1972-1975. Starting with third quarter 1971 earnings (III/1971), conditional earnings per share predictions for the i th firm by the j th method are oblained for the individual quarters of 1972. The forecasts of 1972 quarterly earnings, conditional on III/1971, are denoted $P_{i j}(1 / 1972 \mid 111 / 1971), P_{i j}(11 / 1972 \mid 111 / 1971), P_{i j}(I I I / 1972 \mid$ III $/ 1971)$ and $P_{i j}$ (IV/1972|1II/1971). Moving ahead one quarter, predictions are again obtained for each of the four quarters of 1972 made conditional upon IV/1971 earnings data. Again moving ahead one quarter, predictions are obtained for the last three quarters of 1972 conditional upon knowledge of $1 / 1972$ earnings, etc. Table 1 shows the set of 1972 predictions so obtained. With these conditional predictions, relative forecast errors ignoring sign are computed for each forecast method j over five distinct quarterly forecast horizons for use in the quarterly error comparisons. Annual earnings forecasts for 1972 are the sum of the forecasts $P_{i j}(1 / 1972 \mid$ IV / 1971), $P_{i j}$ (II/ 1972 |IV/1971), $P_{i j}$ (III/1972|IV/1971), and $P_{i j}$ (IV/1972| IV/1971), that is, the one to four period ahead point forecasts made conditional upon knowledge of the prior year's fiscal earnings." After obtaining analogous forecasts for the years 1973, 1974 and 1975, quarterly and annual comparisons are repeated for these years.

TABLE!
Suminary of Pridictions dy Foregast Horizon for 1972a.b

1 Quarter Ahead	2 Quarters Ahead	3 Quarters Ahead	4 Quarters Ahead	5 Quarters Aheadr
$P_{7 \prime}(1 / 1972 \mid 1 \mathrm{~V} / 1971)$	$P_{y /}(1 / 1972 \mid 111 / 1971)$			
$P_{i j}(11 / 1972 \mid 1 / 1972)$	$P_{y y}(11 / 1972 \mid 1 \mathrm{~V} / 1971)$	$P_{i j}(11 / 1972 \mid 111 / 1971)$		
$P_{i j}(111 / 1972 \mid 11 / 1972)$	$P_{i j}(111 / 1972 \mid 1 / 1972)$	$P_{i j}(111 / 1972 \mid 1 \mathrm{~V} / 1971)$	$P_{1}(111 / 1972 \mid 111 / 1971)$	
$P_{i j}(1 \mathrm{~V} / 1972 \mid 111 / 1972)$	$P_{i j}($ IV/1972 $111 / 1972$)	$P_{y}($ IV/ $/ 1972 \mid 1 / 1972)$	$P_{y j}($ IV/1972\|IV/1971)	$P_{i j}($ IV/1972\|III/1971)

"Predictions missing from the table (e.g.. $P_{i,}(1 / 1972 \mid 11 / 1971), F_{y}(11 / 1972 \mid 11 / 1971)$ are absent because our source of analyst data does not contain these forecasts.
b_{i} and j refer to firm i and method j, respectively.
${ }^{c}$ Five quarter ahead are available for BJ and V only.

C. Time Series Models and Analysts' Forecasts

Within the class of univariate time series models, Box and Jenkins (BJ) [6] models are highly regarded for their ability to make the most efficient use of the time series data. The BJ modelling technique enables one to select the most appropriate time series model consistent with the process generating each firm's time series of quarterly earnings per share data. BJ models, by not making a priori assumptions about the processes generating the data, subsume autoregressive,
11. Beaver [1] concludes that a quarterly approach to predicting annual earnings is at least as good as an annual approach to predicting annual earnings. Also see [7]. (19] and [22] for ocher aspects of the usefulness of quarterly earnings per share data.
movin: fitted class C model
a "sea
model
literal
As
since
accur:
firms
exper
time
BJ
estim
are t:
Surve
fore
Tc
the 1

follows

h third
for the 2. The snoted) and tained rnings

- three tble 1 :tions, i over isons. 1972| $1972 \mid$: ional 'gous is are
moving average and mixed models as special cases. ${ }^{12}$ Forecasts of individually fitted BJ models should, therefore, perform better than forecasts of a particular class of time series models applied to all firms' time series data. Weadopl the BJ modelling technique in this paper. Two other time series models are also included, a "seasomat marlingate (denoted M) and a "seasonal submartingale" (S). These models have been used as standards of comparison in the earnings forecast literature and are available for forecast producers and users at minimal cost.
As a source of analysts' lorecasis we choose the Value Line Investment Survey since it contains one to five quarter ahead earnings forecasts which can be accurately dated and measured. Value Line makes earnings forecasts for 1,600 firms in contrast with institutional research firms which provide fewer, more expensive forecasts. Our hypothesis lest thus compares a relatively sophisticated time series model with an "average" source of analysts" forecasts.
BJ conditional forecasts are obtained by standard methods after identifying and estimating each firm's appropriate model [6]. ${ }^{13}$ Value Line's conditional forecasts are taken directly from individual issues of the Value Line Investment Survey. The Survey, published weekly, makes quarterly earnings predictions four times a year for each firm included.
To define conditional forecasts of the naive models for each firm i, let $A_{i t}$ denote the t th actual quarterly earnings per share for firm i, where $t=1, \ldots, 96$ ($1 / 1951-$ IV / 1974).

Seasonal submartingale (S) conditional one to four quarter ahead forecasts at time t are

$$
\begin{array}{ll}
\text { one quarter ahead } & A_{i t-3}+\left(A_{i t}-A_{i t-4}\right) \\
\text { two quarters ahead } & A_{i t-2}+\left(A_{i t}-A_{i t-4}\right) \\
\text { three quarters ahead } & A_{i t-1}+\left(A_{i t}-A_{i t-4}\right) \\
\text { four quarters ahead } & A_{i t}+\left(A_{i t}-A_{i t-4}\right) .
\end{array}
$$

Seasonal martingale (M) conditional one to four quarter ahead forecasts made in period t are $A_{i t-3}, A_{i t-2}, A_{i t-1}$, and $A_{i t}$. M 's forecasts for a given quarter do not change as actual earnings per share data become available. S modifies M 's forecasts with the change of the latest period's quarter over that of the previous year.

Actual quarterly earnings data are announced for most firms approximately five to six weeks into the subsequent quarter. Time series forecasts then become

[^0]possible and Value Line forecasts are published, on average, forty to fifty days later. ${ }^{14}$

The pattern of forecasts for all models is summarized in Table l. Note that models M and S are not used to generate five quarter ahead forecasts.

II. Empirical Results

A. Sample Selection

Fifty firms were randomly selected from Moody's Handbook of Common Stocks. Each firm has complete quarterly earnings data available from 1951, is included in the Value Line Investment Survey since 1971 and has a December fiscal year. The resulting sample (Appendix A) is representative of the New York Stock Exchange firms included in Moody's and Value Line. Utilities were excluded due to insufficient quarterly earnings data. Sample sizes are reduced in those rare instances when the Value Line conditional forecasts are unavailable.

B. Annual Comparisons

The error distributions of relative annual forecast errors are shown in Table 2 for each of the years 1972-75 using the four forecast methods, seasonal martingale (M), seasonal submartingale (S), Box-Jenkins (BJ) and Value Line (V). Table 2 also contains Friedman test statistics (Chi-square with 3 degrees of freedom) and Wilcoxon test statistics (Student's t with $N-1$ degrees of freedom where N is sample size). The Friedman test statistic examines the null hypothesis that all four error distributions are identically distributed; the Wilcoxon statistic tests the null hypothesis that the median error difference of two methods being compared exceeds zero.

Using the Friedman test, the null hypothesis is rejected at the 1% level in 1972, 1973 and 1975. In the 12 pairwise hypothesis tests of V 's errors against those of M, S, and BJ, the sign of the Wilcoxon test statistic favors Value Line in every instance. Statistical significance occurs 8 times; 6 times at the 1% level and twice at the 5% level. Thus, V generally produces smaller annual errors than the three time series models suggesting that Value Line annual earnings forecasts are superior to those of time series models.

As argued earlier, BJ forecasts should be superior to forecasts of ad hoc time series models. The annual comparisons show that the BJ models generally yield smaller forecast errors than the other time series models studied. In 8 comparisons with M and S, the Wilcoxon test favors BJ 7 times with statistical significance 3 times. These findings suggest that BJ's forecasts are superior to those of ad hoc naive time series models.

While the annual results provide strong support for the hypothesis of analyst superiority, they use only a fraction of the data. More powerful tests are achieved using the larger sample sizes of the quarterly data and many more comparative tests can be performed with these data. We turn next to quarterly comparisons.

[^1]TABLE 2
Wilcoxon and Friedman Test Statistics and Error Distriuutions, Annual Comparisons of Value Line and Time Series Model Prediction Errors, 1972-1975

SAMPLE SIZE=50
Friedman Statistic $\mathbf{m} 4.68$
Wilcoxon Statistics ${ }^{\text {* }}$

	S	BJ	V
M	-.21	2.37^{*}	$2.23^{\text {b }}$
S		1.24	1.44
BJ			0.61

	1975						
	Error Distribution ${ }^{\text {d }}$						
	$<.05$	$\begin{aligned} & .05- \\ & .10 \end{aligned}$	$.10-$	$\begin{aligned} & .25 \cdots \\ & .50 \end{aligned}$	$.50-$	$\begin{aligned} & .75- \\ & 1.00 \end{aligned}$	>1.00
M	4	7	13	10	2	3	11
S	3	5	12	7	9	4	10
BJ	7	3	13	12	2	3	10
V	7	5	18	5	3	3	9

SAMPLE SIZE - 50
Friedman Statistics m 12.84* Wilcoxon Statistics*

	S	BJ	V
M	-1.77^{b}	0.86	3.29^{a}
S		2.99^{a}	3.11^{a}
BJ			1.28

*Signilicant at the 1% level, one-tailed test.
${ }^{b}$ Significant at the 5% level, one-tailed test.
c $V=$ Value Line, $M=$ Seasonal Martingale, $S=$ Seasonal Submartingale, BJ = Box-Jenkins.
${ }^{d}$ Each entry below designates the number of observations for a given model whose relative error ignoring sign is within the stated fractiles.
${ }^{\text {e }}$ Each Wilcoxon test statistic below results from comparing the method at the top with the method on the side. Thus, positive Wilcoxon statistics indicate superiority of model on top.

C. Quarterly Comparisons

In each year, 1972 to 1975, quarterly forecasts are obtained for the forecast methods in the manner shown in Table 1. Relative forecast errors of all four methods are compared over 1-4 quarter forecast horizons; BJ and V are also compared over 5 quarter horizons. In each of the four years, sample sizes are approximately 200 for the 1 and 2 quarter ahead comparisons, 150 for the 3 quarter ahead comparisons, and 100 for the 4 quarter ahead comparisons. Test results over all horizons appear in Table 3 and are summarized in Table 4.

With minor exceptions (3 and 4 quarter horizons in 1974), the Friedman statistics are highly significant when the four methods are tested as a group; the null hypothesis of identically distributed distributions is rejected in 14 of the 16 Friedman tests. Using Wilcoxon test statistics, V 's errors are tested pairwise against M 's and S 's errors 16 times each and against BJ's errors 20 times. The resulting 52 hypothesis lests of V against M, S and BJ are summarized in Table 4A. In the 34 instances of significant Wilcoxon test statistics, V is statistically superior 33 times. In the remaining 18 tests, the sign of the t-statistic favors $V 12$ times. In total, V is favored 45 times out of 52 , revealing an overwhelming dominance of V over the time series models.

The data are also summarized in Table 4 by the mean Wilcoxon t-value (\bar{i}), the estimated standard deviation of the mean t-value $(s(\bar{l}))$ and the ratio $\bar{i} / s(\bar{l})$. The latter ratio is itself a t-statistic only if each t-value being averaged is drawn from the same distribution. Since the distribution of t-values is likely to depend upon the horizon, model and/or year that the experiment is conducted, we refrain from

$$
1050=\left\lvert\, \begin{array}{ll}
v \\
8
\end{array}\right.
$$

TABLE 3
Wilcoxon and Friedman Test Statistics, Quarterly Comparisons of Value Line and
Time Series Model Prediction Errors, 1972-1975c.d

		Forecast Horizon												
		One Quarter			Two Quarter			Three Quarter			Four Quarter			Five Quarter
1972		S	BJ	V	V									
	M	$2.14{ }^{\text {b }}$	$6.87{ }^{\text {a }}$	$8.15{ }^{\text {a }}$	0.79	5.41^{*}	6.87^{2}	-1.09	2.50^{*}	$5.77{ }^{1}$	-3.09^{2}	1.41	5.22^{2}	
	S	-	$4.62{ }^{\text {a }}$	$5.25{ }^{\text {a }}$	-	$4.62{ }^{\text {a }}$	$5.57{ }^{\text {a }}$		3.03	$5.42^{\text {a }}$	-	$3.38{ }^{\text {a }}$	5.30°	
	BJ			$1.75{ }^{\text {b }}$			$2.51{ }^{2}$	Sample Siz= $=150$ Friedman Stat. $=41.14^{2}$			Sample Size $=100$ Friedman Stat. $=43.43$			Sample Size $=50$
	Sample Size $=200$ Friedman Stat. $=73.45^{2}$				Sample Size $=200$ Friedman Stat. $=60.54^{2}$									
1973		S	BJ	V	V									
	M	$8.02^{\text {a }}$	$8.98{ }^{\text {a }}$	10.66^{2}	$5.81{ }^{1}$	$6.41^{\text {a }}$	8.70°	$4.81{ }^{2}$	3.52^{2}	$6.31{ }^{\text {a }}$	2.55^{1}	$1.69{ }^{\text {b }}$	4.63^{*}	-
	S	-	-0.60	1.62	-	-1.83^{6}	1.04	-	$-3.57^{\text {a }}$	-0.02	-	-1.59	1.04	-
	BJ	-	-	$2.48{ }^{\text {a }}$	-	-	3.47^{*}		-	3.34^{4}			$2.79{ }^{1}$	$\begin{gathered} 1.66 \\ \text { Sample Size }=50 \end{gathered}$
	Sample Size $=199$ Friedman Stat. $=173.51^{2}$				Sample Size $=200$ Friedman Stat. $=119.91^{2}$			Sample Size $=150$ Friedman Stat. $=75.22^{2}$			Sample Size $=100$ Friedman Stat. $=29.12$			
1974		S	BJ	V	V									
	M	$3.35{ }^{2}$	$6.29{ }^{\text {a }}$	6.198	0.84	$4.88{ }^{\text {a }}$	$3.78{ }^{\text {a }}$	-0.25	$2.59{ }^{\text {a }}$	1.29	$-2.69^{\text {a }}$	1.41	0.29	-
	S	-	$2.34{ }^{\text {a }}$	$2.95{ }^{\text {a }}$	-	$2.31{ }^{\text {b }}$	1.50	-	1.53	0.97	-	$2.67{ }^{\text {a }}$	$2.80{ }^{4}$	-
	BJ			1.16										
		Sample Size $=199$ Friedman Stat. $=47.57^{*}$			Sample Size $=199$ Friedman Stat. $=22.63^{\mathrm{a}}$			Sample Size $=149$ Friedman Stat. $=5.40$			Sample Size $=100$ Friedman Stat. $=2.92$			Sample Size $=50$
1975		S	BJ	V	S	BJ	V	S	BJ	V	S	BJ	V	v
	M	$2.07{ }^{\circ}$	$5.76{ }^{\text {2 }}$	$8.22^{\text {a }}$	$-2.64{ }^{\text {n }}$	$3.63{ }^{\text {n }}$	$5.29{ }^{\text {a }}$	-4.49	$2.93{ }^{\text {a }}$	$2.95{ }^{2}$	4.89^{2}	-0.78	-0.05	-
	S	-	4.70^{2}	$6.36{ }^{2}$	-	$6.02^{\text {a }}$	$6.14{ }^{2}$	-	$6.13{ }^{\text {a }}$	5.14^{2}	-	3.62*	3.28 ${ }^{\text {a }}$	-
	BJ	-	-	$3.51{ }^{2}$	-	-	1.62	-	-	-0.22	-	-	0.08	0.45
		Sample Size $=199$ Friedman Stat. $=80.32^{\text {a }}$			Sample Size $=199$ Friedman Stat. $=44.49^{2}$			Sample Size $=149$ Friedman Stat. $=33.25^{2}$			Sample Size $=100$ Friedman Stat. $=15.66^{\circ}$			Sample Size $=50$

${ }^{2}$ Significant at the 1% level, one-tailed test.
${ }^{b}$ Significant at the 5% level, one-tailed test.
c $V=$ Value Line, $M=$ Seasonal Martingale, $S=$ Seasonal Submartingale, BJ $=$ Box-Jenkins.
${ }^{\text {a }}$ Each Wilcoxon test statistic entered in the table results from comparing method at the top with method on the side. Thus, positive Wilcoxon statistics indicate superiority of model on top.

Summary of Wilcoxon Test Comparisons

A: Value Line vs. Time Series Models ${ }^{\text {a }}$													
	Total	1 Q	2Q	3Q	4Q	SQ	M	S	BJ	1972	1973	1974	1975
Number of Comparisons	52	12	12	12	12	4	16	16	20	13	13	13	13
Comparisons Favorable to V^{b}	45	12	11	9	10	3	15	15	15	13	12	9	11
Comparisons Statistically Favorable to V^{c}	33	10	8	7	7	1	13	10	10	13	8	4	8
Comparisons Statistically Unfavorable to V	1	0	0	0	0	1	0	0	1	0	0	1	0
Mean Wilcoxon Test													
Statistic (i)	3.25	4.86	3.75	2.83	2.37	. 76	5.27	3.40	1.51	4.84	3.67	1.18	3.29
$i / s(i){ }^{\text {d }}$	8.27	5.45	4.51	3.81	3.72	. 67	5.65	6.24	3.48	9.98	4.18	1.81	4.24
B: BJ vs. Naive Time Series Models													
		Forecast Honzon				Forecast Model				Year			
	Total	1 Q	2Q	3Q	4Q	M	S	1972	1973	1974	1975		
Number of Comparisons	32	8	8	8	8	16	16	8	8	8	8		
Comparisons Favorable to $\mathrm{BJ}^{\text {b }}$	27	7	7	7	6	15	12	8	4	8	7		
Compansons Statistically Favorable to BJ ${ }^{\text {c }}$	24	7	7	6	4	13	11	7	4	6	7		
Comparisons Statistically													
Uniavorable to BJ	2	0	1	1	0	0	2	0	2	0	0		
Mean Wilcoxon Test													
Statistic (i)	3.15	4.87	3.93	2.33	1.48	3.97	2.34	3.98	1.63	3.00	4.00		
$i / s(i){ }^{\text {d }}$	6.37	4.70	4.16	2.41	2.25	6.23	3.25	6.46	1.05	4.99	4.96		

${ }^{2} V=$ Value Line, $M=$ Seasonal Martingale, $S=$ Seasonal Submartingale, $B J=$ Box-Jenkins.
${ }^{b}$ Comparisons are favorable if Wilcoxon statistic in Table 3 is positive.
${ }^{\text {c }}$ Comparisons are statistically favorable if Wilcoxon statistic in Table 3 is positive and significant at the 5% level or beller.
${ }^{d}$ Both i and $s(\bar{i})$ are computed using the number of comparisons in each column of the Table.
hypothesis tests on i and present i and $i / s(i)$ without formal tests of significance. For the 52 comparisons involving V, the mean Wilcoxon test statistic is 3.25 and $\bar{i} / s(\bar{i})$ is 8.2%.

Table 4A also decomposes the 52 comparisons of V with the time series models by forecast horizon, model and year. ${ }^{\text {15 }}$ The data show that Value Line's forecast superiority holds over all horizons studied with a tendency for its superiority to decline as horizon lengthens. V 's predominance model-by-model is, as hypothesized, quite evident with somewhat less superiority over BJ than over M and S. Turning our attention to the 20 comparisons between V and $B J, V$ is superior in 10 of il cases in which the test statistic is significant. In 5 of the remaining 9 comparisons, the sign of the Wilcoxon test statistic favors V. For completeness. Table 4A summarizes Wilcoxon tests by year. Again we expect V to be superior, on average, but have no hypothesis concerning particular years. Comparisons unfavorable to V tend to be confined to 1974, but even in this year, 4 of the 5 statistically significant comparisons favor Value Line.

In summary, the evidence strongly supports the hypothesis that Value Line consistently makes significantly betler predictions than time series models. The statistically significant experiments overwhelmingly favor Value Line. In the remaining expcriments the majority of the Wilcoxon tests also favor Value Line. providing additional support for the hypothesis of analyst superiority.

Table 4B summarizes the 32 comparisons of BJ with the naive time series models. The mean Wilcoxon test statistic is 3.15 and $\bar{i} / 5(i)$ equals 6.37 . In 26 cases, there are significant differences with B.I statistically superior 24 times. BJ is superior to M and S in 3 of the remaining 6 comparisons. Hence. BJ is favored in 27 of 32 comparisons, providing strong support for the hypothesis that BJ predicts earnings better than ad hoc time series models.

Table 4B also summarizes comparisons involving BJ by horizon, model and year. BJ's superiority over the naive models is clearly evident over each forecast horizon with a tendency for its superiority to decline as horizon lengthens. In comparison to individual models, BJ outperforms both M and S with somewhat less dominance over S. Turning to comparisons by year, the superiority of BJ is consistent over time, with most of the comparisons unfavorable to BJ occurring in 1973. Even in this year, the mean Wilcoxon lest statistic is 1.63 and 4 of the 6 significant comparisons favor BJ. ${ }^{16}$

In conclusion, the quarterly and the annual comparisons provide convincing evidence both of Value Line's superiority over each of the three time series models and BJ's superiority over the naive models. The quanterly results also show that V 's superiority over the time series models and BJ's superiority over the naive models

[^2]are not confined to particular models, horizons, or years. The very general character of Value Line's superiority in predicting earnings, evidenced over all models, horizons, and years in 64 separate hypothesis tests involving sample sizes averaging 125 , lends extraordinary support to the hypothesis of analyst superiority.

D. Further Analysis

The superiority of Value Line over time series models follows from the rationai behavior of forecast producers and consumers and should be generalizable to other sources of analyst forecasts and other time periods. As a preliminary test of the sensitivity of our results to choice of analyst, we obtained predictions oi 1975 annual earnings per share made by the Standard and Poor's Earnings Forecaster (®P) for each firm included in the 1975 annual earnings sample. ${ }^{17}$ Wilcoxon tests of SP against M, S, and BJ favored SP, yielding 1 -statistics of $3.18,2.85$ and 1.45 respectively. These results are remarkably similar to those using Value Line. ${ }^{18}$ This evidence suggests that Value Line's forecast superiority over time series models is not unique.
To ascertain whether the sample period posed unusual difficulties for time series earnings forecasting, a BJ model was fitted to the Quarterly Earnings Index of the Dow Jones Industrial Average over the 1951-1975 time period. ${ }^{19}$ Average quarterly percentage errors ignoring sign produced by the BJ model for 1972-1975 were $7.31 \%, 6.61 \%, 9.99 \%$, and 15.47% respectively. Since the mean and standard deviation of average percentage forecast errors over the 1951-1975 period were 10.14% and 4.38%, it appcars that the 1972-1975 period was not a particularly difficult one in which to predict earnings. Indeed. from this standpoint, the 1972-1975 period is comparable to the "stable" years of the sixties, 1962-1967, studied by CM and EG. ${ }^{20}$
These results indicate that if appropriate hypothesis tests are applied to other analysts and time periods, the results are likely to parallel those using Value Line and the 1972-1975 time period.

E. A Brief Investigation of Value Line Superiority

To produce forecasts superior to time series models, Value Line must utilize information not contained in the time series of quarterly earnings. During the period between the most recent quarterly earnings announcement and the subsequent Value Line prediction, Value Line acquires incremental information which, if an important part of its total information set, may explain Value Line's
17. SP, published weekly, contains annual predictions made by Standard and Poor's and other investment firms. The SP prediction for each firm is that made by Standard and Poor's on the date closest to the Value Line prediction date.
18. V 's 1 -statistics versus $M 1, S$, and BI were 3.29. 3.11, and 1.28 respectively (Sce Table 2). A direct Wilcoxon test between V and $S \Gamma$ favored $V(1=77)$.
19. The sample period, 1972-1975, may appear "unusual" since it includes peacetime wage and price controls, high inflation and inventory profits, large changes in employment and new accounting requirements. If events arising during the sample period caused the earnings generating process to change, the forecast ability of the BJ modelling technique may be hampered, unintentionally favoring the analyst.
20. The average percentage errors were $12.67 \%, 10.71 \%, 7.03 \%, 4.93 \%, 6.08 \%$ and 5.26%, respectively for 1962-1967.

The very general fed over all -. sample sizes talyst superiority.
rom the rational alizable to other nary test of the lictions of 1975 :ings Forecaster 'ilcoxon tests of 2.85 and 1.45 lue Line. ${ }^{18}$ This eries models is
for time series ;s Index of the :rage quarterly 172-1975 were and standard ; period were a particularly indpoint, the i, 1962-1967,
lied to other y Vrlue Line
must utilize During the id the subtion which, alue Line's
i's and other ; on the date
:2). \wedge direct
:ge and price accounting
: process to
lly favoring
respectively
superiority. Information arising during this interval is likely to be most important for predicting next quarter's earnings. Assuming that the generation of this incremental information is pusitively related io the passage ol time, earnings should be relatively easier to predict the further Value Line's prediction date is from the most recent earnings announcement date, and one quarter horizon forecast errors should be negatively related to the corresponding intervals.

To test this hypothesis, we obtained for the firms in the 1975 one quarter horizon sample their Value Line errors and the time intervals (7-70 days) since their most recent earnings announcements. A rank correlation was applied to these variables. The insignificanlly negative Spearman rho_which was obtained suggests that information obtained by Value Line during this interval has a negligible effect on its ability to predict next quarters earnings. ${ }^{2+}$ This evidence is consistent with the hypothesis that Value Line's superiority can be attributed to its use of the information set available to it on the quarterly earnings announcement date, and not to the acquision of information arising after the quarterly earnings announcement date.

III. Summary and Implications

Basic economic theory and the equilibrium employment of analysts, a higher cost factor than time series models, imply that analysts must produce better forecasts than time series models. Past studies ([9], [11]) of comparative earnings forecast accuracy have concluded otherwise but use inappropriate parametric tests and contain experimental biases. Using nonparametric statistics which provide proper yet powerful tests, we find that (1) BJ models consistently produce significantly better earnings forecasts than martingale and submartingale models; (2) Value Line Investment Survey consistently makes significantly better earnings forecasts than the BJ and naive time series models. The findings are in accord with rationality in the market for forecasts and the long-run equilibrium employment of analysts.

If market earnings expectations are rational [23], it follows that the best available earnings lorecasts should be used to measure market earnings expectations. Given rational market expectations, our evidence of analyst superiority over time series models means that analysts' forecasts should be used in studies of firm valuation, cost of capital and the relationship between unanticipated earnings and stock price changes until forecasts superior to those of analysts are found. ${ }^{22}$ Past findings ([2], [21]) that share price levels are significantly better explained by analysts' earnings
21. The lack of a significant negative correlation between prediction error and time since last announcement date may occur if the interval is intentionally lengthened by Value Line in order to acquire more information about the firms whose earnings are more difficult to predict. To test this possibility, we measured each firm's prediction "difliculty" by its average one quarter horizon percentage error ignoring sign yielded by its BJ model. No significant correlation was found between this variable and the time interval between the most recent quarterly earnings announcement and the Value Line prediction date.
22. In examining the relationship between unanticipated earnings and stock price changes, for example, the sign of the forecast error from a time series is often used (77], [12], (13]) as a device for classilying unanticipated earnings into "favorable" or "unfavorable" categories. With this methodology, BJ and V classify earnings differently 213 times out of the 797 one quarter ahead forecasts in our sample.
forecasts than by those of time series models are consistent with our evidence and with market rationality.
The hypothesis of analyst superiority versus univariate time series models is derived from basic economic theory and is not limited to the case of earnings. It is therefore applicable to all types of forecasts subject to the market test. There is no presumption that other, non-markel forecasts such as those made by corporate executives or government agencies should be better (or worse) than those generated by univariate time series models.

Abpendix A
Sample Firms
Abbott Laboratories
Allegheny Ludlum Industries, Inc.
American Airlines, Inc.
Anaconda Company
Boeing Company
Borg-Warner Corporation
Braniff International Corporation
Caterpillar Tractor Company
Champion International Corporation
Chrysler Corporation
Clark Equipment Company
Colgate-Palmolive Company
Continental Can Company, Inc.
Curtiss-Wright Corporation
Cutler-Hammer, Inc.
Eastern Airlines, Incorporated
Eastman Koclak Company
Flintkote Company
Freeport Minerals Company
Fruehaul Corporation
GATX Corporation
General Electric Company
Goodrich (B. F.) Company
Gulf Oil Corporation
Homestake Mining Company
International Business Machines Corporation
International Paper Co.
Kennecott Copper Corporation
Leheigh Portland Cement Co.
Ligget Group Inc.
Lowenstein (M.) \& Sons, Inc.
Nabisco, Inc.
National Distillers \& Chemical Corporation
National Steel Corporation
nce and

Pan American World Airways, Inc.
Pepsico, Inc.
Phelps Dodge Corporation
Phillips Petroleum Co.
Pullman, Incorporated
Raybestos-Manhattan, Inc.
Republic Steel Corporation
Standard Brands, Inc.
Standard Oil Company of Indiana
Sterling Drug, Incorporated
St. Regis Paper Company
Timken Company
United States Gypsum Company
United States Steel Corporation
United Technologies Corp.
Wrigley (W. M.) Jr. Company

REFERENCES

1. W. H. Beaver. "The Information Content of the Magnitude of Unexpected Earnings," Unpublished Manuscripi, 1974.
2. F. W. Bell. "The Relation of the Structure of Common Stock Prices to Historical, Expectational and Industrial Variables," Journal of Finance (March 1974). pp. 187-197.
3. H. Benishay, "Variability in Earnings-Price Ratios of Corporate Equities," American Economic Review (March 1961), pp. 81-94.
4. G. Benston. "Published Corporate Accounting Data and Stock Prices," Empirical Research in Accounting: Selected Studies, 1967. Supplement to Vol. 5, Journal of Accounting Research, pp. 1-54.
5. R. S. Bower and D. H. Bower. "Risk and the Valuation of Common Stock," Journal of Political Econonty (May/June 1969), pp. 349-362.
6. G. E. P. Box and G. M. Jenkins. Time Series Andysis: Forecasting and Control (San Francisco: Holden-Day, 1970).
7. P. Brown and J. Kennelly. "The Informational Content of Quarterly Earnings: An Extension and Some Further Evidence," Journal of Business (July 1972), pp. 403-415.
8. W. J. Conover. Practical Nonparamerric Statistics (New York: John Wiley \& Sons, Inc., 1971).
9. J. G. Cragg and B. G. Malkiel. "The Consensus and Accuracy of Some Predietions of the Growth of Corporate Earnings," Journal of Finance (March 1968), pp. 67-84.
10. W. T. Dent and J. A. Swanson. "On Forecast Error in Autoregressive Integrated Moving Average Models," Working Paper No. 75-3, College of Business Administration, The University of lowa, February 1975.
11. E. J. Elton and M. J. Gruber. "Earnings Estimates and the Accuracy of Expectational Data," Management Science (April 1972). pp, 409-424.
12. G. Foster. "Stock Markel Reaction to Estimates of Earnings per Share by Company Officials," Journal of Accounting Rercarch (Spring 1973), pp. 25-37.
13. - "Quarterly Accounting Data: Jime Serics Propertics and Predictive-Ability Results," Accounting Review: (January 1977). pp. 1-21.
14. I. Friend and M. Puckell. "Dividends and Slock Prices," American Economic Review (September 1964), pp. 656-682.
15. J. R. Froeschle. "The Analysis of Scasonal Time Scries," Doctoral Dissertation, The University of lowa, 1975.
16. N. Gonedes. "Properties of Accounting Numbers: Models and Tests," Journal of Accounting Research (Autumn 1973). pp. 212-237.
17. W. L. Hays and R. L. Winkler. Skatistics: Probability, Inference and Decision (New York: Holt, Rinehart and Winston, Inc., 1971).
18. R. C. Higgins. "Growth, Dividend Policy and Capital Costs in the Electric Utility Industry," Journal of Finance (Sepiember 1974). pp. 1189-1201.
19. J. E. Kiger. "An Empirical Investigation of NYSE Volume and Price Reactions to the Announcement of Quarterly Earnings," Journal of Accounting Research (Spring 1972), pp. 113-128.
20. R. H. Litzenberger and C. U. Rao. "Estimates of the Marginal Time Preference and Average Risk Aversion of Inventors in Electric Utility Shares 1960-66," The Bell Journal of Economics and Management Science (Spring 1971), pp. 265-277.
7 (6). B. G. Malkiel and J. G. Cragg. "Expectations and the Structure of Share Prices," American Economic Review (September 1970), pp. 601-617.
21. R. G. May, "The Influence of Quarterly Earnings Announcements in Investor Decisions as Reflected in Common Stock Price Changes," Empirical Rescarch in Accounting: Selected Studies, 1971. Supplement to Vol. 9, Journal of Accounting Research, pp. 119-163.
22. J. F. Muth. "Rational Expectations and the Theory of Price Movements," Econometrica (July 1961), pp. 315-335.

7 24. C. R. Nelson. "Rational Expectations and the Predictive Efficiency of Economic Models," The Journal of Business (July 1975). Pp 331-343.
25. H. Theil, Applied Economic Forecasting (Amsterdam: North-Holland Publishing Company, 1966).

James Vander Weide and Willard Carleton

Although it is widely recognized that growth expectations play an important role in share price determination, there is still considerable disagreement about how investors' growth expectations are measured. Earlier studies by Cragg and Malkiel ([3] and (4]) suggest that the consensus financial analysts' growth expectations are more highly correlated with stock prices than are growth expectations based on simple historical growth extrapolations. llowever, the Cragg and Malkiel work was based on a limited databage of analysts' growth forecasts covering the period 1961 to 1968. Furthermore, compared to the more recent period of high inflation and interest rate volatility, the 196l-1968 period studied by Cragg and Malkiel was characterized by an unusual degree of stability.

Abstract

Our study is an update for year-end 1981,1982 , and 1983 of the Cragg and Malkiel work. It relies on an extensive database of analysts' 5-year earnings growth rate forecasts available through the IBES ("Institutional Brokers Estimate System') service of Lynch, Jones \& Ryan, a New York securities firm. ${ }^{l}$ The results of our study confirm Cragg and Malkiel's basic findings

1 The forecasts, collected on a monthly basis, are by more than 2,000 analysts from over 100 New York and regional securities firms. Over 3 , 000 companies are included. Most large institutional investors subscribe to the LBES service. Although systematic coverage of earuings growth rate forecasts has been included in Lynch, Jones and Ryan's surveys only since January, 1982, the firm has been collecting analysts forecasts of companies' earnings per share (one and two years ahead) for many years. These data themselves have been employed in several studies, e.g., Elton and Gruber [5] and Peterson and Peterson[10].
with respect to the role of consensus growth rate forecasts. They also reveal more ambiguities with respect to the measurement of risk, for which we provide both statistical and economic interpretation.

The significance of our study derives from the fact that the measurement of growth expectations plays a critical role in one of the commonly used rechniques of cost of equity capital estimation. ${ }^{2}$ All valuation, or cost of equity capital, models require for practical implementation market expectational variables which cannot be directly observed (company earnings, growth rate, return or excess return on the market portfolio, etc.). The Gordon model and its variants, in particular, have been criticized among other reasons for requiring such input. The evidence from this study suggests strongly that consensus growth forecasts are at the very least good surrogates for the unobserved market growth expectations.

TUE STOCK PRICE MODEL

To study the effect of growth expectations on share prices, we need an explicit model of how share prices are determined. An appealing stock price model has recently been described in an interesting book by Cragg and Malkiel

2 Indeed, our initial research was conducted in response to the federal Comunications Commission's Notice of Proposed Rulemaking $|6|$ which sought comments on methods for estimating the cost of capital for companies providing interexchange telecommunications services.
entitled Expectations and the Structure of Share Prices (4). Cragg and Malkiel begin with the assumptions that (l) utility maximizing investors choose to hold diversified portfolios and (2) there are certain common elements of risk (i.e., common risk factors) that cannot be diversified away. Under these assumptions, they show that the equilibrium price on any security must be given (at least approximately) by the equation

$$
\begin{aligned}
& P_{j}=\mu_{j}{ }^{a}{ }_{0}+\sum_{k}^{K}=1 \gamma_{j k} a_{k} \\
& \text { where } P_{j}=\text { security j's stock price, } \\
& \lambda l_{j}=\text { expected return on security } j \text {, } \\
& \gamma_{j k}=\text { coefficient representing security } j^{\prime} s \text { sensitivity } \\
& \text { to the } k \text { th common factor, } \\
& \text { "k }=\text { coefficient representing the expected utility (in } \\
& \text { equilibrium) from a marginal increase in common } \\
& \text { factork. }
\end{aligned}
$$

Now if investors expect that future security prices will also be determined by (1) and the a_{k} 's still remain unchanged, then the expected return on security j at time t is given by

$$
\begin{equation*}
\mu_{j t}=E\left(d_{j, t+l}\right)+E\left(\mu_{j, t+1} a_{o}+\sum_{k=1}^{K} \dot{\left.\gamma_{j k, t+1} a_{k}\right)}\right. \tag{2}
\end{equation*}
$$

where $d_{j, r}+1$ is the dividend received in the next period and E is the expectation operator. Repeated substitution of (2) into (1), along with the assumption that dividends are expected to grow indefinitely at the constant
rate g produces an appropriate stock price equation for period zero that is remarkably similar to the textbook version of the Discounted Cash Flow Model:

$$
\begin{equation*}
P_{j 0}=d_{j 0}\left(l+g_{j}\right) /\left(\bar{\rho}-g_{j}\right)+\sum_{k}^{K} a_{k} \gamma_{j k}(l+\bar{\rho}) / \bar{\rho} \tag{3}
\end{equation*}
$$

where \bar{F} is the risk-free rate.

Dividing both sides of equation (3) by the firm's current carnings, we see that the Cragg-Malkiel model implies the existence of a functional relationship between the security's price/earnings ratio and $K+3$ other variables: che firm's dividend payout ratio, investors' growth expectation, the risk-free rate of interest, and K common risk factors. This is the functional relationship that we shall explore in the remainder of this study.

DESCRIPTION OF DATA

Our data sets include both historically-based measures of future growth and the consensus analysts' forecasts of 5-year earnings growth supplied by the Institutional Brokers Estimate System. of Lynch, Jones \& Ryan. They also include the firm's dividend-payout ratio and various measures of the firm's risk. The latter data items are included in the regression, along with earnings growth, to account for other variables that may affect the firm's stock price.

A more detailed description of our data set follows:
years, three years ... and ten years, 3) the past growth rate in book value per share (computed as the ratio of common equity to the outstanding common equity shares) for the latest year, two years, three years ... and ten years, 4) the past growth rate in cash flow per share (computed as the ratio of prettax income, depreciation and deferred taxes to the outstanding common equity shares) for the latest year, two years, three years ... and ten years, and 5) plowback growth (computed as the firm's retention ratio for the current year times the firm's latest annual return on common equity).

We also used the five-year forecast of earnings per share growth compiled by IBES and reported in mid-January of each year. This represents the consensus (i.e., mean) forecast produced by analysts from the research departments of leading wall Street and regional brokerage firms.over the preceding three months. The contributing brokers have been selected by IBES "because of the superior quality of their research, professional reputation, and client demand." (IBES Monthly Summary book. [7])
5. Risk Variables Although there are a grear many risk factors that could potentially affect the firm's stock price, most of these are highly correlated with one another. We have decided to restrict our attention to four risk measures that have intuitive appeal and are followed by many financial analysts. These include: a) B, the firm's "bera" as published by value Line; b) Cov, the firm's pre-tax interest coverage ratio
pricelearnings ratio (P / E) is calculated as the closing stock price for the year (i.e., year-end 1981, 1982 and 1983) divided by the consensus analyst earnings expectation for the forthcoming fiscal year, (i.e., 1982 , 1983 and 1984).
3. Dividends Dividends per share represent the common dividends declared per share during the calendar year (it includes an adjustment for all stock splits and stock dividends). The firm's dividend payout ratio is then defined as common dividends per share divided by the consensus analyst estimate of earnings per share for the forthcoming calendar year (D / E). Although this definition has the deficiency that it is obviously biased downards (because it divides this year's dividend by next year's earnings), it has the advantage that it implicitly uses a "normalized" figure for earnings. We believe that this advantage outweighs the deficiency, especially when one considers the flaws of the apparent alternatives. Furthermore, we have verified that the results are insensitive to reasonable alternative definitions (see footnote 3).
4. Growth In comparing historically-based and consensus analysts' forecasts, we calculated 4 l different historical growth measures. These included the following: a) the past growth rate in EPS as determined by a log-linear least squares regression for the latest year, ${ }^{4}$ two years, three years ... and ten years, b) the past growth rate in DPS for the latest year, two

4 For the latest year, we actually employed a point-to-point growth calculation because there were only two available observations.

1. Earnings Per Share Since our goal is to determine which earnings variable is embodied in the firm's market price, we need to define this variable with great care. Financial analysts who study a firm's financial results in detail generally prefer to "normalize" the firm's reported earnings for the effect of extraordinary items such as write-offs of discontinued operations or mergers and acquisitions. They also attempt, to the extent. possible, to state earnings for different firms using a common set of accounting conventions.

In this study, we defined "earnings" as the consensus analyst estimate (as reported by $I B E S$) of the firm's earnings for the forthoming year. ${ }^{3}$ This definition approximates the normalized earnings that investors most likely have in mind when making stock purchase and sell decisions. It implicitly incorporates the analyst's adjustments for differences in accounting treatment among firms and the effects of the business cycle on each firm's results of operations. Although we at first thought that this earnings estimate might be highly correlated with the analyst 5 -year earnings growth forecasts, this was not the case. Thus, a potential spurious correlation problem was avoided.
2. Price/Earnings Ratio Corresponding to our definition of "earnings", the

3 We also tried several other definitions of "earnings" including the firm's most recent primary earnings per share prior to any extraordinary items or discontinued operations. Since our results were insensitive to reasonable alternative definitions of "earnings", we only report the results for one definition in this paper.
(obtained from Standard \& Poor's Compustat); c) Rsq, the stability of the firm's five-year historical EPS (measured by the R^{2} from a log-limear least squares regression); and d) $S a$, the standard deviation of the consensus analysts' five-year EPS growth forecast (mean forecast) as computed by LBES.

After careful analysis of che data used in our study, we felt that more meaningful results could be obtained by imposing several restrictions on the companies included in our study. These restrictions are listed below:
A. Because of the need to calculate ten-year historical growth rates and because we studied three different time periods, 1981, 1992 and 1983, our study requires data for the 13-year period 1971-1983. Only companies with at least a l3-year operating history were included in our study..
B. Since our historical growth rate calculations were based on log-linear regressions, and the logarithm of a negative number is not defined, we excluded all companies which experienced negative EPS during any of the years 1971-1983.
C. For similar reasons, we also eliminated companies which did not pay a dividend during any one of the years 1971-1983.
D. To insure comparability of time periods covered by each consensus earnings Eigure in the P / E ratios, we eliminated all companies which did not have a December 31 fiscal year-end.
E. To eliminate distortions caused by highly unusual events that impact current earnings; but not expected future earnings, and thus the firm's pricelearnings ratio, we eliminated any firm having a price/earnirgs ratio greater than 50.
F. Since the evaluation of analysts' forecasts is a major part of this study, we eliminated all firms that were not followed by IBES.

Our final sample consisted of approximately 135 industrial and 65 utility Eirms. ${ }^{5}$

Linear Approximation

As noted earlier, our study is designed to test which estimate of expected dividend growth is embodied in current market prices. For this purpose, we shall employ a linear approximation to the stock price model (3) that takes the form:

$$
\begin{equation*}
(P / E)_{j}=a_{0}+a_{1}(D / E)_{j}+a_{2} g_{j}+a_{3} B_{j}+a_{4} \operatorname{Cov}_{j}+a_{5} R s q_{j}+a_{6} S a_{j}+e_{j} \tag{4}
\end{equation*}
$$

where ($P / E)_{j}$ is Eirm j's price/earnings ratio, (D/E) jis Eirm j's dividend payout ratio, g_{j} is an estimate of firm j's future growth, Bi is firm j's Value Line beta, Covj is Eirm j's pre-tax interest coverage ratio, Rsqj is a measure of the stability of firm j's five-year historical EPS, Saj is the

5 We use the word "approximately" because the set of available firms varied each year. llowever, in each case it was only from 0-3 firms on either side of the figures cited here.
standard deviation of the consensus analysts' five-year EPS growth forecast For firm j, and e_{j} is an error term that is assumed to obey the standard ordinary least squares (OLS) assumptions:

$$
\begin{align*}
& E\left(e_{i}\right)=0 \quad \text { for all } i=1,2, \ldots, n \\
& E\left(e_{i} e_{j}\right)=\begin{array}{ll}
0 & \text { for } i \neq j ; i, j=1,2, \ldots ., n \\
\sigma_{e}^{2} & \text { for } i=j ; i, j=1,2, . ., n
\end{array} \quad . \tag{5}\\
& E\left(e X_{i k}\right)=0 \quad \text { for all } \begin{aligned}
& i=1,2, \ldots \\
& k=1,2, \ldots, \ldots \\
&
\end{aligned}
\end{align*}
$$

where n is the number of firms and m is the number of independent variables.

Although the use of the linear approximation to the pricelearnings equation (3) is convenient for estimation purposes, there is a legitimate concern that it may seriously interfere with our ability to draw correct inferences from our study results. If the linear approximation to the price/earnings equation is not very accurate, then there is a high likelihood that the OLS assumptions (5) do not hold, and thus there exists the possibility of reaching incorrect. conclusions.

RESULTS

To keep the number of calculations in our study at a reasonable level, we performed the study in two stages. In stage 1, all 41 historically-oriented approaches Eor estimating future growth were correlated with each firm's P / E ratio. In stage 2 , the historical growth rate with the highest correlation to
the P / E ratio was compared to the consensus analyst growth rate in the multiple-regression model described by equation (4) above. Because we felt the results of our study might vary over time and across groups of firms, we performed our regressions on two groups of firms in each of three recent time periods. The two candidate groups of firms were (1) the $S \& P 400$ Industrials and (2) the 178 utilities tracked by IBES, to the extent that these companies met our criteria for inclusion.

First-Stage Correlation Study

Table 1 (Parts A and B) contains the results of our first-stage correlation study for each group of companies in each of the years 1981, 1982 and 1983. The values in this table measure the correlation between the historicallyoriented: growth rates for various time periods (one-year, two-year, threeyear, etc.) and the firm's end-of-year P / E ratio. The four variables for which historical growth rates were calculated are shown in the left-hand column: EPS indicates historical earnings per share growth, DPS indicates historical dividend per share growth, BVPS indicates historical book value per share growth and CFPS indicates historical cash flow per share growth. The term "plowback" refers to the product of the firm's retention ratio in the current year and its return on book equity for that year. In all, we calculated 4 historically-oriented growth rates for each group of firms in each study period.

The goal of the first-stage correlation analysis is to determine which historically-oriented growth rate is most highly correlated with each group's year-end P / E ratio. Ten-year BVPS has the highest correlation with the
year-end P / E ratio in each year of the study period for the indugtrial group of firms (gee Table 1Λ). For the utility group, eight-year growth in CFPS has the highest correlation with P / E in 1981 and 1982, and ten-year growth in CFPS has the highest correlation with year-end P / E in 1983 (see Table 1 B). In all cases, the "plowback" estimate of future growth performed very poorly, indicating that it is not a factor in investors' expectations of future growth.
-13-

Second-Stage Regression Study

Abstract

In the second stage of our regression study, we ran regression equation (4) using two different measures of future growth, g: l) the best historicallyoriented growth rate $\left(g_{h}\right)$ from the first-stage correlation study, and 2) the consensus analysts' forecast (g_{a}) of five-year EPS growth. The regression results are shown in Table 2 .

These results support at least four general conclusions regarding the pricing of equity securities. First, there is overwhelming evidence that the consensus analysts' forecast of future growth is superior to historicallyoriented growth measures in predicting the firm's stock price. In every case, the R^{2} in the regression containing the consensus analysts' forecast is higher than the R^{2} in the regression containing the historical growth measure. Furthermore, the regression coefficients in the equation containing the consensus analysts' forecast are considerably more significant than they are in the alternative regression. These results are consistent with those Found by Cragg and Malkiel for data covering the period 1961-1968. They are also consistent with the hypothesis that investors use analysts' forecasts, rather than historically-oriented growth calculations, in making stock buy and sell decisions.

Second, there is some evidence that investors tend to view risk in fairly traditional terms: the interest coverage variable is statistically significant in all but one of our samples and the stability of the operating income

Table 1 (Part B)

Correlation Coefficients of All llistorically-Based Growth Estimates by Group and by Year with P / E

Utility Group

	Cirrent Year	llistorical Growth Rate Period in Years									
		1	2	3	4	5	6	-1	8	9	10
1981											
EPS		-. 02	. 07	. 03	. 01	. 03	. 12	. 08	. 09	. 09	. 09
DPS		. 05	. 18	. 14	. 15	. 14	. 15	.19	. 23	. 23	. 23
BVPS		. 01	.11	. 13	. 13	. 16	. 18	. 15	. 15	. 15	. 15
CFPS		-. 05	. 04	.13	. 22	. 28	. 31	. 30	. 31	-. 57	-. 54
P Jowback	. 19										
1982											
EPS		-. 10	$-.13$	-.06	$-.02$	$-.02$	-. 01	$-.03$	-. 03	. 00	. 00
DPS		-. 19	-. 10	.03	. 05	. 07	. 08	. 09	. 11	. 13	. 13
BVPS		. 07	. 08	. 11	. 11	. 09	. 10	. 11	. 11	. 09	. 09
CFPS		-. 02	$-.08$. 00	. 10	. 16	. 19	. 23	.25	. 24	. 07
Plowback	. 04										
1983											
Ers		-. 06	-. 25	-. 25	$-.24$	-. 16	-. 11	$-.05$. 00	. 02	. 02
DPS		.03	$-.10$	-. 03	. 08	. 15	.21	. 21	. 21	. 22	.24
BVPS		.03	.10	. 04	.09	. 15	.16	. 19	. 21	. 22	. 21
CFPS		-. 08	. 01	. 02	. 08	. 20	.29	. 35	. 38	. 40	.42
Plowback	-. 08										

variable is statistically significant in six of the twelve samples we studied, while the beta is never statistically significant and the standard deviation of the analysts' 5-year growth forecasts is statistically significant in only two of our twelve samples. llowever, this evidence is far from conclusive since, as we demonstrate later, there is a significant degree of cross-correlation among our four risk variables. This cross-correlation makes any general conclusions about risk extremely hazardous.

Finally, the study results suggest that our price/earnings model "works" significantly better for utilities than it does for industrials, as evidenced by the significantly higher R^{2} values for the utility regressions. We shall explore the possibility that this result is explained by the fact that the linear approximation to our theoretical price/earnings equation is more exact for the utilities than for the industrials in the next section.

Table 2 (Part A)
Regression Results - Industrials
Model I - with P/E as Dependent Variable

Part A: Ilistorical

$$
P / E=a_{0}+a_{1} D / E+a_{2} g_{1}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a
$$

Year	a_{0}	a_{1}	${ }^{\mathrm{a}_{2}}$	a_{3}	3_{4}	a_{S}	a_{6}	R^{2}	F Ratio
1981	-9.15*	16.29*	20.54*	4.27	0.06*	4.27*	36.94*	0.45	18.82
	(2.61)	(8.01)	(3.30)	(1.63)	(2.69)	(3.19)	(4.93)		
1982	-6.52	18.19*	19.17*	-1.31	0.11*	7.63*	142.46	0.51	24.33
	(1.48)	(10.22)	(2.05)	(0.33)	(3.17)	(4.42)	(4.45)		
1983	-5.23	19.84*	18.08*	4.74	0.04*	2.27	30.19	0.41	16.12
	(1.45)	(9.18)	(2.22)	(1.55)	(1.65)	(1.64)	(1.44)		

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a$

Notes:
$\#=$ Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Table 2 (Part B)
Regression Results - Utilities
Model I - with P/E as Dependent Variable
Part A: llistoricai

$$
P / E=a_{0}+a_{1} D / E+a_{2} g_{h}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a
$$

Year	${ }^{a_{0}}$	\hat{a}_{1}	a_{2}	${ }_{\text {à }}$	a_{4}	a_{5}	${ }^{\text {a }} 6$	R^{2}	F Ratio
1981	-6.42*	10.31*	7.67*	3.24	0.54*	1.42*	57.43	0.83	46.49
	(5.50)	(14.79)	(2.20)	(2.86)	(2.50)	(2.85)	(4.07)		
1982	-2.90*	9.32*	8.49*	2.85	0.45*	-0.42	3.63	0.86	65.53
	(2.75)	(18.52)	(4.18)	(2.83)	(2.60)	(0.05)	(0.26)		
1983	-5.96\%	10.20*	19.78*	4.85	0.144*	0.33	32.49	0.82	45.26
	(3.70)	(12.20)	(4.83)	(2.95)	(1.89)	(0.50)	(1.29)		

Part B: Analysts

$$
P / E=a_{0}+a_{1} D / E+a_{2} g_{a}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a
$$

Year	${ }^{\mathrm{a}_{0}}$	${ }^{3}{ }_{1}$	${ }_{3}{ }_{2}$	${ }^{\text {a }}$	${ }^{a_{4}}$	${ }^{\mathrm{a}_{5}}$	${ }^{\text {a }}{ }_{6}$	R^{2}	F Ratio
1981	$\begin{aligned} & -4.97 \% \\ & (6.23) \end{aligned}$	$\begin{aligned} & 10.62^{*} \\ & (21.57) \end{aligned}$	$\begin{aligned} & 54.85 \mathrm{k} \\ & (8.56) \end{aligned}$	$\begin{aligned} & -0.61 \\ & (0.68) \end{aligned}$	$\begin{gathered} 0.33 * \\ (2.28) \end{gathered}$	$\begin{gathered} 0.63 * \\ (1.74) \end{gathered}$	$\begin{gathered} 4.34 \\ (0.37) \end{gathered}$	0.91	103.10
1982	$\begin{aligned} & -2.16 \% \\ & (2.59) \end{aligned}$	$\begin{array}{r} 9.47 * \\ (22.46) \end{array}$	$\begin{aligned} & 50.71 * \\ & (9.31) \end{aligned}$	$\begin{aligned} & -1.07 \\ & (1.14) \end{aligned}$	$\begin{gathered} 0.36 * \\ (2.53) \end{gathered}$	$\begin{aligned} & -0.31 \\ & (1.09) \end{aligned}$	$\begin{gathered} 119.05 * \\ (1.60) \end{gathered}$	0.90	97.62
1983	$\begin{gathered} -8.47 * \\ (7.07) \end{gathered}$	$\begin{aligned} & 11.96 * \\ & (16.48) \end{aligned}$	$\begin{aligned} & 79.05 * \\ & (7.84) \end{aligned}$	$\begin{gathered} 2.16 \\ (1.55) \end{gathered}$	$\begin{gathered} 0.56 * \\ (3.08) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.38) \end{gathered}$	$\begin{array}{r} -34.43 \\ (1.44) \end{array}$	0.87	69.81

$\stackrel{\text { Notes: }}{*}=$ Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Although the results of our study provide convincing evidence in support of our conclusions, we feel it is important to investigate whether, and to what extent, our conclusions may have been affected by the nature of our statistical assumptions. In this section, we investigate (1) the amount of independent variation in the explanatory variables, (2) the accuracy of the linear approximation to the theoretical price-earnings relationship and (3) the effect of a possible misspecification of the risk variables.

Independent Variation in the Explanatory Variables

In an effort to understand why we were unable to find a strong and consistent relationship between firms' price-earnings ratios and their risk measures, we performed a principal-axis factor analysis (with a varimax rotation) of our six explanatory variables. The results are summarized in Tables 3 and 4 .

Table 3 shows the cumulative percentage of the total variation in the six explanatory variables in each sample that is accounted for by the four principal components with the highest eigenvalues. In all cases, roughly 75% of the total variation in the six explanatory variables is accounted for by the first three principal components. This means that there are really at most three indcpendent dimensions of variation in our explanatory variables and there may very well be less. In fact, the subsequent factor analysis demonstrates that there are really only two statistically significant
independent dimensions of variation in all cases but one, where there are three (See Table 4). Thus, we should not be surprised to get less than a full set of significant coefficients in our regressions.

Table 4 displays the factor loadings of the six explanatory variables on the (two or three) statistically significant principal factors obtained from the factor analysis. We see that the six original variables tend to fall into two 3-member subgroups, whose members load on the same factor. In the utility sample, for instance, the three variables g_{a}, B and s_{a} always load heavily on one of the two factors, while the three variables D / E, Cov, and Rsq load heavily on the other. This means that the variables within each group are so highly correlated that it is virtually impossible to distinguish between them statistically.

Table 3

> Cumulative Percentage of Total Variance Accounted Eor by Four Principal Components with lighest Eigenvalues in Descending Order

Principal Component	Sturly Group*					
	1-81	2-81	1-82	2-82	1-83	2-83
1	31\%	40\%	31\%	34\%	30\%	35\%
2	54\%	64\%	59\%	62\%	53\%	62\%
3	74\%	78\%	73\%	75\%	69\%	74\%
4	86\%	88\%	85\%	85\%	82\%	86\%

* The study groups are labeled to reflect both the year (1981, 1982, 1983) and whether the sample consisted of industrial firms (1) or utility firms (2).

Table 4 (Part Λ)

Rotated Factor Loadings of Industrial and Utility Firm Samples in 1981

$\begin{aligned} & \text { Original } \\ & \text { Variable } \end{aligned}$	Industrial		Firms	Utility Factor 1	Firms Factor 2
	Factor 1	Factor 2	Factor 3		
D/E	-0.056	0.822	-0.188	-0.677	-0.077
g_{a}	0.859	-0.290	0.143	0.372	0.861
1	0.132	-0.756	-0.183	0.370	0.565
Cov	0.036	0.371	0.736	0.668	0.357
Rsq	-0.103	-0.318	0.774	$0.8 i 2$	-0.001
Sa	0.898	0.062	-0.195	-0.473	0.793

-22-
Table 4 (Part B)

Rotated Factor Loadings of Industrial and Utility
 Firm Samples in 1982

Original
Variable

D/E
g_{a}
B
Cov
Rsq
Sa

IndustrialFirms Factor 1	Factor 2

$-0.717 \quad 0.030$
0.732
0.222
0.343
-0.369
-0.371
0.815

Utility	Firms
Factor 1	Factor 2
-0.170	-0.649
0.817	0.371
0.827	0.032
-0.119	0.771
-0.011	0.750
0.733	-0.251

Table 4 (Part C)
Rotated factor Loadings of Industrial and Utility Firm Samples in 1983

Original Variable

D/E
g_{a}
B
Cov
Rsq
Sa

Industrial Firms
Factor 1 Factor 2
-0.638
0.073
0.740
0.345
0.716
-0.483
-0.237
$-0.029 \quad 0.756$

Utility
Factor 1
0.004
0.882
0.775
0.255
-0.226
0.712

Firms
Factor 2
-0.750
0.181
-0.008
0.670
0.633
-0.497

Accuracy of Linear Approximation

Since nonlinearity can be a serious problem in statistical inference, we need to test carefully how closely the linear equation (4) approximates the true price/earnings relationship (3). A straightforward approach is to run an OLS regression, assuming that (4) is reasonable (and hence (5) applies), and then to exanine the appropriate test statistics to see whether the linear approximation "works". (see Theil [11])

On the other hand, there are at least two drawbacks to the straightforward approach to testing for nonlinearity. Since the straightforward approach makes no assumption about the form of the nonlinear relationship we are testing for, it is necessarily an indirect, and hence not very powerful, test. Furthermore, the test itself is biased by the fact that the covariance matrix of the least squares residuals is generally nonscalar (i.e, $\operatorname{var}(e) \neq \sigma^{2} I$), even when the covariance matrix of the true residuals is scalar. Thus, uncorrelated disturbances do not guarantee that the ols residuals are uncorrelated.

Given the above uncertainties with the straightforward approach to testing for nonlinearity and the importance of the linear assumption to the interpretation of our results, we conducted a second test of the reasonableness of the linear approximation to the price/earnings equation (3), using the multi-variable version of Taylor's Theorem. For the purposes of this test, we ignored the risk variables appearing in (3), since they clearly appear in a strictly linear form.

Erom Taylor's Theorem ${ }^{6}$, we know that any continuous function $f(p)$ of two variables with continuous derivatives up to third order in a neighborhood of the point $P_{0}=\left(x_{0}, y_{0}\right)$ can be expressed as

$$
\begin{align*}
E(p)= & f\left(p_{0}\right)+\left.\frac{\left(x-x_{0}\right)}{1} \frac{\partial f}{\partial x}\right|_{p_{0}}+\left.\frac{(y-y)_{0}}{1} \frac{\partial f}{\partial y}\right|_{p_{0}} \tag{6}\\
& +\left.\frac{\left(x-x_{0}\right)^{2}}{2!} \frac{\partial^{2} E}{\partial x^{2}}\right|_{P^{*}}+\left.\frac{\left(x-x_{0}\right)\left(y-y_{0}\right)}{1!} \frac{\partial^{2} E}{\partial x \partial y}\right|_{P^{*}}+\left.\frac{\left(y-y_{0}\right)^{2}}{2!} \frac{\partial^{2} E}{\partial y^{2}}\right|_{P^{*}}
\end{align*}
$$

where $p=(x, y)$ and p^{*} is a point on the line segment joining p_{0} and p. Applying this knowledge to the nonlinear term in equation (3), we have

$$
\begin{equation*}
P_{j 0}(D, g)=\frac{(1+\bar{g}) \bar{D}}{\bar{\rho}-\bar{g}}+\frac{(1+g)}{\bar{\rho}-g}(D-\bar{D})+\frac{(\bar{\rho}+1)}{(\bar{\rho}-g)^{2}}(g-\bar{g})+R_{n}(D, g) \tag{7}
\end{equation*}
$$

where a bar over a variable indicates the mean value of that variable and R_{n} is the sum of second order terms evaluated at ($\mathrm{D}^{*}, \mathrm{~g}^{*}$).

Let us denote the first order Taylor approximation to pjo (D,g) by PL. Then we can investigate the relative accuracy of the linear approximation to equation (3) by calculating

for various values of D and g. Table 5 (Parts A and B) shows the resulting calculations for 20 D and g values taken from both the industrial and utility samples. The only criterion used in selecting these values was that the firm's

6 Buck, R. Creighton and E. F. Buck, Advanced Calculus, McGraw-Hill Bouk. Company, New York, 1965, pp. 260-261.

TABLE 5 (PART A)
Analysis of Accuracy of Linear Approximation for $20 \mathrm{D} / \mathrm{E}$ and
g Values Taken from Industrial Sample

TABLE 5 (PART B)
Analysis of Accuracy of Linear Approximation for D / E and g Values Taken from Utility Sample

growth estimate had to be less than the risk-free rate $\tilde{\mathcal{S}}$, which we chose to be 12% since this was indicative of rates on long-term U. S. government securities in the 1981-83 period. The use ofthis criterion meant that we excluded certain industrial firms with extremely high growth expectations; it had no effect on our choice of utility company values. We included observations from all three years of our study.

On the basis of this investigation and our further statistical tests, we believe that at least three conclusions regarding the accuracy of the linear approximation are justified:

1. The linear approximation is reasonably accurate for sample values of the independent variables centered around the mean observations.
2. The linear approximation is considerably more reasonable Eor the utility sample than it is for the industrial sample (which helps to explain why the $R^{2} s$ in the utility regressions are higher).
3. The accuracy of the linear approximation can be improved by eliminating extreme observations.

Possible Misspecification of Risk

Since the stock valuation theory says nothing about which risk variables are most important to investors, we need to consider the possibility that the risk variables of our study are actually only proxies for the "true" risk variables used by investors. It is well known that the inclusion of proxy variables may increase the variance of the parameters of most concern, which in this case are the coefficients of the growth variables. ${ }^{7}$

7 See Maddala, G.S., Econometrics, McGraw-llill Book Company, New York, 1977, pp. 158-162.

```
            Table 6 (Part A)
            Regression Results - Industrials
Model II - with P/E as Dependent Variable
```

Part A: IIistorical
$P / E=a_{0}+a_{1} D / E+a_{2} g h$

Year	${ }^{\text {a }}$	${ }^{a_{1}}$	${ }^{3}$	R^{2}	F Ratio
1981	$\begin{gathered} -0.59 \\ (.39) \end{gathered}$	$\begin{aligned} & 15.40 \\ & (7.48) * \end{aligned}$	$\begin{aligned} & 31.33 \\ & (4.93) \star \end{aligned}$. 30	30.30.
1982	$\begin{aligned} & -0.31 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 17.97 \\ & (9.03) * \end{aligned}$	$\begin{aligned} & 40.75 \\ & (4.30) * \end{aligned}$. 36	40.79
1983	$\begin{gathered} 2.09 \\ (1.14) \end{gathered}$	19.03	22.17	. 37	41.80

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}$

Year	${ }_{\text {a }}^{0}$	${ }^{1}{ }_{1}$	a_{2}	R^{2}	ERatio
1981	-10.99	16.88	95.31	. 57	88.79
	(6.34)*	$(10.46) *$	(10.31)*		
1982	-17.60	18.30	172.41	. 59	98.58
	(6.52)*	(12.16)*	(9.68)*		
1983	-9.95	19.28	111.00	. 58	92.79
	(4.85)*	(11.86)*	(8.40)*		

Notes:
$\dot{*}=$ Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Table 6 (Part B)

Regression Results - Utilities Model II - with P/E as Dependent Variable

Part A: llistorical
$P / E=a_{0}+a_{1} D / E+a_{2} g_{1}$

Year	a_{0}	${ }_{1}$	${ }_{\text {a }}^{2}$	K^{2}	FRatio
1981	-1.05	9.59	21.20	.73	32.95
	(1.61)	$(12.13) *$	(7.05)*		
1982	0.54	8.92	12.18	. 83	167.97
	(1.38)	(17.73) \%	(6.95)*		
1983	-0.75	8.92	12.18	. 77	107.82
	(1.13)	(12.38)*	(7.94)*		

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}$

Year	${ }_{\text {a }}^{0}$	${ }^{3}{ }_{1}$	a_{2}	R^{2}	F Ratio
1981	3.96	10.07	60.53	. 90	274.16
	(8.31)*	(20.91)*	(15.79)*		
1982	-1.75	9.19	44.92	. 88	246.36
	(4.00)*	(21.35)*	(11.06)*		
1983	-4.97	10.95	82.02	. 83	168.28
	(6.93)*	(15.93)*	(11.02)*		

$\frac{\text { Notes: }}{*}=$
Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

To allow for the possibility that the use of risk proxies has caused us to draw incorrect conclusions concerning the relative importance of analysts' growth forecasts and historical growth extrapolations, we have also estimated regression equation (4) with the risk variables excluded. The results of these regressions are shown in Table 6 (Parts A and B). Again, there is overwhelming evidence that the consensus analysts' growth forerast is superior to the historically-oriented growth measures in predicting the firm's stock price (the R^{2} and t-statistics are higher in every case).

CONCLUSION

The relationship between growth expectations and share prices is important in several major areas of finance. The database of analysts' growth forecasts collected by Lynch, Jones \& Ryan provides a unique opporturity to test the hypothesis that investors rely more heavily on analysts' growrh Eorecasts than on historical growth extrapolations in making security buy and sell decisions. With the help of this database, we have conducted extensive studies that affirm the superiority of analysts forecasts over simple historical growth extrapolations in the stock price formation process. Lndirectly, this finding lends support to the use of those valuation models whose input includes expected growth rates.

REFERENCES

1. Bower, R. S. and D. II. Bower, "Risk and the Valuation of Common Stock," Journal of Political Economy, May-June 1969, pp. 349-62.
2. Buck, R. Creighton and E. F. Buck, Advanced Calculus, McGraw-lilill Book Company, New York, 1965, pp. $\overline{260-261 .}$
3. Cragg, J. G. and Malkiel, B. G., "The Consensus and Accuracy of Some Predictions of the Growth of Corporate Earnings," Journal of Finance, March 1968, pp. 67-84.
4. Cragg, J. G. and Malkiel, B. G., Expectations and the Structure of Share Prices, The University of Chicago Press, 1982 .
5. Elton, E. J., M. J Gruber, and Mustava N. Gultekin, "Expectations and Share Prices," Management Science, September 1981.
6. Fecleral Communications Commission, Notice of Proposed Rulemaking, FCC Docket No. 84-800, August 13, 1984.
7. IBES Montlily Summary Book, Lynch, Jones \& Ryan, New York City, New York.
8. Maddala, G. E., Econometrics, McGraw-llill Book Company, New York, 1977.
9. Malkiel, B. G., The Valuation of Public Utility Equities," Bell Journal of Economics and Management Science, Spring, 1970 , pr. 143-160.
10. D. Peterson and P. Peterson, "The Effect of Changing Expectations upon Stock Returns," Journal of Financial and Quantitative Analysis, September 1982.
11. Theil, $11 .$, Principles of Econometrics, John Wiley \& Sons, Inc., New York, 1971.

THE ACCURACY OF LONG-TERM EARNINGS FORECASTS IN THE ELECTRIC UTILITY INDUSTRY

R. Charles MOYER *
Texas Tech Umversity, Lubhock. TX 79409. USA

Robert E. CHATFIELD *
Texas Tech Ummervil: Luhbock. TX 79409. USA

Gary D. KELLEY*
West Texas State Unwersity. Canjon. TX 79016. USA

This paper examines the aceracy of various methods of forecasting long-kerm earnings growth for firms in the electric utility industry. In addition to a number of extrapolative techniques. Value Line analyst forecasts are also evaluated Value Line analyst forecasts for a five-year time horizon are found to be superior to many of the extrapolative models. Among the extrapolative models examined, implied growth and historical book value per share growth rate models performed best. These results provide strong support for using Value Line growth forecasts in cost of capital estimates for electric utilities in the context of utility rate cases. Value Line forecast errors could be explained by changes in dividend payout ratios. the firm's regulatory environment and bond rating changes.

Keywords: Earnings forecasting, Utility forecasting, Analysts' forecasts. Electric utilities.

1. Introduction

A central issue in most public utility rate cases is the determination of the cost of equity capital for the utility. In the regulatory process the return required by investors is considered a legitimate cost of doing business that is appropriately charged to customers. Other things being equal, the lower the rate of return which a utility is permitted to earn from its customers, the higher the level of customer welfare. However, if the utility does not have the opportunity to earn investor-required rates of return on capital, investment in plant and equipment will lag and the demand for service at the established price will be greater than the utility can supply. Accordingly, it is important to permit a utility to earn a fair return on its invested capital in order to assure that adequate levels of service will be provided.

Two landmark judicial decisions have provided the general framework within which this analvsis must be done. The Supreme Court concluded in the Bluefield Water Works case [Bluelield Water Works (1923)] that the 'return must be reasonably sufficient to ... support its credit and enable it 10 raise the money necessary for the proper discharge of its public duties.' Recognition must be given to the returns currently earned 'on investments in other business undertakings which are attended by

- The authors wish to acknowledge the assistance of Phil Sisneros and Jesse Reyes for their fine data collection and computer analysis work. We also appreciate the helpful comments of Editor Scott Armstrong. Professor Mike Rozeff. Assuciate Editor Lawrence D. Brown and two anonymous reviewers. Any errors are the sole responsibility of the authors.

[^3]corresponding risks and uncertainties ... ${ }^{\wedge}$ In the Hope Natural Gas case [Federal Power Commission (1944)) the Supreme Court stated that the return must also enable a firm to 'mantain ts credit and attract captal'.

These judicial guidelines provide a general framework for implementing the determination of the cost of equity capital in uility rate cases. Neuther the Hope nor the Bluefield dectsions provides gurdance about what specific method(s) should be used to establish the cost of equity. In the Hope guide. the Court stated that 'under the statutory standard of 'just and reasonable' it is the result reached not the method employed which is controlling' (Federal Power Commission (1944, p. 603)). In contrast, the rich academic literature in this area has emphasized the appropriateness of various methods employed to determine the cost of equity capital [Brigham and Gordon (1968), Etion and Gruber (1971). Gordon (1974), Gordon and Gould (1978), Litzenberger. Ramaswamy and Sosin (1980). Myers (1972) and Robichek. Higgins and Kinsman (1973)]. In pracuce, three models have dominated recent utility rate cases. These are the capital asset pricing model, the comparable carnings modet, and the constant-growth form of the dividend valuation model (often called the DCF or discounted cash flow methodology).
This paper focuses on the DCF model as it is commonly applied in utility rate cases. Specifically. we examine the iong-term accuracy of a number of forecasting techniques which are used to estumate the growth rate component in the DCF cost of equity model. 'Based on a rational expectations view of the formation of investor expectations. ${ }^{2}$ we find support for the use of Value Lime analyst forecasts. 'implicd growth techniques, and historical book value growth rate models. However, Value Line forecast accuracy deteriorates significantly if the forecast is evaluated over a three or four year ume horizon rather than the maximum five year horizon reported by Yolue Lite.
Section 2 of the paper develops the DCF model as 11 :s normally applied m rate cases. Section 3 deseribes the data used. and Section 4 discusses the various forecasting techniques lested. In Section 5 the statistical tests used in the analysis are discussed; Section 6 presents the results of the tests. Secton 7 reports the results of tests conducted to explain the errors in V'alue Line analyst forecasts. Section 8 offers conclusions and implications.

2. The DCF model

The DCF model of valuation is based on the proposition that the value of a share of stock is equal to the present value of all expected future dividends, discounted at the shareholders' required rate of return. Expert winesses in utility rate cases commonly rely on a constant growth form of the basic dividend valuation model, such as $k_{e}=D_{1} / P_{9}+g$, as the basis for their cost of equity recommenda requirements necessary to use the constant growth DCF model. Whether the constant growth DCF
 Sthoteon and sthmet (1974) and Ruland (1980) that considets the accuracy of shot term fereasting models. With the excepusn of a recent papet by Ruzefl (1983), there has been very liste analysis of the accuracy of fong-term earnings freecasts:

model or the non-constant growth model is employed. long-term (three te five seat) earnings and dividend growth forecasts are essential inputs
The application of thus model invariably results in considerable controversy among expert witnesses regarding the appropriate method by which to estumate the growth (g) component.
Theoretically, this growith component is the growth rate expected by mestors at the margin. Since expectations cannot be directily observed experts focus on a wide range of alternative techniques as a proxy for g According to the rational expectations hypothesis [Sargent (1972)] the best forecasung method should be used to estimate g . In practice, proxies for g have included tustoncal earnings and dividend growth rates, historical book value growth rates, implied growth rates (the product of the retention ratio times the return on book equity), and analysts' forecasts such as Vaiue Line.
This paper examines the long-term accuracy of different methods of forecastung earnings growth of electric utility corporations and compares the results with Value Line forecasts of future earnings growith. On an ex-post basis the different methods are evaliated to determine the most accurate. long-range (three to five year) forecast. ${ }^{3}$

3. The data

The sample consists of the menety-eight electic utilines that Value Line followed betueen 1971 and 1976 and the nanety-three clectric uilities followed by Value Line beiween 1977 and 1982 Per share data have been adjusted for stock spliss and dividends. Generally, Value Line reports on each firm four tumes a year. The Value Line data come from its second quarteriy report of each year since ths is the first Value Line report which generally includes actual data for the previous vear. For example Vulue Lane earnings forecasts for 1976 are those reporied in its second quarterly report in 1972.
All data, both actual earnings and forecasts of carnings, have been converted to compound annual growith rates. Hence, all comparisons of forecast accuracy are hased on annual grou th rates. Two five-year forecast honzons are used ine analysis. earnings per share forecasts for a three-year range, e.g., the forecast made in 1972 which is condinonal on actual 197 datal is or he toth-1g7 ione penod. Thus. We considered each
 1971-1974 1971-1975 and the 1971 1970 iime periods, as well as the 1977 1980 1977-1981 and the 1977-1982 ume periods.
These time periods are especially important for the electric uility industry because of the unsetiled ondidly escalating thel industry through the 1970s. These conditions include the effects of need to convert large amounts of capacity from natural gas and on to coal and nuclear power, and the umpact of high inflation and rapidly rising captal cons.

4. Forecasting methods

The forecasting method, iesied have been selected for analysis because of their use in prior studies and because of the extent to which they are commonly used in utility rate cases. These methods are:
X2. Value Line 3. 4 , and 5 -year earmings forecast.
X 3. The 5 -year historical compound dividend per share growth rate: for example. the 1971-1976 foreciast horizon uses the actual annual compound growth rate from 1906 1971.

$\underset{\sim}{n}$

 We used the Friedman test [Friedman (1937)] to test for the relative accuracy of all forecasting
methods. The test criterion was the magnitude of forecast esror. In practice the distribution of the
 (1978). but recent studies by Iman and Davenport (1980) show that the F-distribution approximation
is superior to the chisquare approximation. Hence, the F-distribution approximation to the Fried-
 the null hypothests is rejected, we may conclude that at least one forecasting method is superior to at
leasi one other. leass one other.
The next step

The next step in evaluating the relative accuracy of the forecasting methods was to compare
forecast accuracy across firms using pairwise compartsons between forecasts. These comparisons test the accuracy of a method's forecasis against each of the other methods' forecasts using a leasi sigmificant difference test statistic developed by Conover (1980 , p 300). The Wilcoxian signed ranks
tent can also be used for these pairwise comparisons as in Brown and Rozeff $\ddagger 1978$). but this ieast test can also be used for these parkise comparisons as in Brown and Rozeff (1978). but this icast
sumficant difference test is more powerful [Conover (1980). The null hyputhesis tested is that one methen's forecasts are as accurate as another method's forecasts.

6. Empirical results

Exhibit 1 reports the Kendall rank order correlations between each of the forecasting methods and
the actual earnings per share growth for the two five-year forecast horizons. In both five-year periods. Thibat i
Kendall tank order correlatiuns between actual 5-yeat annual earangs growth rates and carrings forecasts会

高
(1)

[^4]244
X4. The S-year historical compound earnings per share growth rate. The S-year hisiorical compound book value per share growth fate. The 10 -year historical compound earnings per share growth rate. The 10 -year historical compound book value per share growih rate.

The 5 -year average implied earnings growth rate, t.e., the 5 -year historical average return on
equity times the 5 -year historical average retention rate.
The 10 -year average implied earnings growth rate. The 10 -year average implied earnings growth rate.
The current implied earnings growth rate (e.g., the
X11. The current implied earnings growth rate (e.g., the implied growth rate for the 1971-1976 X12. Brigham-Shome method of smoothing to compute the implied earnings growith rate [Brigham and Shome (1981)]: for example, the implied growth rate for the $1971-1976$ forecasting horizon A \times
$0.1 R O E_{;}+0.2 R O E_{i}+0.3 R O E_{2}+0.4 R O E_{,-1}=R O E$ forecast.

A samiar computation is done for the retention rate forecast.

The grouth rate computed from the following trend tine in book value per share (BPS) over a
five year periox
$\ln B P S=a+b$.
X14. Same as $X 13$ except for the use of 10 years of histonical data.
X1S. The growth rate computed from a trend line in dividends per share over a 5 -year period.
X17. The growth rate compured from a trend line in earnings per share over a 5 -year period.
X18. Same as X17 except for the use of 10 years of historical data.
XI is defined as the actual 3.4 or 5 -year compound annual giowth rate in earnings per share. e.g., the
growth rate for the 1971 to 1976 time honzon is the actual compound annual growth computed using
1971 earnings per share as the start point and 1976 earnings per share as the end point. Similar
computations are made for each borizon.

5. Statistical tests

First we examined the directional relationship between individual forecasts and actual earnings per
hare (EPS growth rates for each of the forecastung methods and the actual earnings growth rates. Next. stmilar to Roreff (1983), the average deviation (average forecast growth minus average actual grouth), mean
absolute error (MABE) and root mean square crror (RMSE) were calculated for each forecasting
 eath forecath method on the entire sample of firms. The RMSE ts the square root of the sample A methoi umblar to that wet by Grown and Roteff (i978) was employed to tea for sugificant

Bathitus 2

Mrithou	Averige deviation (forecast-actual)	MABE	RMSE
${ }^{\times 2}$	0021	0.036	0.044
${ }^{6}$	-0.013	0047	0.666
X4	0013	0.042	0053
Xs	0.006	0.038	oosi
${ }^{\text {x }}$	0016	0.039	0.048
${ }^{67}$	0.003	0.037	0.046
${ }^{\text {x8 }}$	0.013	0039	0050
$\times 9$	-0002	0036	0.046
${ }^{10}$	0.000	0.035	0 ons
${ }^{171}$	-0007	0.040	0056
$x 12$	-0004	0037	0.049
${ }^{113}$	0.007	cuss	0.046
${ }^{114}$	0 0 es	0036	0.045
$\times 15$	0000	0638	0.050
${ }^{165}$	0015	0.039	0047
$\times 17$	-0017	0 uso	0.070
$\times 18$	0.007	0.040	0.050

txhan

Methol	Average deviatorn (forecast-actual)	MABE	rasse
x^{2}	0010	0.039	0059
$\times 3$	-0030	0067	0094
$\times 4$	-0.019	0.031	0.075
xs	-0.013	0.044	0103
x6	-0.013	0.044	0063
x7	-0.024	c 051	0070
$\times 8$	-0011	0.045	0065
X9	-0.016	0046	9067
$\times 10$	-0.013	0045	${ }^{1065}$
x 11	-0.015	0.052	0.074
$\times 12$	-0017	0 048	0070
$\times 13$	-0027	0052	U. 070
$\times 14$	-0.014	0045	0063
xis	-0012	0045	n.06\%
$\times 16$	-0016	0046	vess
$\times 17$	-0is	0065	10093
$\times 18$	-0020	0.049	0071

Value Line forecasis (X2) are positively and significantly currelated with actual earnings growth
In period I, no other furecasting method is both significant and postively correlated with actual earnings growth. In period 2, methods XS (five-year compound book value per share growth) and XIS (five-year trend line growth in dividends per share) aso bistically significant positive orrelation
Extibit 1 provides strong cross-sectuonal evidence of the superionity of Value Line forecasts in capturing movement in the direction of earnings growth rates. Thus, Value Line forecasts higher growih for firms which larer show higher growth, and lower growit for firms which later show lower growth. Dunng the hughly unstable periods included in the forecast horizons, only Value Line orecasis wility industry. Exhibu 1 does not

Exhibit I does not, however, show any indication of the accuracy of Value Line relative to atternative forecasting techniques. From a cost of captal perspective, accuracy in forecasting is of greatest mponance. Exhibus 2 and 3 report the average deviation, mean absolute error and tool The Value line average deviation is the brgen
In both periods it is postive, indicaung inat in period 1 at 2.1%, but the lowest in period 2 at Hence. it appears that in the long-term (five years) Value Lie is reasts tend to be on the high side. hence. "t appears that in the long-term (five years) Value Line is relatively successtul in forecasting
the director of future earnings movements, but there is a tendency to overestimate the size of this the directron of future earnings movements, but there is a tendency to overestimate the size of this
carnings growth. In order to verify this mitual conclusion we next look at two other measures of overall forecasung acuracy - the MABE and RMSE.
Vifue Line has a relatively low MABE in period I. Only X 10 (ten-year average amplied growth of E.PS) is lower, X9 (five-year average implied growth) and X14 (ten-year tend line growth in brook value) are equivalent. In period 2 Value Line has the lowesi MABE. Value Line appears even better when accuracy is evaluated using RMSE: In both periods Value t.me has the lowest RMSE.
thus, in additon to forecastmg successfully the direction of movement. Vatue line is relatively acturate as a predector of the future growth rate tiself. Its forecants tend to be on the hugh side but
when compared to the sixieen mectanical forecasting methods, it is among the most a
Finally. we consider two statustical tests of relative accuracy - the Friedmar, test and the least significant difference test. Exhibis 4 and 5 report the results from these two tests for periods 1 and respecively. The Friedman iest rejects the will hiphers an the alternaive hypolmest hat al least os forcalng forecastung method may be accepted
The least significant difference test of the muluple partwise comparisons is performed at a 54 significance level. The results indicate that Value Line is dominated only by X10 (ten-year average Sled growth in penod l and is nor dornined by isy ding in mulup penod 2
Several of the forecasting meitods performed exceedingly well in the multuple parmise compa average Xgliad growh) X 14 (reycar trend bine growth in book value) and X15 (five-year treed line growth in dividends) are not dominated by anv other forecasting method in either period.

In summary, Value Line performs very well relative to the 16 extrapolative forecasting meihods in the five-year forecast horizons. It is retatuvely successful at foreciating the direction of future carnme, growth Also the MABE RMSE and muluple pairwise comparisons indicate that Value Line is relatively accurate in predicting the actual future growth rate

Vatue Line forecasts are made for a three to five-year forecast horizon. The preceding results hate focused on the five-year horizon. Identical statistical tesis were performed for two three-year horizons (1971-1974 and 1977-1980) and two four-year horizons (1971-1975 and 1977-1981). Because Value Line forecasts per share carnings for a three to five-year horizon, the calculated growth rate will be greater the shorter the horizon. Since the Value Line forecasts tended to overestimate the actual growth rate for five-year horizons, one would expect the same dollar earnings forecast for a three ir four-year horion to perform less well.

The correlation results for three and four-year horizons are sumilas to those fors five cears. Value Lime forecasts are postively and signifiantly correlated with actual earnings growith in both neriond for both the three and four-year hormons. In addution to t'alue Lene. only XS and X10 are significan
き

The average deviation. MABE, and RMSE show Value Lane's forecast to decline appreciabiv in elative accuracy. With the exception of the RMSE in period 2 of the three and four-year horizons,
tulue Line is outperformed in these measures of relative accuracy by all or most of the sixieen
The multuple parwise comparisons for the four-year horizon still show Value Line to be relausely accurate. It is less accurate than only one method in both penods. However, for the three-vear horizon, 11 is less accurate than all the other methods in periud 1 and less accurate than 14 of 16
methods in period 2 .
These results indicate that, whether it is intentional or not, Value Line tends to forecast most accurately to the five-year end of their three to five-year forecast horizon. In forecasting earnings for
a five-year horizon, Vatue Line is very successful relative to the sixteen extrapolative forocasting methods examined in this study.
7. Error analysis of value line forecasts
The resuits reported in section 6 indicate that Value Lint earnings grouth rate forecasts for a five-year horizon are significantly, positively correlated with actual earnings growth rates. In addition.
Falue Lume forecasts have mean absolute errors and root mean square errors which are among the lowest when compared with the sixteen extrapolatise modets. The multuple parwise comparison tests

 In this section we perform a micro-analysis of errors in orde: to discover causes for over and
under-estimates of forecasted earnings growth rates made by Value Line. This analysis can help users of Value Line carnings forecasts to idenify instances where Value Line forecasts are likely to be least
reliable.
We have examined a number of firm-specific/regulatory environment variables which might be
expected to influence the accuracy of Value Line forecasts. These vanabies are
(1) Regulatory enuironment. Value Line rates the regulatory environment faced by each firm as ether above average, average. or below average. It is possible that regulatory environments that are
perceived to be more (less) favorable cause the analysts to over-funder-estimate actuai earnings

(2) Percent of electric revenues from residential customers (measured at the end of each forecast

(3) Percemt of revenues from electric sales (measured at the end of each forecast honzoni. Some firms in the sample had a significant portion of total revenues attributable to natural gas distribution
 - Complete statistical fesulis for the three ond four yeat hurizons are availatie on request fum the authors

concentrated on providing electrec serviee might also be expected to have inore stable and easily (4) Porecasted earnings.
(4) Percent of generation from oil and gas capactity (measured at the end of each forecast honzon). Oit and gas prices increased dramatically during the time periods exammed, and not all firms had the benefit of perfectly effective fuel adjustment clauses. Hence, it is hypothesseed that those firms eastly forcecasted earmings during this period
5) Nuclear canstruction. Firms with a period.
(5) Nuclear construction. Firms with a significant nuclear construction program [defined with a dummy variable (D,) as a firm having a greater than 10% ownershup interest in a nuclear plant under construction at the end of each forecast horizon] were expected to have more volatile and $1977-1982$ period when, following the accident firms. This is particularly true during the Agency ordered plant shutdowns. At that time, also, cancelled projects began to affect adversely Agency ordered plant shutdown
the earnings of electre uilities.
(6) Percentage change in diutdend payout ratno (defined as the 1976 payout rato minus the 1971 payout rano for the first period and the 1982 payout tatio minus the 1977 payout tatio for the payout rano for the first period and the 1982 payout ratio minus the 1977 payout tatio for the
second). An increase in the payout ratio reduces funds for renvestment in the firm and is inpothesized to be directly related to overestimates of earmags made by Value Line.
(7) tercentage change in net plant (measured as the percentage increase (decrease) in net plant over the period). The hypothesized direction of the effect of this vanable is indetermunant since a rapid growth in net plant might be asscoiated with growith in demand and future earnings. Alternafively, firms with large construction programs during the 1970s and 1980s hese been under heavy Fimancing and regulatory pressures that have negatively influenced earmings.
Change in bond ratings (measured from the beginning to the end of each period by two dummy varrables: $D_{4}-1$ if downgraded by Moody's, 0 otherwise: $D_{5}=1$ if upgraded by Moody's, 0 (downgraded), this indicies no rang change are the excluded set). When a firm is upgraded (downgradings) mught be associated with underestimates (overestimates) of future earnings.
(9) Coefficient of vartation of earmings per share (measured over the ten years prior to the start of forecast horizon). Highly volatile earnungs are expected to be posititely related to Vatue Line earnings forecastung errors.

For each forecasting horizon (1971-1976 and 1977-1982). (wo regressions were run using the above independent varrables and (1) positive forecasting errors (Value Lune minus actual) and (2) negative forecastung errors as the dependent variables.
During the 1971-1976 penod, the lactors identified above explained 248 (adjusted) of the vartation in the postive Value Line errors and 13\$ (adjusted) of the vantition in negative Value Line ratio. Increases in a firm's payout ratio were sugnificantly associated percentage change in the payout (positive crrors) made by Value Line analysts. This result is consisted with overestimates of carnings use of implied growth techniques for forecasuing future corningss with the support found for the use of umplied growth techniques for forecastung future earnings. No factors were lound to be
statistucally significant in explaining negative Value Lne foreast Durung the 1977-1982 honzon, the pereentage change in the payout ratio again was associaded significanily with positive Volue Line errors. In addition, there was a significant, posuve relacionshap belween bund downgradings and positive Value Line errors. Negative Value Line errors were sigmficantly associated with tond upgradings. There was also cvidence that Value line errors were underestumated future earnugs growth for from with a high coefficient of variation of carnings In sume thes evidence suggests the Vatue Line earmings forecasts adequately consider each of

factors identified above except the mpact of changes in a firm's dividend payout ratio, the effects of bond rating changes, and, to a lesser extent, the volatility of past easnings. Consequently, users of Falue Line data should be aware of potential biases in Value Line carnings forecasis for firms likely to change significantly their dividend payout policy, for firms likely to have a bond downgrading or upgrading over the forrecast horizon, and for firms with historically volatile earnings. Unfortunate. forecasting changes in dividend payout ratios and bond ralmgs is iself a dificalt maner. Kificanty noted. however, that although the explanatory vartables examined were not generally signicanions correlated with each other. there were signicong pori 1971 -1976 and 1977-1982 period between downgadings and nuclear construction during the 1971-1976 and 1977-1982 period respectively) and significantly negative correlations (-0.212 and -0.17) between upgradings with nuclear construction. This suggests that hans Additional support for this fact can be inferred by sigmficant nuclear construen 628 (32 of 52) of the firms whose earnings were observing that dung he overestumated by

8. Summary

Volue Line performed very well in forecastung earnings per share in the 1971-1976 and 1977-1982 une harizons relative to extrapolavive forecasing methods. It was cleatly superior in forecasting the directuon of future earnugs growith and provided forecists models, implied growth and historical book using vantous tests of accuracyl
value growth rate models performed best
The results are from wo specific past time periods but Value Line performed consistently well in The results are from the specine past the use of five-year Vafue Line earnings forecasts as an estumate of future growth rates in future cost of capital rate cases. Value Line forecasts based on three and four-year tume horizons appear to have a signilicant upward bras.
The resulis of the mero-analysis of Value Lime forecast ertors might assist users to detect biases in the l'alue Line forecasts. In this study Volue Line forecasts overestimated future earmings when firms increased their payout ratios or if a firm's bonds were downgraded. They underesumated when a firm's bonds were upgraded or if a firm had very volatile earnangs proor to the beginning of the forecast horizon. As is true with all empirical studies, the results may pertain only to the industry and time-periods studied. Additonal work is needed to ascertain whether the findings will prove applicable to other industries, time-periods, and analyses.

References

Blucteta Water Works and Inversment Company v. Puthe Serinct Commusson of tix State of Wes: Virgnie. 202 US 679. 1923
 Bngham. Eugene F. and Delip K. Shome. 1981 . The rask premum approath to estamating tie cost of common equity caput Research paper (Univessty of Flonda, Ganess ilic, Ft)
 frome earnings. Juerrat of Finance 33. 1-16.

J Gruber, 1072, Earnings exlimater and the accutacy of expectational datu. Management seitene 18. B-409-B-424.
in 1 Gruher. 1971 Valuation and the cont of capital for regulated industrect Journal of Finatue 26. $661-670$

Federal Power Coman. The use of ranks to avoid the assumption of noratity mpicis in the analyis of vatiance. Journal of the Amencan Sulisical Aatoctation 32.675 m 70

Myrcn 1974. The cost of capital to a public utility (MSU Fublic Utility Studies. East Lansing. MI)
Gordon. Myrcn ., 1974, The cosl of equiry capital: A reconsideration, Journal of Finance 33.849 .861
Gordon. Myron I and LI. Gouid. 1978. Approximations of the critical region of the Friedman atatistic. Communications in Iman RLE and
Sintistics A. 571-395

Statistics A9. 571-395.

Lituenberger, Robern Krishana Ramuswamy and Howard Sosin. 183
uitity's cont of equity capital. Journal of Finance $35.369-383$.
 Ech SC 1972. The application
Myers. S.C. 1972. The application of manace
Science $3.58-97$ Robicheck, A A. RC Higgins und M
Journal of Finance 28. 333-367 Rozeff, Michat S. 1983. Predicting long.eerm carnings grow

Value Line analysts. Journal of Forecasing 2.425 . 435 Ruland. William. 1980. On the choice of sumple exirapolative model Rorecass of and Bank Credit and Bank 30. 37 Sargent. Thom
4. 74-97

Predicting Long-term Earnings Growth: Comparisons of Expected Return Models, Submartingales and Value Line Analysts

M. S. ROZEFF
University of lowa, lowa City, lowa, US.A.

Abstract

This paper derives four-five year predictions of growth rates of accounting carnings per share implicit in four expected return models commonly used in financial research. A comparison of such growth rates with those produced and reported by Value Line analysts and those generated by a submartingale model revealed the following: two expected return models - the SharpeLintare Mossin model and the Black model were signilicantly more accurate than the submartingale model, though not signilicantly more accurate than the other return models. However, the growth rate forecasts provided by Value Line significantly outperformed all the other models ested-none of which relied on the direet input of a security analyst.

key wordos Forccasting Earnings growth Comparisons Empiricalstudy Analysts Value Line

An extensive body of literature evaluates the short-run (less than 15 months) earnings forecasts of security analysts and time-serics models. 'The importance of this subject to accounting and finance is that a varicty of applications such as lirm valuation, cost of capital, and event studies require the measurement of earnings expectations. However, exeept for a recent paper by Moyer et al. (1983), litle work has been done to this point in studying long-run carnings forecasts. Moreover, a potential source of earnings forecasts-expected return models-has been overlooked.
This paper evaluates the accuracy of long-term forecasts of growth rates of annual earnings per share. Six sources of forecasts are used: a submartingale model, the V'ahue Line linestment Survey, and four expected return models. Each expected return model is combined with the Gordon Shapiro constant growth model. I urther, centan expected return models use the beta coeflicient and, as such, lend insight into the usefulness of beta in a forecasting context

The paper comprises three sections. Section I deseribes the six forecasting sourees and states the

[^5]hypotheses. Tests of the hypotheses ane presented in Section 2. Section 3 offers tentative conclusions.

1. FORECASTING SOURCES AND HYPOTHESES

This section (1) describes how six sets of growth rate forceasts of earnings per share are derived and (2) discusses the formal hypotheses to be tested.

Submartingale model

Evidence that measured annual accounting income is a submartingale or some similar process can be found in Ball and Walts (1972). Albrecht et al. (1977), and Watts and Leftwich (1977). ${ }^{2}$ Although measured (reported) annual carnings per share may not be precisely a submartingale, a submartingale process is included because of its appearance in numerous studies as a benchmark lorecasting technique. Another reason for including the submartingale model is to compare its forecasts to those reported in the V'alue Line Invesment Surce.l. Such comparisons have been done ${ }^{*}$ for forecasts of three to fifteen months (Brown and Rozell, 1978) but not forecasts of four to five years.

The submartingale model (SUB), as used here, estimates the expected annual growth rate of accounting carnings per share as the average compound annual rate of growth of earnings per share of the ten-year period preceding the test period. These historical growth data are obtained from various issucs of the Value Lime Inresument Surrey.

Value Line forccasts

 Line security analysts for time periods four to five years into the future. Alter adjustment for capital changes, these forecasts, in conjunction with actual carnings per share in the base period, are converted to VL forecasts of a compound annal growth rate for each firm in the sample.

The importance of testing analyst forecasts is explaned by Brown and Rozell (1978). They argue that since analyst forecasts are purchased in a free market they are likely to be informed forecasts with a marginal value exceeding that of less costly forecast alternatives. According to this reasoning, the VL forecasts should be more accurate than the SUB forecasts and those derived from the expected return models (stated next).

Expected return model forecasts

A technique that has not previously been exploited to obtain earnings forecasts is to use expected stock rate of return models in conjunction with the Gordon-Shapiro (1956) constant growth model. This subsection shows how to extract earnings per share growth rate forecasts from these models. First, the four expected stock rate of return models are explained. Secondly, the paper proceeds to show how growth rate forecasts are obtained.

Foner expected remom models

The four models of how the market sets expected rates of return on securities are:
(1) the comparison returns (CMR) model (Masulis, 1980: Brown and Warner. 1980).
(2) The market adjusted returns (MAR) model (Latane and Jones. 1979: Brown and Warner. 1980).
(3) The Sharpe Lintner Mossin (SLM) model (Sharpe. 1964: Lintner. 1965: Mossin. 1960).
(4) the Black (BLK) model (Black, 1972).
${ }^{2}$ For example, Ball and Whatts (1972, Γ (880) conchade: 'Comsequently, our conclusion . . is that income can be characterized on average as a submartingale or some similar process."

The CMR model assumes that the expected return on stock i at time $T\left(E\left(R_{i T}\right)\right)$ is an expectation that is specific to each security. However, a risk parameter such as the beta coelficient is not explicilly included in the expected return calculation. Instad, the expected stock return at time T is measured as the arithmetic mean of the realized returns of the stock in a prior period. To the extent that individual means of stock return distributions differ as a reflection of risk differences, the CMR model allows for individual dillerences in risk. This model (see Masulis, 1980) has been tested by Brown and Warner (1980) who found that it compared favourably with alternative expected return models in detecting abnormal performance.

The MAR model states that the expected return on slock i at time 7 equals the expected return on the market (denoted $E\left(R_{\text {A } 2}\right)$), which is the same for all stocks. As for the CMR model, no beta coefficient is used in calculating expected returns. However, unlike the CMR model, the MAR model does not allow for individual risk dillerences among stocks, since all stocks are assumed to have the same expected return, namely, the expected market return. To estimate expected market returns, an arithmetic average of past returns on the equally-weighted (Center for Research in Securities Prices) (RSP index is used.

The SLM model is infrequently referred to as the capital asset pricing model or CA PM. It is used in its ex ante form:

$$
\begin{equation*}
E\left(R_{i J}\right)=R_{j T}+\left[E\left(R_{A T}\right)-R_{J I}\right] \beta_{i} \tag{1}
\end{equation*}
$$

where
$R_{f T}=$ interest rate on a U.S. Treasury security over the forecast horizon.
$\beta_{i}=$ beta coeflicient of stock i expected to prevail over the forecast horizon.
This study examines two annual growth rate forecasts over two non-overlapping horizons of five years and four years. The five year forecast period is 1968-1972 and its base year is 1967. The four year forecast period is 1973-1976 and its base year is 1972. In estimating expected returns using the SLM model, $R_{f T}$ for the forecast period 1968-1972 is taken as the yicld-to-maturity on a five year U.S. Government security as of December 1967. Similarly, for the forecast period 1973-1976, $R_{\text {fr }}$ is the yield-to-maturity on a four year U.S. Govermment security as of December $1972 .{ }^{3}$
$E\left(R_{M T}\right)$ is estimated precisely in the same manner as in the CMR model, namely, as an average over past realized market returns.

The beta coeflicients of individual stocks were cstimated in two ways. First, the expected beta was measured as the historical beta coefficient of the stock over the 84 months up to and including month T. This beta was simply the covariance of the stock's returns with the market divided by the variance of the market's returns over the sample period. Secondly, in an atlempt to obtain a more accurate estimate of the future expected beta, the tendency of betas to regress towards the value 1.0 noted by Blume (1971) was taken into account. The method for doing this is Blume's method. ${ }^{4}$

The last expected return model is the BLK model. This can be stated in ex ante form (Black, 1972) as:

$$
\begin{equation*}
E\left(R_{i,}\right)=E\left(R_{\gamma, 7}\right)+\left[E\left(R_{\text {NI }}\right)-E\left(R_{2, l}\right)\right] \beta_{i} \tag{2}
\end{equation*}
$$

where $E\left(R_{z 7}\right)$ is the expected return on the minimum variance portfolio whose return is

[^6]uncorrelated with the return on the market portfolio. Unlike $R_{f I}$ in the SLM model, $E\left(R_{Z T}\right)$ is not observable at time T. Historical returns are frequently used to estimate this model (Black et al., 1972). When this is done, the BLK model can be written
\[

$$
\begin{equation*}
E\left(R_{i T}\right)=\bar{\gamma}_{0}+\bar{\gamma}_{1} \beta_{i} \tag{3}
\end{equation*}
$$

\]

$\bar{\gamma}_{0}$ and $\bar{\gamma}_{1}$ are arithmetic averages of monthly estimates of $E\left(R_{\gamma T}\right)$ and $E\left(R_{M T}\right)-E\left(R_{Z T}\right)$. The estimation method of Fama and Macbeth (1973) was used to obtain the gamma estimates. ${ }^{5}$

The forecasting model can now be formulated by obtaining $\bar{\gamma}_{0}$ and $\bar{\gamma}_{1}$ as of time T and using these as estimates of future gammas. The procedure is legitimate since Fama and Macbeth have shown that the gamma variables are stationary and have autocorrelations that are essentially mil.

Obtaining grouth rate forecasts

Suppressing the time subscript T for simplicity, the expected return of security i according to model j is denoted $E\left(R_{i j}\right)$. Given the expected rate of return of security ifrom model j, each model's expected growth rate of carnings per share will be extracted by assuming that cach firm possesses investment opportunities which are expected to provide a constant rate of growth of earnings in perpetuity. In other words, the 'constant growth' model is assumed to hold for each stock (Gordon and Shapiro, 1956, Miller and Modigliani, 1961).

Let $g_{i n}$ be firm i s rate of price inerease, $g_{i d}$ be its rate of growth of dividends per share, and $g_{i \text {, }}$ be its rate of growth of earnings per share. In the constant growth model, the expected rate of return of security i is given by:

$$
\begin{equation*}
E\left(R_{i}\right)=\frac{\bar{P}_{i 1}+\bar{D}_{i 1}-P_{i 0}}{P_{i 0}}=\frac{\bar{D}_{i 1}}{P_{i 0}}+\frac{\bar{P}_{i 1}-P_{i 0}}{P_{i 0}} \tag{4}
\end{equation*}
$$

where
$\bar{P}_{i 1}=$ random end-of-period price per share
$\bar{D}_{i 1}=$ random end-ol-period dividend per share
$P_{i 0}=$ current price per share
$D_{i 0}=$ current dividend per share.
Hence:

$$
\begin{equation*}
\frac{\tilde{D}_{i 1}}{P_{i 0}}+\frac{\tilde{P}_{i 1}-P_{i 0}}{P_{i 0}}=\frac{D_{i 0}\left(1+g_{i d}\right)}{P_{i 0}}+g_{i p} \tag{5}
\end{equation*}
$$

Assuming $g_{i d}=g_{i p}=g_{i}$

$$
\begin{equation*}
E\left(R_{i}\right)=\frac{D_{i 0}\left(1+g_{i}\right)}{P_{i 0}}+g_{i} \tag{6}
\end{equation*}
$$

A key assumption to obtain the constant growth is that the firm's payout ratio of dividends from earnings is constant. This ensures the equality of the growth rates of dividends, earnings, and price per share. Violation of the constant payout ratio assumption occurs for a variety of reasons such as a change in the firm's investment opportunities or a change in its financing mix. To the extent that the constant growth model fails to describe the firm's expected rate of return, the derived estimates of g_{i} will contain measurement error which will bias the tests against the expected return models.

[^7]Since each expected return model estimates $E\left(R_{i}\right)$ by $E\left(R_{i j}\right)$, equation (6) can be solved to obtain model j s implicit forccast of g_{i}, denoted $g_{i j}$ or:

$$
\begin{equation*}
g_{i j}=\frac{E\left(R_{i j}\right)-D_{i 0} / P_{i 0}}{1+D_{i 0} / P_{i 0}} \tag{7}
\end{equation*}
$$

Hence, by estimating $E\left(R_{i j}\right)$ and observing the current dividend yield, a forecast by model j of the firm is growth rate of earning per share, $g_{i j}$, is extracted.

Statement of hypotheses

The empirical results in this paper will be interpreted with reference to several hypotheses, which are presented and discussed below:

Hypothesis 1. Expected return models that use cix amte information on stock beta coellicients contain implicit carnings per share growth rate forecasts that are not more accurate than the implicit earnings per share growth rate foreasts of expected return models that do not use information on beta cocflicients.

The SLM and BLK models include beta information whereas the CMR and MAR models do not. Rejection of Hypothesis I means that the beta-based expected return models can be employed to obtain forecasts of earnings per share which are superior to those oblained from the non-beta stock return models. Assuming that earnings growth rates observed lor a future period reflect the prices and the expected returns established at the start of the period, rejection of Hypothesis 1 provides an indication that the market, in setting expected returns, uses betas or their informational equivalent as opposed to neglecting betas as the CMR and MAR do.

The forecasts of the expected return models cam also be compared with the SUB model forecasts. These comparisons provide a natural check on whether the expected recurn models combined with the constant growth model are producing forecasts that are reasonably competitive with the process which, al least approximately, generates annual carnings.

Hypothesis 2. Expected return models contain implicit earnings per share growth rate forecasts that are not more aceurate than the forecasts of the growth rate of earnings per share derived using the submartingale model of carnings.
A third test compares the forecasting ability of the VL model with the expected return models. If the procedure used in this paper to extract forecasts from the expected return models was eflicient enough to extract forecasts that reflected all information avaitable to the market, then the VL model forecasts would not be more accurate than the expected return model forecasts. Since the procedure used is clearly crude compared is the information processing of analysts, it is anticipated that Hypothesis 3 will be rejected in favour of VL.

Hypothesis 3. The VL forecasts of the growth rate of earnings per share are no more accurate than the eamings forecasts of the expected return models.
Finally, since the lengthy literature comparing amayst forecasts with those of time series models is confined to short forecast horizons (see footnote 1), it is of interest to compare the VL forecasts with the SUB forecasts over the long loneast horizons used in this paper.

Hypothesis 4. The VL forecasts of the growth rate of carnings per shate are no more accurate than the forecasts of the SUB model.

Rejection of Hypothesis 4 in favour of VL superiority would provide further evidence of analyst forecast superiority relative to time-series models.

2. TESTS OF HYPOTHESES

Samples

Two ecplications of the experiment were conducted. In the first, time T was year-end 1967 and forccasted earnings were for 1972. The lirst 253 firms (in alphabetical order) were selected from the CRSP tape which met the criteria: (1) return data available during 1961-1967: (2) covered by the V'alue Line Investment Surver as of December 1967; (3) December fiscal year; and (4) positive earnings per share in 1967 and 1972. The second replication set T at December 1972. The sample size was 348 . The criteria were similar with the corresponding changes in dates, namely, return data available during 1966-1972 and positive earnings per share in the base year 1972 and test year 1976.

The reasons for these criteria follow. The requirement that a sample firm have return data on the CRSP tape in the base period aliowed computation of the firm's beta coeflicient using this data source. The firm had to be covered by the Value Line Investment Survey to ailow forecast comparisons to be made. Use of the December fiscal year-end ensured that all six model forecasts were based on comparable amounts of data relative to the fiscal year. Furthermore, the VL model forecasts had to be conditional only on annual carnings of the base year. The requirements of positive carnings per share in the base and test years allowed for positive growth rates. (The positive earnings criterion, as it turned out, was not binding in the lirst lest period. In the second period, ten firms were eliminated because of this criterion.)

Although it is unlikely that the sample selection procedures materially affected the outcomes of the experiments, they did result in noticeably less risky sample firms than the market as a whole. The average beta for both samples was 0.85 . As such, the test results may not generalize to the entire population of firms.

Test procedures

Because January 1935 was the starting date for calculating the BLK model estimates, that date was the starting point for most of the other return calculations. Thus, in estimating the CMR model, a stock's mean monthly stock return was found by averaging its returns over the history of the stock available since January 1935. In estimating mean market returns, the average of monthly returns was found over the time period beginning in January 1935. The market index was the equallyweighted return index of all stocks on the CRSP tape. Finally, in estimating the gammas for the BLK model, the monthly averages were also taken over the period starting in $1935 .{ }^{6}$

The SLM model requires risk-free returns and, for this purpose, yields-to-maturity on U.S. Government Bonds of the relevant maturity were employed. The data source was Moody's Municipal and Government Manmal.

Let $a_{i}=$ growth rate of actual earnings per share for firm i and $g_{i j}=$ growth rate of forecasted earnings per share for firm i by method j. In each test period, a vector of errors $\left|a_{i}-g_{i j}\right|=e_{i j}$ may be calculated for each method j, where $c_{i j}$ is the absolute value of the dilterence between the forecasted and realized growth rates. For hypothesis tests of two models, an appropriate design is a one-sample or matched-pairs case with self-pairing by firm. The members of each pair are errors, $e_{i j}$, from the two models, which are reduced to a single observation by taking the diflerence in the errors. The t test is the usual parametric test of the mean difference and the Wilcoxon signed ranks test is an alternative non-parametric test of the median difference. Both tests were conducted. But since the results were similar, only the paired 1 -test results are reported.

[^8]Resuits
Table 1 contains summary statistics of the error distributions generated by the models when regression-adjusted betas were employed.

The average of deviations, $a_{i}-g_{i j}$, was computed for all sample firms. Such deviations measure the average bias of the forecast models. It appears that, in period 1 , all the models tended to overforecast earnings growth. In period 2, the average deviation of the return models was slight, whereas VL tended to overforecast on average. However, the fraction of firms overestimated by VL (58.0 per cent) was quite close to the fractions for the other models. This suggests that the sample average deviation for VL was heavily inlluenced by a few firms.

Table 1. Summary statistics of error distibutions* \dagger

	Error incasure	SUB	MAR	CMR	SLM	BLK	VL
$\begin{aligned} & \text { Period 1, } \\ & \text { 1967-1972 } \end{aligned}$	Average deviation	-0.001	-0.062	-0.051	-0.049	-0.051	-0.046
	MABE	0.115	0.112	0.117	0.105	0.106	0.088
	MSE	0.046	0.032	0.034	0.031	0.031	0.018
	RMSE	0.213	0.178	0.184	0.176	0.177	0.135
	\% Forecasts overestimated	56.1	81.8	72.7	72.3	73.5	64.0
$\begin{aligned} & \text { Period 2, } \\ & \text { 1972-1976 } \end{aligned}$	Average deviation	0.040	-0.002	0.012	0.011	0.008	-0.030
	MABE	0.146	0.140	0.147	0.137	0.137	0.118
	MSE	0.071	0.067	0.070	0.066	0.066	0.031
	RMSE	0.266	0.258	0.265	0.256	0.256	0.175
	$\%$ Forccasts overestimated	47.2	58.9	53.4	52.9	53.7	58.0

* MAR $=$ Market adjusted return; $S U B=$ Submartingale: $C M R=$ Comparison return; $S L M=$ Sharpe-Lintner-Mossin: BLK $=$ Black: VL $=$ Value Line.
\dagger Based on adjusted betas for the SLM and BLK models

The mean absolute error (MABE), defined as the sample average of $\left|a_{i}-g_{i j}\right|$, better reflects the overall forecasting performance of the models since it takes into account the average error size. In period I, VL's MABE was lowest at 0.088 , followed by SLM and BLK at 0.105 and 0.106 , while the other three models had MABE's between 0.112 and 0.117 . Two other summary error measures, which give greater weight to large deviations, are mean square error or MSE (the sample average of $\left.\left(a_{i}-g_{i j}\right)^{2}\right)$ and root mean squared error or RSME (the square root of MSE). Using these measures of forecast accuracy, VL was most accurate followed by the four expected return models all of which were more accurate than SUB.

In time period 2, VL had the most accurate forccasts. Using MABE, it again appears that SLM and BLK had smaller errors than the CMR, MAR, and SUB models. Using MSE, all models other than VL appear to have approximately equal forecast accuracy.

Table 2 contains the t-statistics for all paired comparisons over both sample periods and using both the historical beta and the regression-adjusted beta. In reading this table, a positive 1 -statistic means that the model at the top has lower errors than the model at the side. Since the results are very simitar for both beia estimation methods, the discussion concentrates on the regressionadjusted beta case.

In both sample periods. both the SLM and BLK models produced smaller errors at high levels of confidence than the two non-beta expected return models - MAR and CMR. Hypothesis I is thus rejected. If one were attempting to gauge the market's expectation of future earnings growth via

Table 2. Parametric 1 -statistics. comparisons of six model's earnings prediction errors for two time periods* \dagger

	Historical beta								Regression-adjusted beta					
Period 1. 1967-1972		SUB	MAR	CMR	SLM	BLK	VL		SUB	MAR	CMR	SLM	BLK	VL
	SUB	-	0.59	-0.50	1.32	1.17	$2.69+$	SUB	-	0.59	-0.50	1.76%	$1.58{ }_{+}^{+}$	$2.69+$
	MAR	-	-	-1.70 \%	1.74 f	1.37	$3.72+$	MAR	-	-	-1.70%	$4.93+$	$4.29+$	$3.72+$
	CMR	-	-	-	$3.32+$	$3.00 \pm$	$4.50 \ddagger$	CMR	-	-	-1.	$4.35{ }_{+}^{+}$	$3.96{ }_{+}^{+}$	$4.50{ }_{+}^{+}$
	SLM	-	-	-	+	-7.12 \dagger	$3.06{ }_{+}^{+}$	SLM	-	-	-	-	-8.22 +	2.72+
	BLK	-	-	-	-	-	3.21	BLK	-	-	-	-	-	$2.88+$
Period 2. 1972-1976	SLB	-	1.58	-0.40	$2.88{ }_{+}^{+}$	$2.84+$	$2.90 \pm$	SUB	-	1.58	-0.40	$2.78{ }_{+}^{+}$	$2.68{ }_{+}^{+}$	$2.90 \pm$
	MAR	-	-	$-2.25 \$$	2.38 \$	2.48 S	$2.35 \$$	MAR	-	-	-2.25s	$3.06{ }_{+}^{+}$	$3.13+$	2.353
	CMR	-	-	-	$3.77{ }_{+}^{+}$	$3.76{ }_{+}^{+}$	$2.92{ }_{+}^{+}$	CMR	-	-	-25.	$3.83+$	$3.72+$	2.92+
	SLM	-	-	-	,	-0.59	1.86 ¢	SLM	-	-	_	3.83+	-1.60	$1.93{ }^{\text {c }}$
	BLK	-	-	-	-	-	1.88\%	BLK	-	-	-	-	-	$1.96 \leqslant$

* MAR = Market adjusted return: $S U B=$ Submartingale: $C M R=$ Comparison return; SLM = Sharpe-Lintner-Mossin: BLK = Black: VL = Value Line.
\dagger A positive test statistic indicates superiority (lower forecast error) of model on top as compared with model on side: a negative test statistic indicates superiority of model on side. Forecast error is mean absolute error (MABE).
\ddagger Significant at the I per cent level, two-tailed test.
§ Significant at the 5 per cent level, two-tailed test.
$\$$ Significant at the 10 per cent level, two-tailed test.
the market's expected rate of return and the revealed dividend yield, then one would be better oll employing either of the two models that use beta. The consistency of the results over the two test periods strengthens the conclusion that use of the beta cocflicient enhances the predictability of expected rate of return and hence carnings growih.

To check on the efficacy of the procedure by which the expected return model forecasts were extracted, those models were compared with the SUB model. For the non-beta models, the t statistics were less than ordinary conventional levels in both of the test periods. A comparison of MAR against SUB produced t-statistics of -0.50 and -0.40 . These results indicate that Hypothesis 2 cannot be rejected for the non-beta models, although the MAR model provided slight indication of outperforming the SUB model.

For the SLM and BLK models, the 1 -statistics were positive and significant in both time periods. A comparison of SLM against SUB yielded 1 -statistics of 1.76 and 2.78 . whereas in similar comparisons, BLK yielded 1.58 and 2.68. This is reasonable evidence for rejecting Hypothesis 2 in favour of the alternative hypothesis that SLM and BLK produce smaller errors than SUB. From another point of view, this result is impressive: a relatively simple manipulation of the expected return models, involving extrapolation of the expected market return and the stock's beta coefficient and subtraction of the stock's dividend yield, produced earnings forecasts that were more accurate than a well known time-series model of amual earnings. This interpretation indicates that the SLM and BLK expected return models appear to capture an important aspect of the market's return generating mechanism, and that the forecast extraction procedure has reasonable power.

The next hypothesis tests involve the VL forecasts. It is clear that Hypothesis 3 can be rejected at high levels of significance. By wide margins, VL produced lower forecast errors than all the expected return models, including the more accurate SLM and BLK models.

The last comparison, Hypothesis 4, cvaluates VL against the TS model. In both samples, the forecasts of earnings per share growth were statistically superior to those of the TS model. This provides additional evidence that security analysts produce more accurate forecasts than timeseries models.

The results of the tests were quite uniform in the two time periods. The average analyst error in forecasting the future annual growth rate for the following four to five year period tended to be about 1.7 per cent below the errors of the SLM and BLK expected return models, whereas the errors of the latter two models were about $0.7-1.2$ per cent below the errors of the remaining models, including the SUB model.

3. CONCLUSIONS

This paper has shown that expected return models commonly used in the finance literature contain implicit forecasts of the growth rate of accounting carnings per share. For the comparison returns model (CMR) and the market-adjusted returns model (MAR), the resulting forecasts were no less accurate than a submartingale model. On the other hand, for the Sharpe-Lintner-Mossin (SLM) and Black (BLK) models, the forecasts were significantly more accurate than those generated by the submartingale model.

Evidence that security analysts forecasts are more accurate than those of less costly alternatives is also provided. The forecasts of four to five year growth rates of earnings per share produced and reported in the Value Line Incestment Surcey were shown to be more accurate than all of the other models tested--none of which required the direct input of a security analyst.
the market's expected rate of return and the revealed dividend yield, then one would be better off employing either of the two models that use beta. The consistency of the results over the two test periods strengthens the conclusion that use of the beta cocllicient enhances the predictability of expected rate of return and hence carnings growih.

To check on the efficacy of the procedure by which the expected return model forecasts were extracted, those models were compared with the SUB model. For the non-beta models, the 1 statistics were less than ordinary conventional levels in both of the lest periods. A comparison of MAR against SUB produced t-statistics of -0.50 and -0.40 . These results indicate that Hypothesis 2 cannot be rejected for the non-bcta models, although the MAR model provided slight indication of outperforming the SUB model.

For the SLM and BLK models, the 1 -statistics were positive and significant in both time periods. A comparison of SLM against SUB yielded r-statistics of 1.76 and 2.78 , whereas in similar comparisons, BLK yielded 1.58 and 2.68 . This is reasonable evidence for rejecting Hypothesis 2 in favour of the alternative hypothesis that SLM and BLK produce smaller errors than SUB. From another point of view, this result is impressive: a relatively simple manipulation of the expected return models, involving extrapolation of the expected market return and the stock's beta coefficient and subtraction of the stock's dividend yield, produced earnings forecasts that were more accurate than a well known time-series model of annual earnings. This interpretation indicates that the SLM and BLK expected return models appear to capture an important aspect of the market's return generating mechanism, and that the forecast extraction procedure has reasonable power.

The next hypothesis tests involve the VL forecasts. It is clear that Hypothesis 3 can be rejected at high levels of significance. By wide margins, VL produced lower forecast errors than all the expected return models, including the more accurate SLM and BLK models.

The last comparison, Hypothesis 4, evaluates VL against the TS model. In both samples, the forecasts of earnings per share growth were statistically superior to those of the TS model. This provides additional evidence that security analysts produce more accurate forecasts than timeseries models.

The results of the tests were quite uniform in the two time periods. The average analyst error in forecasting the future annual growth rate for the following four to five year period tended to be about 1.7 per cent below the crrors of the SLM and BLK expected return models, whereas the errors of the latter two models were about $0.7-1.2$ per cent below the errors of the remaining models, including the SUB model.

3. CONCLUSIONS

This paper has shown that expected return models commonly used in the finance literature contain implicit forecasts of the growth rate of accounting carnings per share. For the comparison returns model (CMR) and the market-adjusted returns model (MAR), the resulting forecasts were no less accurate than a submartingale model. On the other hand, for the Sharpe-Lintner-Mossin (SLM) and Black (BLK) models, the forecasts were significantly more accurate than those generated by the submartingale model.

Evidence that security analysts forecasts are more accurate than those of less costly alternatives is also provided. The forecasts of four to five year growth rales of earnings per share produced and reported in the Value Line Incestment Survey were shown to be more accurate than all of the other models tested-none of which required the direct input of a security analyst.

ACKNOWLEDGEMENTS

Earlier versions of this paper were presented at the International Symposium on Forecasting, Quebec City, Canada in May, 1981, the Midlands Finance Conference, Lincoln, Nebraska in September, 1981, and the Fimance Workshop of the University of California at Los Angeles in October, 1981. I am grateful to these audiences for useful comments and discussions. Two anonymous referees of this journal also provided stimulating comments for which 1 am thankful.

REFERENCES

Abdel-khalik, A. R. and Thompson, R. B., 'Rescarch on carnings forecasts: the state of the art'. The Accounting Journal, 1 (1977-78), 180-209.
Albrecht, W., Lookabill, L. and McKcown. J., 'The time series properties of annual earnings', Journal of Accounting Rescarch, 15 (1977), 226-244.
Ball, R, and Watts, R., 'Some time series propertics of accounting income'. The Jommal of Finance', 27(1972), 663681
Barclield, R. and Comiskey, E. "The accuracy of analysts" forecasts ol carnings per share", Journal of Business Researsh. 3 (1975). 241 - 252.
Black, F., 'Capital market equilibrium with restricted borrowing', The Journal of Business. 45 (1972), 444-454.
Black. F., Jensen, M. C. and Scholes, M., 'The capital asset pricing model: some empirical tests'. In Jensen, M. C. (ed.), Sindies in the Theory of Capital Markets, New York: Pracger, 1972, pp. 79-121.

Blume, M., 'On the assessment of risk', The Joumal of Finance, 26 (1971). 1-10.
Brooks, L. D. and Buckmaster, D. E. 'Further evidence of the time series properties of accounting income', The Journal of Finance, 31 (1976), 1359-1373.
Brown, L. D. and Rozeff, M. S., The superiority of analyst forecasts as measures of expectations: evidence from carnings", The Journal of finance. 33 (1978), 1 - 16.
Brown, L. D. and Rozeff, M. S., Univariate time-series models of quarterly accounting earnings per share: a proposed model, Journal of Accouming Research, 17 (1979). 179-189.
Brown. S. J. and Warner, J. B.. 'Measuring securily price performance'. Jomrnal of Financial Economics. 8 (1980), 205-258.

Collins, W. A. and Hopwood, W. S., 'A multivariate amalysis of annal earnings forecasts generated from quarterly forecasts of linancial analysts and univariate time series models, Journal of Accotinting Rescarch, 18 (1980), 390-406.
Cragg, J. G. and Malkicl, B. G., The consensus and accuracy of some predictions of the growth of corporate carnings', The Journal of Finance, 23 (1968). 67-84.
Critchlicld, T., Dyckman, T. and Lakonishok. J., 'An evaluation of security analysts' forccasts', The Accounting Reciew, 53 (1978), 651-668.
Elton, E. J. and Gruber, M. J., 'Earnings estimates and the aceuracy of expectational data', Management Science, 19 (1972), 409-424.
Elton, E. J., Gruber, M.J. and Gultekin, M., 'Prolessional expectations: accuracy and diagnosis of errors', Research paper, Graduate School of Business Administration, New York University, New York. 1981.
Fama, E. F. and Macbeth, J. D., 'Risk return, and equilibrium: empirical tests'. Journal of Political Economy. 8 (1973), 607-636.
Foster, G.. 'Quarterly accounting data: time series properties and predictive-ibility results', The Accounting Revicu, 52 (1977), 1-21.
Fried, D, and Givoly, D., 'Financial analysts' forecasts of earnings: a better surrogate for market expectations". Journal of Accouming and E(onomics, 4 (1982), 85-107.
Givoly, D. and Lakonishok, J. 'The information content offinancial analysts" forecasts of earnings', Journal of Accounting and Economics, 1 (1979), 1-21.
Gordon, M. and Shapiro, E., Capital equipment analysis: the required rate of profi', Managemem Science. 3 (1956), 102-110.

Griflin. P. A. 'The time-series behaviour of quarterly carnings: preliminary evidence', Journal of Accounting Rescarch, 15 (1977), 71-83.
?

Hopwood. W. S. and McKeown, J. C.. An evaluation of univariate time-series earnings models and their generalization to a single inpul transfer function', Journal of Accounting Research, 19 (1981), 313-322.
Hopwood. W. S., McKcown, J. C. and Newhold, P., Power transformations in time-series models of quarterly earnings per share', The Accomming Reriew, 56 (1981), 927-933.
Imhoff. E. A Jr and Pare, P. V., Amalysis and comparison of camings forecast agents', Journol of Accoming Rescarch. 20 (1982), 429-439.
Jaggi. B. . Further evideace on the accuracy of management forecasts vis-i-vis analysts' forecasts', The Accounting Retiew, 55 (1980), 96-101.
Latane, H. A. and Jones. C. P., 'Standardized unexpected earnings-1971-1977', The Journal of Finance, 34 (1979), 717-724.

Lintner, J. .'The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets'. Review of Economics and Statistics, 47 (1965), 13. 37.
Livingston. M. and Jain, S.. Flattening of bond yield curves for long maturities', Tie Journal of Finance, 37 (1982), 157167.

Lorek. K. S., 'Predicting annual net earnings with quarterly carnings time-series models'. Journal of Accounting Research, 17 (1979). 190-204.
Mancgold. J. G., 'Time-serics properties of earnings: a comparison of extrapolative and component models'. Journal of Accomining Ressearch: 19 (1981). 360373.
Masulis, R.W., The eflects of capital structure change on security prices: a study of exchange offers'. Journal of Fïnancial Economics, 8 (1980). 139177.
Miller, M. H. and Modigliani, F., 'Dividend policy, growth, and the valuation of shares', The Journal of Business, 34 (1961), 411-433.
Mossin, J., Equilibrium in a capital asset market', Econometrica, 34 (1966), 768-783.
Moyer, C. Chatficld, R, E. and Kelley, G. D.. Long-term carnings forecasts and the cost of equity capital for electric utilities', Research paper. Texas Tech University, 1983.
Schacfer. S. "The problem with redemption yields". Financial Analnsts Jomrnal, 33 (1977), $49-57$.
Sharpe, W. F., 'Capital asset prices: a theory of markes equilibrium under conditions of risk', The Jommal of Finance. 19 (1964), 425-454.
Watts, R. and Lefiwich, R. 'The time series of annual accounting carnings', Journal of Accounting Research, 15 (1977), 253271.

Author's biugraphy:

Michael S. Rozeft is Professor of Finance at the University of lowa He received his MBA from University of Illinois and PhD from the University of Rochester. His papers have appeared in Journal of Accoming and Economics, Journal of Finance, Journal of Financial Ecomomics. Journal of Financial and Quantitative Analysis, and other journals. His principal current research interest is in how stock markets price such firmspecific factors as size, systematic risk, and dividend yield.

Author's address:
Michael S. Rozeff, College of Business Administration, The University of lowa, Iowa City, lowa 52242. U.S.A.

BEFORE THE PUBLIC SERVICE COMMISSION

Abstract

In the Matter of: GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.

RESPONSE TO
KENTUCKY POWER COMPANY'S
FIRST SET OF DATA REQUESTS TO

Avista Corp. (AVA)

\$50 CASH BONUS	EARN FREE TRADES

Ameritrade Apex ${ }^{\text {TM }}$

Historical Prices

Get Historical Prices for:

SET DATE RANGE

		Daily Start Date: Jul -1 Weekly	
End Date: Dec -31	2005	Eg. Jan 1, 2003	Wonthly
			Dividends Only

Get Prices

PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
Dec-05	17.85	18.84	17.47	17.71	234,895	17.71
28-Nov-05	\$ 0.14 Cash Dividend					
Nov-05	17.53	17.96	16.76	17.65	262,585	17.65
Oct-05	19.40	19.55	17.01	17.52	325,928	17.38
Sep-05	19.44	20.20	18.11	19.40	190,552	19.25
23-Aug-05	\$ 0.135 Cash Dividend					
Aug-05	18.10	19.61	17.90	19.44	188,830	19.29
Jul-05	18.63	19.36	18.10	19.04	166,915	18.75

* Close price adjusted for dividends and splits.

First | Prev | Next | Last
Download To Spreadsheet

Yahool My Yahool Mail
YAHOO! FINANCE

6

Welcome, rickybaud [Sign Out, My Account]

Search
Finance Home - Help

Tuesday, January 3, 2006, 1:54PM ET - U.S. Markets close in 2 hours and 6 minutes. Dow $\boldsymbol{+ 0 . 0 1 \%}$ Nasdaq $\mathbf{+ 0 . 0 7}$ Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes / Free trial of Streaming Real-Time Quotes

Quotes \& Info

Enter Symbol(s): e.g. YHOO, ~DII

GO Symbol Lookup | Finance Searc
Cleco Corp. (CNL)

Ameritrade Apex ${ }^{\text {Tm }}$

Historical Prices
 Get Historical Prices for:

SET DATE RANGE

			Daily	
Start Date: Jul	1	2005	Eg. Jan 1, 2003	Weekly
End Date:	Dec -1	31	2005	
Donthly				

Get Prices

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
Dec-05	22.10	22.29	19.00	20.85	468,314	20.85
Nov-05	21.07	22.98	20.64	22.08	310,257	22.08
27-Oct-05	\$ 0.225 Cash Dividend					
Oct-05	23.58	24.36	20.56	21.20	211,938	21.20
Sep-05	22.99	23.96	22.10	23.58	175,314	23.33
Aug-05	22.49	23.52	21.65	23.00	180,856	22.76
28-Jul-05	\$ 0.225 Cash Dividend					
Jul-05	21.60	22.58	21.00	22.48	141,740	22.24

First | Prev | Next | Last
${ }^{4 / 7}$ Download To Spreadsheet

Yahool My Yahool Mail

YAFOO

Welcome, rickybaud [Sign Out, My Account]

Search
Finance Home - Help

Tuesday, January 3, 2006, 2:12PM ET - U.S. Markets close in 1 hour and 48 minutes. Dow $\boldsymbol{+} \mathbf{0 . 4 5 \%}$ Nasdaq $\mathbf{+ 0 . 7 4}$ Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Quotes \& Info
DPL Inc. (DPL)

Enter Symbol(s):
e.g. YHOO, ^DII

GO Symbol Lookup | Finance Searc

At 1:52PM ET: $\mathbf{2 6 . 0 3} \uparrow$
Flat Rate $\$ 10.99$
Internet equity trades : 'A
Now at Ameritrade

Historical Prices
Get Historical Prices for:
SET DATE RANGE

Start Date: Jul	1	2005	Eg. Jan 1, 2003	Daily Weekly
End Date: Dec - 31	2005		Monthly	
	Gividends Only			

First | Prev| Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*		
Dec-05	25.76	26.40	25.10	26.01	868,366	26.01		
10-Nov-05	\$ 0.24 Cash Dividend							
Nov-05	25.70	26.85	25.29	25.55	775,428	25.55		
Oct-05	27.81	28.19	24.33	25.77	630,166	25.54		
Sep-05	27.05	27.95	26.73	27.80	576,109	27.55		
11-Aug-05	\$ 0.24 Cash Dividend							
Aug-05	27.50	28.34	26.43	26.99	695,873	26.75		
Jul-05	27.50	27.97	26.85	27.60	747,675	27.11		
* Close price adjusted for dividends and splits.								
First \| Prev	Next	Last						

Yahool My Yahoo! Mail
YAHOO! FINANCE
Welcome, rickybaud [Sign Out, My Account]

Search the Web

Tuesday, January 3, 2006, 1:56PM ET - U.S. Markets close in 2 hours and 4 minutes. Dow - $\mathbf{0 . 0 2 \%}$ Nasdaq +0.05 Bill Pay - Customize Finance

Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes
Quotes \& Info
Enter Symbol(s):
e.g. YHOO, MDJI
GO 5ymbol Lookup | Finance Searc

Duquesne Light Holdings Inc. (DQE)
At $1: 36$ PM ET: $16.57+$

Ameritrade Apex ${ }^{T m}$

Historical Prices
 Get Historical Prices for:
 GO

SET DATE RANGE

Get Prices

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
7-Dec-05	\$ 0.25 Cash Dividend					
Dec-05	16.99	17.34	16.21	16.32	475,257	16.32
Nov-05	16.64	17.35	16.10	16.95	456,609	16.70
Oct-05	17.25	17.59	16.08	16.69	455,671	16.45
7-Sep-05	\$ 0.25 Cash Dividend					
Sep-05	18.13	18.42	17.06	17.21	430,390	16.96
Aug-05	19.35	19.52	17.57	18.15	363,447	17.64
Jul-05	18.80	19.41	18.47	19.40	390,950	18.86

First | Prev | Next | Last
Download To Spreadsheet

Yahool My Yahoo! Mail \quad\begin{tabular}{c}
Search

SAE Web

\quad

Selcome, rickybaud

Sign Out, My Account]
\end{tabular}

Tuesday, January 3, 2006, 2:13PM ET U.S. Markets close in 1 hour and 47 minutes. Dow $\mathbf{+ 0 . 4 4 \%}$ Nasdaq $\mathbf{+ 0 . 7 4}$ Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

| | | | | | \| Prev | N | ext \| Last |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRICES | | | | | | |
| Date | Open | High | Low | Close | Avg Vol | Adj Close* |
| Dec-05 | 23.68 | 23.88 | 22.60 | 22.80 | 731,652 | 22.80 |
| Nov-05 | 23.80 | 24.20 | 22.50 | 23.45 | 512,023 | 23.45 |
| 14-Oct-05 | \$ 0.29 Cash Dividend | | | | | |
| Oct-05 | 25.34 | 25.95 | 22.80 | 23.85 | 655,476 | 23.85 |
| Sep-05 | 26.12 | 26.69 | 24.82 | 25.19 | 542,323 | 24.88 |
| Aug-05 | 27.90 | 27.92 | 25.65 | 26.22 | 826,478 | 25.90 |
| 14-Jul-05 | \$ 0.275 Cash Dividend | | | | | |
| Jul-05 | 28.99 | 29.35 | 27.20 | 27.87 | 684,300 | 27.52 |
| * Close price adjusted for dividends and splits. | | | | | | |

First | Prev | Next | Last
到 Download To Spreadsheet

First | Prev| Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
Dec-05	47.17	50.07	46.73	48.99	1,087,504	48.99
3-Nov-05	\$ 0.43 Cash Dividend					
Nov-05	47.50	47.67	45.78	46.96	1,571,028	46.96
Oct-05	52.13	53.36	45.94	47.50	1,813,542	47.06
Sep-05	51.16	53.00	50.35	52.12	1,240,533	51.64
3-Aug-05	\$ 0.413 Cash Dividend					
Aug-05	49.90	51.11	48.41	51.03	1,017,995	50.56
Jul-05	48.36	50.45	47.46	49.78	1,057,090	48.91

* Close price adjusted for dividends and splits.

First | Prev | Next | Last
Download To Spreadsheet

Yahool My Yahoo! Mail \quad\begin{tabular}{c}
Search

the Web

\quad

Search

Welcome, rickybaud

Sign Out, My Account]
\end{tabular}

Tuesday, January 3, 2006, 2:01PM ET - U.S. Markets close in 1 hour and 59 minutes. Dow $\boldsymbol{+ 0 . 0 7 \%}$ Nasdaq $\boldsymbol{+ 0 . 1 6}$ Bill Pay - Customize Finance

Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

				Symbol Lookup \| Finance Searc
Green Mountain Power Corp. (GMP)				At 10:02AM ET: $\mathbf{2 8 . 8 9} \uparrow$
		S5OCASH BONUS + EARN FREE TRADES ESP		
		Ameritrade Apex ${ }^{\text {™ }}$		
Historical Prices			Get Historical Prices for:	GO
SET DATE RANGE				
			Daily	
Start Date: Jul - 1	2005	Eg. Jan 1, 2003	Weekly	
End Date: Dec - 31	2005		- Monthly	
			Dividends Only	
	Get P	Prices		

First|Prev|Next|Last

PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
15-Dec-05	\$ 0.25 Cash Dividend					
Dec-05	29.54	30.90	26.62	28.77	10,642	28.77
Nov-05	32.44	32.65	28.74	29.54	12,161	29.29
Oct-05	32.68	33.09	31.90	32.70	6,890	32.42
13-Sep-05	\$0.25 Cash Dividend					
Sep-05	30.55	33.03	30.50	32.93	6,504	32.65
Aug-05	29.37	30.75	28.75	30.35	5,808	29.85
Jul-05	29.44	30.00	29.10	29.40	3,680	28.92

> First | Prev | Next | Last
" Download To Spreadsheet

Yahool My Yahoo! Mail \quad FINANCE | Selcome, rickybaud |
| :--- |
| Search |
| Sign Out, My Account] |

Tuesday, January 3, 2006, 2:02PM ET - U.S. Markets close in 1 hour and 58 minutes. Dow $\mathbf{+ 0 . 1 4 \%}$ Nasdaq $\mathbf{+ 0 . 2 3}$ Bill Pay - Customize Finance

Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Quotes \& Info		$\begin{aligned} & \text { Enter Symbol(s): } \\ & \text { e.g. YHOO, ^DJI } \end{aligned}$	GO	Symbol Lookup \| Finance Searc
Hawaiian Electric Industries Inc. (HE)				At 1:42PM ET: $\mathbf{2 5 . 9 6 +}$
Flat Rate $\$ 10.99$ Internet equity trades $\dot{\alpha}$				
Now at Ameritrade				
Historical Prices			Get Historical Prices for:	GO
SET date range				
			Daily	
Start Date: Jul - 1	2005	Eg. Jan 1, 2003	Weekly	
End Date: Dec - 31	2005		© Monthly	
			Dividends Only	
	Get P	Prices		

| PRICES \quad First \| Prev|Next | Last | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| Date | Open | High | Low | Close | Avg Vol | Adj Close* |
| Dec-05 | 26.50 | 26.72 | 25.65 | 25.90 | 220,333 | 25.90 |
| 17-Nov-05 | \$ 0.31 Cash Dividend | | | | | |
| Nov-05 | 26.30 | 26.90 | 25.50 | 26.44 | 264,261 | 26.44 |
| Oct-05 | 27.89 | 28.50 | 25.50 | 26.35 | 265,290 | 26.04 |
| Sep-05 | 26.53 | 28.76 | 26.38 | 27.88 | 318,214 | 27.55 |
| 8-Aug-05 | \$ 0.31 Cash Dividend | | | | | |
| Aug-05 | 27.00 | 27.81 | 26.21 | 26.51 | 265,878 | 26.20 |
| Jul-05 | 26.81 | 27.77 | 26.51 | 26.93 | 222,780 | 26.31 |

First | Prev | Next | Last
Download To Spreadsheet

Search the Wab

Search
Finance Home - Help

Tuesday, January 3, 2006, 2:03PM ET - U.S. Markets close in 1 hour and 57 minutes. Dow $+\mathbf{0 . 1 5 \%}$ Nasdaq +0.22
Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Quotes \& Info

Enter Symbol(s):
e.g. YHOO, ^DJI

GO Symbol Lookup | Finance Seare
Northeast Utilities (NU)
At $1: 42$ PM ET: $19.55 \downarrow$

Ameritrade Apex ${ }^{\mathrm{Tm}}$
Historical Prices Get Historical Prices for: \quad GO
SET DATE RANGE

Start Date: Jul -1	2005	Eg. Jan 1, 2003
End Date: Dec -31	2005	
Weekly		
Monthly		

Get Prices

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
Dec-05	18.67	20.25	18.42	19.69	1,737,876	19.69
29-Nov-05	\$ 0.175 Cash Dividend					
Nov-05	18.17	19.03	17.30	18.58	907,238	18.58
Oct-05	19.99	20.20	17.62	18.19	590,742	18.02
Sep-05	19.90	20.48	19.35	19.95	528,214	19.77
30-Aug-05	\$ 0.175 Cash Dividend					
Aug-05	21.58	21.95	19.52	19.92	501,956	19.74
Jul-05	20.90	21.74	20.41	21.58	633,840	21.19

* Close price adjusted for dividends and splits.

First | Prev | Next | Last
Download To Spreadsheet

Search
Finance Home - Help

Tuesday, January 3, 2006, 2:13PM ET - U.S. Markets close in 1 hour and 47 minutes. Dow $\boldsymbol{+ 0 . 4 1 \%}$ Nasdaq $\mathbf{+ 0 . 7 5}$ Bill Pay - Customize Finance

Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Historical Prices
Get Historical Prices for:
GO

SET DATE RANGE

			Daily Start Date: Jul$\quad 1$	2005
Eg. Jan 1, 2003	Weekly			
End Date: Dec -31	2005		Monthly	
				Dividends Only

Get Prices

| | | | | | \| | Prev | ext \| Last |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRICES | | | | | | |
| Date | Open | High | Low | Close | Avg Vol | Adj Close* |
| Dec-05 | 41.64 | 43.33 | 41.05 | 41.35 | 475,019 | 41.35 |
| Nov-05 | 41.72 | 42.19 | 39.91 | 41.49 | 536,438 | 41.49 |
| 28-Oct-05 | \$0.50 Cash Dividend | | | | | |
| Oct-05 | 44.08 | 44.97 | 39.81 | 41.76 | 691,914 | 41.76 |
| Sep-05 | 44.98 | 46.06 | 43.13 | 44.08 | 463,076 | 43.54 |
| Aug-05 | 45.99 | 46.68 | 43.22 | 44.93 | 421,091 | 44.38 |
| 28-Jul-05 | \$ 0.475 Cash Dividend | | | | | |
| Jul-05 | 44.55 | 46.16 | 43.76 | 45.80 | 482,740 | 45.23 |

* Close price adjusted for dividends and splits.

First | Prev | Next | Last
Download To Spreadsheet

Yahool My Yahool Mail \quad\begin{tabular}{l}
Search

the Web

\quad

Search

Welcome, rickybaud

[Sign Out, My Account $]$
\end{tabular}

Tuesday, January 3, 2006, 2:05PM ET - U.S. Markets close in 1 hour and 55 minutes. Dow $\boldsymbol{+} \mathbf{0 . 2 7 \%}$ Nasdaq $\mathbf{+ 0 . 3 5}$ Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Quotes \& Info \quad| Enter Symbol(s): |
| ---: |
| e.g. YHOO, ^DJI |$\quad G O$ Symbol Lookup | Finance Seare

PNM Resources Inc. (PNM)

Up 10
3 FREE TRADES
Now at Ameritrade

Historical Prices

Get Historical Prices for:
SET DATE RANGE

			Daily Start Date: Jul -1
End Date: Dec -12005	Eg. Jan 1, 2003	Weekly	
	2005		Monthly Gividends Only
	Get Prices		

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*		
Dec-05	26.07	26.19	24.15	24.49	349,328	24.49		
Nov-05	25.28	26.26	24.03	25.97	402,490	25.97		
28-Oct-05	\$ 0.20 Cash Dividend							
Oct-05	28.72	29.22	24.07	25.35	585,171	25.35		
Sep-05	29.58	29.98	27.62	28.67	313,590	28.44		
Aug-05	29.60	30.45	27.90	29.58	428,317	29.34		
28-Jul-05	\$ 0.20 Cash Dividend							
Jul-05	28.94	29.85	28.24	29.39	598,780	29.15		
* Close price adjusted for dividends and splits.								
First \| Prev	Next	Last						

Tuesday, January 3, 2006, 2:06PM ET - U.S. Markets close in 1 hour and 54 minutes. Dow $\mathbf{+ 0 . 2 4 \%}$ Nasdaq $\mathbf{+ 0 . 3 4}$ Bill Pay - Customize Finance

Portfolios [manage - create]
Quotes / Free trial of Streaming Real-Time Quotes

Quotes \& Info

PPL Corp. (PPL)

Enter Symbol(s):
e.g. YHOO, ^DII

GO Symbol Lookup | Finance Searc At 1:46PM ET: $29.76+$
$\$ 50$ CASH BONUS + EARN FREE TRADE5
Tos - A :
Ameritrade Apex ${ }^{\text {TM }}$

Historical Prices

SET DATE RANGE

			Eg. Jan 1, 2003
Start Date: Jul -1	2005	Weekly	
End Date: Dec -31	2005		Monthly
	Get Prices		

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
7-Dec-05	\$ 0.25 Cash Dividend					
Dec-05	29.54	30.90	28.59	29.40	1,322,304	29.40
Nov-05	30.05	31.14	28.25	29.40	1,454,476	29.15
Oct-05	32.67	33.68	29.01	31.34	$1,352,571$	31.07
7-Sep-05	\$0.50 Cash Dividend					
Sep-05	31.95	33.51	31.55	32.33	1,485,819	32.05
25-Aug-05	2 : 1 Stock Split					
Aug-05	61.65	65.12	30.81	31.96	1,800,608	31.21
Jul-05	59.55	62.14	59.50	61.58	1,664,390	30.07

* Close price adjusted for dividends and splits.

First | Prev | Next | Last
Download To Spreadsheet

Tuesday, January 3, 2006, 2:07PM ET - U.S. Markets close in 1 hour and 53 minutes. Dow $\mathbf{+ 0 . 2 6 \%}$ Nasdaq $\mathbf{+ 0 . 3 6}$ Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes | Free trial of Streaming Real-Time Quotes

Quotes \& Info

Enter Symbol(s):
e.g. YHOO, ^DII

GO Symbol Lookup | Finance Searc

Ameritrade Apex ${ }^{T M}$
Historical Prices
Get Historical Prices for:

SET DATE RANGE

			Daily
Start Date: Jul $\quad 1$	2005	Eg. Jan 1, 2003	Weekly
End Date: Dec - 31	2005		Monthly
			Dividends Only

Get Prices

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
Dec-05	44.86	45.20	43.39	43.92	774,523	43.92
Nov-05	43.59	45.50	42.62	44.78	941,857	44.78
6-Oct-05	\$ 0.59 Cash Dividend					
Oct-05	44.75	45.14	40.77	43.59	997,666	43.59
Sep-05	43.45	45.00	43.03	44.75	752,242	44.14
Aug-05	44.86	45.00	41.90	43.59	726,169	42.99
7-Jul-05	\$0.59 Cash Dividend					
Jul-05	45.54	46.00	43.80	44.61	887,395	44.00

* Close price adjusted for dividends and splits.
First | Prev | Next | Last

Download To Spreadsheet

First | Prev | Next | Last
PRICES

Date	Open	High	Low	Close	Avg Vol	Adj Close*
9-Dec-05	\$ 0.19 Cash Dividend					
Dec-05	32.35	32.86	30.80	31.20	218,747	31.20
Nov-05	31.85	32.78	30.39	32.36	218,838	32.17
Oct-05	33.15	33.86	29.86	31.97	278,200	31.78
16-Sep-05	\$ 0.19 Cash Dividend					
Sep-05	33.31	33.92	31.80	33.24	220,614	33.04
Aug-05	32.25	33.60	31.19	33.29	278,195	32.91
Jul-05	30.75	32.70	30.50	32.25	269,330	31.88

First | Prev | Next | Last
hㅡN Download To Spreadsheet

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S
FIRST SET OF DATA REQUESTS TO

The Fournal of FINANCE

THE SUPERIORITY OF ANALYST FORECASTS AS MEASURES OF EXPECTATIONS: EVIDENCE FROM EARNINGS

Lawrence D. Brown and Michael S. Rozeff**

Accurate measurement of enrnings expectations is essential for studies of firm valuation, cost of capital and the relationship between unanticipated earnings and stock price changes. Under the rational expectations hypothesis [23]. market earnings expectations should be measured by the best available earnings forecasts. Univariate time series forecasts are often used for this purpose ([1]. [3]. [4]. [5], [12]. [13], [14], [16], [18], [20]) instead of direct measures of earnings expectations such as security analysts' forecasts. Univariate time series forecasts neglect potentially useful information in other time series and therefore do not generally provide the most accurate possible forecasts [24]. Since security analysts process substantially more data than the time series of past earnings, their earnings forecasts should be superior to time series forecasts and provide better measures of market earnings expectations.

However, the mere existence of analysts as an employed factor in long run equilibrium means that analysts must make forecasts superior to those of time series models. To reach this conclusion, one need only assume that participants in the market for forecasts act in their own best interests and that both forecast producers and consumers demand forecasts solely on the basis of their predictive ability.' Since analysts' forecasts cost more than time series forecasts, the continued employment of analysts by profit-maximizing firms implies that analysts' forecasts must be superior to those of the lower cost factor, time series models.

Past comparisons of analysts' forecasts to sophisticated time series models conclude that analysts' forecasts are not more accurate than time series forecasts (Cragg and Malkiel (CM) [9]; Elton and Gruber (EG) [II]). This evidence plainly conflicts with basic economic theory. Hence, the predictive accuracy of analysts' forecasts is re-examined in this paper. In contrast with other studies, the results overwhelmingly favor the superiority of analysts over time series models.
Part I considers statistical tests and experimental design. Part II contains the empirical results. Summary and implications appear in Part III.

[^9]
I. Experimental. Design

A. Statistical Evaluation of Forecast Methods

Without direct information on the costs of imperfect forecasts to forecast users, comparative forecast accuracy is usually evaluated by comparing the error distributions of different forecast methods statistically. However, statistical comparisons in past studies ([9], [11]) utilize test statistics improperly, particularly Theil's U [25] and Student's 4 . In this section, after discussing the defects of these statistics for evaluating two or moreforecast methods, the allernative statistical methods used in this study are introduced. ${ }^{2}$

Theil's U-statistic (applied to earnings) is the square root of

$$
U_{i j}^{2}=\frac{\sum_{t=1}^{T}\left(\dot{P}_{i j t}-\dot{A}_{i t}\right)^{2}}{\sum_{i=1}^{T} \dot{A}_{i t}^{2}}
$$

where $\dot{A}_{i t}=$ change in actual earnings per share of firm i from $t-1$ to t,
$\dot{P}_{i j t}=$ predicted change in earnings per share of firm i from $t-1$ to t by forecast method j, and
$T=$ total number of time series observations.
For its computation, it requires time series data on a lirm's earnings changes. ${ }^{3}$ Given forecast method j and earnings time series data on firm i, Theil's U compares the forecast accuracy of method j to that of a naive, no change, earnings forecast model. ${ }^{4} 5$ Since analysts' earnings forecasts are currently available only in short time series, use of Theil's U for comparative forecast evaluation necessarily relies on small samples. ${ }^{6}$ Larger sample sizes are possible by testing forecast methods on a cross-section of firms. Finally, no procedure is available with tests of significance which uses Theil's U to compare two forecast methods when neither is a no-change method. Direct hypothesis tests are preferable to inferences drawn from ranking the U statistics of different forecast methods.

For hypothesis tests of two forecast methods, an appropriate design is a onesample or matched pairs case with self-pairing by firm. The members of each pair
2. Past studies also contain experimental biases: CM compare analysts' five-year forecasts with realizations over three and lour-year horizons; EG compare analysts" forecasts with the "best" of nine time series models selected from the same time pefiod in which comparisons with analysts' forcedsts are made. This procedure introduces ex post selection bias.
3. EG computed "Theil's U" using carmings terets rather than changes. This statistic has unknown sampling properties.
4. $\dot{P}_{i j}=\dot{A}_{i,}$ and $U_{i j}=0$ if prediction is perfect in every period. It no change is predicted in each period (i.e., $P_{i j}=0$),,$U_{i j}=1 ; 0<U_{i j}<1$ if prediction is less than periect but beller than the no-change prediction and $U_{y}>1$ if forecast method j is less accurate than the no-change prediction.
5. CM used cross-sectional rather than temporal data. This "Theil's U " statistic has unknown sampling properties because each error is drawn from a different error distribution, one for each firm.
6. EG's sample size in computing Theil's U varied between two and six.
are the errors from the two methods; the matched pair is reduced to a single observation by taking the difference in the errors. The usual parametric test of the mean difference is the paired t-test [17]. An alternative non-parametric west of the median difference is the Wilcoxon Signed Ranks test [8].

The parametric paired t-test is inappropriate for testing mean error differences of forecast methods applied to cross-section earnings data. If applied to error measures stated in level form (e.g., $\left|P_{i j}-A_{i t}\right|$, where $P_{i j l}=$ firm i 's lorecasted earnings per share for period t by method j and $A_{i t}=$ firm i 's actual earnings per share in period t), the test's assumption that paired differences are drawn from the same population is violated since each error dilference depends upon each firm's earnings per share level. If applied to error measures stated in ratio form (e.g., $\left.\left|P_{i j t}=A_{i 1}\right| /\left|\lambda_{i 1}\right|\right)$, the distributional assumptions of the paired t-test are also unlikely to be fulfilled since ratio measures applied to earnings per share data are dominated by outliers because actual earnings per share are often close to zero. ${ }^{7}$
Meaningful pairwise comparisons require test statistics which are insensitive to error definition and outliers. We adopt the Wilcoxon Signed Ranks test which meets these requirements and has power comparable to the parametric paired t-test [8, p. 213].

For tests of several forecast methods, the generalization of the paired t-test, two-way analysis of variance, is inapplicable. ${ }^{8}$ The Friedman test [8], which is based on two-way amatysis of wriante by ranks and is independent of error delinition, is used instead.

For an error measure, we choose relative error ignoring sign, $\left|P_{i j t}-A_{i l}\right| /\left|A_{i t}\right|$, a metric which is likely to be of interest to forecast purchasers. ${ }^{9}$ In any event, the Wilcoxon test statistic is insensitive to error definition (see fn. 16).

B. Forecast Horizon

Because economic theory provides no guidance concerning the association of analyst superiority with a particular forecast horizon, several horizons should be investigated. ${ }^{10}$ Our choice of horizons reflects the following considerations: (i) micro-level information obtained by analysts often concerns earnings of the following several quarters or fiscal year; (ii) current fiscal and monetary policies affect earnings of the subsequent one to five quarters; (iii) published forecasts are available mainly for short horizons. We thus investigate point estimates of quartenly earnings per share for forecast horizons of one to five quarters. We also examine annual earnings forecasts. The basic time series data are quarterly primary
7. EG's cross-section parametric r-test is inappropriate. Their use of an error measure stated in terms of levels squared (mean square error) appears to compound the inherent difficulty in applying the paired t-test to cross-section earnings data (see in. 16).
8. Preliminary tests indicated serious violation of the homogeneity of variances and additivity assumptions, basically because of error outicrs. Violation of the ANOVA assumptions also prevents application below of a lactorial design with sample year and forecast horizon as factors, forecast method as treatment and firm as replication.
9. For a discussion of the deficiencies of using $\left|P_{i j 1}\right|$ or $\left|P_{i j r}+A_{i 1}\right| / 2$ in the denominator see [25].
10. The forecast horizons studied in the past have been live years (CM) and one year (EG)
earnings per share before extraordinary items, adjusted for stock splits, stock dividends and other capitalization changes for the years 1951-1975.

Ex ante conditional predictions of all forecast methods are determined as follows for a sample of 50 firms for each of the four years 1972-1975. Starting with third quarter 1971 earnings (III/1971), conditional earnings per share predictions for the i th firm by the j th method are obtained for the individual quarters of 1972. The forecasts of 1972 quarterly earnings, conditional on III/1971, are denoted $P_{i j}(1 / 1972 \mid 111 / 1971), P_{i j}(11 / 1972 \mid 111 / 1971), P_{i j}(I I I / 1972 \mid$ III $/ 1971)$ and $P_{i j}$ (IV/1972|1II/1971). Moving ahead one quarter, predictions are again obtained for each of the four quarters of 1972 made conditional upon IV/1971 earnings data. Again moving ahead one quarter, predictions are obtained for the last three quarters of 1972 conditional upon knowledge of I/ 1972 earnings, etc. Table 1 shows the set of 1972 predictions so obtained. With these conditional predictions, relative lorecast errors ignoring sign are computed for each forecast method j over five distinct quarterly forecast horizons for use in the quarterly error comparisons. Annual earnings lorecasts for 1972 are the sum of the forecasts $P_{i j}(1 / 1972$ | IV $/ 1971$), $P_{i j}(11 / 1972 \mid$ IV $/ 1971), P_{i j}(11 I / 1972 \mid I V / 1971)$, and $P_{i j}$ (IV $/ 1972$ | IV/1971), that is, the one to four period ahead point forecasts made conditional upon knowledge of the prior year's fiscal earnings." After obtaining analogous forecasts for the years 1973, 1974 and 1975, quarterly and annual comparisons are repeated for these years.

TABLE I
Summary of Predictions by Forecast Horizon for 1972.b

1 Quarter Ahead	2 Quarters Nhead	3 Quarlers Ahead	4 Quarters Ahead	5 Quarters Aheads
$P_{i j}(1 / 1972 \mid 1 \mathrm{~V} / 1971)$	$P_{\text {dj }}(1 / 1972 \mid 111 / 1971)$			
$P_{i j}(11 / 1972 \mid 1 / 1972)$	$P_{9}(11 / 1972 \mid I V / 1971)$	$P_{i j}(11 / 1972 \mid 111 / 1971)$		
$P_{i j}(111 / 1972 \mid 11 / 1972)$	$P_{i j}(111 / 1972 \mid 1 / 1972)$	$P_{i j}(111 / 1972 \mid 1 \mathrm{~V} / 1971)$	$P_{4}(111 / 1972 \mid 111 / 1971)$	
$P_{i j}(1 \mathrm{~V} / 1972 \mid \mathrm{III} / 1972)$	$P_{i j}($ IV/1972\|11/1972)	$P_{y}(1 \mathrm{~V} / 1972 \mid 1 / 1972)$	$P_{i j}$ (IV/1972\|IV/1971)	$P_{i j}($ IV/1972[111/1971)

- Predictions missing from the table (c.g., $P_{i j}(1 / 1972 \mid 11 / 1971) . P_{y}(11 / 1912 \mid 11 / 1971)$ are absent because our source of analyst data does not contain these forecasts.
b_{i} and j refer to firm i and method j, respectively.

C. Time Series Models and Analysts' Forecasts

Within the class of univariate time series models, Box and Jenkins (BJ) [6] models are highly regarded for their ability to make the most efficient use of the time series data. The BJ modelling technique enables one to select the most appropriate time series model consistent with the process generating each firm's time series of quarterly earnings per share data. BJ models, by not making a priori assumptions about the processes generating the data, subsume autoregressive,
11. Beaver [1] concludes that a quarterly approach to predicting annual earnings is at least as good as an annual approach to predicting annual earnings. Also see [7]. [19] and [22] for other aspects of the usefulness of quarterly earnings per share data.
movin: fitted class C model
. ack
follows h third
for the
2. The
snoted
) and
tained
rnings

- three tble 1 :tions, ; over isons. $1972 \mid$ 1972| ; ional gous is are
moving average and mixed models as special cases. ${ }^{12}$ Forecasts of individually fitted BJ models should, therefore, perform better than forecasts of a particular class of time series models applied to all firms' time series data. Weadopt the BJ modelling technique in this paper. Two other time series models are also included, a "seasomal martingate (denoted M) and a "seasonal submartingale" (S). These models have been used as standards of comparison in the earnings forecast literature and are available for forecast producers and users at minimal cost.
As a source of analysts' Torecasts we choose the Value Line Investment Survey since it contains one to five quarter ahead earnings forecasts which can be accurately dated and measured. Value Line makes earnings forecasts for 1,600 firms in contrast with institutional research firms which provide fewer, more expensive forecasts. Our hypothesis test thus compares a relatively sophisticated time series model with an "average" source of analysts' forecasts.
BJ conditional forecasis are obtained by standard methods after identifying and estimating each firm's appropriate model [6]. ${ }^{13}$ Value Line's conditional forecasts are taken directly from individual issues of the Value Line Investment Survey. The Survey, published weekly, makes quarterly earnings predictions four times a year for each firm included.
To define conditional forecasts of the naive models for each firm i, let $A_{i 1}$ denote the t th actual quarterly earnings per share for firm i, where $t=1, \ldots, 96$ ($1 / 1951-$ IV/1974).
Seasonal submartingale (S) conditional one to four quarter ahead forecasts at time t are

$$
\begin{array}{ll}
\text { one quarter ahead } & A_{i t-3}+\left(A_{i t}-A_{i t-4}\right) \\
\text { two quarters ahead } & A_{i t-2}+\left(A_{i t}-A_{i t-4}\right) \\
\text { three quarters ahead } & A_{i t-1}+\left(A_{i t}-A_{i t-4}\right) \\
\text { four quarters ahead } & A_{i t}+\left(A_{i t}-A_{i t-4}\right) .
\end{array}
$$

Seasonal martingale (M) conditional one to four quarter ahead forecasts made in period t are $A_{i t-3}, A_{i t-2}, A_{i t-1}$, and $A_{i i}$. M 's forecasts for a given quarter do not change as actual earnings per share data become available. S modifies M 's forecasts with the change of the latest period's quarter over that of the previous year.

Actual quarterly earnings data are announced for most firms approximately five to six weeks into the subsequent quarter. Time series forecasts then become

[^10]possible and Value Line forecasts are published, on average, forty to fifty days later. ${ }^{14}$

The pattern of forecasts for all models is summarized in Table I. Note that models M and S are not used to generate five quarter ahead forecasts.

II. Empirical Results

A. Sample Selection

Fifty firms were randomly selected from Moody's Handbook of Common Stocks. Each firm has complete quarterly earnings data available from 1951, is included in the Value Line Investment Survey since 1971 and has a December fiscal year. The resulting sample (Appendix A) is representative of the New York Stock Exchange firms included in Moody's and Value Line. Utilities were excluded due to insufficient quarterly earnings data. Samplesizes are reduced in those rare instances when the Value Line conditional forecasts are unavailable.

B. Annual Comparisons

The error distributions of relative annual forecast errors are shown in Table 2 for each of the years 1972-75 using the four forecast methods, seasonal martingale (M), seasonal submartingale (S), Box-Jenkins (BJ) and Value Line (V). Table 2 also contains Friedman test statistics (Chi-square with 3 degrees of freedom) and Wilcoxon test statistics (Student's t with $N-1$ degrees of freedom where N is sample size). The Friedman test statistic examines the null hypothesis that all four error distributions are identically distributed; the Wilcoxon statistic tests the null hypothesis that the median error difference of two methods being compared exceeds zero.

Using the Friedman test, the null hypothesis is rejected at the 1% level in 1972, i 973 and 1975. In the 12 pairwise hypothesis tests of V 's errors against those of M, S, and BJ, the sign of the Wilcoxon test statistic favors Value Line in every instance. Statistical significance occurs 8 times; 6 times at the 1% level and twice at the 5% level. Thus, V generally produces smaller annual errors than the three time series models suggesting that Value Line annual earnings forecasts are superior to those of time series models.

As argued earlier, BJ forecasts should be superior to forecasts of ad hoc time series models. The annual comparisons show that the BJ models generally yield smaller forecast errors than the other time series models studied. In 8 comparisons with M and S, the Wilcoxon test favors BJ 7 times with statistical significance 3 times. These findings suggest that BJ's forecasts are superior to those of ad hoc naive time series models.

While the annual results provide strong support for the hypothesis of analyst superiority, they use only a fraction of the data. More powerful tests are achieved using the larger sample sizes of the quarterly data and many more comparative tests can be performed with these data. We turn next to quarterly comparisons.

[^11]

[^12]${ }^{5}$ Significant at the 5% level, one-tailed test.
${ }^{\text {c }} V=$ Value Line, $M=$ Seasonal Martingale, $S=$ Seasonal Submartingale, $\mathrm{BJ}=$ Box-Jenkins.
${ }^{d}$ Each Wilcoxon test statistic entered in the table results from comparing method at the top with method on the side. Thus, positive Wilcoxon statistics indicate superionty of model on top.

Summary of Wilcoxon Test Comparisons

A: Value Line vs. Time Series Models*													
		Forecast Horizon					Forecast Model			Year			
	Total	1Q	2Q	3Q	4Q	5Q	M	S	BJ	1972	1973	1974	1975
Number of Comparisons	52	12	12	12	12	4	16	16	20	13	13	13	13
Compansons Favorable to $\mathrm{V}^{\text {b }}$	45	12	11	9	10	3	15	15	15	13	12	9	11
Comparisons Siatistically Favorable to V^{c}	33	10	8	7	7	I	13	10	10	13	8	4	8
Compansons Statistically Unfavorable to V	1	0	0	0	0	1	0	0	.	0	0	1	0
Mean Wilcoxon Test Statistic (i)	3.25	4.86	3.75	2.83	2.37	. 76	5.27	3.40	1.51	4.84	3.67	1.18	3.29
$i / s(i){ }^{\text {d }}$	8.27	5.45	4.51	3.81	3.72	. 67	5.65	6.24	3.48	9.98	4.18	1.81	4.24
B: BI vs. Naive Time Series Models													
		Forecast Horizon				Forecast Model			Year				
	Total	1 Q	2Q	3Q	4Q	M	S	1972	1973	1974	1975		
Number of Comparisons	32	8	8	8	8	16	16	8	8	8	8		
Companisons Favorable to BJ ${ }^{\text {b }}$	27	7	7	7	6	15	12	8	4	8	7		
Comparisons Statistically Favorable to BJ^{C}	24	7	7	6	4	13	11	7	4	6	7		
Comparisons Statistically Unfavorable to BJ	2	0	1	1	0	0	2	0	2	0	0		
Mean Wilcoxon Test													
Statistic (i)	3.15	4.87	3.93	2.33	1.48	3.97	2.34	3.98	1.63	3.00	4.00		
$i / s(i){ }^{\text {d }}$	6.37	4.70	4.16	2.41	2.25	6.23	3.25	6.46	1.05	4.99	4.96		

- $V=$ Value Line, $M=$ Seasonal Martingale, $S=$ Seasonal Submartingale, $B J=$ Box-Jenkins.
${ }^{\circ}$ Comparisons are favorable if Wilcoxon statistic in Table 3 is positive.
${ }^{6}$ Comparisons are statistically favorable if Wilcoxon statistic in Table 3 is positive and significant at the 5% level or belter.
${ }^{4}$ Both \bar{i} and $s(\bar{i})$ are computed using the number of comparisons in each column of the Table.
hypothesis tests on i and present i and $i / s(i)$ without formal tests of significance. For the 52 comparisons involving V, the mean Wilcoxon test statistic is 3.25 and $\bar{i} / s(\bar{t})$ is 8.27 .
Table 4A also decomposes the 52 comparisons of V with the time series models by forecast horizon, model and year. ${ }^{15}$ The data show that Value Line's forecast superiority holds over all horizons studied with a tendency for its superiority to decline as horizon lengthens. V 's predominance model-by-model is, as hypothesized, quite evident with somewhat less superiority over BJ than over M and S. Turning our attention to the 20 comparisons between V and BJ, V is superior in 10 of il cases in which the test statistic is siguificant. In 5 of the remaining 9 comparisons, the sign of the Wilcoxon test statistic favors V. For completeness. Table 4A summarizes Wilcoxon tests by year. Again we expect V to be superior, on average, but have no hypothesis concerning particular years. Comparisons unfavorable to V tend to be confined to 1974, but even in this year, 4 of the 5 statistically significant comparisons favor Value Line.

In summary, the evidence strongly supports the hypothesis that Value Line consistently makes significantly better predictions than time series models. The statistically significant experiments overwhelmingly favor Value Line. In the remaining experiments the majority of the Wilcoxon tests also favor Value Line. providing additional support for the hypothesis of analyst superiority.

Table $4 B$ summarizes the 32 comparisons of $B J$ with the naive time series models. The mean Wilcoxon test statistic is 3.15 and $i / s(\bar{i})$ equals 6.37 . In 26 cases. there are significant differences with BJ statistically superior 24 times. BJ is superior to M and S in 3 of the remaining 6 comparisons. Hence, BJ is favored in 27 of 32 comparisons, providing strong support for the hypothesis that BJ predicts earnings better than ad hoc time series models.

Table 4B also summarizes comparisons involving BJ by horizon, model and year. BJ's superiority over the naive models is clearly evident over each forecast horizon with a tendency for its superiority to decline as horizon lengthens. In comparison to individual models, BJ outperforms both M and S with somewhat less dominance over S. Turning to comparisons by year, the superiority of BJ is consistent over time, with most of the comparisons unfavorable to BJ occurring in 1973. Even in this year, the mean Wilcoxon test statistic is 1.63 and 4 of the 6 significant comparisons favor BJ. ${ }^{16}$

In conclusion, the quarterly and the ammal comparisons provide convincing evidence both of Value Line's superiority over each of the three time series models and BJ's superiority over the naive models. The qumterly results also show that V 's superiority over the time series models and BJ's superiority over the naive models

[^13]are not confined to particular models, horizons, or years. The very general character of Value Line's superiority in predicting earnings, evidenced over all models, horizons, and years in 64 separate hypothesis tests involving sample sizes averaging 125 , lends extraordinary support to the hypothesis of analyst superiority.

D. Further Analysis

The superiority of Value Line over time series models follows from the rationai behavior of forecast producers and consumers and should be generalizable to other sources of analyst forecasts and other time periods. As a preliminary test of the sensitivity of our results to choice of analyst, we obtained predictions of 1975 annual earnings per share made by the Standard and Poor's Earnings Forecaster (ङP) for each firm included in the 1975 annual earnings sample. ${ }^{17}$ Wilcoxon tests of SP against M, S, and BJ favored SP, yielding t-statistics of $3.18,2.85$ and 1.45 respectively. These results are remarkably similar to those using Value Line. ${ }^{18}$ This evidence suggests that Value Line's forecast superiority over time series models is not unique.

To ascertain whether the sample period posed unusual difficulties for time series earnings forecasting, a BJ model was fitted to the Quarterly Earnings Index of the Dow Jones Industrial Average over the 1951-1975 time period. ${ }^{19}$ Average quarterly percentage errors ignoring sign produced by the BJ model for 1972-1975 were $7.31 \%, 6.61 \%, 9.99 \%$, and 15.47% respectively. Since the mean and standard deviation of average percentage forecast errors over the 1951-1975 period were 10.14% and 4.38%, it appears that the $1972-1975$ period was not a particularly difficult one in which to predict earnings. Indeed, from this standpoint, the 1972-1975 period is comparable to the "stable" years of the sixties, 1962-1967, studied by CM and EG. ${ }^{20}$

These results indicate that if appropriate hypothesis tests are applied to other analysts and time periods, the results are likely to parallel those using Value Line and the 1972-1975 time period.

E. A Brief Investigation of Value Line Superiority

To produce forecasts superior to time series models, Value Line must utilize information not contained in the time series of quarterly earnings. During the period between the most recent quarterly earnings announcement and the subsequent Value Line prediction, Value Line acquires incremental information which, if an important part of its total information set, may explain Value Line's
17. SP, published weekly, contains annual predictions made by Standard and Poor's and other investment firms. The SP prediction for each firm is that made by Standard and Poor's on the date closest to the Value Line prediction date.
18. V 's i-statistics versus $M . S$, and 01 were 3.29, 3.11, and 1.28 respectively (See Table 2). A direct Wilcoxon test between V and $S P$ favored $V(1=77)$.
19. The sample period, 1972-1975. may appear "unusual" since it includes peacetime wage and price controls, high inflation and inventory profits, harge changes in employment and new accounting requirements. If events arising during the sample period caused the earnings generating process to change, the forecast ability of the BS modelling technique may be hampered, unintentionally lavoring the analyst.
20. The average percentage errors ware $12.67 \%, 10.71 \%, 7.03 \%, 4.93 \%, 6.08 \%$ and 5.26%, respectively for 1962-1967.

The very general ped over all .. - sample sizes lalyst superiority.
rom the rational alizable to other nary test of the lictions of 1975 lings Forecaster 'ilcoxon tests of 2.85 and 1.45 lue Line. ${ }^{18}$ This eries models is
for time series ;s Index of the :rage quarterly 172-1975 were and standard ; period were a particularly indpoint, the ;, 1962-1967,
lied to other SValue Line
must utilize During the id the subition which, due Line's
r's and other
; on the date
:2). A direct
:ge and price
accounting
s process to
1lly favoring
respectively
superiority. Information arising during this interval is likely to be most important for predicting next quarter's earnings. Assuming that the generation of this incremental information is posilively related the passage of lime, earnings should be relatively easier to predict the further Value Line's prediction date is from the most recent earnings announcement date, and one quarter horizon forecast errors should be negatively related to the corresponding intervals.

To test this hypothesis, we obtained for the firms in the 1975 one quarter horizon sample their Value Line errors and the time intervals (7-70 days) since their most recent earnings announcements. A rank correlation was applied to these variables. The insignificanlly negative Spearman rho which was obtained suggests that information obtained by Value Line during this interval has a negligible effect on its ability to predict next quarters earnings. ${ }^{2+}$ This evidence is consistent with the hypothesis that Value Line's superiority can be attributed to its use of the information set available to it on the quarterly earnings announcement date, and not to the acquistion of informition arising after the quarterly earnings announcement date.

111. Summary and Implications

Basic economic theory and the equilibrium employment of analysts, a higher cost factor than time series models, imply that analysts must produce better forecasts than time series models. Past studies ([9], [11]) of comparative earnings forecast accuracy have concluded otherwise but use inappropriate parametric tests and contain experimental biases. Using nonparametric statistics which provide proper yet powerful tests, we find that (1) BJ models consistently produce significantly better earnings lorecasts than martingale and submartingale models; (2) Value Line Investment Survey consistently makes significantly better earnings forecasts than the BJ and naive time series models. The findings are in accord with rationality in the market for forecasts and the long-run equilibrium employment of analysts.

If market earnings expectations are rational [23], it follows that the best available earnings forecasts should be used to measure market earnings expectations. Given rational market expectations, our evidence of analyst superiority over time series models means that analysts' forecasts should be used in studies of firm valuation, cost of capital and the relationship between unanticipated earnings and stock price changes until forecasts superior to those of analysts are found. ${ }^{22}$ Past findings ([2], [21]) that share price levels are significantly better explained by analysts' earnings
21. The lack of a significant negative correlation between prediction error and time since last announcement date may occur if the interval is intentionally lengthened by Value Line in order to acquire more information about the firms whose earnings are more difficull to predict. To test this possibility, we measured each firm's prediction "difficulty" by its average one quarter horizon percenlage error ignoring sign yielded by its BJ model. No significant correlation was found between this variable and the time interval between the most recent quarterly earnings announcement and the Value Line prediction date.
22. In examining the relationship between unanticipated earnings and stock price changes, for example, the sign of the lorecast error from a time series is often used ([7], [12], [13]) as a device for classifying unanticipated earnings into "favorable" or "unlavorable" categories. With this methodology, BJ and V classify earnings dilferently 213 times out of the 797 one quarter ahead forecasts in our sample.
forecasts than by those of time series models are consistent with our evidence and with market rationality.

The hypothesis of analyst superiority versus univariate time series models is derived from basic economic theory and is not limited to the case of earnings. It is therefore applicable to all types of forecasts subject to the market test. There is no presumption that other, non-market forecasts such as those made by corporate executives or government agencies should be better (or worse) than those generated by univariate time series models.

Appendix A

Sample Firms

Abboll Laboratories
Allegheny Ludlum Industries, Inc.
American Airlines, Inc.
Anaconda Company
Boeing Company
Borg-Warner Corporation
Braniff International Corporation
Caterpillar Tractor Company
Champion International Corporation
Chrysler Corporation
Clark Equipment Company
Colgate-Palmolive Company
Continental Can Company, Inc.
Curtiss-Wright Corporation
Cutler-Hammer, Inc.
Eastern Airlines, Incorporated
Eastman Kodak Company
Flintkote Company
Freeport Minerals Company
Fruehauf Corporation
GATX Corporation
General Electric Company
Goodrich (B. F.) Company
Gulf Oil Corporation
Homestake Mining Company
International Business Machines Corporation
International Paper Co.
Kennecolt Copper Corporation
Leheigh Portland Cement Co.
Ligget Group Inc.
Lowenstein (M.) \& Sons, Inc.
Nabisco, Inc.
National Distillers \& Chemical Corporation
National Steel Corporation
'nce and
c , is gs. It is re is no
rporate crated

Pan American World Airways, Inc.
Pepsico, Inc.
Phelps Dodge Corporation
Phillips Petroleum Co.
Pullman, Incorporated
Raybestos-Manhattan, Inc.
Republic Steel Corporation
Standard Brands, Inc.
Standard Oil Company of Indiana
Sterling Drug, Incorporated
St. Regis Paper Company
Timken Company
United States Gypsum Company
United States Steel Corporation
United Technologies Corp.
Wrigley (W. M.) Jr. Company

REFERENCES

1. W. H. Beaver. "The Information Content of the Magnitude of Unexpected Earnings," Unpublished Manuscripl, 1974.
2. F. W. Bell. "The Relation of the Structure of Common Stock Prices to Historical, Expectational and Industrial Variables," Journal of Finance (March 1974), pp. 187-197.
3. H. Benishay, "Variability in Earnings-Price Ratios of Corporate Equities," American Economic Review (March 1961), pp. 81-94.
4. G. Benston. "Published Corporate Accounting Data and Stock Prices," Empirical Research in Accounting: Selected Studics, 1967. Supplement to Vol. 5, Journal of Accounting Research, pp. $1=54$.
5. R. S. Bower and D. H. Bower. "Risk and the Valuation of Common Stock," Journal of Political Economy (May/June 1969), pp. 349-362.
6. G. E. P. Box and G. M. Jenkins. Time Series Analysis: Forecasting and Control (San Francisco: Holden-Day, 1970).
7. P. Brown and J. Kennelly. "The Informational Content of Quarterly Earnings: An Extension and Some Further Evidence," Journal of Business (July 1972), pp. 403-415.
8. W. J. Conover. Practical Nonparamerric Statistics (New York: John Wiley \& Sons, Inc., 1971).
9. J. G. Cragg and B. G. Malkiel. "The Consensus and Accuracy of Some Predictions of the Growth of Corporate Earnings," Journal of Finance (March 1968). pp. 67-84.
10. W. T. Dent and J. A. Swanson. "On Forecast Error in Autoregressive Integrated Moving Average Models," Working Paper No. 75-3. College of Business Administration, The University of lowa, February 1975.
11. E. 3. Elton and M. J. Gruber. "Earnings Estimates and the Accuracy of Expectational Data," Management Science (April 1972), pp. 409-424.
12. G. Foster. "Stock Market Reaction to Estimates of Earnings per Share by Company Officials," Journal of Accowning Rexcarch (Spring 1973). pp. 25-37.
13. --. "Quarterly Accounting Dala: Time Series Propertics and Predictive Ability Results," Accounting Revien, (January 1977), pp. 1-21.
14. 15. Friend and M. Puckelt. "Dividends and Stock Prices," American Economic Review (September 1964), pp. 656-682.
1. J. R. Froeschle. "The Analysis of Seasonal Time Series," Doctoral Dissertation. The University of lowa, 1975.
2. N. Gonedes. "Properties of Accounting Numbers: Models and Tests," Journal of Accounting Rescarch (Autumn 1973). pp. 212-237.
3. W. L. Hays and R. L. Winkler. Shatistics: Probability, Inference and Decision (New York: Holt, Rinchart and Winston, Inc., 1971).
4. R. C. Higgins. "Orowth, Dividend Policy and Capital Costs in the Electric Utility Industry," Journal of Finance (September 1974), pp. 1189-1201.
5. J. E. Kiger. "An Empirical Investigation of NYSE Volume and Price Reactions to the Announcement of Quarterly Earnings," Journal of Accounting Research (Spring 1972), pp. 113-128.
6. R. H. Litzenberger and C. U. Rao. "Estimates of the Marginal Time Prelerence and Average Risk Aversion of Inventors in Electric Utility Shares 1960-66," The Bell Journal of Economics and Management Science (Spring 1971), pp. 265-277.
7 -7J. B. G. Malkiel and J, G. Cragg. "Expectations and the Structure of Share Prices," American Economic Review (September 1970), pp. 601-617.
7. R. G. May, "The Influence of Quarterly Earnings Announcements in Investor Decisions as Reflected in Common Stock Price Changes," Empirical Rescarch in Accounting: Selected Studies, 1971. Supplement to Vol. 9, Journal of Accounting Research, pp. 119-163.
8. J. F. Muth. "Rational Expectations and the Theory of Price Movements," Econometrica (July 1961), pp. 315-335.
9. C. R. Nelson. "Rational Expectations and the Predictive Efriciency of Economic Models," The Journal of Business (July 1975), pp. 331-343.
10. H. Theil, Applied Economic Forecasting (Amsterdam: North-Holland Publishing Company, 1966).

James Vander Weide and Willard Carleton

INTRODUCTION

Although it is widely recognized that growth expectations play an important role in share price determination, there is still considerable disagreement about how investors' growth expectations are measured. Earlier studies by Cragg and Malkiel ([3] and (4]) suggest that the consensus financial analysts' growth expectations are more highly correlated with stock prices than are growth expectations based on simple historical growth extrapolations. llowever the Cragg and Malkiel work was based on a limited database of analysts' growth forecasts covering the period 1961 to 1968. Furthermore, compared to the more recent period of high inflation and interest rate volatility, the 2961-1968 period studied by Cragg and Malkiel was characterized by an unusual degree of stability.

Our study is an update for year-end 1981, 1982, and 1983 of the Cragg and Malkiel work. It relies on an extensive database of analysts' 5-year earnings growth rate forecasts available through the IBES ("Institutional Brokers Estimate System") service of Lynch, Jones \& Ryan, a New York securities Eirn. ${ }^{1}$ The results of our study confirm Cragg and Malkiel's basic findings

1 The forecasts, collected on a monthly basis, are by more than 2,000 analysts from over 100 New York and regional securities firms. Over 3,000 companies are included. Most large institutional investors subscribe to the lUES service. Although systematic coverage of earuings growth rate forecasts has been included in Lynch, Jones and Ryan's surveys only since January, 1982, the firm has been collecting analysts forecasts of companies' earnings per share (one and two years ahead) for many years. These data themselves have been employed in several studies, e.g., Elton and Gruber (5) and Pererson and Peterson[10].
with respect to the role of consensus growth rate forecasts. They also reveal more ambiguities with respect to the measurement of risk, for which we provide both statistical and economic interpretation.

The significance of our study derives from the fact that the measurement of growth expectations plays a critical role in one of the commonly used techniques of cost of equity capital estimation. ${ }^{2}$ All valuation, or cost of equity capital, models require for practical implementation market expectational variables which cannot be directly observed (company earnings, growth rate, return or excess return on the market portfolio, etc.). The Gordon model and its variants, in particular, have been criticized among other reasons for requiring such input. The evidence from this study suggests strongly that consensus growth forecasts are at the very least good surrogates for the unobserved market growth expectations.

TIIE STOCK RRICE MODEL

To study the effect of growth expectations on share prices, we need an explicit model of how share prices are determined. An appealing stock price model has recently been described in an interesting book by Cragg and Malkiel.

2 Indeed, our initial research was conducted in response to the Federal Comunications Commission's Notice of Proposed Rulemaking [6) which sought comments on methods for estimating the cost of capital for companies providing interexchange telecommunications services.
entitled Expectations and the Structure of Share Prices (4). Cragg and Malkiel begin with the assumptions that (l) utility maximizing investors choose to hold diversified portfolios and (2) there are certain common elements of risk (i.e., common risk factors) that cannot be diversified away. Under these assumptions, they show that the equilibrium price on any security must be given (at least approximately) by the equation

$$
\begin{aligned}
& p_{j}=\mu_{j} a_{0}+\sum_{k=1}^{K} \gamma_{j k} a_{k} \\
& \text { where } P_{j}=\text { security } j \text { 's stock price, } \\
& d d_{j}=\text { expected return on security } j \text {, } \\
& \gamma_{j k}=\text { coefficient representing security } j \text { 's sensitivity } \\
& \text { to the kth common factor, } \\
& \text { "k }=\text { coefficient representing the expected utility (in } \\
& \text { equilibrium) Erom a marginal increase in common } \\
& \text { factork. }
\end{aligned}
$$

Now if investors expect that future security prices will also be determined by (1) and the a_{k} 's still remain unchanged, then the expected return on security j at $t i m e t$ is given by

$$
\begin{equation*}
\mu_{j t}=E\left(d_{j, t+1}\right)+E\left(\mu_{j, t+1} a_{o}+\sum_{k=1}^{k} \dot{\gamma}_{j k, t+1} a_{k}\right) \tag{2}
\end{equation*}
$$

where $d_{j, t+1}$ is the dividend received in the next period and E is the expectation operator. Repeated substitution of (2) into (1), along with the assumption that dividends are expected to grow indefinitely at the constant

$$
-4-
$$

rate g produces an appropriate stock price equation for period zero that is remarkably similar to the textbook version of the Discounted Cash Flow Model:

$$
\begin{equation*}
P_{j o}=d_{j o}\left(1+g_{j}\right) /\left(\vec{\rho}-g_{j}\right)+\sum_{k=1}^{K} a_{k} \gamma_{j k}(1+\bar{\rho}) / \bar{\rho} \tag{3}
\end{equation*}
$$

where \bar{F} is the risk-free rate.

Dividing both sides of equation (3) by the firm's current carnings, we see that the Cragg-Malkiel model implies the existence of a functional relationship between the security's price/earnings ratio and $k+3$ other variables: che firm's dividend payout ratio, investorg' growth expectation, the risk-free rate of interest, and K common risk factors. This is the functional relationship that we shall explore in the remainder of this study.

DESCRIPTION OF DATA

Our data sets include both historically-based measures of future growth and the consensus analysts' forecasts of 5-year earnings growth supplied by the Institutional Brokers Estimate System.of Lynch, Jones \& Ryan. They also include the firm's dividend-payout ratio and various measures of the firm's risk. The latter data items are included in the regression, along with earnings growth, to account for other variables that may affect the firm's stock price.

A more detailed description of our data set follows:
years, three years ... and ten years, 3) the past growth rate in book value per share (computed as the ratio of common equity to the outstanding common equity shares) for the latest year, two years, three years ... and ten years, 4) the past growth rate in cash flow per share (computed as the ratio of pre-tax income, depreciation and deferred taxes to the outstanding common equity shares) for the latest year, two years, three years ... and ten years, and 5) plowback growth (computed as the firm's retention ratio for the current year times the firm's latest annual return on common equity).

We also used the five-year forecast of earnings per share growth compiled by IBES and reported in mid-January of each year. This represents the consensus (i.e., mean) forecast produced by analysts from the research departments of leading Wall Street and regional brokerage firms.over the preceding three months. The contributing brokers have been selected by IBES "because of the superior quality of their research, professional reputation, and client demand." (IBES Monthly Summary book. [7])
5. Risk Variables Although there are a great many risk factors that could potentially affect the firm's stock price, most of these are lighly correlated with one another. We have decided to restrict our attention to four risk measures that have intuitive appeal and are followed by many financial analysts. These include: a) B, the firm's "bera" as published by Value Line; b) Cov, the firm's pre-tax interest coverage ratio
pricelearnings ratio (P / E) is calculated as the closing stock price for the year (i.e., year-end 1981,1982 and 1983) divided by the consensus analyst earnings expectation for the forthcoming fiscal year, (i.e., 1982, 1983 and 1984).
3. Dividends Dividends per share represent the common dividends declared per share during the calendar year (it includes an adjustment for all stock splits and stock dividends). The firm's dividend payout ratio is then defined as common dividends per share divided by the consensus analyst estimate of earnings per share for the forthcoming calendar year (D / E). Although this definition has the deficiency that it is obviously biased downwards (because it divides this year's dividend by next year's earnings), it has the advantage that it implicitly uses a "normalized" Eigure for earnings. We believe that this advantage outweighs the deficiency, especially when one considers the flaws of the apparent alternatives. Furthermore, we have verified that the results are insensitive to reasonable alternative definitions (see footnote 3).
4. Growth In comparing historically-based and consensus analysts' forecasts, we calculated 41 different historical growth measures. These included the following: a) the past growth rate in EPS as determined by a log-linear least squares regression for the latest year, ${ }^{4}$ two years, three years ... and ten years, b) the past growth rate in DPS for the latest year, two

4 For the latest year, we actually employed a point-to-point growth calculation because there were only two available observations.

1. Earnings fer Share Since our goal is to determine which earnings variable is embodied in the firm's market price, we need to define this variable with great care. Financial analysts who study a firm's financial results in detail generally prefer to "normalize" the firm's reported earnings for the effect of extraordinary items such as writeroffs of discontinued operations or mergers and acquisitions. They also attempt, to the extent possible, to state earnings for different firms using a common set of accounting conventions.

In this study, we defined "earnings" as the consensus analyst estimate (as reported by $I B E S$) of the firm's earnings for the forthcoming year. ${ }^{3}$ This definition approximates the normalized earnings that investors most likely have in mind when making stock purchase and sell decisions. It implicitly incorporates the analyst's adjustments for differences in accounting treatment among firms and the effects of the business cycle on each firm's results of operations. Although we at first thought that this earnings estimate might be highly correlated with the analyst s-year earnings growth forecasts, this was not the case. Thus, a potential spurious correlation problem was avoided.
2. Price/Earnings Ratio Corresponding to our definition of "earnings", the

3 We also tried several other definitions of "earnings" including the firm's most recent primary earnings per share prior to any extraordinary items or discontinued operations. Since our results were insensitive to reasonable alternative definitions of "earnings", we only report the results for one definition in this paper.
(obtained from Standard \& Poor's Compustat); c) Rsq, the stability of the firm's five-year .historical EPS (measured by the R^{2} from a log-linear least squares regression); and d) $S a$, the standard deviation of the consensus analysts five-year EPS growth forecast (mean forecast) as computed by IBES.

After careful analysis of che data used in our study, we felt that more meaningful results could be obtained by imposing several restrictions on the companies included in our study. These restrictions are listed below:
A. Because of the need to calculate ten-year historical growth rates and because we studied three different time periods, 1981, 1982 and 1983, our study requires data for the 13-year period 1971-1983. Only companies with at least a l3-year operating history were included in our study..
B. Since our historical growth rate calculations were based on log-linear regressions, and the logarithm of a negative number is not defined, we excluded all companies which experienced negative EPS during any of the years 1971-1983.
C. For similar reasons, we also eliminated companies which did not pay a dividend during any one of the years 1971-1983.
D. To insure comparability of time periods covered by each consensus earnings figure in the P / E ratios, we eliminated all companies which did not have a December 31 fiscal year-end.
E. To eliminate distortions caused by highly unusual events that impact current earnings; but not expected future earnings, and thus the firm's price/earnings ratio, we eliminated any firm having a price/earnirgs ratio greater than 50.
F. Since the evaluation of analysts' forecasts is a major part of this study, we eliminated all firms that were not followed by IBES.

Our final sample consisted of approximately 135 industrial and 65 utility firms. ${ }^{5}$

Linear Approximation

As noted earlier, our study is designed to test which estimate of expected dividend growth is embodied in current market prices. For this purpose, we shall employ a linear approximation to the stock price model (3) that takes the form:

$$
\begin{equation*}
(P / E)_{j}=a_{0}+a_{1}(D / E)_{j}+a_{2} g_{j}+a_{3} B_{j}+a_{4} \operatorname{Cov}_{j}+a_{5} R s q_{j}+a_{6} S_{j}+e_{j} \tag{4}
\end{equation*}
$$

where ($P / E)_{j}$ is firm $j^{\prime} s$ price/earnings ratio, ($\left.D / E\right)_{j}$ is firm $j^{\prime} s$ dividend payout ratic, g_{j} is an estimate of firm j 's future growth, $B j$ is firm j 's Value Line beta, Cov_{j} is firm $j^{\prime} s$ pre-tax interest coverage ratio, Rsqj is a measure of the stability of firm j's five-year historical EPS, $S a j$ is the

5
We use the word "approximately" because the set of available firms varied each year. However, in each case it was only from 0-3 firms on either side of the figures cited here.
standard deviation of the consensus analysts' five-year EPS growth forecast for firm j, and $e j$ is an error term that is assumed to obey the standard ordinary least squares (OLS) assumptions:

$$
\begin{align*}
& E\left(e_{i}\right)=0 \quad \text { for all } i=1,2, \ldots, \ldots \\
& E\left(e_{i} e_{j}\right)=\begin{array}{ll}
0 & \text { for } i \neq j ; i, j=1,2, \ldots, \ldots n \\
\sigma_{e}^{2} & \text { for } i=j ; i, j=1,2, \ldots, \ldots n
\end{array} \tag{5}\\
& E\left(e_{i} X_{i k}\right)=0 \quad \text { Eor all } \begin{aligned}
& i=1,2, \ldots \\
& k=1,2, \ldots n \\
&
\end{aligned}
\end{align*}
$$

where n is the number of firms and m is the number of independent variables.

Although the use of the linear approximation to the price/earnings equation (3) is convenient for estimation purposes, there is a legitimate concern that it may seriously interfere with our ability to draw correct inferences from our study results. If the linear approximation to the price/earnings equation is not very accurate, then there is a high likelihood that the OLS assumptions (5) do not hold, and thus there exists the possibility of reaching incorrect conclusions.

RESULTS

To keep the number of calculations in our study at a reasonable level, we performed the study in two stages. In stage 1, all 41 historically-oriented approaches for estimating future growth were correlated with each firm's p / E ratio. In stage 2 , the historical growth rate with the highest correlation to
the P / E ratio was compared to the consensus analyst growth rate in the multiple-regression model described by equation (4) above. Because we felt the results of our study might vary over time and across groups of firms, we performed our regressions on two groups of firms in each of three recent time periods. The two candidate groups of firms were (1) the S \& $P 400$ Industrials and (2) the 178 utilities tracked by IBES, to the extent that these companies met our criteria for inclusion.

First-Stage Correlation Study

Table 1 (parts A and B) contains the results of our first-stage correlation study for each group of companies in each of the years 1981, 1982 and 1983. The values in this table measure the correlation between the historicallyoriented growth rates for various time periods (one-year, two-year, threeyear, etc.) and the firm's end-of-year P / E ratio. The four variables for which historical growth rates were calculated are shown in the left-hand column: EPS indicates historical earnings per share growth, DPS indicates historical dividend per share growth, BVPS indicates historical book value per share growth and CFPS indicates historical cash flow per share growth. The term "Plowback" refers to the product of the firm's retention ratio in the current year and its return on book equity for that year. In all, we calculated 4 l historically-oriented growth rates for each group of firms in each study period.

The goal of the first-stage correlation analysis is to determine which historically-oriented growth rate is most highly correlated with each group's year-end P / E ratio. Ten-year BVPS has the highest correlation with the
year-end P / E ratio in each year of the study period for the industrial group of firms (see Table 1Λ). For the utility group, eight-year growth in CFPS has the highest correlation with P / E in 1981 and 1982 , and ten-year growth in CFPS has the highest correlation with year-end P / E in 1983 (see Table 1B). In all cases, the "plowback" estimate of future growth performed very poorly, indicating that it is not a factor in investors' expectations of future growth.

Table 1 (Part A)

> Correlation Coefficients of All Historically-Based Growth Estimates by Group and by Year with P / E

Industrial Group

Plowback -. 21

Second-Stage Regression Study
In the second stage of our regression study, we ran regression equation (4) using two different measures of future growth, g: 1) the best historicallyoriented growth rate (g_{h}) from the first-stage correlation study, and 2) the consensus analysts forecast (g_{a}) of five-year EPS growth. The regression results are shown in Table 2 .

These results support at least four general conclusions regarding the pricing of equity securities. First, there is overwhelming evidence that the consensus analysts' forecast of future growth is superior to historicallyoriented growth measures in predicting the firm's stock price. In every case, the R^{2} in the regression containing the consensus analysts forecast is higher than the R^{2} in the regression containing the historical growth measure. Furthermore, the regression coefficients in the equation containing the consensus analysts' forecast are considerably more significant than they are in the alternative regression. These results are consistent with those found by Cragg and Malkiel for data covering the period 1961-1968. They are also consistent with the hypothesis that investors use analysts forecasts, rather than historically-oriented growth calculations, in making stock buy and sell decisions.

Second, there is some evidence that investors tend to view risk in fairly traditional terms: the interest coverage variable is statistically significant in all but one of our samples and the stability of the operating income

Table 1 (Part B)
Correlation Coefficients of All llistorically-Based Growth Estimates by Group and by Year
with P / E
Utility Group

	Cirrent Year	Uistorical Growth Rate Period in Years									
		1	2	3	4	5	6	1	8	9	10
1981											
EPS		-. 02	.07	. 03	. 01	. 03	. 12	.08	. 09	. 09	. 09
DPS		. 05	. 18	. 14	. 15	. 14	. 15	. 19	. 23	. 23	. 23
BVPS		. 01	. 11	. 13	. 13	. 16	. 18	. 15	. 15	. 15	. 15
CFPS		$-.05$. 04	.13	. 22	.28	. 31	.30	. 31	-. 57	-. 54
P lowback	.19										
1982											
EPS		-. 10	-. 13	-. 06	-. 02	-. 02	-. 01	-. 03	-. 03	. 00	. 00
DPS		-. 19	-. 10	. 03	. 05	. 07	. 08	. 09	. 11	. 13	. 13
BVPS		. 07	. 08	.11	.11	. 09	. 10	. 11	. 11	. 09	. 09
CFPS		-. 02	-. 08	. 00	. 10	.16	.19	. 23	. 25	. 24	. 07
Plowback	. 04										
1983											
EPS		-. 06	-. 25	-. 25	-. 24	-. 16	-. 11	$-.05$. 00	. 02	. 02
DPS		.03	-. 10	-. 0.3	. 08	. 15	. 21	. 21	. 21	. 22	. 24
BVES		. 03	. 10	. 04	. 09	. 15	. 16	. 19	. 21	. 22	.21
CFPS		-. 08	. 01	. 02	. 08	. 20	.29	. 35	. 38	. 40	. 42
Plowback	-. 08										

variable is statistically significant in six of the twelve samples we studied, while the beta is never statistically significant and the standard deviation of the analysts' 5-year growth forecasts is statistically significant in only two of our twelve samples. llowever, this evidence is far from conclusive since, as we demonstrate later, there is a significant degree of cross-correlation among our four risk variables. This cross-correlation makes any general conclusions about risk extremely hazardous.

Einally, the study results suggest that our pricelearnings model "works" significantly better for utilities than it does for industrials, as evidenced by the significantly higher R^{2} values for the utility regressions. We shall explore the possibility that this result is explained by the fact that the linear approximation to our theoretical price/earnings equation is more exact for the utilities than for the industrials in the next section.

Table 2 (Part A)

Regression Results - Industrials Model I - with P/E as Dependent Variable

Part A: Ilistorical
$P / E=a_{0}+a_{1} D / E+a_{2} g_{1}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a$

Year	a_{0}	${ }^{3} 1$	a_{2}	${ }^{\text {a }} 3$	${ }^{3}$	a_{5}	${ }^{\frac{1}{6}}$	R^{2}	F Ratio
1981	-9.15*	16.29*	20.54*	4.27	0.06*	4.27*	36.94*	0.45	18.82
	(2.61)	(8.01)	(3.30)	(1.63)	(2.69)	(3.19)	(4.93)		
1982	-6.52	18.19*	19.17*	-1.31	0.11*	7.63*	142.46	0.51	24.33
	(1.48)	(10.22)	(2.05)	(0.33)	(3.17)	(4.42)	(4.45)		
1983	-5.23	19.84*	18.08*	4.74	0.04*	2.27	30.19	0.41	16.12
	(1.45)	(9.18)	(2.22)	(1.55)	(1.65)	(1.64)	(1.44)		

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a$

Year	${ }^{\hat{a}_{0}}$	${ }_{1}$	$\stackrel{3}{2}^{1}$	${ }^{\mathrm{a}_{3}}$	a_{4}	${ }^{3}$	${ }^{3} 6$	R^{2}	E Ratio
1981	-15.30*	17.73*	101.45*	-0.19	0.06*	3.82*	-7. 3	0.67	43.00
	(5.23)	(11.15)	(8.85)	(0.08)	(3.36)	(3.62)	(0.21)		
1982	-16.77*	18.98*	146.20*	-3.16	0.12*	3.09*	89.03	0.66	43.93
	(4.19)	(12.79)	(7.82)	(0.98)	(4.14)	(1.99)	(2.02)		
1983	-14.92*	19.83*	112.83*	4.85	0.044	-0.92	13.14	0.59	32.59
	(4.49)	(11.56)	(7.76)	(1.86)	(1.64)	(0.73)	(0.72)		

$\frac{\text { Notes: }}{\star}=$
Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Table 2 (Part B)

Regression Results - Utilities
Model I - with P/E as Dependent Variable
Part A: Mistorical

$$
P / E=a_{0}+a_{1} D / E+a_{2} g_{h}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a
$$

Year	${ }^{a_{0}}$	${ }_{\text {a }}^{1}$	a_{2}	${ }_{\text {a }}^{3}$	a_{4}	a_{5}	a_{6}	R^{2}	F Ratio
1981	-6.42*	10.31*	7.67*	3.24	0.54*	1.42*	57.43	0.83	46.49
	(5.50)	(14.79)	(2.20)	(2.86)	(2.50)	(2.85)	(4.07)		
1982	-2.90*	9.32*	8.49*	2.85	0.45*	-0.42	3.63	0.86	65.53
	(2.75)	(18.52)	(4.18)	(2.83)	(2.60)	(0.05)	(0.26)		
1983	-5.96\%	10.20*	19.78*	4.85	0.14*	0.33	32.49	0.82	45.26
	(3.70)	(12.20)	(4.83)	(2.95)	(1.89)	(0.50)	(1.29)		

Part B: Analysts

$$
P / E=a_{0}+a_{1} D / E+a_{2} g_{a}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{6} S a
$$

Year	a_{0}	${ }^{\text {a }}{ }_{1}$	a_{2}	$\hat{\mathrm{a}}_{3}$	a_{4}	a_{5}	${ }^{\text {a }}$,	R^{2}	F Ratio
1981	$\begin{aligned} & -4.97 * \\ & (6.23) \end{aligned}$	$\begin{gathered} 10.62 * \\ (21.57) \end{gathered}$	$\begin{aligned} & 54.85 k \\ & (8.56) \end{aligned}$	$\begin{aligned} & -0.61 \\ & (0.68) \end{aligned}$	$\begin{gathered} 0.33 * \\ (2.28) \end{gathered}$	$\begin{gathered} 0.63 * \\ (1.74) \end{gathered}$	$\begin{gathered} 4.34 \\ (0.37) \end{gathered}$	0.91	103.10
1982	$\begin{aligned} & -2.16: \% \\ & (2.59) \end{aligned}$	$\begin{array}{r} 9.47 * \\ (22.46) \end{array}$	$\begin{aligned} & 50.71 * \\ & (9.31) \end{aligned}$	$\begin{gathered} -1.07 \\ (1.14) \end{gathered}$	$\begin{gathered} 0.36 * \\ (2.53) \end{gathered}$	$\begin{aligned} & -0.31 \\ & (1.09) \end{aligned}$	$\begin{array}{r} 119.05 * \\ (1.60) \end{array}$	0.90	97.62
1983	$\begin{gathered} -8.47 * \\ (7.07) \end{gathered}$	$\begin{gathered} 11.96 * \\ (16.48) \end{gathered}$	$\begin{aligned} & 79.05 \star \\ & (7.84) \end{aligned}$	$\begin{gathered} 2.16 \\ (1.55) \end{gathered}$	$\begin{gathered} 0.56 * \\ (3.08) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.38) \end{gathered}$	$\begin{aligned} & -34.43 \\ & (1.44) \end{aligned}$	0.87	69.81

$\frac{\text { Notes: }}{k}=$
Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Abstract

Although the results of our study provide convincing evidence in support of our conclusions, we feel it is important to investigate whether, and to what extent, our conclusions may have been affected by the nature of our statistical assumptions. In this section, we investigate (1) the amount of independent variation in the explanatory variables, (2) the accuracy of the linear approximation to the theoretical price-earnings relationship and (3) the effect of a possible misspecification of the risk variables.

Independent Variation in the Explanatory Variables

In an effort to understand why we were unable to find a strong and consistent relationship between firms' price-earnings ratios and their risk measures, we performed a principal-axis factor analysis (with a varimax rotation) of our six explanatory variables. The results are sumarized in Tables 3 and 4 .

Table 3 shows the cumulative percentage of the total variation in the six explanatory variables in each sample that is accounted for by the four rrincipal components with the highest eigenvalues. In all cases, roughly 75% of the total variation in the six explanatory variables is accounted for by the first three principal components. This means that there are really at. most three indcpendent dimensions of variation in our explanatory variables and there may very well be less. In fact, the subsequent factor analysis demonstrates that there are really only two statistically significant
independent dimensions of variation in all cases but one, where there are three (See Table 4). Thus, we should not be surprised to get less than a full set of significant coefficients in our regressions.

Table 4 displays the factor loadings of the six explanatory variables on the (two or three) statistically significant principal factors obtained from the Eactor analysis. We see that the six original variables tend to fall into two 3-member subgroups, whose members load on the same factor. In the utility sample, for instance, the three variables g_{a}, B and s_{a} always load heavily on one of the two factors, while the three variables $D / E, C o v$, and $R s q$ load heavily on the other. This means that the variables within each group are so lighly correlated that it is virtually impossible to distinguish between them statistically.

Table 3
Cumulative Percentage of Total Variance Accounted for by Four Principal Components with lighest Eigenvalues in Descending Order

Principal Component	Sturly Group*					
	1-81	2-81	$\underline{1-82}$	2-82	1-83	2-83
1	31\%	40\%	31\%	34\%	30\%	35\%
2	54\%	64\%	59\%	62\%	53\%	62\%
3	74\%	78\%	73\%	75\%	69\%	74\%
4	86\%	88\%	85\%	85\%	82\%	86\%

* The study groups are labeled to reflect both the year (1981, 1982, 1983) and whether the sample consisted of industrial firms (1) or utility firms (2).

Table 4 (Part Λ)
Rotated Factor Loadings of Industrial and Utility
Firm Samples in 1981

Original Variable	Industrial		Firms	Utility Eactor 1	Firms Factor 2
	Factor 1	Factor 2	Factor 3		
D/E	-0.056	0.822	-0.188	-0.677	-0.077
g_{a}	0.859	-0.290	0.143	0.372	0.861
B	0.132	-0.756	-0.183	0.370	0.565
Cov	0.036	0.371	0.736	0.668	0.357
Rsq	-0.103	-0.318	0.774	$0.8 i 2$	-0.001
Sa	0.898	0.062	-0.195	-0.473	0.793

Table 4 (Part B)

Rotated Factor Loadings of Industrial and Utility Firm Samples in 1982

Table 4 (Part C)
Rotated factor Loadings of Industrial and Utility Firm Samples in 1983

Original
Variable

D/E
g_{a}
B

Cov
Rsq
Sa

Industrial Firms
Factor 1 Factor 2
-0.638
0.073
0.740
0.345
0.716
-0.483
-0.237
0.756

Utility
Factor 1
0.004
0.882
0.775
0.255
-0.226
0.712

Firms Factor 2 -0.750
0.181
-0.008
0.670
0.633
-0.497

Accuracy of Linear Approximation

Since nonlinearity can be a serious problem in statistical inference, we need to test carefully how closely the linear equation (4) approximates the true price/earnings relationship (3). A straightEorward approach is to run an oLS regression, assuming that (4) is reasonable (and hence (5) applies), and then to examine the appropriate test statistics to see whether the linear approximation "works". (see theil [11])

On the other hand, there are at least two drawbacks to the straightforward approach to testing for nonlinearity. Since the straightforward approach makes no assumption about the form of the nonlinear relationship we are testing for, it is necessarily an indirect, and hence not very powerful, test. Furthermore, the test itself is biased by the fact that the covariance matrix of the least squares residuals is generally nonscalar (i.e, $\left.\operatorname{Var}(e) \neq \sigma^{2} I\right)$, even when the covariance matrix of the true residuals is scalar. Thus, uncorrelated disturbances do not guarantee that the olS residuals are uncorrelated.

Given the above uncertainties with the straightforward approach to testing for nonlinearity and the importance of the linear assumption to the interpretation of our results, we conducted a second test of the reasonableness of the linear approximation to the price/earnings equation (3), using the multi-variable version of raylor's Theorem. For the purposes of this test, we ignored the risk variables appearing in (3), since they clearly appear in a strictly linear form.

From Taylor's Theorem ${ }^{6}$, we know that any continuous function $f(p)$ of two variables with continuous derivatives up to third order in a neighborhood of the point $p_{0}=\left(x_{0}, y_{0}\right)$ can be expressed as

$$
\begin{align*}
E(p)= & E\left(p_{0}\right)+\left.\frac{\left(x-x_{0}\right)}{1} \frac{\partial f}{\partial x}\right|_{p_{0}}+\left.\frac{(y-y)}{1} \frac{\partial f}{\partial y}\right|_{p_{0}} \tag{6}\\
& +\left.\frac{\left(x-x_{0}\right)^{2}}{2!} \frac{\partial^{2} f}{\partial x^{2}}\right|_{p} ^{*}+\frac{\left(x-x_{0}\right)\left(y-y_{0}\right)}{1!} 1! \\
\partial x \partial y & \partial_{p}^{*} E
\end{align*}
$$

where $p=(x, y)$ and p^{*} is a point on the line segment joining p_{0} and p. Applying this knowledge to the nonlinear term in equation (3), we have

$$
\begin{equation*}
P_{j o}(D, g)=\frac{(1+\bar{g}) \bar{D}}{\bar{\rho}-\bar{g}}+\frac{(1+g)}{\bar{\rho}-g}(D-\bar{D})+\frac{(\bar{\rho}+1)}{(\bar{\rho}-g)^{2}}(g-\bar{g})+R_{n}(D, g) \tag{7}
\end{equation*}
$$

where a bar over a variable indicates the mean value of that variable and R_{n} is the sum of second order terms evaluated at ($\mathrm{D}^{*}, \mathrm{~g}^{*}$).

Let us denote the first order raylor approximation to p_{jo} (D, g) by P_{L}. Then we can investigate the relative accuracy of the linear approximation to equation (3) by calculating

$$
\frac{P_{j o}-p_{L}}{P_{j o}}
$$

for various values of D and g. Table S (Parts A and B) shows the resulting calculations for 20 D and g values taken from both the industrial and utility samples. The only criterion used in selecting these values was that the firm's

6 Buck, R. Creighton and E. F. Buck, Advanced Calculus, McGraw-Hill Bou'k Company, New York, 1965, pp. 260-261.

TABLE 5 (PART A)

Analysis of Accuracy of Linear Approximation for $20 \mathrm{D} / \mathrm{E}$ and
 g Values Taken from Industrial Sample

	D/E	g	P	P_{L}	$\frac{p-P_{L}}{P}$
	0.518	0.104	35.742	35.113	0.176
	0.539	0.109	54.341	82.273	-0.514
	0.863	0.092	33.657	32.096	0.0146
	0.499	0.099	26.114	21.852	0.153
	0.390	0.095	17.082	13.974	0.182
	0.794	0.107	67.612	77.936	-0.153
	0.286	0.093	11.578	9.470	0.182
	0.382	0.103	24.785	22.534	0.091
	0.534	0.113	84.906	238.466	-1.809
	0.516	0.101	29.901	25.993	0.131
	0.419	0.103	27.185	24.935	0.083
	0.365	0.109	36.799	64.730	-0.759
	0.541	0.108	49.952	67.492	-0.351
	0.564	0.111	69.623	135.132	-0.941
	0.801	0.109	80.755	108.687	-0.346
	0.317	0.101	18.369	14.461	0.213
	0.408	0.109	41.134	69.065	-0.679
	0.627	0.111	77.400	142.909	-0.846
	0.469	0.082	13.354	17.446	-0.306
	0.863	0.092	33.657	32.096	0.046
Note:	$\overline{\mathrm{D} / \mathrm{E}}=$				
	$\overline{\mathrm{g}}=$				
	$\bar{\rho}=$				

TABLE 5 (PART B)

Anaiysis of Accuracy of Linear Approximation for D / E and
g Values Taken Erom Utility Sample

D/E	g	P	P_{L}	$p-P_{L}$
0.603	0.063	11.234	11.985	-0.066
0.633	0.054	10.109	9.910	0.020
0.545	0.064	10.355	11.277	-0.089
0.927	0.043	12.592	12.237	0.028
0.659	0.087	21.707	41.089	-0.893
0.646	0.030	7.393	7.443	-0.007
0.550	0.081	15.245	25.152	-0.650
0.755	0.036	9.312	9.131	0.019
0.631	0.067	12.703	14.309	-0.126
0.637	0.069	13.352	1.5 .550	-0.165
0.567	0.065	10.979	12.105	-0.103
0.668	0.052	10.334	10.050	0.028
0.630	0.085	19.530	35.035	-0.794
0.880	0.047	12.621	12.247	0.030
0.923	0.050	13.845	13.506	0.025
0.946	0.038	11.975	11.732	0.020
0.729	0.046	10.305	9.929	0.036
0.695	0.055	11.280	11.138	0.013
0.849	0.053	13.343	13.098	0.018
0.713	0.055	11.573	11.430	0.012

Note: $\overline{D / E}=0.61$
$\overline{\mathrm{B}}=0.0 \mathrm{~S}_{1}$
$\bar{\rho}=.12$
growth estimate had to be less than the risk-free rate $\overline{\mathcal{S}}$, which we chose to be 12% since this was indicative of rates on long-term U. S. government securities in the 1981-83 period. The use ofthis criterion meant that we excluded certain industrial firms with extremely high growth expectations; it had no effect on our choice of utility company values. We included observations from all three years of our study.

On the basis of this investigation and our further statistical tests, we believe that at least three conclusions regarding the accuracy of the linear approximation are justified:

1. The linear approximation is reasonably accurate for sample values of the independent variables centered around the mean observations.
2. The linear approximation is considerably more reasonable for the utility sample than it is for the industrial sample (which helps to explain why the R^{2} s in the utility regressions are hipher).
3. The accuracy of the linear approximation can be improved by eliminating extreme observations.

Possible Misspeci[ication of Risk

Since the stock valuation theory says nothing about which risk variables are most important to investors, we need to consider the possibility that the risk variables of our study are actually only proxies for the "true" risk variables used by investors. It is well known that the inclusion of proxy variables may increase the variance of the parameters of most concern, which in this case are the coefficients of the growth variables.?

7 See Maddala, G.S., Econometrics, McGraw-llill Book Company, New York, 1977, pp. 158-162.

```
Table 6 (Part \(A\) )
Regression Results .- Industrials Model II - with P/E as Dependent Variable
```

Part A: Ilistorical
$P / E=a_{0}+a_{1} D / E+a_{2} g_{h}$

Year	${ }^{3} 0$	${ }_{1}$	${ }^{3}$	R^{2}	FRatio
1981	-0.59	15.40	31.33	. 30	30.30.
	(.39)	(7.48)*	(4.93)*		
1982	-0.31	17.97	40.75	.36	40.79
	(0.15)	(9.03)*	(4.30)*		
1983	2.09	19.03	22.17	.37	41.80
	(1.14)	(8.89)*	(2.81)*		

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}$

Year	${ }^{a_{0}}$	${ }^{3}{ }_{1}$	a_{2}	R^{2}	FRatio
1981	$\begin{aligned} & -10.99 \\ & (6.34) * \end{aligned}$	$\begin{gathered} 16.88 \\ (10.46) * \end{gathered}$	$\begin{aligned} & 95.31 \\ & (10.31) \star \end{aligned}$. 57	88.79
1982	$\begin{aligned} & -17.60 \\ & (6.52) * \end{aligned}$	$\begin{aligned} & 18.30 \\ & (12.16) * \end{aligned}$	$\begin{aligned} & 172.41 \\ & (9.68) * \end{aligned}$. 59	98.58
1983	$\begin{aligned} & -9.95 \\ & (4.85) * \end{aligned}$	$\begin{aligned} & 19.28 \\ & (11.86) * \end{aligned}$	$\begin{aligned} & 111.00 \\ & (8.40) * \end{aligned}$. 58	92.79

Notes:
$=$ Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

Table 6 (Part B)
 Regression Results - Utilities
 Model II - with P/E as Dependent Variable

Part A: Mistorical
$P / E=a_{0}+a_{L} D / E+a_{2} g_{h}$

Year	a_{0}	${ }_{\text {a }}^{1}$	${ }_{\text {a }}^{2}$	K^{2}	F Ratio
1981	-1.05	9.59	21.20	. 73	82.95
	(1.61)	$(12.13) *$	(7.05)*		
1982	0.54	8.92	12.18	. 83	167.97
	(1.38)	(17.73)*	(6.95)*		
1983	-0.75	8.92	12.18	. 77	107.82
	(1.13)	(12.38)*	(7.94)*		

Part B: Analysts
$P / E=a_{0}+a_{1} D / E+a_{2} g_{a}$

Year	${ }_{\text {a }}^{0}$	${ }^{3}{ }_{1}$	a_{2}	R^{2}	F Ratio
1981	3.96	10.07	60.53	. 90	274.16
	(8.31)*	(20.91)*	(15.79)*		
1982	-1.75	9.19	44.92	. 88	246.36
	(4.00)*	(21.35)*	(11.06)*		
1983	-4.97	10.95	82.02	. 83	168.28
	$(0.93) *$	(15.93)*	(11.02)*		

Notes:
Coefficient is significant at the 5% level (using a l-tailed test) and has the correct sign.

The t-statistic is indicated in parentheses.

To allow for the possibility that the use of risk proxies has caused us to draw incorrect conclusions concerning the relative importance of analysts' growth forecasts and historical growth extrapolations, we have also estimated regression equation (4) with the risk variables excluded. The results of these regressions are shown in Table 6 (Parts A and B). Again, there is overwhelming evidence that the consensus analysts' growth forerast is superior to the historically-oriented growth measures in predicting the firm's stock price (the R^{2} and t-statistics are higher in every case).

CONCIUSION

The relationship between growth expectations and share prices is important in several major areas of finance. The database of analysts' growth forecasts collected by Lynch, Jones \& Ryan provides a unique opportunity to test the hypothesis that investors rely more heavily on analysts' growrh forecasts than on historical growth extrapolations in making security buy and sell decisions. With the help of this database, we have conducted extensive studies that affirm the superiority of analysts forecasts over simple historical growth extrapolations in the stock price formation process. Indirectly, this finding lends support to the use of those valuation models whose input includes expected growth rates.

references

1. Bower, R. S. and D. H. Bower, "Risk and the Valuation of Common Stock," Journal of Political Economy, May-June 1969, Pp. 349-62.
2. Buck, R. Creighton and E. F. Buck, Ndvanced Calculus, McGraw-llill Book Company, New York, 1965, pp. 260-261.
3. Cragg, J. G. and Malkiel, B. G., "The Consensus and Accuracy of Some Predictions of the Growth of Corporate Earnings," Journal of Finance, March 1968, pp. 67-84.
4. Cragg, J. G. and Malkiel, B. G., Expectations and the Structure of Share Prices, The University of Chicago Press, 1982 .
5. Elton, E. J., M. J Gruber, and Mustava N. Gultekin, "Expectations and Share Prices," Management Science, September 1981.
6. Federal Communications Commission, Notice of Proposed Rulemaking, FCC Docket No. 84-800, August 13, 1984.
7. IBES Monthly Summary Book, Lynch, Jones \& Ryan, New York City, New York.
8. Maddala, G. E., Econometrics, McGraw-llill Book Company, New York, 1977.
9. Malkiel, B. G., The Valuation of Public Utility Equities," Bell Journal of Economics and Management Science, Spring, 1970, pp. 143-160.
10. D. Peterson and P. Peterson, "The Effect of Changing Expectations upon Stock Returns," Journal of Financial and Quantitative Analysis, September 1982.
11. Theil, $11 .$, Principles of Econometrics, John Wiley \& Sons, Inc., New York, 1971.

THE ACCURACY OF LONG-TERM EARNINGS FORECASTS IN THE ELECTRIC UTILITY INDUSTRY

R. Charles MOYER *
Texas Tech Unwersity. Lubbock. TX 79409. USA
Robert E. CHATFIELD *
Texas Tech Unmersm: Lubbock. TX 70409. L'SA
Gary D. KELLEY *
West Texas Siate Unwersinv, Canyon, TX 79016. USA

This paper examines the aceuracy of various methods of forceasting long-term carnings growth for firms in the electric utility industry In addition 10 a number of extrapolative techniques, Value Line analyst forecasts are also evaluated Value Lane analyst forecasts for a five-year time horizon are found to be superior to many of the extrapolative models. Among the extrapolative models examined, implied growth and historical boak value per share growth rate models performed best. These results provide strong support for using Value Line growth forecasts in cost of capital estimates for electric utilities in the context of ulility rate cases. Value Line forecast errors could be explained by changes in dividend payoul ratios, the firm's regulatory environment and bond rating changes.

Keywords: Earnings forecasting, Utility forecasting, Analysts' forecasts. Electric utilities.

1. Introduction

A central issue in most public utility rate cases is the determination of the cost of equity capital for the utility. In the regulatory process the return required by investors is considered a legitimate cost of doing business that is appropriately charged to customers. Other things being equal, the lower the rate of return which a utility is permitted to earn from its customers, the higher the level of customer welfare. However, if the utility does not have the opportunity to earn investor-required rates of return on capital, investment in plant and equipment will lag and the demand for service at the established price will be greater than the utility can supply. Accordingly, it is important to permit a utility to earn a fair return on its invested capital in order to assure that adequate levels of service will be provided

Two landmark judicial decisions have provided the general framework within which this analvsis must be done. The Supreme Court concluded in the Bluefield Water Works case [Bluefield Water Works (1923)] that the 'return must be reasonably sufficient to ... support its credit and enable it to raise the money necessary for the proper discharge of its public duties.' Recognition must be given to the returns currently earned 'on investments in other business undertakings which are attended by

[^14]corresponding risks and uncertainties ... ${ }^{\circ}$ In the Hope Naturat Gas case [Federal Power Commission (1944)) the Supreme Court stated that the return must also enable a firm to 'mantain tis credit and attract captal.
These judicial guidelines provide a general framework for implementing the determination of the cost of equity caputal in utility rate cases. Nether the lope nor the Bluefied dectsons provides gudance about what specific method(s) should be used to establish the cost of equity. In the Hope case, the Court stated that 'under the statutory standard of 'just and reasonable' it is the result reached not the method employed which is conirolling' [Federal Power Commission (1944, p. 603)]. In contrast, the rich academic literature in this area has emphasized the appropriateness of various methods employed to determine the cost of equity capital (Brigham and Gordon (1968), Elton and Gruber (1971), Gordon (1974), Gordon and Gould (1978), Litzenberger. Ramaswamy and Sosin 1980). Myers (1972) and Robichek. Higgins and Kinsman (1973)]. In practuce, three models have dominated recent utility rate cases. These are the capital asset pricing model, the comparable earnings model, and the constant-growth form of the dividend valuation model foften called the DCF or discomied cash flow methodology.
This paper focuses on the DCF model as at is commonly applied in utility rate cases. Specifically, we examine the long-termateuracy of a number of forecasung techniques which are used to estimate the growth rate component in the DCF cost of equily model. ' Based on a rational expectations view of the formation of investor expectations, ${ }^{2}$ we find support for the use of value Line analyst forecasts. ' implied growith rechniques, and historical book value growth rate models. However, Value Lane forecast accuracy deterorates significantly if the forecast is evaluated over a three or four year me horizon rather than the maximum five year honizon reported by Value Line.
Section 2 of the paper develops the DCF model as it is normally applied in rate cases. Section 3 describes the data used. and Section 4 discusses the various forecasting lechnqques tested. In Section 5 the statustucal tests used in the analysis are discussed: Section 6 presents the results of the tests. Section 7 reports the resulis of tests conducted to explain the errors in Volue Line anaiyst forecasts.

2. The DCF model

The DCF model of valuation is based on the proposition that the value of a share of stock is equal o the preseni value of all expected future dividends, discounted at the shareholders' required rate of return. Expert witnesses in utility rate cases commonly rely on a constant growth form of the bastic dividend valuation model, such as $k_{e}=D_{1} / P_{v}+g$, as the basis for their cost of equity recommendaHons. ${ }^{4}$ Expert witnesses do so because it is thought that many utility firms meet or nearly meet the requirements necessary to use the constant growth DCF model. Whether the constant growth DCF
 enception of a recent paper by Rozell (1983), bete has been very litile analysis of the accuracy of long term earnings
forecasts torecasts
Wr use
Whe the teem. tascally

Wher thing). five yeas earnang, furecavo fot the aver 1700 tums followed by the secvice

model or the non-constant growth model is emptoyed, tong-term (inree to five vear) earnings and dividend growth forecasts are essential inputs.

The application of this model invariably results in considerable controversy among expert thesses regarding the appropriate method by which to estumate the growth (8) component. Theoretically, this growit component is the growth rate expected by investors at the margin. Since expectations cannor be directly observed, experts focus on a wide range of alternative techniques as a proxy for g. According to the rational expectations hypothesis [Sargent (1972)]. the best forecastung method should be used to estimate g . In practice, proxies for g have included hustoncal earnings and dividend growth rates, historical book value growth rates, implied growth rates (the product of the etention ratuo times the return on book equity). and analysts' forecasts such as Value Line.
This paper examines the long-term accuracy of different methods of forecasting earnings growth of decme utility corporations and compares the results with Value Line forecasts of future earnings rowth. On an ex-post basis the different methods are evaluated to determine the most accurate. iong-range (three to five year) forecast. ${ }^{\text {s }}$

3. The data

The sample consists of the ninety-eight ele:inc uilitites that Value Line followed bel: een 1971 and 1976 and the nuncty-three electric utilities followed by Value Line between 1977 and 1982 Per share data have been adjusted for stock splits and dividends. Generally, Value Line reports on each from
 fie Lue carnes forecasts for 1976 are those reported in its second quatterly repart in 1972
All dar boh actual earmongs and forecasts of earnings have been converted to compound an
Aldara, borh actual earmings and forecasts of earnings, have been converted oc compound annual five-year forecast horizons are used in the analysis: 1971-1976 and 1977-1982. Value Line makes its ernings per share forccasts for a three-year range, e.g, the forecasi made in 1972 (which is conditional on actual 1971 dara) is for the 1974-1976 ume period. Thus, forecasted tolue line growth rates can be computed assuming a three, four, or five-year horizon. We considered each pussible Value Lire horizon in the paper, 1 e earnings forecasting accuracy is evaluated for the 991-1974, 1971-1975 and the 1971-1976 ume periods as well as the 1977-1980, 1977-1981, and the 1977-1982 time periods.
These ume periods are especially mporiant for the electic utility indusiry because of the unselted conditions prevailing in that industry through the 1970s. These conditions include the effects of rapidy escalating fuel costs, the need to convert large amounts of capacity from natural gas and oil to oal and nuclear power, and the impact of high inflation and rapidly rising capital costs.

4. Forecasting methods

The forecasting methods lested have been selected for analysis because of their use in pror studies and because of the extent to which they are commonty used in utility rate cases. These methods are

22 Volue Line 3,4 and 5 -year carnings forecasi
Xi The 5 -year histoncal compound dividend per share growth rate: for evample, the 1971-1976 Furecast horzon uses the actual annual compound growih rate from 19n6 1971

The s-year historical compound carnings per share growth rate.
X5. The 5 -year historical compound book value per share growth rate,
X6. The 10 -year hisioncal compound dividend per share growth rate.
7. The 10 -year historical compound earnings per share growith rate.
X. The 10 -year historical compound book value per share growth rate.
. The 5 -year average implied earnings growth rate, i.e., the 5 -year historical average return on equity umes the s-year histoncal average retention rate.
X10. The 10 -year average implied earnings growth rate.
X1I. The current implied earnings growth rate (e.g., the implied growth rate for the 1971-1976 forecasting horizon is equal to the return on equity in 1971 umes the 1971 retention rate).
X12. Brigham-Shome method of smoothing to compute the implied earmings growth rate Brigham and Shome (1981); for example, the implied growth rate for the 1971-1976 forecasting horizon is equal to smoothed ROE times smoothed retention rate and the smoothed ROE is computed as
$0.1 R O E_{:_{4}}+0.2 R O E_{,}+0.3 R O E_{2}+0.4 R O E_{1}=R O E$ forecast.
A smmar computation is done for the retention rate forecast
Xi3. The growth fate computed from the following trend line in bexik value per share (BPS ; over a five year pertod
$\ln B P S=a+b r$.
X14. Same as $\mathrm{X13}$ except for the use of 10 years of histoncal data.
X1S. The growth rate computed from a trend line in dividends per share over a 5 -year periond x16. Same as X15 except for the use of 10 years of historical data.
XI7. The growth rate computed from a trend line in earnings per share over a 5 -year period. X18. Same as XI7 except for the use of 10 years of histortical data.
$X 1$ is defined as the actual 3.4 or 5 -year compound annual growth rate in earnings per share. e.g., the growth rate for the 1971 to 1976 time horizon is the actual compound annual growth computed usin 1971 earnings per share as the start point and 1976 earnirgs per share as the end point. Similar computations are made for each horizon.

5. Statistical tests

First we examined the directional relationship hetween individual forecasts and actual earnings per share (EPS) growth rates. Kendall rank order correlations were calculated between the forecasted growth rates for each of the forecasting methods and the actual earnings growth rates. Next. stmilar o) Roreff (1983), the average devition (average forecast growth minus average actual growth), mean absolute error (AFABE) and root mean square error (RMSE) were calculated for each forecasting metherd. The MABI: is the sample average of the absolute value of the forecast error calculated for cath furecast method on the enure sample of firms. The RMSE is the square root of the sample verage of the
dioc Afthe:

accuracy used was the absolute value of the difference belween forecasted grow th in EPS for each of n forecast methods (for each time horizon) over , firms ($g_{i n}$) and actual growth in EPS over the same horizon (a_{4}), or $\left|g_{n_{n}}-a_{s}\right|$. The forecast errors were then compared acruss firms.
We used the Friedman test [Fredman (1937)] to test for the relative accuracy of all forecasting methods. The test criterion was the magnitude of forecast error. In practice the distribution of the Friedman test statistic is usually approxımated by the chi-square distributcen as in Brown and Rozeff (1978), but recent studies by Iman and Davenport (1980) show that the F-distribution approximation is superior to the chr-square approximation. Hence, the F-distribution approximation to the Fried man test is employed o lest he null hypothesis that all seventeen forecasts are equally accurate the null hypothesis is rejected. Way conclude that a keas one forecastung method is superior to a The rexi step
The nexi step in evaluating the relative accuracy of the forecastung methods was to compare forecast atcuracy across firms using parwise comparisons between forecasts. These comparisons test significant difference test statustic developed by Conover (1080, 300) The Wicoutsn signed fans

 method's forecasts are as accurate as another method's forecasts.

6. Empirical result

Exhibut 1 reports the Kendall rank order correlations between each of the forecasting methods and the actual earnings per share growth for the two five-year forecast horizons. In both five-year periods.

Methext	$\begin{aligned} & \text { Penod ! } \\ & (1971-1976) \end{aligned}$	$\begin{aligned} & \text { Pefiod ? } \\ & \text { (1977-1982) } \end{aligned}$
$\times 2$	0214°	0.269°
$x 3$	-0133*	-0118.
χ_{4}	-0.093	- 1058
$x s$	0013	$0.151{ }^{\text { }}$
x_{6}	0021	0.105
$x 7$	-0020	noss
$\times 8$	0.013	0031
$\times 9$	-0137^{*}	0078
$\times 10$	-0.091	0042
x 11	-0.209.	-0169*
$\times 12$	-0.149^{n}	${ }^{2} 024$
$\times 13$	-0010	0.112
$\times 14$	оок	6.977
$\times 15$	0020	0193.
$\times 1 /$	0007	01 (19
$\times 17$	-1132.	-4168
Xix	oors	unes

- Siguffcana a 18 or becter

Signifcant at 58
Sigutcant an 100 .

txhabu ${ }^{\text {a }}$				
Summary of error sathates 1977-1982.				
Method	Average deviation (forecast-actual)	MABE	RMSE	
$\bar{x} 2$	0010	0.039	0059	
$x 3$	-0.030	0067	0 004	
$\times 4$	-0.019	0.053	0.075	
xs	-0.013	0.044	0063	
$\times 6$	-0.013	0044	0063	
$\times 7$	-0.024	0051	0070	
$\times 8$	-0011	0045	0065	
$\times 9$	-0016	0046	0067	
$\times 10$	-0013	ooss	0065	
x 11	-001s	0.052	0.074	
$\times 12$	-0017	${ }^{0048}$	0070	
$\times 13$	-0027	0052	-070	
$\times 14$	-0014	0045	0063	
x	-0012	0045	4068	
$\times 16$	-0016	0.046	0.605	
$\times 17$	-0015	0063	010093	
$\times 18$	-010	0.049	007	
when compared to the sixieen mechanical forecasting methods, it is among the most accurate. Finally, we consider two statistical tests of relative accuracy - the Friedmart test and the least significant difference test. Exhibits 4 and 5 report the results from these two tests for periods 1 and? respecively. The Friedman test rejecis the null hypothesis at the 18 level for both periods. Thus, the alternative hypothests that at least one forecastung method is more accurate than at least one other forecasung method may be accepted.				
significance level. The results indicate that Value Line is dominated only by $\times 10$ (ren-year average				
unplied growth) in period 1 and is not dominated by any forecastung method in penod 2. Several of the forecastung methods performed exceedingly well in the muluple parnuse compan-				
sons. XS, X8 (five and ten-year compound book value per share growth), X9. X10 (five and ten-yearaverage implied growth), X14 (ten-year trend line growth in book value). and X15 (five-year trend				
line growth in dividends) are not dominated by anv other forecasting method in ether period. In summary, Value Line performs very well relative to the 16 extrapolative forecasting methods in				
the five-year forecast horizons. It is relatively successful at foreconting the direction of future carning, growth Also, the MABE. RMSE, and muluple parwise comparisons tndicate that Value Line is				
relatively accurate in predicting the actual future growth rate. Volue Line forecasts are made for a three to five-year forecast horizon. The preceding results have				
focused on the five.year horizon. Identical statistical tests were performed for two three-year horizons				
l.the forecasts per share earnings for a three to five-year honzon, the calculated growth rate will be				
greater the shorter the horizon. Since the Value Line forecasts tended to overestimate the actual				
growth rate for five-year honzons, one would expect the same dollar earring, forecast for a three of four-year horizon to perform less well.				
The correlaton results for three and four-year horizons are similar to thove for five wears. Vatue				
L.ine forecasts are postively and significantly correlated with actual earmings growth in both periods,				

246			
A. xhtow 2 Sumnary of ertor statisises 1971-1976.			
Methes	Average devision (forecast-metual)	MABE	RASE
$x 2$	0.021	0.036	0.044
$x 3$	-0.013	0097	0.066
X4	0013	0.042	0053
Xs	0.006	0.038	0051
X6	0016	0.039	0.048
$\times 7$	0.003	0.037	0.046
X8	0.013	0039	0.050
X9	-0.002	0.036	0.046
$\times 10$	0.000	0.035	0.045
X11	-0007	0.1940	0.056
$\times 12$	-0.004	0.037	0.049
X 13	0.007	0038	0.046
$\times 14$	0009	0036	0045
$\times 15$	0000	0038	0050
X18	0.015	0.039	0.047
$\times 17$	-0017	0.050	0.070
$\times 18$	0007	0.040	0050

Value Line forecasts (X2) are positively and significantly currelated with actual earnings growth. In period 1, no other forecasting method is both significant and positively correlated with aclual
earnings growth. In period 2, methods X 5 (five-year compound book value per share growih) and XIS (five-year trend line growth in dividends per share) aiso have statistically significant positive

Exhibut 1 provides strong cross-sectional evidence of the superiority of Value Line forecasts in capturing movement in the direction of earnings growih rates. Thus, Value Line forecasts higher
growth for firms which later show hugher growth. and lower growh for firms which later show lower growth. During the highly unstable periods included in the forecast horizons, only Value Line forecasts consistently reflected the direction of movement in actual earnings growth rates for the
electric utility industry.

Exhibit 1 does not, however, show any indication of the accuracy of Value Line relative to alternative forecasting techniques. From a cost of capital perspective, accuracy in forecasting is of
greatest importance. Exhibits 2 and 3 report the average deviation, mean absolute error and root mean square error for the two five-year forecast horizons.
The Vatue Line average deviation is the largest in period 1 at 2.1%, but the lowest in penod 2 at 1\%. In both periods it is positive, indicating that Value Line forecasts tend to be on the high side. Hence, it appears that in the long-term (five years) Vatue Lite is relatively successful in forecasting
the direstion of future earnings movements, but there is a tendency to overestimate the size of this earnings growth In order to verify this intial concluston we next look at two other measures of

Fulue Line has a relatively low MABE in period 1. Only XIO (ten-year average mplied growth of APS) is tower: X9 (five-year average mplied growth) and X14 (ten-year trend line growith in book when accuracy is evaluated using RMSE. In both periods Value Lane has the lowest RMASE
thus, in addition to forccasting successfully the direction of movement, Value Latte is relatuvely acturate as a predictor of the future growth rate tiself. Its forecants tend to be on the high sade but

	x 2	X 3	X4	x	X		x 7	x	X9	x		X11	x 12	X13	X14	x15	$\times 16$	X17	X18	$\begin{aligned} & \text { Times } \\ & \text { superor } \end{aligned}$	Times infenor
${ }^{x}$			+							-										1	
$\times 3$ $\times 4$ $\times 4$									-	-			-		-	-				0	s
x $\times 5$ $\times 8$	-		*	-			-	-	-	-	-		-		-	-				0	10
X6			*						-	-								*		$\stackrel{2}{2}$	0
${ }^{6} 7$			+															+		2	${ }_{0}$
${ }^{\times 8}$			+															+		2	0
${ }^{\times 9}$		+	+		+									+			+	+	+	,	0
$\times 10$ $\times 11$	+	+	+		+									+			+	+	+	8	0
$\times 12$		+	+															+		2	0
$\times 13$									-	-								+		3	0
$\times 14$			*																	3	2
$x 15$		+	-															+		3	0
$\times 16$									-	-										0	2
$\times 17$				-		-		-	-	-	-		-		-	-				0	9
$\times 18$									-	-										0	2

Exhibus

Sulisple parmise comparisons perius 2 (1977-19821.

	X2	X3	X4	x	x		x 7	X8	x9	$\times 10$	XII	X12	x13	X14	xis	$\times 16$	$\times 17$	X18	Times supetio	Times infenor
${ }^{1} 2$		+	+				+						+				+		6	0
${ }^{\times 3}$	-			-	-		-	-	-	-	-	-	-	-	-	-		-	0	14
X $\times 8$ $\times 8$	-			-	-			-	-	-		-		-	-	-		-	,	11
X $\times 6$ x_{6}		+	\dagger				+				+		+				+	*	,	0
x $\times 7$ $\times 7$		*	+				+				+		+				+	+	7	0
${ }^{\mathrm{x}}$	-	+	+	-	-			-	-	-	+	-	+	-	-	-			1	10
${ }^{10}$		+	+			+	+				+		+				+		6	0
$\times 10$		+	+				+				+		+				$+$		6	0
$x 11$	-	+		\sim	-			-	-	-				-	-	-			1	,
$\times 12$		+	+			*							+		-		+		5	1
$\times 13$	-	*		-	-			-	-	-		-		-	-	-			1	10
X 14 $\times 15$		+	*			+					*		+				+		6	,
$\times 15$ $\times 16$		+	+			+					+	+	+				+	+	8	0
$\times 16$ $\times 17$		+	*			+					+						+		6	0
$\times 17$ $\times 18$ $\times 18$	\cdots			-	-			-	-	-		-		-	-	-		-	4	11
$\times 18$,	*		-										-		+		3	3

and postively correlated. Moreover. this phenomenon persists only in period 2 for three and four-year horizons.
The average deviation. MABE. and RMSE show 'ralue Lene's forecast to decline appreciably in relatue accuracy. With the exception of the RMSE in period 2 of the three and four-year horizons. Vatue Line is outperformed in these measures of relative accuracy by all or mosi of the sixteen orecasting methods.
The multiple parwise comparisons for the four-year horizon still show Value Line to be relatuely atcurate. It is less accurate than only one method in both periods. However, for the three-year honzon. it is less accurate than all the other methods in period 1 and less accurate than 14 of 16

These relis

Whet in is intentional or not, Value Line tends to forecast most course ive-year end of therr three to five-year forecast horizon. In forecasting earnings for live-year honzon, Value Lime is very successful relative to the sixteen extrapolative forecasung methods examined in this study.

7. Error analysis of value line forecasts

The results reported in section 6 indicate that Value lint earnings growth rate forecasts for a five-year hortzon are significantly, positively correlated with actual carnings growith rates. In addiuon. Fulue' Lune forecasts have mean absolute errors and root mean square errors which are among the lowest when compared with the sixteen extrapolatise models. The muluple pairwise comparison lests forecast method in the 1971-1976 period, and are not less accurate than any other method durng the 1977-1982 period.
In this section we perform a micro-analysis of ertors in orde: to disciover causes for over and under-estimates of forecasted earnings growth rates made by Value Line. Thus analysis can help users of Value Line earnings forecasts to identify instances where Value Line forecasts are likely to be least reliable.
We have examuned a number of firm-specific/regulatory environment variables which migh be expected to influence the accuracy of Value Line forecasts. These vanables are
(1) Regulatory enuronment. Value Line rates the regulatory environment faced by each firm as either above average, average, or below average. It is possible that regulatory environments that are petcelved to be more (less) havorable cause the analysts to over-fonder-.)esimate actual eanmigs growth potential for the firm. Two dummy variables are used to represent regulatory environment at the end of each forecast horizon ($D_{1}=1$ if above average, 0 otherwise; $D_{2}=1$ if average. 0 otherwise: below average is the excluded class).
2) Percent of electric revenues from residentual curromers (measured at the end of each forecast horizon). Residentual electric revenue is less subject to cyclical fluctuations than commercial and industrial electric revenue. Hence. firms with a high proportion of residential demand might be expected to have more stable and casily forecasted earnings.
3) Percent of retenues from electric soles (measured at the end of each forecast horizon). Some firms in the sample had a significant portion of total revenues attributable to natural gas distribution the 1971-1982 ume period, natural gas demand was highly volaite because of shortages and large price increases. Hence, firms that

concentrated on providing electric service might also be expected to have more stable and easily forecasted earnings.
(4) Percent of generation from oil and gas capactyy (measured at the end of each forecast horizon). Oil and gas prices increased dramatically during the time periods exammed. and not all firms had the benefit of perifectly effective fuel adjusiment clauses. Hence, it is hypothesized that those firms with a greater proportion of oil and gas generating capactity were faced with more volatile and less
easily forecasted carnings during this period.
5) Nuclear construction. Firms with a significant nuclear construction program [defined with a dummy variable (D_{3}) as a firm having a greater than 10\% ownershup interest in a nuclear plant less easily lorecasted the end of each forecast horizon] were expected to have more volatile and 1977-1982 period when follows han non-nuclear firms. This is particularly true during the Agency ordered plant shullowing he accident as Three Mile island, the Nuclear Regulatory the earnings of electric utilities.
diendend
payour ratuo for the first period and the 1982 payoun rato minus payout ratio minus the 1971 payout tatio for the hirst period and the 1982 payout rate minus the 1977 payout ratio for the
second perind). An increase in the payout ratio reduces funds for renesiment hypothesized to be directly related to overestumates of earnings made by Value tine firm and is
Percentage change in net plunt (measured as the percentage increase (d) the pertod). The hypothestzed direction of the eflect of this variable is indeterninane since a raper growth in net plant might be associated with growth in demand and future earninge alrepi hevely, firms with large construction programs during the 1970s and l980s have been under have inaneing and regulatory pressures that have negatively influenced earnings.
measured from the variables: $D_{1}=1$ if downgraded by Moody's, 0 otherwise; $D_{5}=1$ if uperiod by wo dumm therwise; firms with no rating change are the excluded sel). When a firm is upgraded downgraded), this indicates an improvement (decline) in its financial profite. Hence upgradings (downgradings) might be associated with underestimates (overestimates) of future earnings.
(9) Coeffictent of variation of earnimgs per share (measured over the ten years prior to the start of each lorecast horizon). Highly volatile carnings are expected to be positively related to Value Line carnings forecasting errors.

For each forecasting horizon (1971-1976 and 1977-1982), two regressions were run using the above independent vanables and (1) positive forecasting errors (Value Line munus actual) and (2) negative foreciasting errors as the dependent variables.
variation in the postive Value Lune errors and identified above explained 24% (adjusted) of the errors. The only factor sigificant ene 58 or beter leasted) of the variation in negative Value Line ratto. Increases in a firm's payout rate were sipnificanty was the percentage change in the payout (positive errors) made by Value Lire analysts. This result is ansociated with overestimates of earnings use of implied growth tectiniques for forecasing future consisten wh the support found for the use of implied growth lechniques for forecasting future earnings. No factors were found to be During the 1977-1982 horizon, the percentage change in the payour dang the 1971-1976 pentod, significantly with postuve Vulue Line errors. In addituon there was a significion again was associated between bond downgradings and postive Vafue Line errors. Negative Vant, postive relationship agnificantly assoxiated wath bond upgradings. There was also evidence that Value line errors were underestamated future earnugs growti for firms with a high coefficient of variation of earning In sum, this evidence suggests the Volue Line carmags forceasts adequately consider eath of

factors identified above except the impact of changes in a firm's dividend payout ratio, the effects of and raung changes, and, to a lesser extent, the volatility of past earnings. Consequenty, users of Vilue Line data should be aware of potential biases in value Lane earnings forecasts for firms likelv to change significantly their dividend payour policy. for firms likely to have a bond downgrading or upgrading over the forrecast horizon, and for firms witi histoncally volatic earnings. Unfortunatel forecasting changes in dividend payous ratios and bund ratings is istelf a dificult matter. If can be noted. however, that although the explanatory vartables examined were not generally significaniv correlated with each other, there were signilicantly postave (0.287 and +0.317) conclano between downgradings and nuclear construction durmg , respectively) and signinicanly negaive correlations (-0.21 and e.ire) bess reliable for firms with nuclear construction. Thus suggests that iane Lme carnigs support for this fact can be inferred by sgnificant nuciear construcion pirg whose earnings were observing that durng 1 overestimated by Value Line, were invored wings were mvolved with nuclear construction.

8. Sunmary

Value Lime performed very well in forecasung earnings per share in the 1971-1976 and 1977-1982 the horizons relative to extrapolative forecasting methods. It was clearly superior in forecasting the direction of future carnungs growth and provided forecasis that were among the best when evaluated using various lests of accuracy. Among
The results are from two specific past ume periods, but Vatue Line performed consistently well in The results are froidence supporis the use of five-year Value Lune carnings forecasts as an estumar bin penods. The rates on future cost of capial rate cases. Volue Lane forecasts based on three and Wur-year ume horions appear to have a significant upward bras
The results of the mucro-analysis of Value Lure forecast errors might assist users to detect biases in The t'alue Line forecasts. In this study Value Line forecasts overestumated future earnmgs when firms increased their payout ratios or if a firm's bonds were downgraded. They underesumated when a firm's bonds were upgraded or if a firm had very volatile carnings prior to the begmning of the forecast horizon. As is true with all empincal studies, the results may pertain only to the industry and time-periods studied. Additonal work is needed to ascertatn whether the findings will prove applicable to other industrics, tume-periods, and analyses.

Relerences

1923
1923 Wert Works and Investment Company v. Public Service Cummusson of the Slate of Wes: Virpmia. 262 US 679
Bugham. Eugene F. and M I Gordnn. 1988. Leverage duvidend prinicy and the coss of cuprat. fournal of Finance 23, 85-105

 from eaxnings, Journal of Finance 33.1-16
 hutrai of Finance 23. 67-84.

Elion. Euwn' and Murlin I Gruber. 1972. Earnums eximalea and the socuracy of expectutionul datu, Management Soicne 18. 8-409-8-24

Elion. Ejwin J. and Marlin J Grubet. 1971 Valuation and the cont of captat for regulated induatina Journal of Finunce 26. $661-670$
Federail Power Commusion v Hope Platural Gas Company 330 US s91. 1904
Friedman, M. 1937. The Lee of ranks to avoid the assumption of normality impliat in the analysia of variance. baurnal of the American Slatisical Ansociution 32. 675-701
Gordon. Myecn J., 1974. The cont of capiul to a public utility (MSU Fwblic Utility Studies. East Lansing. M1)
Gordon, Myron J. and L.1. Cowid. 1978. The cosi of equiry capitai: A reconsideration, Journal of Finance 33, 849-861
Iman. R.L. and JM Davenpon. 1980. Approximations of the criticat region of the Friedman alatistic. Communizations in Sintistica A9. 571-595.
Johnson. Timolhy E. and Thomas G. Schmilf, 1974. Etfectiveness of earnings per share 'orecans. Financial Manigement 3 64-72.
Lizenberger. Robert Krishna Rammswamy and Howard Sosin. 1980 On the CAPM approach to the exsmation of a public utility': cost of equity capitai, Journal of Finance 35. 369-383
Miller, Merton and Franco Modiglians. 1966. Sonce esumates of the cust of capisat to the efectric utilisy industry American Economic Review 56. 333-191.
Myers. S.C.n 1972. The application of finunce theory to public ulility rate cases, Bell Journal of Economics and Management Science 3. 58-97.
Kubichuk. A A. R.C Miggins and M Kinuman. 1973, The eflect of leverage on the cont of equity of eleetne utitity firme. Journal of Finence 28, 353-367.
Rozeff. Michael S. 1983. Predicting tong term earnings growth: Comparisons of expected return models. submartingales and Value Line analysis. Journal of Forecasting $2.425=435$
Ruland. William, 1980. On the choice of simple extrapolative modei lorecusss of annual earnings. Financta! Management 9 30-37.
Sargem. Thomax S. 1972. Rational expectanons and the term structure of interest rates. Journal of Money. Credit and Banking
4 74 . 97

Predicting Long-term Earnings Growth: Comparisons of Expected Return Models, Submartingales and Value Line Analysts

M. S. ROZEFF
University of lowa, lowa City, lowa. U.S.A

Abstract

This paper derives four-five year predictions of growth rates of accounting carnings per share implicit in four expected return models commonly used in linancial research. A comparison of such growth rates with those produced and reported by Value Line analysts and those generated by a submartingate model revealed the following: two expected return models - the Sharpe.. Lintner Mossin model and the Black model-tvere signiticamly more accurate than the submartingale model, though not significanty more accurate than the other return models. However, the growth rate forecasts provided by Vilue Line signiticantly outperformed all the other models ested-none of which relied on the direet imput of a security analyst.

keyworids Forccasting Earnings growth Comparisons Empiricalstudy Analysts Value Line

An extensive body of literature evaluates the short-run (less than 15 months) earnings forecasts of security analysts and time-series models.' The importance of this subject to accounting and finance is that a varicty of applications such as firm valuation, cost of capital, and event studies require the measurement of earnings expectations. However, except for a recent paper by Moyer et al. (1983), litule work has been done to this point in studying long-run earnings forecasts. Moreover, a potential source of earnings forecasts-expected return models-has been overlooked.

This paper evaluates the accuracy of long-term forecasts of growth rates of amual earnings per share. Six sources of forecasts are used: a submartingale model, the Value Line Incestment Surrey, and four expected return models. Each expected return model is combined with the Gordon Shapiro constant growth model. I urther, centam expected remm models use the beta coefficient and, as such, lend insight into the usefubness of beta in a forecasting eontext

The paper comprises three seetions Section I describes the six foreansting sources and states the

[^15]hypotheses. Tests of the hypotheses ate presented in Section 2. Section 3 ollers tentative conclusions

1. FORLCASTING SOURCES AND HYPOTHESES

This section (1) describes how six sets of growth rate forccasts of earnings per share are derived and (2) discusses the formal hypotheses to be tested.

Submartingale model

Evidence that measured annual accounting income is a submartingale or some similar process can be found in Ball and Walts (1972). Albrecht et al. (1977), and Walts and Leftwich (1977). ${ }^{2}$ Although measured (reported) annual carnings per share may not be precisely a submartingale, a submartingale process is included because of its appearance in numerous studies as a benchmark forecasting technique. Another reason for including the submartingale model is to compare its forecasts to those reported in the Vahu Linc lurestment Survey. Such comparisons have been done * for forecasts of three to fifteen months (Brown and Rozell. 1978) but not forecasts of four to five years.

The submartingale model (SUB), as used here, estimates the expected annual growth rate of accounting carnings per share as the average compound annual rate of growth of earnings per share of the ten-year period preceding the test period. These historical growth data are obtained from various issues of the Value Line Inrestment Surter.
Value Line forecasts
The Value Line Inesemem Surey (VL) comains forceasts of carnings per share made by the Value Line security analysts for time periods four to live years into the future. After adjustment for capital changes, these forecasts, in conjunction with actual carnings per share in the base period, are converted to VL forecasts of a compound annal growth rate for each lirm in the sample.

The importance of testing analyst forecasts is explained by Brown and Rozell (1978). They argue that since analyst forecasts are purchased in a free market they are likely to be informed forecasts with a marginal value exceeding that of less costly forecast allernatives. According to this reasoning, the VL forccasts should be more accurate than the SUB forecasts and those derived from the expected return models (stated next).
Expected return model forecasts
A technique that has not previously been exploited to obtain earnings forecasts is to use expected stock rate of return models in conjunction with the Gordon-Shapiro (1956) constant growth model. This subsection shows how to extract carmings per share growth rate forecasts from these models. First, the four expected stock rate of return models are explained. Secondly, the paper proceeds to show how growth rate forecasts are obtained.

Four expected refurn models

The four models of how the marke sets expected rates of return on securities are:
(1) the comparison returns (CMR) model (Masulis. 1980: Brown and Warner. 1980 .
(2) The market adjusted returns ($M \wedge R$) model (Latane and Jones, 1979; Brown and Warner. 1980).
(3) The Sharpe Lintaer Mossin (SLM) model (Sharpe. 1964: Lintner. 1965: Mossin. 1966).
(4) We Black (BLK) model (Black, 1972).

[^16]The CMR model assumes that the expected return on stock i at time $T\left(E\left(R_{i T}\right)\right)$ is an expectation that is specific to each security. However, a risk parameter such as the beta coelficient is not explicitly included in the expected return calculation. Instcad, the expected stock return at time T is measured as the arithmetic mean of the realized returns of the stock in a prior period. To the extent that individual means of stock return distributions differ as a reflection of risk differences, the CMR model allows for individual differences in risk. This model (see Masulis, 1980) has been tested by Brown and Warner (1980) who found that it compared favourably with alternative expected return models in detecting abnormal performance.

The MAR model states that the expected return on slock i at lime T equals the expected return on the market (denoted $E\left(R_{M T}\right)$), which is the same for all stocks. As for the CMR model, no beta coefficient is used in calculating expected returns. However, unlike the CMR model, the MAR model does not allow for individual risk dillerences among stocks, since all stocks are assumed to have the same expected return, namely, the expected market return. To estimate expected market returns, an arithmetic average of past returns on the equally-weighted (Center for Research in Securities Prices) (RSP index is used.

The SLM model is infrequently referred to as the capital asset pricing model or CA PM. 11 is used in its ex ante form:

$$
\begin{equation*}
E\left(R_{i T}\right)=R_{f T}+\left[E\left(R_{A G T}\right)-R_{j T}\right] \beta_{i} \tag{I}
\end{equation*}
$$

where
$R_{S T}=$ interest rate on a U.S. Treasury security over the forecast horizon,
$\beta_{i}=$ beta coellicient of stock i expected to prevail over the forecast horizon.
This study examines two annual growth rate forecasts over two non-overlapping horizons of five years and four years. The five year forecast period is 1968-1972 and its base year is 1967. The four year forecast period is 1973-1976 and its base year is 1972. In estimating expected returns using the SLM model, $R_{f 7}$ for the forecast period $1968-1972$ is taken as the yield-to-maturity on a five year U.S. Government security as of December 1967. Similarly, for the forecast period 1973-1976, $R_{\text {fr }}$ is the yield-to-maturity on a four year U.S. Government sccurity as of December 1972. ${ }^{3}$
$E\left(R_{M T}\right)$ is estimated precisely in the same manner as in the CMR model, namely, as an average over past realized market returns.

The beta coefficients of individual stocks were cstimated in two ways. First, the expected beta was measured as the historical beta coefficient of the stock over the 84 months up to and including month T. This beta was simply the covariance of the stock's returns with the market divided by the variance of the market's returns over the sample period. Secondly, in an attempt to obtain a more accurate estimate of the future expected beta, the tendency of betas to regress towards the value 1.0 noted by Blume (197!) was taken into account. The method for doing this is Blume's method. ${ }^{4}$

The last expected return model is the BLK model. This can be stated in e. ante form (Black, 1972) as:

$$
\begin{equation*}
E\left(R_{i t}\right)=E\left(R_{\gamma \eta}\right)+\left[E\left(R_{M T}\right)-E\left(R_{Z_{l}}\right)\right] \beta_{i} \tag{2}
\end{equation*}
$$

where $E\left(R_{Z 7}\right)$ is the expected return on the minimum variance portfolio whose return is

[^17]uncorrelated with the return on the market portfolio. Unlike $R_{f T}$ in the SLM model, $E\left(R_{Z T}\right)$ is not observable at time T. Historical returns are frequently used to estimate this model (Black et al., 1972). When this is done, the BLK model can be written
\[

$$
\begin{equation*}
E\left(R_{i r}\right)=\bar{\gamma}_{0}+\bar{\gamma}_{1} \beta_{i} \tag{3}
\end{equation*}
$$

\]

$\bar{\gamma}_{0}$ and $\bar{\gamma}_{1}$ are arithmetic averages of monthly estimates of $E\left(R_{Z T}\right)$ and $E\left(R_{M T}\right)-E\left(R_{Z T}\right)$. The estimation method of Fama and Macbeth (1973) was used to oblain the gamma estimates. ${ }^{3}$

The forecasting model can now be formulated by obtaining $\bar{\gamma}_{0}$ and $\bar{\gamma}_{1}$ as of time T and using these as estimates of future gammas. The procedure is legitimate since Fama and Macbeth have shown that the gamma variables are stationary and have autocorrelations that are essentially nil.

Obtaining growth rate forecasts

Suppressing the time subscript T for simplicity, the expected return of security i according to model j is denoted $E\left(R_{i j}\right)$. Given the expected rate of return of security i from model j, each model's expected growth rate of carnings per share will be extracted by assuming that each firm possesses investment opportunities which are expected to provide a constant rate of growth of earnings in perpetuity. In other words, the constant growth' model is assumed to hold for each stock (Gordon and Shapiro, 1956, Miller and Modigliani, 1961).

Let $g_{i p}$ be firm i s rate ol price increase, $g_{i d}$ be its rate of growth of dividends per share, and $g_{i \text {, }}$, be its rate of growth of earnings per share. In the constant growth model, the expected rate of return of security i is given by:

$$
\begin{equation*}
E\left(R_{i}\right)=\frac{\bar{P}_{i 1}+\tilde{D}_{i 1}-P_{i 0}}{P_{i 0}}=\frac{\bar{D}_{i 1}}{P_{i 0}}+\frac{\bar{P}_{i 1}-P_{i 0}}{P_{i 0}} \tag{4}
\end{equation*}
$$

where
$\bar{P}_{i 1}=$ random end-of-period price per shate
$\tilde{D}_{i 1}=$ random end-ol-period dividend per share
$P_{i 0}=$ current price per share
$D_{i 0}=$ current dividend per share.
Hence:

$$
\begin{equation*}
\frac{\bar{D}_{i 1}}{P_{i 0}}+\frac{\tilde{P}_{i 1}-P_{i 0}}{P_{i 0}}=\frac{D_{i 0}\left(1+g_{i d}\right)}{P_{i 0}}+g_{i p} \tag{5}
\end{equation*}
$$

Assuming $g_{i d}=g_{i p}=g_{i}$

$$
\begin{equation*}
E\left(R_{i}\right)=\frac{D_{i 0}\left(1+g_{i}\right)}{P_{i 0}}+g_{i} \tag{6}
\end{equation*}
$$

A key assumption to obtain the constant growth is that the firms payout ratio of dividends from earnings is constant. This ensures the equality of the growth rates of dividends, carnings, and price per share. Violation of the constant payout ratio assumption occurs for a variety of reasons such as a change in the firm's investment opportunities or a change in its linancing mix. To the extent that the constant growth model fails to describe the firm's expected rate of return, the derived estimates of g_{i} will contain measurement error which will bias the tests aganst the expected return models.

[^18]Since each expected return model estimates $E\left(R_{i}\right)$ by $E\left(R_{i j}\right)$, equation (6) can be solved to obtain model j s implicil forccast of g_{i}, denoted $g_{i j}$ or:

$$
\begin{equation*}
g_{i j}=\frac{E\left(R_{i j}\right)-D_{i 0} / P_{i 0}}{1+D_{i 0} / P_{i 0}} \tag{7}
\end{equation*}
$$

Hence, by estimating $E\left(R_{i j}\right)$ and observing the current dividend yield, a lorecast by model j of the firm is growth rate of earning per share, $g_{i j}$, is exiracted.

Statement of hypotheses

The empirical results in this paper will be interpreted with reference to several hypotheses, which are presented and discussed below:

Hypothesis 1. Expected return models that use ex ame information on stock beta coelficients contain implicit earnings per share growth rate forecasts that are not more accurate than the implicit earnings per shate growth rate forecasts of expected return models that do not use information on beta coellicients.

The SLM and BLK models include beta information whereas the CMR and MAR models do not. Rejection of Hypothesis I means that the beta-based expected return models can be employed to obtain forecasts of earnings per share which are superior to those obtained from the non-beta stock return models. Assuming that earnings growth rates observed for a future period reflect the prices and the expected returns established at the start of the period, rejection of Hypothesis 1 provides an indication that the market, in setting expected returns, uses betas or their informational equivalent as opposed to negleeting betas as the CMR and MAR do.

The forecasts of the expected return models can also be compared with the SUB model forecasts. These comparisons provide a natural check on whether the expected return models combined with the constant growth model are producing forcasts that are reasonably competitive with the process which, at least approximately, gencrates amual carnings.

Hypothesis 2. Expected return models contain implicit earnings per share growth rate forecasts that are not more accurate than the forecasts of the growth rate of carnings per share derived using the submartingale model of earnings.
A third test compares the forecasting ability of the VL model with the expected return models. If the procedure used in this paper to extract forecasts from the expected return models was eflicient enough to extract forecasts that reflected all information available to the market, then the VL model forecasts would not be more accurate than the expected return model forecasts. Since the procedure used is clearly crude compared is the information processing of analysts, it is anticipated that Hypothesis 3 will be rejected in favour of VL.

Hypohesis 3. The VL forecasts of the growth rate of earnings per share are no more accurate than the earnings forecasts of the expected return models.
Finally, since the lengthy literature comparing amalyst forecasts with those of time series models is confined to short forecast horizons (sec footnote 1), it is of interest to compare the VL forecasts with the SUB forecasts over the long forecast horizons used in this paper.

Hypothesis 4. The VL forecasts of the growth rate of carnings per share are no more accurate than the forccasts of the SUB model.

Rejection of Hypothesis 4 in favour of VL superiority would provide further evidence of analyst forecast superiority relative to time-series models.

2. TESTS OF HYPOTHESES

Samples

Two scplications of the experimem were conducted. In the first, time 7 was year-end 1967 and forecasted earnings were for 1972. The first 253 firms (in alphabetical order) were selected from the CRSP tape which met the criteria: (1) return data available during 1961-1967: (2) covered by the Value Line lnvestment Surwe, as of December 1967; (3) December fiscal year; and (4) positive earnings per share in 1967 and 1972. The second replication set T at December 1972. The sample size was 348 . The criteria were similar with the corresponding changes in dates, namely, return data available during 1966-1972 and positive earnings per share in the base year 1972 and test year 1976.

The reasons for these criteria follow. The requirement that a sample firm have return data on the CRSP tape in the base period aliowed computation of the firm's beta cocflicient using this data source. The firm had to be covered by the Value Line Investment Survey to ailow forecast comparisons to be made. Use of the December fiscal year-end ensured that all six model forecasts were based on comparable amounts of data relative to the fiscal year. Furthermore, the VL model forecasts had to be conditional only on annual carnings of the base year. The requirements of positive earnings per share in the base and test years allowed for positive growth rates. (The positive earnings criterion, as it turned out, was not binding in the lirst test period. In the second period, ten firms were eliminated because of this criterion.)

Although it is unlikely that the sample selection procedures materially aflected the outcomes of the experiments, they did result in noticeably less risky sample firms than the market as a whole. The average beta for both samples was 0.85 . As such, the test results may not generalize to the entire population of firms.

'lest procedures

Because January 1935 was the starting date for calculating the BLK model estimates, that date was the starting point for most of the other return calculations. Thus, in estimating the CMR model, a stock's mean monthly stock return was found by averaging its returns over the history of the stock available since January 1935. In estimating mean market returns, the average of monthly returns was found over the time period beginning in January 1935. The market index was the equallyweighted return index of all stocks on the CRSP tape. Finally, in estimating the gammas for the BLK model, the monthly averages were also taken over the period starting in $1935 .{ }^{6}$

The SLM model requires risk-free returns and, for this purpose, yields-to-maturity on U.S. Government Bonds of the relevant maturity were employed. The data source was Moodys Mumicipal and Government Manmal.

Let $a_{i}=$ growth rate of actual carnings per share for firm i and $g_{i j}=$ growth rate of forecasted earnings per share for firm i by method j. In each test period, a vector of errors $\left|a_{i}-g_{i j}\right|=e_{i j}$ may be calculated for each method j, where $c_{i j}$ is the absolute value of the dilference between the forecasted and realized growth rates. For hypothesis tests of two models, an appropriate design is a one-sample or matched-pairs case with self-pairing by firm. The members of each pair are crrors, $e_{i j}$, from the two models, which are reduced to a single observation by taking the dillerence in the errors. The t test is the usual parametric test of the mean difference and the Wilcoxon signed ranks test is an alternative non-parametric test of the median diference. Both tests were conducted. But since the results were similar, only the paired t-test results are reported.

[^19]
Results

Table 1 contains summary statistics of the error distributions generated by the models when regression-adjusied betas were employed.

The average of deviations, $a_{i}-g_{i j}$, was computed for all sample firms. Such deviations measure the average bias of the forecast models. It appears that, in period 1 , all the models tended to overforecast earnings growth. In period 2, the average deviation of the return models was slight, whereas VL ended to overforecast on average. However, the fraction of firms overestimated by VL (58.0 per cent) was quite close to the fractions for the other models. This suggests that the sample average deviation for VL was heavily influenced by a few firms.

Table 1. Summary statistics of error distributions* \dagger

	Error incisure	SUB	MAR	CMR	SLM	BLK	VL
$\begin{aligned} & \text { Period 1, } \\ & \text { 1967-1972 } \end{aligned}$	Average deviation	-0.001	-0.062	-0.051	-0.049	-0.051	-0.046
	MABE	0.115	0.112	0.117	0.105	0.106	0.088
	MSE	0.046	0.032	0.034	0.031	0.031	0.018
	RMSE	0.213	0.178	0.184	0.176	0.177	0.135
	\% Forecasts overestimated	56.1	81.8	72.7	72.3	73.5	64.0
$\begin{aligned} & \text { Period 2, } \\ & \text { 1972-1976 } \end{aligned}$	Average deviation	0.040	-0.002	0.012	0.011	0.008	-0.030
	MABE	0.146	0.140	0.147	0.137	0.137	0.118
	MSE	0.071	0.067	0.070	0.066	0.066	0.031
	RMSE	0.266	0.258	0.265	0.256	0.256	0.175
	\% Forecasts overestimated	47.2	58.9	53.4	52.9	53.7	58.0

* MAR = Market adjusted return; SUB = Submartingale: $C M R=$ Comparison return; SLM $=$ Sharpe-Lintner-Mossin; BLK $=$ Black; $\mathrm{VL}=$ Value Line.
\dagger Based on adjusted betas for the SLM and BLK models.

The mean absolute error (MABE), defined as the sample average of $\left|a_{i}-g_{i j}\right|$, better reflects the overall forecasting performance of the models since it takes into account the average error size. In period I, VL's MABE was lowest at 0.088 , followed by SLM and BLK at 0.105 and 0.106 , while the other three models had MABE's between 0.112 and 0.117 . Two other summary error measures, which give greater weight to large deviations, are mean square error or MSE (the sample average of $\left(a_{i}-g_{i j}\right)^{2}$) and root mean squared error or RSME (the square root of MSE). Using these measures of forecast accuracy, VL was most accurate followed by the four expected return models all of which were more accurate than SUB.

In time period 2. VL had the most accurate forccasts. Using MABE, it again appears that SLM and BLK had smaller errors than the CMR, MAR, and SUB models. Using MSE, all models other than VL appear to have approximately equal forecast accuracy.

Table 2 contains the f-statistics for all paired comparisons over both sample periods and using both the historical beta and the regression-adjusted beta. In reading this table, a positive t-statistic means that the model at the top has lower errors than the model at the side. Since the results are very similar for both beia estimation methods, the discussion concentrates on the regressionadjusted beta case.

In both sample periods, both the SLM and BLK models produced smaller errors at high levels of confidence than the two non-beta expected return models -MAR and CMR. Hypothesis 1 is thus rejected. If one were attempting to gauge the market's expectation of future earnings growth via
Table 2. Parametric \boldsymbol{t}-statistics, comparisons of six model's earnings prediction errors for two time periods* \dagger

	Historical beta								Regression-adjusted beta					
$\begin{aligned} & \text { Period I. } \\ & \quad 1967-1972 \end{aligned}$		SUB	MAR	CMR	SLM	BLK	VL		SUB	MAR	CMR	SLM	BLK	VL
	SUB	-	0.59	-0.50	1.32	1.17	$2.69+$	SUB	-	0.59	-0.50	1.76?	1.58 +	2.69+
	MAR	-	-	-1.70 !	1.74 \%	1.37	$3.72+$	MAR	-	-	-1.70 \%	$4.93 \pm$	$4.29+$	3.72+
	CMR	-	-	-	$3.32 \pm$	$3.00 \pm$	$4.50{ }_{+}^{+}$	CMR	-	-	-	$4.35{ }_{+}^{+}$	$3.96{ }_{+}^{+}$	4.50+
	SLM	-	-	-	-	$-7.12+$	3.06+	SLM	-	-	-	+	-8.22+	2.72+
	BLK	-	-	-	-		3.21	BLK	-	-	-	-	+	$2.88+$
$\begin{aligned} & \text { Period } 2 . \\ & \text { 1972-1976 } \end{aligned}$	SLB	-	1.58	-0.40	$2.88 \pm$	$2.84 \pm$	$2.90 \pm$	SUB	-	1.58	-0.40	$2.78+$	$2.68{ }^{+}$	2.90 +
	MAR	-	-	-2.25s	2.38 §	2.485	$2.35 \$$	MAR	-	-	-2.25s	$3.06{ }^{+}$	$3.13+$	$2.35{ }^{+}$
	CMR	-	-	-	$3.77{ }_{+}^{+}$	$3.76 \pm$	$2.92{ }^{+}$	CMR	-	-	-2.	$3.83+$	$3.72+$	$2.92+$
	SLM	-	-	-		-0.59	1.86%	SLM	-	-	-	-	-1.60	1.93 ¢
	BLK	-	-	-	-	-	1.88%	BLK	-	-	-	-	-	$1.96 \$$

* MAR = Market adjusted return; $S U B=$ Submartingale: $C M R=$ Comparison return; SLM = Sharpe-Lintner-Mossin: BLK $=B l a c k: V L=V a l u e$
\dagger A positive test statistic indicates superiority (lower forecast error) of model on top as compared with model on side; a negative test statistic indicates superiority of model on side. Forecast error is mean absolute error (MABE).
\ddagger Significant at the 1 per cent level, two-tailed test.
II Significant at the 10 per cent level, two-tailed test.
the market's expected rate of return and the revealed dividend yield, then one would be better off employing either of the two models that use beta. The consistency of the results over the two test periods strengthens the conclusion that use of the beta cocflicient enhances the predictability of expected rate of return and hence carnings growth.

To check on the efficacy of the procedure by which the expected return model forecasts were extracted, those models were compared with the SUB model. For the non-beta models, the t statistics were less than ordinary conventional levels in both of the test periods. A comparison of MAR against SUB produced t-statistics of -0.50 and -0.40 . These results indicate that Hypothesis 2 cannot be rejected for the non-beta models, although the MAR model provided slight indication of outperforming the SUB model.

For the SLM and BLK models, the t-statistics were positive and significant in both time periods. A comparison of SLM against SUB yielded 1 -statistics of 1.76 and 2.78 , whereas in similar comparisons, BLK yielded 1.58 and 2.68. This is reasonable evidence for rejecting Hypothesis 2 in favour of the alternative hypothesis that SLM and BLK produce smaller errors than SUB. From another point of view, this result is impressive: a relatively simple manipulation of the expected return models, involving extrapolation of the expected market return and the stock's beta coefficient and subtraction of the stock's dividend yield, produced earnings forecasts that were more accurate than a well known time-scries model of annual earnings. This interpretation indicates that the SLM and BLK expected return models appear to capture an important aspect of the market's return generating mechanism, and that the forecast extraction procedure has reasonable power.

The next hypothesis tests involve the VLforecasts. It is clear that Hypothesis 3 can be rejected at high levels of significance. By wide margins, VL produced lower forecast errors than all the expected return models, including the more accurate SLM and BLK models.

The last comparison, Hypothesis 4, cvaluates VL against the TS model. In both samples, the forecasts of earnings per share growth were statistically superior to those of the TS model. This provides additional evidence that security analysts produce more accurate forecasts than timeseries models.

The results of the tests were quite uniform in the two time periods. The average analyst error in forecasting the future annual growth rate for the following four to five year period tended to be about 1.7 per cent below the crrors of the SLM and BLK expected return models, whereas the errors of the latter two models were about 0.7-1.2 per cent below the errors of the remaining models, including the SUB model.

3. CONCLUSIONS

This paper has shown that expected return models commonly used in the finance literature contain implicit forecasts of the growth rate of accounting carnings per share. For the comparison returns model (CMR) and the market-adjusted returns model (MAR), the resulting forecasts were no less accurate than a submartingale model. On the other hand, for the Sharpe-Lintner-Mossin (SLM) and Black (BLK) models, the forecasts were signilicanlly more accurate than those generated by the submartingale model.

Evidence that security analysts forecasts are more accurate than those of less costly alternatives is also provided. The forecasts of four to five year growth rates of earnings per share produced and reported in the Value Line Investment Surcey were shown to be more accurate than all of the other models tested--none of which required the direct input of a security analyst.

ACKNOWLEIDGEMENTS

Earlier versions of this paper were presented at the International Symposium on Forecasting, Quebec City, Canada in May, 1981, the Midlands Finance Conference, Lincoln, Nebraska in September, 1981, and the Finance Workshop of the University of Califormia at Los Angeles in October, 1981. I am grateful to these audiences for useful comments and discussions. Two anonymous referees of this journal also provided stimulating comments for which I am thankful.

REFERENCES

Abdel-khalik, A. R. and Thompson, R, B.. Research on earmings forceasts: the state of the art., The Accounting Journal, 1 (1977-78), 180-209.
Albrecht, W., Lookabill, L. and McKcown, J., 'The time serics properties of annual earnings', Jumal of Accounting Rescarch, 15 (1977), $226 \cdot 244$.
Ball, R. and Watts, R., 'Some time series properties of aceounting ineome', The Jommal of Finance, 27(1972), 663681.

Barelield, R. and Comiskey, E.. The accuracy of amalysts' forceasts of carnings per sharc", Joumal of Business Research, 3 (1975), 241-252.
Black, F., 'Capital market equilibrium with restricted borrowing', The Journal of Business, 45 (1972), 444-454.
Black. F., Jensen, M. C. and Scholes, M. 'The capital asset pricing model: some empirical lests'. In Jensen. M. C. (ed.), Studies in the Theory of Capital Markets, New York: Pracger, 1972, pp. 79-121.

Blume. M.. 'On the assessment of risk', The Jourmal of Finance, 26 (1971), 1-10.
Brooks, L. D. and Buckmaster, D. E., 'Further evidence of the time series properties of accounting income', The Journal of Finance, 31 (1976), 1359-1373.
Brown, L. D. and Rozeff, M. S. 'The superiority of analyst forecasts as measures of expectations: evidence from carnings', The Journal of Finance, 33 (1978), 1-16.
Brown, L. D. and Rozeff, M. S., Univariate time-series models of quarterly accounting earnings per share: a proposed model., Journal of Accounting Research, 17(1979), 179-189.
Brown. S. J. and Warner, J. B.. Measuring security price performance'. Journal of Financial Economirs. 8 (1980), 205-258.

Collins, W. A. and Hopwood, W. S., 'A multivariate analysis of annual earnings forecasts generated from quarterly forecasts of financial analysts and univariate time series models'. Journal of Accounting Research, 18 (1980), 390-406.
Cragg, J. G. and Malkiel. B. G., The consensus and accuracy of some predictions of the growth of corporate earnings'. The Journal of Finance, 23 (1968), 67-84.
Critchfield. T., Dyckman, T. and Lakonishok, J., 'An evaluation of security analysts" forecasts', The Accomming Recieri, 53 (1978), 651-668.
Elton, E. J. and Gruber, M. J., 'Earnings estimates and the accuracy of expectational data’, Management Science, 19 (1972), 409-424.
Elton, E. J., Gruber, M. J, and Gultekin, M., Professional expectations: accuracy and diagnosis of errors', Research paper, Graduate School of Business Administration, New York University, New York, 1981.
Fama, E. F. and Macbeth, J. D., 'Risk return, and equilibrium: empirical tests'. Journal of Political Economy, 8 (1973), 607-636.
Foster, G., 'Quarterly accounting data: time series properties and predictive-ability results', The' Accounting Revicw, 52 (1977), 1-21.
Fried, D. and Givoly, D., 'Financial amalysts’ forceasts of earnings: a better surrogate for market expectations', Journal of Accounting and Ecomomics, 4 (1982), 85-107.
Givoly. D. and Lakonishok. J. 'The information content of finameial analysts' forecasts of earnings', Journal of Accounting and Economics, I (1979), 1 21.
Gordon, M. and Shapiro, E., Capital equipment analysis: the required rate of profit', Management Science, 3 (1956). 102-110.

Grifin, P. A. 'The time-series behaviour of quarterly carnings: preliminary evidence', Journal of Accotming
Rescarch, 15 (1977), 71.83 . Rescarch, 15 (1977), 71-83.

Hopwood, W. S. and McKeown. J. C., An evaluation of univariate time-series earnings models and their generalization to a single input transfer function', Journal of Accounting Research, 19 (1981), 313-322.
Hopwood, W. S., McKcown. J. C. and Newbold, P.. Power transformations in time-series models of quarterly carnings per share', The Accomenting Review, 56 (1981), 927-933.
Imhoff, E. A. Ir, and Pare, P. V.. Analysis and comparison of cannings forceast agents', Jomrnal of Accomming Rescurch. 20 (1982), 429.439.
Jaggi, B., Further evideace on the accuracy of management forecasts vis-i-vis analysts' forecasts', The Accounting Reciew, 55 (1980), 96-101.
Latane, H. A. and Jones, C. P.' 'Standardized unexpected earnings - 1971-1977', The Journal of Finance, 34 (1979), 717-724

Lintner, J., The valuation of risk assets and the selection of risky investments in stock portolios and capital budgets. Reriew of Economics and Statistics, 47 (1965), 13.37.
Livingston. M. and Jain, S.. Flattening of bond yield curves for long maturitios', Tine Journal of Finance, 37 (1982), $157 \ldots 167$.

Lorek. K. S.. 'Predicting annual net earnings with quarterly carnings time-series models', Journal of Accounting Research, 17 (1979). 190-204.
Manegold, J. G., 'Time-series propertics of earnings: a comparison of extrapolative and component models'. Journal of Accomting Rescarch: 19 (1981). 360373.
Masulis, R. W., The effects of capital structure change on security prices: a sludy of exchange ofters', Journal of Financial Ecommics, 8 (1980). 139177.
Miller, M. H. and Modigliani, F., 'Dividend policy, growth, and the valuation of shares', The Journal of Business. 34 (1961), 411-433.
Mossin, J.. 'Equilibrium in a capital asset market', Ecomometrica, 34 (1966), 768-783.
Moyer, C., Chaticid. R. E. and Kclley, G. D. Long-term earnings forecasts and the cost of equity capital for electric utilitics', Research paper. Texas Tech University, 1983.
Schaefer. S.. 'The problem with redemplion yields'. Financial Analysas Jommal. 33 (1977), 49.57.
Sharpe, W, F. 'Capital asset prices: a theory of market equilibrium under conditions of risk', The Joumal of Finance, 19 (1964), 425-454.
Watts, R. and Leftwich, R., 'The time serics of annual accounting carnings', Journal of Accomnting Research, 15(1977). 253271.

Author's biography:
Michael S. Rozeff is Professor of Finance at the University of lowa. He reecived his MBA from University of Illinois and PhD from the University of Rochester. His papers have appeared in Journal of Accomfing and Economics, Journal of Finance, Journal of Financial Ecomomics, Journal of Financial and Quantitatice Analysis, and other journals. His principal current rescarch interest is in how stock markets price such firmspecific factors as size, systematic risk, and dividend yield.

Author's address:
Michael S. Rozert, College of Busincss Administration, The University of lowa, Iowa City, lowa 52242. U.S.A.

AVISTA CORP		12/09/05				Next EPS Report Date:			01/25/06
		AVA	NYSE	Indusiry:	UTIL-ELEEC PWR		Type:	Mid	Value
$\begin{gathered} \hline \text { Rec Price } \\ \$ 18.26 \end{gathered}$	$\begin{aligned} & \hline \text { P/E } \\ & 21.2 \end{aligned}$	$\begin{aligned} & \text { Mkt Cap } \\ & \$ 887 \text { MM } \end{aligned}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 0.56 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 3.1 \% \end{aligned}$	$\begin{gathered} \text { Sales (12Mo) } \\ \$ 1239 \mathrm{MM} \end{gathered}$	$\begin{gathered} \hline \text { Sis Gr } \\ -28 \% \end{gathered}$	$\begin{array}{\|c\|} \hline \text { EPS Gr } \\ -20 \% \end{array}$	$\begin{gathered} \hline \text { Div Gr } \\ 3 \% \end{gathered}$	Zacks Rank Hold

Avista Corp. is a diversified energy company with utility and subsidiary operations located throughout North America. Avista Corp. also operates Avista Capital, which owns all the company's non-regulated energy and non-energy businesses. Avista Capital companies include Avista Energy, Avista Energy Canada, Ltd., Avista Power, Avista Advantage, Avista Labs, Avista Fiber, Avista Communiations, Avista Development and Pentzer Corporation. (PRESS RELEASE)

Price/Volume Data		EPS.P/E and Growth Rates			$\mathrm{Yr} / \mathrm{Yr}$
52-Wk High	\$19.97	FY	EPS	P/E	EPS Gr
Low	\$16.56	12/04 Act	0.73	24.2	-28\%
PriceChg-YtD	3\%	12/05 Est	0.79	23.1	8\%
-YTD(Rel)	-1\%	$12 / 06$ Est	1.48	12.4	87\%
Avg Dly Vol	221000 s	Last 5Yr			-20\%
Exp Return/Risk		Next 3-5Yr (E			5\%
Impl Ret=Yid+Gr	8\%	OtherKey M	sures		5-Year
Beta	0.65		Curren		Avg
		P/E (12 Mo)	21.2		17.4
Shareholder Data		Rel P/E	122\%		
Shares Out	48.6 MM	Net Margin	3\%		2.4\%
Institutions	58.18\%	ROE	5.6\%		7.3\%
Insiders	3.00\%	LT Debt/Cap	57\%		51\%

UTIL-ELEC PWR	Industry Comparables						impl				
Industry \# 193	Pr Chg YTD	PIE (12Mo)	EPS Gr 5YrEst	Price Book	Price Sales	Pricel CF	RetJ P/E	Div Yield	Net Margin	ROE	Debt/ Cap
AVISTA CORP	3\%	21.2	5\%	1.2	0.7	7.2	0.38	3.1\%	3.4\%	6\%	57\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
* 104	Companies in industry group.										

Company Report as of			12/09/05			Next EPS Report Date:			03/13/06
CLECOCO		CNL	NYSE	Industry:	UTLL ELEC PWR		Type:	Mid	lend
$\begin{gathered} \text { Rec Price } \\ \$ 22.00 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { P/E } \\ & 13.4 \end{aligned}$	$\begin{gathered} \hline \text { Mkt Cap } \\ \$ 1099 \mathrm{MM} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 0.90 \end{gathered}$	$\begin{aligned} & \text { Yield } \\ & 4.1 \% \end{aligned}$	$\begin{gathered} \text { Sales (12Mo) } \\ \$ 833 \mathrm{MM} \end{gathered}$	$\begin{gathered} \text { SIs Gr } \\ -4 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ -3 \% \end{gathered}$	$\begin{gathered} \text { Div Gr } \\ -2 \% \end{gathered}$	Zacks Rank Buy

Cleco Corporation holds investments in several subsidiaries, including Utitity Group, Cleco Midstream Resources LLC and Utility Construction \& Technology Solutions LLC. Utility Group, incorporated on January 2, 1935 under the laws of the State of Louisiana, contains the LPSC jurisdictional generation, transmission and distribution electric utility operations serving the Company's traditional retail and wholesale customers. Utility Group serves customers in communities and rural areas in the State of Louisiana.

Price/Volume Data		EPS.PIE and Growth Rates			Yr/ir EPS Gr
52-Wk High	\$24.05	FY	EPS	P/E	
Low	\$18.97	$12 / 04$ Act	1.46	13.9	14\%
PriceChg-YTD	9\%	$12 / 05$ Est	1.56	14.1	7\%
-YTD(Rel)	4\%	12/06 Est	1.45	15.1	-7\%
Avg Dly Vol	287 000s	Last 5 Yr			-3\%
Exp Return/Risk		Next 3-5Yr (Est)			4\%
Impl Ret=Yid+Gr	8\%	Other Key Measures			$5-\mathrm{Year}$
Beta	0.87		Curren		Avg
		P/E (12 Mo)	13.4		13.2
Shareholder Data		Rel P/E	77\%		
Shares Out	49.9 MM	Net Margin	10\%		5.7\%
Institutions	58.04\%	ROE	15.3\%		15.1\%
Insiders	3.40\%	LT Debt/Cap	43\%		56\%

UTIL-ELEC PWR	Industry Comparables						Impl				
Industry \# 193	$\begin{gathered} \text { Pr Chy } \\ \text { YTD } \end{gathered}$	PIE (12Mo)	EPS Gr 5 Yr Est	Price/	Price	Pricel	Ret/	Div			Debt
CLECO CORP	9\%	13.4	4\%	Book	Sales		P/E.	Yield		ROE	Cap
NDUSTRY AVG*		16.4	6\%	1.8	1.3	8.2	0.60	4.1\%	10.4\%	15\%	43\%
S\&P 500	4\%	17.4	6\%	9.9		7.4	0.58	3.4% 1.7%	5.8\%	11\%	
104	Compan	s in ind	try group							32\%	

Zacks Company Report as of 12/09/05 Next EPS Report Date: 02/15/06

DPL INC		DPL	NYSE	Industry: UTIL ELEC PWR			Type: mid		B/end
Rec Price	P/E	Mkt Cap	Div Rate	Yield	Sales (12Mo)	SIs Gr	EPS Gr	Div Gr	Zacks Rank
\$25.63	25.6	\$3268 MM	\$0.96	3.7\%	\$1258 MM	-3\%	-3\%	-2\%	Hold

DPL Inc. is a holding company. Its principal subsidiary is The Dayton Power and Light Company. The Dayton Power and Light Company sells electricity and natural gas to residential, commercial and governmental customers in West Central Ohio. Principal industries served include elecirical machinery, automotive and other transportation equipment, non-electrical machinery, agriculture, paper, and rubber and plastic products.

Price/Volume Data		EPSP/E and Growth Rates			$\mathrm{Yr} / \mathrm{Tr}$
52-Wk High	\$28.12	FY	EPS	P/E	EPS Gr
Low	\$23.43	12/04 Act	1.78	14.1	17\%
PriceChg-YTD	2\%	12/05 Est	1.07	24.0	-40\%
-YTD(Rel)	-2\%	12/06 Est	1.63	15.7	53\%
Avg Dly Vol Exp Return/Risk	820000 s	Last 5\%r			-3\%
		Next 3-5Yr (E			5\%
Impl Ret=YId+Gr	9\%	OtherKey Measures			5-Year
Beta	0.66		Curren		Avg
		PIE (12 Mo)	25.6		14.3
Shareholder Data		Rel P/E	147\%		
Shares Out	127.5 MM	Net Margin	12\%		14.4\%
Institutions	49.16\%	ROE	12.2\%		22.1\%
Insiders	2.00\%	LT Debt/Cap	61\%		70\%
Quarter End Data		Projections	FY End Da		(ICE (S)

Zacks Comp	ny	12/09/05				Next EPS Report Date:			02/06/06
DUQUESN	IG	DQE	NYSE	Industry	ELEC PWR		Type:	Mid	lend
$\begin{gathered} \text { Rec Price } \\ \$ 17.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline P / E \\ 11.9 \end{gathered}$	$\begin{gathered} \text { Mkt Cap } \\ \$ 1332 \mathrm{MM} \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.00 \end{gathered}$	Yield 5.9%	$\begin{gathered} \text { Sales (12MO) } \\ \$ 922 \mathrm{MM} \end{gathered}$	$\begin{gathered} \hline \text { SIs Gr } \\ -10 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ -8 \% \end{gathered}$	$\begin{aligned} & \hline \text { Div Gr } \\ & -13 \% \end{aligned}$	Zacks Rank Hold

Duquesne Light Company transmits and distributes electric energy, offering technological innovation and superior customer service and reliability to more than half a million direct customers throughout southwestern Pennsylvania.

Ave Broker Rec	\#Up	\#Dn
SELL	0	0

Price/Volume Data		EPS P/E and Growth Rates			Yrive
52-Wk High	\$19.43	FY	EPS	P/E	EPS Gr
Low	\$16.14	12/04 Act	1.20	15.7	4\%
PriceChg-YTD	-9\%	12/05 Est	1.15	14.9	-4\%
-YTD(Rel)	-13\%	12/06 Est	1.14	15.0	-1\%
Avg Dly Vol	343000 s	Last 5 Y r			-8\%
Exp Return/Risk		Next 3-5Yr (Est)			5\%
Impl Ret=Yld +Gr	11\%	Other Key Measures			5-Year
Beta	0.58		Curren		Avg
		P/E (12 Mo)	11.9		14.3
Shareholder Data		Rel P/E	68\%		
Shares Out	78.0 MM	Net Margin	13\%		1.8\%
Institutions	59.79\%	ROE	17.3\%		15.3\%
Insiders	0.60\%	LT Debt/Cap	54\%		63\%

UTIL ELEC PWR	Industry Comparables						Impl				
	Pr Chg YTD	$\begin{gathered} \text { P/E } \\ (12 \mathrm{Mo}) \end{gathered}$	EPS Gr 5Yr Est	Pricel Book	Price Sales	Price/ CF	Ret PIE	Div Yield	Net Margin	ROE	Debt Cap
DUQUESNE LIGHT	-9\%	11.9	5\%	1.9	1.4	7.5	0.92	5.9\%	12.8\%	17\%	54\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
* 104	Companies in industry group.										

Zacks Company Report as of			12/09/05			Next EPS Report Date:			02/09/06
EMPIRED	TRIC	EDE	NYSE	Industry:	UTIL-ELEC PW/R		Type:	Small	Value
$\begin{gathered} \text { Rec Price } \\ \$ 20.90 \end{gathered}$	$\begin{aligned} & \text { P/E } \\ & 21.5 \end{aligned}$	Mkt Cap \$544 MM	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.28 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 6.1 \% \end{aligned}$	$\begin{gathered} \text { Sales (12Mo) } \\ \$ 367 \mathrm{MM} \end{gathered}$	$\begin{gathered} \text { SIs Gr } \\ 7 \% \end{gathered}$	$\begin{gathered} \hline \text { EPS Gr } \\ -2 \% \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Div Gr } \\ 0 \% \end{array}$	Zacks Rank Strong Sell

The Empire District Electric Company is an operating public utility engaged in the generation, purchase, transmission, distribution and sale of electricity in parts of Missouri, Kansas, Oklahoma and Arkansas. The Company also provides water service to several towns in Missouri.

Price/Volume Data		EPS.P/E and Growth Rates			$\begin{aligned} & \mathrm{Yr} / \mathrm{Yr} \\ & \text { EPS Gr } \end{aligned}$
52-Wk High	\$24.90	FY	EPS	P/E	
Low	\$19.99	12/04 Act	0.86	26.4	-33\%
PriceChg-YTD	-8\%	12/05 Est	0.98	21.4	14\%
-YTD(Rel)	-11\%	12/06 Est	1.12	18.7	14\%
Avg Dly Vol	103000 s	Last 5 Yr			-2\%
Exp Return/Risk		Next 3-5Yr (Est)			5\%
Impl Ret $=$ Y/d + Gr	11\%	Other Key Measures			5-Year
Beta	0.24	Current			Avg
		P / E (12 Mo)	21.5		21.1
Shareholder Data		Rel P/E	124\%		
Shares Out	26.0 MM	Net Margin	7\%		7.2\%
Institutions	27.25\%	ROE	6.6\%		7.2\%
Insiders	1.00\%	LT Debt/Cap	51\%		52\%

Zacks Company Report as of 12/09/05						Next EPS Report Date:			02/09/06
ENERGY	AST	EAS	NYSE	Industry:	UTIL-ELLEC PWR		Type:	Mid	Value
$\begin{gathered} \text { Rec Price } \\ \$ 23.24 \end{gathered}$	$\begin{aligned} & \hline \text { P/E } \\ & 13.0 \end{aligned}$	$\begin{gathered} \hline \text { Mkt Cap } \\ \$ 3433 \mathrm{MM} \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.16 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 5.0 \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sales (12Mo) } \\ \text { \$5084 MM } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Sis Gr } \\ 10 \% \end{gathered}$	$\begin{gathered} \hline \text { EPS Gr } \\ -5 \% \end{gathered}$	$\begin{array}{\|c} \hline \text { Div Gr } \\ 5 \% \end{array}$	Zacks Rank Sell

Energy East is a public utility holding company whose principal business is purchasing, transmitting and distributing electricity in New York and Maine and purchasing, transporting and distributing natural gas in New York, Connecticut, Maine and Massachusetts.

Price/Volume Data		EPS.P/E and Growth Rates			Yr/Yr
52-Wk High	\$30.06	FY	EPS	P/E	EPS Gr
Low	\$22.84	12/04 Act	1.62	16.5	7\%
PriceChg-YTD	-13\%	12/05 Est	1.79	13.0	10\%
-YTD(Rel)	-16\%	12/06 Est	1.88	12.4	5\%
Avg Dly Vol	522 000s	Last 5 Yr			-5\%
Exp Return/Risk		Next 3-5Yr (Est)			5\%
Impl Ret=Yid+Gr	9\%	Other Key Measures			5-Year
Beta	0.52		Curren		Avg
		P/E (12 Mo)	13.0		12.8
Shareholder Data		Rel P/E	74\%		
Shares Out	147.7 MM	Net Margin	5\%		5.2\%
Institutions	49.23\%	ROE	9.4\%		10.6\%
Insiders	3.00\%	LT Debt/Cap	56\%		56\%

UTIL-ELEC PWR	Industry Comparables						Impl				
industry \# 193	Pr Chg YTD	$\begin{gathered} \text { P/E } \\ (12 \mathrm{Mo}) \end{gathered}$	EPS Gr 5Yr Est	Price/ Book	Pricel Sales	Pricel CF	$\begin{aligned} & \text { Ret } / \\ & \text { P/E } \end{aligned}$	Div Yield	Net Margin	ROE	Debt/ Cap
ENERGY EAST	-13\%	13.0	5\%	1.1	0.7	5.5	0.73	5.0\%	4.9\%	9\%	56\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
104	Companies in industry group.										

acks Company Report as of			12/09/05			Next EPS Report Date:			02/14/06
FIRSTENE	GY	FE	NYSE	Industry:	UTIL-ELEC PWR		Type:	Large	lend
$\begin{gathered} \hline \text { Rec Price } \\ \$ 47.92 \end{gathered}$	$\begin{aligned} & \text { P/E } \\ & 16.4 \end{aligned}$	$\begin{gathered} \text { Mkt Cap } \\ \$ 15806 \text { MM } \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.72 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 3.6 \% \end{aligned}$	$\begin{aligned} & \hline \text { Sales (12MO) } \\ & \$ 12020 \mathrm{MM} \end{aligned}$	$\begin{gathered} \text { SIs Gr } \\ 13 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ 1 \% \end{gathered}$	$\begin{gathered} \hline \text { Div Gr } \\ 1 \% \end{gathered}$	Zacks Rank Hold

FirstEnergy Corp. is a diversified energy services holding company as the result of the merger of Ohio Edison Company and Centerior Energy Corporation. FirstEnergy companies provide electricity and natural gas services and a wide array of energy-related products and services. FirstEnergy's four electric utility companies, Ohio Edison and its Pennsylvania Power subsidiary, The liluminating Company and Toledo Edison, serve customers in northern and central Ohio and western Pennsylvania. (Company Press Release)

Price/Volume Data		EPS,P/E and Growth Rates			Yr/Tr
52-Wk High	\$52.73	FY	EPS	P/E	EPS Gr
Low	\$38.26	12/04 Act	3.01	13.1	24\%
PriceChg-YTD	21\%	12/05 Est	2.95	16.2	-2\%
-YTD(Rel)	17\%	12/06 Est	3.57	13.4	21\%
Avg Dly Vol	1212000 s	Last 5 Yr			1\%
Exp Return/Risk		Next 3-5Yr (Est)			5\%
Impl Ret=Yld +Gr	8\%	Other Key Measures			5-Year
Beta	0.11		Curren		Avg
		P/E (12 Mo)	16.4		13.1
Shareholder Data		Rel P/E	94\%		
Shares Out	329.8 MM	Net Margin	7\%		6.3\%
Institutions	68.70\%	ROE	11.2\%		11.4\%
Insiders	0.40\%	LT Debt/Cap	51\%		53\%

UTIL-ELEC PWR	Industry Comparables						Impl				
Industry \# 193	$\begin{array}{\|c\|} \hline \text { Pr Chy } \\ \text { YTD } \end{array}$	$\begin{gathered} \text { P/E } \\ (12 \mathrm{Mo}) \end{gathered}$	EPS Gr 5 Yr Est	Pricel Book	Price/ Sales	Pricel CF	Ret PIE	Div Yield	Net Margin	ROE	Debt/ Cap
FIRSTENERGY CP	21\%	16.4	5\%	1.8	1.3	5.8	0.51	3.6\%	7.3\%	11\%	51\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
104	ompan	s in in	try grou								

Latest Splits:

Zacks Com	ny	12/09/05		Next EPS Report Date:					02/06/06
HaWAlla	ELEC	HE	NYSE	Industry:	UTIL ELEC PWR		Type:	Mid	Blend
Rec Price $\$ 26.58$	$\begin{aligned} & \hline \text { P/E } \\ & 18.7 \end{aligned}$	$\begin{aligned} & \hline \text { Mkt Cap } \\ & \$ 2152 \mathrm{MM} \end{aligned}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.24 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 4.7 \% \end{aligned}$	$\begin{aligned} & \text { Sales (12Mo) } \\ & \$ 2109 \mathrm{MM} \end{aligned}$	$\begin{gathered} \text { Sis Gr } \\ 4 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ 2 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Div Gr } \\ 0 \% \\ \hline \end{gathered}$	Zacks Rank Hold

Hawaiian Electric Industries, Inc. is a holding company with subsidiaries engaged in the electric utility, savings bank, freight transportation, real estate development and other businesses, primarily in the State of Hawaii, and in the pursuit of independent power projects in Asia and the Pacific.

Ave Broker Rec	\#Up	\#Dn
HOLD	0	0

Price/Volume Data		EPS.P/E and Growth Rates			Yrior
52-Wk High	\$29.76	FY	EPS	P/E	EPS Gr
Low	\$24.71	12/04 Act	1.61	18.1	2\%
PriceChg-YTD	-9\%	12/05 Est	1.53	17.4	-5\%
-YTD(Rel)	-12\%	12/06 Est	1.75	15.2	15\%
Avg Dly Vol	239000 s	Last 5 Yr			2\%
Exp Return/Risk		Next 3-5Yr (Est)			4%
Impl Ret=Yld +Gr	8\%	Other Kev Measures			5-Year
Beta	0.20		Curren		Avg
		P/E (12 Mo)	18.7		14.8
Shareholder Data		Rel P/E	107\%		
Shares Out	81.0 MM	Net Margin	5\%		5.3\%
Institutions	29.78\%	ROE	9.5\%		11.1\%
Insiders	0.74\%	LT Debt/Cap	64\%		63\%

UTIL-ELEC PWR	Industry Comparables						Impl				
industry \# 193	$\begin{aligned} & \text { Pr Chg } \\ & \text { YTD } \end{aligned}$	$\begin{gathered} \text { P/E } \\ \text { (12Mo) } \end{gathered}$	EPS Gr 5 Yr Est	Pricel Book	Pricel Sales	Price/ CF	Ret P/E	Div Yield	Net Margin	ROE	Debt Cap
HAWAIIAN ELEC	-9\%	18.7	4\%	1.8	1.0	7.9	0.44	4.7\%	5.4\%	10\%	64\%
INDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
104	Compan	s in ind	try group								

Northeast Utilities is the parent company of the Northeast Utilities system. The Northeast Utilities system fumishes franchised retail electric service in Connecticut, New Hampshire and western Massachusetts through three of the company's wholly owned subsidiaries: The Connecticut Light and Power Company; Public Service Company of New Hampshire; and Western Massachusetts Electric Company. It also provides service to a limited number of customers through another wholly owned subsidiary, Holyoke Water Power Company.

Price/Volume Data		EPS, P/E and Growth Rates			$\overline{\mathrm{Yr} / \mathrm{Tr}}$
52-Wk High	\$21.79	FY	EPS	P/E	EPS Gr
Low	\$17.61	$12 / 04$ Act	1.36	13.9	10\%
PriceChg-YTD	4\%	12/05 Est	1.10	17.8	-19\%
-YTD(Rel)	-0\%	12/06 Est	1.19	16.4	9\%
Avg Dly Vol	1543 000s	Last 5 Yr Next 3-5Yr (Est)			-3\%
Exp Return/Risk					8\%
Impl Ret=Y\|d+Gr	11\%	Other Key Measures			5-Year
Beta	0.37	Current			Avg
Shareholder Data		P/E (12 Mo)	20.8		14.6
		Rel P/E	119\%		
Shares Out	130.1 MM	Net Margin	-3\%		1.4\%
Institutions	66.87\%	ROE	5.7\%		7.6\%
Insiders	1.17\%	LT Debt/Cap	61\%		57\%

UTIL-ELEC PWR	Industry Comparables						Impl				
Industry \# 193	$\begin{aligned} & \text { Pr Chg } \\ & \text { YTD } \end{aligned}$	$\begin{gathered} \text { P/E } \\ \text { (12Mo) } \end{gathered}$	EPS Gr 5 Yr Est	Pricel Book	Pricel Sales	Pricel CF	Ret P/E	Div Yield	Net Margin	ROE	Debt/
NORTHEAST UTIL	4\%	20.8	8\%	1.3	0.4	3.6	0.54				Cap
INDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	1\%
S\&P 500	4\%	17.4	6\%	9.9				1.7\%			
* 104	Compan	s in ind	try grou								

Latest Splits:

cks Company Report as of			12/09/05			Next EPS Report Date:			01/27/06
PINNACLE	NEST	PNW	NYSE	Industry:	UTTL ELEC PWR		Type:	Large	Value
$\begin{gathered} \text { Rec Price } \\ \$ 42.28 \end{gathered}$	$\begin{aligned} & P / E \\ & 12.5 \end{aligned}$	$\begin{gathered} \text { Mkt Cap } \\ \$ 4186 \mathrm{MM} \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 2.00 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 4.7 \% \end{aligned}$	$\begin{gathered} \hline \text { Sales (12Mo) } \\ \$ 3061 \mathrm{MM} \end{gathered}$	$\begin{gathered} \text { SIs Gr } \\ -9 \% \end{gathered}$	$\begin{array}{\|c} \hline \text { EPS Gr } \\ -10 \% \end{array}$	$\begin{gathered} \hline \text { Div Gr } \\ 6 \% \end{gathered}$	Zacks Rank Hold

Pinnacle West Capital is engaged, through its subsidiaries, in the generation, transmission, and distribution of electricity and selling energy, producis and services; in real estate development; and in venture capital investment. Its primary subsidiary is Arizona Public Service Company. The company's other subsidiaries include SunCor, El Dorado, APS Energy Services and Pinnacle West Energy.

Price/Volume Data 52-Wk High $\$ 46.39$		EPS.P/E and Growth Rates			Yr/Yr
		FY	EPS	P/E	EPS Gr
Low	\$39.85	12/04 Act	2.39	18.6	-2\%
PriceChg-YTD	-5\%	$12 / 05$ Est	3.15	13.4	32\%
-YTD(Rel)	-8\%	12/06 Est	3.11	13.6	-1\%
Avg Dly Vol	380000 s	Last 5 Yr			-10\%
Exp Return/Risk		Next 3-5Yr (Est)			6\%
Impl Ret=Yld +Gr	11\%	Other Key Measures			5-Year
Beta	0.56		Curren		Avg
		P/E (12 Mo)	12.5		13.5
Shareholder Data		Rel P/E	72\%		
Shares Out	99.0 MM	Net Margin	6\%		7.3\%
Institutions	72.50\%	ROE	10.2\%		10.3\%
Insiders	1.10\%	LT Debt/Cap	42\%		49\%

UTIL-ELEEC PWR	Industry Comparables						Impl				
Industry \# 193	Pr Chg YTD	$\begin{gathered} \text { P/E } \\ (12 \mathrm{Mo}) \end{gathered}$	EPS Gr 5YrEst	Pricel Book	Pricel Sales	Pricel CF	Ret/ P/E	Div Yield	Net Margin	ROE	Debt/ Cap
PINNACLE WEST	-5\%	12.5	6\%	1.2	1.4	6.2	0.86	4.7\%	6.2\%	10\%	42\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
* 104	Companies in industry group.										

Latest Splits:
Ex-Div. Date: 10/28/05

Company Report as of			12/09/05			Next EPS Report Date:			02/21/06
PNMRESOURCES PNM			NYSE	Industry	UTIL ELEC PWR		Type:	Mid	alue
$\begin{gathered} \text { Rec Price } \\ \$ 25.35 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{P} / \mathrm{E} \\ & 17.4 \end{aligned}$	$\begin{gathered} \text { Mkt Cap } \\ \text { \$1743 MM } \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 0.80 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 3.2 \% \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sales (12Mo) } \\ \$ 1842 \mathrm{MM} \end{gathered}$	$\begin{gathered} \text { SIs Gr } \\ -5 \% \end{gathered}$	$\begin{gathered} \hline \text { EPS Gr } \\ -12 \% \end{gathered}$	$\begin{gathered} \hline \text { Div Gr } \\ 8 \% \\ \hline \end{gathered}$	Zacks Rank Sell

PNM Resources is an energy holding company based in Albuquerque, New Mexico. Its principal subsidiary is Public Service Company of New Mexico, which provides electric power and natural gas utility services to more than 1.3 million people in New Mexico. The company also sells power on the wholesale market in the Western U.S.

Ave Broker Rec	\#Up	\#Dn
HOLLD	0	0

Price/Volume Data	
52-Wk High	$\$ 30.26$
Low	$\$ 24.06$
PriceChg-YTD	0%
-YTD(Rel)	-4%
Avg Dly Vol	331000 s
Exp Return/Risk	
Impl Ret=Yld+Gr	11%
Beta	1.00
Shareholder Data	
Shares Out	68.8 MM
Institutions	81.52%
Insiders	1.00%

EPS,P/E and Growth Rates			Yr/ir
FY	EPS	P/E	EPS Gr
12/04 Act	1.43	17.7	10\%
$12 / 05$ Est	1.57	16.1	10\%
12/06 Est	1.87	13.6	19\%
$\begin{aligned} & \text { Last } 5 \mathrm{Yr} \\ & \text { Next 3-5Yr (Est) } \end{aligned}$			-12\%
			8\%
Other Key Measures			5-Year
	Current		Avg
P/E (12 Mo)	17.4		13.3
Rel P/E	100\%		
Net Margin	4\%		5.9\%
ROE	7.7\%		9.9\%
LT Debt/Cap	56\%		50\%

Zack		12/09/05				Next EPS Report Date:			02/08/06
PRLCORP		PPL	NYSE	Indus	TIL-ELEC PWR		Type:	Large	Blend
$\begin{gathered} \hline \text { Rec Price } \\ \$ 29.50 \end{gathered}$	$\begin{aligned} & \text { P/E } \\ & 14.7 \end{aligned}$	$\begin{gathered} \text { Mkt Cap } \\ \$ 11214 \text { MM } \end{gathered}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.00 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 3.4 \% \end{aligned}$	Sales (12Mo) $\$ 6186 \mathrm{MM}$	$\begin{gathered} \hline \text { Sis Gr } \\ 1 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ 1 \% \end{gathered}$	$\begin{gathered} \text { Div Gr } \\ 14 \% \end{gathered}$	Zacks Rank Hold

PPL Corporation is an energy and utility holding company. PPL controls about 11,500 megawatts of generating capacity in the United States, sells energy in key U.S. markets and delivers electricity to customers in Pennsylvania, the United Kingdom and Latin America.

Price/Volume Data		EPS.P/E and Growth Rates			Yr/ir
52-Wk High	\$33.31	FY	EPS	P/E	EPS Gr
Low	\$25.10	12/04 Act	1.86	14.4	0\%
PriceChg-YTD	11\%	12/05 Est	2.06	14.3	11\%
-YTD(Rel)	7\%	12/06 Est	2.22	13.3	8\%
Avg Dly Vol	1254 000s	Last 5 Yr			1\%
Exp Return/Risk		Next 3-5Yr (Est)			7\%
Impl Ret=Yld+Gr	11\%	Other Key Measures			5-Year
Beta	0.76		Curren		Avg
		P/E (12 Mo)	14.7		12.0
Shareholder Data		Rel P/E	84\%		
Shares Out	380.1 MM	Net Margin	11\%		8.6\%
Institutions	57.89\%	ROE	17.9\%		25.0\%
Insiders	0.90\%	LT Debt/Cap	58\%		68\%

UTIL-ELEC PWR		Industry	marab				Impl				
industry \# 193	Pr Chg YTD	$\begin{aligned} & \text { P/E } \\ & (12 \mathrm{Mo}) \end{aligned}$	EPS Gr 5YrEst	Pricel Book	Pricel Sales	Pricel CF	$\begin{aligned} & \text { Ret/ } \\ & \text { P/E } \end{aligned}$	$\begin{aligned} & \text { Div } \\ & \text { Yield } \end{aligned}$	Net Margin	ROE	Debt/ Cap
PPL CORP	11\%	14.7	7\%	2.6	1.8	8.3	0.74	3.4\%	10.8\%	18\%	58\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
* 104	Compan	s in ind	try group								

Report as of 12/09/05						Next EPS Report Date:			03/09/06
PROGRES	ENE	Y PGN	NYSE	Industry:	UTIL ELE EC PWR		Type:	Large	Value
Rec Price $\$ 44.26$	$\begin{gathered} \hline P / E \\ 13.8 \end{gathered}$	Mkt Cap \$11139 MM	Div Rate $\$ 2.36$	$\begin{aligned} & \text { Yield } \\ & 5 \end{aligned}$	Sales (12Mo) $\$ 9986$ MM	$\begin{array}{\|c\|} \hline \text { Sis Gr } \\ 13 \% \end{array}$	$\begin{array}{\|c\|} \hline \text { EPS Gr } \\ -0 \% \end{array}$	Div Gr 3%	Zacks Rank

CP \& L Energy, Inc, is primarily engaged in the generation, transmission, distribution and sale of electricity in portions of North and South Carolina and Florida and the transmission, distribution and sale of natural gas in portions of North Carolina. The company provides these and other services through its business segments: electric, natural gas and other.

Price/Volume Data		EPS.P/E and Growth Rates			Yr/Yr
52-Wk High	\$45.87	FY	EPS	P/E	EPS Gr
Low	\$41.03	12/04 Act	3.06	14.8	-14\%
PriceChg-YTD	-2\%	12/05 Est	3.06	14.4	0\%
-YTD(Rel)	-6\%	12/06 Est	3.08	14.4	0\%
Avg Dly Vol	820000 s	Last 5Yr			-0\%
Exp Return/Risk		Next 3-5Yr (Est)			4\%
Impl Ret=Yld +Gr	10\%	OtherKex Measures			5-Year
Beta	0.26		Curren		Avg
		P/E (12 Mo)	13.8		13.4
Shareholder Data		Rel P/E	79\%		
Shares Out	251.7 MM	Net Margin	7\%		7.6\%
Institutions	56.03\%	ROE	10.2\%		11.3\%
Insiders	0.70\%	LT Debt/Cap	54\%		59\%

UTIL-ELEC PWR		Industry	comparab				Impl				
Industry \# 193	Pr Chg YTD	$\begin{gathered} \text { P/E } \\ \text { (12Mo) } \end{gathered}$	EPS Gr 5Yr Est	Pricel Book	Pricel Sales	Pricel CF	Ret $/$ P/E	Div Yield	Net Margin	ROE	Debt/
PROGRESS ENERGY	-2\%	13.8	4\%	1.4	1.1	5.7	0.69	5.3\%	7.4\%		54\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	54\%
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
104	Compan	es in ind	try group								

Company Report as of			12/09/05			Next EPS Report Date:			02/08/06
PUGET EN	RGY	PSP	NYSE	Indusity:	UTIL-ELEC PWR		Type:	Mid	Value
$\begin{gathered} \text { Rec Price } \\ \$ 20.79 \end{gathered}$	$\begin{aligned} & \text { P/E } \\ & 13.8 \end{aligned}$	$\begin{aligned} & \text { Mkt Cap } \\ & \$ 2401 \mathrm{MM} \end{aligned}$	$\begin{gathered} \hline \text { Div Rate } \\ \$ 1.00 \end{gathered}$	$\begin{aligned} & \hline \text { Yield } \\ & 4.8 \% \end{aligned}$	$\begin{gathered} \hline \text { Sales (12MM) } \\ \$ 2537 \mathrm{MM} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Sis Gr } \\ -7 \% \end{gathered}$	$\begin{gathered} \text { EPS Gr } \\ -2 \% \end{gathered}$	$\begin{aligned} & \hline \text { Div Gr } \\ & -14 \% \end{aligned}$	Zacks Rank Hold

Puget Sound Energy, Incorporated is an investor-owned public utility that fumishes electric and gas service. The company conducts its business principally in the Puget Sound region of Washington state. PSE is on the forefront of the future. Innovative programs such as the PSE Energy Tracker are helping to make them the best energy distribution company anywhere, bar none. It's part of an ongoing promise: to offer their customers, community and shareholders unparalleted value in the 21 st century.

Ave Broker Rec	\#Up	\#Dn
HOLD	0	0

Price/Volume Data	
52-Wk High	$\$ 24.73$
Low	$\$ 20.50$
PriceChg-YTD	-16%
\quad-YTD(Rel)	-19%
Avg Dly Vol	355000 s
Exp Return/Risk	
Impl Ret=Yld+Gr	10%
Beta	0.29
Shareholder Data	
Shares Out	115.5 MM
Institutions	51.48%
Insiders	

EPS.P/E and Growth Rates			Yr/7r
FY	EPS	PIE	EPS Gr
12/04 Act	1.55	15.9	23\%
12/05 Est	1.38	15.1	-11\%
12/06 Est	1.49	14.0	8\%
Last 5 Yr			-2\%
Next 3-5Yr (Est)			5\%
Other Kev Measures			5-Year
	Curre		Avg
P/E (12 Mo)	13.8		16.7
Rel P/E	79\%		
Net Margin	3\%		4.2\%
ROE	9.1\%		9.1\%
LT Debt/Cap	58\%		59\%

UTIL-ELEC PWR	Industry Comparables						Impl				
	$\begin{array}{\|c} \text { Pr Chg } \\ \text { YTD } \end{array}$	$\begin{gathered} \text { P/E } \\ (12 \mathrm{Mo}) \end{gathered}$	EPS Gr 5Yr Est	Price Book	Price Sales	Pricel CF	Ret/ PIE	Div Yield	Net Margin	ROE	Deby Cap
PUGETENERGY	-16\%	13.8	5\%	1.2	0.9	5.2	0.71	4.8\%	3.0\%	9\%	58\%
NDUSTRY AVG*		16.4	6\%	1.8		7.4	0.58	3.4\%	5.8\%	11\%	
S\&P 500	4\%	17.4	6\%	9.9				1.7\%		32\%	
* 104	Companies in industry group.										

Introducing Fidelity Strategic Real Return Fund.
Click here to learn more.

 ? mos ?

Sithät
 Fidenty Erokerixe Sarvioss, Nernier NYSE. SiPC 413 H. 3

Earnings Center > Company Earnings

Earnings Estimates | Broker Recommendation | Forecasts | Earnings Snapshots | Performance Following a Surprise I Peer and Industry Comparisons

Earnings Estimates
AVISTA CORP (AVA)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NEUTRAL
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Consensus EPS Estimates
Report
Period

	Dec 05	2	0.79	0.88	0.70	0.79
FY1	Dec 06	4	1.47	1.60	1.35	1.47
FY2	-	2	5.50	6.00	5.00	5.50
LTG						

Earnings Center > Company Earnings

Earnings Estimates | Broker Recommendation | Forecasts | Earnings Snapshots | Performance Following a Surprise I Peer and Industry Comparisons

- Earnings Estimates CLECO CORPORATION (CNL)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is POSITIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	1.69
52 Week Range	$18.93-24.36$	5 Year Stability	36.60
Current PE	13.25	Annual Dividend	0.90
Beta	0.99		*All prices displayed in local currency

Consensus EPS Estimates						
Period	Report Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	6	0.18	0.21	0.13	0.18

Q2	Mar 06	2				
Q3	Jun 06	2	0.25	0.26	0.23	0.25
Q4	Sep 06	2	0.31	0.31	0.31	0.31
FY1	Dec 05	5	0.60	0.71	0.50	0.60
FY2	Dec 06	6	1.56	1.61	1.50	1.56
LTG	-	3	1.31	1.49	1.10	1.35

Earnings Momentum				
	$12 / 2005$	$03 / 2006$	$06 / 2006$	$09 / 2006$
\# Estimates Up/Down - 1 Week	$0 / 1$	$0 / 0$	$0 / 0$	$0 / 0$
\# Estimates Up/Down - 1 Month	$0 / 2$	$0 / 0$	$0 / 0$	$0 / 0$
Current Mean Estimate	0.18	0.25	0.31	0.60
Mean 1 Month Ago	0.21	0.26	0.31	0.71
Mean 3 Months Ago	0.26			
Data Provided by First Call/Thomson Financial				

[^20]
DPL INC (DPL)

Sector: Public Utilities

Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NEGATIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-9.22
52 Week Range	$23.87-28.34$	5 Year Stability	33.06
Current PE	24.02	Annual Dividend	0.96
Beta	0.93		*All prices displayed in local currency

Consensus EPS Estimates	\# of					
Period	Report Date Dec 05	Estimates Q1	2	Mean	High	Low
			0.34	0.37	0.30	Median
		3				
FY1	Dec 05	5	1.08	1.10	1.05	1.09
FY2	Dec 06	-	3	4.67	1.77	1.37
LTG				5.00	4.00	5.00

DUQUESNE LIGHT HOLDINGS INC (DQE)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

First Call Consensus Rec: Hold

The Analyst Company Sentiment is NEUTRAL
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-6.96
52 Week Range	$16.08-19.52$	5 Year Stability	26.42
Current PE	14.34	Annual Dividend	1.00
Beta	0.60		

EMPIRE DIST ELEC CO (EDE)

Sector: Public Utilities

Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NO RATING
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	16.00
52 Week Range	$19.25-25.01$	5 Year Stability	171.69
Current PE	19.54	Annual Dividend	1.28
Beta	0.65		

Consensus EPS Estimates						
Period	Report Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	3	0.13	0.16	0.10	0.14
FY1	Dec 05	3	1.05	1.10	1.01	1.03
FY2	Dec 06	4	1.15	1.25	1.05	1.15
LTG	-	2	2.00	3.00	1.00	2.00

ENERGY EAST CORP (EAS)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NEGATIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview				
Exchange	New York Stock Exchange	5 Year Growth	-14.28	
52 Week Range	$22.50-30.07$	5 Year Stability	175.19	
Current PE	12.69	Annual Dividend	1.16	
Beta	0.54		*All prices displayed in local currency	

Consensus EPS Estimates						
Reporiod	Rate	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	3	0.48	0.52	0.40	0.52
FY1	Dec 05	4	1.80	1.83	1.75	1.80
FY2	Dec 06	4	1.89	1.92	1.85	1.90
LTG	-	2	4.50	5.00	4.00	4.50

FIRSTENEŔGY CORP (FE)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NO RATING
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	0.30
52 Week Range	$37.70-53.36$	5 Year Stability	32.32
Current PE	16.61	Annual Dividend	1.80
Beta	0.60		

Consensus EPS Estimates						
Period	Report Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	9	0.75	0.79	0.70	0.73
Q2	Mar 06	3	0.62	0.68	0.59	0.60
Q3	Jun 06	3	0.83	0.87	0.80	0.81
Q4	Sep 06	3	1.23	1.28	1.18	1.22
FY1	Dec 05	15	2.96	3.10	2.80	2.95
FY2	Dec 06	15	3.54	3.65	3.15	3.55
LTG	-	7	5.00	7.00	3.00	5.00

HAWAIIAN ELEC INDS INC (HE)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is POSITIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview				
Exchange	New York Stock Exchange	5 Year Growth	3.83	
52 Week Range	$24.60-29.79$	5 Year Stability	16.20	
Current PE	16.97	Annual Dividend	1.24	
Beta	0.55		*All prices displayed in local currency	

Consensus EPS	Estimates					
Period	Report	\# of	Mean	High	Low	Median
Q1	Date	Estimates	0.45	0.49	0.39	0.46
Q2	Dec 05	4	0	0.39	0.40	0.37
Q3	Mar 06	2	0.42	0.42	0.42	0.39
Q4	Jun 06	2	0.48	0.49	0.46	0.48
FY1	Sep 06	2	1.53	1.60	1.45	1.53
FY2	Dec 05	6	1.74	1.90	1.65	1.73
LTG	Dec 06	6	3.70	5.00	2.50	4.00

NORTHEAST UTILS (NU)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NEGATIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-13.16
52 Week Range	$17.30-21.95$	5 Year Stability	36.36
Current PE	17.49	Annual Dividend	0.70
Beta	0.52		*All prices displayed in local currency

Consensus EPS	Estimates					
Period	Repor	\# of				
Q1	Date	Estimates	Mean	High	Low	Median
Q2	Dec 05	5	0.35	0.50	0.29	0.31
Q3	Mar 06	1	0.41	0.41	0.41	0.41
Q4	Jun 06	1	0.16	0.16	0.16	0.16
FY1	Sep 06	1	0.26	0.26	0.26	0.26
FY2	Dec 05	7	1.12	1.23	0.95	1.15
LTG	Dec 06	10	1.19	1.30	1.15	1.17

PINNACLE WEST CAPITAL CORP (PNW)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is NEGATIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-6.47
52 Week Range	$39.81-46.68$	5 Year Stability	51.60
Current PE	13.14	Annual Dividend	2.00
Beta	0.64		

Reported Quarters					
2					
	Last	2 Otrs A	3 Otrs Ago	Irs Ago	
Estimate Actual					
			2	3	4
		Last	Quarters	Quarters	Quarters
	Current	Quarters	Ago	Ago	Ago
Estimate	0.18	1.48	0.80	0.33	0.44
Actual	-	1.89	0.89	0.27	0.34
Surprise\%	-	28.05	11.95	-18.92	-23.08
Surprise \$ Amt	-	0.41	0.10	-0.06	-0.10

Consensus EPS Estimates						
Report						
Period	Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	6	0.18	0.49	0.05	0.12
Q2	Mar 06	2	0.31	0.38	0.24	0.31
Q3	Jun 06	2	0.84	0.92	0.76	0.84
Q4	Sep 06	2	1.60	1.66	1.53	1.60
FY1	Dec 05	9	3.17	3.30	3.05	3.15
FY2	Dec 06	10	3.08	3.25	2.96	3.05
LTG	-	5	6.00	12.00	3.00	5.00

[^21]
PNM RESOÚRCES INC (PNM)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is POSITIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-10.72
52 Week Range	$23.83-30.45$	5 Year Stability	43.29
Current PE	15.57	Annual Dividend	0.80
Beta	0.79		

Consensus EPS	Estimates					
Period	Report	\# of	Mean	High	Low	Median
Q1	Date	Estimates	6	0.40	0.44	0.35
Q2	Dec 05	3	0.55	0.61	0.51	0.40
Q3	Mar 06	3	0.30	0.34	0.27	0.30
Q4	Jun 06	Sep 06	3	0.63	0.75	0.56
FY1	Dec 05	8	1.57	1.60	1.50	1.58
FY2	Dec 06	8	1.88	1.97	1.80	1.88
LTG	-	5	10.66	18.80	5.00	11.50

PPL CORPORATION (PPL)

Sector: Public Utilities

Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is POSITIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview				
Exchange	New York Stock Exchange	5 Year Growth	1.14	
52 Week Range	$25.52-33.68$	5 Year Stability	13.84	
Current PE	14.30	Annual Dividend	1.00	
Beta	0.69		*All prices displayed in local currency	

Consensus EPS Estimates						
Period	Report Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	7	0.50	0.50	0.49	0.50
Q2	Mar 06	3	0.56	0.57	0.54	0.57
Q3	Jun 06	3	0.47	0.48	0.46	0.47
Q4	Sep 06	3	0.64	0.69	0.62	0.62
FY1	Dec 05	11	2.06	2.15	2.05	2.05
FY2	Dec 06	11	2.23	2.28	2.20	2.22
LTG	-	8	7.44	15.00	5.00	6.25

PROGRESS ENERGY (PGN)

Sector: Public Utilities
Industry: Electrical Utilities
Last Updated: December 31, 2005

The Analyst Company Sentiment is POSITIVE
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-3.82
52 Week Range	$40.19-46.00$	5 Year Stability	28.65
Current PE	14.23	Annual Dividend	2.42
Beta	0.53		

PUGET ENERGY INC (PSD)

Sector: Public Utilities

Industry: Electrical Utilities

Last Updated: December 31, 2005

The Analyst Company Sentiment is NEUTRAL.
Analyst Sentiment is determined by a quantitative company scoring model that scores company level sentiment based on analyst earnings revisions. The scoring model considers the following factors: analyst experience, magnitude of the revision, proximity of the revision to the actual earnings report date, range of estimates, historic stock performance following a given analyst's prior revisions, and market capitalization of the company.

Overview			
Exchange	New York Stock Exchange	5 Year Growth	-4.80
52 Week Range	$20.21-24.75$	5 Year Stability	105.03
Current PE	14.95	Annual Dividend	1.00
Beta	0.54		

Consensus EPS Estimates						
Period	Report Date	\# of Estimates	Mean	High	Low	Median
Q1	Dec 05	5	0.48	0.52	0.45	0.48
Q2	Mar 06	1	0.75	0.75	0.75	0.75
Q3	Jun 06	1	0.17	0.17	0.17	0.17
Q4	Sep 06	1	0.09	0.09	0.09	0.09
FY1	Dec 05	7	1.37	1.40	1.35	1.36
FY2	Dec 06	10	1.46	1.55	1.40	1.47
LTG	-	3	4.00	5.00	3.00	4.00

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

CASE NO. 2005-00341

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

Reaping Reward by Increasing Risk

in a portfolio, you need to increase the risk level of the portfolio that cannot be diversified away. According to this theory, savvy investors can outperform the overall market and win the profit race simply by adjusting their portfolios by a risk measure known as beta.

Beta and Systematic Risk

Beta? How did a Greek letter enter this discussion? Surely it didn't originate with a stock broker. Can you imagine any stockbroker saying, "We can reasonably describe the total risk in any security (or portfolio) as the total variability (variance or standard deviation) of the returns from the security"? But we who teach say such things often. We go on to say that part of total risk or variability may be called the security's systematic risk and that this arises from the basic variability of stock prices in general and the tendency for all stocks to go along with the general market, at least to some extent. The remaining variability in a stock's returns is called unsystematic risk and results from factors peculiar to that particular company; for example, a strike, the discovery of a new product, and so on.

Systematic risk, also called market risk, captures the reaction of individual stocks (or portfolios) to general market swings. Some stocks and portfolios tend to be very sensitive to market movements. Others are more stable. This relative volatility or sensitivity to market moves can be estimated on the basis of the past record, and is popularly known by-you guessed it-the Greek letter beta.

You are now about to learn all you ever wanted to know about beta but were afraid to ask. Basically, beta is the numerical description of systematic risk. Despite the mathematical manipulations involved, the basic idea behind the beta measurement is one of putting some precise numbers on the subjective feelings money managers have had for years. The beta calculation is essentially a comparison between the movements of an individual stock (or portfolio) and the movements of the market as a whole.

The calculation begins by assigning a beta of 1 to a broad market index, such as the S\&P 500. If a stock has a beta of 2 , then
on average it swings twice as far as the market. If the market goes up 10 percent, the stock tends to rise 20 percent. If a stock has a beta of 0.5 , it tends to be more stable than the market (it will go up or down 5 percent when the market rises or declines 10 percent). Professionals often call high-beta stocks aggressive investments and label low-beta stocks as defensive.

Now the important thing to realize is that systematic risk connot be eliminated by diversification. It is precisely because all stocks move more or less in tandem (a large share of their variability is systematic) that even diversified stock portfolios are risky. Indeed, if you diversified perfectly by buying a share in the S\&P index (which by definition has a beta of 1) you would still have quite variable (risky) returns because the market as a whole fluctuates widely.

Unsystematic risk is the variability in stock prices (and therefore, in returns from stocks) that results from factors peculiar to an individual company. Receipt of a large new contract, the finding of mineral resources on the company's property, labor difficulties, the discovery that the corporation's treasurer has had his hand in the company till-all can make a stock's price move independently of the market. The risk associated with such variability is precisely the kind that diversification can reduce. The whole point of portfolio theory is that, to the extent that stocks don't move in tandem all the time, variations in the returns from any one security tend to be washed away or smoothed out by complementary variation in the returns from other securities.

The following chart, similar to the one on page 211, illustrates the important relationship between diversification and total risk. Suppose we randomly select securities for our portfolio that tend on average to be just as volatile as the market (the average betas for the securities in our portfolio will always be equal to 1). The chart shows that as we add more and more securities, the total risk of our portfolio declines, especially at the start.

When ten securities are selected for our portfolio, a good deal of the unsystematic risk is eliminated, and additional diversification yields little further risk reduction. By the time twenty well-diversified securities are in the portfolio, the unsystematic risk is substantially eliminated and our portfolio

How Diversification Reduces Risk

Risk of Portiolio
(Standard Deviation of Return)

Source: Modigliani and Pogue, "An Introduction to Risk and Return." Finoncial Analysts fournal, March-April 1974.
(with a beta of 1) will tend to move up and down essentially in tandem with the market. Of course, we could perform the same experiment with stocks whose average beta is $1^{1 / 2}$. Again, we would find that diversification quickly reduced unsystematic risk, but the remaining systematic risk would be larger. A portfolio of twenty or more stocks with an average beta of $11 / 2$ would tend to be 50 percent more volatile than the market.

Now comes the key step in the argument. Both financial theorists and practitioners agree that investors should be compensated for taking on more risk with a higher expected return. Stock prices must, therefore, adjust to offer higher returns where more risk is perceived, to ensure that all securities are held by someone. Obviously, risk-averse investors wouldn't
buy securities with extra risk without the expectation of extra reward. But not all of the risk of individual securities is relevant in determining the premium for bearing risk. The unsystematic part of the total risk is easily eliminated by adequate diversification. So there is no reason to think that investors will receive extra compensation for bearing unsystematic risk. The only part of total risk that investors will get paid for bearing is systematic risk, the risk that diversification cannot help. Thus, the capital-asset pricing model says that returns (and, therefore, risk premiums) for any stock (or portfolio) will be related to beta, the systematic risk that cannot be diversified away.

The Capital-Asset Pricing Model (CAPM)

The proposition that risk and reward are related is not new. Finance specialists have agreed for years that investors do need to be compensated for taking on more risk. What is different about the new investment technology is the definition and measurement of risk. Before the advent of the capital-asset pricing model, it was believed that the return on each security was related to the total risk inherent in that security. It was believed that the return from a security varied with the instability of that security's particular performance, that is, with the variability or standard deviation of the returns it produced. The new theory says that the total risk of each individual security is irrelevant. It is only the systematic component that counts as far as extra rewards go.

Although the mathematical proof of this proposition is forbidding, the logic behind it is fairly simple. Consider a case in which there are two groups of securities-Group I and Group II-with twenty securities in each. Suppose that the systematic risk (beta) for each security is 1 ; that is, each of the securities in the two groups tends to move up and down in tandem with the general market. Now suppose that, because of factors peculiar to the individual securities in Group I, the total risk for each of them is substantially higher than the total risk for each security in Group II. Imagine, for example, that in addition to general market factors the securities in Group I are also particularly susceptible to climatic variations, to changes in
exchange rates, and to natural disasters. The specific risk for each of the securities in Group I will, therefore, be very high. The specific risk for each of the securities in Group II, however, is assumed to be very low, and, hence, the total risk for each of them will be very low. Schematically, this situation appears as follows:

Group I (20 Securities)	Group II (20 Securities)
Systematic risk (beta) $=1$ for	Systematic risk (beta) $=1$ for
each security	each security
Specific risk is high for	Specific risk is low for
each security	each security
Total risk is high for each security	Total risk is low for each security

Now, according to the old theory, commonly accepted before the advent of the capital-asset pricing model, returns should be higher for a portfolio made up of Group I securities than for a portfolio made up of Group II securities, because each security in Group I has a higher total risk, and risk, as we know, has its reward. With a wave of their intellectual wands, the academics changed that sort of thinking. Under the capi-tal-asset pricing model, returns from both portfolios should be equal. Why?

First, remember the preceding chart on page 223. (The forgetful can turn the page back to take another look.) There we saw that as the number of securities in the portfolio approached twenty, the total risk of the portfolio was reduced to its systematic level. All of the unsystematic risk had been eliminated. The conscientious readers will now note that in the schematic illustration, the number of securities in each portfolio is twenty. That means that the unsystematic risk has essentially been washed away: An unexpected weather calamity is balanced by a favorable exchange rate, and so forth. What remains is only the systematic risk of each stock in the portfolio, which is given by its beta. But in these two groups, each of the stocks has a beta of 1. Hence, a portfolio of Group I securities and a portfolio of Group II securities will perform exactly the same with respect to risk (standard deviation), even though the stocks in Group I display higher total risk than the stocks in Group II.

The old and the new views now meet head on. Under the old system of valuation, Group I securities were regarded as offering a higher return because of their greater risk. The cap-ital-asset pricing model says there is no greater risk in holding Group I securities if they are in a diversified portfolio. Indeed, if the securities of Group I did offer higher returns, then all rational investors would prefer them over Group II securities and would attempt to rearrange their holdings to capture the higher returns from Group I. But by this very process, they would bid up the prices of Group I securities and push down the prices of Group II securities until, with the attainment of equilibrium (when investors no longer want to switch from security to security), the portfolio for each group had identical returns, related to the systematic component of their risk (beta) rather than to their total risk (including the unsystematic or specific portions). Because stocks can be combined in portfolios to eliminate specific risk, only the undiversifiable or systematic risk will command a risk premium. Investors will not get paid for bearing risks that can be diversified away. This is the basic logic behind the capital-asset pricing model.

In a big fat nutshell, the proof of the capital-asset pricing model (henceforth to be known as CAPM because we economists love to use letter abbreviations) can be stated as follows:

If investors did get an extra return (a risk premium) for bearing unsystematic risk, it would turn out that diversified portfolios made up of stocks with large amounts of unsystematic risk would give larger returns than equally risky portfolios of stocks with less unsystematic risk. Investors would snap at the chance to have these higher returns, bidding up the prices of stocks with large unsystematic risk and selling stocks with equivalent betas but lower unsystematic risk. This process would continue until the prospective returns of stocks with the same betas were equalized and no risk premium could be obtained for bearing unsystematic risk. Any other result would be inconsistent with the existence of an efficient market.
The key relationship of the theory is shown in the following chart. As the systematic risk (beta) of an individual stock (or portfolio) increases, so does the return an investor can expect. If an investor's portfolio has a beta of zero, as might be

Risk and Return According to the Capital-Asset
Pricing Model Pricing Model*

*Those who remember their high school algebra will recall that any straight line cen be written as an equation. The equation for the straight line in the diagram is

Rate of Return = Risk-free Rate + Beta (Return from Market - Risk-free Rate).
Alternately, the equation can be written as an expression for the risk premium, that is, the te of return on the portfolio of stock over and above the risk-free rate of interest:

Rate of Return - Risk-free Rate $=$ Beta (Return from Market - Risk-free Rate).
The equation says that the risk premium you get on any stock or portfolio increases directly with the beta value you assume. Some readers may wonder what relationship beta has to any security is essentially the same thing as the covariance betweon that secy. The beta for market index as measured on the basis of past experience.
the case if all her funds were invested in a government-guaranteed bank savings certificate (beta would be zero because the returns from the certificate would not vary at all with swings in the stock market), the investor would receive some modest rate of return, which is generally called the risk-free rate of interest. As the individual takes on more risk, however,
the return should increase. If the investor holds a portfolio with a beta of 1 (as, for example, holding a share in one of the broad stock-market averages) her return will equal the general return from common stocks. This return has over long periods of time exceeded the risk-free rate of interest, but the investment is a risky one. In certain periods, the return is much less than the risk-free rate and involves taking substantial losses. This, as we have said, is precisely what is meant by risk.

The diagram shows that a number of different expected returns are possible simply by adjusting the beta of the portfolio. For example, suppose the investor put half of her money in a savings certificate and half in a share of the market averages. In this case, she would receive a return midway between the risk-free return and the return from the market and her portfolio would have an average beta of 0.5 . ${ }^{*}$ The CAPM then asserts very simply that to get a higher average long-run rate of return you should just increase the beta of your portfolio. An investor can get a portfolio with a beta larger than 1 either by buying high-beta stocks or by purchasing a portfolio with average volatility on margin. (See the chart and following table.) One fund proposed by a West Coast bank would have allowed an investor to buy the S\&P average on margin, thus increasing both his risk and potential reward. Of course, in times of rapidly declining stock prices, such a fund would have enabled an investor to lose his shirt in a hurry. This may explain why the fund found few customers in the 1970s.

Just as stocks had their fads, so beta came into high fashion by the early 1970s. The Institutional Investor, the glossy prestige magazine that spent most of its pages chronicling the accomplishments of professional money managers, put its imprimatur on the movement in 1971 by featuring on its cover the letters BETA on top of a temple and including as its lead story "The Beta Cult! The New Way to Measure Risk." The magazine noted that money men whose mathematics hardly went beyond long division were now "tossing betas around with the abandon of Ph.D.s in statistical theory." Even the Securities and Exchange Commission gave beta its approval as
*In general, the beta of a portfolio is simply the weighted average of the betas of its component parts.

Illustration of Portfolio Building ${ }^{a}$

Desired Beto	Composition of Portfolio	Expected Return from Portfolio
0	$\$ 1$ in risk-free asset	10%
$1 / 2$	$\$.50$ in risk-free asset	$1 / 2(0.10)+1 / 2(0.15)=0.125$,
	$\$.50$ in market portfolio	or $121 / 2 \%^{2}$
1	$\$ 1$ in market portfolio	15%
$11 / 2$	$\$ 1.50$ in market portfolio	$11 / 2(0.15)-1 / 2(0.10)=0.175$,
	borrowing $\$.50$ at an assumed rate of 10 percent	
		or $171 / 2 \%$

- Assuming expected market return is 15 percent and risk-free rate is 10 percent.
${ }^{\text {s }}$ We can also derive the figure for expected return using directly the formula that accompanies the preceding chart:

Rate of Return $=0.10+1 / 2(0.15-0.10)=0.125$ or $12 \% / \%$.
a risk measure in its Institutional Investors Study Report.
On Wall Street, the early beta fans boasted that they could earn higher long-run rates of return simply by buying a few high-beta stocks. Those who thought they were able to time the market thought they had an even better idea. They would buy high-beta stocks when they thought the market was going up, switching to low-beta ones when they feared the market might decline. To accommodate the enthusiasm for this new investment idea, beta measurement services proliferated among brokers, and it was a symbol of progressiveness for an investment house to provide its own beta estimates. Today, you can obtain beta estimates from brokers such as Merrill Lynch and investment advisory services such as Value Line and Morningstar. The beta boosters on the Street aversold their product with an abandon that would have shocked even the most enthusiastic academic scribblers intent on spreading the beta gospel.

Let's Look at the Record

In Shakespeare's Henry IV, Glendower boasts to Hotspur, "I can call spirits from the vasty deep." "Why, so can I or so can any man," says Hotspur, unimpressed; "but will they come when you do call for them?" Anyone can theorize about how security markets work, and the capital-asset pricing model is
just another theory. The really important question is: Does it work?

Certainly many institutional investors have embraced the beta concept, if only in an attempt to play down the flamboyant excesses of the past. Beta is, after all, an academic creation. What could be more staid? Simply created as a number that describes a stock's risk, it appears almost sterile in nature. True, it requires large investments in computer programs, but the closet chartists love it. Even if you don't believe in beta, you have to speak its language because, back on the nation's campuses, my colleagues and I have been producing a long line of Ph.D.s and M.B.A.s who spout its terminology. They have gone professional and now use beta as a method of evaluating a portfolio manager's performance. If the realized return is larger than that predicted by the overall portfolio beta, the manager is said to have produced a positive alpha. Lots of money in the market sought out the manager who could deliver the largest alpha.

But is beta a useful measure of risk? Is it true that high-beta portfolios will provide larger long-term returns than lowerbeta ones, as the capital-asset pricing model suggests? Does beta alone summarize a security's total systematic risk, or do we need to consider other factors as well? In short, does beta really deserve an alpha? These are subjects of intense current debate among practitioners and academics.

In a study published in 1992, Eugene Fama and Kenneth French divided all traded stocks on the New York, American, and NASDAQ exchanges into deciles according to their beta measures over the 1963-90 period. Decile one contained the 10 percent of all stocks that had the lowest betas; decile ten contained the 10 percent that had the highest betas. The remarkable result, shown in the exhibit on page 231, is that there was essentially no relationship between the return of these decile portfolios and their beta measures. I have done a similar study showing the relationship between return and beta for mutual funds. The exhibit on page 232 presents the results for the 1980s; similar results were obtained for other periods. It appears that there is no relationship between returns for stocks or porffolios and their beta measures of risk, confirming the Fama-French results.

Because their comprehensive study covered a period of

Average Monthly Return vs. Beta: 1963-90 (Fama and French Study)

almost 30 years, Fama and French concluded that the relationship between beta and return is essentially flat. Beta, the key analytical tool of the capital-asset pricing model, is not a useful measure to capture the relationship between risk and return. And so, by the mid-1990s, not only practitioners but even many academics as well, were ready to assign beta to the scrap heap. The financial press, which earlier had chronicled the ascendancy of beta, now ran feature stories with titles such as "The Death of Beta," "Bye, Bye Beta," and "Beta Beaten." Typical of the times was a letter quoted in the Institutional Investor from a writer known only as "Deep Quant." *The letter began, "There is a very big story breaking in money man-
*"Quant" is the Wall Street nickname for the quantitatively inclined financial analyst who devotes attention largely to the new investment technology.

Average Quarterly Returns vs. Beta
271 Mutual Funds 1981-91
(Malkiel Study)

agement. The Capital-Asset Pricing Model is dead." The magazine went on to quote one "turncoat quant" as follows: "Advanced mathematics will become to investors what the Titanic was to sailing." And so the whole set of tools making up the new investment technology-including even modern portfolio theory (MPT)-came under a cloud of suspicion.

An Appraisal of the Evidence

My own guess is that the "turncoat quant" is wrong. The unearthing of serious cracks in the CAPM will not lead to an abandonment of mathematical tools in financial analysis and a return to traditional security analysis. Moreover, I am not quite

"Does it bother you at all that when you say MPT quickly it comes out 'empty'?"
© Milt Priggee / Pensions \& Investments. Reprinted by parmission.
ready to write an obituary for beta at this time. There are many reasons, I believe, to avoid a rush to judgment.

First, it is important to remember that stable returns are preferable, that is, less risky than very volatile returns. Clearly, if one could earn only the same rate of return drilling for oil as could be obtained from a riskless government security, only those who loved gambling for gambling's sake alone would drill for oil. If investors really did not worry at all about volatility, the multi-trillion-dollar derivative-securities markets would not be thriving as they are. Thus, the beta measure of relative volatility does capture at least some aspects of what we normally think of as risk. And portfolio betas from the past do a reasonably good job of predicting relative volatility in the future.

Secondly, as Richard Roll has argued, we must keep in mind that it is very difficult (indeed probably impossible) to measure beta with any degree of precision. The S\&P 500 index is not "the market." The total stock market contains many thousands of additional stocks in the United States and thousands more in foreign countries. Moreover, the total market includes bonds, real estate, precious metals, and other com-
modities and assets of all sorts, including one of the most important assets any of us has--the human capital built up by education, work, and life experiences. Depending on exactly how you measure the "market," you can obtain very different beta values. One's conclusions about the capital-asset pricing model and the usefulness of beta as a measure of risk depend very much on how you measure beta. Two economists from the University of Minnesota, Ravi Jagannathan and Zhenyu Wang, find that when the market index (against which we measure beta) is redefined to include human capital and when betas are allowed to vary with cyclical fluctuations in the economy, the support for the CAPM and beta as a predictor of returns is quite strong. Third, there is some evidence that returns are positively related to beta when measured over a much longer period, such as 1927 to the present.

Finally, investors should be aware that even if the long-run relationship between beta and return is flat, beta can still be a useful investment management tool. Were it in fact the case that low-beta stocks will dependably earn rates of return at least as large as high-beta stocks (a very big "if" indeed), then beta as an investment tool is even more valuable than it would be if the capital-asset pricing model held. Investors should scoop up low-beta stocks and earn returns as attractive as for the market as a whole but with much less risk. And investors who do wish to seek higher returns by assuming greater risk should buy and hold low-beta stocks on margin, thereby increasing their risk and returns. Moreover, beta may be a useful risk measure during sharp market swings. High-beta stocks did tend to fall more than low-beta stocks in all of the bear market periods during the past fifty years. What is clear, however, is that beta, as it is usually measured, is not a substitute for brains and cannot be relied on as a simple predictor of long-run future returns. Nevertheless, reports of beta's total demise are, in my judgment, premature.

The Quant Quest for Better Measures of Risk: Arbitrage Pricing Theory

If beta is badly damaged as an effective quantitative measure of risk, is there anything to take its place? One of the pioneers in the field of risk measurement is Stephen Ross. Ross has developed a theory of pricing in the capital markets called arbi-
trage pricing theory (APT). APT has had wide influence both in the academic community and in the practical world of portfolio management. To understand the logic of the newest APT work on risk measurement, one must remember the correct insight underlying the CAPM: The only risk that investors should be compensated for bearing is the risk that cannot be diversified away. Only systematic risk will command a risk premium in the market. But the systematic elements of risk in particular stocks and portfolios may be too complicated to be capturable by a measure of beta-the tendency of the stocks to move more or less than the market. This is especially so because any particular stock index is a very imperfect representative of the general market. Hence, many quants now feel that beta fails to capture a number of important systematic elements of risk.

Let's take a look at several of these other systematic risk elements. Changes in national income, for one, may affect returns from individual stocks in a systematic way. This was shown in our illustration of a simple island economy in Chapter Eight. Also, changes in national income mirror changes in the personal income of individuals, and the systematic relationship between security returns and salary income can be expected to have a significant effect on individual behavior. For example, the laborer in a GM plant will find a holding of GM common stock particularly risky, because job layoffs and poor returns from GM stock are likely to occur at the same time. Changes in national income may also reflect changes in other forms of property income and may, therefore, be relevant for institutional portfolio managers as well.

Changes in interest rates also systematically affect the returns from individual stocks and are important nondiversifiable risk elements. To the extent that stocks tend to suffer as interest rates go up, equities are a risky investment, and those stocks that are particularly vulnerable to increases in the general level of interest rates are especially risky. Thus, some stocks and fixed-income investments tend to move in parallel, and these stocks will not be helpful in reducing the risk of a bond portfolio. Because fixed-income securities are a major part of the portfolios of many institutional investors, this systematic risk factor is particularly important for some of the largest investors in the market. Clearly, then, investors who think of risk in its broadest and most meaningful sense
will be sensitive to the tendency of certain stocks to be particularly affected by changes in interest rates.

Changes in the rate of inflation will similarly tend to have a systematic influence on the returns from common stocks. This is so for at least two reasons. First, an increase in the rate of inflation tends to increase interest rates and thus tends to lower the prices of some equities, as just discussed. Second, the increase in inflation may squeeze profit margins for certain groups of companies-public utilities, for example, which often find that rate increases lag behind increases in costs. On the other hand, inflation may benefit the prices of common stocks in the natural-resource industries. Thus, again there are important systematic relationships between stock returns and economic variables that may not be captured adequately by a simple beta measure of risk.

Statistical tests of the influence on security returns of several systematic risk variables have shown somewhat promising results. Better explanations than those given by the CAPM can be obtained for the variation in returns among different securities by using, in addition to the traditional beta measure of risk, a number of systematic risk variables, such as sensitivity to changes in national income, in interest rates, and in the rate of inflation. Of course, the evidence supporting multiple-risk-factor models of security pricing has only begun to accumulate, and the APT measures of risk are beset by some of the same problems faced by the CAPM beta measure. It is not yet certain how these new theories will stand up to more extensive examination.

If, however, one wanted for simplicity to select the one risk measure most closely related to expected returns, the traditional beta measure would not be most analysts' first choice. In my own work with John Cragg, the best single risk proxy turned out to be the extent of disagreement among security analysts' forecasts for each individual company. Companies for which there is a broad consensus with respect to the growth of future earnings in dividends seem to be considered less risky (and, hence, have lower expected returns) than companies for which there is little agreement among security analysts. It is possible to interpret this result as contradicting modern asset pricing theory, which suggests that individual security variability per se will not be relevant for valuation. The dispersion of analysts'
forecasts, however, may actually serve as a particularly useful proxy for a variety of systematic risks.

Although we still have much to learn about the market's evaluation of risk, I believe it is fair to conclude that risk is unlikely to be captured adequately by a single beta statistic (the risk measure of the CAPM). It appears that several other systematic risk measures affect the valuation of securities. In addition, as will be indicated in the next chapter, there is some evidence that security returns are related to size (smaller firms tend to have higher rates of return) and also to price-earnings multiples (firms with low P / Es tend to produce higher returns) and price-book value ratios (stocks that are cheap relative to their book values tend to earn higher total returns). All three of these measures may be effective proxies for systematic risk. Whether individual risk plays any role at all in the valuation process is still, however, an open question.

My results with Cragg can be interpreted as showing that individual security variability does play a role in the valuation process. This would not be hard to explain. Because of transactions and information costs, a large number of individual portfolios may not be diversified. Individuals own a significant fraction of all NYSE stocks and an even larger fraction of stocks traded on other exchanges. Thus, these security holders might well be concerned with the variability of individual stocks. Even well-diversified institutional investors may worry about the behavior of individual stocks when they must report to finance committees the breakdown of their performance results over the preceding period. Still, there is a powerful argument on the other side. Any role in the valuation process that may consistently be provided by individual security variability will create an arbitrage opportunity for investors able to diversify widely. It is difficult to believe that these arbitrage opportunities will not eventually be exploited. Returning to the theme we played earlier, eventually "true value will out."

A Summing Up

Chapters Eight and Nine have been an academic exercise in the modern theory of capital markets. The stock market appears
to be an efficient mechanism that adjusts quite quickly to new information. Neither technical analysis, which analyzes the past price movements of stocks, nor fundamental analysis, which analyzes more basic information about the prospects for individual companies and the economy, seems to yield consistent benefits. It appears that the only way to obtain higher longrun investment returns is to accept greater risks.

Unfortunately, a perfect risk measure does not exist. Beta, the risk measure from the capital-asset pricing model, looks nice on the surface. It is a simple, easy-to-understand measure of market sensitivity. Unfortunately, beta also has its warts. The actual relationship between beta and rate of return has not corresponded to the relationship predicted in theory during the last third of the twentieth century. Moreover, betas are not stable from period to period, and they are very sensitive to the particular market proxy against which they are measured.

I have argued here that no single measure is likely to capture adequately the variety of systematic risk influences on individual stocks and portfolios. Returns are probably sensitive to general market swings, to changes in interest and inflation rates, to changes in national income, and, undoubtedly, to other economic factors such as exchange rates. And if the best single risk estimate were to be chosen, the traditional beta measure is unlikely to be everyone's first choice. The mystical perfect risk measure is still beyond our grasp.

To the great relief of assistant professors who must publish or perish, there is still much debate within the academic community on risk measurement, and much more empirical testing needs to be done. Undoubtedly, there will yet be many improvements in the techniques of risk analysis, and the quantitative analysis of risk measurement is far from dead. My own guess is that future risk measures will be even more sophisti-cated-not less so. Nevertheless, we must be careful not to accept beta or any other measure as an easy way to assess rísk and to predict future returns with any certainty. You should know about the best of the modern techniques of the new investment technology-they can be useful aids. But there is never going to be a handsome genie who will appear and solve all our investment problems. And even if he did, we would
probably foul it up-as did the little old lady in the following favorite story of Robert Kirby of Capital Guardian Trust:

She was sitting in her rocking chair on the porch of the retirement home when a little genie appeared and said, "I've decided to grant you three wishes."

The little old lady answered, "Buzz off, you little twerp, I've seen all the wise guys I need to in my life."

The genie answered, "Look, I'm not kidding. This is for real. Just try me."

She shrugged and said, "Okay, turn my rocking chair into solid gold."

When, in a puff of smoke, he did it, her interest picked up noticeably. She said, "Turn me into a beautiful young maiden."

Again, in a puff of smoke, he did it. Finally, she said, "Okay, for my third wish turn my cat into a handsome young prince."

In an instant, there stood the young prince, who then turned to her and asked, "Now aren't you sorry you had me fixed?"

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

	Variable Name	High	Low	Sample	Median	Average
1	Timeliness Rank	5.00	1.00	1561	3.00	2.99
2	Performance Rank	NA	NA	0	NA	NA
3	Safety Rank	5.00	1.00	1664	3.00	2.95
4	Technical Rank	5.00	1.00	1561	3.00	3.00
5	Beta	2.60	0.35	1624	1.05	1.11
6	Stock Price	90350.00	0.57	1775	30.17	99.53
7	Change	10.00	-300.00	1757	0.03	-0.12
8	\% Change	13.05	-20.23	1757	0.13	0.07
9	Volume	289416190	230.00	1759	214429.00	708403.01
10	Current EPS	3639.00	-5.63	1638	1.65	4.27
11	EPS Trail 12 MO	3579.00	-5.21	1623	1.50	4.08
12	Current P/E Ratio	935.00	2.27	1528	18.25	24.45
13	Relative P/E Ratio	5.28	0.09	1445	1.03	1.22
14	Median P/E	60.00	6.50	1088	18.00	20.12
15	P/E Tralling 12 Mo	99.28	1.69	1445	19.41	22.96
16	Earnings Yield Trail 12 Mo	59.14	0.04	1480	5.11	5.41
17	High Price 52-Week	9200000	2.23	1660	36.36	97.34
18	Low Price 52-Week	78800.00	0.87	1660	24.60	75.25
19	Indicated Annual Dividend	8.00	0.00	1780	0.16	0.43
20	Div'd Yield	21.30	0.00	1780	0.52	1.21
21	Market Cap \$ (MiI)	1364811.50	17.55	1731	2924.56	21254.06
22	Reported Annual Sales	1558270.13	3.73	1586	1890.33	14643.65
23	Sales Trail 12 Mo	325891.00	3.80	1482	1784.00	7742.01
24	Gross Income	283270.47	-925.00	1646	727.27	4568.75
25	Gross Margin	100.00	-5067.58	1577	37.99	36.33
26	SG \& A Expenses	118054.08	2.00	1563	333.92	2375.40
27	Operating Income	186342.11	0.68	1604	347.13	2469.83
28	Operating Margin	100.00	-6000.18	1577	14.84	10.20
29	Depreciation	65232.88	0.00	1780	58.86	609.92
30	Other income	23570.00	-35.00	1780	4.22	152.60
31	Income Before Taxes	136379.36	0.01	1560°	212.80	1346.82
32	Net Income	77327.08	-13996.00	1693	116.15	805.58
33	Net Income Trail 12 Mo	2533000	-2640.00	1492	106.70	580.97
34	Profit Margin	81.20	-6001.64	1577	5.81	-1.81
35	Net Profit Margin Trail 12 Mo	5570.77	0.09	1261	6.17	13.68
36	Cash	122152.00	0.00	1780	198.17	1696.86
37	Accounts Receivable	415502.31	0.00	1780	169.78	2297.11
38	Inventories	222792.00	0.00	1780	96.08	1460.54
39	Other Current Assets	405980.00	0.00	1780	52.56	1424.22
40	Total Current Assets	758158.00	0.00	1780	622.80	6697.82
41	Intangibles	266178.81	0.00	$1780{ }^{\circ}$	179.57	2589.54
42	Gross Plant	685877.94	0.00	1780	671.00	7842.49
43	Accumulated Depreciation	375552.19	0.00	1780	290.30	3508.18
44	Net Plant	579230.19	0.00	1780	336.72	4563.50
45	Total Assets	148410100	0.00	$1780{ }^{\circ}$	2320.18	24472.00
46	Short-Term Debt	391829.19	0.00	1780	8.57	1123.98
47	Accounts Payable	161221.00	0.00	1780	96.30	1498.42
48	Other Current Liabilities	447234.00	0.00	1780	142.10	2171.83
49	Total Current Liabilities	650966.00	0.00	1780	320.13	4794.23
50	Working Capital	287826.00	-15271.00	1780	200.37	1903.59

[^22]
Full Database

Dec 07, 2005 18:03 PM

	Variable Name	High	Low	Sample	Median	Average
51	Deferred Taxes	7673.23	-1683.00	1780	0.12	55.56
52	Long-Term Debt	478539.00	0.00	1780	379.91	4584.59
53	Preferred Equity	12178.36	-33.01	1718	0.00	66.91
54	Common Equity	512275.06	-2630.33	1693	1021.15	6063.37
55	Shareholders Equity	512620.97	-2630.33	1693	1032.97	6131.27
56	Total Capital	621113.00	6.57	1693	1615.79	10951.45
57	Common Shares Outstanding	43801.30	1.53	1718	96.92	584.54
58	Capital Spending	76650.02	0.00	1780	60.70	638.11
59	Cash Flow	75338.61	-2252.00	1780	150.03	1203.94
60	Free Cash Flow	32194.54	-2902.69	1780	53.21	429.72
61	$\%$ SG \& A to Gross Income	286.57	-64.38	1460	58.63	56.98
62	$\% S G \& A$ to Sales	286.57	0.00	1465	22.11	26.30
63	Income TaxRate	633175	0.00	1780	32.22	34.04
64	Return on Sales	0.81	-60.02	1577	0.06	-0.02
65	Return on Common Equity	217.93	-95.86	1676	12.34	13.37
66	Return on Shareholders Equity	217.93	-95.86	1677	12.34	13.31
67	Return on Total Assets	42.28	-68.36	1691	4.83	5.17
68	Return on Total Assets Latest Qtr	14.71	-47.78	1485	1.33	1.24
69	Return on Total Capital	145.88	-79.77	1690	9.14	9.64
70	\% Retained to Common Equity	217.93	-249.37	1686	9.45	9.28
71	Dividend Payout	268.75	-220.00	1780	4.08	17.37
72	\% All Divs/Net Inc Trail 12 mo	908.90	0.00	1780	0.00	19.14
73	Current Ratio Latest Qtr	243.72	0.14	1383	1.87	2.61
74	Quick Ratio Latest Qtr	243.72	0.12	1383	1.35	2.09
75	\% LTD/Capital	277.37	0.00	1452	32.70	35.23
76	\% LTD/Capital Latest Qtr	216.41	0.00	1150	32.65	35.01
77	\% DebtUCapital Latest Qtr	569.90	0.00	1152	32.60	35.72
78	\% Shr Equity to Total Assets	96.63	-122.92	1693	44.65	44.56
79	\% Common Equity/Capital	1.00	-39.81	1693	0.71	0.67
80	ROEL Latest Qtr	500.00	-53143	1484	3.31	3.57
81	Sales per share	646.10	0.03	1577	20.19	31.42
82	Cash Flow per share	80.93	4.82	1578	2.30	2.85
83	Avg Basic Shares	36807.45	5.08	1693	96.91	570.63
84	Avg Diluted Shares	37986.92	5.25	1693	99.23	584.50
85	Basic Earn P/Sh	16.12	-5.68	1603	1.44	1.67
86	Diluted Earn P/Sh	15.83	-5.68	1603	1.41	1.63
87	Div'ds Declared per share	13.60	0.00	1780	0.13	0.38
88	Book Value per share	251.93	-9.14	1693	10.75	13.35
89	Capl Spending per share	21.37	0.00	1592	0.79	1.42
90	Price/Sales Ratio	106.42	0.01	1477	1.31	2.32
91	$\%$ FCF/Price Latest Qtr	297.45	-98.71	992	48.08	65.22
92	Avg Annual P/E Ratio	8282.84	-1807.10	1687	18.13	22.53
93	Avg Annual Dividend Y Yield	35.28	0.00	1780	0.58	1.19
94	Price to Book Value Qtr	2853.84	0.11	1464	2.49	5.56
95	Price To Book Value	141.00	0.00	1672	2.00	3.19
96	Est Annual Sales	343125.00	0.10	1538	1865.00	79797.28
97	Est Operating Margin	4400.00	0.50	1365	15.00	22.33
98	Est Depreciation	3100000	1.00	1253	67.00	350.16
99	Est Net Before Taxes	5057377	-9500.00	1608	198.53	970.10
100	Est Tax Rate	1620.00	1.00	1463	35.00	33.63

12/(Copyright (c) 2005, Value Line Publishing, Inc. All rights reserved. Factual material is obtained from sources $3 / 12$ believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, noncommercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

Full Database

Dec 07, 2005 18:03 PM

	Variable Name	High	Low	Sample	Median	Average
101	Est Net After Taxes	30850.00	-9500.00	1664	130.00	631.01
102	Est Profit Margin	52.90	0.10	1342	7.20	9.40
103	Est Sales/Share	881.35	0.10	1482	21.65	35.11
104	Est Cash Flow/Share	113.75	-3.85	1480	2.60	3.25
105	Est EPS Current Fiscal Year	3600.00	-5.00	1632	1.60	4.23
106	Est EPS Next Fiscal Year	4150.00	-3.00	1451	1.90	5.24
107	Est Dividends/Share	9.10	0.00	1780	0.16	0.43
108	Est Book Value/Share	59360.00	-9.80	1634	12.20	51.39
109	Est Long-Term Debt	48500000	0.00	1780	185.00	2688.15
110	Est Shareholders Equity	19000000	-2935.00	1527	1005.00	4190.07
111	Est Return on Total Capital	73.50	0.20	1395	10.00	11.77
112	Est Return on Shareholders Equity	130.00	0.20	1478	13.50	15.02
113	Sales Growth 1-Year	335.94	-73.75	1573	11.33	13.84
114	Sales Growth 5-Year	95.00	-42.50	1286	6.50	7.70
115	Sales Growth 10-Year	65.00	-32.50	958	7.50	8.41
116	CashFlow Growth 1 Year	445.69	-74.33	1429	14.74	23.47
117	Cash Flow Growth 5-Year	72.50	-44.00	1186	5.50	6.22
118	Cash Flow Growth 10-Year	80.50	-26.00	890	8.00	8.73
119	EPS Growth 1-Year	491.07	-74.46	1376	18.35	35.80
120	EPS Growth 5 Year	95.00	-45.00	1156	7.00	7.90
121	EPS Growth 10-Year	62.00	-28.50	892	9.50	9.74
122	Dividend Growth 1 Year	433.33	-72,17	958	8.82	24.76
123	Dividend Growth 5-Year	75.00	-47.00	690	5.50	6.18
124	Dividend Growth 10 -Year	38.50	-25.00	640	6.00	6.45
125	Book Value Growth 1-Year	440.44	-73.57	1648	11.13	14.59
126	Book Value Growth 5-Year	88.50	47.00	1360	9.00	9.83
127	Book Value Growth $10-\mathrm{Year}$	72.50	-37.50	1030	9.00	9.67
128	Sales Latest Qtr	86622.00	1.42	1381	424.76	1627.39
129	Depreciation Latest Qtr	3496.00	0.01	1362	16.92	68.10
130	Net Income Latest Qtr	7640.00	-288.71	1485	26.59	138.34
131	EPS 10Q Latest Qtr	26.31	-6.63	1478	0.38	0.49
132	Dividend Latest Qtr	3082.20	0.00	1780	0.00	31.74
133	Inventories Latest Qtr	114458.96	0.16	1132	177.04	721.35
134	Current Assets Latest Qtr	730388.00	1.83	1383	677.42	4823.82
135	Curr Assets/Share Latest Qtr	1672.03	0.13	1383	8.32	17.48
136	Current Liabilities Latest Qtr	528207.00	2.79	1383	352.60	3156.95
137	Long-Term Debt Latest Qtr	478539.00	0.00	1780	200.03	2677.89
138	Preferred Equity Latest Qtr	4108.00	0.00	1780	0.00	19.50
139	Common Equity Latest Qtr	112981.00	-2663.00	1485	857.52	3211.08
140	Shareholders Equity Latest Qtr	113037.00	-2663.00	1485	868.27	3234.44
141	Common Shares Outstg Latest Qtr	10645.00	5.17	1485	83.09	259.76
142	Working Capital Latest Qtr	227839.00	-11104.00	1383	247.87	1666.87
143	Gross Billings Latest Qtr	NA	NA	0	NA	NA
144	Total Deposits Latest Qtr	173658.00	4127.47	13	10030.05	26916.58
145	Bank SL Loans Latest Qtr	546519.00	2820.02	47	26700.13	7244765
146	Bank SL Deposits Latest Qtr	184317.00	3991.18	13	1128982	2897159
147	Insurance Premiums Latest Qtr	17541.00	72.58	41	806.30	1732.13
148	Loans	537560.00	2707.88	54	29178.66	74369.09
149	Loan Loss Provisions	10034.00	-386.00	51	59.53	507.62
150	Benefits and Reserves	58313.00	264.71	20	4804.00	8589.20

12/Copyright (c) 2005, Value Line Publishing, Inc. All rights reserved. Factual material is obtained from sources5/12 believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, noncommercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

	Variable Name	High	Low	Sample	Median	Average
151	FHLB Advances	7007400	100.00	13	3449.67	10681.51
152	Net Interest Income	44623.00	169.50	54	1299.30	3931.45
153	Non-interest Income	44623.00	169.50	54	1299.30	3931.45
154	Mortgage Loans per share	480.71	66.56	13	147.37	177.04
155	Savings Deposits per share	346.74	39.22	13.	109.97	121.11
156	\% interest income	51.91	4.76	10	34.72	29.13
157	\% Interest Cost to Gross income	200.10	16.17	17	59.08	70.74
158	\% Loans to Total Assets	92.40	4.90	54	61.51	57.65
159	Premiums	79118.00	298.90	46	3634.10	7838.53
160	Insurance in Force	1458.80	0.10	12	177.09	352.88
161	Investment Income	18434.00	54.09	46	577.00	2125.01
162	Total Premiums per share	208.57	1.71	46	28.40	33.88
163	Underwriting inc per share	15.65	-4.05	27	1.44	2.55
164	Investment inc per share	20.72	0.41	46	6.22	6.74
165	\% Expense to Premiums Writen	78.95	19.33	25	30.35	32.04
166	\% Loss to Premiums Earned	81.09	4.68	26.	65.71	63.30
167	\% Commissions	70.51	3.73	10	14.39	20.25
168	\% Investment Banking	40.70	5.51	9	10.16	12.76
169	\% Principal Transactions	41.97	128	10.	10.46	16.12
170	\%Other Revenue	68.83	2.87	91	21.38	25.55
171	Number of Stores	67772.00	61.00	104	716.00	2583.34
172	Inventory Turnover	1972.82	0.05	1336	6.31	18.65
173	\% Price Change Last Trading Day	18.26	-20.42	1773	-0.54	-0.67
174	Total Return 1-Week	25.91	-34.46	1773	2.55	2.61
175	Total Return 4-Week	50.31	-36.73	1772	1.04	1.10
176	Total Return 13-Week	79.93	-70.16	1770	-2.711	-2.69
177	Total Return 26-Week	160.48	-78.90	1762	7.07	10.34
178	Total Return YTD	190.16	-85.35	1753	1.51	4.94
179	Total Return 1-Year	4417.28	-81.97	1749	10.66	18.01
180	Total Return 3-Year	220.19	-52.23	1704	17.63	20.75
181	Total Return 5-Year	91.44	-59.95	1620	8.35	6.98
182	Total Return 10-Year	65.47	-26.42	1284	10.20	10.47
183	Total Return 2004	607.61	-77.46	1759	15.72	19.28
184	Total Refurn 2003	877.32	-54.38	1742	36.201	50.04
185	Total Return 2002	279.52	-95.32	1718	-10.44	-12.59
186	Total Return 2001	735.86	-88.51	1666	4.92	15.34
187	Total Return 2000	489.76	-96.99	1624	8.97	17.62
188	Total Return 1999	2619.40	-88.26	1567	5.24	44.16
189	Total Return 1998	966.39	-96.46	1494	6.97	19.20
190	Total Return 1997	511.03	-72.63	1437	30.53	33.66
191	Total Return 1996	329.17	-70.39	1389	20.81	25.48
192	Total Return 1995	856.64	-74.19	1309	30.65	40.86
193	Relative Strength 1 Week	99.00	1.00	1757	58.00	54.08
194	Relative Strength 1 Month	100.00	1.00	1759	61.00	56.85
195	Relative Strength 3 Months	99.00	1.00	1757	53.00	53.24
196	Volume Last Trading Day	2079577869	300.00	1763	509323.50	2723964.82
197	Avg Trading Volume Last 2 Weeks	2079577869	487.00	1764	650450.00	3092149.26
198	Avg Trading Volume Last Month	2027910633	490.00	1763	625105.00	2992371.14
199	Avg Trading Volume Last 3 Months	1873863467	456.00	1761	571686.00	2717401.94
200	Avg Trading Volume Last 6 Months	1902499466	361.00	1757	573269,00	2688190.83

12/Copyright (c) 2005, Value Line Publishing, Inc. All rights reserved. Factual material is obtained from sources7/12 believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, noncommercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

	Variable Name	High	Low	Sample	Median	Average
201	Avg Trading Volume Last Year	1902499466	392.00	1751	588463.00	2766631.70
202	Liquidity Ratio	NA	NA	0	NA	NA
203	Short Interest	NA	NA.	0	NA	NA
204	Short Interest Ratio	NA	NA'	0	NA	NA
205	Beta 3-Year	7.48	-1.28	1687	0.97	1.16
206	Beta 5-Year	6.12	-0.60	1598	0.88	1.11
207	Beta 10-Year	3.99	-0.22	1272	0.81	0.90
208	Std Dev 3-Year	137.71	7.49	1687	28.69	33.82
209	Std Dev 5-Year	137.68	7.98	1599	33.76	39.81
210	Std Dev 10-Year	158.43	8.08	1272	34.55	38.49
211	1 Day Money Flow	13459.49	-99299840,	1763	-42.30	-61925.97
212	1 Week Money Flow	7984857.50	-97831.771	1760	24.74	4682.40
213	1 Month Money Flow	3593516.75	-21962.09	1760	3.92	2084.41
214	EPS Latest Qtr	1045.00	-8.01	1622	0.38	1.13
215	EPS 1 Qtr Ago	935.00	-1.98	1608	0.38	1.08
216	EPS 2 Qtrs Ago	1197.00	-2.89	1623	0.36	1.20
217	EPS 3 Qtrs Ago	402.00	-6.56	1599	0.37	0.70
218	Est \% EPS Chg Fiscal Year	300.00	-98.52	1419	14.92	21.66
219	Est \% EPS Chg 1 Qtr Out	300.00	-96.29	1331	13.66	19.62
220	Est \% EPS Chg 2 Qtrs Out	300.00	-90.00	1378	14.14	22.31
221	\% EPS Chg from Last Qtr	300.00	-96.55	1299	15.38	21.23
222	\% EPS 12-Month Chg Latest Qtr	300.00	-99.56	1385	15.46	23.65
223	Est EPS 1st Qtr Out	575.00	-2.90	1618	0.43	0.88
224	Est EPS 2nd Qtr Out	1044.00	-2.30	1629	0.43	1.18
225	Est EPS 3rd Qtrout	975.00	-1.90	1618	0.43	1.17
226	Est EPS 4th Qtr Out	1050.00	-0,85	1540	0.45	1.28
227	Proj 3 -5 YrEPS	152.00	-1.35	1654	2.50	3.11
228	Proj 3-5 Yr\% Price Change	782.00	-55.00	1658	45.00	57.82
229	Prol 3-5 Yr \% Annual Total Return	57.00	-100.00	1628	11.00	11.96
230	Proj Sales Growth Rate	80.00	-41.50	1461	8.50	9.17
231	Proj Cash Flow Growth Rate	83.50	-15.00	1363	11.00	12.65
232	Proj EPS Growth Rate	86.00	-13.00	1384	13.50	15.84
233	Proi Dividend Growth Rate	96.00	-26.00	876	9.00	11.51
234	Proj Book Value Growth Rate	86.50	-46.00	1552	10.50	11.18
235	Proi 3-5 YrP/E	60.00	6.50	1599	17.00	18.28
236	Proj 3-5 Yr Relative P/E	5.52	0.13	1504	1.03	1.21
237	Proj 3-5 Yr Dividend Yield	10.00	0.10	1026	1.50	1.93
238	Current Dividend	7.40	0.00	1780	0.20	0.44
239	\% Current Yield	33.65	0.00	1780	0.59	1.24
240	Earnings Predictability	10000	5.00	1536	55.00	52.76
241	Growth Persistence	100.00	5.00	1561	52.50	52.37
242	Price Stability Rank	100.00	5.00	1624	55.00	52.63
243	Industry Rank	98.00	1.00	1761	46.50	49.20
244	\% Insider Holdings	100.00	0.03	1519	4.70	9.68
245	\% Institutional Holdings	99.90	0.00	1660	70.41	62.73
246	User-Defined 1	NA	NA	0	NA	NA
247	User-Defined 2	NA	NA	0	NA	NA
248	User-Defined 3	NA	NA	0	NA	NA
249	User-Defined 4	NA	NA	0	NA	NA
250	User-Defined 5	NA	NAL	0	NA	NA

12/(Copyright (c) 2005, Value Line Publishing, Inc. All rights reserved. Factual material is obtained from sources $9 / 12$ believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, noncommercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC. RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

Decision No. C04-0999
 BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO

DOCKET NO. 04S-035E

Abstract

RE: THE INVESTIGATION AND SUSPENSION OF TARIFF SHEETS FILED BY AQUILA, INC., DOING BUSINESS AS AQUILA NETWORKS-WPC, WITH ADVICE NO. 588.

ORDER GRANTING SETTLEMENT

Mailed Date: August 25, 2004
Adopted Date: August 17, 2004

TABLE OF CONTENTS

I. BY THE COMMISSION 1
A. Procedural History 1
B. Findings of Fact 6

1. The Settlement's Regulatory Principles 8
2. Incentive Cost Adjustment/Electric Cost Adjustments 9
3. Compliance with Cost Allocations Rules 11
C. Conclusions 13
II. ORDER 13
A. The Commission Orders That: 13
B. ADOPTED IN COMMISSIONERS' DELIBERATIONS MEETING August 17,2004.14

I. BY THE COMMISSION

A. Procedural History

1. On December 29, 2003, Aquila, Inc., doing business as Aquila Networks-WPC (Aquila or Company), filed Advice Letter No. 588. This filing was accompanied by the direct testimony and exhibits of the following Aquila witnesses: W. Scott Keith, Lisa M. Sterba,

Michael R. Apprill, Richard O. Clayburn, Rhonda J. Schmidtlein, Randall D. Erickson, and Daniel K. Tyrrell.
2. The subject filing was made pursuant to a settlement agreement reached in Aquila's last rate case (see Decision No. C03-0697, Docket No. 02S-594E). The purpose of the filing was to implement a General Rate Schedule Adjustment (GRSA) rider of 9.60 percent to all base rates for all customers receiving electric power and energy under the Company's tariff. The proposed GRSA rider would generate an annual revenue increase of $\$ 11,358,847$. Aquila requested that the tariffs accompanying Advice Letter No. 588 become effective on 30 days' statutory notice or, in this instance, on January 29, 2004.
3. By Decision No. C04-0082, the Commission set the tariffs for hearing and suspended their effective date for 120 days or until May 28, 2004.
4. By Decision No. R04-0207-I, a prehearing conference was scheduled for March 3, 2004.
5. Timely Notices of Intervention were filed in this proceeding by the Staff of the Commission (Staff) and the Colorado Office of Consumer Counsel (OCC). Timely Petitions for Leave to Intervene were also filed by the Fountain Valley Authority, the Board of Water Works of Pueblo, Colorado, the City of Canon City, (collectively, Public Intervenors); Cripple Creek \& Victor Gold Mining Company, Holcim (U.S.) Inc. (Holcim), and the Trane Company (collectively, CCHT).
6. At the March 3, 2004 prehearing conference, interventions were granted and a procedural schedule proposed by the parties was considered. Decision No. R04-0227-I adopted the following procedural schedule: Answer testimony filed on April 12, 2004, Rebuttal and

Cross-Answer testimony filed on May 3, 2004, hearing dates of May 24 through 28, 2004, and Statements of Position filed within ten days after the last hearing date.
7. On March 9, 2004, Staff filed its Unopposed Motion to Vacate Hearing Dates, Adopt Proposed Procedural Schedule, Waive Response Time, and Request for Initial Commission Decision. Under the parties' proposed procedural schedule, the dates for filing Answer testimony would change from April 12, 2004, to April 30, 2004, and the dates for the filing of Rebuttal and Cross Answer testimony would change from May 3, 2004, to June 21, 2004. It would also change the hearing dates from May 24 through 28, 2004, to July 26 through 30, 2004. Finally, it would change the date for Statements of Position from ten days after the last hearing date to August 10, 2004.
8. By Decision No. C04-0291, the Commission agreed to issue an initial Commission decision and, except with regard to a change in the deadline for filing Statements of Position, adopted the parties' proposed procedural schedule.
9. Decision No. R04-0341-I adopted the procedural schedule approved by the Commission in Decision No. C04-0291 and modified certain other procedures consistent with the initial decision process. It also reaffirmed that the Commission would hold a public comment hearing in Pueblo, Colorado, and that a technical conference on the financial models submitted in the case might be necessary. The interim decision established July 14, 2004, is the date for the technical conference.
10. On April 30, 2004, Answer testimony and exhibits were filed by Sandra-Johnson Jones, Bridget McGee-Stiles, Randy Garroutte, Karlton Kunzie, Larry Y. Shiao, and John P. Trogonoski on behalf of Staff; Basil L. Copeland, Jr. and P.B. Schechter on behalf of the OCC;

Richard A. Baudino and Stephen J. Baron on behalf of CCHT; and Martin J. Blake on behalf of the Public Intervenors. ${ }^{1}$
11. By Decision No. C04-0497, the Commission further suspended the effective date of the tariffs filed with Advice Letter No. 588 an additional 90 days or until August 26, 2004.
12. On June 9, 2004, Decision No. R04-0618-I was issued which set a public hearing in Pueblo, Colorado for July 20, 2004. A public hearing was held on that date.
13. On June 16, 2004, Decision No. R04-0642-I was issued which set a technical conference in Denver, Colorado for July 14, 2004. This decision also provided a series of questions regarding the parties' financial models. On July 7, 2004, Aquila informally requested that its witness be allowed to participate in the technical conference by telephone. Aquila also advised that it had revised its financial model to more clearly demonstrate its responses to the questions posed in Decision No. R04-0642-I. The Administrative Law Judge granted the request on the condition that Aquila would electronically send a copy to the Advisory Staff and all other parties for their review. Aquila timely submitted the electronic copy to Advisory Staff and counsel for the parties. The technical conference was held as scheduled.
14. On June 21, 2004, the following Aquila witnesses filed Rebuttal testimony and exhibits: W. Scott Keith, Michael R. Apprill, Ronald A. Klote, Beth A. Armstrong, Daniel K. Tyrrell, Ronald D. Adkins, and Donald A. Murry, Ph.D. ${ }^{2}$ Cross-Answer testimony was also filed by Public Intervenors' witness Martin J. Blake on that date.

[^23]15. On June 22, 2004, Aquila filed a Motion in Limine to exclude certain pre-filed Answer testimony and exhibits. Aquila contended that such testimony/exhibits exceeded and/or conflicted with the regulatory principles established in Decision No. C03-0697. Responses to the motion were filed by: Staff, the Public Intervenors, CCHT, and the OCC. The OCC also filed a Motion to Strike the Aquila Motion in Limine. On July 9, 2004, Aquila filed a motion for leave to reply to responses and a reply to OCC's Motion to Strike.
16. On July 12, 2004, Staff filed a Motion in Limine to exclude certain pre-filed Rebuttal testimony and exhibits. Staff contended that such testimony/exhibits exceeded and/or conflicted with the regulatory principles established in Decision No. C03-0697.
17. On July 21, 2004, Decision No R04-0831-I was issued denying Aquila's Motion in Limine. On the same date, Decision No. R04-0834-I was issued granting Staff's Motion in Limine.
18. On July 27, 2004, the parties submitted a Settlement Agreement and Motion for Approval of Settlement Agreement (Settlement). According to the parties, the Settlement resolves all disputed issues that have arisen or could have arisen in this docket. The parties indicate in the Settlement that the agreed upon revenue increase is just and reasonable.
19. A hearing was held in connection with the Settlement on July 30, 2004. Aquila, Staff, and OCC witnesses presented testimony in support of the Settlement. The parties' Settlement Agreement, as well as all pre-filed testimony submitted by the parties, was admitted
into evidence. See Exhibits 1 and 4 through 35. In addition, the Aquila witness sponsored Exhibits 2 and 3, which also were admitted into evidence. ${ }^{3}$

B. Findings of Fact

20. The genesis of this case can be traced back to the Settlement Agreement approved by the Commission in Aquila's last rate case (see Decision No. C03-0697, Docket No. 02S-594E). Under that agreement, Aquila agreed to file a "limited" rate case on or before December 31, 2003, using a test year ending August 31, 2003. As part of the settlement, Aquila also agreed to be bound to certain regulatory principles adopted in the settlement, namely: 1) a return on equity of 10.75 percent; 2) a divisional capital structure of 47.5 percent equity and 52.5 percent debt; 3) a cost of debt at 7.55 percent; 4) use of an average rate base; 5) the disallowance of the Centel acquisition adjustment; 6) annualization of Holcim's revenue; 7) disallowance of St. Joseph Light \& Power acquisition savings adjustment; 8) a 60-year depreciation life for the Canon West substation; 9) no changes in depreciation rates; 10) no annualization of property taxes; and 11) only actual expenditures for homeland security measures.
21. As explained in the Direct testimony of Mr. Scott Keith, there have been certain major changes in the Company's electric operations since the last rate case. These include a nearly $\$ 20$ million increase in rate base and $\$ 6.5$ million increase in annual capacity charges from

[^24]power suppliers. When taken together, in conjunction with the August 31, 2004 test year, this results in an increase in Aquila's annual revenue requirement of $\$ 11,358,847$.
22. Prior to settlement, the OCC asserted in its case that the amount of the increase in Aquila's annual revenue requirement should be $\$ 6,981,641$. This results from the use of a 9.50 percent return on equity; debt at a cost of 7.66 percent; a $\$ 250,000$ disallowance of expenditures associated with ten megawatts (MW) of summer peaking capacity; disallowance of $\$ 643,442$ of increased transmission expense; removal of $\$ 8,988,947$ of prepayments from rate base; disallowance of the 14.78-day increase in revenue lag days for the effect of the Incentive Cost Adjustment (ICA) on Cash Working Capital (CWC); a $\$ 133,000$ disallowance of rate case expenses; a disallowance of $\$ 325,182$ of incentive compensation for plan year 2002; disallowance of $\$ 143,120$ of pension expense; and a disallowance of $\$ 174,602$ of severance costs.
23. The Public Intervenors contended that the amount of the increase in Aquila's annual revenue requirement should be $\$ 5,244,249$. This is based on a $\$ 6,000,537$ increase in revenues in order to properly reflect the increased level of transmission costs, and a disallowance of $\$ 114,117$ of transmission expense relating to the Basin power contract.
24. Based on its analysis, Staff argued that the amount of the increase in Aquila's annual revenue requirement should be $\$ 4,961,667$. This results from the use of a 9.75 percent return on equity; debt at a cost of 7.42 percent; a $\$ 2,742,487$ disallowance of expenditures associated with excess capacity; disallowance of $\$ 114,117$ of transmission expense relating to the Basin power contract; an increase in deferred taxes of $\$ 2,780,465$ to include all deferred account balances; disallowance of the 14.78-day increase in revenue lag days for the effect of the ICA on

CWC; a $\$ 216,000$ disallowance of rate case expenses; restoration of a credit balance of $\$ 259,546$ for corporate aircraft; disallowance of $\$ 15,987$ of payroll expense; and a disallowance of $\$ 1,830,609$ of cost allocations for nonregulated operations.
25. Finally, CCHT contended that the amount of the increase in Aquila's annual revenue requirement should be $\$ 3,458,286$. This is based on the use of a 9.00 percent return on equity, debt at a cost of 7.55 percent; a $\$ 6,501,084$ increase in revenue in order to properly reflect the increased level of transmission costs; and disallowance of $\$ 114,117$ of transmission expense relating to the Basin power contract.

1. The Settlement's Regulatory Principles

26. Under the Settlement agreed upon by the parties, base rates would increase by $\$ 8.2$ million while energy costs collected through a new Energy Cost Adjustment (ECA) mechanism would decrease by $\$ 5.424$ million. ${ }^{4}$ The net effect on ratepayers of these two changes would be an increase of $\$ 2.776$ million. The parties intend for this change in rates to take effect on or about September 1, 2004.
27. The Settlement lists the regulatory principles agreed to by the parties in this case. They include the following: a return on equity of 10.25 percent; a divisional capital structure consisting of 47.50 percent equity and 52.50 percent debt; a cost of debt of 7.42 percent (this produces an overall cost of capital, or rate of return on rate base, of 8.76 percent); an increase in income taxes of $\$ 142,127$ as a result of the effect of the interest deduction associated with the embedded cost of debt; the elimination of $\$ 250,000$ of capacity charges associated with a 2004 peaking contract; the exclusion of $\$ 1,204,903$ of the new Public Service Company of Colorado

[^25](Public Service) capacity costs and $\$ 200,487$ of the new Public Service transmission costs; the elimination of other transmission expense of $\$ 114,167$ associated with an expired Basin power contract; the reduction of Aquila's payroll annualization by $\$ 15,987$ to reflect the actual percentage wage increase granted; an increase in administrative and general expense of $\$ 19,467$ to reflect the reconciliation adjustment; the elimination from the CWC calculation of the amortization of prepayments that resides in operating and maintenance expense in this docket and in the next revenue requirement proceeding; and an increase of income taxes by $\$ 686,075$ resulting from the effect of these various adjustments.
28. The parties agree that the overall $\$ 8.2$ million annual revenue requirement increase will be collected from all customers through a new, uniform GRSA rider in such a manner that the overall percentage increase in base rates will be 6.93 percent.

2. Incentive Cost Adjustment/Electric Cost Adjustments

29. Aquila currently has an ICA mechanism which allows it to recover fuel and purchased energy costs on an expedited basis. The ICA contains an incentive aspect for Aquila to reduce energy costs below its base level. When actual energy costs are below its base energy cost level, it retains 25% of the cost reductions. ${ }^{5}$ The ICA rider is based upon a historical test year of September 1 through August 31. The updated ICA rider is filed each year on October 1, and the approved costs are recovered during the next year during the November 1 through October 31 time period.

[^26]30. Under the Settlement, the parties have agreed to terminate the ICA and replace it with an ECA. It proposes that the ECA become effective with the $\$ 8.2$ million rate increase that is scheduled to go into effect on or about September 1, 2004. Unlike the ICA, the ECA will allow Aquila to recover or to credit 100 percent of the fuel and purchased energy cost changes above or below its base energy cost. In contrast to the current ICA, Aquila will file for ECA changes at least twice each year, in accordance with the schedule set forth in Paragraph 3(d) of the Settlement. The ECA base cost will be set at $\$ 22.39$ per MWh effective with the new GRSA rider. The initial ECA charge is $\$ 0.00125$ per kWh . This represents a decline of $\$ 0.00303$ per kWh from the ICA charge currently in effect, and an annual decline in revenue of $\$ 5.424$ million.
31. As further justification for this change in energy cost recovery mechanisms, the Settlement states that Aquila's new purchase power contract with Public Service should result in significant energy cost savings that would not be fully realized by customers under the current sharing mechanism.
32. The Settlement also provides that, by July 1, 2006, Aquila will file an application to continue the ECA beyond 2006 or for implementation of a new ECA clause. The Parties agree that the target date for the extension of the ECA or for the implementation of a new ECA clause is April 1, 2007. During the Settlement hearing, Company witness Keith acknowledged
that Aquila has some exposure for energy costs incurred after August 2006 and the start of an "extended" ECA. ${ }^{6}$

3. Compliance with Cost Allocations Rules

33. Through the testimony and exhibits of Mr. Dan Tyrrell, Aquila filed a new Fully Distributed Cost (FDC) study. It also presented a Cost Allocation Manual (CAM) updated with data from the test year ending August 31, 2003, using the same methods approved in Aquila's last Phase I Rate Case. Aquila believes that its FDC and CAM comply with the requirements of the Cost Allocation Rules, 4 Code of Colorado Regulations. 723-47, and § 40-3-114, C.R.S.
34. In its Answer testimony, Staff stated that it was unable to verify that the Aquila accounting system applies what is in the CAM because of a lack of an audit trail. Consequently, Staff argued that Aquila had not met its burden of proof ${ }^{7}$ and, therefore, the Commission should not issue a finding that the CAM complies with $\S 40-3-114$, C.R.S.
35. As part of the Settlement, the parties agree that Aquila will discuss in a cooperative process with Staff and any other parties that may be interested (the participants) how Aquila's CAM and its general ledger accounting system interact. Through this process, the participants will analyze cost allocation/assignments to and between Aquila's regulated and nonregulated business activities. These discussions will occur through scheduled workshops that will utilize the new Cost Allocation Rules expected to be promulgated in Docket No. 04R-003EG

[^27](the new rules). The scheduling of the workshops will commence within 90 days of the effective date of the new rules.
36. In the workshops, the participants will start with an evaluation of the CAM and the FDC study filed in this case. The participants will then discuss the development of a new CAM and will discuss it on a department-by-department basis. The workshops will address the correlation between Aquila's accounting system and the new CAM. The parties believe that this evaluation will result in fair and reasonable cost assignments and allocations of costs to and between the Company's regulated and non-regulated business activities consistent with the requirements of § 40-3-114, C.R.S., and the new rules.
37. The Settlement provides that the participants shall have reasonable access to relevant information, subject to an appropriate non-disclosure agreement, concerning the Company's costs that could be assigned between and among regulated and non-regulated services. In the event the participants do not receive such information in a timely fashion, the participants may formally seek assistance from the Commission including, as necessary, a request to employ formal discovery processes. Finally, if the participants in the workshop process are not able to agree on an approach to accomplish a fair and reasonable allocation of costs to and between the Company's regulated and non-regulated business activities, the participants agree to notify all participants in writing, and the unresolved issue(s) shall be submitted to the Commission no later than 60 days after receipt of the written notification.
38. Once a new CAM is developed that is consistent with the new rules, Aquila will file the new CAM and a new FDC study. The target date for such filing will be 18 months after
the effective date of the new rules, which date may be extended by mutual agreement of the participants.

C. Conclusions

39. We conclude that the Settlement Agreement should be approved. We find that the regulatory principles used to develop the $\$ 8.2$ million base rate increase in conjunction with the energy cost decrease of $\$ 5.424$ million for an overall increase in customer rates of $\$ 2.776$ million or 2.23 percent are just and reasonable. Additionally, changing to a 100 percent pass-through mechanism for energy costs under an ECA, instead of the current sharing incentive contained in the ICA, is in the public interest given Aquila's current purchased power situation. Finally, the establishment of workshops to allow interested parties to better understand the interaction between Aquila's accounting systems and its CAM and FDC is reasonable given the pending cost allocation rulemaking.

II. ORDER

A. The Commission Orders That:

1. The Settlement Agreement and Motion for Approval of the Settlement Agreement filed on July 27, 2004, by Aquila, Inc., the Staff of the Colorado Public Utilities Commission, the Colorado Office of Consumer Counsel, the Fountain Valley Authority, the Board of Water Works of Pueblo, the City of Canon City, the Cripple Creek \& Victor Gold Mining Company, Holcim (U.S.) Inc., and the Trane Company, is approved.
2. The tariff sheets filed by Aquila, Inc., pursuant to Advice Letter No. 588 are permanently suspended.
3. Aquila, Inc., shall file on not less than one day's notice to the Commission tariffs consistent with this Decision. Such tariffs shall become effective on September 1, 2004.
4. The 20 -day period provided for in $\S 40-6-114$, C.R.S., within which to file applications for rehearing, reargument, or reconsideration begins on the first day following the Mailed Date of this Decision.
5. This Order is effective upon its Mailed Date.

B. ADOPTED IN COMMISSIONERS' DELIBERATIONS MEETING August 17, 2004.

THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO

\qquad

Commissioners

Decision No. C04-0999-A
BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO

DOCKET NO. 04S-035E

RE: THE INVESTIGATION AND SUSPENSION OF TARIFF SHEETS FILED BY AQUILA, INC., DOING BUSINESS AS AQUILA NETWORKS-WPC, WITH ADVICE NO. 588.

ADDENDUM
 ORDER GRANTING SETTLEMENT

Mailed Date: August 25, 2004
Adopted Date: August 17, 2004
Addendum Mailed Date: August 31, 2004

Add to Decision No. C04-0999, Order Granting Settlement, the attached:
SETTLEMENT AGREEMENT AND MOTION FOR APPROVAL OF SETTLEMENT AGREEMENT; and,

SETTLEMENT AGREEMENT ATTACHMENT A -- spreadsheet containing:

- Schedule 1. AQUILA NETWORKS-WPC -- CALCULATION OF SETTLEMENT REVENUE REQUIREMENT, 12 MONTHS ENDING AUGUST 31, 2003
- Schedule 2. AQUILA NETWORKS-WPC -- STATEMENT OF OPERATIONS PER SETTLEMENT
- Schedule 3. AQUILA NETWORKS-WPC -- JURISDICTIONAL RATE BASE PER

SETTLEMENT AGREEMENT, TEST YEAR ENDED AUGUST 31, 2003

- Schedule 4. AQUILA NETWORKS-WPC -- COST OF CAPITAL PER SETTLEMENT

THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO

BRUCE N. SMITH
Director
Dated at Denver, Colorado this
31st day of August, 2004.

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO DOCKET NO. 04S-035E

RE: THE INVESTIGATION AND SUSPENSION OF TARIFF SHEETS FILED BY AQUILA, INC., DOING BUSINESS AS AQUILA NETWORKS-WPC, WITH ADVICE NO. 588.

SETTLEMENT AGREEMENT

 AND MOTION FOR APPROVAL OF SETTLEMENT AGREEMENTAquila, Inc., doing business as Aquila Networks-WPC ("Aquila" or the "Company"), the Trial Staff of the Colorado Public Utilities Commission ("Staff"), the Colorado Office of Consumer Counsel ("OCC"), the Fountain Valley Authority, the Board of Water Works of Pueblo, the City of Canon City (collectively the latter three are referred to as "Public Intervenors"), and the Cripple Creek \& Victor Gold Mining Company, Holcim (U.S.) Inc. and the Trane Company (collectively the latter three are referred to as "CHT") (together cumulatively referred to as the "Parties"), by and through their respective undersigned counsel, and for good and valuable consideration, herewith enter into this Settlement Agreement ("Settlement Agreement") to settle all disputed issues that have arisen or could have arisen in this docket regarding Advice Letter No. 588 and accompanying tariffs. The Parties respectfully submit that this Settlement Agreement results in a fair disposition of all disputed issues in this docket, that the revenue requirement and revenue increase that result from this Settlement Agreement are just and reasonable, and therefore, the Parties request that the Commission approve this Settlement Agreement.

I. PROCEDURAL HISTORY

1. This proceeding in Docket No. 04S-035E was commenced on December 29, 2003, when Aquila filed with the Commission Advice Letter No. 588 and accompanying tariff sheets, direct testimony and exhibits. Advice Letter No. 588 sought Commission approval for a revenue increase of $\$ 11,358,847$, based upon revenue requirements for the test year ending August 31, 2003, which would be implemented by a General Rate Schedule Adjustment ("GRSA") rider of 9.60 percent applied to all base rates for all customers receiving electric power and energy under Aquila's Colorado tariff (PUC No. 6). Aquila filed Advice Letter No. 588 and the accompanying tariff, direct testimony and exhibits, pursuant to the settlement agreement entered into between the parties in the Company's last Phase I general rate case, Docket No. 02S-594E, and Decision No. C03-0697 in which the Commission approved that settlement agreement.
2. On January 8 and 16,2004 , Aquila caused a Notice concerning the filing of Advice Letter No. 588 and these tariffs to be published in The Pueblo Chieftain, a newspaper of general circulation in Aquila's electric service area. On January 7 and 13, 2004, Aquila caused the Notice concerning the filing of these tariffs to be published in The Rocky Ford Daily, and on January 8 and 15, 2004, in The Canon City Daily Record, newspapers of local circulation in Aquila's electric service area.
3. On January 21, 2004, the Commission entered Decision No. C04-0082, the effect of which was to suspend the effective date of Advice Letter No. 588 until May 28, 2004, and to direct that the matter be set for hearing. By subsequent order the suspension period was extended to August 26, 2004. (See, Decision No. C04-0497.)
4. Timely Notices of Intervention were filed by Staff and the OCC. Timely Petitions for Leave to Intervene were filed by the Public Intervenors and by CHT, whose interventions were granted by Decision No. C04-0207-I.
5. A prehearing conference was held on March 3, 2004. As a result, an order was entered scheduling hearings and certain testimony filing dates, as well as other procedural requirements and deadlines. (See, Decision No. R04-0227-I.) At the request of Staff and supported by the other Parties, a new procedural schedule was adopted, including an initial decision by the Commission, evidentiary hearings on July 26-30, 2004, and related dates for filing answer, cross-answer, and rebuttal testimony and exhibits, and statements of position. (See, Decision Nos. C04-0291 and R03-0341-I.)
6. On April 30, 2004, answer testimony and exhibits were filed by Staff, OCC, CHT and the Public Intervenors, whose witnesses recommended revenue requirement increases of varying amounts lower than the revenue requirement increase requested by Aquila. On June 21, 2004, Aquila filed rebuttal testimony and exhibits. On June 21, 2004, the Public Intervenors filed cross-answer testimony and a revised exhibit of one witness.
7. On July 20, 2004, the Commission held a hearing in Pueblo, Colorado, for the purpose of taking public comment from Aquila's electric customers.
8. During the prehearing phase of this docket, the Parties have actively engaged in prehearing investigation, including through audit requests, formal data requests, informal exchanges of information, informal discussions, and settlement negotiations. Over the past several weeks, Aquila and the other parties have spent substantial time and efforts in negotiations to settle this rate case.
9. An agreement in principle to settle all disputed issues in this docket was reached by the parties on July 23, 2004. At the request of the Parties, ALJ Dale Isley vacated the hearings set for July 26-29, 2004 to allow the Parties time to prepare and to file a written Settlement Agreement by Tuesday, July 27, 2004. A hearing on the settlement is scheduled for Friday, July 30, 2004.
10. This Settlement Agreement memorializes the negotiated settlement and stipulations among the Parties. As a result of the settlement negotiations, all Parties agree, as set forth below, that all disputed issues in this docket have been resolved to the satisfaction of the Parties and that the revenue requirement and rate increase for all customers to which the Parties agree in this Settlement Agreement are just and reasonable.

II. THE SETTLEMENT

1. Revenue Requirement Increase. Aquila requested approximately $\$ 11.4$ million in additional annual revenues in this rate case filing. As a result of this settlement, the Parties agree that the annual revenue requirement increase in this docket will be $\$ 8.2$ million.
2. Components of the Settlement. For purposes of settlement, the $\$ 8.2$ million annual revenue requirement increase consists of the following specific components. (Attachment A to this Settlement Agreement consists of spreadsheets that provide for the Commission's review of the details of the derivation of the $\$ 8.2$ million annual revenue requirement increase.)
a) The settled rate of return on equity for Aquila in this docket is 10.25%.
b) Aquila's WPC divisional capital structure is adopted, consisting of 47.50% equity and 52.50% debt, along with Staff's cost of debt of 7.42%,
producing an overall cost of capital, or rate of return on rate base, of 8.76\%.
c) The Parties agree that $\$ 250,000$ of capacity charges associated with a 2004 peaking contract should be eliminated.
d) The Parties agree that $\$ 1,204,903$ of the new Public Service Company of Colorado ("Public Service") Capacity costs and $\$ 200,487$ of the new Public Service Transmission costs will be excluded from the settlement revenue requirement.
e) The Parties agree that other transmission expense of $\$ 114,167$ associated with an expired Basin Electric contract should be eliminated.
f) The Parties agree that the Company's payroll annualization should be reduced by $\$ 15,987$ to reflect the actual percentage wage increase granted by the Company.
g) The Parties agree that the effect of the interest deduction associated with the embedded cost of debt will increase income taxes by $\$ 142,127$ in order to reflect the settled cost of debt.
h) The Parties agree that administrative and general expense will be increased by $\$ 19,467$ to reflect the reconciliation adjustment.
i) The Parties agree that the effect of these various adjustments will increase income taxes by $\$ 686,075$.
j) The Parties agree that the overall $\$ 8.2$ million annual revenue requirement increase will be collected from all customers through a new, uniform

GRSA rider in such a manner that the overall percentage increase in base rates will be 6.93 percent.
k) Aquila agrees to eliminate from the Cash Working Capital calculation the amortization of prepayments that resides in operating and maintenance expense in this docket and in the next revenue requirement proceeding.
3. Incentive Cost Adjustment ("ICA"). Currently, the ICA tariff contains a $75 \% / 25 \%$ sharing mechanism that permits Aquila to recover from or credit to customers 75% of fuel and purchased energy cost changes above or below its base energy cost, based upon a historical test year of September $1^{\text {st }}$ through August $31^{\text {st }}$. A revised ICA rider, to adjust rates to recover fuel and purchased energy costs, is filed each year on October $1^{\text {st }}$, and the approved costs are recovered during the next year from November $1^{\text {st }}$ through October $31^{\text {st }}$. (See, Aquila's Colorado Electric Tariff, Sheets 89-91.)
a) The ICA will be modified to an Energy Cost Adjustment ("ECA") effective with the $\$ 8.2$ million rate increase to allow Aquila to recover or to credit 100% of the fuel and purchased energy cost changes above or below its base energy cost. In addition, Aquila will file for ECA changes at least twice each year, in accordance with the schedule set forth in Paragraph 3(d). The ECA base cost will be increased to $\$ 22.39$ per Mwh effective with the new GRSA rider that is scheduled to go into effect on or about September 1, 2004.
b) With the new Public Service power purchase contract effective on January 1, 2004, Aquila's cost to serve electricity became more predictable. As a result of entering into the new Public Service power
purchase contract, Aquila is even more reliant upon power and energy supplied by Public Service than under the previous power purchase contract. Aquila's cost to serve is more predictable because the new Public Service power purchase contract is tied to Public Service's average system (coal and gas-fired generation) cost and not tied to the production cost of a single gas-fired generation plant or the spot market for energy. Moreover, the Public Service power purchase contract is expected to result in significant energy cost savings, which under the existing ICA clause would not be fully shared with Aquila's Colorado customers. The vast majority of Aquila's energy is purchased from third-party suppliers (e.g., Public Service). These fuel purchase decisions are made by the supplier's management, not Aquila's management, and are beyond Aquila's control. Therefore, given these circumstances, the 100\% ECA makes better sense for Aquila's customers and Aquila than the existing ICA.
c) The ECA test period will consist of a historical test period that contains two of the summer months, either June-July or August-September. The goal of the Parties is that this design of the six-month ECA test periods will better moderate the amount of deferred balances that would need to be recovered through the ECA in any one six-month period.
d) The Parties contemplate the following ECA filing schedule:

File Date	Effective Date	Recovery Period	Test Period
On approval	1 September 2004	Sept. 2004-Feb. 2005	Sept. 2003 - June 2004
1 February 2005	1 March 2005	March 2005 - Sept. 2005	July 2004 - Dec. 2004
1 September 2005	1 October 2005	Oct. 2005 - March 2006	Jan. 2005 - July 2005

1 March 2006	1 April 2006	April 2006-Sept. 2006	August 2005-Jan. 2006
1 September 2006	1 October 2006	Oct. 2006-March 2007	Feb. 2006 - Aug. 2006

e) An ECA charge of $\$.00125$ per kWh will be implemented simultaneously with the implementation of the new GRSA rider in September 2004. This ECA charge represents a decline of $\$.00303$ per kWh from the ICA charge currently in effect, and an annual decline in revenue of $\$ 5.424$ million. As a result of the combination of the rate increase and ICA decrease, the customers will see a net annual increase of $\$ 2.776$ million or 2.23% when the new GRSA rider is implemented on or about September 1, 2004.
f) Aquila will sponsor the proposed new ECA tariff, incorporating the features agreed to above, as an exhibit in the July 30, 2004 hearing on this Settlement Agreement. Aquila will provide the proposed ECA tariff to the Parties prior to the hearing.
g) The Parties agree that the revision of the ICA to a 100% ECA will be effective prospectively upon the effective date of the Commission's decision approving the rate changes stipulated in this Settlement Agreement; the effective date of the ECA is anticipated to be on or about September 1, 2004. The Parties further agree that the ICA fuel and purchased energy costs incurred by Aquila up to the effective date of the rate changes proposed in this Settlement Agreement shall continue to be shared on a $75 \% / 25 \%$ basis with Aquila's customers. In order to transition to the ECA, in its February 1, 2005 ECA filing, Aquila will account for July and August 2004 in accordance with the ICA's $75 \% / 25 \%$
cost sharing and will account for September through December 2004 in accordance with the ECA's 100% cost recovery.
h) By July 1, 2006, Aquila will file an application to continue the ECA beyond 2006, or for implementation of a new ECA clause. The Parties agree that the target date for the extension of the ECA or for the implementation of a new ECA clause is April 1, 2007.
4. Compliance with Cost Allocation Rules. Currently, within a revenue requirements rate case proceeding, the Commission must determine whether the utility has complied with certain Commission rules regarding cost allocations as between regulated and nonregulated activities (see, 4 Colo. Code Regs. 723-47), and whether the utility has complied with the statutory requirement that no ratepayer funds have been used to subsidize a utility's nonregulated activities. Colo. Rev. Stat. § 40-3-114.
a) In Decision No. C03-0697 in Docket No. 02S-0594E, the Commission approved, pursuant to 4 Colo. Code Regs. 723-47-6.3, Aquila's Fully Distributed Cost ("FDC") Study and changes to Aquila's Cost Allocation Manual ("CAM"), which were contained in the testimony and exhibits of Mr. Dan Tyrrell (see, 4 Colo. Code Regs. 723-47-3.1.1.). The Commission also found, in accordance with Colo. Rev. Stat. § 40-3-114, that no ratepayer funds were used to subsidize Aquila's nonregulated activities. (Decision No. C03-0697, Paragraphs III.I.60-73, pages 20-23.)
b) In the instant docket, through the testimony and exhibits of Mr. Dan Tyrrell, Aquila filed a new FDC and presented a CAM updated with data from the test year ending August 31, 2003, using the same methods
approved in Decision No. C03-0697. Aquila believes that its FDC and CAM in this docket comply with the requirements of the Cost Allocation Rules, 4 Colo. Code Regs. 723-47, and Colo. Rev. Stat. § 40-3-114.
c) The Commission is currently engaged in a rule-making proceeding to repeal and reenact the Cost Allocation Rules found in 4 Colo. Code Regs. 723-47. (See, Decision No. C04-0008 in Docket No. 04R-003EG.)
d) The Parties agree that Aquila will discuss in a cooperative process with Staff, and any other Parties that may be interested (the "participants"), how Aquila's CAM and its general ledger accounting system interact. Through this process, the participants will analyze cost allocation/assignments to and between Aquila's regulated and nonregulated business activities. These discussions will occur through scheduled workshops, and they will utilize the new Cost Allocation Rules expected to be promulgated in Docket No. 04R-003EG (the "new rules"). The scheduling of the workshops would commence within 90 days of the effective date of the new rules. In the workshops, the participants will start with an evaluation of the CAM and the FDC study filed in Docket No. 04S-035E. The participants will then discuss the development of a new CAM and will discuss the new CAM on a department by department basis. The workshops will address the correlation between Aquila's accounting system and the new CAM. This evaluation will result in fair and reasonable cost assignments and allocations of costs to and between the Company's regulated and non-regulated business activities consistent
with the requirements of Colo. Rev. Stat. § 40-3-114 and the Commission's expected new rules. The participants shall have reasonable access to relevant information, subject to an appropriate non-disclosure agreement, concerning the Company's costs that could be assigned between and among regulated and non-regulated services. In the event the participants do not receive such information in a timely fashion, the participants may formally seek assistance from the Commission including, as necessary, a request to employ formal discovery processes. Finally, if the participants in the workshop process are not able to agree on an approach to accomplish a fair and reasonable allocation of costs to and between the Company's regulated and non-regulated business activities, the participants agree to notify all participants in writing that the unresolved issue(s) shall be submitted to the Commission no later than sixty (60) days after receipt of the written notification.
e) Once a new CAM is developed that is consistent with the new rules, Aquila will file the new CAM and a new FDC study. The target date for such filing will be 18 months after the effective date of the new rules, which date may be extended by mutual agreement of the participants.
5. The New GRSA Rider. The Parties agree that the $\$ 8.2$ million revenue increase will be collected through the new GRSA rider of 6.93% for all customers. The new GRSA rider is intended to be in effect only until the Commission authorizes its revision and/or termination by entry of a lawful final decision in another docket. By agreeing to this Paragraph 5, the Parties, who are also parties in Aquila's currently pending Phase II (Docket No. 03S-539E), do
not waive any of their rights to make any arguments in that docket. Should a Party argue in an application for rehearing, reargument or reconsideration in Phase II any issue impacted by the 6.93% rider, the Parties to this Agreement will not oppose the filing of a reply to the application for rehearing, reargument or reconsideration on that issue.
6. If the Commission approves this Settlement Agreement, tariffs conforming to this Settlement Agreement and implementing the agreed upon rate revisions may be filed on oneday's notice.

III. GENERAL TERMS AND CONDITIONS

1. Through active prehearing investigation and negotiation, the Parties have reached the agreement set forth herein resolving all contested and disputed issues in this docket in a manner which the Parties agree is just and reasonable and in the public interest. The Parties further agree that reaching agreement by means of negotiation and settlement rather than through litigation is in the public interest.
2. The Parties agree to present, to support, and to defend this Settlement Agreement before the Commission and, except for Staff, the courts. The Parties further agree, if necessary, to present testimony and exhibits to the Commission to secure the approval of this Settlement Agreement.
3. The Parties hereby agree that all pre-filed testimony and exhibits shall be admitted into evidence in this docket without cross-examination. This Settlement Agreement reflects compromise and settlement of all issues raised or that could have been raised in this docket.
4. This Settlement Agreement shall not become effective until the issuance of a final Commission Order approving the Settlement Agreement, which Order does not contain any modification of the terms and conditions of this Settlement Agreement that is unacceptable to any of the Parties. In the event the Commission modifies this Settlement Agreement in a manner unacceptable to any Party, that Party shall have the right to withdraw from this Settlement Agreement and proceed to hearing on the issues that may be appropriately raised by that Party in this docket. The withdrawing Party shall notify the Commission and the Parties to this Settlement Agreement by e-mail and facsimile within five (5) business days of the Commission Order that the Party is withdrawing from the Settlement Agreement and that the Party is ready to proceed to hearing; the e-mail and facsimile notice shall designate the precise issue or issues on which the Party desires to proceed to hearing (the "Hearing Notice").
5. The withdrawal of a Party shall not automatically terminate this Settlement Agreement as to any other Party. However, within three (3) business days of the date of the Hearing Notice from the first withdrawing Party, all Parties shall confer to arrive at a comprehensive list of issues that shall proceed to hearing and a list of issues that remain settled as a result of the first Party's withdrawal from this Settlement Agreement. Within five (5) business days of the date of the Hearing Notice, the Parties shall file with the Commission a formal notice containing the list of issues that shall proceed to hearing and those issues that remain settled. The Parties who proceed to hearing shall have and be entitled to exercise all rights with respect to the issues that are heard that they would have had in the absence of this Settlement Agreement.
6. Hearing shall be scheduled on all of the issues designated in the formal notice filed with the Commission as soon as practicable. In the event that this Settlement Agreement is
not approved, or is approved with conditions that are unacceptable to any Party who subsequently withdraws, the negotiations or discussions undertaken in conjunction with the Settlement Agreement shall not be admissible into evidence in this or any other proceeding, except as may be necessary in any proceeding to enforce this Settlement Agreement.
7. Approval by the Commission of this Settlement Agreement shall constitute a determination that the Settlement Agreement represents a just, equitable and reasonable resolution of all issues that were or could have been contested among the Parties in this proceeding.
8. All Parties specifically agree and understand that this Settlement Agreement represents a negotiated settlement in the public interest with respect to the various Aquila rate matters and terms and conditions of service for the sole purpose of the settlement of the matters agreed to in this Settlement Agreement. No Party or person shall be deemed to have approved, accepted, agreed to, or consented to any concept, theory or principle underlying or supposed to underlie any of the matters provided for in this Settlement Agreement, other than as specifically provided for herein. Notwithstanding the resolution of the issues set forth in this Settlement Agreement, none of the methods or ratemaking principles herein contained shall be deemed by the Parties to constitute a settled practice or precedent in any future proceeding. Nothing in this Settlement Agreement shall preclude Aquila from seeking prospective changes in its electric rates by an appropriate filing with the Commission. Nothing in this Settlement Agreement shall preclude any other party from filing a Complaint or seeking an Order to Show Cause to obtain prospective changes in Aquila's electric rates.
9. This Settlement Agreement may be executed in counterparts and by facsimile copies of signatures, all of which when taken together shall constitute the entire Settlement Agreement with respect to the issues addressed by this Settlement Agreement.

CONCLUSION

For the reasons stated above, the Parties respectfully request that the Commission enter an order approving this Settlement Agreement with the finding that the Commission's approval of this Settlement Agreement represents a fair, just, and reasonable resolution of all disputed issues that have arisen, or which could have arisen, in this docket.

DATED this $27^{\text {th }}$ day of July 2004.

Approved as to form:
ABEL, BAND, RUSSELL, COLLIER, PITCHFORD \& GORDON, CHARTERED

By:
Steven H. Denman, Reg. No. 7857
240 South Pineapple Avenue
Post Office Box 49948
Sarasota, FL 34230-6948
(941) 366-6660
(941) 366-3999 facsimile
(303) 623-6660 Denver number

Attorneys for Aquila, Inc., doing business as Aquila Networks-WPC

Accepted on behalf of
TRIAL STAFF OF THE COMMISSION:

By:

Sandra Johnson Jones
1580 Logan Street, Office Level 2
Denver, CO 80203

Approved as to form:
OFFICE OF THE ATTORNEY GENERAL

By:
David A. Beckett, Reg. No. 23098
Michael J. Santisi, Reg. No. 29673
John J. Roberts, Reg. No. 30124
Assistant Attorneys General
Business and Licensing Section 1525 Sherman Street, $5^{\text {th }}$ Floor Denver, Colorado 80203
Telephone: 303-866-5135
Facsimile: 303-866-5395
Attorneys for the Trial Staff of the Commission

Accepted on behalf of COLORADO OFFICE OF CONSUMER COUNSEL:

By:
P. B. Schechter

Rate / Financial Analyst Office of Consumer Counsel 1580 Logan Street, Suite 740 Denver, CO 80203
Telephone: 303-894-2124
Facsimile: 303-894-2117

Accepted as to form
COLORADO OFFICE OF CONSUMER COUNSEL:

OFFICE OF THE ATTORNEY GENERAL
KEN SALAZAR
Attorney General

By:
G. Harris Adams, Reg. No. 19668

Assistant Attorney General
Consumer Protection Section
1525 Sherman Street, 5th Floor
Denver, Colorado 80203
Telephone: 303-866-5869
Facsimile: 303-866-5342
ATTORNEYS FOR THE COLORADO OFFICE OF CONSUMER COUNSEL

Accepted on behalf of:
CRIPPLE CREEK \& VICTOR GOLD MINING COMPANY, HOLCIM (U.S.)
INC. AND THE TRANE COMPANY:
DUFFORD \& BROWN, P.C.

By:
Richard L. Fanyo, Reg. No. 7238
Mark A. Davidson, Reg. No. 10364
1700 Broadway, Suite 2100
Denver, CO 80290-2101
Telephone: (303) 861-8013
Fax: (303) 832-3804
Attorneys for the Cripple Creek \& Victor Gold Mining Company, Holcim (U.S.) Inc. and the Trane Company

Accepted on behalf of FOUNTAIN VALLEY AUTHORITY BOARD OF WATER WORKS OF PUEBLO, COLORADO CITY OF CANON CITY, COLORADO:

By:
William Hamilton McEwan, Reg. No. 3082
3257 E. Fremont Drive
Littleton, CO 80122
Telephone: (303) 779-1563
Fax: (303) 850-7022
Attorney for the Fountain Valley Authority, Board of Water Works of Pueblo, CO, City of Canon City, CO

CERTIFICATE OF SERVICE

I hereby certify that on this $27^{\text {th }}$ day of July 2004, a true and correct copy of the foregoing SETTLEMENT AGREEMENT AND MOTION FOR APPROVAL OF SETTLEMENT AGREEMENT was served via facsimile transmission, hand delivery, or placed in the United States mail, first class postage prepaid, addressed to the following:

Mr. W. Scott Keith
Aquila Networks
Post Office Box 11739
Kansas City, MO 64138

G. Harris Adams, Esquire

Assistant Attorney General
Office of the Attorney General
1525 Sherman Street, $5^{\text {th }}$ Floor
Denver, CO 80203
William H. McEwan, Esquire
3257 East Fremont Drive
Littleton, CO 80122

William F. Mattoon, Esquire
Peterson \& Fonda, P.C.
215 West Second Street
Pueblo, CO 81003
Gregory L. Johnson, Esquire
Anderson, Dude \& Lebel, P.C.
111 South Tejon, Suite 400
Post Office Box 240
Colorado Springs, CO 80901-0240
John Havens, Esquire
City Attorney
City of Canon City, Colorado
P. O. Box 1460

Canon City, CO 81215-1460

Sandra Johnson Jones
Public Utilities Commission
1580 Logan Street, OL-2

Richard L. Fanyo, Esquire
Mark A. Davidson, Esquire Dufford \& Brown, P.C.
1700 Broadway, Suite 2100
Denver, CO 80290-2101

P. B. Schecter

Rate/Financial Adviser
Office of Consumer Counsel
1580 Logan Street, Suite 740
Denver, CO 80203
Michael J. Santisi, Esquire
John J. Roberts, Esquire
David A. Beckett, Esquire
Assistant Attorneys General
Business and Licensing Section
Office of the Attorney General
1525 Sherman Street, $5^{\text {th }}$ Floor
Denver, CO 80203

Marty Blake
The Prime Group, LLC
6711 Fallen Leaf
Post Office Box 7469
Louisville, KY 40241
Michael J. Santisi, Esquire
John J. Roberts, Esquire
David A. Beckett, Esquire
Assistant Attorneys General
1525 Sherman Street, 5 th Floor Denver, CO 80203

Warren Wendling
Public Utilities Commission
1580 Logan Street, OL-2

Denver, CO 80203
Karlton Kunzie
Public Utilities Commission 1580 Logan Street, OL-2
Denver, CO 80203
Wendie Allstot
Advisory Staff
Public Utilities Commission 1580 Logan Street, OL-2
Denver, CO 80203
Larry Shiao
Public Utilities Commission 1580 Logan Street, OL-2
Denver, CO 80203
John Trogonoski
Public Utilities Commission
1580 Logan Street, OL-2
Denver, CO 80203
Frank Shafer
Advisory Staff
Public Utilities Commission
1580 Logan Street, OL-2
Denver, CO 80203

Denver, CO 80203
Randy Garroutte
Public Utilities Commission
1580 Logan Street, OL-2
Denver, CO 80203
Michael Zimmerman
Advisory Staff
Public Utilities Commission 1580 Logan Street, OL-2 Denver, CO 80203

Bridget McGee-Stiles
Public Utilities Commission
1580 Logan Street, OL-2
Denver, CO 80203
Wendell Winger
Public Utilities Commission
1580 Logan Street, OL-2
Denver, CO 80203

AQUILA NETWORKS-WPC

CALCULATION OF SETTLEMENT REVENUE REQUIREMEN

12 MONTHS ENDING AUGUST 31, 2003
DOCKET NO. 04S-035E

$\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$	Description		Amount
1	Net CPUC Jurisdictional Rate Base	\$	122,489,252
2	Return On Rate Base		8.76\%
3	Required Net Operating Income	\$	10,735,264
4	Net CPUC Jurisdictional Operating Income	\$	5,652,043
5	Deficiency	\$	5,083,221
6	Income Tax Factor		1.613150402
7	Required Revenue Change	\$	8,200,000
8	As Adjusted Base Revenue	\$	118,340,819
9	Proposed Base Rate Increase (Surcharge)		6.93\%
10	Effect on Average Residential Customer Before ICA-Monthly	\$	3.57
11	Effect on Average Small Business Customer Before ICA-Monthly	\$	12.06
12	Effect on Average Residential Customer After ICA-Monthly	\$	1.76
13	Effect on Average Small Business Customer After ICA-Monthly	\$	4.96
14	Residential Average Usage per Month		596
15	Small Business Average Usage per Month		2,342

Settlement Agreement
Attachment A
Schedule 1

AQUILA NETWORKS-WPC
JURISDICTIONAL RATE BASE PER SETTLEMENT AGREEMENT DOCKET NO. 04S-035E
TEST YEAR ENDED AUGUST 31, 2003

Settlement Agreement
Attachment A
Schedule 3

AQUILA NETWORKS-WPC COST OF CAPITAL PER SETTLEMENT
 DOCKET NO. 04S-035E

Settlement Agreement

Attachment A
Schedule 4

Line			Cost		
No.	Description	Ratio	Embedded		Weighted
1	Common Equity	47.50\%	10.25\%		4.87\%
2	Long-term Debt	52.50\%	7.42\%		3.90\%
3	Total	100.00\%			8.76\%
4	Annualized Intere			\$	4,771,569
5	Annualized Intere		3.970\%		5,145,494
6	Decrease in Intere			\$	$(373,925)$
7	Increase in Incom				142,127

BEFORE THE PUBLIC UTILITIES COMMISSION

OF THE STATE OF COLORADO

RE: THE TARIFF SHEETS FILED BY)

 AQUILA NETWORKS - WPC WITH ADVICE LETTER NO. 588-ELECTRIC) Docket No. 04S-035E

DIRECT TESTIMONY

OF

RICHARD A. BAUDINO

ON BEHALF OF

CRIPPLE CREEK \& VICTOR GOLD MINING COMPANY GOODRICH CORPORATION, HOLCIM (U. S.) INC. AND THE TRANE COMPANY
J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

APRIL 2004

BEFOŔRE THE PUBLIC UTILITIES COMMISSION

OF THE STATE OF COLORADO

RE: THE TARIFF SHEETS FILED BY) AQUILA NETWORKS - WPC WITH) ADVICE LETTER NO. 588 -ELECTRIC)

Docket No. 04S-035E

DIRECT TESTIMONY OF RICHARD A. BAUDINO

I. QUALIFICATIONS AND SUMMARY

Q. Please state your name and business address.
A. Richard A. Baudino, J. Kennedy and Associates, Inc. ("Kennedy and Associates"), 570 Colonial Park Drive, Suite 305, Roswell, Georgia 30075.
Q. What is your occupation and who employs you?
A. I am a utility rate and economic consultant holding the position of Director of Consulting with the firm of Kennedy and Associates.
Q. Please describe your education and professional background.
A. I received my Master of Arts degree with a major in Economics and a minor in Statistics from New Mexico State University in 1982. I also received my Bachelor of Arts degree with majors in Economics and English from New Mexico State in 1979.

I began my professional career with the New Mexico Public Service Commission Staff in October of 1982 and was employed there as a Utility Economist. During my employment with the Staff, my responsibilities included the analysis of a broad range of issues in the ratemaking field. Areas in which I testified included cost of service, rate of return, rate design, revenue requirements, analysis of sale/leasebacks of generating plants, utility finance issues, and generating plant phase-ins.

In October 1989 I joined the utility consulting firm of Kennedy and Associates as a Senior Consultant where my duties and responsibilities covered substantially the same areas as those during my tenure with the New Mexico Public Service Commission Staff. I became Manager in July 1992 and was named to my current position in January 1995.

Exhibit___(RAB-1) summarizes my expert testimony experience.
Q. On whose behalf are you testifying in this proceeding?
A. I am testifying on behalf of Cripple Creek \& Victor Gold Mining Company, Goodrich Corporation, Holcim (U.S.), Inc. and The Trane Company (collectively referred to as "CGHT"), a group of large industrial customers of Aquila NetworksWPC ("Aquila").

Q. What is the purpose of your Direct Testimony?

1 A. The purpose of testimony is to address the investor required return on equity for Aquila.
Q. Please summarize your recommendation.
A. I conclude that the investor required return on equity for Aquila is in the range of $8.80 \%-9.00 \%$. I recommend that the Commission adopt an 8.80% return on equity for the Company in this proceeding.
Q. How is your testimony organized?
A. Section II provides a summary of past and current economic conditions, which sets the backdrop for my rate of return analysis. Section III contains a discussion of my approach to estimating the cost of equity and the results of the methodologies that I utilize.

II. REVIEW OF ECONOMIC AND FINANCIAL CONDITIONS

Q. Please describe the general economic trends that have affected utilities in the last few years.
A. The trend for the stock and bond markets was quite positive through the ' 90 s. Although there was a recession in late 1990 through early 1991, the markets continued to post strong, above average gains through 1999. During the period from 1990-1999, the S\&P 500 posted an average annual gain of 18.2%, still well above the long-term average stock market return of $12.2 \%^{1}$. Long-term government bonds also provided excellent returns during the ' 90 s, averaging 8.8% per year compared to the long-run average of 5.8%. During the 1990 s , inflation remained moderate, averaging 2.9%.

In 2000, the stock and bond markets substantially diverged. The total return for the S\&P 500 was -9.11%, while the return for small company stocks was -3.59%. Bonds prices, however, staged a strong rally despite two interest rate increases by the Federal Reserve. The total return for long-term government bonds for the year was 21.48%, with the yield falling from 6.82% at the end of 1999 to 5.58% at the end of December 2000. The inflation rate rose to 3.39% for the year.

During 2001, the economy slowed considerably and was affected drastically by the terrorist attacks of September 11. The unemployment rate rose to 5.8% and GDP growth slowed to only 1.1% for the year. Stock and bond markets again showed divergent returns. The Standard and Poor's 500 returned -11.88% for the year,

[^28]while small company stocks actually did quite well, posting a total return of 22.77%. Long-term government bonds returned 3.70% during 2001.

For 2002, Ibbotson Associates reported that the unemployment rate rose to 6.0% and GDP grew at an inflation-adjusted rate of 2.4%. This compares the 0.3% growth rate for GDP in 2001. The S\&P 500 returned -22.10% for the year, the third straight yearly loss for large-company stocks. However, long-term government bond returned 17.84%, well above the long-run average yearly return.

2003 was a much better year for the stock market in general as the U.S. economy staged a recovery. According to the Value Line Investment Survey's Selection and Opinion, January 9, 2004, the S\&P 500 rose 26.2% during the year. Interest rates remained low, with the Prime Rate at 4.0%, the discount rate at 2.0%, and the Federal Funds rate at 1.0%. The Bureau of Labor Statistics reported that the U.S. unemployment rate stood at 5.7% at the end of December 2003, a decline from 2002. The inflation rate remained low at 2.0% for the year. Utility stocks also did well during 2003, with prices staging a significant rally during the year. The Dow Jones Utility Average began the year at 215.16 and closed the year at 266.9, an increase of 24%.
Q. What has the trend in capital costs been over the last few years?
A. Exhibit___(RAB-2) presents a graphic depiction of the trend in interest rates from January 1994 through February 2004. The interest rates shown are for the 20 -year U.S. Treasury Bond and the average public utility bond from the Mergent Bond

Record. Exhibit___(RAB-2) shows that the yields on long-term treasury bonds have declined significantly since early 1995, although rates have been quite volatile. Increased bond market volatility actually began in the early 1970s, when inflation became more of a sustained long-term concern. Interest rate volatility remains higher now than it has been historically.

Yields have trended downward from 2002 through 2004, with the 20 -year bond yield ending the month of February 2004 at 4.94%. The yield on the average public utility bond has also decreased significantly in 2002 and 2003, falling from 7.83% in March 2002 to 6.17% in February 2004. As of April 5, 2004, the Moody's average public utility bond yield stood at 6.29%. A-rated utility bonds yielded 6.26%, while Baa bonds yielded 6.37%.

Over the last six months, bonds have reached their lowest levels in recent history. Exhibit___(RAB-2) shows that since 1994 public utility bond yields are at their lowest level over that ten-year historical period. I also reviewed the Mergent Public Utility Manual and found that average public utility bond yields have not been as low as they are now since the 1968-1969 time period, almost 35 years ago.
Q. Mr. Baudino, in your opinion what effect does the current interest rate environment have on utility stocks?
A. In my view, the currently low bond yields strongly suggest lower return on equity requirements on the part on the investing public. The results of my return on equity
analysis in the subsequent section of my Direct Testimony are consistent with these historically low bond yields.
Q. How does the investment community regard the electric utility industry as a whole?
A. The Value Line Investment Survey reported the following in its March 5, 2004 report on the electric utility industry (east):

Abstract

"The bankruptcy of Enron and the California energy crisis prompted a majority of utilities to adopt a "back-to-basics" strategy in recent years. Duquesne Light Holdings is one noteworthy example. This means that most power companies are once again largely reliant on traditional distribution businesses for net-profit growth. Nearly half of all the states in the U.S. have adopted some form of retail open-market rules since deregulation began in the mid-1990s. Nevertheless, many more years will likely pass before the rest of the country completely embraces retail competition."

Value Line also noted that most electric utilities have stepped back from risky financial energy trading ventures, enhancing future earnings predictability. Net profit prospects for the industry through 2007 are generally favorable, but growth prospects will not be exceptional, according to Value Line's report.
Q. What is your view of Value Line's comments regarding the state of the electric industry today?
A. In my opinion, Value Line's comments indicate that utilities have ventured into higher risk unregulated operations that can increase risk and, in certain cases, harm their overall financial performance. These unregulated operations have increased risk for electric utilities. Now that many utilities have backed away from such ventures, their overall risk should decline and their financial situations should stabilize. Further, I believe that utility stocks have become much more attractive to investors over the last 12 to 15 months. Much of the uncertainty brought about by the California energy crisis and the Enron debacle has subsided, reducing the perceived risk of utility companies in general.
Q. How does the investment community view Aquila, Inc?
A. Aquila Networks is part of Aquila, Inc. and is thus affected by the situation of the entire company, not just the regulated utility operations.

In it's April 2, 2004 report, the Value Line Investment Survey noted the following:
"Ever since the power markets collapsed two ears ago, thereby weakening the company considerably, Aquila has been divesting assets and exiting as much of the energy-marketing business as possible. In the first quarter of 2004, sales of the company's British utility and the bulk of its domestic independent power projects brought in $\$ 300$ million. The sale of Aquila's Canadian utilities should raise over $\$ 600$ million. Some of the proceeds (along with cash on hand) will be used to retire $\$ 400$ million of debt that comes due in the second half of 2004. The rest could be used for additional debt reduction or to buy out some unattractive power-marketing agreements and gas prepay

contracts that are a legacy of Aquila's participation in energy marketing.

Abstract

We expect Aquila's losses to decline gradually, but the company will still be in the red for a while. Rate relief, the effects of a costcutting program, and reduced energy-marketing losses should produce bottom-line improvement in 2004 and 2005."

Aquila's management suspended the common stock dividend in 2002.

During my research on Aquila, I visited the Company's web site and obtain a news release from the Company dated March 10, 2004. In this release, the Company reported a fully diluted loss of $\$ 0.18$ per share for the fourth quarter of 2003 , or a net loss of $\$ 34$ million for the quarter. The Company also reported a fully diluted loss of $\$ 1.73$ per share for the full year of 2003, or a net loss of $\$ 336.4$ million. Aquila, Inc. noted that most of the charges and margin losses were related to "the execution of Aquila's ongoing plan to refocus on its core utility operations." This news release also included the following quote:
Q. What are the bond ratings for Aquila?
A. The regulated utility operations do not have their own bond ratings, as Aquila, Inc. issues debt and is the entity that is rated by such agencies as Moody's and Standard and Poor's ("S\&P").

In November 2002, S\&P relegated Aquila Inc.'s bond to a BB rating. This rating is below investment grade and is now considered "junk bond" status. In a report dated April 8, 2004, Standard and Poor's lowered Aquila, Inc.'s corporate credit rating to B - from B with a negative outlook. Standard and Poor's noted that the downgrade "reflects continued uncertainty regarding Aquila's ability to restructure its gas prepay contracts and the expectation that credit measures will remain pressured despite management's efforts to stem its deteriorating credit profile".
Q. What impact does Aquila, Inc.'s current bond rating have on determining a fair return on equity for Aquila Networks in this proceeding?
A. It is clear that Aquila, Inc. is significantly more risky as a total company than its regulated utility operations, which are profitable and carry much lower risk. A higher cost of capital from risky unregulated operations should not be passed on to Colorado ratepayers in this proceeding. It will be necessary to screen out higher risk from the Company's assets sales, debt leverage, and its restructuring of its gas prepay contracts in order to determine a fair regulated return on equity for Aquila's regulated electric utility operations in Colorado. I will recommend how this may be accomplished in the next section of my direct testimony.

III. DETERMINATION OF FAIR RATE OF RETURN

Q. Please describe the methods you employed in estimating a fair rate of return for Entergy.
A. I employed a Discounted Cash Flow ("DCF") analysis for a group of comparison electric companies to estimate the cost of equity for Aquila's electric operations. I also employed a Capital Asset Pricing Model ("CAPM") analysis, although I did not incorporate its results into my recommendation.
Q. What are the main guidelines to which you adhere in estimating the cost of equity for a firm?
A. Generally speaking, the estimated cost of equity should be comparable to the returns of other firms with similar risk structures and should be sufficient for the firm to attract capital. These are the basic standards set out in Federal Power Comm'n v. Hope Natural Gas Co., 320 U.S. 591 (1944) and Bluefield W.W. \& Improv. Co. v. Public Service Comm'n., 262 U.S. 679 (1922).

From an economist's perspective, the notion of "opportunity cost" plays a vital role in estimating the cost of equity. One measures the opportunity cost of an investment equal to what one would have obtained in the next best alternative. For example, let us suppose that an investor decides to purchase the stock of a publicly traded electric utility. That investor made the decision based on the expectation of dividend payments and perhaps some appreciation in the stock's value over time. However,
that investor's opportunity cost is measured by what she or he could have invested in as the next best alternative. That alternative could have been another utility stock, a utility bond, a mutual fund, a money market fund, or any other number of investment vehicles.

The key determinant in deciding whether to invest, however, is based on comparative levels of risk. Our hypothetical investor would not invest in a particular electric company stock if it offered a return lower than other investments of similar risk. The opportunity cost simply would not justify such an investment. Thus, the task for the rate of return analyst is to estimate a return that is equal to the return being offered by other risk-comparable firms. Failing this, the subject firm will be impaired in its ability to attract capital.

Q. What are the major types of risk faced by utility companies?

A. In general, risk associated with the holding of common stock can be separated into three major categories: business risk, financial risk, and liquidity risk. Business risk refers to risks inherent in the operation of the business. Volatility of the firm's sales, long-term demand for its product(s), the amount of operating leverage, and quality of management are all factors that affect business risk. The quality of regulation at the state and federal levels also plays an important role in business risk for regulated utility companies.

Financial risk refers to the impact on a firm's future cash flows from the use of debt in the capital structure. Interest payments to bondholders represent a prior call on
the firm's cash flows and must be met before income is available to the common shareholders. Additional debt means additional variability in the firm's earnings, leading to additional risk.

Liquidity risk refers to the ability of an investor to quickly sell an investment without a substantial price concession. The easier it is for an investor to sell an investment for cash, the lower the liquidity risk will be. Stock markets, such as the New York and American Stock Exchanges, help ease liquidity risk substantially. Investors who own stocks that are traded in these markets know on a daily basis what the market prices of their investments are and that they can sell these investments fairly quickly. Many electric utility stocks are traded on the New York Stock Exchange and are considered liquid investments.
Q. Are there any indices available to investors that quantify the total risk of a company?
A. Yes. Published measures exist that categorize companies based on various measures of risk. One of the best-known and most widely available sources is from Value Line. Each company on which Value Line reports is assigned a Safety Rank. The Safety Rank consists of a number from 1 to 5 , with 1 being the highest - meaning least risky - and 5 being the lowest - meaning most risky. The Safety Rank measures the total risk of a stock and encompasses just about all factors that affect financial and business risk. These factors include:

- Stock price volatility
- Fixed charge coverage ratio
- Quality of earnings
- Capitalization ratio
- Earnings on common stock
- Payout ratio
- Regulatory risk

By selecting companies with the same Safety Rank, investors can be relatively confident that the market views them as similarly risky investments.

Bond ratings are another good tool that investors may utilize to determine the risk comparability of firms. Bond rating agencies such as Moody's and Standard and Poor's perform detailed analyses of all the factors that contribute to the business and financial risk of a particular investment. The end result of their analyses is a bond rating that reflects these risks.

Discounted Cash Flow Method

Q. Please describe the basic DCF approach.

A. The basic DCF approach is rooted in valuation theory. It is based on the premise that the value of a financial asset is determined by its ability to generate future net cash flows. In the case of a common stock, those future cash flows take the form of dividends and appreciation in price. The value of the stock to investors is the discounted present value of future cash flows. The general equation then is:

$$
V=\frac{R}{(1+r)}+\frac{R}{(1+r)^{2}}+\frac{R}{(1+r)^{3}}+\ldots . \frac{R}{(1+r)^{n}}
$$

Where: $\quad V=$ asset value $R=$ yearly cash flows $r=$ discount rate

This is no different from determining the value of any asset from an economic point of view. However, the DCF model that I employ does make certain simplifying assumptions. One is that the stream of income from the equity share is assumed to be perpetual; that is, there is no salvage or residual value at the end of some maturity date (as is the case with a bond). Another important assumption is that financial markets are efficient; that is, they correctly evaluate the cash flows relative to the appropriate discount rate, thus rendering the stock price efficient relative to other alternatives. Finally, the model I employ also assumes a constant growth rate in dividends. The fundamental relationship employed in the DCF method is described by the formula:

$$
k=\frac{D_{I}}{P_{0}}+g
$$

$$
\text { Where: } \quad \begin{aligned}
& D_{1}=\text { the next period dividend } \\
& \\
& \\
& P_{0}=\text { current stock price } \\
& g=\text { expected growth rate } \\
& k=\text { investor-required return }
\end{aligned}
$$

It is apparent that the " k " so determined must relate to the investors' expected return. Use of the discounted cash flow method to determine an investor-required return is complicated by the need to express investors' expectations relative to
dividends, earnings, and book value over an infinite time horizon. Financial theory suggests that stockholders purchase common stock on the assumption that there will be some change in the rate of dividend payments over time. We assume that the rate of growth in dividends is constant over the assumed time horizon, but the model could easily handle varying growth rates if we knew what they were. Finally, the relevant time frame is prospective rather than retrospective.

Q. What was your first step in conducting your DCF analysis for Aquila?

A. My first step was to construct a comparison group of companies that has a risk profile that is reasonably similar to that of the Company. This is necessary because the Company is a part of Aquila, Inc. and, as such, does not have publicly traded common stock. Thus, a DCF analysis cannot be performed directly on Aquila Networks - WPC. Using a comparison group of utilities that do have publicly traded common stock is both a necessary and appropriate step in estimating the cost of equity for Aquila in this proceeding.
Q. Please describe your criteria for selecting the comparison group of electric companies.
A. I used several criteria to select a comparison group. First, using the March 2004 issue of the C. A. Turner Utility Reports, I selected electric companies that were rated either A or Baa/BBB by Moody's and Standard and Poor's. From that group I
selected companies that had at least 50% of their revenues from electric operations. This resulted in a group of electric and/or electric and gas companies that have operational and risk profiles similar to Entergy.

From this group, I then eliminated companies that had recently cut or eliminated dividends, were recently or currently involved in merger or restructuring activities, and had recent experience with significant earnings fluctuations. These criteria are important because utilities that are undergoing those types of changes are not good candidates for the DCF model.

The resulting group of comparison electric companies I used in my analysis is:

1. Central Vermont Public Service
2. CINergy Corp.
3. Cleco Corporation
4. Consolidation Edison
5. Dominion Resources
6. Empire District Electric
7. Energy East Corporation
8. Entergy
9. Exelon
10. Green Mountain Power
11. Hawaiian Electric Industries
12. Northeast Utilities
13. NSTAR
14. Pinnacle West Capital Corp.
15. PPL Corporation
16. Progress Energy
17. Public Service Enterprise Group
18. SEMPRA Energy
19. Southern Company
Q. You mentioned that one of your selection criteria was a bond rating of A/BBB. Please explain why this is an appropriate criterion to use in the selection of a comparison group in this proceeding.
A. It was my goal to construct a comparison group of electric utilities that was roughly similar in risk to Aquila. Please refer to Exhibit___(RAB-3), which lists the bond ratings for each of these companies. As a group, the average bond rating is around a low A, high $\mathrm{BBB} / \mathrm{Baa}$ rating. In my view, these risk measures indicate that the group is a slightly above average risk electric utility group.

It is appropriate to use an average risk group to estimate the investor required return for the Company in this proceeding. Aquila Networks - WPC is a regulated utility that is part of a larger, more risky company (Aquila, Inc.). Given that the Company's regulated operations are much less risky than the Aquila, Inc.'s unregulated operations, I recommend that the Colorado Public Utilities Commission ("CPUC") treat the Company as an average risk electric utility in this proceeding. In my view, such an approach will result in a fair rate of return that balances the interests of both shareholders and ratepayers.
Q. What was your first step in determining the DCF return on equity for the comparison group?
A. I first determined the current dividend yield, $\mathrm{D}_{0} / \mathrm{P}_{0}$, from the basic equation. My general practice is to use six months as being the most reasonable period over which
to estimate the dividend yield. The six-month period I used covered the period from October 2003 through March 2004. I then obtained the indicated annualized dividend as reported in the Standard and Poor's Stock Guide over the same sixmonth period. The annualized dividend divided by the average monthly price represents the average dividend yield for each month in the period.

Using this approach results in an average dividend yield for the group of 4.35%. These calculations are shown in Exhibit \qquad (RAB-4).

Q. Having established the average dividend yield, how did you determine the expected growth rate for the electric comparison group?

A. "Expected" refers to the investor's expected growth rate. The task, in theory, is to use a growth rate that will correctly forecast the constant rate of growth in dividends. We refer to a perpetual growth rate since the DCF model has no cut-off point. The obvious fact is that there is no way to know with absolute certainty what investors expect the growth rate to be in the short term, much less in perpetuity. The dividend growth rate is a function of earnings growth and the payout ratio, neither of which is known precisely for the future.

In this analysis, I relied on two major sources of analysts' forecasts for growth. These sources are Value Line and Zacks Investment Research ("Zacks").

Q. Please briefly describe Value Line and Zacks.

A. Value Line is an investment survey that is published for approximately 1,700 companies, both regulated and unregulated. It is updated quarterly and probably represents the most comprehensive and widely used of all investment information services. It provides both historical and forecasted information on a number of important data elements. Value Line neither participates in financial markets as a broker nor works for the utility industry in any capacity of which I am aware.

According to Zacks' website, Zacks "was formed in 1978 to compile, analyze, and distribute investment research to both institutional and individual investors." Zacks gathers opinions from a variety of analysts on earnings growth forecasts for numerous firms including regulated electric utilities. The estimates of the analysts responding are combined to produce consensus average and median estimates of earnings growth.
Q. Why did you rely on analysts' forecasts in your analysis?
A. The finance literature has shown that analysts' forecasts provide better predictions of future growth than do estimates based on historical growth alone ${ }^{2}$.
Q. How did you utilize your data sources to estimate growth rates for the comparison group?

[^29]A. Exhibit___(RAB-5), pages 1 through 4, presents the details of the calculations for the Value Line and Zacks forecasted growth estimates. The Value Line growth estimates are based on five-year forecasts for dividend growth and six-year forecasts for earnings growth. The Zacks earnings growth estimates are forecasts for the next five years. These earnings and dividend growth estimates for the comparison group are summarized on Columns (1) through (3) of page 1 of Exhibit___(RAB-5).

I also utilized the sustainable growth formula in estimating the expected growth rate. The sustainable growth method, also known as the retention ratio method, recognizes that the firm's retaining a portion of its earnings fuels growth in dividends. These retained earnings, which are plowed back into the firm's asset base, are expected to earn a rate of return. This, in turn, generates growth in the firm's book value, market value, and dividends.

The sustainable growth method is calculated using the following formula:

$$
G=B \times R
$$

Where: $\quad G=$ expected retention growth rate
$B=$ the firm's expected retention ratio
$R=$ the expected return

In its proper form, this calculation is forward-looking. That is, the investors' expected retention ratio and return must be used in order to measure what investors anticipate will happen in the future. Data on expected retention ratios and returns may be obtained from Value Line.

The expected sustainable growth estimates for the comparison group are presented in Column (4) on page 1 of Exhibit___(RAB-5). The data came from the Value Line forecasts for the comparison group.
Q. How did you proceed to determine the DCF cost of equity for the electric comparison group?
A. To estimate the expected dividend yield $\left(D_{1}\right)$ for the group, the current dividend yield must be moved forward in time to account for dividend increases over the next twelve months. I estimated the expected dividend yield by multiplying the current dividend yield by one plus one-half the expected growth rate.

I then added the expected growth rate ranges to the expected dividend yield for the comparison group. The calculation of the resulting DCF returns on equity is presented on page 5 of Exhibit___(RAB-5). The expected growth rates range from 3.46% to 5.00%.

Q. Please explain how you calculated your DCF cost of equity estimates.

A. Page 5 of Exhibit__(RAB-5) shows four alternative DCF cost of equity calculations using the four growth estimates shown on page 1. In calculating the average growth rates for the group, I eliminated negative earnings growth rates for one company in the group because negative growth rates are not appropriate proxies for long-term growth expectations.

The DCF returns range from 7.88% to 9.45%. The DCF return on equity utilizing the average of all the growth rates is 8.77%.

Capital Asset Pricing Model

Q. Briefly summarize the Capital Asset Pricing Model ("CAPM") approach.

A. The theory underlying the CAPM approach is that investors, through diversified portfolios, may combine assets to minimize the total risk of the portfolio. Diversification allows investors to diversify away all risks specific to a particular company and be left only with market risk that affects all companies. Thus, CAPM theory identifies two types of risks for a security: company-specific risk and market risk. Company-specific risk includes such events as strikes, management errors, marketing failures, lawsuits, and other events that are unique to a particular firm. Market risk includes inflation, business cycles, war, variations in interest rates, and changes in consumer confidence. Market risk tends to affect all stocks and cannot be diversified away. The idea behind the CAPM is that diversified investors are rewarded with returns based on market risk.

Within the CAPM framework, the expected return on a security is equal to the riskfree rate of return plus a risk premium that is proportional to the security's market, or nondiversifiable risk. Beta is the factor that reflects the inherent market risk of a security. It measures the volatility of a particular security relative to overall market for securities. For example, a stock with a beta of 1.0 indicates that if the market rises by 15.00%, that stock will also rise by 15.00%. This stock moves in tandem
with movements in the overall market. A stock with a beta of 0.5 will only rise or fall 50.00% as much as the overall market. So with an increase in the market of 15.00%, this stock will only rise 7.50%. Stocks with betas greater than 1.0 will rise and fall more than the overall market. Thus, beta is the relevant measure of the risk of individual securities vis-à-vis the market.

Based on the foregoing discussion, the equation for determining the return for a security in the CAPM framework is:

$$
K=R f+\beta(M R P)
$$

$$
\text { Where: } \quad \begin{aligned}
& K=\text { Required Return on equity } \\
& R f=\text { Risk-free rate } \\
& M R P=\text { Market risk premium } \\
& \beta=\text { Beta }
\end{aligned}
$$

This equation tells us about the risk/return relationship posited by the CAPM. Investors are risk averse and will only accept higher risk if they receive higher returns. These returns can be determined in relation to a stock's beta and the market risk premium. The general level of risk aversion in the economy determines the market risk premium. If the risk-free rate of return is 3.00% and the required return on the total market is 15.00%, then the risk premium is 12.00%. Any stock's required return can be determined by multiplying its beta by the market risk premium. Stocks with betas greater than 1.0 are considered riskier than the overall market and will have higher required returns. Conversely, stocks with betas less than 1.0 will have required returns lower than the market as a whole.
Q. In general, are there concerns regarding the use of the CAPM in estimating the return on equity?
A. Yes. There is considerable controversy surrounding the use of the CAPM ${ }^{3}$. There is strong evidence that beta is not the primary factor in determining the risk of a security. For example, Value Line states that its Safety Rank is a measure of total risk, not its calculated beta coefficient. Beta coefficients usually describe only a small amount of total investment risk. Also, recent finance literature has questioned the usefulness of beta in predicting the relationship between risk and required return. Finally, a considerable amount of judgment must be employed in determining the risk-free rate and market return portions of the CAPM equation. The analyst's application of judgment can significantly influence the results obtained from the CAPM. My past experience with the CAPM indicates that it is prudent to use a wide variety of data in estimating returns. Of course, the range of results may also be wide, indicating the difficulty in obtaining a reliable estimate from the CAPM.
Q. How did you estimate the market return portion of the CAPM?
A. The first source I used was the Value Line Investment Survey for Windows. Value Line provides a summary statistical report detailing, among other things, forecasted growth in dividends, earnings and book value for the companies Value Line follows. I have presented these three growth rates and the average on page 2 of Exhibit ___(RAB-6). The average growth rate is 10.52%. Combining this growth rate

[^30]with the average expected dividend yield of the Value Line companies of 1.18% results in an expected market return of 11.70%. The detailed calculations are shown on page 1 of Exhibit ____(RAB-6).

I also considered a supplemental check to this market estimate. Ibbotson Associates published a study of historical returns on the stock market in its Stocks, Bonds, Bills, and Inflation 2004 Yearbook. Some analysts employ this historical data to estimate the market risk premium of stocks over the risk-free rate. The assumption is that a risk premium calculated over a long period of time is reflective of investor expectations going forward. Exhibit ____(RAB-7) presents the calculation of the market return using the Ibbotson historical data.
Q. Please address the use of historical earned returns to estimate the market risk premium.
A. The use of historic earned returns on the Standard and Poor 500 to estimate the current market risk premium is rather suspect because it naively assumes that investors currently expect historical risk premiums to continue unchanged into the future forever regardless of present or forecasted economic conditions. Brigham, Shome and Vinson noted the following with respect to the use of historic risk premiums calculated using the returns as reported by Ibbotson and Sinquefield (referred to in the quote as "I\&S"):
> "There are both conceptual and measurement problems with using I\&S data for purposes of estimating the cost of capital. Conceptually, there is no compelling reason to think that investors expect the same relative returns that were earned in the past. Indeed, evidence presented in the following sections

> indicates that relative expected returns should, and do, vary significantly over time. Empirically, the measured historic premium is sensitive both to the choice of estimation horizon and to the end points. These choices are essentially arbitrary, yet can result in significant differences in the final outcome."

In summary, the use of historic earned returns should be viewed with a great deal of caution and skepticism. There is no real support for the proposition that an unchanging, mechanistically applied historical risk premium is representative of current investor expectations and return requirements.
Q. How did you determine the risk free rate?
A. I used the average yields on the 20 -year Treasury bond and five-year Treasury note over the six-month period from October 2003 through March 2004. The 20year Treasury bond is often used by rate of return analysts as the risk-free rate, but it contains a significant amount of interest rate risk. The five-year Treasury note carries less interest rate risk than the 20 -year bond and is more stable than threemonth Treasury bills. Therefore, I have employed both of these securities as proxies for the risk-free rate of return. This approach provides a reasonable range over which the CAPM may be estimated.

Q. What is your estimate of the market risk premium?

[^31]A. Exhibit ____(RAB-6), line 9 of page 1, presents my estimates of the market risk premium based on a DCF analysis applied to current market data. The market risk premium is 6.67% using the 20 -year Treasury bond and 8.57% using the five-year Treasury bond.

Utilizing the historical Ibbotson data on market returns, the market risk premium ranges from 5.20% to 7.20%. This is shown on Exhibit \qquad (RAB-7).

Q. How did you determine the value for beta?

A. I obtained the betas for the companies in the electric company comparison group from most recent Value Line reports. The average of the Value Line betas for the electric group is .73 .
Q. Please summarize the CAPM results.
A. Please refer to line 14 of page 1 of Exhibit___(RAB-6) for the CAPM results for the 20 -year and five-year Treasury bond yields. For the electric comparison group, the CAPM returns are 9.37% (five-year bond) and 9.89% (20-year bond).

The CAPM results using the historical Ibbotson data range from 8.82% to 10.28%. These results are shown on Exhibit \qquad (RAB-7).

Conclusions and Recommendations

Q. Please summarize the cost of equity estimates you have developed up to this point in your testimony.
A. Utilizing the DCF model, I developed cost of equity estimates for a comparison group of electric utility companies. The results for the electric company comparison group using the constant-growth DCF model ranged from 7.88% to 9.45%. The results using the CAPM ranged from 8.82% to 10.28%.
Q. What is your recommendation for a fair rate of return on equity for Aquila?
A. My recommended rate of return on equity range for Aquila is $8.80 \%-9.00 \%$. Given the Company's present circumstances, I believe this value is the most representative of the investor-required return on equity for an average risk company such as Aquila.
Q. Please explain how you arrived at your recommended return on equity range
of $8.80 \%-9.00 \%$ for Aquila.
A. My recommendation is based on the average of DCF cost of equity estimates shown on page 5 of Exhibit ___ (RAB-5), which is 8.80%, rounded up to the nearest tenth of a percentage point. I believe that this estimate reflects the most reasonable representation of investor expected returns for the regulated utility operations of Aquila, Inc.

However, if the Commission determines that Aquila is more risky than the avarage utility, I recommend an adjustment of no more than 20 basis points upward from the 8.80% recommendation. 1 determined this 20 basis point adjustment in the following manner. The average bond rating of the electric utility comparison group is between $\mathrm{Baa} / \mathrm{BBB}$ and A . For 2003, the average spread between Baa and A rated utility bonds was 26 basis points, or 0.26%. During the six-month period from September 2003 through February 2004, the average spread was 30 basis points, or 0.30%.

Since the comparison group's rating is split between $\mathrm{Ba} / \mathrm{BBB}$ and A, I do not believe that it would be appropriate to add the full yield spread between Baa and A bonds to the DCF cost of equity results. Therefore, I recommend no more than a 20 basis point risk adjustment in this proceeding. Adding 20 basis points to my recommendation results in a cost of equity of 9.00%.
Q. Mr. Baudino, in your Direct Testimony in the last Aquila proceeding, Docket No. 02S-594E, dated February 2003, you recommended 10.0% for Aquila. Does your recommendation in this case reflect changes that have occurred since you filed your testimony in that prior proceeding?
A. Yes. As I noted in Section II of my Direct Testimony, utility stocks experienced a significant rally last year. Further, the Mergent average public utility bond yield declined from 6.92% in February 2003 to 6.17% in February 2004. This points to a lower required return on utility stocks in general. My recommendation in this proceeding reflects these changes.

2 Q. Does this conclude your direct testimony?
3
4 A. Yes.

EDUCATION

New Mexico State University, M.A.
 Major in Economics
 Minor in Statistics

New Mexico State University, B.A.
Economics
English

Twenty years of experience in utility ratemaking. Broad based experience in revenue requirement analysis, cost of capital, utility financing, phase-ins and rate design. Has designed revenue requirement and rate design analysis programs.

REGULATORY TESTIMONY

Preparation and presentation of expert testimony in the areas of:
Electric and Gas Utility Rate Design
Cost of Capital for Electric, Gas and Water Companies
Ratemaking Treatment of Generating Plant Sale/Leasebacks
Electric and Gas Utility Cost of Service
Revenue Requirements
Gas industry restructuring and competition

RESUME OF RICHARD A. BAUDINO, DIRECTOR OF CONSULTING

EXPERIETCE

1989 to
Present: Kennedy and Associates: Director of Consulting - Responsible for consulting assignments in the area of revenue requirements, rate design, cost of capital, economic analysis of generation alternatives, gas industry restructuring and competition.

1982 to
1989: New Mexico Public Service_Commission_Staff: Utility Economist - Responsible for preparation of analysis and expert testimony in the areas of rate of return, cost allocation, rate design, finance, phase-in of electric generating plants, and sale/leaseback transactions.

CLIENTS SERVED

Regulatory Commissions

Louisiana Public Service Commission

Industrial Groups

Ad Hoc Committee for a Competitive Electric Supply System
Air Products and Chemicals, Inc.
Arkansas Electric Energy Consumers
Arkansas Gas Consumers
Armco Steel Company, L.P.
Association of Business Advocating Tariff Equity
General Electric Company
Industrial Energy Consumers
Kentucky Industrial Utility Consumers
Large Electric Consumers Organization
Newport Steel
Northwest Arkansas Gas Consumers
Maryland Industrial Group
Occidental Chemical
PSI Industrial Group
Taconite Intervenors (Minnesota)
Tyson Foods
006840
J. KENNEDY AND ASSOCIATES, INC.

Expert Testimony Appearances of Richard A. Baudino As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
3183	1780	NM	New Mexico Public Service Commission	Boles Water Co.	Rate design, rate of retum.
10183	$\begin{aligned} & 1803 . \\ & 1817 \end{aligned}$	NM	New Mexico Public Service Commission	Southwestem Electric Coop	Rate design.
11/84	1833	NM	New Mexico Public Service Commission	El Paso Electric Co.	Service contract approval, rate design, performance standards for Palo Verde nuclear generaìng system
1983	1835	NM	New Mexico Public Service Commission	Public Service Co. of NM	Rate design.
1984	1848	NM	New Mexico Public Service Commission	Sangre de Cristo Water CO .	Rate design.
0285	1906	NM	New Mexico Public Service Commission	Southwestem Public Service Co.	Rate of retum.
$09 / 84$	1907	NM	New Mexico Public Service Commission	Jomada Water Co.	Rate of retum.
$11 / 85$	1957	NM	New Mexico Public Service Commission	Southwestem Public Service Co.	Rate of retum.
04/86	2009	NM	New Mexico Public Service Commission	El Paso Electric Co.	Phase-in plan, treatment of saleleaseback expense.
06/86	2032	NM	New Mexico Public Service Commission	El Paso Electric Co.	Saleneaseback approval.
09186	2033	NM	New Mexico Public Service Commission	El Paso Electric Co.	Order to show cause, PVNGS audit.
0287	2074	NM	New Mexico Public Service Commission	El Paso Electric co.	Diversification.
05/87	2089	NM	New Mexico Public Service Commission	El Paso Electric Co.	Fuel factor adjustment.
08887	2092	NM	New Mexico Public Service Commission	EPaso Electric Co.	Rale design.

006841

J. KENNEDY AND ASSOCIATES, INC.

Expert Testimony Appearances
 of
 Richard A. Baudino
 As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
10188	2146	NM	New Mexico Public Service Commission	Public Service Co. of New Mexico	Financial effects of restructuring, reorganization.
07188	2162	NM	New Mexico Public Service Commission	El Paso Electric Co.	Revenue requirements, rate design, rate of return.
$01 / 89$	2194	NM	New Mexico Public Service Commission	Plains Electric G\&T Cooperative	Economic development.
1189	2253	NM	New Mexico Public Service Commission	Plains Electric G\&T Cooperative	Financing.
08189	2259	NM	New Mexicos Public Service Commission	Homestead Water Co.	Rate of retum, rate design.
10189	2262	NM	New Mexico Public Sevice Commission	Public Service Co. of New Mexico	Rate of return.
09/89	2269	NM	New Mexico Public Service Commission	Ruidoso Natural Gas Co .	Rate of return, expense from affiliated interest.
1289	89-208-TF	AR	Arkansas Electric Energy Consumers	Arkansas Power $\&$ Light Co.	Rider M-33.
0190	U-17282	LA	Louisiana Public Service Commission	Gull States Ubilities	Cost of equity.
0990	90-158	KY	Kentucky Industrial Utiily Consumers	Louisville Gas \& Electric Co.	Cost of equity.
09190	90-004-U	AR	Northwest Arkansas Gas Consumers	Arkansas Westem Gas CO .	Cost of equity, transportation rate.
1290	U-17282 Phase IV	LA	Louisiana Public Service Commission	Gulf States Utifites	Cost of equity.
$04 / 91$	91-037-U	AR	Northwest Arkansas Gas Consumers	Arkansas Westem Gas Co.	Transportation rates.
1291	$91-410 .$ $\mathrm{EL} \cdot \mathrm{AlR}$	OH	Air Products \& Chemicals, inc., Armeo Steel Co., General Electric Co., Industrial Energy Consumers	Cincinnati Gas \& Electric Co .	Cost of equity.

006842
J. KENNEDY AND ASSOCIATES, INC.
\qquad

Expert Testimony Appearances
 of
 Richard A. Baudino
 As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$05 / 92$	910890-Ei	FL	Occidental Chemical corp.	Fiorida Power Corp.	Cost of equily, rate of retum.
$09 / 92$	92.032-U	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co.	Cost of equity, rate of retum, cost-of-senice.
$09 / 92$	39314	iD	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Cost of equity, rate of retum.
$09 / 92$	92-009-U	AR	Tyson Foods	General Waterworks	Cost allocation, rate design.
$01 / 93$	92-346	KY	Newport Steel Co.	Union Light, Heat \& Power Co.	Cost allocation.
0193	39498	IN	PSi industrial Group	PSIEnergy	Refund allocation.
$01 / 93$	U-10105	M1	Association of Businesses Advocating Tariff Equality (ABATE)	Michigan Consolidated Gas Co .	Retum on equity.
$04 / 93$	$\begin{aligned} & \text { 92-1464- } \\ & \text { EL-AIR } \end{aligned}$	OH	Air Products and Chemicals, Inc., Amco Steel Co., Industrial Energy Consumers	Cincinnati Gas \& Electric Co.	Retum on equity.
09/93	93-189-U	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co .	Transportation sevice tems and conditions.
$09 / 93$	93-081-U	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co.	Cost-of-service, transportation rates, rate supplements; return on equity; revenue requirements.
1293	U-17735	LA	Louisiana Public Service Commission Staff	Cajun Electric Power Cooperative	Historical reviews; evaluation of economic studies.
$03 / 94$	10320	KY	Kentucky Industrial Utility Customers	Louisvile Gas \& Electric Co.	Trimble County CWIP revenue refund.

006843

Expert Testimony Appearances

of

Richard A. Baudino As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$4 / 94$	E-015/ GR.S4-001	MN	Large Power intervenors	Minnesota Power Co.	Evaluation of the cost of equity, capital structure, and rate of retum.
5194	R-00942993	PA	PG\&W industrial intervenors	Pennsyivania Gas $\&$ Water CO .	Analysis of recovery of transition costs.
5/94	R-00943001	PA	Columbia Industrial Intervenors	Columbia Gas of Pennsylvania	Evaluation of cost allocation, rate design, rate plan, and carrying charge proposals.
7194	R-00942986	PA	Armco, inc., West Penn Power Industrial intervenors	West Penn Power Co.	Retum on equity and rate of retum.
7794	$\begin{aligned} & 94-0035- \\ & \text { E-42T } \end{aligned}$	WV	West Virginia Energy Users' Group	Monongahela Power co.	Retum on equity and rate of return.
8194	8652	MD	Westraco Corp.	Potomac Edison co.	Retum on equity and rate of retum.
$9 / 94$	930357-C	AR	West Central Arkansas Gas Consumers	Ankansas Okiahoma Gas Corp.	Evaluation of transportation service.
$9 / 94$	U-19904	LA	Louisiana Public Service Commission	Gulf States Utilities	Retum on equity.
9184	8629	MO	Maryiand industrial Group	Baltimore Gas \& Electric Co.	Transition costs.
11/94	94-175-4	AR	Arkansas Gas Consumers	Aikla, inc.	Cost-of-service, rate design, rate of return.
$3 / 95$	$\begin{aligned} & \text { RP94-343. } \\ & 000 \end{aligned}$	FERC	Arkansas Gas Consumers	NorAm Gas Transmission	Rate of retum.
$4 / 95$	R-00943271		PP\&L Industrial Customer Alliance	Pennsytvania Power $\&$ Light C.	Return on equity.
$6 / 95$	U-10755	MI	Association of Businesses Advocating Tariff Equity	Consumers Power Co.	Revenue requirements.
795	8697	MD	Maryland Industrial Group	Batimore Gas $\&$ Electric Co.	Cost allocation and rate design.

006844

J. KENNEDY AND ASSOCIATES, INC.

\qquad

Expert Testimony Appearances

of

Richard A. Baudino

As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
895	$\begin{aligned} & \text { 95-254-7F } \\ & \mathrm{U}-2811 \end{aligned}$	AR	Tyson Foods, inc.	Southwest Arkansas Electric Cooperative	Refund allocation.
1095	$\begin{aligned} & \text { ER95-1042 } \\ & -\infty 0 \end{aligned}$	FERC	Lovisiana Public Service Commission	Systems Ënergy Resources, inc.	Retum on Equity.
$11 / 85$	1.940032	PA	Industrial Energy Consumers of Pennsylvania	State-wide aill utilites	Investigation into Electric Power Competition.
$5 / 96$	96-030-U	AR	Northwest Arkansas Gas Consumers	Adkansas Western Gas Co.	Revenue requirements, rate of return and cost of service.
796	8725	MD	Maryland Industrial Group	Baltimore Gas \& Electric Co., Potomac Electric Power co. and Constellation Energy Corp.	Return on Equity.
7796	U-21496	LA	Louisiana Public Senvice Commission	Central Louisiana Electric Co.	Retum on equity, rate of retum.
$9 / 96$	U-22092	LA	Louisiana Public Service Commission	Entergy Gulf States, lic.	Return on equity.
$1 / 97$	RP96-199- 000	FERC	The Industrial Gas Users Conference	Mississippi River Transmission Corp.	Revenue requirements, rate of retum and cost of service.
$3 / 97$	96-420.U	AR	West Central Arkansas Gas Corp.	Arkansas Oklahoma Gas Corp.	Revenue requirements, rate of retum, cost of service and rate design.
797	U-11220	MI	Association of Business Advocating Tarif Equity	Michigan Gas Co. and Southeastem Michigan Gas Co .	Transportation Balancing Provisions
797	R-00973944	4 PA	Pennsylvania American Water Large Users Group	PennsylvaniaAmerican Water CO.	Rate of return, cost of service, revenue requirements.
$3 / 98$	$8390-4$	GA	Georgia Natural Gas Group and the Georgia Textile Manufacturers Assoc.	Atanta Gas Light	Rate of return, restructuring issues, unbundling, rate design issues.

J. KENNEDY AND ASSOCIATES, INC.

Expert Testimony Appearances
 of

Richard A. Baudino
As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
798	R-00984280	PA	PG Energy, inc.	PGE Industrial intevenors	Costallocation.
8988	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Revenue requirements.
10198	97-596	ME	Maine Office of the Public Advocate	Bangor HydroElectric Co.	Retum on equity, rate of return.
10198	U-23327	LA	Louisiana Public Service Commission	SWEPCO, CSW and AEP	Analysis of proposed merger.
1298	98-577	ME	Maine Office of the Public Advocate	Maine Public Service 0 .	Return on equity, rate of return.
1298	U-23358	LA	Louisiana Public Service Commission	Entergy Gulf States, inc.	Return on equity, rate of retum.
$3 / 99$	98-426	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas and Electric Co	Return on equity.
$3 / 99$	99.082	KY	Kentucky Industrial Utility Customers, inc.	Kentucky Utilities co.	Retum on equity.
$4 / 99$	R-984554	PA	T. W. Phillips Users Group	T. W. Phililips Gas and Oil Co.	Allocation of purchased gas costs.
6/99	R-0099462	PA	Coiumbia Industrial Intervenors	Columbia Gas of Pennsylvania	Balancing charges.
10199	U-24182	LA	Louisiana Public Service Commission	Entergy Gulf States,inc.	Cost of debt.
10199	R-00994782		Peoples Industrial intervenors	Peoples Natural Gas Co.	Restructuring issues.
$10 / 99$	R-0099478		Columbia Industrial Intervenors	Columbia Gas of Pennsyivania	Restructuring, balancing charges, rate flexing, altemate fuel.
0100	R-0099478		UGI Industrial Intervenors	UGI Ubilites, Inc.	Universal service costs, balancing, penaity charges, capacity assignment

006846
J. KENNEDY AND ASSOCIATES, INC.

Expert Testimony Appearances

of
Richard A. Baudino
As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
04100	8829	MD	Maryland Industrial Gr . \& United States	Balimore Gas \& Electric Co .	Revenue requirements, cost allocation. rate design.
0200	R-00994788		Penn Fuel Transportation	PFG Gas, Inc., and	Tariff charges, balancing provisions.
05100	U-17735	LA	Louisiana Public Service Comm.	Lousiana Electric Cooperative	Rate restructuring.
07100	2000-080	K	Kentucky Industrial Utility Consumers	Louisville Gas and Electric Co.	Cost allocation.
07100	$\begin{aligned} & \text { U-21453 } \\ & \text { U-20925 (SC } \\ & \text { U-22092 (SC } \\ & \text { (Subdocket } \end{aligned}$	LA	Louisiana Public Service Comm.	Southwestem Electric Power Co.	Stranded cost analysis.
09/00	R-00005654		Philadelphia Industrial And Commercial Gas Users Group.	Philadelphia Gas Works	Interim relief analysis.
$10 / 00$	U-21453 U-20925 (SC) U-22092 (SC) (Subdocket		Louisiana Public Servica Comm.	Entergy Gulf States, inc.	Restructuring, Business Separation Plan.
$11 / 00$	R-00005277 (Rebuttal)		Penn Fuel Transportation Customers	PFG Gas, Inc. and North Penn Gas Co.	Cost allocation issues.
12100	U-24993	LA	Louisiana Public Service Comm.	Entergy Gulf States, inc.	Retum on equity.
03/01	U-22092	LA	Louisiana Public Service Comm.	Entergy Gulf States, Inc.	Stranded cost analysis.
04/01	U. 21453 U-20925 (U-22092 (Subdocke (Addressin	LA C). C) B) g Contested Is	Louisiana Pubic Service Comm.	Entergy Guif States, inc.	Restructuring issues.
0401	R-0000604	2 PA	Philadelphia Industrial and Commercial Gas Users Group	Philadelphia Gas Works	Revenue requirements, cost allocation and tarifi issues.
$11 / 01$	U-25687	LA	Louisiana Public Service Comm.	Entergy Gulf States, Inc.	Retum on equity.

006847
J. KENNEDY AND ASSOCIATES, INC.
\qquad

Expert Testimony Appearances

of
Richard A. Baudino
As of April 2004

Date	Case Ju	Jurisdict.	Party	Utility	Subject
$03 / 02$	14311.4	GA	Georgia Public Service Commission	Allanta Gas Light	Capital structure.
$08 / 02$	2002-00145	KY	Kentucky industrial Utility Customers	Columbia Gas of Kentucky	Revenue requirements.
09102	M-00021612	PA	Philadelphia Industrial And Commercial Gas Users Group	Philadetphia Gas Works	Transportation rates, terms, and conditions.
$01 / 03$	2002-00169 K		Kentucky Industrial Utility Customers	Kentucky Power	Return on equity.
02103	O2S-594E	CO	Cripple Creek \& Victor Gold Mining Company	Aquila Networks WPC	Return on equity.
04/03	U-26527	LA	Louisiana Public Service Commission	Entergy Gulf Slates, Inc.	Return on equity.
$10 / 03$	CV020495AB	GA	The Landings Assn, Inc.	Utilites inc. of GA	Revenue requirement \& overcharge refund
03104	2003-00433	KY	Kentucky Industrial Utility Customers	L.ouisville Gas \& Electric	Return on equity. Cost allocation \& rate design
03104	2003-00434	K	Kentucky industrial Utility Customers	Kentucky Utilities	Retum on equity
4104	ER03-583-000 et al.	OCO, FERC	Louisiana Public Service Commission	Entergy Corp.	Return on Equity

006848

J. KENNEDY AND ASSOCLATES, INC.

Exhibit ___(RAB-2)

006849

AQUILA NETWORKS - WPC

 COMPARISON GROUP| | S\&P
 Rating | Moody's
 Rating |
| :--- | :--- | :--- |
| | | |
| Central Vermont Public Service | $\mathrm{BBB}+$ | N / A |
| CiNergy Corp. | $\mathrm{BBB}+$ | A 3 |
| Cleco Corporation | $\mathrm{BBB}+$ | A 3 |
| Consolidation Edison | A | A 1 |
| Dominion Resources | $\mathrm{A}-$ | A 2 |
| Empire District Electric | BBB | $\mathrm{Baa1}$ |
| Energy East Corporation | $\mathrm{BBB}+$ | A 3 |
| Entergy | BBB | $\mathrm{Baa2}$ |
| Exelon | A | A 2 |
| Green Mountain Power | BBB | $\mathrm{Baa1}$ |
| Hawaiian Electric Industries | $\mathrm{BBB}+$ | $\mathrm{Baa1}$ |
| Northeast Utilities | $\mathrm{A}-$ | A 3 |
| NSTAR | A | A 1 |
| Pinnacle West Capital Corp. | $\mathrm{A}-$ | A 3 |
| PPL Corporation | $\mathrm{A}-$ | $\mathrm{Baa1}$ |
| Progress Energy | BBB | A 2 |
| Public Service Enterprise Group | $\mathrm{A}-$ | A 3 |
| SEMPRA Energy | $\mathrm{A}+$ | A 1 |
| Southern Company | $\mathrm{A}+$ | A 1 |
| N/A = Not Avaitable | | |

\qquad (RAB-4)
Page 1 of 3

AQUILA NETWORKS - W'́P
 COMPARISON GROUP
 AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Oct '03	Nov '03	Dec '03	Jan '04	Feb ${ }^{\prime} 04$	Mar '04
Central Vermont PS	High Price (\$)	23.880	24.380	24.500	24.080	24.000	23.630
	Low Price (\$)	22.230	22.100	22.110	23.400	21.760	22.140
	Avg. Price (\$)	23.055	23.240	23.305	23.740	22.880	22.885
	Dividend (\$)	0.220	0.220	0.220	0.230	0.230	0.230
	Mo. Avg. Div.	3.82\%	3.79\%	3.78\%	3.88\%	4.02\%	4.02\%
	6 mos. Avg.	3.88\%					
CINergy Corp.	High Price (\$)	37.300	36.970	38.860	39.230	39.300	41.100
	Low Price (\$)	35.790	35.190	36.470	37.480	37.170	39.450
	Avg. Price (\$)	36.545	36.080	37.665	38.355	38.235	40.275
	Dividend (\$)	0.460	0.460	0.460	0.470	0.470	0.470
	Mo. Avg. Div.	5.03\%	5.10\%	4.89\%	4.90\%	4.92\%	4.67\%
	6 mos. Avg.	4.92\%					
Cleco Corporation	High Price (\$)	17.000	17.920	18.360	19.630	19.350	19.750
	Low Price (\$)	16.000	16.280	17.280	17.870	17.720	18.050
	Avg. Price (\$)	16.500	17.100	17.820	18.750	18.535	18.900
	Dividend (\$)	0.225	0.225	0.225	0.225	0.225	0.225
	Mo. Avg. Div.	5.45\%	5.26\%	5.05\%	4.80\%	4.86\%	4.76\%
	6 mos. Avg.	5.03\%					
Consolldated Edison	High Price (\$)	41.430	41.310	43.480	44.100	44.490	45.010
	Low Price (\$)	40.050	38.800	40.050	42.210	42.450	43.420
	Avg. Price (\$)	40.740	40.055	41.765	43.155	43.470	44.215
	Dividend (\$)	0.560	0.560	0.560	0.565	0.565	0.565
	Mo. Avg. Div.	5.50\%	5.59\%	5.36\%	5.24\%	5.20\%	5.11\%
	6 mos. Avg.	5.33\%					
Dominion Resources	High Price (\$)	63.500	61.740	64.450	64.700	64.230	65.850
	Low Price (\$)	60.280	59.270	60.180	61.200	61.270	62.160
	Avg. Price (\$)	61.890	60.505	62.315	62.950	62.750	64.005
	Dividend (\$)	0.645	0.645	0.645	0.645	0.645	0.645
	Mo. Avg. Div.	4.17\%	4.26\%	4.14\%	4.10\%	4.11\%	4.03\%
	6 mos. Avg.	4.14\%					
Empire District	High Price (\$)	22.450	22.250	22.050	22.000	23.480	23.250
	Low Price (\$)	21.150	21.150	21.000	21.380	21.600	22.200
	Avg. Price (\$)	21.800	21.700	21.525	21.690	22.540	22.725
	Dividend (\$)	0.320	0.320	0.320	0.320	0.320	0.320
	Mo. Avg. Div.	5.87\%	5.90\%	5.95\%	5.90\%	5.68\%	5.63\%
	6 mos. Avg.	5.82\%					
Energy East	High Price (\$)	23.710	23.130	23.200	23.750	24.250	25.490
	Low Price (\$)	22.160	21.640	22.000	22.290	22.650	24.060
	Avg. Price (\$)	22.935	22.385	22.600	23.020	23.450	24.775
	Dividend (\$)	0.250	0.250	0.250	0.260	0.260	0.260
	Mo. Avg. Div.	4.36\%	4.47\%	4.42\%	4.52\%	4.43\%	4.20\%
	6 mos. Avg.	4.40\%					

\qquad

AQUILA NETWORKS - WPC COMPARISON GROUP AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Oct '03	Nov '03	Dec '03	Jan '04	Feb '04	Mar 04
Entergy	High Price (\$)	55.300	55.130	57.240	58.520	60.200	59.820
	Low Price (\$)	53.400	51.060	52.880	56.010	57.150	57.250
	Avg. Price (\$)	54.350	53.095	55.060	57.265	58.675	58.535
	Dividend (\$)	0.450	0.450	0.450	0.450	0.450	0.450
	Mo. Avg. Div.	3.31\%	3.39\%	3.27\%	3.14\%	3.07\%	3.08\%
	6 mos. Avg.	3.21\%					
Exelon	High Price (\$)	65.130	65.270	66.620	67.190	67.470	68.870
	Low Price (\$)	63.300	60.950	61.500	64.360	65.090	65.710
	Avg. Price (\$)	64.215	63.110	64.060	65.775	66.280	67.290
	Dividend (\$)	0.500	0.500	0.500	0.550	0.550	0.550
	Mo. Avg. Div.	3.11\%	3.17\%	3.12\%	3.34\%	3.32\%	3.27\%
	6 mos. Avg.	3.22\%					
Green Mountain Power	High Price (\$)	22.830	22.930	23.840	23.820	26.270	26.290
	Low Price (\$)	22.200	21.980	22.650	22.600	23.160	25.350
	Avg. Price (\$)	22.515	22.455	23.245	23.210	24.715	25.820
	Dividend (\$)	0.190	0.190	0.190	0.190	0.220	0.220
	Mo. Avg. Div.	3.38\%	3.38\%	3.27\%	3.27\%	3.56\%	3.41\%
	6 mos. Avg.	3.38\%					
Hawaiian Electric Ind.	High Price (\$)	45.840	46.250	48.000	50.990	52.950	53.750
	Low Price (\$)	43.320	44.470	45.590	47.100	50.560	50.700
	Avg. Price (\$)	44.580	45.360	46.795	49.045	51.755	52.225
	Dividend (\$)	0.620	0.620	0.620	0.620	0.620	0.620
	Mo. Avg. Div.	5.56\%	5.47\%	5.30\%	5.06\%	4.79\%	4.75\%
	6 mos. Avg.	5.15\%					
Northeast Utilities	High Price (\$)	19.500	19.950	20.320	20.270	19.740	19.380
	Low Price (\$)	17.880	18.580	19.220	19.050	18.720	18.280
	Avg. Price (\$)	18.690	19.265	19.770	19.660	19.230	18.830
	Dividend (\$)	0.150	0.150	0.150	0.150	0.150	0.150
	Mo. Avg. Div.	3.21\%	3.11\%	3.03\%	3.05\%	3.12\%	3.19\%
	6 mos. Avg.	3.12\%					
NSTAR	High Price (\$)	47.990	48.590	48.960	49.980	51.200	52.850
	Low Price (\$)	45.080	46.360	47.000	48.000	48.340	49.900
	Avg. Price (\$)	46.535	47.475	47.980	48.990	49.770	51.375
	Dividend (\$)	0.540	0.540	0.555	0.555	0.555	0.555
	Mo. Avg. Div.	4.64\%	4.55\%	4.63\%	4.53\%	4.46\%	4.32\%
	6 mos. Avg.	4.52\%					
Pinnacle West	High Price (\$)	36.850	39.830	40.480	40.810	39.280	39.750
	Low Price (\$)	34.910	36.210	38.590	38.070	36.900	38.020
	Avg. Price (\$)	35.880	38.020	39.535	39.440	38.090	38.885
	Dividend (\$)	0.425	0.425	0.450	0.450	0.450	0.450
	Mo. Avg. Div.	4.74\%	4.47\%	4.55\%	4.56\%	4.73\%	4.63\%

\qquad

AQUILA NETWORKS - WPC

COMPARISON GROUP AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Oct '03	Nov '03	Dec ${ }^{\text {O }}$	Jan ${ }^{\circ} 04$	Feb ${ }^{\prime} 04$	Mar '04
PPL Corp.	High Price (\$)	42.290	41.370	43.890	46.280	46.530	47.230
	Low Price (\$)	38.880	39.670	39.950	42.730	44.720	44.150
	Avg. Price (\$)	40.585	40.520	41.920	44.505	45.625	45.690
	Dividend (\$)	0.385	0.385	0.385	0.385	0.410	0.410
	Mo. Avg. Div.	3.79\%	3.80\%	3.67\%	3.46\%	3.59\%	3.59\%
	6 mos. Avg.	3.65\%					
Progress Energy	High Price (\$)	46.000	43.860	45.730	46.120	46.500	47.950
	Low Price (\$)	42.630	41.600	43.400	43.020	44.010	45.510
	Avg. Price (\$)	44.315	42.730	44.565	44.570	45.255	46.730
	Dividend (\$)	0.560	0.560	0.575	0.575	0.575	0.575
	Mo. Avg. Div.	5.05\%	5.24\%	5.16\%	5.16\%	5.08\%	4.92\%
	6 mos. Avg.	5.10\%					
Pub. Svc. Enterprise Gp.	High Price (\$)	42.930	41.400	44.200	45.950	47.290	47.720
	Low Price (\$)	40.250	39.400	40.580	42.850	44.700	44.850
	Avg. Price (\$)	41.590	40.400	42.390	44.400	45.995	46.285
	Dividend (\$)	0.540	0.540	0.540	0.550	0.550	0.550
	Mo. Avg. Div.	5.19\%	5.35\%	5.10\%	4.95\%	4.78\%	4.75\%
	6 mos. Avg.	5.02\%					
Sempra Energy	High Price (\$)	30.900	28.380	30.220	32.080	31.860	32.990
	Low Price (\$)	27.630	26.360	27.900	29.510	30.670	30.800
	Avg. Price (\$)	29.265	27.370	29.060	30.795	31.265	31.895
	Dividend (\$)	0.250	0.250	0.250	0.250	0.250	0.250
	Mo. Avg. Div.	3.42\%	3.65\%	3.44\%	3.25\%	3.20\%	3.14\%
	6 mos. Avg.	3.35\%					
Southern Company	High Price (\$)	30.580	30.170	30.410	30.560	30.340	31.000
	Low Price (\$)	29.060	28.550	29.100	29.110	29.050	29.800
	Avg. Price (\$)	29.820	29.360	29.755	29.835	29.695	30.400
	Dividend (\$)	0.350	0.350	0.350	0.350	0.350	0.350
	Mo. Avg. Div.	4.69\%	4.77\%	4.71\%	4.69\%	4.71\%	4.61\%
	6 mos. Avg.	4.70\%					
Average Dividend Yield		4.35\%					

[^32]\qquad

AQUILA NETWORKS - WPC COMPARISON GROUP DCF Growth Rate Analysis

\qquad

AQUILA NETWORKS - WPC COMPARISON GROUP DCF Growth Rate Analysis

Value Line Projected Dividend Per Share Growth

Company	$\begin{aligned} & 2002 / \\ & 2003 \\ & \text { DPS } \\ & \hline \end{aligned}$				Compound Growth Rate
Central Vermont Public Service	\$	0.88	\$	1.08	4.18\%
CINergy Corp.	\$	1.80	\$	2.00	2.13\%
Cleco Corporation	\$	0.90	\$	0.90	0.00\%
Consolidation Edison	\$	2.24	\$	2.34	0.88\%
Dominion Resources	\$	2.58	\$	2.90	2.37\%
Empire District Electric	\$	1.28	\$	1.28	0.00\%
Energy East Corporation	\$	1.00	\$	1.20	3.71\%
Entergy	\$	1.34	\$	2.08	9.19\%
Exelon	\$	1.92	\$	2.60	6.25\%
Green Mountain Power	\$	0.76	\$	1.20	9.57\%
Hawaiian Electric Industries	\$	2.48	\$	2.48	0.00\%
Northeast Utilities	\$	0.58	\$	0.84	7.69\%
NSTAR	\$	2.18	\$	2.50	2.78\%
Pinnacle West Capital Corp.	\$	1.63	\$	2.13	5.50\%
PPL Corporation	\$	1.54	\$	1.85	3.74\%
Progress Energy	\$	2.26	\$	2.56	2.52\%
Public Service Enterprise Group	\$	2.16	\$	2.36	1.79\%
Sempra Energy	\$	1.00	\$	1.00	0.00\%
Southern Company	\$	1.39	\$	1.64	3.36\%
Average					3.46\%

\qquad

AQUILA NETWORKS - WPC COMPARISON GROUP DCF Growth Rate Analysis
 Value Line Projected Earnings Per Share Growth

Company	3-Year Avg. EPS		$\begin{gathered} \text { Projected } \\ \text { EPS } \\ \hline \end{gathered}$		Compound Growth Rate
Central Vermont Public Service	\$	1.29	\$	1.85	6.15\%
CINergy Corp.	\$	2.49	\$	3.05	3.44\%
Cleco Corporation	\$	1.50	\$	1.50	0.04\%
Consolidation Edison	\$	3.06	\$	3.05	-0.04\%
Dominion Resources	\$	3.90	\$	5.75	6.68\%
Empire District Electric	\$	1.04	\$	1.50	6.24\%
Energy East Corporation	\$	1.64	\$	1.75	1.09\%
Entergy	\$	3.24	\$	4.50	5.61\%
Exelon	\$	4.68	\$	6.60	5.88\%
Green Mountain Power	\$	1.95	\$	2.40	3.52\%
Hawailan Electric industries	\$	2.99	\$	3.50	2.66\%
Northeast Utilities	\$	1.23	\$	2.10	9.32\%
NSTAR	\$	3.35	\$	4.00	3.00\%
Pinnacle West Capital Corp.	\$	3.19	\$	3.40	1.09\%
PPL Corporation	\$	3.44	\$	4.25	3.59\%
Progress Energy	\$	3.61	\$	3.95	1.51\%
Public Service Enterprise Group	\$	3.69	\$	4.10	1.79\%
Sempra Energy	\$	2.47	\$	3.25	4.70\%
Southern Company	\$	1.81	\$	2.45	5.18\%
Average					3.76\%

\qquad

AQUILA NETWORKS - WPC COMPARISON GROUP DCF Growth Rate Analysis

Sustainable Growth Calculation

Company	Forecasted Payout Ratio	Forecasted Retention Ratio	Expected Return	Growth Rate
Central Vermont Public Service	58.38\%	41.62\%	9.50\%	3.95\%
CINergy Corp.	65.57\%	34.43\%	12.50\%	4.30\%
Cleco Corporation	60.00\%	40.00\%	12.50\%	5.00\%
Consolidation Edison	76.72\%	23.28\%	9.50\%	2.21\%
Dominion Resources	50.43\%	49.57\%	12.50\%	6.20\%
Empire District Electric	85.33\%	14.67\%	9.50\%	1.39\%
Energy East Corporation	68.57\%	31.43\%	8.50\%	2.67\%
Entergy	46.22\%	53.78\%	9.50\%	5.11\%
Exelon	39.39\%	60.61\%	15.50\%	9.39\%
Green Mountain Power	50.00\%	50.00\%	10.50\%	5.25\%
Hawaiian Electric Industries	70.86\%	29.14\%	10.00\%	2.91\%
Northeast Utilities	40.00\%	60.00\%	9.50\%	5.70\%
NSTAR	62.50\%	37.50\%	13.00\%	4.88\%
Pinnacle West Capital Corp.	62.65\%	37.35\%	9.50\%	3.55\%
PPL Corporation	43.53\%	56.47\%	14.00\%	7.91\%
Progress Energy	64.81\%	35.19\%	10.00\%	3.52\%
Public Service Enterprise Group	57.56\%	42.44\%	13.50\%	5.73\%
Sempra Energy	30.77\%	69.23\%	13.00\%	9.00\%
Southern Company	66.94\%	33.06\%	14.00\%	4.63\%
Average	58.97\%	41.03\%	11.15\%	4.91\%

AQUILA NETWORKS - WPC
COMPARISON GROUP DCF Growth Rate Analysis

RETURN ON EQUITY CALCULATION COMPARISON GROUP

	(1) Value Line Dividend Gr.	(2) Value Line Earnings Gr.	(3) Zack's Earning Gr	(4) Retention Earning Gr	(5) Average of All Gr_Rates
Dividend Yield	4.35\%	4.35\%	4.35\%	4.35\%	4.35\%
Growth Rate	3.46\%	3.97\%	5.00\%	4.91\%	4.33\%
Expected Div. Yield	4.42\%	4.43\%	4.45\%	4.45\%	4.44\%
DCF Return on Equity	7.88\%	8.40\%	9.45\%	9.36\%	8.77\%

\qquad
AQUILA NETWORKS - WPCCapital Assot Pricing Model AnalysisComparison Group
20-Year Treasury Bond
LineNoValue Line
1
2
Market Required Return Estimate
Expected Dividend Yield 1.18\%
Expected Growth 10.52\%
Required Return 11.70\%
Risk-free Rate of Return, 20-Year Treasury Bond
Average of Last Six Months 5.03\%
Risk Premium@ 6 Month Average RFR (Line 4 minus Line 6)6.67%
Comparison Group Beta 0.73
Comparison Group Beta * Risk Premium
@ 6 Month Average RFR (Line 10 * Line 9) 4.86\%
CAPM Return on Equity
@ 6 Month Average RFR (Line 12 plus Line 6) 9.89\%
5-Year Treasury Bond
Market Required Return Estimate
Expected Dividend Yield 1.18\%
Expected Growth 10.52%
Required Return 11.70\%
Risk-free Rate of Return, 5-Year Treasury Bond
Average of Last Six Months 3.12\%
Risk Premium
@ 6 Month Average RFR (Line 4 minus Line 6) 8.57\%
Comparison Group Beta 0.73
Comparison Group Beta * Risk Premium
@ 6 Month Average RFR (Line 9 * Line 10) 6.25%
CAPM Return on Equity© 6 Month Average RFR (Line 12 plus Line 6)9.37\%
\qquad

AQUILA NETWORKS - WPC Capital Asset Pricing Model Analysis Comparison Group Supporting Data for CAPM Analyses

20 Year Treasury Bond Data

	Avg._Yield
October-03	5.21%
November-03	5.17%
December-03	5.11%
January-04	5.01%
February-04	4.94%
March-04	4.72%
6 month average	5.03%
Value Screen Ill Growth Rate_Data:	
Forecasted Data:	
Earnings	
Book Value	14.79%
Oividends	9.18%
	Z.58\%
Average	
Source: Value Line Investment Survey for Windows,	
March 2004	

5 Year Treasury Bend Data

	Axg. Yield
October-03	3.19%
November-03	3.29%
December-03	3.27%
January-04	3.12%
February-04	3.07%
March-04	2.79%
6 month average	3.12%

Value Line Betas
Comparison Group:

Central Vermont Public Service 0.45
CINergy Corp. 0.80
Cleco Corporation 1.00
Consolidation Edison 0.60
Dominion Resources 0.85
Empire District Electric 0.65
Energy East Corporation 0.75
Entergy 0.70
Exelon : 0.70
Green Mountain Power 0.60
Hawaiian Electric Industries 0.60
Northeast Utifities 0.70
NSTAR 0.70
Pinnacle West Capital Corp. 0.80
PPL Corporation 0.90
Progress Energy 0.80
Public Service Enterprise Group 0.80
Sempra Energy 0.85
Southern Company 0.60

Average 0.73
Source: Value Line investment Reports,
January 2, February 13, and March 5, 2004
\qquad

AQUILA NETWORKS - WPC

 Capital Asset Pricing Model Analysis
Historic Market Premium

| | Geometric
 Mean | Arithmetic
 Mean |
| :--- | ---: | ---: | ---: | ---: |
| Long-Term Annual Return on Stocks | 10.40% | 12.40% |
| Long-Term Annual Income Return on Long-Term Government Bond: | 5.20% | 5.20% |
| Historical Market Risk Premium | 5.20% | 7.20% |
| Comparison Group Beta | 0.73 | 0.73 |
| Beta " Market Premium | 3.79% | 5.25% |
| Current 20-Year Tresury Bond Yield | 5.03% | 5.03% |
| CAPM Cost of Equity | 8.82% | 10.28% |

Source: Stocks, Bonds, Bills, and Inflation 2004 Yearbook, Ibbotson Associates

RE: INVESTIGATION OF SOUTHWESTERN) ELECTRIC POWER COMPANY; REVENUE REQUIREMENT REVIEW CONDUCTED PURSUANT TO MERGER ORDER U-23327, SUBDOCKET A

Docket No. U-23327, Subdocket A))

ON BEHALF OF

THE LOUISIANA PUBLIC SERVICE COMMISSION

> J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

OCTOBER 2004

BEFORE THE

 LOUSIANA PUBLIC SERVICE COMMISSION
RE: INVESTIGATION OF SOUTHWESTERN) ELECTRIC POWER COMPANY; REVENUE)
 Docket No. U-23327, REQUIREMENT REVIEW CONDUCTED) Subdocket A

DIRECT TESTIMONY OF RICHARD A. BAUDINO
 I. QUALIFICATIONS AND SUMMARY

Q. Please state your name and business address.
A. Richard A. Baudino, J. Kennedy and Associates, Inc. ("Kennedy and Associates"), 570 Colonial Park Drive, Suite 305, Roswell, Georgia 30075.
Q. What is your occupation and who employs you?
A. I am a utility rate and economic consultant holding the position of Director of Consulting with the firm of Kennedy and Associates.
Q. Please describe your education and professional background.
A. I received my Master of Arts degree with a major in Economics and a minor in Statistics from New Mexico State University in 1982. I also received my Bachelor
of Arts degree with majors in Economics and English from New Mexico State in 1979.

I began my professional career with the New Mexico Public Service Commission Staff in October of 1982 and was employed there as a Utility Economist. During my employment with the Staff, my responsibilities included the analysis of a broad range of issues in the ratemaking field. Areas in which I testified included cost of service, rate of return, rate design, revenue requirements, analysis of sale/leasebacks of generating plants, utility finance issues, and generating plant phase-ins.

In October 1989 I joined the utility consulting firm of Kennedy and Associates as a Senior Consultant where my duties and responsibilities covered substantially the same areas as those during my tenure with the New Mexico Public Service Commission Staff. I became Manager in July 1992 and was named to my current position in January 1995.

Exhibit \qquad (RAB-1) summarizes my expert testimony experience.

Q. On whose behalf are you testifying in this proceeding?

A. I am testifying on behalf of the Staff of the Louisiana Public Service Commission ("LPSC" or "Commission").

Q. What is the purpose of your Direct Testimony?

1 A. The purpose of testimony is to address the investor required return on equity for
A. Section II provides a summary of past and current economic conditions, which sets the backdrop for my rate of return analysis. Section III contains a discussion of my approach to estimating the cost of equity and the results of the methodologies that I utilize.

Richard A. Baudino

II. REVIEW OF ECONOMIC AND FINANCIAL CONDITIONS

Q. Please describe the general economic trends that have affected utilities in the last few years.
A. The trend for the stock and bond markets was quite positive through the ' 90 s. Although there was a recession in late 1990 through early 1991, the markets continued to post strong, above average gains through 1999. During the period from 1990-1999, the S\&P 500 posted an average annual gain of 18.2%, still well above the long-term average stock market return of $12.2 \%^{1}$. Long-term government bonds also provided excellent returns during the ' 90 s, averaging 8.8% per year compared to the long-run average of 5.8%. During the 1990 s, inflation remained moderate, averaging 2.9%.

In 2000 , the stock and bond markets substantially diverged. The total return for the S\&P 500 was -9.11%, while the return for small company stocks was -3.59%. Bonds prices, however, staged a strong rally despite two interest rate increases by the Federal Reserve. The total return for long-term government bonds for the year was 21.48%, with the yield falling from 6.82% at the end of 1999 to 5.58% at the end of December 2000. The inflation rate rose to 3.39% for the year.

During 2001, the economy slowed considerably and was affected drastically by the terrorist attacks of September 11. The unemployment rate rose to 5.8% and GDP growth slowed to only 1.1% for the year. Stock and bond markets again showed divergent returns. The Standard and Poor's 500 returned -11.88% for the year,

[^33]Q. What has the trend in capital costs been over the last few years?
A. Exhibit___(RAB-2) presents a graphic depiction of the trend in interest rates from January 1994 through August 2004. The interest rates shown are for the 20 -year U.S. Treasury Bond and the average public utility bond from the Mergent Bond Record. Exhibit__(RAB-2) shows that the yields on long-term treasury bonds have declined significantly since early 1995, although rates have been quite volatile. Increased bond market volatility actually began in the early 1970s, when inflation became more of a sustained long-term concern.

Yields have trended downward from 2002 through 2004, with the 20 -year bond yield ending the month of September 2004 at 4.89%. The yield on the average public utility bond has also decreased significantly over the last two years, falling from 7.83% in March 2002 to 6.18% in August 2004. As of October 18, 2004, the Moody's average public utility bond yield stood at 5.94%. A-rated utility bonds yielded 5.92%, while Baa bonds yielded 6.15%.

Current bond yields are either at or near their lowest levels in recent history. Exhibit___(RAB-2) shows that since 1994 public utility bond yields are at their lowest level over that ten-year historical period. I also reviewed the Mergent Public Utility Manual and found that average public utility bond yields have not been as low as they are now since the 1968-1969 time period, almost 35 years ago.
Q. Mr. Baudino, in your opinion what effect does the current interest rate environment have on utility stocks?
A. In my view, the currently low bond yields strongly suggest lower return on equity requirements on the part on the investing public. The results of my return on equity analysis in the subsequent section of my Direct Testimony are consistent with these historically low bond yields.
Q. In 2003, Congress enacted a change in tax policy that lowered that tax rate on dividends and capital gains. Please explain the effect of this tax change on utility common stocks and on investor required returns for utilities.
A. Other things being equal, the dividend tax rate reduction means that investors should require lower pre-tax rates of return for utilities. This is because the aftertax dividend streams have now become more valuable because of the reduction in federal taxation. Thus, for a given stock price investors will discount the future dividend payments at a lower return on equity. The stock prices that I use in my cost of equity analyses fully incorporate the effects of this change in tax rates and on the expected returns for utilities. This also means that investors require lower risk premiums for stocks compared to utility bonds.
Q. How does the investment community regard the electric utility industry as a whole?
A. The Value Line Investment Survey reported the following in its October 1, 2004 report on the electric utility industry (central):
> "The Electric Utility Industry's finances have undergone dramatic changes since the start of the $21^{\text {st }}$ century. Through the 1990 s, returns on total capital, share equity, and common equity showed relatively little change. But starting with the year 2000, as retail competition spread, many utilities were confronted with reduced earnings from basic operations. This induced company managements to look for investments elsewhere to shore up profits. Though many of these investments were initially successful, several eventually turned sour. That led to a weakening of finances and a reduction in earnings.

The power glut in 2002 resulted in a slowdown in new plant construction the following year. This reduced borrowing needs and lowered interest expense. In turn, it led to a rise in common equity ratios and fixed charge coverages. Company managements initiated additional steps to improve finances by selling unprofitable assets, canceling acquisitions, and focusing on core business operations.

> By the end of the current year, industry finances will probably recover to the level attained at the start of the century. Over the next 3 to 5 years, further progress is likely. Based on our projection of steady profit growth for the industry to 2007 to 2009 , we look for solid improvement in free cash flow."

Value Line also noted that available funds could be used by utilities to buy back stock, increase dividend payments, or both.
Q. What conclusions do you draw from Value Line's comments regarding the state of the electric industry today?
A. In my opinion, it appears that the electric industry is entering a more stable, less risky environment than it experienced during the last few years. Companies that focus on core electric operations will be lower risk than those with unregulated and/or deregulated operations and investments.

Q. How does the investment community view SWEPCO?

A. SWEPCO is an operating subsidiary of American Electric Power ("AEP"). As such, SWEPCO has no publicly held common stock of its own. However, SWEPCO's bonds are rated by major rating agencies, namely Moody's and Standard and Poor's. Currently, SWEPCO's first mortgage bonds are rated A3 by Moody's and A- by Standard \& Poor's.

In its rating report on SWEPCO dated September 13, 2004, Moody's stated its A3 rating for the Company was supported by its competitive rates and the benefits of being affiliated with AEP. Another credit strength noted by Moody's was that deregulation is not occurring in SWEPCO's service territories, providing for a more stable and predictable operating environment.

S\&P's August 2, 2004 report on SWEPCO stated that the Company's credit rating was based on the consolidated credit quality of its parent, AEP. AEP's ratings "reflect the company's transition to a renewed strategic focus on its core utility operations from a business model that balanced regulated and unregulated activities."

III. DETERMINATION OF FAIR RATE OF RETURN

Q. Please describe the methods you employed in estimating a fair rate of return for SWEPCO.
A. I employed a Discounted Cash Flow ("DCF") analysis for a group of comparison electric companies to estimate the cost of equity for SWEPCO's electric operations. I also employed a Capital Asset Pricing Model ("CAPM") analysis, although I did not incorporate its results into my recommendation.
Q. What are the main guidelines to which you adhere in estimating the cost of equity for a firm?
A. Generally speaking, the estimated cost of equity should be comparable to the returns of other firms with similar risk structures and should be sufficient for the firm to attract capital. These are the basic standards set out in Federal Power Comm'n v. Hope Natural Gas Co., 320 U.S. 591 (1944) and Bluefield W.W. \& Improv. Co. v. Public Service Comm'n., 262 U.S. 679 (1922).

From an economist's perspective, the notion of "opportunity cost" plays a vital role in estimating the cost of equity. One measures the opportunity cost of an investment equal to what one would have obtained in the next best alternative. For example, let us suppose that an investor decides to purchase the stock of a publicly traded electric utility. That investor made the decision based on the expectation of dividend payments and perhaps some appreciation in the stock's value over time. However,
that investor's opportunity cost is measured by what she or he could have invested in as the next best alternative. That alternative could have been another utility stock, a utility bond, a mutual fund, a money market fund, or any other number of investment vehicles.

The key determinant in deciding whether to invest, however, is based on comparative levels of risk. Our hypothetical investor would not invest in a particular electric company stock if it offered a return lower than other investments of similar risk. The opportunity cost simply would not justify such an investment. Thus, the task for the rate of return analyst is to estimate a return that is equal to the return being offered by other risk-comparable firms. Failing this, the subject firm will be impaired in its ability to attract capital.
Q. What are the major types of risk faced by utility companies?
A. In general, risk associated with the holding of common stock can be separated into three major categories: business risk, financial risk, and liquidity risk. Business risk refers to risks inherent in the operation of the business. Volatility of the firm's sales, long-term demand for its product(s), the amount of operating leverage, and quality of management are all factors that affect business risk. The quality of regulation at the state and federal levels also plays an important role in business risk for regulated utility companies.

Financial risk refers to the impact on a firm's future cash flows from the use of debt in the capital structure. Interest payments to bondholders represent a prior call on
the firm's cash flows and must be met before income is available to the common shareholders. Additional debt means additional variability in the firm's earnings, leading to additional risk.

Liquidity risk refers to the ability of an investor to quickly sell an investment without a substantial price concession. The easier it is for an investor to sell an investment for cash, the lower the liquidity risk will be. Stock markets, such as the New York and American Stock Exchanges, help ease liquidity risk substantially. Investors who own stocks that are traded in these markets know on a daily basis what the market prices of their investments are and that they can sell these investments fairly quickly. Many electric utility stocks are traded on the New York Stock Exchange and are considered liquid investments.
Q. Are there any indices available to investors that quantify the total risk of a company?
A. Yes. Published measures exist that categorize companies based on various measures of risk. One of the best-known and most widely available sources is from Value Line. Each company on which Value Line reports is assigned a Safety Rank. The Safety Rank consists of a number from 1 to 5 , with 1 being the highest - meaning least risky - and 5 being the lowest - meaning most risky. The Safety Rank measures the total risk of a stock and encompasses just about all factors that affect financial and business risk. These factors include:

- Stock price volatility
- Fixed charge coverage ratio
- Quality of earnings
- Capitalization ratio
- Earnings on common stock
- Payout ratio
- Regulatory risk

By selecting companies with the same Safety Rank, investors can be relatively confident that the market views them as similarly risky investments.

Bond ratings are another good tool that investors may utilize to determine the risk comparability of firms. Bond rating agencies such as Moody's and Standard and Poor's perform detailed analyses of all the factors that contribute to the business and financial risk of a particular investment. The end result of their analyses is a bond rating that reflects these risks.

Discounted Cash Flow Method

Q. Please describe the basic DCF approach.

A. The basic DCF approach is rooted in valuation theory. It is based on the premise that the value of a financial asset is determined by its ability to generate future net cash flows. In the case of a common stock, those future cash flows take the form of dividends and appreciation in price. The value of the stock to investors is the discounted present value of future cash flows. The general equation then is:

$$
V=\frac{R}{(1+r)}+\frac{R}{(1+r)^{2}}+\frac{R}{(1+r)^{3}}+\ldots \frac{R}{(1+r)^{n}}
$$

Where: $\quad V=$ asset value
$R=$ yearly cash flows
$r=$ discount rate

This is no different from determining the value of any asset from an economic point of view. However, the DCF model that I employ does make certain simplifying assumptions. One is that the stream of income from the equity share is assumed to be perpetual; that is, there is no salvage or residual value at the end of some maturity date (as is the case with a bond). Another important assumption is that financial markets are efficient; that is, they correctly evaluate the cash flows relative to the appropriate discount rate, thus rendering the stock price efficient relative to other alternatives. Finally, the model I employ also assumes a constant growth rate in dividends. The fundamental relationship employed in the DCF method is described by the formula:

$$
k=\frac{D_{I}}{P_{0}}+g
$$

$$
\text { Where: } \quad \begin{aligned}
& D_{1}=\text { the next period dividend } \\
& \\
& P_{0}=\text { current stock price } \\
& g=\text { expected growth rate } \\
& \\
& k=\text { investor-required return }
\end{aligned}
$$

It is apparent that the " k " so determined must relate to the investors' expected return. Use of the discounted cash flow method to determine an investor-required return is complicated by the need to express investors' expectations relative to
dividends, earnings, and book value over an infinite time horizon. Financial theory suggests that stockholders purchase common stock on the assumption that there will be some change in the rate of dividend payments over time. We assume that the rate of growth in dividends is constant over the assumed time horizon, but the model could easily handle varying growth rates if we knew what they were. Finally, the relevant time frame is prospective rather than retrospective.
Q. What was your first step in conducting your DCF analysis for SWEPCO?
A. My first step was to construct a comparison group of companies that has a risk profile that is reasonably similar to that of the Company. This is necessary because the Company is a subsidiary of AEP and, as such, does not have publicly traded common stock. Thus, a DCF analysis cannot be performed directly on SWEPCO. Using a comparison group of utilities that do have publicly traded common stock is both a necessary and appropriate step in estimating the cost of equity for SWEPCO in this proceeding.
Q. Please describe your criteria for selecting the comparison group of electric companies.
A. I used several criteria to select a comparison group. First, using the October 2004 issue of the C. A. Turner Utility Reports, I selected electric companies that were rated either A or Baa/BBB by Moody's and Standard and Poor's. From that group I
selected companies that had at least 50% of their revenues from electric operations. This resulted in a group of electric and/or electric and gas companies that have operational and risk profiles similar to SWEPCO.

From this group, I then eliminated companies that had recently cut or eliminated dividends, were recently or currently involved in merger or restructuring activities, and had recent experience with significant earnings fluctuations. These criteria are important because utilities that are undergoing those types of changes are not good candidates for the DCF model.

The resulting group of comparison electric companies I used in my analysis is:

1. Avista Corp.
2. Central Vermont Public Service
3. CH Energy Group
4. CINergy Corp.
5. Cleco Corporation
6. Consolidation Edison
7. Empire District Electric
8. Energy East Corporation
9. Entergy
10. Exelon Corporation
11. FirstEnergy Corporation
12. Green Mountain Power
13. Hawaiian Electric Industries
14. Northeast Utilities
15. NSTAR
16. Pinnacle West Capital Corp.
17. PPL Corporation
18. Progress Energy
19. Public Service Enterprise Group
20. SEMPRA Energy
21. Southern Company
Q. You mentioned that one of your selection criteria was a bond rating of A/BBB. Please explain why this is an appropriate criterion to use in the selection of a comparison group for SWEPCO in this proceeding.
A. It was my goal to construct a comparison group of electric utilities that was roughly similar in risk to SWEPCO. Please refer to Exhibit___(RAB-3), which lists the bond ratings for each of these companies. As a group, the average bond rating is around a low A to high BBB. As I described in Section II of my testimony, SWEPCO's first mortgage bonds are currently rated $\mathrm{A}-/ \mathrm{A} 3$, which is at the low end of the A range. Further, SWEPCO's bond rating was recently raised from BBB to A- by S\&P on July 22, 2004. In my view, this group of utilities with mixed A/BBB ratings is a reasonable proxy group for estimating the cost of equity for SWEPCO in this proceeding.
Q. What was your first step in determining the DCF return on equity for the comparison group?
A. I first determined the current dividend yield, $\mathrm{D}_{0} / \mathrm{P}_{0}$, from the basic equation. My general practice is to use six months as the most reasonable period over which to estimate the dividend yield. The six-month period I used covered the months from April through September 2004. I obtained historical prices and dividends from Yahoo! Finance and the Standard and Poor's Stock Guide. The annualized dividend divided by the average monthly price represents the average dividend yield for each month in the period.

Using this approach results in an average dividend yield for the group of 4.35%. These calculations are shown in Exhibit____(RAB-4).
Q. Having established the average dividend yield, how did you determine the expected growth rate for the electric comparison group?
A. "Expected" refers to the investor's expected growth rate. The task, in theory, is to use a growth rate that will correctly forecast the constant rate of growth in dividends. We refer to a perpetual growth rate since the DCF model has no cut-off point. The obvious fact is that there is no way to know with absolute certainty what investors expect the growth rate to be in the short term, much less in perpetuity. The dividend growth rate is a function of earnings growth and the payout ratio, neither of which is known precisely for the future.

In this analysis, I relied on two major sources of analysts' forecasts for growth. These sources are Value Line and Zacks Investment Research ("Zacks").
Q. Please briefly describe Value Line and Zacks.
A. Value Line is an investment survey that is published for approximately 1,700 companies, both regulated and unregulated. It is updated quarterly and probably represents the most comprehensive and widely used of all investment information services. It provides both historical and forecasted information on a number of important data elements. Value Line neither participates in financial markets as a broker nor works for the utility industry in any capacity of which I am aware.

According to Zacks' website, Zacks "was formed in 1978 to compile, analyze, and distribute investment research to both institutional and individual investors." Zacks gathers opinions from a variety of analysts on earnings growth forecasts for numerous firms including regulated electric utilities. The estimates of the analysts responding are combined to produce consensus average and median estimates of earnings growth.

Q. Why did you rely on analysts' forecasts in your analysis?

A. The finance literature has shown that analysts' forecasts provide better predictions of future growth than do estimates based on historical growth alone ${ }^{2}$.
Q. How did you utilize your data sources to estimate growth rates for the comparison group?
A. Exhibit__(RAB-5), pages 1 through 4, presents the details of the calculations for the Value Line and Zacks forecasted growth estimates. The Value Line growth estimates are based on five-year forecasts for dividend growth and six-year forecasts for earnings growth. The Zacks earnings growth estimates are forecasts for the next five years. These earnings and dividend growth estimates for the comparison group are summarized on Columns (1) through (3) of page 1 of Exhibit \qquad (RAB-5).

[^34]I also utilized the sustainable growth formula in estimating the expected growth rate. The sustainable growth method, also known as the retention ratio method, recognizes that the firm's retaining a portion of its earnings fuels growth in dividends. These retained earnings, which are plowed back into the firm's asset base, are expected to earn a rate of return. This, in turn, generates growth in the firm's book value, market value, and dividends.

The sustainable growth method is calculated using the following formula:

$$
G=B \times R
$$

Where: $\quad G=$ expected retention growth rate
$B=$ the firm's expected retention ratio
$R=$ the expected return

In its proper form, this calculation is forward-looking. That is, the investors' expected retention ratio and return must be used in order to measure what investors anticipate will happen in the future. Data on expected retention ratios and returns may be obtained from Value Line.

The expected sustainable growth estimates for the comparison group are presented in Column (4) on page 1 of Exhibit___(RAB-5). The data came from the Value Line forecasts for the comparison group.
Q. How did you proceed to determine the DCF cost of equity for the electric comparison group?
A. To estimate the expected dividend yield $\left(D_{1}\right)$ for the group, the current dividend yield must be moved forward in time to account for dividend increases over the next twelve months. I estimated the expected dividend yield by multiplying the current dividend yield by one plus one-half the expected growth rate.

I then added the expected growth rate ranges to the expected dividend yield for the comparison group. The calculation of the resulting DCF returns on equity is presented on page 5 of Exhibit____(RAB-5). The expected growth rates range from 3.96% to 4.86%.
Q. Please explain how you calculated your DCF cost of equity estimates.
A. Page 5 of Exhibit (RAB-5) shows four alternative DCF cost of equity calculations using the four growth estimates shown on page 1. In calculating the average growth rates for the group, I eliminated negative earnings growth rates for one company in the group because negative growth rates are not appropriate proxies for long-term growth expectations.

The DCF returns range from 8.40% to 9.32%. The DCF return on equity utilizing the average of all the growth rates is 8.95%.

Capital Asset Pricing Model

Q. Briefly summarize the Capital Asset Pricing Model ("CAPM") approach.

A. The theory underlying the CAPM approach is that investors, through diversified porffolios, may combine assets to minimize the total risk of the portfolio. Diversification allows investors to diversify away all risks specific to a particular company and be left only with market risk that affects all companies. Thus, CAPM theory identifies two types of risks for a security: company-specific risk and market risk. Company-specific risk includes such events as strikes, management errors, marketing failures, lawsuits, and other events that are unique to a particular firm. Market risk includes inflation, business cycles, war, variations in interest rates, and changes in consumer confidence. Market risk tends to affect all stocks and cannot be diversified away. The idea behind the CAPM is that diversified investors are rewarded with returns based on market risk.

Within the CAPM framework, the expected return on a security is equal to the riskfree rate of return plus a risk premium that is proportional to the security's market, or nondiversifiable risk. Beta is the factor that reflects the inherent market risk of a security. It measures the volatility of a particular security relative to overall market for securities. For example, a stock with a beta of 1.0 indicates that if the market rises by 15.00%, that stock will also rise by 15.00%. This stock moves in tandem with movements in the overall market. A stock with a beta of 0.5 will only rise or fall 50.00% as much as the overall market. So with an increase in the market of 15.00%, this stock will only rise 7.50%. Stocks with betas greater than 1.0 will rise and fall more than the overall market. Thus, beta is the relevant measure of the risk of individual securities vis-à-vis the market.

Based on the foregoing discussion, the equation for determining the return for a security in the CAPM framework is:

$$
K=R f+\beta(M R P)
$$

$$
\text { Where: } \quad \begin{aligned}
K & =\text { Required Return on equity } \\
R f & =\text { Risk-free rate } \\
M R P & =\text { Market risk premium } \\
\beta & =\text { Beta }
\end{aligned}
$$

This equation tells us about the risk/return relationship posited by the CAPM. Investors are risk averse and will only accept higher risk if they receive higher returns. These returns can be determined in relation to a stock's beta and the market risk premium. The general level of risk aversion in the economy determines the market risk premium. If the risk-free rate of return is 3.00% and the required return on the total market is 15.00%, then the risk premium is 12.00%. Any stock's required return can be determined by multiplying its beta by the market risk premium. Stocks with betas greater than 1.0 are considered riskier than the overall market and will have higher required returns. Conversely, stocks with betas less than 1.0 will have required returns lower than the market as a whole.
Q. In general, are there concerns regarding the use of the CAPM in estimating the return on equity?
A. Yes. There is considerable controversy surrounding the use of the CAPM ${ }^{3}$. There is strong evidence that beta is not the primary factor in determining the risk of a
${ }^{3}$ For a more complete discussion of some of the controversy surrounding the use of the CAPM, refer to A Random Walk Down Wall Street by Burton Malkiel, pages 229-239, 1999 edition.
security. For example, Value Line states that its Safety Rank is a measure of total risk, not its calculated beta coefficient. Beta coefficients usually describe only a small amount of total investment risk. Also, recent finance literature has questioned the usefulness of beta in predicting the relationship between risk and required return. Finally, a considerable amount of judgment must be employed in determining the risk-free rate and market return portions of the CAPM equation. The analyst's application of judgment can significantly influence the results obtained from the CAPM. My past experience with the CAPM indicates that it is prudent to use a wide variety of data in estimating returns. Of course, the range of results may also be wide, indicating the difficulty in obtaining a reliable estimate from the CAPM.
Q. How did you estimate the market return portion of the CAPM?
A. The first source I used was the Value Line Investment Survey for Windows. Value Line provides a summary statistical report detailing, among other things, forecasted growth in dividends, earnings, and book value for the companies Value Line follows. I have presented these three growth rates and the average on page 2 of Exhibit ____(RAB-6). The average growth rate is 12.18%. Combining this growth rate with the average expected dividend yield of the Value Line companies of 1.20% results in an expected market return of 13.38%. The detailed calculations are shown on page 1 of Exhibit \qquad (RAB-6).

I also considered a supplemental check to this market estimate. Ibbotson Associates published a study of historical returns on the stock market in its Stocks, Bonds, Bills, and Inflation 2004 Yearbook. Some analysts employ this historical data to estimate
the market risk premium of stocks over the risk-free rate. The assumption is that a risk premium calculated over a long period of time is reflective of investor expectations going forward. Exhibit ___(RAB-7) presents the calculation of the market return using the Ibbotson historical data.
Q. Please address the use of historical earned returns to estimate the market risk premium.
A. The use of historic earned returns on the Standard and Poor 500 to estimate the current market risk premium is rather suspect because it naively assumes that investors currently expect historical risk premiums to continue unchanged into the future forever regardless of present or forecasted economic conditions. Brigham, Shome and Vinson noted the following with respect to the use of historic risk premiums calculated using the returns as reported by Ibbotson and Sinquefield (referred to in the quote as "I\&S"):
> "There are both conceptual and measurement problems with using I\&S data for purposes of estimating the cost of capital. Conceptually, there is no compelling reason to think that investors expect the same relative returns that were earned in the past. Indeed, evidence presented in the following sections indicates that relative expected returns should, and do, vary significantly over time. Empirically, the measured historic premium is sensitive both to the choice of estimation horizon and to the end points. These choices are essentially arbitrary, yet can result in significant differences in the final outcome."4

4 Brigham, E.F., Shome, D.K. and Vinson, S.R., "The Risk Premium Approach to Measuring a Utility's Cost of Equity", Financial Management, Spring 1985, pp. 33-45.

In summary, the use of historic earned returns should be viewed with a great deal of caution and skepticism. There is no real support for the proposition that an unchanging, mechanistically applied historical risk premium is representative of current investor expectations and return requirements.

Q. How did you determine the risk free rate?

A. I used the average yields on the 20-year Treasury bond and five-year Treasury note over the six-month period from April through September 2004. The 20-year Treasury bond is often used by rate of return analysts as the risk-free rate, but it contains a significant amount of interest rate risk. The five-year Treasury note carries less interest rate risk than the 20 -year bond and is more stable than threemonth Treasury bills. Therefore, I have employed both of these securities as proxies for the risk-free rate of return. This approach provides a reasonable range over which the CAPM may be estimated.

Q. What is your estimate of the market risk premium?

A. Exhibit___(RAB-6), line 9 of page 1, presents my estimates of the market risk premium based on a DCF analysis applied to current market data. The market risk premium is 8.17% using the 20 -year Treasury bond and 9.76% using the five-year Treasury bond.

Utilizing the historical Ibbotson data on market returns, the market risk premium ranges from 5.20% to 7.20%. This is shown on Exhibit ____(RAB-7).
Q. How did you determine the value for beta?
A. I obtained the betas for the companies in the electric company comparison group from most recent Value Line reports. The average of the Value Line betas for the electric group is . 76 .
Q. Please summarize the CAPM results.
A. Please refer to line 14 of page 1 of Exhibit \qquad (RAB-6) for the CAPM results for the 20 -year and five-year Treasury bond yields. For the electric comparison group, the CAPM returns are 11.08% (five-year bond) and 11.45% (20-year bond).

The CAPM results using the historical Ibbotson data range from 9.19\% to 10.71%. These results are shown on Exhibit \qquad (RAB-7).

Conclusions and Recommendations

Q. Please summarize the cost of equity estimates you have developed up to this point in your testimony.
A. Utilizing the DCF model, I developed cost of equity estimates for a comparison group of electric utility companies. The results for the electric company comparison
group using the constant-growth DCF model ranged from 8.40% to 9.32%. The results using the CAPM ranged from 9.19% to 11.45%.
Q. What is your recommendation for a fair rate of return on equity for SWEPCO?
A. My recommended rate of return on equity for SWEPCO is 8.95%. This recommendation is based on the average of the four DCF cost of equity estimates. Given the Company's present circumstances, I believe this value is the most representative of the investor-required return on equity for an A-rated company such as SWEPCO.
Q. Your CAPM results are higher than your DCF results. Why didn't you take this into account in your recommended return on equity for SWEPCO?
A. First, the LPSC has consistently relied on the DCF model in past cases with which I am familiar. Based on current market conditions in the utility industry, there is no reason not to rely on the DCF in this proceeding or to incorporate CAPM results.

Second, it is my opinion that the CAPM results for the comparison group may be overstated at this time. This is due, in part, to the application of Value Line's beta for the group of .76 . Value Line determines its betas based on five years of historical price data. Over the last five years, utility share prices in general have been quite volatile due to restructuring, deregulation, and the increase of unregulated
investments that were more risky than core electric operations. These factors likely increased the historical betas for electric utilities, other things being equal. Given the Value Line quote cited in Section II of my testimony, it would appear that the industry should be more stable going forward and, in my opinion, historical betas are therefore likely to fall from their current level.

Third, the expected return on the market based on Value Line's most recent forecasts appears to be quite volatile at this time. In a piece of return on equity testimony I filed earlier this year for Aquila Networks - WPC, the expected return on the market was 11.70%, compared to 13.38% in this proceeding. This one change substantially increased the CAPM results in this proceeding compared to my Aquila testimony. However, my DCF results have remained quite stable since the Aquila testimony and are consistent with interest rates trends throughout the year.

Thus, I believe the CAPM results will likely overstate the investors' required return for SWEPCO in this proceeding.
Q. Does this conclude your direct testimony?
A. Yes.

BEFORE THE

LOUISIANA PUBLIC SERVICE COMMISSION

RE: INVESTIGATION OF SOUTHWESTERN) ELECTRIC POWER COMPANY; REVENUE) Docket No. U-23327, REQUIREMENT REVIEW CONDUCTED) Subdocket A PURSUANT TO MERGER ORDER U-23327, SUBDOCKET A

EXHIBITS

OF
RICHARD A. BAUDINO

ON BEHALF OF THE
LOUISIANA PUBLIC SERVICE COMMISSION
J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

OCTOBER 2004
\qquad

RESUME OF RICHARD A. BAUDINO, DIRECTOR OF CONSULTING

EDUCATION

New Mexico State University, M.A.
Major in Economics
Minor in Statistics

New Mexico State University, B.A.
Economics
English

Twenty two years of experience in utility ratemaking. Broad based experience in revenue requirement analysis, cost of capital, utility financing, phase-ins, auditing and rate design. Has designed revenue requirement and rate design analysis programs.

REGULATORY TESTIMONY

Preparation and presentation of expert testimony in the areas of:
Electric and Gas Utility Rate Design
Cost of Capital for Electric, Gas and Water Companies
Ratemaking Treatment of Generating Plant Sale/Leasebacks
Electric and Gas Utility Cost of Service
Revenue Requirements
Gas industry restructuring and competition
Fuel cost auditing

RESUME OF RICHARD A. BAUDINO, DIRECTOR OF CONSULTING

EXPERIENCE

1989 to
Present: Kennedy and Associates: Director of Consulting - Responsible for consulting assignments in the area of revenue requirements, rate design, cost of capital, economic analysis of generation alternatives, gas industry restructuring and competition.

1982 to 1989:

New Mexico Public Service Commission Staff: Utility Economist - Responsible for preparation of analysis and expert testimony in the areas of rate of return, cost allocation, rate design, finance, phase-in of electric generating plants, and sale/leaseback transactions.

CLIENTS SERVED

Regulatory Commissions

Louisiana Public Service Commission
Georgia Public Service Commission
New Mexico Public Service Commission
\section*{IndustrialGroups}

Ad Hoc Committee for a Competitive Electric Supply System
Air Products and Chemicals, Inc.
Arkansas Electric Energy Consumers
Arkansas Gas Consumers
Armco Steel Company, L.P.
Association of Business Advocating Tariff Equity
General Electric Company
Industrial Energy Consumers
Kentucky Industrial Utility Consumers
Large Electric Consumers Organization
Newport Steel
Northwest Arkansas Gas Consumers
Maryland Industrial Group
Occidental Chemical
PSI Industrial Group
Taconite Intervenors (Minnesota)
\qquad

Expert Testimony Appearances
 of

Richard A. Baudino
As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$3 / 83$	1780	NM	New Mexico Public Service Commission	Boles Water Co.	Rate design, rate of return.
10183	$\begin{aligned} & 1803, \\ & 1817 \end{aligned}$	NM	New Mexico Public Service Commission	Southwestem Electric Coop	Rate design.
$11 / 84$	1833	NM	New Mexico Public Service Commission	El Paso Electric Co.	Service contract approval, rate design, performance standards for Palo Verde nuclear generating system
1983	1835	NM	New Mexico Public Service Commission	Public Service Co. of NM	Rate design.
1984	1848	NM	New Mexico Public Service Commission	Sangre de Cristo Water Co.	Rate design.
02185	1906	NM	New Mexico Public Service Commission	Southwestern Public Service Co.	Rate of return.
$09 / 84$	1907	NM	New Mexico Public Service Commission	Jomada Water Co.	Rate of retum.
$11 / 85$	1957	NM	New Mexico Public Service Commission	Southwestern Public Service Co.	Rate of retum.
$04 / 86$	2009	NM	New Mexico Public Service Commission	El Paso Electric Co.	Phase-in plan, treatment of salefeaseback expense.
06186	2032	NM	New Mexico Public Service Commission	El Paso Electric co.	Salenleaseback approval.
$09 / 86$	2033	NM	New Mexico Public Service Commission	El Paso Electric Co.	Order to show cause, PVNGS audit.
02187	2074	NM	New Mexico Public Service Commission	El Paso Electric Co.	Diversification.
$05 / 87$	2089	NM	New Mexico Public Service Commission	El Paso Electric Co.	Fuel factor adjustment.
$08 / 87$	2092	NM	New Mexico Public Service Commission	El Paso Electric Co.	Rate design.

007131
\qquad

Expert Testimony Appearances

 ofRichard A. Baudino As of April 2004

Date Case Jurisdict. Party Utility Subject

$10 / 88$	2146	NM	New Mexico Public Service Commission	Public Service Co. of New Mexico	Financial effects of restructuring, reorganization.
$07 / 88$	2162	NM	New Mexico Public Service Commission	El Paso Electric Co.	Revenue requirements, rate design, rate of return.
$01 / 89$	2194	NM	New Mexico Public Service Commission	Plains Electric G\&T Cooperative	Economic development.

007132
\qquad

Expert Testimony Appearances
 of
 Richard A. Baudino As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$05 / 92$	910890-E	FL	Occidental Chemical Corp.	Florida Power Corp.	Cost of equity, rate of return.
$09 / 92$	92-032-U	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co.	Cost of equity, rate of return, costof-service.
09/92	39314	ID	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Cost of equity, rate of return.
09/92	92-009-U	AR	Tyson Foods	General Waterworks	Cost allocation, rate design.
01/93	92-346	KY	Newport Steel Co.	Union Light, Heat \& Power Co.	Cost allocation.
01/93	39498	IN	PSI Industrial Group	PSI Energy	Refund allocation.
01/93	U-10105	M	Association of Businesses Advocating Tarif Equality (ABATE)	Michigan Consolidated Gas Co .	Return on equity.
04/93	$\begin{aligned} & \text { 92-1464- } \\ & \text { EL-ARR } \end{aligned}$	OH	Air Products and Chemicals, Inc., Amco Steel Co., Industrial Energy Consumers	Cincinnati Gas \& Electric Co.	Return on equity.
$09 / 93$	93-189-U	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co .	Transportation service terms and conditions.
$09 / 93$	$93-081-\mathrm{U}$	AR	Arkansas Gas Consumers	Arkansas Louisiana Gas Co.	Cost-of-service, transportalion rates, rate supplements; return on equity, revenue requirements.
1293	U-17735	LA	Louisiana Public Service Commission Staff	Cajun Electric Power Cooperative	Historical reviews; evaluation of economic studies.
03/84	10320	KY	Kentucky Industrial Utility Customers	Louisville Gas \& Electric Co.	Trimble County CWIP revenue refund.

007133

Expert Testimony Appearances
 of
 Richard A. Baudino As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$4 / 94$	E-015/ GR-94-001	MN	Large Power intervenors	Minnesota Power Co.	Evaluation of the cost of equity, capital structure, and rate of return.
5/94	R-00942993	PA	PG\&W industrial Intervenors	Pennsylvania Gas \& Water Co.	Analysis of recovery of transition costs.
5/94	R-00943001	PA	Columbia Industrial intervenors	Columbia Gas of Pennsylvania	Evaluation of cost allocation, rate design, rate plan, and carrying charge proposals.
$7 / 94$	R-00942986	PA	Amco, inc., West Penn Power industrial Intervenors	West Penn Power Co.	Retum on equity and rate of retum.
$7 / 94$	$\begin{aligned} & 94-0035- \\ & E-42 T \end{aligned}$	W	West Virginia Energy Users' Group	Monongahela Power Co.	Retum on equity and rate of return.
$8 / 94$	8652	MD	Westvaco Corp.	Potomac Edison Co.	Return on equity and rate of return.
$9 / 94$	930357-C	AR	West Central Arkansas Gas Consumers	Arkansas Oklahoma Gas Corp.	Evaluation of transportation service.
$9 / 94$	U-19904	LA	Louisiana Pubic Service Commission	Gulf States Uililties	Retum on equity.
$9 / 94$	8629	MD	Maryland Industrial Group	Batimore Gas \& Electric Co .	Transition costs.
1194	94-175-U	AR	Arkansas Gas Consumers	Arkla, inc.	Cost-of-service, rate design, rate of return.
3/95	RP94-343. 000	FERC	Arkansas Gas Consumers	NorAm Gas Transmission	Rate of retum.
4/95	R-00943271	PA	PP\&L Industrial Customer Alliance	Pennsylvania Power \& Light Co.	Retum on equity.
695	U-10755	M	Association of Businesses Advocating Tarif Equity	Consumers Power CO .	Revenue requirements.
785	8697	MD	Maryland Industrial Group	Balimore Gas \& Electric CO .	Cost allocation and rate design.

007134
J. KENNEDY AND ASSOCIATES, INC.
\qquad

Expert Testimony Appearances
 of

Richard A. Baudino
As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
$8 / 95$	$\begin{aligned} & 95-254-\mathrm{TF} \\ & \mathrm{U}-2811 \end{aligned}$	AR	Tyson Foods, inc.	Southwest Arkansas Electric Cooperative	Refund allocation.
$10 / 95$	$\begin{aligned} & \text { ER95-1042 } \\ & -000 \end{aligned}$	FERC	Louisiana Public Service Commission	Systems Energy Resources, inc.	Retum on Equity.
11/95	1-940032	PA	Industrial Energy Consumers of Pennsyivania	State-wide all ulilities	Investigation into Electric Power Competition.
5/96	96-030-U	AR	Northwest Arkansas Gas Consumers	Arkansas Western Gas Co .	Revenue requirements, rate of return and cost of service.
7/96	8725	MD	Maryiand Industrial Group	Ballimore Gas \& Electric Co., Potomac Electric Power Co. and Constellation Energy Corp.	Return on Equily.
$7 / 96$	U-21496	LA	Louisiana Public Service Commission	Central Lovisiana Electric Co .	Retum on equity, rate of return.
9/96	U-22092	LA	Louisiana Public Service Commission	Entergy Guff States, Inc.	Return on equity,
1/97	$\begin{aligned} & \text { RP96-199- } \\ & 000 \end{aligned}$	FERC	The Industrial Gas Users Conference	Mississippi River Transmission Corp.	Revenue requirements, rate of return and cost of service.
3197	96-420-U	AR	West Central Arkansas Gas Corp.	Arkansas Oklahoma Gas Corp.	Revenue requirements, rate of return, cost of sevice and rate design.
$7 / 97$	U-11220	M	Association of Business Advocating Tarif Equity	Michigan Gas Co. and Southeastem Michigan Gas Co.	Transportation Balancing Provisions
797	R-00973944	PA	Pennsyivania American Water Large Users Group	PennsylvaniaAmerican Water Co.	Rate of retum, cost of service, revenue requirements.
$3 / 88$	8390-U	GA	Georgia Natural Gas Group and the Georgia Textile Manufacturers Assoc.	Atlanta Gas Light	Rate of return, restructuring issues, unbundling, rate design issues.

ๆ J. KENNEDY AND ASSOCIATES, INC.

\qquad

Expert Testimony Appearances

of
Richard A. Baudino As of April 2004

Date	Case	Jurisdict.	Party	Utility	Subject
7198	R-00984280	PA	PG Energy, Inc.	PGE Industrial Intervenors	Cost allocation.
$8 / 88$	U-17735	LA	Louisiana Public Sevice Commission	Cajun Electric Power Cooperative	Revenue requirements.
$10 / 98$	97-596	ME	Maine Office of the Public Advocate	Bangor HydroElectric Co.	Retum on equity, rate of return.
10198	U-23327	LA	L.ouisiana Public Service Commission	SWEPCO, CSW and AEP	Analysis of proposed merger.
12198	98-577	ME	Maine Office of the Public Advocate	Maine Public Service Co.	Return on equity, rate of return.
12198	U-23358	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Retum on equity. rate of retum.
$3 / 99$	98-426	KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas and Electric Co	Return on equity.
$3 / 99$	99-082	KY	Kentucky Industrial Utility Customers, Inc.	Kentucky Ufilities Co.	Return on equity.
$4 / 99$	R. 984554	PA	T. W. Phillips Users Group	T. W. Phillips Gas and Oil Co.	Allocation of purchased gas costs.
$6 / 99$	R-0099462	PA	Columbia Industrial intervenors	Columbia Gas of Pennsyivania	Balancing charges.
$10 / 98$	U-24182	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Cost of debt.
$10 / 99$	R-00994782		Peoples Industrial Intervenors	Peoples Natural Gas Co.	Restructuring issues.
$10 / 99$	R-00994781		Columbia industrial Intervenors	Columbia Gas of Pennsylvania	Restructuring, balancing charges, rate flexing, altemate fuel.
$01 / 00$	R-00994786		UGI Industrial Intervenors	UGI Utilites, Inc.	Universal service costs, balancing, penalty charges, capacity assignment.

007136

Expert Testimony Appearances

of
Richard A. Baudino As of April 2004

Date	Case Jurisdict.	Party	Utility	Subject
$01 / 00$	8829 MD	Maryland industrial Gr . \& United States	Batimore Gas \& Electric Co.	Revenue requirements, cost allocation, rate design.
02100	R-00994788 PA	Penn Fuel Transportation	PFG Gas, Inc, and	Tariff charges, balancing provisions.
05/00	U-17735 LA	Louisiana Public Service Comm.	Louisiana Electric Cooperative	Rate restructuring.
07100	2000-080 KY	Kentucky Industrial Utility Consumers	Louisville Gas and Electric Co.	Cost allocation.
07100	$\begin{aligned} & \text { U-21453 LA } \\ & \text { U-20925 (SC), } \\ & \text { U-22092 (SC) } \\ & \text { (Subdocket E) } \end{aligned}$	Louisiana Public Service Comm.	Southwestern Electric Power Co.	Stranded cost analysis.
09/00	R-00005654 PA	Philadelphia Industrial And Commercial Gas Users Group.	Philadelphia Gas Works	interim relief analysis.
10100	$\begin{aligned} & \text { U-21453 LA } \\ & \text { U-20925 (SC), } \\ & \text { U-22092 (SC) } \\ & \text { (Subdocket B) } \end{aligned}$	Louisiana Public Service Comm.	Entergy Gulf States, inc.	Restructuring, Business Separation Plan.
$11 / 00$	R-00005277 PA (Rebuttal)	Penn Fuel Transportation Customers	PFG Gas, Inc. and North Pern Gas Co.	Cost allocation issues.
$12 / 00$	U-24993 LA	Louisiana Public Service Comm.	Entergy Gulf States, Inc.	Retum on equity.
$03 / 01$	U-22092 LA	Lovisiana Public Service Comm.	Entergy Gulf States, Inc.	Stranded cost analysis.
$04 / 01$	$\begin{aligned} & \text { U-21453 LA } \\ & \text { U-20925 (SC), } \\ & \text { U-22092 (SC) } \\ & \text { (Subdocket B) } \\ & \text { (Addressing Contested lssu } \end{aligned}$	Louisiana Public Service Comm.	Entergy Gulf States, Inc.	Restructuring issues.
0401	R-00006042 PA	Philadelphia Industrial and Commercial Gas Users Group	Philadelphia Gas Works	Revenue requirements, cost allocation and tariff issues.
11101	U-25687 LA	Louisiana Pubic Service Comm.	Entergy Gulf States, inc.	Return on equity.

007137
J. KENNEDY AND ASSOCIATES, INC.

Expert Testimony Appearances of
 Richard A. Baudino
 As of April 2004

Date	Case Jur	Jurisdict.	Party	Utility	Subject
$03 / 02$	14311-U	GA	Georgia Public Service Commission	Allanta Gas Light	Capital structure.
$08 / 02$	2002-00145	KY	Kentucky Industrial Utility Customers	Columbia Gas of Kentucky	Revenue requirements.
$09 / 02$	M-00021612	PA	Philadelphia Industrial And Commercial Gas Users Group	Philadelphia Gas Works	Transporiation rates, terms, and conditions.
$01 / 03$	2002-00169 KY		Kentucky Industrial Utility Customers	Kentucky Power	Return on equity.
02103	02S-594E	CO	Cripple Creek \& Victor Gold Mining Company	Aquila Networks WPC	Return on equity.
04/03	U-26527	LA	Louisiana Public Service Commission	Entergy Gulf States, inc.	Return on equity.
$10 / 03$	CV020495AB	GA	The Landings Assn, Inc.	Utitities Inc. of GA ,	Revenue requirement \& overcharge refund
$03 / 04$	2003-00433	KY	Kentucky industriai Ulility Customers	Louisville Gas \& Electric	Return on equity, Cost allocation \& rate design
$03 / 04$	2003-00434	KY	Kentucky Industrial Utility Customers	Kentucky Utilities	Return on equity
4104	ER03-583-000, et. al.	10. FERC	Louisiana Public Service Commission	Entergy Corp.	Return on Equity
4104	04S-035E	CO	Cripple Creek \& Victor Gold Mining Company, Goodrich Corp., Holcim (U.S.) Inc., and The Trane Co.	Aquila Networks WPC	Return on equity
$9 / 04$	U-23327, Subdocket B	LA	Louisiana Public Service Commission	Southwestem Electric Power Company	Fuel cost review

AVERAGE PUBLIC UTILITY BOND VS 20-YEAR TREASURY BOND
\qquad

SOUTHWESTERN PUBLIC SERVICE COMPANY COMPARISON GROUP

	S\&P Rating	Moody's Rating
Avista Corp.	BBB-	Baa3
Central Vermont Public Service	$\mathrm{BBB}+$	
CH Energy Group	A	A 2
CINergy Corp.	$\mathrm{BBB}+$	A 3
Cleco Corporation	$\mathrm{BBB}+$	A 3
Consolidation Edison	A	A 1
Empire District Electric	BBB	$\mathrm{Baa1}$
Energy East Corporation	$\mathrm{BBB}+$	$\mathrm{Baa1}$
Entergy	BBB	$\mathrm{Baa2}$
Exelon Corporation	A	A 2
FirstEnergy Corporation	$\mathrm{BBB}-$	$\mathrm{Baa1}$
Green Mountain Power	BBB	$\mathrm{Baa1}$
Hawaiian Electric Industries	BBB	$\mathrm{Baa2}$
Northeast Utilities	$\mathrm{A}-$	A 3
NSTAR	A	A
Pinnacle West Capital Corp.	BBB	$\mathrm{Baa1}$
PPL Corporation	$\mathrm{A}-$	$\mathrm{Baa1}$
Progress Energy Inc.	BBB	A
Public Service Enterprise Gp	$\mathrm{A}-$	A 3
SEMPRA Energy	$\mathrm{A}+$	A
Southern Company	$\mathrm{A}+$	A

\qquad (RAB-4)

SOUTHWESTERN ELECTRIC POWER COMPANY
 COMPARISON GROUP AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Apr '04	May '04	June '04	July '04	Aug '04	Sept '04
Avista Corp.	High Price (\$)	19.430	17.190	18.720	18.530	17.890	18.570
	Low Price (\$)	16.890	15.350	16.790	17.190	16.950	17.740
	Avg. Price (\$)	18.160	16.270	17.755	17.860	17.420	18.155
	Dividend (\$)	0.125	0.130	0.130	0.130	0.130	0.130
	Mo. Avg. Div.	2.75\%	3.20\%	2.93\%	2.91\%	2.99\%	2.86\%
	6 mos. Avg.	2.94\%					
Central Vermont PS	High Price (\$)	22.500	20.400	20.600	20.600	21.120	21.750
	Low Price (\$)	19.200	18.450	18.800	19.150	19.180	20.100
	Avg. Price (\$)	20.850	19.425	19.700	19.875	20.150	20.925
	Dividend (\$)	0.230	0.230	0.230	0.230	0.230	0.230
	Mo. Avg. Div.	4.41\%	4.74\%	4.67\%	4.63\%	4.57\%	4.40\%
	6 mos. Avg.	4.57\%					
CH Energy Group	High Price (\$)	49.580	47.750	46.440	46.720	45.610	46.750
	Low Price (\$)	45.850	43.390	44.090	43.250	43.140	45.060
	Avg. Price (\$)	47.715	45.570	45.265	44.985	44.375	45.905
	Dividend (\$)	0.540	0.540	0.540	0.540	0.540	0.540
	Mo. Avg. Div.	4.53\%	4.74\%	4.77\%	4.80\%	4.87\%	4.71\%
	6 mos. Avg.	4.74\%					
CINergy Corp.	High Price (\$)	41.040	38.300	38.860	39.010	40.530	40.750
	Low Price (\$)	37.540	34.920	36.760	36.950	38.100	38.900
	Avg. Price (\$)	39.290	36.610	37.810	37.980	39.315	39.825
	Dividend (\$)	0.470	0.470	0.470	0.470	0.470	0.470
	Mo. Avg. Div.	4.78\%	5.14\%	4.97\%	4.95\%	4.78\%	4.72\%
	6 mos . Avg.	4.89\%					
Cleco Corporation	High Price (\$)	19.180	18.180	18.350	18.200	17.860	18.260
	Low Price (\$)	17.000	16.190	16.880	17.100	16.450	16.690
	Avg. Price (\$)	18.090	17.185	17.615	17.650	17.155	17.475
	Dividend (\$)	0.225	0.225	0.225	0.225	0.225	0.225
	Mo. Avg. Div.	4.98\%	5.24\%	5.11\%	5.10\%	5.25\%	5.15\%
	6 mos. Avg.	5.14\%					
Consolidated Edison	High Price (\$)	44.250	41.580	40.530	40.970	42.200	42.900
	Low Price (\$)	40.900	37.230	38.610	39.120	40.400	41.360
	Avg. Price (\$)	42.575	39.405	39.570	40.045	41.300	42.130
	Dividend (\$)	0.565	0.565	0.565	0.565	0.565	0.565
	Mo. Avg. Div.	5.31\%	5.74\%	5.71\%	5.64\%	5.47\%	5.36\%
	6 mos. Avg.	5.54\%					
Empire District	High Price (\$)	22.990	21.050	20.650	20.450	20.870	20.800
	Low Price (\$)	20.790	19.480	19.630	19.530	19.800	20.230
	Avg. Price (\$)	21.890	20.265	20.140	19.990	20.335	20.515
	Dividend (\$)	0.320	0.320	0.320	0.320	0.320	0.320
	Mo. Avg. Div.	5.85\%	6.32\%	6.36\%	6.40\%	6.29\%	6.24\%
	6 mos. Avg.	6.24\%					

\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Apr '04	May '04	June '04	July '04	Aug '04	Sept '04
Energy East	High Price (\$)	26.050	23.870	24.760	24.770	24.710	25.250
	Low Price (\$)	23.450	21.850	23.230	23.480	23.750	24.260
	Avg. Price (\$)	24.750	22.860	23.995	24.125	24.230	24.755
	Dividend (\$)	0.260	0.260	0.260	0.260	0.260	0.260
	Mo. Avg. Div.	4.20\%	4.55\%	4.33\%	4.31\%	4.29\%	4.20\%
	6 mos. Avg.	4.31\%					
Entergy	High Price (\$)	59.920	54.990	57.160	57.780	60.480	61.980
	Low Price (\$)	54.300	50.640	52.510	54.430	57.620	59.510
	Avg. Price (\$)	57.110	52.815	54.835	56.105	59.050	60.745
	Dividend (\$)	0.450	0.450	0.450	0.450	0.450	0.450
	Mo. Avg. Div.	3.15\%	3.41\%	3.28\%	3.21\%	3.05\%	2.96\%
	6 mos. Avg.	3.18\%					
Exelon	High Price (\$)	69.790	33.560	34.140	35.440	36.850	37.900
	Low Price (\$)	64.400	30.920	32.100	32.690	34.650	35.990
	Avg. Price (\$)	67.095	32.240	33.120	34.065	35.750	36.945
	Dividend (\$)	0.550	0.275	0.275	0.275	0.305	0.305
	Mo. Avg. Div.	3.28\%	3.41\%	3.32\%.	3.23\%	3.41\%	3.30\%
	6 mos. Avg.	3.33\%					
First Energy Corporation	High Price (\$)	39.650	39.490	39.730	39.170	40.410	42.230
	Low Price (\$)	37.130	36.730	36.900	37.040	38.850	40.370
	Avg. Price (\$)	38.390	38.110	38.315	38.105	39.630	41.300
	Dividend (\$)	0.375	0.375	0.375	0.375	0.375	0.375
	Mo. Avg. Div.	3.91\%	3.94\%	3.91\%	3.94\%	3.79\%	3.63\%
	6 mos. Avg.	3.85\%					
Green Mountain Power	High Price (\$)	25.980	25.800	26.100	26.430	26.820	26.500
	Low Price (\$)	24.650	24.400	25.080	25.590	25.080	25.400
	Avg. Price (\$)	25.315	25.100	25.590	26.010	25.950	25.950
	Dividend (\$)	0.220	0.220	0.220	0.220	0.220	0.220
	Mo. Avg. Div.	3.48\%	3.51\%	3.44\%	3.38\%	3.39\%	3.39\%
	6 mos. Avg.	3.43\%					
Hawailan Electric Ind.	High Price (\$)	52.350	50.600	26.280	26.740	25.810	26.750
	Low Price (\$)	48.590	45.930	24.400	25.200	24.890	25.700
	Avg. Price (\$)	50.470	48.265	25.340	25.970	25.350	26.225
	Dividend (\$)	0.620	0.620	0.310	0.310	0.310	0.310
	Mo. Avg. Div.	4.91\%	5.14\%	4.89\%	4.77\%	4.89\%	4.73\%
	6 mos. Avg.	4.89\%					
Northeast Utilities	High Price (\$)	18.730	19.240	19.710	19.530	19.210	19.410
	Low Price (\$)	17.660	17.610	18.860	18.300	18.480	18.900
	Avg. Price (\$)	18.195	18.425	19.285	18.915	18.845	19.155
	Dividend (\$)	0.150	0.150	0.150	0.150	0.163	0.163
	Mo. Avg. Div.	3.30\%	3.26\%	3.11\%	3.17\%	3.45\%	3.39\%
	6 mos. Avg.	3.28\%					

\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP AVERAGE PRICE, DIVIDEND AND DIVIDEND YIELD

		Apr '04	May '04	June '04	July '04	Aug '04	Sept ' 04
NSTAR	High Price (\$)	51.300	48.980	48.600	47.970	48.880	50.500
	Low Price (\$)	47.280	45.300	46.600	46.010	46.580	48.360
	Avg. Price (\$)	49.290	47.140	47.600	46.990	47.730	49.430
	Dividend (\$)	0.555	0.555	0.555	0.555	0.555	0.555
	Mo. Avg. Div.	4.50\%	4.71\%	4.66\%	4.72\%	4.65\%	4.49\%
	6 mos. Avg.	4.62\%					
Pinnacle West	High Price (\$)	40.220	40.450	41.500	41.190	42.990	42.560
	Low Price (\$)	37.500	36.300	39.460	39.630	40.330	41.120
	Avg. Price (\$)	38.860	38.375	40.480	40.410	41.660	41.840
	Dividend (\$)	0.450	0.450	0.450	0.450	0.450	0.450
	Mo. Avg. Div.	4.63\%	4.69\%	4.45\%	4.45\%	4.32\%	4.30\%
	6 mos. Avg.	4.47\%					
PPL Corp.	High Price (\$)	46.970	43.810	46.200	46.730	47.870	48.390
	Low Price (\$)	42.720	39.830	42.150	44.700	46.100	46.170
	Avg. Price (\$)	44.845	41.820	44.175	45.715	46.985	47.280
	Dividend (\$)	0.410	0.410	0.410	0.410	0.410	0.410
	Mo. Avg. Div.	3.66\%	3.92\%	3.71\%	3.59\%	3.49\%	3.47\%
	6 mos . Avg.	3.64\%					
Progress Energy	High Price (\$)	47.500	43.190	44.360	44.320	43.890	44.280
	Low Price (\$)	42.660	40.090	42.220	40.760	42.000	41.530
	Avg. Price (\$)	45.080	41.640	43.290	42.540	42.945	42.905
	Dividend (\$)	0.575	0.575	0.575	0.575	0.575	0.575
	Mo. Avg. Div.	5.10\%	5.52\%	5.31\%	5.41\%	5.36\%	5.36\%
	6 mos. Avg.	5.34\%					
Pub. Svc. Enterprise Gp.	High Price (\$)	47.700	43.000	42.330	42.110	42.340	42.600
	Low Price (\$)	42.700	39.660	39.700	38.100	39.130	40.680
	Avg. Price (\$)	45.200	41.330	41.015	40.105	40.735	41.640
	Dividend (\$)	0.550	0.550	0.550	0.550	0.550	0.550
	Mo. Avg. Div.	4.87\%	5.32\%	5.36\%	5.49\%	5.40\%	5.28\%
	6 mos. Avg.	5.29\%					
Sempra Energy	High Price (\$)	32.400	33.410	34.900	36.400	36.740	37.190
	Low Price (\$)	30.870	30.800	33.130	33.970	35.250	35.530
	Avg. Price (\$)	31.635	32.105	34.015	35.185	35.995	36.360
	Dividend (\$)	0.250	0.250	0.250	0.250	0.250	0.250
	Mo. Avg. Div.	3.16%	3.11\%	2.94\%	2.84\%	2.78\%	2.75\%
	6 mos . Avg.	2.93\%					
Southern Company	High Price (\$)	30.64	29.14	29.44	29.96	30.35	30.85
	Low Price (\$)	28.57	27.44	28.61	28.67	29.17	29.71
	Avg. Price (\$)	29.605	28.290	29.025	29.315	29.760	30.280
	Dividend (\$)	0.350	0.350	0.350	0.358	0.358	0.358
	Mo. Avg. Div.	4.73\%	4.95\%	4.82\%	4.88\%	4.81\%	4.73\%
	6 mos. Avg.	4.82\%					
Average Dividend Yield		4.35\%					

\qquad (RAB-5)

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP DCF Growth Rate Analysis

Company	(1) Value Line DPS	(2) Value Line EPS	(3) Zacks	(4) Value Line B $\times R$
Avista Corp.	7.39\%	7.66\%	5.00\%	4.27\%
Central Vermont Public Service	4.18\%	7.08\%	N/A	4.24\%
CH Energy Group	0.00\%	0.49\%	N/A	1.82\%
CINergy Corp.	2.09\%	3.32\%	4.00\%	3.52\%
Cleco Corporation	0.00\%	0.80\%	N/A	4.80\%
Consolidation Edison	0.88\%	-0.87\%	3.00\%	1.74\%
Empire District Electric	0.00\%	6.58\%	5.00\%	1.39\%
Energy East Corporation	5.39\%	3.33\%	5.00\%	3.50\%
Entergy Corp.	6.19\%	6.03\%	6.00\%	5.64\%
Exelon Corp.	13.14\%	6.11\%	5.00\%	7.50\%
FirstEnergy Corp.	3.71\%	9.79\%	6.00\%	6.33\%
Green Mountain Power	10.99\%	3.52\%	N/A	4.90\%
Hawaiian Electric Industries	0.00\%	1.50\%	4.00\%	3.06\%
Northeast Utilities	8.94\%	9.75\%	5.00\%	5.86\%
NSTAR	2.78\%	2.86\%	4.00\%	4.50\%
Pinnacle West Capital Corp.	4.44\%	3.85\%	5.00\%	4.11\%
PPL Corporation	5.78\%	4.58\%	5.00\%	7.65\%
Progress Energy	2.04\%	-1.76\%	4.00\%	1.97\%
Public Service Enterprise Group	1.79\%	-1.08\%	3.00\%	3.75\%
Sempra Energy	0.00\%	5.09\%	6.00\%	9.17\%
Southern Company	3.36\%	5.18\%	4.00\%	4.63\%
Averages Excluding Negative Values	3.96\%	4.86\%	4.65\%	4.49\%
Sources: Zacks Detailed Analysts' Es Value Line Investment Surv	October 2004 ust 13, Septem	er 3, and Octo	$\text { 1, } 2004$	

\qquad (RAB-5)

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP DCF Growth Rate Analysis

Value Line Projected Dividend Per Share Growth

Company	$\begin{aligned} & 2003 \\ & \text { DPS } \end{aligned}$		$\begin{gathered} \text { Projected } \\ \text { DPS } \\ \hline \end{gathered}$		Compound Growth Rate
Avista Corp.	\$	0.49	\$	0.70	7.39\%
Central Vermont Public Service	\$	0.88	\$	1.08	4.18\%
CH Energy Group	\$	2.16	\$	2.16	0.00\%
CINergy Corp.	\$	1.84	\$	2.04	2.09\%
Cleco Corporation	\$	0.90	\$	0.90	0.00\%
Consolidation Edison	\$	2.24	\$	2.34	0.88\%
Empire District Electric	\$	1.28	\$	1.28	0.00\%
Energy East Corporation	\$	1.00	\$	1.30	5.39\%
Entergy Corp.	\$	1.60	\$	2.16	6.19\%
Exelon Corp.	\$	0.96	\$	1.78	13.14\%
FirstEnergy Corp.	\$	1.50	\$	1.80	3.71\%
Green Mountain Power	\$	0.76	\$	1.28	10.99\%
Hawaiian Electric Industries	\$	1.24	\$	1.24	0.00\%
Northeast Utilities	\$	0.58	\$	0.89	8.94\%
NSTAR	\$	2.18	\$	2.50	2.78\%
Pinnacle West Capital Corp.	\$	1.73	\$	2.15	4.44\%
PPL Corporation	\$	1.54	\$	2.04	5.78\%
Progress Energy	\$	2.26	\$	2.50	2.04\%
Public Service Enterprise Group	\$	2.16	\$	2.36	1.79\%
Sempra Energy	\$	1.00	\$	1.00	0.00\%
Southern Company	\$	1.39	\$	1.64	3.36\%
Average					3.96\%

\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP DCF Growth Rate Analysis

Value Line Projected Earnings Per Share Growth

| | $\begin{array}{c}\text { 3-Year } \\ \text { Avg. } \\ \text { EPS }\end{array}$ | | Projected |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EPS | | | |\(\left.\quad \begin{array}{c}Compound

Growth

Rate\end{array}\right]\)
\qquad (RAB-5)

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP DCF Growth Rate Analysis

Sustainable Growth Calculation

Company	Forecasted Payout Ratio	Forecasted Retention Ratio	Expected Return	Growth Rate
Avista Corp.	46.67\%	53.33\%	8.00\%	4.27\%
Central Vermont Public Service	55.38\%	44.62\%	9.50\%	4.24\%
CH Energy Group	78.55\%	21.45\%	8.50\%	1.82\%
CINergy Corp.	68.00\%	32.00\%	11.00\%	3.52\%
Cleco Corporation	60.00\%	40.00\%	12.00\%	4.80\%
Consolidation Edison	80.69\%	19.31\%	9.00\%	1.74\%
Empire District Electric	85.33\%	14.67\%	9.50\%	1.39\%
Energy East Corporation	65.00\%	35.00\%	10.00\%	3.50\%
Entergy Corp.	43.64\%	56.36\%	10.00\%	5.64\%
Exelon Corp.	53.13\%	46.87\%	16.00\%	7.50\%
FirstEnergy Corp.	45.00\%	55.00\%	11.50\%	6.33\%
Green Mountain Power	53.33\%	46.67\%	10.50\%	4.90\%
Hawaiian Electric Industries	70.86\%	29.14\%	10.50\%	3.06\%
Northeast Utilities	41.40\%	58.60\%	10.00\%	5.86\%
NSTAR	62.50\%	37.50\%	12.00\%	4.50\%
Pinnacle West Capital Corp.	58.90\%	41.10\%	10.00\%	4.11\%
PPL Corporation	45.33\%	54.67\%	14.00\%	7.65\%
Progress Energy	78.13\%	21.88\%	9.00\%	1.97\%
Public Service Enterprise Group	67.43\%	32.57\%	11.50\%	3.75\%
Sempra Energy	26.67\%	73.33\%	12.50\%	9.17\%
Southern Company	66.94\%	33.06\%	14.00\%	4.63\%
Average	59.66\%	40.34\%	10.90\%	4.49\%

\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY COMPARISON GROUP DCF Growth Rate Analysis

RETURN ON EQUITY CALCULATION COMPARISON GROUP					
	(1) Value Line Dividend Gr.	(2) Value Line Earnings Gr.	(3) Zack's Earning Gr.	(4) Retention Earning Gr.	(5) Average of All Gr. Rates
Dividend Yield	4.35\%	4.35\%	4.35\%	4.35\%	4.35\%
Growth Rate	3.96\%	4.86\%	4.65\%	4.49\%	4.49\%
Expected Div. Yield	4.44\%	4.46\%	4.46\%	4.45\%	4.45\%
DCF Return on Equity	8.40\%	9.32\%	9.11\%	8.94\%	8.94\%

\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY
 Capital Asset Pricing Model Analysis Comparison Group

20-Year Treasury Bond

Line
No.
Value Line
12
34
Market Required Return Estimate
Expected Dividend Yield 1.20\%
Expected Growth 12.18\%
Required Return 13.38\%
Risk-free Rate of Return, 20-Year Treasury Bond Average of Last Six Months 5.21\%
Risk Premium
@ 6 Month Average RFR (Line 4 minus Line 6) 8.17\%
Comparison Group Beta 0.76
Comparison Group Beta * Risk Premium
@ 6 Month Average RFR (Line 10 * Line 9) 6.24\%
CAPM Return on Equity
@ 6 Month Average RFR (Line 12 plus Line 6) 11.45\%
5-Year Treasury Bond
Market Required Return Estimate
Expected Dividend Yield 1.20\%
Expected Growth 12.18\%
Required Return 13.38\%
Risk-free Rate of Return, 5-Year Treasury Bond
Average of Last Six Months 3.62%
Risk Premium
@ 6 Month Average RFR (Line 4 minus Line 6) 9.76\%
Comparison Group Beta 0.76
Comparison Group Beta * Risk Premium
@ 6 Month Average RFR (Line 9 * Line 10) 7.46\%
CAPM Return on Equity
@ 6 Month Average RFR (Line 12 plus Line 6) 11.08%
\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY
 Capital Asset Pricing Model Analysis Comparison Group
 Supporting Data for CAPM Analyses

20 Year Treasury Bond Data

	Avg. Yield		Avg. Yield
April-04	5.16%	April-04	3.39%
May-04	5.46%	May-04	3.85%
June-04	5.45%	June-04	3.93%
July-04	5.24%	July-04	3.69%
August-04	5.07%	August-04	3.47%
September-04	$\underline{4.89 \%}$	September-04	3.36%
6 month average	5.21%	6 month average	3.62%

Value Screen Ill Srowth Rate Data:	
Forecasted Data:	
Earnings	15.91%
Book Value	10.43%
Dividends	10.20%
Average	12.18%
Source: Value Line Investment Survey for Windows,	
October 2004	

5 Year Treasury Bond Data

Value Line Betas
Comparison Group:

Avista Corp. 0.85
Central Vermont Public Service 0.50
CH Energy Group $\quad 0.80$
CINergy Corp. 0.80
Cleco Corporation 1.05
Consolidation Edison 0.65
Empire District Electric 0.65
Energy East Corporation 0.80
Entergy Corp. 0.75
Exelon Corp. 0.70
FirstEnergy Corp. 0.75
Green Mountain Power . 0.65
Hawaiian Electric Industries 0.65
Northeast Utilities 0.75
NSTAR 0.70
Pinnacle West Capital Corp. 0.80
PPL Corporation 0.95
Progress Energy 0.85
Public Service Enterprise Group 0.85
Sempra Energy 0.90
Southern Company 0.65

Average 0.76
Source: Value Line Investment Reports,
August 13, September 3, and October 1, 2004
\qquad

SOUTHWESTERN ELECTRIC POWER COMPANY Capital Asset Pricing Model Analysis

Historic Market Premium

	Geometric Mean	Arithmetic Mean
Long-Term Annual Return on Stocks	10.40%	12.40%
Long-Term Annual Income Return on Long-Term Government Bond	5.20%	5.20%
Historical Market Risk Premium	5.20%	7.20%
Comparison Group Beta	0.76	$\underline{0.76}$
Beta * Market Premium	3.97%	5.50%
Current 20-Year Tresury Bond Yield	5.21%	5.21%
CAPM Cost of Equity	9.19%	10.71%

Source: Stocks, Bonds, Bills, and Inflation 2004 Yearbook, Ibbotson Associates

AFFIDAVIT

STATE OF GEORGIA)

COUNTY OF FULTON)

RICHARD A. BAUDINO, being duly sworn, deposes and states: that the attached are his sworn Testimony and Exhibits and that the statements contained are true and correct to the best of his knowledge, information and belief.

Sworn to and subscribed before me on this
22 ad day of October 2004.

Barbara J. Trojanowski
Notary Public
Cobb County
State of Georgia
My comm. expires 01/26/05

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC. RESPONSE TO
KENTUCKY POWER COMPANY'S
FIRST SET OF DATA REQUESTS TO

STADVARD
SDOOR'S
Slobal/English
select region/language

S\&P 500 Global Industry Classification Standard (GICS) Sectors As of November 30, 2005

	Number of Cos.	\% of Market Capitalization
Consumer Discretionary	89	10.9%
Consumer Staples	37	9.5%
Energy	29	9.3%
Financials	84	21.2%
Health Care	57	12.8%
Industrials*	53	11.3%
Information Technology	78	15.6%
Materials	32	3.0%
Telecommunication Services	8	3.1%
Utilities	33	3.3%
Industrials (Composite)**	375	73.7%
*S\&P 500 Industrials Sector is part of the Global Industry Classification Standard (GICS).		
*"S\&P 500 Industrials Composite is a continuation of the Industrials that have been		
published by Standard \& Poor's for over 40 years, and is provided in recognition of the fact		
that it is used by analysts and has a long history. It is not the same as the GICS Industrials		
Sector,		

S\&P 500 Exchange Representation

As of November 30, 2005

	Number of Cos.	$\%$ of Market Capitalization
NYSE	426	85.6%
NASDAQ	74	14.4%
AMEX	0	0.0%

S\&P Italian Indices
S\&P Hong Kong Indices
S\&P Japanese Indices
S\&P Canadian Indices S\&P Australian Indices S\&P India Indices S\&P Russian Indices S\&P Emerging Markets S\&P Style Indices S\&P Pure Style Indices S\&P Commodity Index
S\&P Composite Spreads
S\&P Hedge Fund Indices S\&P Europe-Registered Funds Index Series Structured Finance Standard \& Poor's/Investor Tools Municipal Bond Indices

S\&P 500 Statistics

As of November 30, 2005

Total Market Value (\$ Billion)	11,298
Mean Market Value (\$Million)	22,595
Median Market Value (\$Million)	10,702
Weighted Ave. Market Value (\$ Million)	86,707
Largest Cos. Market Value (\$Million)	378,661
Smallest Cos. Market Value (\$ Million)	290
Median Share Price (\$)	41,960
P/E Ratio	18.72
Indicated Dividend Yield (\%)	1.84

At month-end, the S\&P 500 Index represented approximately 73% and the S\&P MidCap 400 represented 7% and the S\&P SmallCap 600 represented 3% of the market value of S\&P's internal database of over 6985 equities. Combined, the S\&P Equity Indices represented 84%.

Yahool My Yahoo! Mail \quad FINANCE \begin{tabular}{l}
Welcome, rickybaud

[Sign Out, My Account]

Search

the Web
\end{tabular}\quad Finance Home - Help

Thursday, December 29, 2005, 11:20AM ET - U.S. Markets close in 4 hours and 40 minutes. Dow $+\mathbf{0 . 1 7 \%}$ Nasdaq +0
Bill Pay - Customize Finance
Portfolios [manage - create]
Quotes / Free trial of Streaming Real-Time Quotes

Quotes \& Info

Cleco Corp. (CNL)

Enter Symbol(s):
e,g, YHOO, ADII

GO Symbol Lookup | Finance Searc

Analyst Estimates

Earnings Est	Current Qtr	Next Qtr	Current Year	Next Year	ADVERTISEMENT
	Dec-05	Mar-06	Dec-05	Dec-06	Diversify
Avg. Estimate	0.18	0.24	1.56	1.31	
No. of Analysts	6	2	5	6	
Low Estimate	0.13	0.23	1.50	1.10	Dortfollo -
High Estimate	0.21	0.26	1.61	1.49	Online
Year Ago EPS	0.28	0.18	1.33	1.56	Currency Trading
Revenue Est	Current Qtr Dec-05	Next Qts Mar-06	Current Yeat Dec-05	Next Year Dec-06	
Avg. Estimate	N/A	N/A	776.25 M	769.95M	Try Currency trading risk-free and experience the potential of the world's largest market. Benefits include: Commission Free trading, 24hour markets, no restrictions on shorting and trade off your profits. Find out why traders are switching!
No. of Analysts	0	0	2	2	
Low Estimate	N/A	N/A	725.00 M	729.00 M	
High Estimate	N/A	N/A	827.50 M	810.90 M	
Year Ago Sales	N/A	172.12M	N/A	776.25 M	
Sales Growth (year/est)	N/A	N/A	N/A	-0.8\%	
Earnings History	Dec-04	Mar-05	Jun-05	Sep-05	
EPS Est	0.20	0.26	0.32	0.53	
EPS Actual	0.28	0.18	0.40	0.82	
Difference	0.08	-0.08	0.08	0.29	
Surprise \%	40.0\%	-30.8\%	25.0\%	54.7\%	
EPS Trends	$\begin{aligned} & \text { Current Qtr } \\ & \text { Dec-05 } \end{aligned}$	$\begin{aligned} & \text { Next Qtr } \\ & \text { Mar-06 } \end{aligned}$	Current Year Dec-05	Next Year Dec-06	
Current Estimate	0.18	0.24	1.56	1.31	
7 Days Ago	0.20	0.26	1.52	1.44	
30 Days Ago	0.21	0.26	1.52	1.44	
60 Days Ago	0.26		1.36	1.41	
90 Days Ago	0.26		1.37	1.40	www.gftorex.com
EPS Revisions	$\begin{aligned} & \text { Current Qtr } \\ & \text { Dec-05 } \end{aligned}$	Next Qtr Mar-06	Current Year Dec-05	Next Year Dec-06	

Up Last 7 Days	0	0	1	0
Up Last 30 Days	0	0	1	0
Down Last 30	2	0	1	2
Days				
Down Last 90 Days	2	0	1	2
Growth Est	CNL	Industry	Sector	S\&P 500
Current Qtr.	-35.7%	5.7%	5.7%	12.3%
Next Qtr.	33.3%	8.3%	8.4%	11.9%
This Year	17.3%	12.5%	11.9%	13.2%
Next Year Past 5 Years (per annum)	-16.0%	14.7%	13.6%	13.1%
Next 5 Years (per annum)	4.9%	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
Price/Earnings (avg. for	5.62%	5.76%	10.50%	
comparison categories)	13.3	16.65	16.60	16.52
PEG Ratio (avg. for comparison categories)	2.71	2.96	2.88	1.57

> Add to Portfolio Set Alert Email to a Friend Get Analyst Estimates for Another Symbol: GO Symbol Lookup

- Upgrades \& Downgrades - Conference Calls

Copyright © 2005 Yahool inc. All rights reserved. Privacy Policy - Terms of Service - Copyright/lP Policy
Quotes delayed, except where indicated otherwise. Delay times are 15 mins for NASDAQ, 20 mins for NYSE and Amex. See also delay times for other exchanges.

Fundamental company data provided by Capital IQ. Quotes and other information supplied by independent providers identified on the Yahoo! Finance partner page. Analyst opinion data (recommendation summary, price targets, coverage list) are provided by Thomson Financial Network, based solely upon research information provided by third party analysts. Yahoo! has not reviewed, and in no way endorses the validity of such data. Yahoo! and ThomsonfN shall not be liable for any actions taken in reliance thereon. Analyst Summary Information (upgrades/downgrades module) provided by Briefing.com. All information provided "as is" for informational purposes only, not intended for trading purposes or advice. Neither Yahoo! nor any of independent providers is liable for any informational errors, incompleteness, or delays, or for any actions taken in reliance on information contained herein. By accessing the Yahoo! site, you agree not to redistribute the information found therein.

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC. RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

Cost of Capital Estimation

The Risk Premium Approach to Measuring a Utility's Cost of Equity

Iugene F. Brigham, Dilip K. Shome, and Steve R. Vinson

Susente F. Brigham and Dilip K. Shome are fucully members of the
Inacrsity of Flarida abl the Virgimia Polywehmic Instunte and State
Inurrsity, respectively: Steve R. Vinson is affiliated woth AT\&T
Cimmumications.

- In the mid-1960s. Myron Gordon and others began arplying the theory of finance to help estimate utilities. sumls of capital. Previously, the standard approach in noxt of equity studies was the "comparable earnings method." which involved selecting a sample of unregelated companies whose investment risk was judged to *ecrmparable to that of the utility in question, calculating the average return on book equity (ROE) of Heve somple companies, and setting the utility's seronce rates at a level that would permit the utility to thieve the same ROE as comparable companies. This mucdure has now been thoroughly discredited (see Ruhichek (|S|). and it has been replaced by three mar-Aet-criented (as opposed to accounting-oriented) apPraciver: (i) the DCF method, (ii) the bond-yield-plus-ow-pemium method. and (iii) the CAPM. which is a wrifit version of the generalized bond-yield-plus-mol-premium approach.

Chur purpose in this paper is to discuss the riskwemium approach. including the market risk premium Whal is used in the CAPM. First, we critique the various mixedures that have been used in the past to extimate mid premiums. Second, we present some data on esti-
mated risk premiums since 1965. Third, we examine the relationship berween equity risk premiums and the level of interest rates. because it is important, for purposes of estimating the cost of capital, to know just how stable the relationship between risk premiums and interest rates is over time. If stability exists, then one can estimate the cost of equity at any point in time as a function of interest rates as reported in The Wall Street Journol, the Federal Reserve Bulletin, or some similar source.' Fourth. while we do not discuss the CAPM directly, our analysis does have some important implications for selecting a market risk premium for use in that model. Our focus is on utilities, but the methodology is applicable to the estimation of the cost of

[^35]equity for any publicly traded firm, and also for nontraded firms for which an appropriate risk class can be assessed. including divisions of publicly traded corporations.:

Alternative Procedures for Estimating Risk Premiums

In a review of both rate cases and the academic literature, we have identified three basic methods for estimating equity risk premiums: (i) the ex post, or historic, yield spread method: (ii) the survey method: and (iii) an ex amte yieid spread method based on DCF analysis. ' In this section, we briefly review these three methods.

Historic Risk Premiums

A number of researchers. most notably lbbotson and Sinquefield $112 \mid$, have calculated historic holding period returns on differem securities and then estimated risk premiums as follows:

Historic
Rish =
Premium
$\left(\begin{array}{c}\text { Average of the } \\ \text { annual returns on } \\ \text { a stock index for } \\ \text { a particular } \\ \text { past period }\end{array}\right)-\left(\begin{array}{c}\text { Average of the } \\ \text { annual returns on } \\ \text { a bond index for } \\ \text { the same } \\ \text { past period }\end{array}\right)$.

Ibtotson and Sinquefield ($1 \& S$) calculated both arithmetic and geometric average returns. but most of their risk-premium discussion was in terms of the geometric averages. Also, they used both corporate and Treasury bund indices, as well as a T-bill index, and they analyzed all possible holding periods since 1926. The I\&S study has been employed in numerous rate cases in two ways: (i) directly, where the $1 \& S$ historic risk premium is added to a company's bond yield to obtain an esti-

[^36][^37]mate of its cost of equity, and (ii) indirectly, wher I\&S data are used to estimate the market risk premiur. in CAPM studies.

There are both conceptual and measurement prot. lems with using $1 \& S$ data for purposes of estimatin the cost of capital. Conceptually, there is no compe. ling reason to think that investors expect the sam relative returns that were earned in the past. Indeed evidence presented in the following sections indicate that relative expected returns should, and do, var significantly over time. Empirically, the measured his toric premium is sensitive both to the choice of estimi tion horizon and to the end points. These choices ar essentially arbitrary, yet they can result in significar diflerences in the final outcome. These measuremer prohlems are common to most forecasts based on tin series data.

The Survey Approach

One obvious way to estimate equity risk premium is to poll investors. Charles Benore 111 , the senis: utility analyst for Paine Webber Mischell Hutchins, leading institutional brokerage house. conducts such survey of major institutional investors annually. Hi 1983 results are reported in Exhibit 1.

Exhibit 1. Results of Rish Premium Survey, 198.3*
Assuming a durble A. long-ictm uility mond currentiy yields $121:^{\prime}$ the combun shed for the sine company would be fairly priced telat to the bund if is axpected ntum was as fullows:

Toxal Rexum	Indicuated Rish Promium (busis minas)	Putcent of Respundemts
over 201/\%k	over 800)	
201/\%	$8(x)\}$	
19 18.1%	700	
181/2\%	600	10\%k
171/2\%	500	88
161/25	400	29\%
151:\%	3017	35\%í
141/2\%.	$2(x)$	16\%
$131 / 25$	101)	$0 \times k$
under $131 / 2 \%$.	under 100	1%
Weighted ,untrac	358	100\%

- Benvec's questionnuire tacluded the first iwu colunma. whike bis th culuman pruvided a apoce for the respexidents to imilicate whint : premium they thwegh applind. We summuriced Bcenare's reapuass the Ifrequency disuribution given in Culumn 3. Also, in his questiomes ceach your. Benure wjusus the double A mind yivill and the wetal reww (Culunan If to refiect twerent marlet curditism. Both the quex: abuve and the respunacs to it were talen firinil the survey conductud Aprill 1483 .

Benore's results. as measured by the average risk premiums. have varied over the years as follows:

	Average RP
Year	(basis points)
1978	491
1979	475
1980	423
1981	349
1982	275
1983	358

The survey approach is conceptually sound in that it attempts to measure investors' expectations regarding risk premiums. and the Benore data also seem to be carefully collected and processed. Therefore, the Benore studies do provide one useful basis for estimating risk premiums. However. as with most survey results, the possibility of biased responses and/or biased sampling always exists. For example. if the responding institutions are owners of utility stocks (and many of them are). and if the respondents think that the survey results might be used in a rate case. then they might bias upward their responses to heip utilities obtain higher authorized returns. Also. Benore surveys large institutional investors, whereas a high percentage of utility stocks are owned by individuals rather than institutions. so there is a question as to whether his reported risk premiums are really based on the expectations of the "representative" investor. Finally, from a pragmatic standpoint. there is a question as to how to use the Benore data for utilities that are not rated AA. The Benore premiums can be applied as an add-on to the own-company bond yields of any given utility only if it can be assumed that the premiums are constant across bond rating classes. A priori. there is no reason to believe that the premiums will be constant.

DCF-Based Ex Anfe Risk Premiums

In a number of studies. the DCF model has been used to extimate the ex ante market risk premium. RP \mathbf{m}_{m}. Here, one estimates the average expected future return on equity for a group of stocks. k_{m}. and then sublracts the concurrent risk-free rate. R_{1}, as proxied by the yield to maturity on either corporate or Treasury securities: ${ }^{4}$

$$
\begin{equation*}
R P_{M}=k_{M}-R_{\psi} . \tag{2}
\end{equation*}
$$

Conceptually, this procedure is exactly like the $1 \& S$ approach except that one makes direct estimates of fuare expected returns on stocks and bunds rather than
assuming that investors expect future returns to mirror past returns.

The most difficult task. of course, is to obtain a valid esimate of k_{m}. the expected rate of return on the market. Several studies have attempted to estimate DCF risk premiums for the utility industry and for other stock market indices. Two of these are summarized nexi.

Vandell and Kester. In a recently published monograph. Vandell and Kester [18] estimated ex ante risk premiums for the period from 1944 to 1978. \mathbf{R}_{F} was measured both by the yield on 90 -day T-bills and by the yield on the Standard and Poor's AA Utility Bond index. They measured k_{M} as the average expected return on the S\&P's 500 Index, with the expected return on individual securities estimated as follows:

$$
\begin{equation*}
k_{1}=\left(\frac{D_{1}}{P_{n}}\right)+g_{1} . \tag{3}
\end{equation*}
$$

where.

$$
\begin{aligned}
D_{1}= & \text { dividend per share expected over the next } \\
& \text { twelve months. } \\
P_{11}= & \text { current stock price. } \\
\mathbf{g}= & \text { estimated long-term constant growith rate. } \\
& \text { and } \\
i= & \text { the } i^{\text {ith }} \text { stock. }
\end{aligned}
$$

To estimate g_{1}, Vandell and Kester developed fifteen forecasting models based on both exponential smoothing and trend-line forecasts of eamings and dividends. and they used historic data over several estimating horizons. Vandell and Kester themselves acknowledge that. like the lbbotson-Sinquefield premiums, their analysis is subject to potential errors associated with trying to estimate expected future growth purely from past data. We shall have more to say about this point later.

[^38]Malkiel. Malkiel [14] estimated equity risk premiums for the Dow Jones Industrials using the DCF model. Recognizing that the constant dividend growth assumption may not be valid, Malkiel used a nonconstant version of the DCF model. Also, rather than rely exclusively on historic data, he based his growth rates on Value Line's five-year earnings growth forecasts plus the assumption that each company's growth rate would, after an initial five-year period, move toward a long-run real national growth rate of four percent. He also used ten-year maturity govermment bonds as a proxy for the riskless rate. Malkiel reponed that he tested the sensitivity of his results against a number of different types of growth rates, but, in his words, "The resuits are remarkably robust, and the estimated risk premiums are all very similar." Malkiel's is, to the best of our knowledge, the first risk-premium study that uses analysts' forecasts. A discussion of analysts' forecasts follows.

Security Analysts' Growth Forecasts

Ex ante DCF risk premium estimates can be based either on expected growith rates developed from time series data. such as Vandell and Kester used, or on analysts' forecasts, such as Malkiel used. Although there is nothing inherently wrong with time seriesbased growth rates. an increasing body of evidence suggests that primary reliance should be placed on analysts' growth rates. First, we note that the observed market price of a stock reflects the consensus view of investors regarding its future growth. Second, we know that most large brokerage houses, the larger institutional investors, and many investment advisory organizations employ security analysts who forecast future EPS and DPS, and, to the extent that investors rely on analysts' forecasts, the consensus of analysts' forecasts is embodied in markel prices. Third, there have been literally dozens of academic research papers dealing with the accuracy of analysts' forecasts, as well as with the extent to which investors actually use them. For example. Cragg and Malkiel [7] and Brown and Rozeff $[5]$ determined that security analysts* forecasts are more relevant in valuing common stocks and estimating the cost of capital than are forecasts based solely on historic time series. Stanley, Lewellen, and Schlarbaum [16] and Linke |13] investigated the importance of analysts ${ }^{\circ}$ forecasts and recommendations to the investment decisions of individual and institutional investors. Both studies indicate that investors rely heavily on analysts' reports and incorporate analysts" forecast information in the formation of their
expectations about stock returns. A representative listing of other work supporting the use of analysts' fore. casts is included in the References section. Thus, evidence in the current literature indicates that (i) analysts' forecasts are superior to forecasts based solely on time series data, and (ii) investors do rely on analysts' forecasts. Accordingly, we based our cost of equity, and hence risk premium estimates, on analysts' forecast data.s

Risk Premium Estimates

For purposes of estimating the cost of capital using the risk premium approach, it is necessary either that the risk premiums be time-invariant or that there exists a predictable relationship between risk premiums and interest rates. If the premiums are constant over time. then the constant premium could be added to the prevailing interest rate. Alternatively, if there exists a stuble relationship between risk premiums and interest rates, it could be used to predict the risk premium from the prevailing interest rate.

To test for stability, we obviously need to calculate risk premiums over a fairly long period of time. Prior to 1980, the only consistent set of data we could find came from Value Line, and, because of the work invoived, we could develop risk premiums only once a year con January 1). Beginning in 1980, however. we began collecting and analyzing Value Line data on a monthly basis, and in 1981 we added monthly estimates from Merrill Lynch and Salomon Brothers to out data base. Finally, in mid-1983, we expanded our analysis to include the IBES data.

Annual Data and Results, 1966-1984

Over the period 1966-1984, we used Value Lint data to estimate risk premiums both for the electric utility industry and for industrial companies, using the companies included in the Dow Jones Industrial anc Utility averages as representative of the two groups Value Line makes a five-year growth rate forecast, bu it also gives data from which one can develop a longer term forecast. Since DCF theory calls for a truly long term (infinite horizon) growth rate, we concluded tha it was bet!er todevelop and use such a forecast than ts .""

[^39]Exhibit 2. Estimated Annual Risk, Premiums, Nonconstant (Value Line) Model. 1966-1984

Jamuary 1 of the Yisar Repuried	Dem Joner Electrien			Dow Jones Inductrials			(3) -16)
	11.1	R1	R	$\mathrm{H}_{\text {A }}$:	R_{1}	RP	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
1966	R.11'k	4.91\%	3.61\%	9.56\%	4.50%	s.6k\%	0.71
1967	9.0.0\%	$4.76{ }^{\circ} \mathrm{f}$	4.24\%	11.57\%	4.76\%	6.81\%	0.62
1968	9.68%	5.54\%	4.14\%	10.56\%	5.59\%	4.97\%	0.82
1969	9.14\%	5.88\%	3.46\%	10.96\%	5.88\%	5.087	0.68
1970	11.04\%	6.91%	4.13\% ${ }^{\circ}$	12.22 ${ }^{\text {r }}$	6.91%	5.31\%	0.78
1971	111.817\%	6. $28 \mathrm{\%} \%$	4.52\%	11.23%	6.98%	4.95%	0.91
1472	111.531/	6.(x)t/	4.53\%	$11.14{ }^{\prime} / 8$	6.(X)\%/	$5.10{ }^{\text {S }}$	0.89
1473	11.37%	5.96%	5.41\%	11.47\%	5.96%	5.51\%	0.98
11974	1.3.85\%	7.24%	6.56%	12.38\%	7.29%	$5 .(\mathrm{W} / \%$	1.29
1475	$16.63{ }^{3 / k}$	7.91\%	8.72\% +	14.83\%	7.91%	6.92\%	1.26
1476	1.3.97\%	8.93\%	5.74%	13.33\%	8.23\%	5. 169%	1.1 .3
1977	12.96\%	7.301%	5.66%	13.637	7.30\%	6.33\%	0.89
197x	1.3.42\%	7.87\%	5.55%	14.759\%	7.87\%	6.88\% +	0.81
1979	14.929 ri	8.49%	5.93%	15.50\%\%	8.99%	6.51\%	0.91
19811	16.14\%	10.18%	6.21%	16.53\%	11.18\%	6. 354	0.98
1981	17.61\%	11.49'ris	5.62%	17.37\%	$11.99{ }^{2} / 8$	5.38%	1.14
1482	$17.70{ }^{\circ}$	14 161\%	1.70\%	19.30%	14.60\%\%	5.30%	0.70
IVK?	16.30%	10.6tis	S凩4*	16.53%	10.66%	5,87\%	0.96
1984	16 13.3%	11.97%	4 (6)'\%	15.72%	11.97\%	3.75% -	1.08

use the five-year prediction." Therefore. we obtained data as of January 1 from Vaiue Line for each of the Dow Jones companies and then solved for k. the expected rate of return. in the following equation:
$P_{u}=\sum_{t=1}^{n} \frac{D_{t}}{1(1+k)^{\prime}}+\left(\frac{D_{n}\left(1+g_{n}\right)}{k-g_{n}}\right)\left(\frac{1}{1+k}\right)^{n}$.
Equation (4) is the standard nonconstant growth DCF model: P_{n} is the current stock price: D_{1} represents the forecasted dividends during the nonconstant growth period: n is the years of nonconstant growth: D_{n} is the first constant growith dividend: and ε_{n} is the constant. long-run growth rate after year n. Value Line provides $D_{\text {, values for } t}=1$ and $t=4$. and we interpolated to obtain D_{2} and D_{3}. Value Line also gives estimates for

[^40]ROE and for the retention rate (b) in the terminal year. n, so we can forecast the long-term growth rate as $g_{n}=$ b(ROE). With all the values in Equation (4) specified except k, we can solve for k, which is the DCF rate of return that would result if the Value Line forecasts were met, and, hence. the DCF rate of return implied in the Value Line forecast.'

Having estimated a k value for each of the electric and industrial companies, we averaged them (using market-value weights) to obtain a k value for each group. after which we subtracted R_{1} (taken as the December 31 yield on twenty-year constant maturity Treasury bonds) to obtain the estimated risk premiums shown in Exhibit 2. The premiums for the electrics are plotted in Exhibit 3, along with interest rates. The following points are worthy of note:

1. Risk premiums fluctuate over time. As we shall see in the next section, fluctuations are even wider when measured on a monthly basis.
2. The last column of Exhibit 2 shows that risk premi-
[^41]Exhibit 3. Equity Risk Premiums for Electric Utilities and Yields on 20. Year Government Bonds, 1970-1984*

Risk Premiuns
 and Interest Rates

-Standard erross of the coefficients are shown in parentheses beiluw the coxiliciem,
ums for the utilities increased relative to those for the industrials from the mid-1960s to the mid1970s. Subsequently, the perceived riskiness of the two groups has, on average, been about the same.
3. Exhibit 3 shows that. from 1970 through 1979. utility risk premiums iended to have a positive association with interest rates: when interest rates rose, so did risk premiums, and vice versa. However. beginning in 1980, an inverse relationship appeared: rising interest rates led to declining risk premiums. We shall discuss this situation further in the next section.

Monthly Data and Results, 1980-1984

In early 1980, we began calculating risk premiums on a monthly basis. At that time, our only source of analysts' forecasts was Value Line, but beginning in 1981 we also obtained Merrill Lynch and Salomon Brothers' data, and then, in mid-1983, we obtuined

IBES data. Because our focus was on utilities, we restricted our monthly analysis to that group.
Our 1980-1984 monthly risk premiurn data, along with Treasury bond yields, are shown in Exhibits 4 and 5 and plotted in Exhibits 6. 7, and 8. Here are some comments on these Exhibits:

1. Risk premiums, like interest rates and stock prices. are volatile. Our data indicate that it wouid not be appropriate to estimate the cost of equity by adding the current cost.of debt to a risk premium that had been estimated in the past. Current risk premiums sfïuld be matched with current interest rates.
2. Exhibit 6 confirms the 1980-1984 section of Exhibit 3 in that it shows a strong inverse relationship between interest rates and risk premiums; we shall discuss shorly why this relationship holds.
3. Exhibit 7 shows that while risk premiums based on Value Line, Merrill Lynch, and Salomon Brothers

Exhibit 4．Estimated Mombly Rish Promiums for Electric Utilites Uning Analysts＇Growth Forecasts，January 1980－Jume 1984

Hсцииния in Alsmili	Vialue l．ine	Alcrint l．！nch	 Bmature	Averape Itronima	213．）Ye： Trantry Hinn！ Yichl． Cimatam Athlits Sern	Hopr $0 \cdot \mathrm{~A}$		Value t．1月	Asctrill I． 3 mis	Sathonet Brablher	Averate Promisния	31. Year Trisatiry Bunl Ficid． （imstant Maturis Serics
Jan 14801	6．21\％	NA	NA	6．21／h	10．18：，	Apr	1982	3．49\％	3．61\％	4.29%	3.80%	13．64＇4
Foh 14xil	5．77\％	NA	NA	5．77＇h	10．869\％	Ainy	1982	$3.08{ }^{\text {＇／}}$	4．251／	3．91\％	3．75\％	13．47\％
Mar l9xt	4．73\％	NA	NA	4.7 .314	12．69\％	Jini	1482	3．16\％	4．91\％	4．72＇k	4．13\％	$13.53{ }^{1 / 4}$
Apr IORII	5．13＇：	NA	NA	5.1214	12．71\％	Jul	1482	2．57\％	4．21\％	4．21\％	3．665\％	14．48\％
Al：y luxil	4．7．1／h	NA	NA	4．731\％	11．14\％	Aut	14×2	4．3．3／h	4．8．3／4	5.27 \％	4．81\％	13．69\％
Juil 14xil	5．（\％）＇／	NA	NA	$5 .(6){ }^{1} 6$	111．37：	Str	1482	4．01\％	5．14rh	5．5x\％	4．93\％	12．44\％
Jul 19xil	5，＋1／4	NA	NA	5．41＇k	4．86＇\％	（2）	19 K 2	5．35＇k	5.24%	6．34＇2	5.64%	11．95\％
Aug 19xil	5．72＇4	NA	NA	S．721／4	11．2\％is	Now	1482	$5.67{ }^{\prime} /$	5.95%	6.91%	6.18%	10．47\％
Sip 14801	S．16＇4	NA	NA	$5.161 /$	11．41\％	120	1982	6．31\％	6．71\％	7．4．5\％	6．82\％	10．59\％
O：I 19811	5.69%	NA	NA	S．62＇\％	$1175^{\prime \prime}$	Alm	Avg．	$4 .(\mathrm{x}) / 4$	4．54\％	5，01\％	4．52\％	1．3， KHV_{4}
Naw 19x11	s．14\％	NA	NA	$5 .\left(\begin{array}{l} \\ \hline\end{array}\right.$	12．33\％	Alm	Ave．	$4 . x^{\prime 2}$	$4.54{ }^{\text {a }}$	S．ink	4．．52	1．1．0ット
120 14xit	5．6．5＇4	NA	N入	$5.65{ }^{1 / 4}$	1237：	Jan	195．3	5.64%	6．124＇／4	6．81＇k	$6.16{ }^{5} / 4$	10．66ra
	¢ 15\％			¢ 35＇4	11 31\％；	loh	14×3	$4.6 \mathrm{Kr}:$	\＄．94＇h	6． $1 \mathrm{IV}^{\text {\％}}$	5.59%	11．011／4
Anmal Ary．	S．．9＂			S．．3 \％	11 3．	A ar	19x：	4．44\％	6．89\％	6．4．3\％	6．10\％	$10.71{ }^{\text {\％}}$／
Jins 14×1	S．62＇／	4．76\％：	S6．3＇；	S．39\％\％	11 ハリ：	Apr	198．3	4．751／6	S．K．1\％	6．31\％	5.6374	110．8．4\％
Fth 1981	4．x？＇：	4×7.	$516{ }^{1} \%$	4．95\％	12 5 ：	A．ty	148．	4.51%	6.41%	6． 24%	\＄．72rk	10．57\％
Al：$\|4 \mathrm{k}\|$	47 m \％	？i．${ }^{\text {a }}$	$44^{\prime \prime}$	4 57%	13115	3 mm	14×3	4.24 r	5.21%	6． 16%	5.32 K	10．94\％i
Apr 19x：	4.24%	1．33．	4 S20：	d． $\mathrm{ml}^{\text {d／4 }}$	1111%	Jui	148．	4．78\％	\＄．724	6．42r	$5.64{ }^{\prime \prime}$	11．12\％
Nixy lux	3 54\％	1．s．0	4 25：	3．67\％	13．91\％	Aus	19 x	3.84 .4	4．78\％	5．41\％	$4.68{ }^{\circ}$	$11.7 \mathrm{~K}^{\prime \prime}$
Jun｜ 4×1	3．57\％＂	4.124%	4274	$3.96{ }^{\circ}$	13．39\％；	Sip	19x．	4．07＇k	4．91\％	S．57＇A	4． 5.5%	11．71\％
ful 14×1	3.61%	3．69\％	416%	$3.80{ }^{\prime \prime}$	13．32\％	0 O	198？	3．74\％\％	4．602\％	5．38\％	$4.60{ }^{4}$	11．64\％
Aug 14x：	3．17\％	31151	3．104\％	3．（k）＇i	142\％\％	Nu．	19k？	2．84\％	3．77\％	4．46\％	3.697	11．9）\％
Scp 14x1	2.114	2．24\％	2．354，i	2．23\％	14 94\％＇ir	IR：C	148：	3．36\％	4．27\％	5．10\％	$4.21{ }^{\text {ck }}$	11．8．3\％
（A）：4xi	2．x．1／4	2）6＇	3.34 r	2．4．4tic	$1498:$	Anmual Ave．		4．30\％	5．37\％	S．86＇t	5.177	11．2＂\％
Nus 14x1	2．06\％	2．14：	3618	2．53\％	15，27：			4．31．k	S．．．7	S．86＊	－17\％	11．22＊
120：19x	1．72＇．：	3．4＊＇；	4． 214	3． KII ；	$1312 \times$	J．113	19K．		5.624%	5．6．5\％	4.927	11．97\％
Annarl Avp	$3.67{ }^{\prime \prime}$	3．46\％	4．07\％	1．736	1．3．02＇；	Fith	198．	4． 3 S＇4	5．371／k	S．96\％	$5.14{ }^{\prime}$	11.76% d
					1．1020	Af．it	14kJ	$4.73{ }^{\prime}$	6．115\％	6.38 Cz	5.72%	12．12\％
Jin 14K？	3.71%	3.374	4．14＇i	$3.71{ }^{\prime \prime}$	14181\％	Ap	19x4	4.7×4	5.33%	6．32\％	5．48\％	12．51\％
Fth 1402	3.154	3.378	3．71r\％	3．37\％	14.37%	Alis	14 x .4	4．36\％	5.31%	6．42rk	5．36\％	12.78 k
Maf 19K2	3．15\％	$3.28{ }^{\text {r }}$	3．75\％	3．34\％；	1340%	Jun	1484	3．54\％	4.607	5.6 .32	4.794	13．610\％

Exhibit 5．Munthly Rah Premiums Based on IBES Data

Beymany： ！ Minuth	Avetate it Actall l．vikh． Sidhtity Grishore．and Valat lima Prenham： for Ihin Jines filetine	IBI：S Premuma Her Diau Jomis Diverticy	LBA：S Premuman tov 1： lilethu Induary	$\begin{gathered} \text { Hequininy } \\ \text { o! } \\ \text { Afowth } \end{gathered}$		Averape al Merill I．vnith． Salamen Hrokhers，and Volue line Prenium． fie Dhan Jomen Eiectric：	HIES Promiums fir Dim Jines Electrics	fin lintice 1：hetric Industry
Aug 19k．	$4.6 \times 1 /$	$4.10{ }^{\text {r }}$	$4.16{ }^{\prime \prime}$	Fich	198．	S．19\％		4．36＇4
Sep 148．	4．85＇h	4．4．1\％	4．27\％	Mar	198．4	5．72＇h	\＄．35\％	4．4．5＇4
（hit 19k．	4.61%		3．90\％；	Apr	19K4	$5.4 \mathrm{~K}^{1 / 4}$	5．3．3\％	4.23%
Nus 148，	3．64＇4	3．312\％	3．36\％ 4	M：1y	198．	S．36＇t	$5.26{ }^{\text {ch }}$	$4.30 \mathrm{r} /$
120c 198．3	4．21＇k		3．54r\％	Jun	1984	$4.39{ }^{\text {c }}$	4．47\％	3．4t\％i
Jan 1984	4.92%	$4.68{ }^{\text {\％}}$	4．14rior	Aver： Pre	111115	4． Ma^{M}	4 6\％$^{\text {a }}$	4．1113

Exhibit 6. Utility Risk Premiums and Interest Rates, 1980-1984

Exhibit 7. Monthly Risk Premiums, Electric Utilities. 1981-1984 (to Date)

Exhibit 8. Comparative Rish Premium Data

Jones Utility Index all have large nuclear investments. and this may cause them to be regarded as riskier than the industry average, which includes both nuclear and non-nuclear companies.

Tests of the Reasonableness of the Risk Premium Estimates

So far our claims to the reasonableness of our riskpremium estimates have been based on the reasonableness of our variable measures, particularly the measures of expected dividend growth rates. Essentially. we have argued that since there is strong evidence in the literature in support of analysts' forecasts, risk premiums based on these forecasts are reasonable. In the spirit of positive economics, however, it is also important to demonstrate the reasonableness of our results more directly.

It is theoretically possible to test for the validity of the risk-premium estimates in a CAPM framework. In a cross-sectional estimate of the CAPM equation.

$$
\begin{equation*}
\left(k-R_{1}\right)_{1}=\alpha_{11}+\alpha_{1} \beta_{1}+u_{1} \tag{5}
\end{equation*}
$$

He would expect
$\dot{\alpha}_{, 1}=0$ and $\dot{\alpha}_{1}=k_{k t}-R_{1}=$ Market risk premium.
This test, of course, would be a joint test of both the CAPM and the reasonableness of our risk-premium estimates. There is a great deal of evidence that questions the empirical validity of the CAPM, especially when applied to regulated utilities. Under these conditions. it is obvious that no unamliguous conclusion can he drawn regarding the efficary of the premium extimates from such a test."

A simpler and less amhiguous tect is to show that the risk premiums are higher for lower rated firms than for higher rated firms. Using 1984 data, we classified the

[^42]!uard ysu painsrow, sכ!!!!!n • paspansu! wo!refu!

'pru!̣!u!nu 2q 01 pusp!a!p ayl molfe ol uana

 Kınbo uo sumias pouro ayl snajaym *sวes iutnit in

 yosqe u! zu!pop of szoy poune sa!!!!! posnen

1×24

 K

- Kars osfl I!! *sunturad ysit aכuay

 त̂utaq <
sotny \&sasว弓ul pun sun!uatd ys!d

 Y צ!

| 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | k hat 5 years

on the money supply rather than on interest rates." In the 1980-1984 period, an increase in inflationary expectations has had a more adverse effect on bonds than on utility stocks. If the expected rate of inflation increases. then interest rates will increase and bond prices will foll. Thus. uncertainty about inflation translates directly into risk in the bond markets. The effect of inflation on stocks. including utility stocks. is less clear. If inflation increases. then utilities should. in theory, be able to obtain rate increases that would offset increases in operating costs and also compensate for the higher cost of equity. Thus, with "proper" regulation. utility stocks would provide a better hedge against unanticipated intlation than would bonds. This hedge did not work at all well during the 1966-1979 period. because inflation-induced increases in operating and capital costs were not offset by timely rate increases. However, as noted earlier, both the utilities and their regutators seem to have learned to live better with inflation during the 1980 s .

Since inflation is today regarded as a major investment risk, and since utility stocks now seem to provide a better hedge against unanticipated inflation than do

[^43]increase in equity risk premiums. However, in 1980 and thereafter, rising inflation and interest rates increased the perceived riskiness of bonds more than that of utility equities, so the relationship between interest rutes and utility risk premiums shifted from positive to negative. Earlier, a 1.00 percentage point increase in interest rates had led, on average, to a 1.73% increase in the utilities" cost of equity, but after 1980 a 1.00 percentage point increase in the cost of debt was associated with an increase of only 0.37 K in the cost of equity.

Our study also has implications for the use of the CAPM to estimate the cost of equity for utilities. The CAPM studies that we have seen typically use either Ibbutson-Sinquefietd or similar historic holding period returns as the basis for estimating the market risk premium. Such usage implicitly assumes (i) that ex post returns data can be used to proxy ex ante expectations and (ii) that the market risk premium is relatively stable over time. Our analysis suggests that neither of these assumptions is correct; at least for utility stocks, el post returns data do not appear to be reflective of ex amt' expectations. and risk premiums are volatile, not stable.

Untable risk premiums also make us question the FERC and FCC proponals to estimate a rist preminm for the utilities every two years and then to add this premium to a current Treasury bond rate to determine a utility's cost of equity. Administratively, this proposal would be easy to handle, but risk premiums are simply (x) volatile to be left in place for two years.

References

1. C. Benore. A Surver of Imestor Anitudes toward the Elecaric Power Indusiry. New Yorh. Paine Webber Mitchell Hutchins. Inc., May 1983.
2. E.F. Briyham and D.K. Shume. "The Risk Premium Approach to Estimating the Cost of Common Equity Capital." Prencredings of the lunu Stule Regulatory Cimferamer (May 19x(1). pp. 239-275.
3. --Estinuting the Market Risk Promium," in R.L. Crum and F.G.J. Dgiskinderin (eds.). Rish. Capital Cousts. ant Prajegt Finaining Decisioms. Nijentude Stadies in .Besiness, Boston. Martinus Nijhurf, 1981.
4. -_Equity Rish Preniums in the 19k(1)." in Eurnisgs Rexulution under Inflation. Washington. DC. Institute for the Study of Repulation. 1982. pp. 186-181.
5. L.D. Brown and M.S. Rozeff. "The Superixrity of Amalyse' Forceasts as a Measure of Expectalions: Evidence from Earnines." Journal of Hionemic (Match I97k). pp. 1-16.
6. W.I. Carteton. U.R. Chambers, and J. Lithomivath. "InNatom Rish and Regulatory Liỵ." Jommal ght Finmeí i May 14K.3. M. 419-4.31.
7. J.G. Crage and B.G. Mathicl, Eivectutum and the Sirwmer of Share Prices. Chuago. The Unu ersity of Chicar" Press. 19k2.
8. E.F. Fama and W'G. Schuer. "Asset Retums and Inlia-
 pr. 115-146.
9. 10. Friend, R. Westerficld. and M. Grunits, "Neu Evidence on the Capital Asset Pricing Moxicl." Jourmal of Finumer (Junc 197X). pr. \$13.3-917.
1. M.J. Gordon and P.J. Hatpern. "Bond Shate Yield Spreak under Uncertain Inflation." Amerio on Eitmom, Revew (Sepiember 1976). pp. $\$ 59-565$.
II. N.B Gultekin. "Stock Marhet Return and Intlatuen Fore-

ville. VA. Financial Analyses Rexcarch Foundation. 1979.
2. C.M. Linke. "Entimating Growth Expectations for AT\&T: Survey Approach." Washington. DC. Advanced Seminar on Eirnings Requiation. November 1981 .
3. B.G. Malkiel. "The Capital Formation Problem in the United States." Jomroal of Finamere. May 1979. pp. 291-31K.
4. A.A. Reshicheh. "Requiation ani Medern Finance The'ory." Journal of Fimance (Junc 1478). pp. 693-701.
5. K.L. Stanley. W.G. Lewellen. and G.G. Schlartaum. "Further Evidence on the Value of Professional Investnent Rescarch." Jumrnal of Finamial Research. Spring 1981). Rp. 1-9.
6. Touche. Ross, and Company. Proxy Dishlosures amd Stockhohder Athtule Surver. Washington. DC. National Ascociation of Corporate Directurs. May 1982.
7. R.F. Vandell and G.W. Kester. A History of Rish Promia twimates far Equities: 1944-1978. Chariotesville. VA. Financial Analyst Rexcarch Foundation. 1983.

CALL FOR PAPERS
American Real Estate and Urban Economics Association
1985 Annual Meetings
Decentiber 28-30. 1985
New York

Papers are being solicited for presentation at the 1985 AREUEA Meetings held as part of the Allied Social Sciences Associations (ASSA) Meetings in New York. The areas of interest to AREUEA are real estate and urban economics in their broadest sense to include theorctical and applied rescarch on real estate finance. land and housing economics, real estate investment and valuation. real estate and mortgage markets along with government policies related to these markets. Anyone wishing to present a paper should submit a completed manuscript or abstract by no later than May 15. 1985 to the Program Chairman:

Professor George W. Gau
Faculty of Commerce and Business Administration
University of British Columbia
Vancouver. B.C.
VET IY8
Canada
6(4).228-5847

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:
GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S
FIRST SET OF DATA REQUESTS TO

Kentucky Power Company Compution of the Gross Revenue Conversion Factor
 Test Year Twelve Months Ended 6/30/2005

Section V
Workpaper S-2
Page 2 of 3

Ln No	Description	Percent of Incremental Gross Revenues
(1)	(2)	(3)
1	Operating Revenues	100.00\%
2	Less: Uncollectable Accounts Expense ${ }^{1 /}$	0.47\%
3	Income Before Income Taxes	99.53\%
4	Less: State Income Taxes ($\operatorname{Ln} 3 \times 7.20 \%)^{2}$	7.16\%
5	Income Before Federal Income Taxes	92.36\%
6	Less: Federal Income Taxes (Ln $5 \times 35 \%$)	32.33\%
7	Operating Income Percentage	60.04\%
8	Gross Revenue Conversion Factor ($100 \% / \mathrm{Ln} 7$)	1.6656

Per Workpaper S-2, Page 3, Col 5, Line 5		
State Income Tax Effective Rate Calculations		
State Income Tax Rate - Ky	7.00\%	
Apportionment Factor	100.00\%	
Effective Kentucky State Income Tax Rate		7.00\%
State Income Tax Rate - WVA	9.00\%	
Apportionment Factor	0.47\%	
Effective West Virginia State Income Tax Rate		0.04\%
State Income Tax Rate - OH	8.50\%	
Apportionment Factor	7.59\%	
Phase-Out Factor	24.00\%	
Effective Ohio State Income Tax Rate		0.15\%
Total Effective State Income Tax Rate		7.20\%

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

GENERAL ADJUSTMENTS IN ELECTRIC RATES OF KENTUCKY POWER COMPANY

KENTUCKY INDUSTRIAL UTILITY CUSTOMERS, INC.
RESPONSE TO
KENTUCKY POWER COMPANY'S FIRST SET OF DATA REQUESTS TO

[^0]: 12. The ad hoc time series models used in previous studies at a time when BJ techniques were unavailable are special cases of BJ models.
 13. Recent research by Frocschle [15] and diagnostic tests of Dent and Swanson [10] were helpful in identilying the BJ models in addition to the standard diagnostic tests. As an aid to identifying the BJ models, most of which had multiplicative seasonal components, theoretical autocorrelation and partial autocorrelation functions for many quarterly multiplicative seasonal models were obtained. The coellicients of the BJ models, estimated with data through IV/1974, were not re-estimated with less data for earlier periods or more data for later periods. Foster [13] has shown that coefficient re-estimation of BJ quarterly earnings models is unnecessary due to its negligible effect on forecast errors. In any event, our procedure (no re-estimation) favors BJ in nearly all comparisons with Value Line.
[^1]: 14. The time interval from announcement to forecasi varies Irom approximately 7 to 70 days for our sample firms. The fact that the Investment Survey, published in 13 installments, makes forecasts for different firms each week accounts for the variation.
[^2]: 15. The decomposition is an afternative to amalysis of variance which is inapplicable to the error distribution (see (n. 8).
 16. As noted earlier, the Wilcoxon tests should be insensitive to ertor definition. Witcoxun test statistics were recomputed on annual and selected quarterly comparisons using three additional error measures, mean square crror, root mean square crror and relative cror squared. The small changes in the test statistics left the results virtually unchanged. Parametric t-tests were also applied to the four error measures. Both the sign and magnitude of these test statistics were highly sensitive to error definition. The hypothesis tests using the parametric t-test most often gave results in disagreement with the Witcoxon test when mean square error was chosen as the error definition. This may account for EG's results differing from ours.
[^3]: 0169-2070/85/\$3.30 : 1985. Elsevier Science Publishers B.V. (North-Holland)

[^4]: Signficanat 18 or betier.
 Signficanat sq.
 Siguficamat log.

[^5]: ${ }^{1}$ See Craggánd Malkiel(1968). Eltonand Gruber (1972), Barelield and Comiskey (1975). Brown and Rozeff (1978), Abdelkhalik and Thompson (1977-78). Crichfich ef al (1978). Givoly and lakonishok (1979). (ollins and llopwood (1980), Jaggi (1980), Elton et al (1981), Hopwood et al (1981). Fied and Givuly (1982) and Inhofl and Pare (1982) for studies of analyst forecasts and time-series models. See Bail and Watts (1972). Brooks and Buckmaster (1976). Abrecht et al (1977), Watis and Leftwich (1977), Foster (1977). Griflin (1977), Brown and Rozefl (1979), Lorck (1979). Hopwood and Mck cown
 (1981). Hopwood of al (1981) and Manegold (1981) For studics of the time-scrics properties of carnings. Wats and Leftwich (1977), Foster (1977). Griffin (1977), Brownand Rozefl (1979), Lorck (1979). Hopwood and McK cown
 (1981). Hopwood al (1981) and Manegold (1981) For studics of the time-serics properties of carnings.
 $0277-6693 / 83(04042511801.10$
 a) 1983 by John Wilcy \& Sons, Lid

[^6]: ${ }^{3}$ Schaefer (1977) points out the pitfalls of using yield-to-maturity as a surrogate for the interest rate on a no-coupon bond. Livingston and Jain (1982) estimate the biases involved. Since for bonds of maturity four to five years, the coupon bias is confortably small (of the order of ten basis points), the effect is neglected in this paper.
 *For example, to adjust the betas computed over the 1961-1967 time period, the betas of all stocks on the CRSP file from the 1954-1960 period were regressed on the betas of the same stocks from the 1947-1953 period. The resulting regression cocfficients were then used to adjust linearly the 1961-1967 betas.

[^7]: ${ }^{5}$ I am grateful to Gary Schlarbaum for supplying these estimates

[^8]: ${ }^{6}$ All tests were also conducted using mean returns calculated over the most recent 84 months The results were essentially the same as those reported in the paper. If anything, the longer estimation period benefited the CMR model.

[^9]: - College of Business Administration, The University of Iowa, Iowa City.

 1. We assume that forecast purchasers do not derive nonnuonetary benefits from forecasts.
[^10]: 12. The ad hoe time series models used in previous studies at a time when BJ techniques were unavailable are special cases of BJ models.
 13. Recent research by Froeschle [15] and diagnostic tests of Dent and Swanson [10] were helpful in identifying the BJ models in addition to the standard diagnostic tests. As an aid to identifying the BJ models, most of which had multiplicative seasonal components, theoretical autocorrelation and partial autocorrelation functions for many quarterly multiplicative seasonal models were obtained. The coefficients of the BJ models, estimated with data through IV/1974, were not.re-estimated with less data for earlier periods or more data for later periods. Foster [13] has shown that coefficient re-estimation of BJ quarterly earnings models is unnecessary due to its negligible effect on forecast errors. In any event, our procedure (no re-estimation) favors BJ in nearly all comparisons with Value Line.
[^11]: 14. The time interval from announcement to forecast varies from approximately 7 to 70 days for our sample firms. The fact that the Investment Survey, published in 13 installments, makes forecasts for different firms each week accounts for the variation.
[^12]: ${ }^{*}$ Significant at the 1% level, one-tailed test.

[^13]: Is The decomposition is an allernative to amalysis of varianee which is inapplicable to the error distribution (see fn. 8).
 16. As nuted earlicr, the Wilcoxon tests should be inscasitive to error definition. Wilcoxan test statistics were recomputed on annual and selected quarterly comparisons using three additional error measures, mean square crror, root mean square error and relative error squared. The small changes in the test statistics left the results virtually unchanged. Parametric -tests were also applied to the four error measures. Both the sign and magnitude of these test statistics were highly sensitive to error definition. The hypothesis tests using the parametric r-test most often gave results in disagreement with the Wilcoxon test when mean square error was chosen as the error definition. This may actount for EG's results differing from ours.

[^14]: * The authors wish to acknowledge the assistance of Phil Sisneros and Jesse Reyes for their fine data collection and computer analysis work. We also appreciate the helpful comments of Editor Scott Armstrong. Professor Mike Rozeff, Associate Edter Lawrence D. Brown and two anonymous reviewers. Any errors are the sole responsibility of the authors.

[^15]: ${ }^{1}$ See Cragg ánd Malkicl(1968). Ehon and Gruber (1972), Barelicld and Comiskey (1975), Brownand Rozeff(1978), Abdelkhalik and Thompson (1977-78). Crichticld et al (1978). Givoly and Lakunishuk (1979). Collins :and llonwood (1980). Jaggi (1980), Elton et al. (1981). Hopwood et al. (1981). Fried and Givol) (1982) and Imhof and Pare (1982) for studies of analyst forecasts and time-series models See Balland Witts (1972). Brooks and Buckmaster (1976). Albrecht "t al (1977), Watts and Leftwich (1977), Foster (1977). Griffin (1977), Brownand Rozeff(1979), Lorck (1979), Hopwood and McKeown (1981). Hopwood er at (1981) and Mancgold (1981) for studies of the time-series properties of carnings.

 0277-6693/83/040425 11801.10
 c) 1983 by John Wilcy \& Sons. Lid

[^16]: ${ }^{2}$ for example, Ball and Wiats (1972, p b80) conclude: Consequenty, our conclusion. . is that income can be characterized on averatge as a submartingale or some simitar process.

[^17]: ${ }^{3}$ Schaefer (1977) points out the pitfalts of using yield-to-maturity as a surrogate for the intercst rite on a no-coupon bond. Livingston and Jain (1982) estimate the biases involved. Since for bonds of maturity four to five years, the coupon bias is confortably small (of the order of ten basis points), the effeet is neglected in this paper.

 * For example, to adjust the betas computed over the 1961-1967 time period, the betas of all stocks on the CRSP file from the 1954-1960 period were regressed on the betas of the same stocks from the 1947-1953 period. The resulting regression coefficients were then used to adjust linearly the 1961-1967 betas.

[^18]: "I an grateful to Gary Schlarbaum for supplying these estimates

[^19]: ${ }^{6}$ All tests were also conducted using mean returns calculated over the most recent 84 inonths. The results were essentially the same as those reported in the paper. If anything, the longer estimation period bencfited the CMR model.

[^20]: Data Provided by Thomson
 © Copyright 2006 Thomson

[^21]: Earnings Momentum

[^22]: 12/(Copyright (c) 2005, Value Line Publishing, Inc. All rights reserved. Factual material is obtained from sources $1 / 12$ believed to be reliable and is provided without warranties of any kind. THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, noncommercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

[^23]: ' Corrections to Ms. Jones' and Mr. Blakes's Answer testimony and exhibits were filed on June 14 and 21, 2004, respectively. On June 3, 2004, Dr. Schechter filed Appendix B to his Answer testimony.
 ${ }^{2}$ Mr. Keith filed Revised Rebuttal testimony on July 19, 2004. Portions of Dr. Murry's Rebuttal testimony were stricken by Decision No. R04-0834-I.

[^24]: ${ }^{3}$ Exhibit 2 shows the monthly customer impact for both a typical residential and commercial customer for both the original $\$ 11,358,847$ rate increase and the $\$ 8,200,000$ rate increase proposed under the Settlement. Exhibit 3 contains the proposed tariff sheets for the new Energy Cost Adjustment (ECA) mechanism. Those tariff sheets include the cost figures, test period, filing dates, recovery periods, and calculation method for developing the ECA factor of $\$ 0.00125$.

[^25]: ${ }^{4}$ The new ECA mechanism is intended to replace the existing ICA.

[^26]: ${ }^{5}$ Conversely, the sharing aspect of the ICA also puts Aquila at risk for absorbing 25 percent of any energy costs above its base energy levels.

[^27]: ${ }^{6}$ Examination of the ECA filing schedule table on pages 7 and 8 reveals that the last test period for energy costs ends in August 2006. To the extent the "extended" ECA, which is to be filed on July 1, 2006, does not take effect on August 1, 2006, the Company may not be able to recover some energy costs above its base cost of energy of $\$ 22.39 / \mathrm{MWH}$. Likewise, to the extent energy costs are lower than the base energy costs in the August 2006 time period, customers would not see any corresponding reductions.
 ${ }^{7}$ See Answer Testimony of Sandra Johnson-Jones page 24.

[^28]: : Stocks, Bonds Bills, and Inflation 2003 Yearbook, Ibbotson Associates, pages 18 and 112.

[^29]: ${ }^{2}$ See Rozeff (Journal of Forecasting, Volume 2, Issue No. 4, 1983), Brown and Rozeff (Journal of Finance, March 1978), Moyer, Chatfield and Kelley (International Journal of Forecasting, 1985), and a study by Vander Weide and Carleton that was incorporated as part of the Edison Electric Institute's comments in the Federal Energy Regulatory Commission's generic cost of capital proceedings.

[^30]: ${ }^{3}$ For a more complete discussion of some of the controversy surrounding the use of the CAPM, refer to A Random Walk Down Wall Street by Burton Malkiel, pages 229-239, 1999 edition.

[^31]: 4 Brigham, E.F., Shome, D.K. and Vinson, S.R., "The Risk Premium Approach to Measuring a Utility's Cost of Equity", Financial Management, Spring 1985, pp. 33-45.

[^32]: Source: Standard and Poor's Stock Guide, November 2003 through March 2004, Yahoo! Finance

[^33]: 1 Stocks, Bonds Bills, and Inflation 2003 Yearbook, Ibbotson Associates, pages 18 and 112.

[^34]: 2 See Rozeff (Journal of Forecasting, Volume 2, Issue No. 4, 1983), Brown and Rozeff (Journal of Finance, March 1978), Moyer, Chatfield and Kelley (International Journal of Forecasting, 1985), and a study by Vander Weide and Carleton that was incorporated as part of the Edison Electric Institute's comments in the Federal Energy Regulatory Commission's generic cost of capital proceedings.

[^35]: cently ponpored that a risk premium be estimated every two years and that. herween extimation dates. the lass-determined risk peemium be adked to the current yicid on ten-yezt Treasury tonds woblain an exumbe of the cose of equily to an avernate seility (Doctet RM 80-36t, Sutrequeraly, the FCC made a simils proposal ("Notice of Proposed Rukemaking." Aupust 13. 1984. Docken No. 14-500). Obviously, the validity of such percedures depends on (i) the ecruncy of the risk premum eximate and (ii) the stability of the relationship between risk premours and interget racs. Both proporals are still under teview.

[^36]: The FCC is purticularly interested in rish-premum mertuxhtopers.
 buve publicty-ifonked suxi. and beace uffer the masothitity of IXI:
 imuh requiated and unrequitated asscis. wi a comparate DCF cint mipht

[^37]: Tin rate cmes. sonce wancase alye have calculated the dillerontisi terwetn the yietd to maturty (YTM) on a compans's mmeds and its cuncurven ROE. and then calied thas dilierential a int promum. In

 pasi reulised return on the sloch's treat ivilue. Thes, conuparing ITA! and ROEs at liac cumpuring apples sed uranges.

[^38]: ${ }^{\text {in }}$ in this analysis. most periple have used yields on hafeterm toxndx rather than stowletm money marker insumments. It is recopnized that knif-term bunds. even Treacury bonds. are not risk free. so mn RPM thaxd on these debt instruments is smaller than it would be if there were sunce betier proxy to the kong-tem riskless rate. Puppic have attempred on use the \mathbf{T}-bill rate for \mathbf{R}_{f}. but the T-bill rate embadies a different average inflatwn premium than sacks, and it is subject to ramikw onctuations caused by monetary policy, imernational currency fows, and owher factows. Thus. many people believe that for cost of cmpiual purpues. $R_{\mathbf{t}}$ shmuld the bused on lone-term securities.

 We did test to see how debt manurities would affect our calculaned risk premiums If a short-term rate such ss the 30-day T-bill tate is med. ncacured risk premiums jump mround widely and. कo far we would sell. randiwnly The chorice of a maturity in the 10 - 50 30-year rampe has tittic effect. as the yield curve is generally faifly fat in than mane.

[^39]: 'Recently, a new type of service that cumnuxizes the key daxa from mos malyws' repuxts has become available. We are awwe of two sources o

 the Icarus Service pather duatu from boath buy-side med rell-kide malys: and provide it to subscriben on a monothly bunis in buch a primed mad cumperer-readable formil.

[^40]: Then in a dethatable print. Crape and Malkiel. as well as many practie. ing analyus. feel that mant investers actually foreus on five-ycat forecasks. Oikers, bnevever. afque that five-year foreeasts are tow heavily influenced by base-yetr conditions andter owhep monfermanent onditivers for use is the DCF murdel. Wie mue fil that movi publiched furecask do indeed cover five years, fili that such forecasis are typically "nomalized" in cmure fachinn on alleviate the bece.year porblem. and tiii) that for refaively sable companies tike these in the Dow Jones everages. in generally doee na matter greatly if one uses a normahized five-yeat tw a hmperterm firecast. hecause these compantes mert the emoltikns of the comstan-growth DCF mudel rather well.

[^41]: 'Value Line wetually makes an explicit price forecast for each stock. and one could use this price, mlong with the forecassed dividends. to develop an experted rate of retum. However. Value Lime's forecasted stock price builds in a forecasted change in k. Therefore, the foresasted price ox inappropnate for use in estimating current values of k.

[^42]: "We carned ont the rest on a nemity haciv for tyRd and fixund preitive thet vativicall! incigntficant cextlicients. A typical result ifor April 19x+1 follows:

 $$
 \left(1 .-R_{1}\right)=\underset{(0.91)}{3.1675}+\underset{(1.44)}{1.4031} \beta_{1}
 $$

 The fifures in parentheser are vandard eroex. Utility risk permiuma ck increave with hetax. hut the intertept term is mx zers as the CAPM wiwid prodici. and a, is buth less than the predicted value and mk Naticucally cignificunt. Again. the checervation that the coefficients du nox confitm to CAPM predictums cowld the maxh a makem with CAPM specification liv utiltics as with the rist pemium extimates. A umilat test was carried out b. Friend. Westerficld. and Granita!9]. They tewed the CAPM using espertational (surveg) data rather than of poet ind ding periond returns. They actually found their coefficient of B_{1} wh the negative in all their croxksectional tests.

[^43]: "gecouse the standard deviations in Exhibit 10 are thesed on the las five yeark of data. even if ownd returns subilize. as they did begimning in 19k?. therl repried wolablity will remain hiph for several move years.
 jun. Exhimt 10 giver a rouph indicaton of the currem relative rich i -
 merconmly indiculve of future expectations.

