CONTENTS

Page

INTRODUCTIONiSECTION I - SCHEDUIES
SCHEDULE I - DETERMINATION OF RECOMMENDED ANNUAI DEPRECIATION ACCRUAI RATES BY THE REMAINING IIFE METHOD I-1
SECTION II - DISCUSSION OF METHODS AND PROCEDURES USED IN THE STUDY

1) GROUP METHOD. II-I
2) CAPITAL RECOVERY METHODS II-1
3) METHODS OF LIFE ANALYSIS II-2
FORECAST ANALYSIS II-3
ACTUARIAL ANALYSIS II-4
SIMULATED PLANT RECORD ANALYSIS IIー 6
4) PHYSICAI INSPECTION OF PROPERTY II-9
5) FINAL SELECTION OF AVERAGE LIFE AND CURVE TYPE II-9
6) NET SALVAGE II-9
7) NET SALVAGE FOR PRODUCTION PLANT II-11
8) CAICUIATION OF DEPRECIATION REQUIREMENT AT DECEMBER 31, 1989 II-12
APPENDIX A - EXAMPLES OF CALCULATIONS DISCUSSED IN SECTION II
INTERIM RETIREMENT ANALYSIS A-1
ACTUARIAL ANALYSIS A-2
SIMULATED PILANT RECORD ANALYSIS A-5
NET SALVAGE ANALYSIS A-6
CALCULATION OF DEPRECIATION REQUIREMENT A-9

This report presents the results of a depreciation study of Kentucky Power Company's (KP) depreciable electric utility plant in service at December 31, 1989. The study was prepared by James E. Henderson, Administrator of Depreciation Studies and Plant Accounting at American Electric Power Service Corporation. The purpose of this depreciation study was to develop appropriate annual depreciation accrual rates for each of the primary plant accounts which comprise the functional groups for which KP computes its annual depreciation expense.

The recomended depreciation rates are based on the Straight Line Remaining Life Method of computing depreciation. Further explanation of this method is contained in Section II of this report.

Section I of this report contains Schedule I, which shows the recommended depreciation accrual rates by primary plant accounts and composited by the functional groups for which KP computes depreciation accruals and maintains the accumulated book depreciation. A comparison of KP's current functional group composite depreciation rates and accruals to the recommended functional group rates and accruals shown on Schedule I follows:

ANNUAL DEPRECIATION ACCRUALS $(4 \cap 00)$

Current

Functional Group	Rate \%		Amount	Rate \%	Amount
Steam Production	3.67	\$	7,220	3.78	\$ 7,430
Transmission	2.07		4,640	1.71	3,830
Distribution	3.64		8,244	3.52	7,979
Genəral	2.66		551	2.54	527
Total	3.09		$\$ 20,655$	2.96	$\begin{aligned} & \$ 19,766 \\ & ======0 \end{aligned}$

Calculations were also made to compare the calculated depreciation requirement to the actual accumulated depreciation on KP's books at December 31, 1989. These calculations indic. d the total accumulated depreciation should be $\$ 207,945,152$ whereas KP's books showed $\$ 199,619,331$. This reflects a variance of $\$ 8,325,821$ or about 4\%. This difference is small, less than 6 months accrual, and indicates that the accumulated depreciation is at an appropriate level as of the study date.

Section II contains an explanation of the methods and procedures used in this study. Examples of computations discussed in Section II appear in Appendix A.

EXHIBIT JEH-1
KPSC Case Rageo 5000 fil $_{1} 34$
AG 2nd Set Data Requests

Dated December 12, 2005

 Item No. 46Page 14 of 43

Section I

Schedule I

Schedule I shows the determination of the recommended annual depreciation accrual rate by primary plant accounts by the straight line remaining life method. An explanation of the schedule follows:

Column I - Account number.
Column II - Account title.
Column III - Original Cost at December 31, 1989.
Column IV - Average Life and (Iowa) Curve Type. Fcst. indicates lives were determined using a Life-Span Forecast Analysis.

Column V - Terminal Retirement Date for accounts utilizing Life-Span Forecast Analysis.

Column VI - Net Salvage Ratio.
Column VII - Total to be Recovered (Column III) (Column VI).
Colum VIII - Calculated Depreciation Requirement.
Column IX - Allocated Accumulated Depreciation - KP's functional group accumulated depreciation (book reserve) spread to each account on the basis of the Calculated Depreciation Requirement shown in Column VIII.

Column X - Remaining to be Recovered (Column VII - Column IX).

Column XI - Average Remaining Life.
Column XII - Recommended Annual Accrual Amount (Column X/Column XI).

Column XIII - Recommend Annual Accrual Percent or Depreciation Rate (Column XII/Column III).

Infocil poitr coupayr scardoll I

LIMOCLI POORE COMPRM

bisco or phayt if sexict it decexal 31, 1989
splesct bils croop (acg) brfiod sccroit aifs

smyocit poxir cospaly

BASED OR PLAHP IR SEBYICI If occrubse 31 , 1989
LPESBGE LIIB GRODP (ALO) BETEOD ACCBOAL RITBS

accookt		OBICIKLL$\cos 7 \mathrm{ti}$	APEBGEI LIII and	$\begin{gathered} \text { f8BGINAL } \\ \text { RITIRESBY } \end{gathered}$	$\begin{gathered} \text { Hif } \\ \text { SALriGI } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { T0 } 88 \end{gathered}$	CALCOLATED Depreciation	BLLOCATSD decomolased	BPMARING 1088	bliRGCB rexalking	prcomanime ARNOAC ACCBOLL		
N	9176		12/31/69	corre PYPs	Difi	B6T10	micorsme	88q0irsabif	deprecistion	88COFESED	LIII	8400x	Pricter
(1)	(II)	(1II)	(IV)	(I)	(II)	(1II)	(71I)	(II)	(I)	(II)	(III)	(1111)	

GBERRAL BLAM

SECTION II
DISCUSSION OF METHODS
AND PROCEDURES USED IN THE STUDY

STUDY METHODS AND PROCEDURES

Group Method

All of the depreciable property included in this report was considered on a group plan. Under the group plan, depreciation expense is accrued upon the basis of the original cost of all property included in each depreciable plant account. Upon retirement of any depreciable property, its full cost, less any net salvage realized, is charged to accrued depreciation reserve regardless of the age of the particular item retired. Also, under this plan, the dollars in each primary plant account are considered as a separate group for depreciation accounting purposes and an annual depreciation rate for each account is determined. The annual accruals were then summed, to arrive at the total accrual for each functional group. The total accrual divided by the original cost yields the functional group accrual rate.

Capital Recovery Methods

There are two generally accepted methods that are usually used to develop straight line depreciation accrual rates. The average service life method recovers the original cost of the plant, adjusted for net salvage, over the average service of the investment. The basic assumptions used in determining depreciation rates by the Average Service Life method are: 1) the property will be retired over a specified average life and 2) the future amount
of net salvage is known. One major shortcoming of the Average Service Life method is that it does not provide a mechanism to adjust the accumulated depreciation when changes occur in the average service life or net salvage.

The Remaining Life method compensates for this shortcoming by recovering the original cost of the plant, adjusted for net salvage, less the accumulated depreciation, over the average remaining life of the plant. By this method, the annual depreciation rate for each account is determined on the following basis:

Annual
 Depreciation Expense $=$
 (Orig. Cost) (Net Salvage Ratio) - Accumulated Depreciation Average Remaining Life

Annual
Depreciation $=$ Annual Depreciation Expense
Rate Original Cost
Because the Remaining Life method provides a method to adjust the accumulated depreciation when changes occur in the estimates of service life and net salvage for depreciable property groups, it is recommended that the depreciation rates be determined by the Straight Line Remaining Life Method.

Methods of Life Analysis

Depending upon the type of property and the nature of the data available from the property accounting records, one of three

$$
I I-2
$$

analysis methods was used to arrive at the historically realized mortality characteristics and service lives of the depreciable plant investments. These methods are identified and described as follows:

Forecast Analysis

The life-span forecast analysis was employed for production plant. KP's investment in production plant is the Big Sandy Generating Station which is located on the Big Sandy River near Louisa, Kentucky and consists of Unit one with a nameplate capacity of $260,000 \mathrm{KW}$ and Unit Two with a nameplate capacity of $800,000 \mathrm{~kW}$. Units One and Two were placed in service in 1963 and 1969, respectively. The life-span method of analysis is particularly suited to specific locations property, such as Big Sandy plant, where all of the surviving investments are likely to be retired in total at a future date.

The key elements in the life-span forecast analysis are the aged surviving investments, the projected deactivation date of the facility and the expected interim retirements. Interim retirements are those that are expected to occur between the date of the depreciation study and the expected final deactivation date. Examples of interim retirements include fans, pumps, motors, a set of boiler tubes, a turbine rotor, etc.

The aged surviving investments were obtained from KP's property records. The deactivation dates used in the life-span forecast
analysis were 2013 for Unit one and 2009 for Unit Two. The deactivation dates were provided by American Electric Power Service Corporation, System Planning Department. The interim retirement history for each unit was analyzed by primary plant account. The results of those analyses were used to project future interim retirements. An example of the interim retirement analysis for Account 312.0, Boiler Plant Equipment, for Unit One is shown in the Appendix on Page A-1.

Actuarial Analysis

This method of analyzing past experience represents the application to industrial property of statistical procedures developed in the life insurance field for investigating human mortality. It is distinguished from other methods of life estimation by the requirement that it is necessary to know the age of the property at the time of its retirement and the age of survivors, or plant remaining in service; that is, the installation date must be known for each particular retirement and for each particular survivor.

The application of this method involves the statistical procedure known as the "annual rate method" of analysis. This procedure relates the retirements during each age interval to the exposures at the beginning of that interval, the ratio of these being the annual retirement ratio. Subtracting each retirement ratio from unity yields a sequence of annual survival ratios from which a survivor curve can be determined. This is accomplished by the

$$
I I-4
$$

consecutive multiplication of the survivor ratios. The length of this curve depends primarily upon the age of the oldest property. Nommally, if the period of years from the inception of the account to the time of study is short in relation to the expected maximum life of the property, an incomplete or stub survivor curve results.

While there are a number of acceptable methods of smoothing and extending this stub survivor curve in order to compute the area under it from which the average life is determined, the well-known Iowa Type Curve Method was used in this study.

By this procedure instead of mathematically smoothing and projecting the stub survivor curve to determine the average life of the group, it was assumed that the stub curve would have the same mortality characteristics as the type curve selected. The selection of the appropriate type curve and average life is accomplished by plotting the stub curve, superimposing on it Iowa curves of the various types and average lives drawn to the same scale, and then determining which Iowa type curve and average life best matches the stub.

An example of the calculations involved in the Actuarial Method of Life Analysis is shown in the Appendix on Pages A-2 through A-4 for Account 353.0-Transmission Station Equipment. Pages A-2 and A-3 show the computation of the actual survivor curve for the experience band 1950-1989 inclusive based on historical data

$$
I I-5
$$

supplied by KP. The actual survivor curve for the 1950-1989 period is plotted and matched on Page A-4, as explained above. This method was used for the following accounts:

```
350.2 Transmission-Rights of Way
352.0 Structures and Improvements
353.0 Station Equipment
354.0 Towers and Fixtures 138KV and Above
355.0 Poles and Fixtures 138KV and Above
356.0 OH Conductor and Devices 138kV and Above
360.2 Distribution - Rights of Way
361.0 Structures and Improvements
362.0 Station Equipment
390.0 General - Structures and Improvements
```


Simulated Plant Record Analysis

The "Simulated Plant Record" (SPR) method designates a class of statistical techniques that provide an estimate of the age distribution, mortality dispersion and average service life of property accounts whose recorded history provides no indication of the age of the property units when retired from service. For each such account, the available property records usually reveal only the annual gross additions, annual retirements and balances with no indication of the age of either plant retirements or annual plant balances. For this study, the "Balances Method" of analysis was used.

The SPR Balances Method is a trial and error procedure that attempts to duplicate the annual balance of a plant account by distributing the actual annual gross additions over time according to an assumed mortality distribution. Specifically, the dollars remaining in service at any date are estimated by multiplying each year's additions by the successive proportion surviving at each age as given by the assumed survivor characteristics. For a given Year, the balance indicated is the accumulation of survivors from all vintages and this is compared with the actual book balance. This process is repeated for different survivor curves and average life combinations until a pattern is discovered which produces a series of "simulated balances" most nearly equalling the actual balances shown in a company's books.

This determination is based on the distribution producing the minimum sum of squared differences between the simulated balance and the actual balances over a test period of years.

The iterative nature of the simulated methods makes them ideally suited for computerized analysis. For each analysis of a given property account, the computer program provides a single page sumary containing the results of each analysis indicating the "best fit" based on criteria selected by the user.

The results of such and analysis by the Balance Method is shown for Account 368 - Line Transformers on page A-5 in the Appendix. In

$$
I I-7
$$

the case of the Balances Method each curve type tested is shown along with the average service life which produced the minimum sum of squared differences from the actual balances. The analysis also shows the value of the Index of variation of the deference which is calculated according to the following equation for the Balances Method:

The lower the value of the Index the better the agreement with the actual data. The best fit is marked with a dash on the output. The SPR Method of Life Analysis was utilized for the following accounts:
354.0 Transmission - Towers and Fixtures Below 138 KV
355.0 Poles and Fixtures Below 138 kV
356.0 OH Conductor and Devices - Below 138 KV
364.0 Distribution - Poles, Towers and Fixtures
365.0 OH Conductor and Devices
366.0 Underground Conduit
367.0 Underground Conductor and Devices
368.0 Line Transformers
369.0 Services
370.0 Meters
371.0 Installations on Customers Premises
373.0 Street Lighting and Signal Systems 391.0 Office Furniture and Equipment 392.0 Transportation Equipment - Other
393.0 Stores Equipment
394.0 Tools, Shop and Garage Equipment
395.0 Laboratory Equipment
397.0 Communication Equipment
398.0 Miscellaneous Equipment

Physical Inspection of Property

On November 27, 1990, we visited the Big Sandy Generating Station and viewed other facilities including Baker substation to observe housekeeping, maintenance and construction practices in order to be familiar with the equipment and the environment in which it functions.

Final Selection of Average Life and Curve Type

The final selection of average life and curve type for each depreciable plant account analyzed by the Actuarial and Simulating Methods was primarily based on the results of the mortality analyses of past retirement history.

Net Salvage

The net salvage percentages used in this report are expressed as percent of original cost and are based primarily on the company's experience. KP maintains salvage and removal costs at the
functional plant level, rather than by primary plant accounts. To aid in the selection, a review was made of the company's experience for each plant function with respect to salvage and removal costs for the period 1954 to 1989. A sample of the type of salvage analysis made appears in Appendix A on Pages A-6 through A -8 for the Distribution Plant function. The salvage program analyzes historical experience on an annual basis, on the cumulative history basis and for 5-year moving averages to get the historical net salvage, as well as indicated trends. In order to determine a net salvage percent for the individual plant accounts, the original cost retirements were detailed by account for the period 1975-1989 and, based on Judgement, a net salvage percentage was selected for each account.

The net salvage percents selected were converted to net salvage ratios and appear in Column VI on Schedule I and were used to determine the total amount to be recovered through depreciation. The same net salvage was also reflected in the determination of the calculated depreciation requirement, which was used to allocate the accumulated depreciation at the functional group to the accounts comprising each group.

The net salvage ratios shown in Column VI on Schedule I in Section I of this report may be explained as follows:

1. Where the ratio is shown as unity (1.00), it was assumed that

$$
I I-10
$$

the net salvage in that particular account would be zero.
2. Where the ratio is less than unity, it was assumed that the salvage exceeded the removal costs. For example, if the net salvage were 20 percent, the net salvage ratio would be expressed as . 80.
3. Where the ratio is greater than unity, it was assumed that the salvage was less than the cost of removal. For example, if the net salvage were minus 5 percent, the net salvage ratio would be expressed as 1.05.

Net Salvage for Steam Production Plants

While the analyses described above would be applicable to the interim retirements for production plants, the most significant net salvage realization for generating plants (units) occurs at the end of their life. Therefore, to assist in establishing the net salvage applicable to KP's steam generating plant, KP had a detailed cost of removal study made by the engineering firm Sargent and Lundy (S\&L) . S\&L estimated the probable net cost to demolish each plant based on the current price level. The S\&I cost estimate indicates that the demolition costs are labor intensive. We recommend that $K P$ adjust the estimated cost of removal in future depreciation studies to reflect changes in price level. This will enable KP to recover the estimated actual removal costs that can
reasonably be expected to be incurred at the time Big Sandy plant is retired.

Calculation of Depreciation Requirement at December 31, 1989 KP maintains the accumulated depreciation by functional plant group as required by the FERC Uniform System of Accounts. Therefore, it was necessary to allocate the functional accumulated depreciation to the individual plant accounts to complete the accrual rate calculation. The allocation was based on the calculation of a depreciation requirement (theoretical reserve) for each plant account using the average service life and curve type recommended in this study. An example of the calculation of the depreciation requirement at December 31, 1989 for Account 353 - Transmission Station Equipment, is shown on Pages A-9 and A-10 in Appendix A.

That sample printout is explained in detail as follows: Column I - Age of each year's installation at December 31, 1989 based on the conventional procedure that all property installed in any year is assumed to be installed at the midpoint of that year.

Column II - Year of installation of the surviving dollars shown in Column III.

Column III - The original cost at December 31, 1989 by year installed, as supplied directly from Company records.

$$
I I-12
$$

$\begin{aligned} \text { Column } v- & \text { Depreciation Reserve Ratio based on the Life and } \\ & \text { Dispersion (Iowa Curve) shown in Column Iv heading. } \end{aligned}$
Column VI - Theoretical Reserve is the product of Column III times column V for each year.
The effect of any estimated net salvage, as indicated on page A-10, is provided by adjusting the subtotal rather than have each vintage of original cost appearing in column III reflect such salvage.
The Average Remaining Life, also shown, is the result of the weighting of the dollars of each age.

$$
I I-13
$$

Appendix A

Examples of Calculations Discussed In Section II

Interim Retirement Analysis
Actuarial Analysis
Simulated Plant Record Analysis
Net Salvage Analysis
Calculation of Depreciation Requirement

KENTUCKY POWER COMPANY

CALCULATION OF INTERIM RETIREMENT RATIOS
BIG SANDY GENERATING STATION UNIT \#1 ACCOUNT 312.0 BOILER PLANT EQUIPMENT

YEAR	ADDITIONS	RETIPEMENTS	BALANCE	AVERAGE BALANCE	RETIREMENT RATID
1363	16,508,970	0	16.508,970		N. A
1964	113.842	3.093	16,520,719	16,564,845	0.0005
1965	33.135	7,505	16,646,349	16,633,534	0.0005
1966	176,256	19,803	16.802,802	16,724,576	0.0012
1967	7,026	3,196	26,806,632	16,804,717	0.0002
1968	39,011	127,966	16,717,677	16,762,155	$0.007 E$
1969	2,036	5.000	16,714,773	16,716,225	0.0003
1970	960,242	569,493	17,105,522	16,910,148	0.0337
1971	20,599	7,136	17,118,985	17,112,254	0.0064
1972	12.074	12,000	17,119,059	17,119,022	0.0007
1973	2,546	5,700	17,115,905	17,117,482	0.0003
1974	4,167	126,850	16,993,222	17,054,564	0.0074
1975	382	5,683	16,987,921	16,990,572	0.0003
1976	60.093	0	17,048,014	17,017,968	0.0000
1977	689.813	215.065	17,522,762	17,285,388	0.0124
1978	81,885	119,379	17,485,268	17,504,015	0.0065
1979	60,521	379	17,545,410	17,515,339	0.0000
1980	14,685	62,704	17,497,391	17,521,401	0.0036
1981	89,615	318,487	17,268,519	17,382,955	0.0183
1982	208,013	16,842	17,459,690	17,364,105	0.0013
1983	0	6,754	17,452,936	17,456,313	0.0034
1984	207,517	77,996	17,582,457	17,517,697	0.0045
1985	548,169	17,686	18,112,940	17,847,699	0.0010
1986	554,796	212,823	18,454,913	18,283, 927	0.0116
1987	179,327	78,768	18,555,472	18,505,193	0.0043
1988	137,220	19,359	18,873,333	18,614,403	0.0010
1989	194,155	45,581	18,821,907	18,747,620	0.0024
TOTAL 1968-1989	4,066,926	2,051,651	385,354,076	384,346,439	0.1 ± 52

AVERAGE INTERIM RATE $=0.1182$

---	0.0054

DELOTTTE	HASKINS \＆SELLS		DEPRECIATION	EXHIBIT JE Page 26 of KFSC Case No AG 2nd Set D SYS里軍近 Dece	A－2 RELEASE
STUDY AS	OF DECEMBER 31，	1989			PAGE
＊＊＊＊	KENTUCKY POWER	COMPANY＊＊＊＊ ACCOUNT NO．：	35300000		10－23－1：
	1950 THR	RU 1989 BAND A	ANALYSIS SURVIV	OR REPORT	
AGE	RETIREMENTS	EXPOSURES \％	ANNOAL COM SURVIVORS \％SU	ULATIVE RVIVORS	
0.50	85384.	47795798.	99.82	99.82	
1.50	124128.	46770563.	99.73	99.56	
2.50	164148.	46177414.	99.64	99.20	
3.50	663567.	45128700.	98.53	97.74	
4.50	166590.	43378492.	99.62	97.37	
5.50	389781.	41783167.	99.07	96.46	
6.50	87653.	41420690.	99.79	96.26	
7.50	454579.	40323548.	98.87	95.17	
8.50	934988.	40171236.	97.67	92.96	
9.50	339612.	38688633.	99.12	92.14	
10.50	165754.	22809318.	99.27	91.47	
11.50	286107.	21758943.	98.69	90.27	
12.50	239179.	21599311.	98.89	89.27	
13.50	152052 ．	20330849.	99.25	88.60	
14.50	121464.	19912025.	99.39	88.06	
15.50	157036.	19801288.	99.21	87.36	
16.50	225197.	19647103.	98.85	86.36	
17.50	33783.	19407908.	99.83	86.21	
18.50	86261.	19001265.	99.55	85.82	
19.50	254107.	18512958.	98.63	84.64	
20：50	634015.	18063094.	96.49	81.67	
21.50	29937.	7694907.	99.61	81.35	
22.50	28296.	7155196.	99.60	81.03	
23.50	116468.	6889829.	98.31	79.66	
24.50	140673.	6550338.	97.85	77.95	
25.50	46497.	5937298.	99.22	77.34	
26.50	11929.	5553437.	99.79	77.17	
27.50	69537.	4583786	98.48	76.00	
28.50	37592.	4139021.	99.09	75.31	
29.50	166512.	3912958.	95.74	72.11	
30.50	48748.	3711018.	98.69	71.16	
31.50	34134.	3553118.	99.04	70.48	
32.50	46759.	3416574.	98.63	69.51	
33.50	144209.	3363453.	95.71	66.53	
34.50	7829.	3162746	99.75	66.37	
35.50	3112.	3046997.	99.90	66.30	

1tit

$=-: 5-2990$

 1980 1981 19821983 1984 1985

35.4	37.7	34.5	34.0	33.7	33.5	TEF	\rightarrow－	－－	－	江	ジ	95	8	233	288	275	259	245	－2	21
30.6	30.3	30.1	27.8	29.7	${ }^{2} 9.5$	29.5	－5．	－7．4	－	E－．	： 7	254	5%	277	272	200	245	229	－55	37
27.7	27.5	27.5	27.1	27.0	26.9	23．3	2 S	2.3	30．3	30	－11	245	235	287	278	265	250	273	217	203
26.2	26.0	25.7	25.7	25.6	25.5	E．5	E． 4	55．1	－3． 1	E＊．	2 io	25	－i1	237	28！	269	254	239	$29:$	2t
24.9	24.8	24.5	24.5	24.4	24.3	24，	－－	24.2	24.2	E	779	286	\％	305	298	286	272	255	277	
24.0	33.7	23.3	33.7	23．	35.6	3 j .5	－	ここ，	23.4	5：	321	315	31.3	520	312	299	285	269	251	5 Bb
23.2	23.2	23.1	23.0	23.0	$2 . .9$	22.9	22.5	27．5	32.3	32	375	355	345	345	335	325	309	294	－75	261
22.5	22.5	22.5	22.4	21.3	22.2	2.2	22.	\＃1．1	22.4	35	459	20.6	3 ¢5	3B3	371	358	345	333	ミ1：	3 H
22.0	22.0	22.0	21.9	21.8	21.8	21．7	2i．	2．	$2 . .5$	54	500	459	432	421	406	392	380	269	352	25
21.8	21.8	21.7	21.7	21.5	21.5	2！．5	－：	こ： 0	21．2	シ5	537	$4{ }^{3} 2$	459	44	426	412	400	391	375	$3 E_{5}$
21.6	21.6	21.6	21.6	21.5	21.4	21.3	$2:$	2.2	21.	So	558	510	474	45	435	420	40	402	388	S62
34	33.7	33.4	35.0	32.7	32.5	32.4	22.2	2.5	32.2	0	249	2.8	284	30	300	297	271	254	236	20）
30.8	30.5	30.5	30.0	27.9	29.7	27.6	29，5	29，6	29.5	Lo．	209	253	278	300	297	285	270	253	236	22i）
28.5	$2 \mathrm{B}$.	28.1	27.8	27.7	27.6	27.5	23.4	27.4	27.4	4	250	266	289	311	308	297	281	204	24E．	23
26.9	26.7	26.5	26.3	24.2	26.1	26．	25．7	25.7	25.7	2.2 .5	254	278	296	315	313	302	288	272	250	207
25.4	25.3	25.1	25.0	24.8	24.7	24.6	24.5	24.6	24.5	：2	297	308	319	336	333	323	309	293	274	259
25.5	23.4	2i． 3	23.2	23.1	25.0	25.3	22.7	22.7	22.3	LJ	587	372	2bd	372	365	354	341	327	308	290
22.4	22.4	22.4	22.3	22.2	22.1	22．：	22.0	21.9	21.9	14	451	428	406	400	388	376	364	352	335	
22.0	22.0	2 i .7	21.6	21.8	21.7	21．8．	21．5	21.5	21.4	1.5	512	470	441	429	413	400	389	379	365	－5
． 9	30.5	27.4	30.	30.0	29.7	29.0	29.7	29.7	29.7	R0． 5	179	222	24	262	257	245	231	216	200	：5：
2 2． 1	27.7	27.8	27.6	27.5	27.4	27.3	27.5	27.3	27.3	$\overline{\mathrm{n} 1}$	－175	－208	－226	243	238	227	213	199	185	：
2 in .3	26.2	26.1	25.7	25.8	25.5	25.7	25.7	25.7	25.7	R1． 5	204	220	230	－242	－236	－225	－211	－198	－154	
24.6	24.7	24.6	24.5	24.4	24.4	24.3	24，${ }^{-1}$	24.3	24.3	Rî	$26!$	257	250	2.4	255	242	228	214	199	：
23.3	33.7	$33^{3} 7$	25.5	23.5	23.5	23.4	23.4	23.4	23.4	R2． 5	32 L	305	294	293	281	267	252	239	20	
23.0	2 E 2． 9	22.9	22.3	22．E	22.7	22.7	22.1	22.5	22.6	RS	386	359	539	335	418	304	289	276	25	－：
22.3	22.2	22.2	22.1	22．！	2．${ }^{\text {a }}$	22．）	： 2 ？	21.7	21.8	R4	$46 i$	426	400	370	374	359	346	334	－17	
31.8	$\underline{1.5}$	21.8	21.7	21.7	21.6	21.5	21.4	21.4	2.4	R 5	526	482	450	\＄35	418	403	340	380	3 E 5	

DELOITE HASKINS KELLLS
STUDY AS OF DECEMBER 31, 1989
EXHIBIT JEH-1
Page k39ccaf 34o. 2005-00341 AG 2nd Set Data Requests Dated December 12, 2005

Item No. 46
Page 39 of 43

XENTUCXY PQMER COMPAKY
 ACCOUNT MD.: 10860000
 bistribution plamt

			REIMBURSEMENTS		SALVAGE		cost ja removal		MET SALYAgE	
YEAR	ADDITIONS	RETIREMENTS	AMOLNT	RATie	amgunt	Ratio	AMDUnT	RATIO	W/REIMB	W/O REMM.
1954	0.	345614.	λ.	0.2	124233.	$43 . \%$		19.7	23.6	29.7
1955	0.	-29795.	$\%$	0.7	163818.	50.7	58960.	21.2	29.1	29.4
1956	0.	3 ± 0400.).	3.\%	175657.	52.2	3.544.	24.2	28.7	28.5
1957	0.	560530.	0.	0.2	243234.	43.7	141931.	$25 . \%$	18.7	18.6
1958	0.	505375.	0.	0.4	206808.	41.7	144792.	29.1	12.7	12.4
1959	0.	624939.	0.	0.7	259031.	41.7	152087.	24.2	17.1	17.\%
1960	0.	492849.	ϑ	0.2	271181.	55.7	161636.	3.1	22.7	22.\%
1961	0.	819969.	θ.	c. $\%$	381111.	46.2	170331.	21.2	26.1	26.7
1962	0.	558196.	0.	0.\%	279388.	54.7	192682.	35.7	19.7	19.\%
1963	0.	706977.	0.	0.2	279116.	39.7	194420.	28.1	12.2	92. 2
1964	0.	773027.	0.	0.2	304668.	39.2	189822.	25.2	15.2	15.\%
1965	0.	1012221.	0.	0.7	374123.	37.2	239135.	24.2	13.2	13.2
1966	0.	1071099.	0.	0.4	450349.	42.2	285103.	27.7	15.7	15.2
1967	0.	1463163.	0.	0.1	417889.	28.2	742901.	23.7	$5 . \%$	$5 . \%$
1968	0.	1350710.	0.	0.\%	670448.	50.7	474783.	36.7	14.2	14.7
1969	0.	1560135.	0.	0.7	646533.	41.2	347617.	22.1	19.7	19.7
1970	0.	1143715.	0.	0.7	400222.	35.2	357897.	31.2	4.2	4.2
1971	0.	1315603.	0.	0.2	543957.	41.2	401721.	31.1	11.7	11.7
1972	0.	1475429.	0.	0.7	757589.	51.2	490857.	33.7	18.2	28.7
1973	0.	1773250.	0.	0.7	703812.	40.7	491738.	28.1	12.7	12.\%
1974	0.	1273997.	0.	0.1	921165.	72.7	527796.	11.1	31.2	31.1
1975	0.	1413889.	0.	0.2	635350.	45.7	485488.	34.7	10.2	10.7
1976	0.	1770503.	0.	0.7	905056.	51.1	680443.	38.7	13.2	13.1
1977	0.	1790525.	0.	0.7	1032217.	58.2	929730.	52.7	6.7	6.2
1978	0.	2839810.	0.	0.2	1622814.	57.2	952797.	34.2	24.2	24.2
1979	0.	2379695.	0.	0.2	1368931.	58.2	1048294.	44.7	13.2	13.7
1980	0.	3067886.	0.	0.2	1455926.	47.2	1423814.	46.7	1.2	1.7
1981	0.	4592306.	0.	0.7	1883 J82.	42.2	173724.	39.1	3.2	3.2
1982	0.	2552584.	0.	0.7	1586478.	62.7	1503023.	59.1	3.2	5.2
1983	0.	3917704.	0.	0.1	1560432.	40.2	1361570.	35.2	5.1	5.7
1984	0.	2274942.	0.	0.2	1275047.	56.2	1464480.	64.7	-8.2	-8.2
1985	0.	3390814.	0.	0.2	1033246.	30.1	1315547.	39.1	-8.2	-8.2
1986	0.	4122421.	0.	0.2	1703914.	41.7	2814294.	44.7	-3.2	-3.2
1987	0.	5062869.	0.	0.1	2341368.	46.2	1686747.	33.4	13.2	13.7
1988	0.	5092695.	0.	0.7	2009198.	39.2	1881879.	$37 . \%$	3.2	3.7
1999	0.	7285672.	0.	0.7	. 5727263.	79.2	1888999.	26.7	53.2	53.2
	0.	70931308.	0.	0.2	34763996.	49.2	25702580.	36.2	13.2	13.\%

ROLLING BAND
$\begin{array}{llllllllllllllll} & \text { 1954-1958 } & 0 . & 2081714 . & 0 . & 0 . \% & 953792 . & 46 . \% & 503728 . & 24.7 & 22 . \%\end{array}$
kEnTUCXY POMER COMPAMY
ACCOUMT M0.: 10860000 DISTRIBUTIOA PLANT

			REIMBURSEAEATS		5aLvage		COST OF REMOVAL		net salvage	
YEAR	ADDITIOMS	RETIREMENTS	AMOUST	RATID	Amount	RATID	Amount	RATIO.	HREIM8.	W/O RETMB.
1955-1959	0.	2361039.	\checkmark.	0.2	1048530.	44.7	589614.	25.1	19.7	:7.\%
1956-1960	0.	2524093.	v.	0.7	$1: 55893$.	46.1	682290.	27.5	19.7	19.7
1957-1961	0.	3003662.	0.	0.\%	1561365.	45.7	370777.	26.7	20.7	20.\%
1958-1962	0.	3001328.	2.	0.1	1417519:	47.2	821528.	27.1	20.1	20.7
1959-196J	0.	3202930.	0.	0.1	1469827.	47.2	871156.	27.2	19.7	$17 . \%$
1960-1964	0.	3351018.	0.	0.2	1535464.	46.2	908891.	27.1	19.7	19.7
1961-1965	0.	3870390.	0.	0.7	1638406.	42.2	986390.	25.7	17.1	17.7
1962-1786	0.	4121520.	0.	0.7	1707644.	41.2	1101162.	27.7	15.7	15.7
1963-1967	0.	5026487.	0.	0.2	1822145.	36.2	1251381.	25.7	11.7	11.2
1964-196日	0.	5650220.	0.	0.2	2213477.	39.2	1536744.	27.7	12.7	12.2
1985-1969	0.	6437328.	0.	0.7	2555342.	40.2	1694539.	26.7	13.7	13.7
1966-1970	0.	6568822.	0.	0.7	2581445.	39.7	1813301.	28.2	12.7	12.7
1967-1971	0.	6813326.	0.	0.7	2675049.	39.7	1929919.	28.7	11.7	$11 . \%$
1968-1972	0.	6825592.	0.	0.7	3013749.	44.1	2077855.	30.1	14.7	14.7
1967-1973	0.	7268132.	0.	0.1	3047113.	42.7	2089810.	29.2	13.2	13.2
1970-1974	0.	6981994.	0.	0.2	3321745.	48.7	2269989.	33.2	15.7	15.7
1771-1975	0.	7252168.	0.	0.7	3554873.	49.2	2397580.	33.1	16.2	16.2
1972-1976	0.	7707068.	0.	0.1	3915972.	51.7	2676302.	35.2	16.2	16.7
1973-1977	0.	8022164.	0.	0.2	1195600.	52.2	3114195.	39.1	13.2	13.1
1974-1978	0.	9088724.	0.	0.7	51.14602.	56.2	3575254.	39.2	17.2	17.2
1975-1979	0.	10194422.	0.	0.7	5562368.	$55 . \%$	4085752.	40.2	14.1	14.7
1976-1980	0.	11848419.	0.	0.7	6384944.	54.7	5034078.	42.2	11.2	11.1
1977-1981	0.	14570222.	0.	0.2	7363270.	51.7	6090876.	42.1	7.7	9.7
1978-1982	0.	15332281.	0.	0.7	7917531.	52.7	8665169.	43.7	$8 . \%$	8.2
1979-1983	0.	16410175.	0.	0.2	7855149.	48.7	7073942.	43.2	5.7	5.2
1980-1984	0.	16305422.	0.	0.7	7761265.	48.7	7490128.	46.1	2.2	2.7
1981-1985	0.	16629350.	0.	0.7	7338585.	44.7	7381861.	44.2	0.7	$0 . \%$
1982-1986	0.	16258465.	0.	0.7	7158117.	44.2	7458914.	46.2	-2.1	-2.7
1983-1987	0.	18768750.	0.	0.2	$79!4007$.	12.7	7642638.	41.1	1.2	1.1
1984-1988	0.	19943741.	0.	0.1	8362775.	42.2	8162947.	41.2	1.2	1.\%
1985-1989	0.	24954471.	0.	0.2	12814989.	51.2	8587466.	34.2	17.2	17.2

												Het Saltate	Meisthed
35	352	351	365	366	361	368	368	170	311	313	Potal		
1	d	1	1	1							8	1	
1.112	325.372	258,031	230,221	0	1.117	259,030	168, 151	105,838	(1,032	16,516	1,128,990	10	H,288
111	182,265	328,987	302,893	138	2,083	265,971	176,814	114,211	86,017	4,177	1,14,396	Is	23,067
0	252.200	316,298	369,728	0	3,175	312,212	111,136	219,304	31, 198	19,865	1,816,198.	6	10,899
1.111	600,488	311,825	112,615	216	175	627,160	201,569	171,912	67.613	28,008	2,155,105	11	65.179
(99)	203,011	631,191	516,238		8,120	111, 11	322,670	196,583	817.805	17,100	2,102,210	13	31,269
5,162	189,860	111,013	592,297	13,386	18,992	101, 761	216,061	211,815	111,552,	31,188	3,067,016	$!$	3,069
11,139	961.160	1,253,167	816,800	11	6,681	1,160,268	201,391	261,646	121,058	33,318	4,989,653	1	11,969
0	195,085	635,186	152,351	0	5,331	661,258	166,004	218,186	102,664	14,175	2,519,219	1	1,558
109	128,299	168,785	588, 127	18	8.142	818, 689	319, 764	219,201	156,108	21,192	3.105,108	5	15,527
15,027	293, 108	801,923	517,018	1,998	1.761	509,140	304,512	36S, 107	152,915	13, 11	3,001,100	- 8	(21,059)
159	316,413	937,730	\$19,259	\$,819	3,814	610, 162	201,521	386, 485	184,061	31,932	3,318,091	- 8	121,023)
2,018	199,918	1,138,007	915,74	896	1,069	114,981	301.814	350,900	195,928	10, 198	1,175,801	$\cdot 1$	(12,527)
4,659	331,915	1,601,141	1,001,211	6,958	20,906	104,243	129,089	373, 812	121,123	13,264	5,057,113	13	65, 141
3,211	151,011	1,966,198	1,118,110	172	12,291	601,950	392,321	409,193	251,716	110,010	3,023,951	3^{3}	13,072
6,295	259,802	3, 623,980	899,096	1,829	8.169	1,161,193	374,813	320,905.	291,319	109,991	1,259, 153	51	384,751

$=$三:

 .| Dblorita alsilas a sklis | | drebcciailion ststar - DSdiuju | | | BELise 5.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STODY AS Or drcaybr 31, | | 1989 | | | pags 1 |
| | | rmitecit porer corpait | | . | 11-2-1990 |
| afteag Lifl groop getiod thiositical restats accourr 35300000 | | | | | |
| | | striIficig | $\underset{\text { LIPR }}{\text { RMaIIIIG }}$ | | |
| | TIITAGE | blatace | ISL CJPY | 88588PI | casorsilicll |
| AGB | IBAR | 12/31/1989 | 50.0 80.5 | 3afio | R1588P8 |
| 0.5 | 1989 | 1247738. | 49.6904 | 0.00619 | 7725. |
| 1.5 | 1988 | 574176. | 49.0704 | 0.01859 | 10675. |
| 2.5 | 1987 | 893616. | 48.4521 | 0.03096 | 27665. |
| 3.5 | 1985 | 1139198. | 47.8355 | 0.04329 | 49316. |
| 4.5 | 1985 | 1686248. | 47.2206 | 0.05559 | 93733. |
| 5.5 | 1984 | 78286. | 46.6075 | 0.06785 | 5312. |
| 6.5 | 1983 | 1200975. | 45.9860 | 0.08008 | 96175. |
| 7.5 | 1982 | 8064. | 45.3850 | 0.09228 | 144. |
| 8.5 | 1981 | 640224. | 44.7771 | 0.10445 | 66869. |
| 9.5 | 1980 | 15638250. | 44.1709 | 0.11658 | 1823146. |
| 10.5 | 1979 | 917014. | 13.5655 | 0.12869 | 118010. |
| 11.5 | 1978 | 88898. | 42.9616 | 0.14071 | 12514. |
| 12.5 | 1971 | 1185500. | 42.3591 | 0.15782 | 181319. |
| 13.5 | 1976 | 391512. | 41.7579 | 0.16481 | 64538. |
| 15.5 | 1974 | 1037. | 40.5593 | 0.18881 | 196. |
| 16.5 | 1973 | 16220. | 39.9619 | 0.20076 | 3256. |
| 17.5 | 1972 | 379846. | 39.3658 | 0.21268 | 80787. |
| 18.5 | 1971 | 402045. | 38.7711 | 0.22158 | 90290. |
| 19.5 | 1970 | 682067. | 38.1780 | 0.23644 | 161268. |
| 20.5 | 1969 | 9870865. | 37.5865 | 0.21821 | 2450635. |
| 21.5 | 1968 | 509774. | 36.9969 | 0.2500 E | 132573. |
| 22.5 | 1957 | 237071. | 36.4092 | 0.27182 | 64440. |
| 23.5 | 1965 | 236739. | 35.8237 | 0.28353 | 67122. |
| 24.5 | 1965 | 498885. | 35.2405 | 0.29519 | 146085. |
| 25.5 | 1954 | 350263. | 34.6598 | 0.30589 | 107462. |
| 26.5 | 1963 | 957722. | 34.0818 | 0.31836 | 304904. |
| 27.5 | 1962 | 467496. | 33.5065 | 0.32987 | 154212. |
| 28.5 | 1961 | 188471. | 32.9345 | 0.3413 i | 64327. |
| 29.5 | 1960 | 36134. | 32.3654 | 0.35265 | 12744. |
| 30.5 | 1959 | 109152. | 31.7998 | 0.3640\% | 39732. |
| 31.5 | 1958 | 102410. | 31.2376 | 0.37525 | 38429. |
| 32.5 | 1957 | 6362. | 30.6790 | 0.38642 | 2158. |
| 33.5 | 1956 | 59095. | 30.1241 | 0.39755 | 23691. |

A-9

 Dated December 12, 2005
Item No. 46 Page 42 of 43

IEITACII POXRE CORPATI accouni 35300000

drioitis masilks asilis	gepesciatiok ststbu - DSALG01	bllase 5.0
Stodi ds or becerabr 31, 1989		PIGR 2

Lritech pourd compag
11-2-1990
 ACCOUSI 35300000

6G8	FIXIGE8 TRAB	$\begin{gathered} \text { SOPYITIIG } \\ \text { BALAICS } \\ 12 / 31 / 1989 \end{gathered}$	REMIIIG CII8 ASL CJBTB 50.180 .5	TBSERPG PSTIO	FHRORETCAL BRSPRTE
34.5	1955	107920.	29.5731	0.40851	44089.
35.5	1954	10322.	29.0261	0.41948	4330.
36.5	1953	91036.	28.4832	0.63034	40467.
37.5	1952	511233.	27.9445	0.14111	225510.
38.5	1951	244718.	27.4101	0.45180	110563.
39.5	1950	10028.	26.8801	0.16240	4637.
40.5	1949	102150.	26.3545	0.47291	48308.
41.5	1948	39284.	25.8333	0.48333	18987.
42.5	1947	3620.	25.3168	0.49366	1787.
43.5	1946	42757.	24.8048	0.50390	21545.
44.5	1915	201906.	21.2974	0.51405	103790.
45.5	1344	78195.	23:7945	0.52411	40983.
46.5	1943	8615.	23.2965	0.53407	4601.
47.5	1912	264003.	22.8030	0.51384	133602.
48.5	1941	31105.	22.3143	0.55371	17223.
49.5	1940	23256.	21.8301	0.56340	13102.
50.5	1939	32393.	21.3508	0.57299	18561.
51.5	1938	33393.	20.8756	0.58249	18451.
52.5	1937	158492.	20.4052	0.59190	92627.
53.5	1935	63281.	19.9393	0.60121	38045.
54.5	1935	10727.	19.4779	0.61044	6548.
55.5	1934	2984.	19.0208	0.61958	1849.
57.5	1932	6986.	18.1194	0.63761	4454.
59.5	1930	424895.	17.2348	0.65530	278436.
60.5	1929	136593.	16.7984	0.66403	90768.
		$43439346 .$			$\begin{array}{r} 7896418 \\ \hdashline=a= \end{array}$
		HRT SALPAGE PALOR(4)			25.
		PESERTE ATTER SALPAGE			$\begin{array}{r} 5922313 . \\ :=\pi=:=a=: ~ \end{array}$
		RPHILIEG LITE (IRS)			40.91

Kentucky Power Company

REQUEST

Refer to AG Request No. 155, which requested a reconciliation of the plant account balances used in the Study with those shown in the 2004 FERC Form 1. Please explain why Production Plant Land Rights were not included in the study, when Land Rights for Transmission, Distribution and General Plant were. Also, reconcile the amounts for Transmission, Distribution and General Plant Land Rights between the Study and the FERC Form 1.

RESPONSE

Production Plant land rights represent an investment with an original cost of $\$ 5,420$ and they were unintentionally excluded from the study. FERC Form 1 combines land in fee and land rights in a single account. Any differences between the Transmission, Distribution and General Land Rights as shown in the study and as shown in FERC Form 1 represents non-depreciable land in fee.

WITNESS: James E Henderson

KPSC Case No. 2005-00341 Attorney General Second Set Data Request Order Dated December 12, 2005 Item No. 48
Page 1 of 1

Kentucky Power Company

REQUEST

Refer to AG Request No. 161. Please provide all documents and correspondence related to the review of FIN 47 as they currently exist.

RESPONSE

The only potential Asset Retirement Obligations the Company has identified in connection with the review of FIN 47 is for asbestos removal and abatement at Big Sandy Generating Plant. The preliminary cost estimates, in 2005 dollars, for the asbestos removal and abatement is as follows:

Business		Unit	Size	Fuel	In		Percent	Cubic	Dollars for Removal \&
					Service	O/S			
Unit	Plant				Date	Date	Asbestos	Yard	Disposal
KPCo	Big								
	Sandy	BS-1	260	Coal	1963	2030	60	1054.56	\$1,265,472
			MW						
KPCo	Big								
	Sandy	BS-2	800	Coal	1969	2036	25	1352.0	\$1,622,400
			MW						

The removal dates will not correspond to the plant retirement dates (2015-2034) shown in the depreciation study. That is because it is not expected that asbestos removal would begin until some time after the plant is retired.

WITNESS: James E Henderson

Kentucky Power Company

REQUEST

Refer to the response to AG Request No. 166. The files provided do not explain how the cost of removal reserve was calculated (the numbers are hardcoded). Please explain how these amounts are calculated and provide the embedded cost of removal amounts by account.

RESPONSE

The Company's current depreciation rates identify a removal cost for only the Production Plant function. The amount of removal costs embedded in the Production Plant functional depreciation reserve was determined using the following formula:

Gross Removal \% / (100\%-Net Salvage \%) x Accumulated Depreciation

Based on the Company's last depreciation study approved in Case No. 91-066, the cost of removal and gross salvage percentages included in the approved depreciation rates are as follows:

Gross Removal \% = 24\%
Gross Salvage $\%=2 \%$
Net Salvage Percent $=-22 \%$
The removal costs were calculated for the total Production Plant function. The amounts were not identified by account.

WITNESS: James E Henderson

KPSC Case No. 2005-00341
Attorney General Second Set Data Request Order Dated December 12, 2005 Item No. 50
Page 1 of 1

Kentucky Power Company

REQUEST

Refer to AG Request No. 167. Please explain why the requested calculation was not made and please make the requested calculation.

RESPONSE

Kentucky Power objects to the request to perform the requested calculation as unduly burdensome. The calculation was not made because Kentucky Power has not identified a reason to make this calculation.

Kentucky Power Company

REQUEST

Refer to AG Request No. 168, part a. Please explain fully the reasons behind the Company's beliefs as detailed in that response.

RESPONSE

The Company's reclassification complies with the SEC guidance and FERC Order 631 for accounting for cost of removal that does not constitute a legal obligation.

WITNESS: James E Henderson

KPSC Case No. 2005-00341

Attorney General Second Set Data Request

 Order Dated December 12, 2005Item No. 52
Page 1 of 1

Kentucky Power Company

REQUEST

Refer to AG Request No. 168, part e. What proof is available to support your claim that the money was spent on the ongoing operations of Kentucky Power? Please provide such proof.

RESPONSE

The revenues collected go into the general fund of the Company. There is no dollar tracking mechanism to track dollars collected in revenues to dollars spent.

Kentucky Power Company

REQUEST

Refer to AG Request No. 172. Has anyone else in Kentucky Power or AEP conducted such an analysis? If so, please provide it.

RESPONSE

The company cannot at this time fully assess the effects of the recent passage of the Act and no analysis by AEP or Kentucky Power has been conducted concerning the matters identified in AG Request No. 172. This 700-page bill that became law on August 8th has been described as the most sweeping revision of the electric utility industry in 70 years. However, much of the bill requires action by state and federal regulatory agencies to implement the policies contained within the legislation. These agencies, including the Department of Energy, the Federal Energy Regulatory Commission and state utility commissions, must develop rules and establish policies consistent with the Act and are given months or even years to do so.

WITNESS: James E Henderson

KPSC Case No. 2005-00341
Attorney General Second Set Data Request Order Dated December 12, 2005 Item No. 54 Page 1 of 1

Kentucky Power Company

REQUEST

Refer to AG Request No. 173. Please provide all supporting documentation underlying the Company's expectation that "federal environmental regulations may not permit the continued operation of Big Sandy Unit 1 without the addition of FGD equipment."

RESPONSE

There is no specific supporting documentation. See,Federal Clean Air Act as amended.

