$2005 \mathrm{NO}_{x}$
 Compliance Strategy Update for
 Kentucky Utilities and Louisville Gas and Electric

January 2005

Table of Contents

Introduction 4
Background 4
Significant Impact Since the 2002 IRP 6
Allowance Allocation 6
Clean Air Interstate Rule (CAIR) 7
Early Reduction Credits 8
Base NO_{x} Emission Rates. 8
Retirement of Green River Units 1-2 8
2004 Ozone Season Compliance 8
Current NO $\mathbf{N a}_{\mathrm{x}}$ Allowance Position Study 9
NO_{x} Compliance Plan Analysis. 12
Discussion of Alternatives 12
Defining Cases To Be Evaluated 14
Results of Analysis 15
Base Case 16
Case01: Brown 3 SCR in 2010 16
Case02: Ghent 2 SCR in 2010 17
Case03: Ghent 2 SCR in 2008 17
Case04: Ghent 2 SCR in 2010, Brown 3 SCR in 2010 18
Case05: Ghent 2 SCR in 2010, Brown 3 SCR in 2016 18
Summary and Recomendation 19
APPENDIX A: Base NO \mathbf{x}_{x} Emission Rates 22
APPENDIX B: General Study Assumptions 24
APPENDIX C: NO $_{\mathbf{x}}$ Technology Cost and Operational Information 28
APPENDIX D: Revenue Requirement Cost Comparison of NO $\mathbf{x}_{\mathbf{x}}$ Compliance Plans 30
APPENDIX E: NO \mathbf{x}_{x} Emissions of Various Compliance Plans 36
APPENDIX F: Volitility of 2004 NO $_{x}$ Allowance Market 43

Executive Summary

Kentucky Utilities Company and Louisville Gas and Electric Company (the "Companies"), as part of a continuing review of the environmental regulatory requirements for NO_{x} emission reduction under the Clean Air Act, have updated the analysis presented to the Kentucky Public Service Commission ("KPSC") as LEB Exhibit 2 of Bellar Testimony in Case No. 2000-386 and as LEB Exhibit 3 of Bellar Testimony in Case No. 2000-439. The Companies have performed an evaluation of the next steps in continued NO_{x} compliance. The study was conducted in January of 2005 and utilized the most recent information available at that time.

There have been several significant changes since the last study including a final ruling on the Companies' NO_{x} allowance allocation of 12,447 (assumed to be 11,875 in the previous study) and the initial compliance deadline of May 31, 2004 (assumed to be May 1, 2003 in the previous study). Other changes include the addition of early reduction credits ("ERCs"), retirement of Green River 1-2 and the update of NO_{x} emission rates for existing units.

Current projections indicate that, in absence of installing additional NO_{x} control technologies, the Companies will have sufficient NO_{x} allowances through the end of 2009 and would be dependent on purchasing $152,000 \mathrm{NO}_{\mathrm{x}}$ allowances over the 2010-2025 timeframe to comply. To mitigate the exposure created by purchasing such a large volume of allowances the construction of SCRs were evaluated at both Brown 3 and Ghent 2. The Ghent 2 SCR was more favorable, in that it reduced the PVRR by $\$ 2$ million compared to the Brown 3 SCR installed in the same year.

Assuming a three-year SCR construction schedule, the Companies anticipate being able to refine cost estimates and monitor the development of relevant issues (i.e. NO_{x} market etc) through the end of 2006 and still allow construction of the next technology in time to address the 2010 need.

The Companies will continue to maintain flexibility in their implementation of the NO_{x} compliance while keeping a close watch on legislative activities, technology enhancements, regulatory rulings and judicial actions in order to meet the on-going emissions reduction requirements in a prudent and least-cost manner.

I. Introduction

In August 2002 Kentucky Utilities Company and Louisville Gas and Electric Company ("Companies"), as part of a continuing review of the environmental regulatory requirements for NO_{x} emission reduction under the Clean Air Act, updated the analysis presented to the Kentucky Public Service Commission ("KPSC") in Case No. 2000-386 and in Case No. 2000-439. That update was subsequently filed within the Companies' 2002 Integrated Resource Plan ("IRP") in Case No. 2002-00367. The current analysis, conducted in January of 2005, utilizes the most recent information available and serves to
(1) Summarize the technologies currently installed and their performance during the 2004 ozone season (May 31 -Sept 30).
(2) Quantify the Companies current position in regard to NO_{x} emissions.
(3) Forecast future NO_{x} emissions and identify when the next NO_{x} removal technology is needed.
(4) Provide preliminary estimates on the environmental impact and relative cost of subsequent SCR installations at various locations and times.
(5) Develop a low cost, NO_{x} compliance strategy that maintains flexibility for future legislative, regulatory, or judicial changes.

II. Background

The NO_{x} SIP Call was promulgated under Title I of the Clean Air Act Amendments of 1990. Title I requires all areas of the country to achieve compliance with the National Ambient Air Quality Standards for ozone, or ground-level smog. In September 1998, the Environmental Protection Agency ("EPA") finalized regulations (the NO_{x} SIP Call) to address the regional transport of NO_{x} and its contribution to ozone non-attainment in downwind areas. EPA's final SIP Call requires 22 Eastern states (including Kentucky) and the District of Columbia to revise their State Implementation Plans ("SIPs") to achieve additional NO_{x} emissions reductions that EPA mandated as necessary to mitigate the transport of ozone across the Eastern half of the United States. The final rule is intended to assist downwind states so that they can achieve compliance with the ozone standard. EPA maintains that NO_{x} emissions from the identified
states "contribute significantly" to non-attainment in downwind states and that the SIPs in these states are therefore inadequate and must be revised. The final rule required electric utilities in the 22-state area to meet a seasonal (May - September) NO_{x} tonnage limit beginning May 1, 2003. Subsequent amendments to the final rule changed the coverage of the program to just 19 states and extended the first season of compliance to begin May 31, 2004.

Directly related, Northeastern states filed "Section 126" petitions to the EPA to require reductions from certain electric utility plants (including all plants in and East of Louisville). EPA concurred and promulgated regulations requiring NO_{x} emission reductions very similar to those required under the NO_{x} SIP Call.

Eight states, the United Mine Workers of America ("UMWA"), and various industry groups appealed EPA's final NO_{x} SIP Call rule and the Section 126 rule to the U.S. Court of Appeals for the District of Columbia Circuit. The cases have been consolidated (State of Michigan v. EPA, No. 98-147) and the D.C. Circuit Court issued an order in December 1998 granting the parties' motion for expedited briefing to be completed by August 1999. On May 25, 1999, the D.C. Circuit issued an indefinite stay of the September 30, 1999 deadline for SIP submittal. Consequently, Kentucky suspended their NO_{x} SIP submittal efforts. The D.C. Circuit ruled against the appeal. However, due to delays in establishing a final regulatory program, on April 30, 2002 the compliance deadlines for both programs were harmonized to be May 30, 2004.

The EPA SIP Call NO_{x} emission tonnage cap went into effect during the ozone season (May through September) of 2004. The EPA set a utility NO_{x} budget in Kentucky of approximately $37,000 \mathrm{NO}_{x}$ allowances for the ozone season. The number of NOx allowances that the Companies would receive remained uncertain until April 11, 2002, when the USEPA approved the Kentucky Division for Air Quality's SIP submittal, which finalized that the Companies will receive 12,447 tons per ozone season for the years 2004-2006 after a 5% holdback for new sources.

III. Significant Changes Since the 2002 IRP

There have been several significant changes since the last study in 2002. The most significant changes are discussed in the following paragraphs.

Allowance Allocation: The Kentucky allowances are distributed among units based on their heat input during previous ozone seasons. The initial allocation (2004-2006) is based on 19982000 heat input and the allowances associated with the 2004-2006 period remains unchanged in this analysis. The next NO_{x} allocation (for 2007-2009) will be based on 2001-2003 heat input, and so on. Currently the Companies' allocation for 2007-2009 is unknown, but is estimated to be 12,571. Allocations for subsequent time periods are shown below. The allocation by unit for the 2004-2006 time period can be found in Appendix B.

EPA Allocated $\mathbf{N O}_{\mathbf{x}}$ Allowances			
$\frac{\text { Year }}{}$	$\underline{K U}$	$\underline{\text { LGE }^{*}}$	$\underline{\text { Total }}$ *
2004	6,764	5,683	12,447
2007	6,569	6,002	12,571
2010	14,814	12,295	27,09
2015	12,345	10,246	22,591

*Only LGE's portion of Trimble 1 (75%) allowances are included.

Clean Air Interstate Rule ("CAIR"): On December 17, 2003, EPA proposed rules to require significant additional reductions/limits for SO_{2} and NO_{x}, to further reduce Ozone and $\mathrm{PM}_{2.5}$ ("fine particulates"). These were published in the Federal Register on January 30, 2004. They would generally apply to the eastern 25-28 states (minus New England) and the District of Columbia (list of states provided below).

Implementation would be based on a "cap-and-trade" or "allowance program" similar to the Acid Rain and NO_{x} SIP Call Programs.

- EPA would allocate predetermined numbers of SO_{2} and NO_{x} allowances to each state and the individual states determine how to allocate these to individual units.
- States will be allocated a set number of allowances annually during Phase I (2010-2014), and a reduced number of allowances annually during Phase II (2015 and beyond).
- NO_{x} emissions will count year-round (not just during the ozone season).
- States are to submit their State Implementation Plans ("SIPs") for implementing the requirements within 18 months of EPA's Final Rule.

In May 2004, EPA issued a Supplemental Rule, providing more details and model cap-and-trade programs for power plants that states may adopt to achieve required emissions reductions. EPA's Fact Sheet issued with the Supplemental Rule states that it expects to complete this rulemaking by the end of 2004, which would make SIP submittals due in mid-2006. The EPA has subsequently delayed the completion of the rulemaking until March 2005. Expectations are that SIP submittals will be delayed until later in 2006 as a result. Because EPA has formally made a finding that certain states are significantly contributing to other states' non-attainment of health-based air quality standards and has begun the rulemaking process, it is almost certain that reduction requirements of this nature will be finalized.

The EPA states that:

- SO_{2} emissions would be reduced by 3.6 million tons in 2010 (approximately 40 percent below current levels) and by another 2 million tons per year when the rules are fully implemented (approximately 70 percent below current levels), and
- NO_{x} emissions would be cut by 1.5 million tons in 2010 and 1.8 million tons annually in 2015 (about 65 percent below today's levels).

Consistent with other recently completed environmental compliance evaluations, the restrictions imposed by CAIR are implemented beginning January 1, 2010 in this analysis.

Early Reduction Credits ("ERC"): As in the 2002 evaluation, the current study has incorporated an allocation of Kentucky's ERCs. The 2002 evaluation used a conservative number of 1,500 . Since the completion of the 2002 evaluation the final number of ERC has been determined. As such, this study reflects an actual allocation of early reduction credits totaling 2,841.

Base NO_{x} Emission Rates: The base NO_{x} emission rate for each unit was updated to reflect the unit's most recent emission rate. This included reflecting the installation of new NO_{x} control technology additions where appropriate. The Base NO_{x} emission rates for each unit can be found in Appendix \mathbf{A}.

Retirement of Green River Units 1-2: Green River Units 1 and 2 were completed in 1950 and provided 25 MW of gross generation each. In 2003, these units were 53 years old. Having operated past their design lives, these units ran a greater risk of catastrophic failure than other units. The challenges facing the units, the necessary actions to remedy those situations as well as their associated cost were explained in detail in the evaluation titled Phase II Evaluation of the Economic Viability of Green River Units 1 and 2. The aforementioned evaluation was provided to the KPSC in Case No. 2003-00434, Response 15.b(1) in the Second Data request of the Commission Staff. Green River Units 1 and 2 were operationally retired December 31, 2003 for economic reasons and subsequently have been removed from the current analysis.

IV. 2004 Ozone Season Compliance

The period of May 31, 2004 through September 30, 2004 was the "first ozone season" in which the Company had to comply with the EPA's SIP Call NO_{x} emission tonnage cap. The 2004 ozone season NO_{x} emissions for the combined companies met the regulatory requirements by a margin of $39 \%(5,987 / 15,288)$. Results for the first ozone season are shown in the table below. The margin calculation of 39% includes ERCs and the full five-month NO_{x} allowances granted
to the Companies by the EPA for the 2004 ozone season. The $5,987 \mathrm{NO}_{\mathrm{x}}$ allowances that were not surrendered remain in the bank of credits available to the corporation for future emissions. The Companies NO_{x} allowance bank is now approximately 50% of the allowances awarded for a full ozone season.

2004 OZONE SEASON PERFORMANCE SUMMARY Actual $\mathrm{NO}_{\mathbf{x}}$ Emissions vs. $\mathrm{NO}_{\mathbf{x}}$ Allowances Allocated					
	EPA Annual Allocation (2004-2006)	Total Early Reduction Credits (ERCs)	Total NO Allowances Available	Actual NO_{x} Emissions (May 31-Sep 30)	Variance in NO_{x} Emissions
KU Total	6,764	954	7,718	5,162	-2,556
LGE Total	5,683	1,887	7.570	4,139	-3,431
Combined Companies	12,447	2,841	15,288	9,301	-5,987

Notes:
Excess Allowance Margin: \qquad 39\%
Negative indicates actual emissions were below the EPA allowance levels.
Allowance allocations and emissions based on LGE's 75\% ownership of Trimble County 1
As explained previously, $2004 \mathrm{NO}_{\mathrm{x}}$ emission allowances were granted for May 1 - September 30, but emissions reporting requirements in 2004 were May 31- September 30. By estimating the NO_{x} allowances for May 31 - September 30, and comparing the actual emissions for the same time period, it can be determined that the Companies complied with regulations by a margin of 9% during the May 31 - September 30 reporting period. This approach more accurately reflects the performance of the Companies NO_{x} reduction systems during the 2004 regulatory period.

2004 Reporting Season Performance Estimate Actual NO_{x} Emissions vs. NO_{x} Allowances Allocated

Combined Companies	Estimated EPA Annual Allocation (May 31-Sep 30)	Actual NOx Emissions (May 31-Sep 30)	Variance in NO_{x} Emissions
	10,267	9,301	-966
	Excess	Allowance Margin:	9\%

Notes:

Negative indicates actual emissions were below the EPA allowance levels.
Allowance allocations and emissions based on LGE's 75\% ownership of Trimble County 1

IV. Current NO N_{x} Allowance Position

Projections indicate that the banking of NO_{x} allowances will not continue over the long-term. Infact, in absence of the installation of additional NO_{x} control technologies the Companies are
expected to begin to draw down the number of banked NO_{x} allowances starting in 2005. Projections are that the Companies will experience a shortfall of 483 tons by the end of year 2010. Once depleted the Companies must either reduce NO_{x} emissions, purchase NO_{x} allowances from the allowance market or a combination of both. The total number of allowances projected to be purchased in absence of implementing additional NO_{x} control would exceed 152,000 tons. The following graph shows the depletion of the Companies' NO_{x} allowance bank over time. A detailed study entitled $2004 \mathrm{SO}_{2}$ Compliance Strategy was completed in November of 2004. This analysis assumes the SO_{2} control technologies recommend by the November 2004 analysis are implemented and are a part of the Base Case plan.

NO \mathbf{x}_{x} Allowance Bank Projection
(Combined Company)

The following figure depicts the Companies' projected ozone season NO_{x} emissions and anticipated annual allowance allocations. CAIR Phase I will increase the Companies' annual

NO_{x} allowance allocation to 27,109 tons, based on a 12 month ozone season. Projected emissions during the same time are expected to increase to over 30,000 tons annually.

Logically, NO_{x} control technologies should be constructed at those locations which are projected to be the major contributors to the Companies' NO_{x} allowance shortfall.

The most significant contributors to the Companies' NO_{x} emissions over the next twenty years are projected to be Ghent 2 and Brown 3. Together, these two units comprise over 25% of the Companies' future NO_{x} emissions. Any long-term compliance strategy must, at a minimum, reduce the NO_{x} emissions from these two locations.

V. NO_{x} Compliance Plan Analysis

The Companies conducted the new analysis using the detailed production cost model, PROSYM ${ }^{\mathrm{TM}}$, and a detailed financial model, Strategist's Capital Expenditure and Recovery ("CER") module.

PROSYM ${ }^{\text {TM }}$ can perform a detailed analysis that takes into consideration the following items:

- Economic dispatch
- NO_{x}-affected dispatch
- Ability to purchase NO_{x} allowances
- New units
- Multi-year compliance
- Consideration of all units in NO_{x} tonnage cap
- More detailed calculation of revenue requirements

PROSYM ${ }^{\mathrm{TM}}$ is capable not only of simulating the economic dispatch of the generating units but also of simulating the NO_{x}-affected dispatch of the generating units. Appendix B contains some general study assumptions including a summary of financial assumptions used in the CER and the market price forecast for SO_{2} and NO_{x} allowances. Note that the assumptions used in this update are identical to the assumptions used in the Companies' $2004 \mathrm{SO}_{2}$ Compliance Strategy. The CER module of Strategist allows the user to examine the book, tax, and regulatory accounting effects for construction alternative(s) and calculates the present worth of revenue requirements for each project

Discussion of Alternatives

The Companies' approach to NO_{x} compliance is currently and has been in the past to "overcomply" on some units rather than devising a plan that would lower each individual unit's NO_{x} emissions to levels below its allocated allowances. The excess allowances from the units that over-comply would be used toward the units that did not have the allowances needed to comply.

This is the same approach taken by the Companies for SO_{2} compliance purposes. To address the Companies' projected shortfall, and for purposes of this update, the SCR technology was the only NO_{x} emission reduction technology evaluated. SCRs are a proven technology and one in which the Companies have operational experience. The SCR retrofits were considered at Brown 3 and Ghent 2 and were installed in 2010; the year in which current projections indicate the Companies will NO_{x} allowance bank will become depleted.

The table below enumerates the four options considered in this evaluation. Option 0 , which is the Base Case, has no additional NO_{x} control technologies installed other than what exists on the Companies' generation system today and would represent a 100% reliance on the NO_{x} allowance market. It should be noted that dependence on the allowance market does not come without risk. Appendix \mathbf{F} shows that the NO_{x} allowance market varied greatly in 2004, varying from a minimum of $\$ 1,735 /$ ton to a maximum of $\$ 2,750$. As previously mentioned, the Base Case does assume the Companies will meet its SO_{2} Compliance shortfall as recommended in the $2004 \mathrm{SO}_{2}$ Compliance Strategy.

Individual NO_{x} Control Alternatives

Option		NO_{x} Technology 0	Description Base Case	$\frac{\text { In-Service Date Capital }}{\text { Tota }}$

Notes:
Total Capital Cash Flow (\$000)" represents the sum of annual construction costs.

Detailed inputs including fixed and variable O\&M expenses, derates and NO_{x} reduction percentages associated with each technology can be found in Appendix C.

In order to develop a least cost strategy, the individual alternatives were also combined in an effort to further reduce the revenue requirements associated with NO_{x} compliance. As a result, six different cases were modeled (including the Base Case) and evaluated to determine which plan produced the least cost revenue requirements. The following defines the six cases evaluated.

Definitions of Cases Evaluated

Base Case: (Option 0) Starting point for this update and assumes existing NO_{x} control equipment only (i.e. No additional NO_{x} control equipment is placed in-service during the study period). Assumes scrubbers are installed at Ghent 2-4 and Brown 1-3 as recommended in $2004 \mathrm{SO}_{2}$ Compliance Strategy. Allowances are purchased on an as-needed basis in the year of need and environmental dispatch on the Companies' generation system continues.

Case01: (Base Case + Option 1) Constructs an SCR in the Base Case on Brown 3 in 2010. Allowances are purchased on an as-needed basis in the year of need and environmental dispatch on the Companies' generation system continues.

Case02: (Base Case + Option 2) Constructs an SCR in the Base Case on Ghent 2 in 2010. Allowances are purchased on an as-needed basis in the year of need and environmental dispatch on the Companies' generation system continues.

Case03: (Base Case + Option 3) Constructs an SCR in the Base Case on Ghent 2 in 2008. Allowances are purchased on an as-needed basis in the year of need and environmental dispatch on the Companies' generation system continues.

Case04: (Base Case + Option $1+$ Option 2) Constructs an SCR in the Base Case on Brown 3 in 2010 and Ghent 2 in 2010. Allowances are purchased on an asneeded basis in the year of need and environmental dispatch on the Companies' generation system continues.

Case05: (Base Case + Option $2+$ Option 4) Constructs an SCR in the Base Case on Ghent 2 in 2010 and Brown 3 in 2016. Allowances are purchased on an asneeded basis in the year of need and environmental dispatch on the Companies' generation system continues.

A production cost projection (using PROSYM ${ }^{\mathrm{TM}}$ model) and a capital cost projection (using the CER model) was made for each case. Any NO_{x} (or SO_{2}) allowance shortfall could be purchased from the respective allowance market at the forecasted market prices for that year as shown in Appendix B. Consistent with other studies of this type, allowances transfers between Companies were permitted for compliance.

Results of Analysis

The table below summarizes the results of the six Case runs. For ease of comparison the total present value revenue requirement ("PVRR") of each Case has been categorized into four areas:

1. Production Costs: represent the revenue requirements associated with fuel, fixed and variable operation and maintenance expenses and purchased power expenses
2. $\mathrm{NO}_{\underline{x}}$ Allowance Costs: represent the revenue requirements associated with the purchasing of any NO_{x} allowances.
3. SO_{2} _Allowance Costs: represent the revenue requirements associated with the purchasing of any SO_{2} allowances.
4. Capital Costs: represent the revenue requirements associated with any capital expenditures for the case.
In addition to cost information, other relevant information pertaining to each Case is shown. Information such as the total number of $\mathrm{SO}_{2} / \mathrm{NO}_{\mathrm{x}}$ allowances purchased over the study period and the year in which the $\mathrm{SO}_{2} / \mathrm{NO}_{\mathrm{x}}$ allowance bank is depleted.

Case Summary (Assuming: Base Capital Costs, Base $\mathrm{SO}_{2} / \mathrm{NO}_{n}$ Forward Price Forecast) (All Costs in 2005 PVRR \$1000)										
ALL CASES COMPARED TOBase Case (Trimble 2 In-service 2010, Wel FGD HS GH234, Wet FGD HS BR123)										
Case	$\begin{gathered} \text { Production } \\ \text { Cost } \end{gathered}$	NOX Allowance Cost	$\begin{gathered} \mathrm{SO2} \\ \text { Allowance } \\ \text { Cost } \end{gathered}$	Capital	Total	incrernental over Base	First Year of SO_{2} Allowance Purchase	```First Year of NO, Allowance Purchase```	Total SO_{2} Allowance: Purchased	Total NOs Allowances Purchased
Base Case	13,671,906	147,085	164,055	813,000	14.796,046	Base	2008	2010	677.793	152,403
Case02- Baw - Gnz SCR 2040	13,68s,615	74,657	183,260	905,256	14,832,773	36,732	2008	2018	674,933	01,00
Case01- Base + Br3 SCR 2010	13,693,847	88.738	162.988	889,174	14,834,745	38,699	2008	2015	674,034	94,476
Case03- Base + Gh2 SCR 2008	13,691,231	70,149	163,204	913,044	14,837,629	41.583	2008	2016	674.747	77,371
Case05- Base + Gh2 SCR 2010, Br3 SCR 2016	13,700.985	39.843	162.783	964.988	14,868,599	72.553	2008	2016	672,869	44,070
Case04-Base + Br3 \& Gh2 SCR 2010	13,712,703	19.618	162,187	981,431	14,875,339	79,293	2008	2021	671,063	24,530

The PVRR of each Case is compared to that of the Base Case. The Base Case is the first case listed in the table. All other cases follow in increasing order of PVRR. For example, Case02 is $\$ 36.732$ million (PVRR) more expensive than the Base Case but significantly reduces the
dependence on the NO_{x} allowance market by delaying the first year of NO_{x} allowance market purchases until 2016. The table above is summary of the annual data associated with comparing each Case to the Base Case, which can be found in Appendices D and E. Appendix E further breaks down the annual data and contains a by unit summary of the NO_{x} emission rates and annual tons emitted by each unit in the Companies' generation system.

The following is a detailed description of the results of each case.

Base Case - is a case where no NO_{x} compliance options were implemented except for an emission dispatch adder for NO_{x}. PROSYM ${ }^{\mathrm{TM}}$ penalized the dispatch cost of each unit based on the unit's expected NO_{x} emissions at a rate equal to the forecast price of NO_{x} allowances as shown in Appendix B. This emission affected dispatch is identical in implementation to the SO_{2} adder that has been in use since 1995 for the KU system and since 2000 for the LG\&E system. The NO_{x} adder is in addition to the SO_{2} adder. The case emits 605,043 tons of NO_{x} from 2005 through the end of the study period.

The PVRR is $\$ 14,796$ million and consists of $\$ 13,671$ million in production costs and $\$ 813.0$ million in capital costs (these costs are for the wet scrubbers at Ghent and Brown and associated Brown Ash pond work), $\$ 164.1$ million in SO_{2} allowance market purchases and $\$ 147.1$ million in NO_{x} allowance market purchases. The Companies deplete their combined NO_{x} allowance bank and are forced to procure NO_{x} allowances from the market beginning in 2010. As with other plans that follow, the production costs are for total system and the capital costs are due only to environmental compliance options.

This case is shown only for comparison purposes. It is highly unlikely that the Companies would be able to purchase enough allowances to comply with the regulation. In addition, having to obtain such a large volume of allowances would most likely drive up the overall allowance purchase price.

Case01-Br3SCR in 2010- is a case developed to evaluate the economics of installing an SCR on Brown 3 at the time the Companies' depletes its NO_{x} allowance bank. In this case, the Brown 3 SCR would be the Companies' next and only NO_{x} control technology installed. Case01 reduces the annual NO_{x} emissions by approximately 3,500 tons. With total NO_{x} emissions over the study
period reduced to just over 547,100 tons, the depletion of the NO_{x} bank is delayed until 2015 . The total amount of NO_{x} allowances purchased in this case was second only to the Base Case with over $94,400 \mathrm{NO}_{\mathrm{x}}$ allowances purchased over the study period.

The PVRR is $\$ 14,834$ million and consists of $\$ 13,693$ million in production costs, $\$ 889.2$ million in capital costs, $\$ 163.0$ million in purchased SO_{2} allowances and $\$ 88.7$ million for the purchase of NO_{x} allowances. The total PVRR of this case exceeds those of the Base Case by $\$ 38.7$ million. This case meets the requirements of the annual NO_{x} tonnage limits through 2015 and complies through the end of the study period by purchasing NO_{x} allowances.

Case02-Gh2 SCR in 2010- is a case developed to evaluate the economics of installing the Ghent 2 SCR instead of the Brown 3 SCR at the time the Companies' NO_{x} allowance bank is projected to expire. In this case, the Ghent 2 SCR would be the next and only NO_{x} control technology installed. All other technologies are the same as in the Base Case for all units. The Ghent 2 SCR results in a reduction in the annual NO_{x} emissions by over 4,000 tons from the Base Case.

The PVRR of this case is $\$ 14,832$ million and consists of $\$ 13,689$ million in production costs, $\$ 905.3$ million in capital costs, $\$ 163.3$ million for the purchase of SO_{2} allowances and $\$ 74.6$ million for the purchase of NO_{x} allowances. The total cost of Case 02 exceeds the Base Case by $\$ 36.7$ million. Construction of the Ghent 2 in 2010 delays until 2016 the need to purchase NO_{x} allowances. Compliance through the end of the study period is obtained by purchasing of NO_{x} allowances.

The detailed PROSYM ${ }^{\text {TM }}$ runs confirm that the Ghent 2 SCR in 2010 is approximately $\$ 2.0$ million more favorable than construction of an SCR on Brown 3 in the same year. This case also has a cumulative PVRR of $\$ 36.7$ million more than the Base Case.

Case03-Gh2 SCR in 2008- is Case02 but with the Ghent SCR installation schedule accelerated to allow for an in-service date of 2008. All other technologies are the same for all units. The purpose of this case was to evaluate whether or not accelerating the most attractive SCR option (Ghent 2 in 2010) improves the economics over a 2010 install. The results indicate that installing the Ghent 2 SCR in 2010, based on the assumptions used in this analysis, is more favorable than, installation in 2008.

The PVRR is $\$ 14,837$ million, approximately $\$ 5$ million higher than a 2010 installation of the Ghent 2 SCR. While NO_{x} purchase cost decreased by about $\$ 5$ million, the increase in capital costs of $\$ 10$ million associated with accelerating the project offset any potential benefits compared to Case02. This case also has a cumulative PVRR of $\$ 41.5$ million more than the Base Case.

Case04-Gh2 SCR 2010, Br3 SCR 2010- is a case that combines the most attractive Ghent 2 SCR option (Ghent 2 SCR in 2010) with the Brown 3 SCR in 2010. The purpose of this case was to evaluate the economics associated with a simultaneous installation of SCRs at Ghent and Brown. This case reduces the number of NO_{x} allowances purchased and NO_{x} tons emitted to the lowest of any of the cases evaluated in this update. By reducing NO_{x} emission to 477,170 tons over the study period, a shortfall of only 24,530 tons remained with the first NO_{x} allowance market purchase not occurring until 2021.

The PVRR associated with this case is $\$ 14,875$ million and consists of $\$ 13,712$ million in production costs, $\$ 981.4$ million in capital costs, $\$ 162.2$ million for the purchase of SO_{2} allowances and $\$ 19.6$ million for the purchase of NO_{x} allowances. While the total cumulative cost for this case is higher than the Base Case there is substantially less NO_{x} market exposure associated with the simultaneous installations of SCRs at Ghent and Brown. This case also has a cumulative PVRR of $\$ 79.3$ million more than the Base Case.

Case05-Gh2 SCR 2010, Br3 SCR 2016- is Case02 with an SCR added at Brown 3 in 2016. The year 2016 is the first year that Case 02 was required to make NO_{x} allowance market purchase in order to comply. The purpose of this case is to determine whether it is less costly to delay the Brown SCR until the year in which the NO_{x} allowance bank would, in absence of an SCR at Brown 3, become depleted. This case reduces the number of NO_{x} emissions over the study period to 496,710 tons from 605,043 tons in the Base Case and begins NO_{x} allowance market purchases in 2016, just as in Case02. So the installation of the Brown 3 SCR in January of 2016 does not reduce NO_{x} emission enough to delay the need to participate in the NO_{x} allowance market. This case required the purchase of $44,070 \mathrm{NO}_{x}$ allowances through the end of the study period, second only to Case 04 for the fewest in any of the cases evaluated.

The PVRR is $\$ 14,868$ million and consists of $\$ 13,700$ million in production costs, $\$ 965.0$ million in capital costs, $\$ 39.8$ million for the purchase of NO_{x} allowances and $\$ 162.8$ million for the purchase of SO_{2} allowances. The total cumulative cost for this case is less than Case04, so the delay of the Brown 3 SCR until 2016 was favorable to the economics by approximately $\$ 7$ million (compared to Case04). However, the Case still has a cumulative PVRR of over $\$ 72.5$ million more than the Base Case.

As previously mentioned an annual summary of all the case costs and emissions can be found in Appendices D and E of this document.

V. Summary and Recommendation

NO_{x} control equipment currently installed on the Companies' generation system is projected to be sufficient until the 2010 timeframe when the NO_{x} allowance bank is expected to become depleted. This coincides with Phase I of the CAIR. At that time the Companies will have to further reduce NO_{x} emissions, purchase NO_{x} allowances from the allowance market or a do both. This evaluation considered SCR installations at the two largest sources of NO_{x} emissions on the Companies system; Ghent 2 and Brown 3, the purchasing of allowances and a combination of new SCR installations and purchasing of NO_{x} allowances. Of the cases considered in this evaluation, the construction of an SCR on Ghent 2 in 2010 is the least cost manner in which the Companies can lessen reliance on the NO_{x} allowance market and is slightly more favorable than an SCR on Brown 3. While the 2010 SCR at Ghent 2 does reduce NO_{x} allowance market purchases from 152,000 to just over 81,000 it does not eliminate the Companies' dependence on the NO_{x} allowance market for compliance beginning in 2016.

NO \mathbf{x}_{x} Allowance Bank Projection
(Combined Company)

Compared to the Base Case the Ghent 2 SCR is projected to reduce annual NO_{x} emissions by 4,000-5000 tons enabling the Companies' NO_{x} allowance bank to increase during the 2010-2013 time period. In 2013, the bank reaches a level of just over 6,400 tons and is once again depleted by 2016, the $2^{\text {nd }}$ year of CAIR Phase II.

Annual NO_{x} Emissions and Allowance Allocations

Based on the current analysis the Companies should plan for additional NO_{x} control technologies being required around 2010 in order to comply with environmental legislation. Given the large volume of NO_{x} allowances projected to be purchased from the NO_{x} allowance market in absence of additional controls, the Companies should continue to refine cost expectations pertaining to an SCR being constructed at Ghent 2 and at Brown 3. This analysis favors the installation of an SCR at Ghent 2 over that of Brown 3, but monitoring the construction costs at both locations should be continued to confirm the relative benefits of Ghent 2 over Brown 3 exist as the 2010 time period approaches. Assuming a three-year SCR construction schedule, the Companies anticipate being able to refine cost estimates and monitor the development of relevant issues (i.e. NO_{x} market etc) through the end of 2006 and still allow construction of the next technology in time to address the 2010 need.

The Companies will continue to maintain flexibility in their attainment of NO_{x} compliance while keeping a close watch on legislative activities, technology enhancements, regulatory rulings, and judicial actions in order to meet the on-going emissions reduction requirements in a prudent and least-cost manner.

APPENDIX A

Base NO_{x} Emission Rates

Unit	NO_{x} Emission (lib/Mbtu)	Unit	$\stackrel{\mathrm{NO}_{\mathrm{x}}}{\text { Emission }}$ Emission (lib/Mbtu)
Brown 1	0.500	Cane Run 4**	0.320
Brown 2	0.320	Cane Run 5**	0.341
Brown 3	0.270	Cane Run 6**	0.274
Ghent 1	0.380	Mill Creek 1**	0.250
Ghent 2	0.300	Mill Creek 2*	0.250
Ghent 3*	0.035	Mill Creek 3*	0.037
Ghent 4*	0.035	Mill Creek 4*	0.035
Green River 3	0.390	Trimble 1*	0.035
Green River 4	0.380	Cane Run 11	0.440
Tyrone 1	0.200	Paddy's Run 11	0.440
Tyrone 2	0.200	Paddy's Run 12	0.440
Tyrone 3**	0.3400	Paddy's Run 13	0.090
Brown 5	0.090	Trimble 5	0.056
Brown 6	0.090	Trimble 6	0.056
Brown 7	0.090	Trimble 7	0.056
Brown 8	0.120	Trimble 8	0.056
Brown 9	0.120	Trimble 9	0.056
Brown 10	0.120	Trimble 10	0.056
Brown 11	0.120	Waterside 7	0.440
Haefling	0.440	Waterside 8	0.440
		Zorn	0.440

* Unit has increased rate at low load levels.
**Varies, value shown is unit's minimum emission rate.

APPENDIX B

General Assumptions

- Study Period: 20-year period for Production Cost impacts (2005-2025)

30 -year period for Capital Costs impacts (2005-through book life of project)
The production costs include items such as fuel, O\&M, purchase power etc and are estimated using the PROSYM ${ }^{\text {TM }}$ production model. This model was run for the 2005-2025 time period.

The revenue requirements associated with capital costs are determined via the Capital Expenditure and Recovery module of the Strategist production and capital costing software. Capital projects with a 20 year book/tax life and an in service date after 2005 would have the last years of their life excluded from the revenue requirement calculation if capital costs impacts were halted at 2025. Doing so would have the affect of underestimating the capital cost of alternatives and would favor construction of new projects. Therefore, to completely account for capital projects costs over their lifetime, the revenue requirements associated with new capital projects were extended through the end of their book life.

- KU/LGE continues as a regulated entity subject to the oversight of the Kentucky Public Service Commission and that the Commission continues the requirement of the Companies implementing the least cost strategy to the benefit of the native load ratepayers.
- The capital costs, $\mathrm{O} \& \mathrm{M}$ costs and the costs of increased emissions (both NO_{x} and SO_{2}) associated with the addition of new environmental projects will be subject to recovery through the Environmental Cost Recovery mechanism.
- Financial Data

$>$	Discount Rate (\%):	7.26%
$>$	Federal Income Tax Rate (\%)	40.36%
$>$	AFUDC Rate (\%):	7.26%
$>$ Insurance Rate (\%):	0.07%	
$>$ Property Tax Rate (\%):	0.18%	
$>$ Percentage of Debt in Capital Structure (\%):	46.06%	
$>$ Debt Interest Rate/Weighted Cost of Debt (\%):	3.16%	
$>$ Desired Return on Rate base (\%):	7.26%	
$>$ Capitalized Interest Debt Rate (\%):	3.16%	
$>$ Envionmental Projects Book Life (years):	20 years	
$>$ Environmental Projects Tax Life (years):	20 years	
$>$ Annual capital cost escalation rate (\%):	3.0%	
$>$ Annual Fixed O\&M escalation rate (\%):	2.0%	
$>$ Annual Variable O\&M escalation rate (\%):	2.0%	

- No unit retirements occur on the Companies' generating system within the study period.
- SO_{2} and NO_{x} Emission Costs (Base Assumptions)

- NO_{x} Allocation By Unit (2004-2006 Ozone Seasons)

NOX
Unit Allowances

Brown 1	
	Brown 2
Brown 3	235
Brown 6	346
Brown 7	831
Brown 8	7
Brown 9	9
Brown 10	46
Brown 11	44
Ghent 1	41
Ghent 2	32
Ghent 3	1093
Ghent 4	1090
Green River 1\&2	1104
Green River 3	1113
Green River 4	107
Pineville 3	197
Tyrone 1\&2	242
Tyrone 3	79
Cane Run 4	5
Cane Run 5	143
Cane Run 6	389
Mill Creek 1	360
Mill Creek 2	420
Mill Creek 3	784
Mill Creek 4	719
Paddys Run 12	978
Trimble Count 1	1058
	4
Total	971

Note:
Only LG\&E portion of Trimble County 1's allowances are included.

APPENDIX C

Appendix (: Petailed (wost and Operational Information
Detailed Cost and Operations Assumptions
Option Number

	Brown 3 SCR	Ghent 2 SCR	Ghent 2 SCR	Brown 3 SCR
NO_{x} Control Technology In-Serice Year	Jan-10	Jan-10	Jan-08	Jan-16
NO_{x} Removal (\%)	89\%	90\%	90\%	89\%
Post Tech. NO_{x} Emisson Rate (\#NO$\left.{ }_{\text {x }} / \mathrm{mmBtu}\right)^{*}$	0.03	0.03	0.03	0.03
Incremental Variable O\&M (Nominal Yr \$/MWH)	0.3500	0.3334	0.3205	0.3942
Derate (MW)	2	2	2	2
Incremental Fixed O\&M (Nominal Yr \$000/yr)	\$490	\$433	\$416	\$551
Lump Sum Cash Flow (Nominal Yr \$000)**	\$76,416	\$92,544	\$87,232	\$91,243

Notes:

All costs are incremental costs. Fixed and Variable costs escalate at 2% annually. Capital costs are escalate at 3% annually. *Higher than shown NO_{x} emission rates at low generation levels. Represents 90% reduction in NO_{x} or a floor of $0.03 \# \mathrm{NO}_{x} / \mathrm{mmbtu}$.
**Capital expenditures are completed one year prior to " NO_{x} Control Technology In-Service Year" to allow technology to be in-service January 1.

APPENDIX D

Cost Comparison of Alternative $\mathrm{NO}_{\mathbf{x}}$ Compliance Plans

APPENDIX E

\％		空			
\％		范			
\％		菏	¢ ड		
$\stackrel{\text { ¢ }}{\substack{ \\ \\0}}$	$\stackrel{\rightharpoonup}{\vec{N}}$	㵄			
$\stackrel{\sim}{*}$		荌			
		品			
－		莫			
\cdot		$\begin{aligned} & \mathbf{y} \text { K } \\ & \hline \mathbf{\%} \end{aligned}$			
		若			
		$\stackrel{\text { H }}{\underset{\sim}{3}}$			
\cdot		世			
－		$\begin{aligned} & \text { H } \\ & \text { H. } \end{aligned}$			
－	-	$\underset{\ddot{\Xi}}{\underset{\Xi}{4}}$			
－	- 荌置	$\underset{\substack{4 \\ \hline 0}}{\text { ¢ }}$			－
－		药			0000000000000000000000 y
－		\%			
－		苞			
．		$\stackrel{8}{\mathbf{4}}$			
	$0 \text { 药 }$	4			
		－			
		－			

Case01- Base + Br3 SCR 2010

Unin nox Emiss rate mists	Ownexatp	2068	2004	200\%	2004	2064	2000	2093	2032	2013	2014	2098	204	2017	2081	2643	2020	202,	2023	2039	2034	2028
Brown 1	kU	0.502	0502	0.503	0502	0.502	0509	0.304	0.501	0502	0.504	0.501	$0.50:$	0.501	0.604	0.501	0.501	0.501	0.501	0.501	0.501	0.501
Brown 2	ku	0.321	0.320	0.321	0.320	0.320	0.320	0.320	0.320	0320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320
Brown 3	ku	0.270	0.270	0.270	0.270	0.270	0033	0033	0.33	0032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
Ghent 1	kJ	0.055	0.054	0.054	0.056	0.056	0.062	0.071	0.066	0.069	0.065	0.069	0.068	0.061	0058	0.059	0.058	0.057	0.057	0.056	0.050	0.058
Ghent 2	ku	0.301	0.300	0.300	0.300	0.300	0.300	0300	0.300	0.300	0300	0.300	0.300	0300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300
Grami 3	KU	0.039	0.038	0.039	0.035	0.038	0039	0.038	0.036	0.038	0.039	0.039	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.039	0.038	0.038
Gment 4	kU	0.040	0.039	0.041	0.042	0.040	0.039	0039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.040	0.039	C.039
Grean River 3	kU	0.392	0.393	0.392	0.392	0.351	0392	0393	0.383	0392	0.392	0.392	0.392	0.391	0.392	0.391	0.391	0.391	0.391	0.391	0.331	0.391
Graen Rner 4	kU	0.382	0.381	0.301	0.381	0.361	0.381	0.382	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0381	0.381	0.381	0.381	0.381	0.381	0.381
Tyrone 3	ku	0.381	0.381	0.383	0.384	0.388	0382	0383	0.383	0.388	0.386	0388	0369	0.392	038 B	0.391	0.391	0.391	0.391	0.395	0.395	0.398
Cane Run 4	lge	0.325	0.326	0.326	0.327	0.327	0328	0.329	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.32 a	0.328	0.328	0.328	0.328	0.328	0.326
Cane Run 5	LGE	0.373	0.375	0.379	0.379	0.379	0374	0.373	0.374	0.377	0.378	0.378	0.380	0.381	0382	0383	0.385	0.385	0.385	0.387	0.387	0.368
Cmeme Run 6	LGE	0.308	0.308	0.309	0306	0.305	0302	0301	0.302	0362	0.304	0.304	0.305	0.306	0.306	0.307	0.307	0.308	0.309	0.309	0.309	0.310
Mali Creok	LGE	0.266	0.266	0.267	0.267	0.267	0.265	0.264	0.265	0.265	0.265	0.256	0.266	0.287	0.267	0.267	0.267	0.258	0.268	0.268	0.268	0.288
mall Creek 2	LGE	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252
man Crooh 3	LGE	0.057	0.059	0.080	0.059	0.059	0.060	0.059	0058	0057	0.056	0.058	0.058	0.059	0.058	0.058	0.060	0.059	0.057	0.058	0.058	0.059
Mill Crash 4	LGE	0.039	0.039	0040	0.040	0.039	0041	0.040	0041	0.041	0.040	0.040	0.040	0.040	0.039	0.039	${ }^{0} .039$	0.061	0.039	0.040	0.039	0.040
Trimble County 1	LGE	0.049	0.047	0.047	0.047	0.047	0.048	0.048	0.047	0047	0.047	0.048	0.047	0.049	0.047	0.047	8.047	0.047	0.047	0.047	0.047	0.047
Trimbe County 2	KU	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0070	0.070	0.070	0.070	0.070	0070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
Trimbee County 2	LGE	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	¢0,0	0.070	0.070	0.070
Peakers	ku	0.976	0.074	0.073	0.975	0.074	0.075	0.075	0.076	0076	0.072	0.070	0.069	0.068	0.068	0.067	0.066	0.065	0.065	0.064	0.064	0.063
Peaxers	lge	0.072	0.070	0070	0.071	0.071	0.072	0.072	0.074	0073	0.070	0.069	0.68	0.067	0.067	0.066	0.066	0.064	0.064	0.064	0.964	0.063
gCrubier removal eff.																						
Brown 1		0\%	0\%	0\%	0\%	0\%	0**	0%	0%	**	0x	or	0\%	$0 \times$	$0 \times$	0%	0\%	ox	$0 \times$	$0 \times$	$0 \times$	0\%
Brown 2		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0*
Brown 3		as	$0 \times$	0%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0%	0\%	0\%	0%	0\%	0%	0\%	0%	0%	0\%	0*
Ghent !		0\%	0\%	0\%	0\%	0\%	0%	0%	0%	0\%	0\%	0%	$0 \times$	0%	0\%	0%	0\%	0\%	0%	0\%	0\%	0\%
Ghent 2		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0%	0\%	0%	0\%	0%	0\%	0%	0\%	$0 *$	0\%
Ghomi 3		0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0%	0\%	$0 \times$	0%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0%	0\%
Ghenl 4		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0%
Granen Rnar 3		0\%	0\%	0\%	0*	0\%	0*	0\%	0%	0%	0\%	$0 \times$	0\%	0%	0\%	0\%	0\%	0%	0\%	0%	0\%	0%
Gram River 4		0\%	0\%	0\%	$0 \times$	0\%	0\%	0*	0\%	0%	0%	0%	0%	0\%	0%	0%	$0 \times$	0\%	0\%	$0 \times$	0\%	0%
Tyrone 3		0\%	0%	0\%	0%	0\%	0\%	0%	0\%	0\%	0%	0\%	$0 \times$	0%	0%	0\%	0\%	0\%	0\%	$0 *$	0\%	0\%
Cane Rum 4		0\%	0%	0\%	0\%	0*	0\%	0\%	0%	0%	0%	0\%	$0 \times$	0%	\% \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Cane Run 5		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0x	0\%	$0 \times$	$0 \times$
Cane Run 6		0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0%	0%	0%	0\%	0%	08	0\%	0\%	0%	0\%	0*
Miti Craek 1		0%	0\%	0\%	0%	0\%	0\%	0\%	0%	08	0\%	0\%	0\%	0\%	OH	0\%	0\%	0\%	0\%	0\%	0\%	$0 \times$
mal Crook 2		0\%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	0%	$0 \times$
Mit crook 3		0\%	0\%	$0 \times$	0\%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Muth Crook 4		0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	$0 \times$	$0 \times$
Timmobe County 1		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0%	\%\%	0\%	0\%	0\%	0%	0\%
Trimbee County z		0%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%	0\%	0%	0\%	0%	0\%	0\%
Trimber County 2		0\%	0%	0\%	0\%	0%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0%	0\%	0x	0\%	0%	$0 \times$	0%	0\%	0*
Peokers		0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0x	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%
Paokers		0\%	0*	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	$0 \times$	0\%	0%
TOMS MOM EMTTED		2000	2005	2007	2008	2002	2040	2049	2012	2013	2054	2095	2016	2097	204	2041	2020	2809	202\%	2025	2024	2028
Bromi 1	ku	659	606	689	596	745	1,649	1,548	1.513	1,409	1,656	1,732	1,790	${ }_{1} 1774$	1,766	1,84\%	1,687	1,903	1,924	1,950	1,962	1.976
Brown 2	ku	669	767	664	787	844	1.834	t.794	1.828	1.845	1.837	\$,664	1.863	1,899	1.924	1.949	1.952	1.960	1.780	1.996	2.018	2.021
Brown 3	ku	1.147	1.274	1.590	1.519	4,704	469	476	429	489	501	503	513	521	519	469	525	533	537	539	549	549
Gtient 1	ku	452	446	423	447	452	1.069	1.170	1,107	t. 133	988	1.163	1.141	1.055	1,017	1.024	1,009	916	1,019	990	1,020	1.035
Ghent 2	ku	1,784	1.853	1,766	2,316	1,936	4.836	4.814	4.332	4.874	4.801	4,874	4.892	4.952	4.895	4,532	5.045	5.151	5.198	5,239	5.191	5.247
Ghent 3	ku	322	319	353	343	343	668	743	752	762	762	768	768	589	769	770	771	77	782	79	697	780
Ghent 4	ku	328	325	333	338	355	781	770	${ }_{778}$	773	784	787	711	790	791	794	792	797	800	721	800	809
Green River 3	ku	284	301	364	342	321	764	670	723	175	793	830	772	904	907	950	945	997	1.013	669	1,024	1,059
Green River 4	KU	469	455	515	496	489	1.000	1.036	1.054	1.127	1.170	1.211	1.208	1.124	1.279	1,358	1.327	1,376	1,407	1.402	1.274	1,434
Tyrone 3	ku	276	300	376	358	340	679	694	760	802	827	855	as\%	${ }^{858}$	907	1.002	971	1.042	1.048	1,074	966	1.091
Cmaram 4	lge	766	734	801	760	7818	1,360	1,096	t,344	1.318	1.456	1,466	1.511	1.594	1.411	1,716	1,678	1,740	1.760	1,793	1,917	1.636
Camerun 5	LGE	888	823	959	848	735	1.638	1.478	1.500	1.647	1.732	1.627	1,074	1,979	2.004	2.003	2.122	2.202	1.971	2.279	2.291	2.346
Cane Run 6	LGE	1,089	1.122	1,019	971	965	2.155	1,927	2.035	2.084	2.101	2.231	2.049	2,343	2.285	2,424	2.404	2.502	2.536	2,275	2.610	2.624
Mill Creen 1	leg	1.112	1.052	1.111	1.055	1.080	2.396	2.472	2.199	2.569	2.473	2.642	2.504	2.695	2.546	2.757	2.382	2.805	2.648	2.829	2.697	2.871
Mulicrek 2	lGE	1.027	1,146	948	1,128	1,098	2.520	2.082	2.506	2.384	2.575	2.429	2.605	2,495	2.639	2.314	2.683	2.545	2.735	2.576	2.767	2,613
Mist Crook 3	LGE	37	389	369	387	377	${ }^{886}$	812	851	725	844	819	873	846	885	837	914	780	875	846	${ }^{896}$	${ }^{664}$
Mill Crook 4	LGE	301	308	316	309	308	667	689	656	704	${ }_{714}^{603}$	717	676	725	672	719	876	747	619	740	${ }^{688}$	749
Trimesio Coumy	leg	304	296	298	296	300	722	662	713	655	714	667	710	617	714	654	712	662	718	657	723	607
Trimber County 2	Ku	0	0	0	0	0	590	1.006	1.013	1.008	1.012	1.016	1.018	1.015	1.017	1,019	1.022	1,020	1,020	1,020	1.024	1.021
Trimber counly 2	LGE	0	\bigcirc	0	0	0	207	353	356	354	356	357	358	357	357	358	359	358	358	359	360	359
Puakers	KU	114	135	174	199	267	273	250	298	385	428	477	507	575	580	757	747	${ }^{64}$	944	1.059	1,156	t. 198
Puakars	lge	50	63	82	95	126	126	117	142	176	199	232	249	283	290	371	383	431	488	549	600	626
nox Emssionim fonsa total																						
		12.405	12.763	13.196	13,568	13,509	27,349	26,645	27, 120	27,930	26.352	23,067	25,422	30,088	30,194	30,702	31,074	32,44	32,150	32,351	33,127	33,505
Allowances																						
KU EPA Alocater NOX Allowneces		6.764	6,764	6.569	6.569	6.569	14.814	14.814	14.614	14.814	14.814	12.345	12.345	12.345	12.345	${ }^{12.345}$	12.345	12.345	12.345	12.345	12.345	12.325
		5.683	5,683	5.092	E.092	6.002	12.295	12.295	12.295	12.29	12.295	10.246	10.245	10.245	10.246	$\frac{10,246}{22,51}$	10.246	$\frac{10246}{}$	$\frac{10246}{2296}$	10.246	10.245	10.246
Toun KLicce era Allocmed Nox Allowmoes		12.447	12,447	12.574	12.571	12.571	27.109	27.109	27. 109	27.09	27.109	22.591	22.591	22.591	22.591	22.591	22.697	22,591	22.591	22.591	22.591	22.691
		0	0	0	0	0	0	\bigcirc	0	0	-	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		0	0	0	0	
KU's Postion of OMU Surphus/Shortioll		,	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Combried Company Purchasos		,	,	0	0	0	0	0	0	0	\bigcirc	5.446	6.831	7.497	7.603	8.114	8.483	9.497	9.589	9.970	10.536	10.914
Sall		$=0$	${ }^{0}$	0	=az=	= $=$ =	- ${ }^{\circ}$	$\stackrel{\circ}{ }$	${ }^{\circ}$	${ }^{\circ}$	=sme ${ }^{\circ}$				s==-3=					-n-or=	...n- ${ }^{\circ}$	
TOTAL KULGE ALLOWANCES		12,447	12,447	=-72, $\mathbf{t 2}$,	= 12.5871	12,571	27, 109	27,109	27, 109	27,109	27,109	24,097	29,422	30,040	30,194	30,702	31.074	32,083	32,180	32,561	33,127	33,503
		42	315	-625	1,017	.930	240	464	. 11	881	-1.443	-1.030	0	0	0	0	0	0	0	0	0	
ALLOWANCE BANK Totel KUAGE Alowance Burnk (End of Year)		6.029	5,743	s,083	4,071	5,142	2,301	3,365	3,354	2,473	1,030	。	0	0	0	0	0	0	0	0	-	-

								NOX	SUMMA	ARY BY	Y YEAR											
UnH NOX Emiss rate memit	Ownershiv	2000	2004	2007	2008	2007	2040	2041	2012	2042	2014	2018	204	2017	2014	2017	2020	2081	2022	2023	2034	2028
Brown 1	KU	0.50%	0.5073	0.501	0502	0.507	0.501	0.501	0. 509	0.502	-501	0.501	0.501	0.501	0.801	0.001	0.501	0.501	0.509	0.501	0.501	0.501
Brown 2	Ku	0.321	0.320	0.321	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0320	0.320	0.320	0.320	0.320	0.320	0320	0.320	0.320	0.320	0.320
Erown 3	Ku	0270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.278	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0.270
Ghent ${ }^{\text {a }}$	Ku	0.055	0.054	0.054	0.056	0.056	0.060	0.067	0.063	0.068	0.065	0.065	0.062	0.061	0.058	0.059	0058	0.057	0.057	0.055	0.050	0.068
Ghant 2	kU	0.301	0.300	0.300	0.300	0.300	0.037	0.037	0.037	0.037	0037	0.037	0.037	0.037	0.037	0.037	0.036	0.037	0.037	0.036	0.037	0.037
Gment 3	ku	0.039	0.038	0.039	0.036	0.036	0.039	0.038	0.038	0.038	0.039	0.039	0.031	0.038	0.038	0.038	0.038	0.038	0.039	0.039	0.036	0.038
Ghen 4	ku	0.040	0.039	0.041	0.042	0.040	0.040	0.039	0.039	0.339	0.039	0.039	0.039	0.039	0039	0.039	0.039	0.039	0.039	0.040	0.039	0.039
Grean Rivar 3	kJ	0.392	0.393	0.392	0.392	0.391	0.392	0.393	0.393	0.392	0.392	0.392	0.392	0.391	0.391	0.391	0.391	0.391	0.391	0.391	0.391	0.391
Green River 4	кu	0.382	0.381	0.381	0.381	0.381	0.381	0.382	0.381	0.381	0.381	0.381	0.381	0.381	0381	0.381	0.381	0381	0381	0.381	0.381	0.381
Trone 3	KL	0.389	0.381	0.383	0.304	0.388	0.382	0.383	0.383	0.358	0366	0.388	0389	0392	0.388	0.399	0.391	0.391	0.391	0.395	0.395	0.398
Gone Rum 4	LGE	0.325	0.326	0.336	0.327	0.327	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	${ }^{0} 323$	0.328	0.329	0.328	0.328	0.326
Cisne Rewn 5	LGE	0.373	0.375	0.379	0.379	0.379	0.374	0.373	0.374	0.377	0.378	0.378	0.380	0.381	0.382	0383	0.385	0385	0.385	0.387	0.357	0.308
Cene Run 6	LGE	0.308	0.308	0.309	0.306	0.305	0.303	0.304	0.303	0.303	0.304	0.305	0.305	0.306	0.307	0.307	0.308	c. 300	0.309	0.309	0.309	0.310
Mill Croek 1	LGE	0.266	0.266	0.267	0.267	0.267	0.265	0.264	0.265	0.265	0.265	0.266	0.266	0.267	0267	0.267	0.267	0.268	0.268	0.268	0.268	0.268
Mit Crosk 2	LGE	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0252	0.252	0.252	0.252	0.252	0252	0.252	0.252	0.252	0.252
mill Creak 3	LGE	0.057	0.059	0.060	0.059	0.056	0.060	0.059	0.058	0.057	0.057	0.058	0058	0.059	0.058	${ }^{0.058}$	0.060	0.059	0.057	0.059	0.058	0.060
Mall Croek 4	LGE	0.039	0.039	0.040	0.040	0.039	0041	0.040	0.040	0.041	0.040	0.040	0.040	0.040	0.039	0.039	0.039	0.041	0.039	0.040	0.039	0.040
Trmbita County 1	LGE	0.049	0.047	0.047	0.047	0.047	0.048	0.048	0.048	0.048	0.047	0.048	0.047	0.048	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047
Timbia County 2	KU	0.000	0.000	0.000	0.000	0.000	0.079	0.970	0.079	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
Trimble Counly 2	lge	0000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0070	0070	0.070	0.070	0.070
Peskers	kU	0.076	0.074	0.073	0.075	0.074	0.075	0.075	0.076	0.076	0.072	0.070	0065	0.068	0.068	0.067	0.066	0.065	0.065	0.064	0.064	0.063
Peakers	LGE	0.072	0.070	0.070	0.071	0.071	0.072	0.072	0.074	0.073	0.070	0.069	0.068	0.067	0.067	0.068	0.066	0.064	0.064	0.064	0.064	0.063
StRUBEER REMOVAL EFF.																						
Brown 1		0	0*	$0 \times$	08	0	0%	06	0\%	0*	0 O	0%	0\%	2\%	0%	08.	$0 \times$	0\%	0	$0 \times$	on	ox
Brown 2		0\%	0\%	0%	0\%	${ }^{0 \%}$	0%	0\%	0\%	a*	0%	0%	0%	0\%	0%	0%	${ }^{0 \times}$	04	$0 *$	0\%	$0 \times$	0\%
Erown 3		0\%	0\%	0%	0%	0%	$0 *$	0\%	0%	0\%	0%	9\%	0%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%	0\%
Ghent 1		0\%	0\%	0\%	0%	0%	0\%	0\%	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%
Ghant 2		0\%	0\%	0\%	$0 *$	0%	0\%	0\%	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%	0\%	0\%	0\%
Ghent 3		0*	0\%	0\%	0\%	0%	0\%	0%	0%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	\%
Gherl 4		0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0*	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%\%	0\%	$0 \times$	0\%
Green River 3		0\%	0\%	0%	0\%	0%	0\%	0%	0\%	0%	0\%	0\%	0%	0\%	0%	0\%	0\%	0%	0\%	0\%	0\%	0\%
Groen River 4		0%	0\%	0\%	0\%	0\%	0%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0%	0\%
Tyono 3		0\%	0%	0%	0%	0%	0\%	0\%	0%	0\%	0%	0\%	0\%	0\%	0\%	0\%	08	0\%	0\%	0\%	0\%	0\%
Cane Run 4		0%	0\%	0%	0\%	0%	0\%	0\%	0\%	0%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%
Come Run 5		0%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0*	0\%	0\%	0%	0%	0%	0\%	0\%	0\%	0\%
Come Run 6		0\%	0\%	0\%	0\%	0*	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%	0\%	0\%
man Croek 1		0\%	0\%	0\%	${ }^{0 \%}$	${ }^{0 \%}$	$0 \times$	0\%	0\%	0\%/	0%	0\%	0%	0%	0\%	0\%	0%	0\%	0\%	0\%	0%	0%
Mill Crook 2		0\%	0\%	0%	0\%	0%	0%	0\%	0\%	0\%	0\%	0%	0%	0\%	0%	0%	0\%	0%	0\%	0%	$0 \times$	0\%
Min Craok ${ }^{3}$		0\%	0\%	0%	0%	0%	$0 \times$	0\%	0*	0\%	0\%	9\%	0\%	0\%	0\%	0%	0\%	0%	0\%	0\%	0%	0\%
Mill Croek 4		0\%	0\%	0%	0%	0\%	0%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	0\%	0%	0%	0\%	0\%	$0 \times$	0\%
Ttrmble County 1		0\%	0%	0%	0\%	0\%	0%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Trmbia Count 2		0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%	0%	0%	0\%	0%	0\%	0%	$0 \times$	0\%
Trimble County 2		0%	0\%	0%	0%	0%	0%	0\%	0\%	0%	0%	0%	0%	0%	0\%	0%	0\%	0%	0\%	0\%	0\%	0x
Paskers		0\%	0\%	0%	0\%	0\%	\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0%	0\%
Peakers		0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	\%\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
TONS HOX Emittep		2005	2004	2007	2008	2009	2050	2041	2012	2013	2044	2018	2011	2017	2018	2048	2020	2004	2022	2983	2024	2024
Brown 1	kU	659	606	649	595	745	1,640	1,544	${ }^{1.609}$	1,406	1,656	1,728	1.723	1.773	1.788	2.848	1.656	1.903	1.923	1.978	1.962	1.974
Erown 2	KU	669	767	684	787	844	1.843	1.802	1.831	1.848	1.843	1.665	1.872	1.902	1,921	1,950	1,951	1,961	1.783	1.995	2.018	2.020
Erown 3	kU	1,147	1,274	1.590	1.519	1.704	3,668	3.558	3.231	3,714	3.788	3.820	3.900	4.013	3.980	$3.85{ }^{\text {d }}$	4.091	4.236	4.294	4.316	4.363	4,402
Ghent 1	KU	452	446	423	447	452	1.028	1.119	1.075	1.131	980	1.109	1.065	1.053	1.014	1.032	1.010	908	1.017	945	1.021	1,035
Ghent 2	KU	1.784	1.853	1.768	2.316	1.936	669	659	592	659	661	659	663	662	652	596	664	666	668	867	567	668
Ghent 3	KU	322	319	353	343	343	684	${ }^{37}$	747	748	755	761	762	684	763	767	768	772	778	777	696	778
Ghent 4	ku	328	325	333	338	355	776	765	774	77	779	762	706	786	786	191	789	795	798	719	800	801
Oreen River 3	ku	284	301	364	342	321	762	667	722	770	793	832	770	904	907	950	945	997	1.013	389	1.025	1.056
Green River 4	kU	469	455	515	496	489	1.002	1.039	1.091	1.126	1.169	1.208	1.204	1.124	1.279	1,356	1.327	1,376	1,406	1,402	1.274	1,434
Tyrone 3	KU	276	300	${ }^{376}$	${ }^{358}$	340	${ }^{676}$	693	758	900	${ }^{827}$	${ }^{854}$	875	857	907	1,001	971	1,042	1,049	1,074	966	1.069
Cana Run 4	LGE	766	784	801	760	718	1,381	1,04	1,344	1.397	1.463	1.474	1.508	1,599	1.414	1.718	1.683	1.744	1,763	1,797	1,020	1.639
Cantorum 5	LGE	880	${ }^{823}$	959	848	735	${ }^{1.636}$	1.478	1.587	1.650	1.735	1.627	1.873	1,981	2.005	2.086	2.123	2,203	1,972	2.280	2,292	2,362
Gene Runt	LGE	1.089	1,122	1.019	971	965	2,188	1,949	2,057	2.105	2.118	2,236	2.067	2,374	2.313	2,447	2.426	2.520	2.555	2.292	2.620	2.631
mill Crsek 1	LGE	3.112	1.052	1.111	1.055	1.080	2.417	2.481	2.205	2.575	2.419	2.644	2.505	2.657	2.547	2.759	2.385	2,804	2,646	2.829	2,694	2,875
Mital Crask 2	LGE	1.027	1.146	948	1.128	1.098	2.544	2.120	2.517	2.387	2.584	2,447	2.513	2.504	2.645	2,318	2,850	2.548	2.738	2.578	2,767	2.619
mill Crow 3	LGE	373	389	389	387	377	890	814	859	726	${ }^{946}$	821	875	847	887	838	915	781	975	846	${ }^{898}$	864
	LGE	301	308	316	308 295	308 300	669 729	681 662	657 722	705	603 717	${ }_{617} 665$	675	724	$67{ }^{6}$	718 655	675 711	${ }^{747}$	${ }_{619} 617$	740	${ }^{687}$	749
T Trimbe County 1	LGE	304	296	296	296	300	729	662	122	658	717	665	717	609	714	655	711	651	717	657	722	608
Timbie County 2	KU	-	0	0	0	-	595	1.000	1,009	1.003	1.009	1.012	1.015	1.013	1.815	1.817	1.020	1.019	1.020	1.020	1.024	1.020
Trimbie county 2	LGE		0	0	0	0	206	351	355	352	355	356	356	356	357	357	369	358	358	358	360	358
Pazkers	kU	114	135	174	199	267	${ }^{273}$	250	298	385	428	477	508	575	580	757	747	847	945	1,060	1.156	1.201
Poakers	LGE	50	63	82	95	126	126	117	142	176	199	233	249	284	290	370	382	431	488	550	600	627
Nox Emusions (roms) Toxal																						
		12,405	12,763	15,186	13,588	13,901	28.393	25,569	26,176	27,011	27,723	25,123	28,500	29,321	29,443	29,091	30,288	31,320	31,426	31,800	32,431	32,4*1
allowanctas																						
		6.764	8.764	6,569	6.569	6.569	14.814	${ }^{14.814}$	14.014	14.814	14.814	12.345	12.345	12,345	12,345	12.345	12,345	12.345	12,345	12.345	12.345	12,345
		5.6.83	$\frac{5.653}{}$	$\underline{6.002}$	$\underline{6.002}$	$\frac{6.002}{251}$	12.295	12.295	$\underline{12.295}$	$\frac{12.295}{27.109}$	$\frac{12,295}{}$	10.246	$\frac{10.245}{22.59}$	$\frac{10.246}{20.591}$	$\frac{10246}{22,51}$	$\frac{10.246}{2051}$	$\frac{10.246}{}$	$\frac{10246}{}$	10.246	10.246	10.246	10.245
Toxal KUL GE EPA AMocalod NOX Alowancos		12.447	12,447	12.571	12.571	12.571	27.109	27,809	27,109	27,109	27.109	22.591	22.591	22,591	22,591	22,591	22,591	22.591	22,591	22,591	22.591	22,591
Total KULGE EPA Amocalod NOX Allowancos		-	0	0	\bigcirc	0	\bigcirc	0	0	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
KU's Pertion of OMU Surpius/ShartallCombined Company Purchasas		8	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	\bigcirc	0	0	0	0	0	0	0	0	-	5.647	6.730	6.852	7.400	7.697	8.729	8.835	9.189	9.840	10.190
Sombind Compeny Purchasas					0	0	0	0	\bigcirc	0	0	0	0	0		0	0	0	0		0	
total ku_lce allowances		$\begin{gathered} ===9= \\ 12,47 \end{gathered}$	- $2=3 \pm=$	-12,571	12,571		=820=3	$2=87$ 27,109	$\underset{\sim 27 \times 109}{ }$	=17x=1	$\begin{gathered} =3 x==: \\ 27,109 \end{gathered}$	ㅍㅛㅜㅜㄹㅐ=포 22.531	 23,238	29,321	$\begin{gathered} ===== \\ 20,443 \end{gathered}$	$===3=$	$====$ 30,2:1	 31,320	$\begin{gathered} =x x=x y \\ 31,426 \end{gathered}$		32,431	파판듬듕포 32,741
		42	-315	-625	1.017	-930	715	1.520	933	98	.614	. 5.532	262	\bigcirc	0	0	0	-	0	-	0	0
allowance bank Tohal KULGE Alowemot Eimit (EnC Of Yetr)																						
		6,029	5,713	5.080	4,071	3,142	3,457	8,377	6.310	6,008	5,794	262	0	0	0	0	0	-	0	0	0	0

								NO ${ }^{\text {x }}$	SUMMA	ARY BY	Y YEAR											
Unt NOX Emiss Rati mmeth	Ownerent	2003	2008	2009	2004	2009	2016	2011	$20 \% 2$	20:3	2014	2018	2014	201\%	200\%	201*	2020	20.1	2022	2023	2924	2028
Bromi 1	Ku	0.502	0.502	0.501	0.502	0.502	0.501	0.501	0.501	0.502	0.501	0.501	0.501	0501	0×5 :	0 Sor	0.501	0.501	0.50;	0.501	0.504	0.501
Bromi 2	kU	0.321	0320	0.321	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0320	0.320	0.320	0.320	0.320	0.320	0.320	0.320	0.320
Brom 3	KU	0.270	0.270	0.270	0.270	0.270	0.270	0.270	0270	0.270	0.270	0270	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
Grent 1	ku	0.055	0.054	0.054	0.055	0.058	0.066	0.067	0.063	0.068	0.065	0.065	0.067	0.064	0.058	0.059	0.057	0.057	0.057	0.056	0.058	0058
Ghenl 2	ku	0.301	0.300	0.300	0.300	0.300	0.037	0.037	0.037	0.037	0037	0037	0037	0.037	0.037	0.037	0.037	0.037	0.037	0.036	0037	0.037
Greot 3	k	0.039	0038	0.039	0.036	0.038	0.039	0.038	0.038	0.038	0.039	0.039	0.038	0.038	0038	0.038	0.038	0038	0.038	0.039	0.038	0.038
Chenl 4	KU	0.040	0.039	0.04	0.042	0.040	0.040	0.039	0.039	0.039	0039	0039	0039	0.039	0.039	0.039	0.039	0.039	0.039	0.040	0.039	0.039
Green River 3	ku	0.392	0393	0.392	0.392	0.391	0.392	0.393	0.393	0.392	0.392	0.392	0.392	0.391	0.392	0.391	$0.39+$	0.391	0.391	0.391	0.391	0.391
Graon River 4	KU	0.382	0381	0.381	0.381	0.381	0.381	0.382	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0.381	0.384	0.381	0.381
Tryora 3	ku	0.381	0361	0.383	0.384	0.388	0.382	0383	0.383	0.388	0.386	0.388	0.399	0.392	0.388	0.391	0.391	0.391	0.391	0.395	0395	0.398
Cane Rum 4	lge	0.325	0.326	0.326	0.327	0.327	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	0.328	\%. 328	0.328
Cane Run 5	Lge	0.373	0375	0.379	0.379	0.379	0.374	0.373	0.374	0.377	0.378	0378	0.380	0.381	0.382	0.363	0.385	0.385	0.385	0.387	0.387	0.388
Care Run 6	LGE	0.308	0300	0.309	0.306	0.305	0.303	0.301	0.303	0.303	0304	0305	0.305	0.306	0.306	0.307	0.307	0.308	0.309	0.309	0.309	0.309
mill Croak 1	LGE	0.266	0266	0.267	0.267	0.267	0.265	0.264	0.265	0.265	0.265	0.266	0.266	0.267	0.267	0.267	0.267	0.268	0.268	0.268	0.268	0266
Mill Crook 2	Leg	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252
Mifl croek 3	LGE	0.057	0069	0.060	0.069	0.058	0.060	0.059	0.058	0.057	0.057	0.058	0.058	0.059	0.058	0.058	0.060	0.059	0.057	0059	0.058	0.059
Mill Croak 4	LGE	0.039	0039	0.040	0.040	0.039	0.041	0.040	0040	0.041	0.040	0.840	0.048	0040	0.039	0.039	0.039	0.041	0.039	0.040	0.039	0.040
Trimbio County 1	LGE	0.049	0.047	0.047	0.047	0.047	0.048	0.048	0.048	0.048	0.047	0.048	0.048	0.049	0.047	0.048	0.047	0.048	0.047	0.047	0.047	0.048
Trimble County 2	kU	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0070	0.070	0.070	0070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
Trimbie county 2	LGE	0.000	0.000	0.000	0.000	0.000	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
Pookers	KU	0.076	0.074	0.073	0.075	0.074	0.075	0.075	0.076	0.076	-0. 072	0.070	0.069	0.058	0.068	0.067	0.066	0.065	0.065	0.064	0064	0.063
Foakers	LGE	0.072	0.070	0.070	0.071	0.071	0.072	0.072	0.074	0.073	0.070	0.069	0068	0.068	0.067	0066	0.066	0.064	0.064	0.064	0.064	0.063
scruaber removal eyt.																						
Brown 1		0\%	0\%	0%	0\%	0\%	0\%	0%	0%	0\%	0*	0%	0%	0\%	0\%	0\%	0%	0%	-	0\%	0x	ox
Brown 2		0\%	0\%	0%	0\%	0\%	0*	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	9\%	0\%	0\%	0%
Brown 3		$0 \times$	0\%	0*	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	086	0\%	0\%	0%	0%	0\%	$0 \times$	0\%
Gheon 1		0%	0\%	0\%	0\%	0*	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	2\%	0\%	0\%	0\%
Ghent 2		0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0*	$0 \times$	0\%	$0 \times$	0\%	0\%
Gheon 3		0\%	0%	0%	0%	0\%	0\%	0%	0%	0%	0%	0%	0\%	\%	0\%	0\%	0\%	$0 \times$	0*	0\%	0%	0\%
Gheol 4		0%	0\%	0%	\%\%	\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	$0 \times$	ax	$0 \times$
Green River 3		0\%	0\%	$0 *$	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0%	0\%	0\%	0\%	0%	$0 \times$	0\%	0*	$0 \times$	0%
Greon River 4		0\%	0\%	0\%	0%	0\%	0\%	0%	\%	$0 \times$	0\%	0\%	0%	0\%	0\%	0\%	0\%	0%	0\%	$0 \times$	0x	0\%
Tyrone 3		0%	0*	$0 \times$	${ }^{0 \%}$	${ }^{0 \%}$	0%	0\%	\% \%	04	0%	0%	0\%	0%	0\%	0%	${ }_{0 \%}^{0 \%}$	$0 \times$	0\%	0%	$0 \times$	0\%
Cano Run 4		0%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	$0 \times$	0\%	0\%	0\%	0*	0\%	0\%	0*	0\%	0*	$0 \times$
Cmomen 5		0%	0%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0\%	$0 *$
Came Run 5		0\%	0\%	0%	0*	0x	0\%	0\%	0\%	0*	0\%	0%	0%	0\%	0%	0\%	0\%	$0 \times$	0\%	0\%	0\%	0%
Mitic Craok 1		0\%	0%	$0 \times$	0\%	0x	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	$0 \times$
mall crook 2		0%	0%	0%	0\%	0%	0\%	0\%	0\%	$0 \times$	0%	0%	0%	0%	0\%	0*	0\%	0%	0%	0\%	$0 \times$	$0 \times$
mall Crook 3		0\%	0\%	0\%	${ }^{0 \%}$	0\%	0\%	${ }^{0 \%}$	0%	${ }^{0 \%}$	0\%	0\%	0\%	0%	0\%	0%	0\%	0\%	0\%	0\%	0%	0%
mm Creok 4		0%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0%	0%	0%	$0 \times$
Trimbele County?		0\%	0\%	0\%	0\%	0\%	0\%	${ }^{08}$	0\%	${ }^{0 \%}$	0\%	0*	0\%	0\%	0\%	0\%	${ }^{0 \%}$	0%	0%	$0 \times$	${ }^{0 *}$	0%
Trimble County 2		0%	0\%	0%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0%	0%	0\%	0%	0\%	0\%	$0 \times$	$0 \times$
Trimble County 2		0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0\%	0%	0*	0\%	0\%	0\%	0\%	$0 \times$	04
Poekws		0\%	0\%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0\%	0%	0\%	0\%	0\%	0\%
Paokore		0%	0\%	0%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0%	0\%	0*	0%	0\%	0\%	0\%	0\%
TOMs NOX EMITTE		2006	2006	2007	2008	2008	2010	2014	2012	2043	2014	2013	2056	2087	2018	2043	2020	2024	2022	2023	2024	2028
Brown 1	ku	659	606	869	S05	745	T,645	1,544	1,509	1.406	1.65\%	+,728	1,735	1.775	1.789	1,849	1.657	1,904	1,927	1,950	1,963	1.977
Brown 2	ku	569	767	684	787	844	1.843	1.802	1.831	1.848	1.943	1,665	1,840	1,875	1,896	1.934	1.928	1.939	1.763	1.978	2.003	2.007
Brown 3	kU	1.147	1,274	1.680	1,619	1,704	3.668	3,558	3,231	3,714	3,789	3,820	505	516	511	465	510	528	531	535	545	545
Ghent 1	ku	452	446	423	447	452	1.028	1.119	1.075	1.131	980	1,109	1.119	1.070	1.004	1.019	985	910	1.011	985	1,015	1.027
Ghont 2	кU	1,784	1,853	1.768	2,36	1.936	66	659	592	659	661	639	661	650	660	595	663	665	666	666	564	665
Ghont 3	ku	322	319	353	343	343	664	737	747	748	755	761	757	680	757	762	762	769	77	774	650	773
Greni 4	k ${ }^{1}$	328	325	333	338	355	776	765	774	771	779	782	704	782	782	788	735	752	795	717	794	797
Green River 3	KU	284	304	364	342	321	762	667	722	770	793	832	${ }^{73}$	906	907	949	946	997	1,013	${ }^{869}$	1,025	1.059
Green River 4	kU	469	455	515	496	499	1.002	1.039	1.091	1.126	1.169	1,208	1.210	4.127	1.280	1.358	1.328	1.377	1.407	1.402	1.274	1,435
Tyane 3	kU	276	300	${ }^{378}$	358	340	676	693	756	600	827	854	880	859	507	1.002	972	1.044	${ }^{1,046}$	1.075	966	1.092
Cane Run 4	LGE	766	784	801	760	718	1.381	1,104	1.344	1.317	1,463	1.477	1,514	1.597	1.411	1.777	1.678	1.741	1,760	1.793	1,817	1.635
Cana Run 5	LGE	880	${ }^{823}$	959	848	735	1.636	1.478	1.507	1.650	1.735	1.627	1.877	${ }^{1} .983$	2.008	2.096	2.122	2.203	1.972	2.280	2.291	2.340
Cons Run 5	leg	1,069	1.122	1.019	971	965	2.188	1,949	2,057	2.105	2.118	2,236	2.021	2,333	2,279	2.413	2.393	2,495	2.528	2.270	2.595	2.610
Wull Croek 1	LGE	1.112	1.052	1.111	1.055	1.080	2.14	2.481	2.208	2.575	2.419	2.544	2.470	2.570	2.513	2.735	2.360	2.787	2,631	2.811	2.685	2.064
Mill Crook 2	LGE	1.027	1,146	948	1.128	1.098	2,544	2,120	2.517	2,397	2.564	2.447	2,587	2.480	2.620	2.303	2,668	2.535	2.725	2.569	2.757	2804
mill Creak 3	LGE	373	339	389	367	37	890	814	851	726	846	821	870	843	88.	834	911	778	${ }^{672}$	${ }^{843}$	${ }_{895}^{893}$	867
Mal Crook 4	lge	301	308	316	309	308	669	681	657	705	603	717	671	720	567	715	671	744	616	738	685	748
Trimble County 1	LGE	304	296	298	296	300	729	662	722	658	717	665	720	522	715	659	714	664	717	656	722	608
Trimbe County 2	ku	-	0	0	0	0	585	4.000	1.009	1.003	1.009	1.012	1.013	1.011	1.013	1.015	1.018	1.018	1.019	1.019	1.024	1.020
Trimber county 2	LeE	-	0	0	0	0	206	351	355	${ }^{352}$	355	355	${ }^{356}$	355	356	357 758	${ }^{358}$	358	358	358	360	350
Poakers	Ku	114	135	174	199	267	273	250	298	365	428	477	509	576	582	758	748	848	946	1,061	1. 157	1,200
Pookers	LGE	50	63	${ }^{2}$	95	126	126	117	142	176	199	233	250	285	291	371	383	432	489	554	601	626
nox Emassions (TONs) total																						
		12,405	12.763	13,196	13,508	13,501	26,393	28,509	26,176	27,011	27,723	28,123	23,041	25.723	25,827	25,688	26,569	27.527	27,570	27.920	28.523	28,853
ALLOWANCES																						
KU EPA Alocstod NOX Allowimeot LGE EPA Allocated NOX Allowences		6,764	6,764	6,569	6.569	6.569	14.814	14.814	14,814	14.814	14.014	12.345	12,345	12.345	12,345	12.345	12.345	12.345	12.345	12.345	${ }^{12,345}$	12.345
		5.683	5.688	$\underline{6.002}$	6.002	6002	12.295	12.295	$\underline{12,295}$	12.295	12.295	10.245	$\underline{10,246}$	12.246	10.246	$\frac{10,246}{22,59}$	$\frac{10246}{22591}$	$\frac{10,246}{22.591}$	$\frac{10,246}{22,591}$	$\frac{10,246}{22,591}$		$\frac{10.245}{22.591}$
LGE EPA Alocated NOX AllowencasTotal KUNGE EPA Allocmed NOX AlowencesKUIGE Extanion		12,447	12,447	12.571	12,571	t2571	27,109	27,409	27.00	27.109	27.10	22.591	22.591	22.591	22.591	22.591	22.591	22.591	22,591	22,591	22,591	22.59:
		0	0	0	0	0	\bigcirc	0	0	0	0	\bigcirc	0	0	${ }_{0}^{0}$	0		0	${ }_{0}^{0}$	0	0	\bigcirc
		-	-	0	0	0	0	0	0	0	-	0	$218{ }^{\circ}$	$3.13{ }^{0}$	${ }^{3} 238$	4097	- ${ }^{\circ} \mathrm{O}$	4936	4,979	5.329	5,932	6
Combined Compmy Purkherst		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	2,187	3.134 0	3,236 0	4.097	3,978 0	4.936 0	4.979	5.329	5,932	${ }_{6}^{6.262}$
Soll		-xami ${ }^{0}$	xxxxx=	0	0	3 x	=	- $=$ = $=$	= =	\pm	*==e=	=====	= $=$ = $=$	= $==={ }^{\text {a }}$	s== = $=$	0	$\pm===$	$== \pm x=x$	--7==	= =xxx=	= = = =	=17x=x
total kunce allowances		12,447	12,477	12.971	12,571	12,571	27, 109	27.109	27,109	27.109	27,109	22,591	24.778	25,723	25,827	25,688	26,569	27.527	27,570	27,920	28.523	28,083
		42	-315	¢ 625	1, 1017	.950	716	1.520	933	98	6.4	5,532	262	0	0	0	0	0	0	0	0	0
		6,029	5.713	5.084	4,07t	3,142	3,457	5.377	6.310	6.405	5.794	262	(1)	(0)	(0)	(0)	(0)	(a)	(0)	(0)	(0)	(0)

APPENDIX F

