Wilson Consulting, INC Roger Wilson, PE 411 Linden Lane Nicholasville, Kentucky 40356

November 23, 2004

Beth O'Donnell, Executive Director Kentucky Public Service Commission PO Box 615 Frankfort KY 40602

RE: Nolin RECC Elizabethtown, KY - Case Number 2004-00160

Dear Ms. O'Donnell:

Enclosed you will find the information that addresses the "informal Conference on October 21, 2004" with the PSC staff and Nolin RECC. The data includes the original and five copies.

Should you need any further explanation or additional information please contact me at (859)985-2474 or the Nolin RECC Office (270)765-6153.

Sincerely,

Roger Wilson, PE Wilson Consulting, Inc

WILSON CONSULTING, INC 411 LINDEN LANE NICHOLASVILLE KY PHONE (859)885-4613

PSC response case number 2004-001601

To: Case File No. 2004-00160

From: Nolin RECC

Date: November 20, 2004

Subject: Response to Informal Conference on October 21, 2004

#2 ACSR Vs.1/0 ACSR THREE PHASE CONVERSION

We will address each concern in item number order with relation to the written request from the Public Service Commission's letter of October 26, 3004. The #2 ACSR wire will be in value to the installed cost of the 1/0 ACSR at the 1150 kW level and greater. (Voltage drop was addressed with the original study and was not considered in these options.)

Item 375-- Projected line load is 445 kW in this work plan. The area growth would require 250% or alteration to the existing feed in order to make economics evaluation. No change from the existing work plan is suggested.

- Item 385-- Projected line load is 310 kW in this work plan. The area growth would require 370% or alteration to the existing feed in order to make economics evaluation. No change from the existing work plan is suggested. (Approaches edge of service area.)
- Item 386-- Projected line load is 100 kW in this work plan. The area growth would require 1150% or alteration to the existing feed in order to make economics evaluation. No change from the existing work plan is suggested. (Approaches edge of service area.)
- Item 387-- Projected line load is 291 kW in this work plan. The area growth would require 395% or alteration to the existing feed in order to make economics evaluation. (Take-off conductor is 1/0 ACSR consider upgrade to 3 miles conversion.)
- Item 388-- Projected line load is 145 kW in this work plan. The area growth would require 793% or alteration to the existing feed in order to make economics evaluation. (Take-off conductor is 1/0 ACSR consider upgrade to 1.1 miles of conversion.)
- Item 389-- Projected line load is 186 kW in this work plan. The area growth would require 618% or alteration to the existing feed in order to make economics evaluation. (Take-off conductor is 1/0 ACSR consider upgrade to 4.5 miles of conversion.)
- Item 392-- Projected line load is 160 kW in this work plan. The area growth would require 718% or alteration to the existing feed in order to make economics evaluation. (Project is in the edge of growth area and small amount of line, 2000 feet of conversion.)
- Item 393-- Projected line load is 100 kW in this work plan. The area growth would require 115% or alteration to the existing feed in order to make economics evaluation. (Project is in the edge of growth area and small amount of line, 3000 feet of conversion.)

Solution to postponement of conversion to 336.4 ACSR from 3/0 ACSR

A voltage regulator bank was placed at various locations along the line sections to obtain the best voltage drop for the existing line and the future 2005 load. The best voltage regulator bank placement was found to be at the end of line section number 11. The voltage drop was calculated to be 117 Volts at the lowest extreme. The line sections were changed from 3/0 ACSR to 336.4 ACSR moving from the substation to the load until the 121 Volt drop was met. The line sections changed were 664, 614, and 894. The conclusion is that a regulator bank placed at the end of line section 11 will provide service during the peak condition and not exceed voltage drop requirement.

AMR evaluation study

COST-BENEFIT WORKBOOK

A. PROJECT & OPERATIONAL COSTS	
Number of Electro-Mechanical Meters	11;100
Number of Solid State Meters	16,900
Number of Multi-Utility Meters	
Number of 3 Phase Meters	1,400
Number Remote Service	
Switches	50
Number of Load Control Units	10
Number of Substations	21
Number of New Servers	1
Total Yearly Overtime Costs for Meter Readers & Supervisors	
Average Loaded Cost/Year/Meter Reader	41951
Average Loaded Cost/Year/Meter Reader Supervisor	51001
Average Loaded Cost/Year/Customer Service	36959
Average Loaded Cost/Year/Linemen	73654
Average Loaded Cost/Year/Supervisor	60893
Annual Revenue	\$40,000,000
Purchased Power Cost/Year	\$33,000,000
Transportation/# of Vehicles	6
Cost Per Meter Read	0.92

Cost Ranges for Major Items

Hardware Costs Electro-Mechanical Transciver Soild State Transceiver Muti-Utility Transceiver 3 Phase Transceiver RSS Collar Load Control Substation Equipment		Unit Cost 68 73 125 150 250 150 20000 ware Costs	Number 11100 16900 0 1400 50 10	Total 754800 1233700 0 210000 12500 1500 420000 \$2,632,500
Customer Supplied Equi Server Class PC SQL Server Licencse Capacitor Banks		Unit Cost 5000 2500 1000 olied Equip. Co	Number 1 1 21 0sts	Total 5000 2500 21000 \$28,500
Approximate Deployme Retro fit Installs	nt Costs Total Depl Costs	Unit Cost 7.25 8 Soyment	Number 11100 12581	Total 80475 100648 \$181,123
Software and Services TS2 Software		vare and Serv		12200 \$12,200 \$2,854,323
Yearly Operation Annual System Service	.30 Cents 10,000	og <u>y Support</u> Per Endpoint o	ſ	\$5,000 \$5,820 \$10,820

B. YEARLY PRODUCTIVITY AND COST SAVINGS

Item 1: Equi	pment Maintenance Annual Cost Repairs Replacements <u>Misc.</u> Total Equipment Cost	5000 20000 1500 26500
Item 2: Mete	er Reader Cost Daily Hours Savings/person FTEs affected Average Cost of Each FTE Productivity Improvement % Value of Productivity Gain	8 5 41951 100% 209755
Item 3: Data	a Entry/Clerical Cost Daily Hours Savings/person FTEs affected Average Cost of Each FTE Productivity Improvement % Value of Productivity Gain	8 1 51001 50% 25500.5
Item 4: Cus	tomer Support Cost Daily Hours Savings/Person # of FTE Techs Affected Average Cost of Each FTE Productivity Improvement % Value of Productivity Gain	2 3 36959 20% 22175
Item 5: Line Cost	Daily Hours Savings/Person # of FTE Techs Affected Average Cost of Each FTE Productivity Improvement % Value of Productivity Gain	2 4 73654 25% 73654
Item 6: Sup	ervisor Cost Daily Hours Savings/Person # of FTE Techs Affected Average Cost of Each FTE Productivity Improvement % Value of Productivity Gain	3 2 60893 20% 24357

4

Item 7: Reduction in Vehicle Cost & Maintenance # of Vehicles	е
Affected	6
Vehicle Cost/Year	9250
Cost Savings	36963
Item 8: Savings in Overtime Costs (37%)	0
Item 9: Reduction of Line Loss	247500
Item 10: Enhanced Revenue Through Maint.	40000
Item 11: Cost Savings Meter Reading	0.87
# of Meters	29400
Reads Per Year Per Meter	12
Cost Savings	306936
Item 12: Savings in Site Visits	40
# of Site Visits	5000
Cost Savings	200000
Item 13: Savings in Meter Reread costs	- 30
# Of Rereads	500
Cost Savings	15000

Summary	Savings
Item 1: Equipment Maintenance Annual Cost	26500
Item 2: Meter Reader Cost	209755
Item 3: Data Entry/Clerical Cost	25500.5
Item 4: Customer Support Cost	22175
Item 5: Linemen	
Cost	73654
Item 6: Supervisor Cost	24357
Item 7: Reduction in Vehicle Cost & Maintenance	36963
Item 8: Savings in Overtime Costs (37%)	0
Item 9: Reduction of Line Loss	247500
Item 10: Enhanced Revenue Through Maint.	40000
Item 11: Cost Savings Meter Reading	306936
Item 12: Savings in Site Visits	200000
Item 13: Savings in Meter Reread costs	15000
Yearly Savings after Full System Implementation/Operation	\$1,228,341

C. VALUE OF CUMULATIVE COSTS AND PRODUCTIVITY SAVINGS OVER 5 YEARS

	Invested	Return
At End Of	2854323	614171
Year 1	2865143	1842512
Year 2	2875963	3070853
Year 3	2886783	4299194
Year 4	2897603	5527535
Year 5	2908423	6755876

Database: C:\MILSOFT\DATA\NOLIN\PSCREQUESTRINEYVILLEVRINSTALLOPTION
Title: 2003-2004 Work Plan
Case: NOLIN RECC
10/27/2004 11:30 Page 1

835	603	691 0.1	OCR-6	613 0.7	FDR72	OCR-8	8213 0.0	 	8210 0.0	9021	Elemen Loss	ç,	m
2.60	4.20	2.30	.691 2.01	2.01	0.51	-8213 0.00	0.00	 	0.00	0.00	Element Name Loss Src	F] S S	
691 0.30 (691 1.90 19	OCR-691 0.30 776	613 0.00	FDR7213 1.50 253	OCR-821: 0.51 0	8213 0.00	8210 0.00	Feeder NO.	9021	0.00	Parent Name (mi) KW	7 3 3 4 +	Element
66	86	76	0	ພີພິ	0	0	0	ω	0	0	Name KW		
l S	-16	-62	0	-20	0	0	0	Beç	0	0	KVAR		
ABC 14	A 40	ABC 170	ABC 0	ABC 50	ABC 0	ABC 0	ABC 0	Beginning	ABC 0	ABC 0	Cnf		
098-#3/0 A 20	110-#4 ACS 40	090-336 AC 468	061-50-4H 468	090-336 AC 677	090-336 AC 677	208-400-14 677	Node 677	ng with Node	Node 1800	 SRC-9009-j 1800	Conductor Thru	Type/	
7.49Y	7.43Y	7.49Y	7.50Y	7.50Y	7.54Y	7.56Y	7.56Y	Element	7.56Y	7.56Y	kV	Pri	
124.8	123.8	124.8	124.9	124.9	125.7	126.0	126.0	8213	126.0	126.0	Volt	Base	
0.01	0.99	0.09	0.00	0.79	0.29	0.00	0.00		0.00	0.00	Drop	Element	Uni -
1.18	2.16	1.17	1.08	1.08	0.29	0.00	0.00		0.00	0.00	Drop	Accum	ts Bas
4.61	26.60	98.22	98.22	141.31	141.31	141.31	141.31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	346.46	346.46	Amps	Thru	Displayed In Volts e Voltage:120.0-
2	<u>ц</u> 9	19	196	27	27	ω 5	0	i	0	0	Cap	0/0	n Vol 20.0-
103	199	2202	2202	3192	3200	3200	3200		7840	7840	KW	Thru	, t
8	-15	-170	-170	-192	-172	-172	-172		-528	-528	KVAR		
-100	-100	-100	-100	-100	-100	-100	-100		-100	-100	Б Н	c/o	
0.01	₽	1.73	0.00	23,35	8.43	0.00	0.00		0.00	0.00	Loss	kW	

	8211 0.0	 	617	OCR-6	616 0.7	FDR7212 0.1 0.63	OCR-	8212		611	612	OCR-	776 0.0	604	662 0.0	823
	0.00	1 1 1	3.93	.617 3.93	3.93	212 0.63	8212 0.00	0.00	 - - -	3.81	5.81	2.31	2.31	3.60	3.70	2.90
	8210 0.00 0	Feeder NO.	OCR-617 0.00 346	616 0.00 0	FDR7212 3.30 218	OCR-8212 0.63 0	8212 0.00 0	8210 0.00 0	Feeder NO.	776 1.50 245	OCR-612 3.50 467	776 0.00 0	613 0.30 0	691 1.30 1120	823 0.80 37	835 0.30 0
, ; 1	0	1 Beg	-28	0	18	0	0	0	2 Beg	-20	-38	0	0	-90	ώ	0
	ABC 0	ginnín	A 67	A 0	ABC 44	ABC 0	ABC 0	ABC 0	Beginning	ABC 58	ABC 101	ABC 0	ABC 0	ABC 238	A 6	ABC 0
	Node 1012	g with Node	102-#1/0 A 67	005-25-Н О 67	102-#1/0 A 111	090-336 AC 111	208-400-14 111	Node 111	with Node	090-336 AC 58	102-#1/0 A 101	061-50-4H 101	090-336 AC 159	098-#3/0 A 238	110-#4 ACS 6	098-#3/0 A 6
1	7.56Y	Element	7.50Y	7.50Y	7.50Y	7.56Y	7.56Y	7.56Y	Element	7.49Y	7.46Y	7.49Y	7.49Y	7.47Y	7.48Y	7.49Y
	126.0	8211	125.0	125.0	125.0	125.9	126.0	126.0	8212	124.9	124.4	124.9	124.9	124.5	124.7	124.8
1 1 1	0.00		0.00	0.00	0.91	0.06	0.00	0.00		0.03	0.50	0.00	0.04	0.36	0.08	0.01
	0.00		0.98	0.98	0.98	0.06	0.00	0.00		1. 15	1.61	1.12	1.12	1.53	1.26	1.19
1	180.01		46.33	46.33	25.15	25.15	25.15	25.15		10.95	20.88	20.88	31.82	50.11	4.94	1.65
1	0		20	185	 	ហ	0	0	Î	2	9	42	σ	17	4	سا
\$ \$ \$ 1	4071		346	346	569	569	569	569		245	468	468	713	1123	37	37
1	-3 -4		-28	22 12	-42	-41	-41	-4 1		-20	-36	136	- 55	88	ω	را
	-100		-100	-100	-100	-100	-100	-100		-100	-100	-100	-100	-100	-100	-100
1 1 1 1	0.00		0.00	0.00	3.91	0.33	0.00	0.00		0.05	1. 3. 5	0.00	0.25	2.36	0.02	0.00

KEY->

L = Low Voltage

H = High Voltage

C = Capacity Over Limit

G = Generator Out of kvar Limits

Database: C:\MILSOFT\DATA\NOLIN\PSCREQUESTRINEYVILLEVRINSTALLOPTION Title: 2003-2004 Work Plan Case: NOLIN RECC 10/27/2004 11:30 Page 2

10	OCR-11 0.0 7	C REG181	3.3 7	894 0.6 4	1.2 3	OCR-61 0.0 0	664 0.2 0	NODE1735	FDR7211 0.4 0.	OCR-82	Element Name	۰۰ ۱۹	mi -
	, 12	18 7.12	.12	. 32	. 21	. 86	. 86	35	. 56	-8211	Name Src	Š	
OCR-11	REG1818 0.00 0	0.00 0	894 2.80 164	614 1.12 0	OCR-614 2.35 707	664 0.00 0	FDR7211 0.30 23	FDR7211 0.00 0	OCR-8211 0.56 0	8211 0.00 0	Parent Name (mi) KW	++, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Element-
	0	0	23	0	-57	0	12	0	0	0	ne KVAR		
AB	ABC 0	ABC 0	ABC 45	ABC 0	ABC 111	ABC 0	ABC 3	ABC 0	ABC 0	ABC 0	Cnf) 3 3	
110-#4 ACS	007-50-Н О 359	Regulator 730 C	098-#3/0 A 775	090-336 AC 828	090-336 AC 939	007-50-Н О 939	090-336 AC 1012	Node 0	090-336 AC 1012	208-400-14 1012	Conductor Thru	Type/	1
7.53Y	7.56Y	7.56Y	7.24Y	7.43Y	7.45Y	7.53Y	7.53Y	7.54Y	7.54Y	7.56Y	kV	Pri	
125.4	126.0	126.0	120.6	123.8	124.2	125.4	125.4	125.6	125.6	126.0	Volt	Base	
0.56	0.00	-5.37	3. 13. 5	0.46	1.19	0.00	0.20	0.00	0.38	0.00	Drop	Element	Uni
0.56	0.00	0.00	5.37	2.23	1.77	0.57	0.57	0.38	0.38	0.00	Drop	Accum	ts Bas
11.69	59.45	118.15	125.25	132.37	163.98	163.98	180.01	0.00	180.01	180.01	Amps	Thru	Displayed In Volts e Voltage:120.0-
со	<u>г</u> Р 9	118	42	25	ωμ	328	ω Æ	0	3.4	.4 5	Сар	cyo	In Vo.
175	1267	2501	2755	2935	3687	3687	4055	0	4071	4071	KW	Thru	s S
25	-460	-573	-447	-386	л Ш Ю	-339	-349	0	-314	-314	KVAR		
99	-94	-97	-99	-99	-100	-100	-100	0	-100	-100	 P	clo	
0.49	0.00	0.00	90.47	16.30	44.49	0.00	8.06	0.00	15.05	0.00	Loss	kW	

502 0.1 12.2	FUSE-502	507 0.3 14.9	506 0.1 12.9	505 0.4 12.2	504 0.1 12.6	503 0.4 11.6	OCR-503 0.0 10.6	OCR-508 0.0 10.6	508 0.4 10.6	721 0.2 9.2	6025 0.0 8.7	789 0.3 8.7	509	850 0.0 8.5	510 0.5 8.1	0.3 9.4
FUSE-502 2 1.60 58	OCR-508 2 0.00 0	505 2 2.70 77	505 2 0.70 53	503 2 0.60 7	503 2 1.00 48	OCR-503 2 1.00 101	OCR-508 2 0.00 0	508 2 0.00 0	721 2 1.40 353	6025 2 0.50 18	789 2 0.00 0	510 2 0.60 0	850 2 0.70 69	510 2 0.40 23	OCR-11 2 1.00 26	2 2.30 174
8 A	0 A	A 11 29	8 A	1 A	7 A	14 A	0 A	ABC 0 0	ABC 50 75	ABC 3 6	ABC 0 0	ABC 0 0	ABC 10 16	ABC 3 8	ABC 4 5	25 50
110-#4 ACS 24	085-50N FU 24	110-#4 ACS 29	110-#4 ACS 17	110-#4 ACS 48	110-#4 ACS 12	102-#1/0 A 86	011-70-L O 86	062-70-4H 199	098-#3/0 A 274	098-#3/0 A 280	Capacitor 280	: 098-#3/0 A 280	098-#3/0 A	: 098-#3/0 A 24	098-#3/0 A 309	50
7.46Y 124.3	7.48Y 124.6	7.37Y 122.8	7.40Y 123.3	7.41Y 123.4	7.43Y 123.8	7.44Y 123.9	7.48Y 124.6	7.48Y 124.6	7.48Y 124.6	7.52Y 125.3	7.54Y 125.6	7.54Y 125.6	7.54Y 125.7	7.54Y 125.7	7.54Y 125.7	
0.28	0.00	0.63	0.11	0.49	0.15	0.70	0.00	0.00	0.67	0.30	0.00	0.13	0.01	0.02	0.29	
1.66	1.38	3.20	2.68	2.57	2.23	2.08	1.38	1.38	1.38	0.71	0.42	0.42	0.32	0.31	0.29	
7.80	7.80	10.49	7.28	18.66	6.58	38.95 1	38.95 5	26.52 3	42.40 1	43.22 1	48.36 71	48.36 1	3.07	4.10	52.70 1	
6 58	8 58	7 77	53	13 137	5 48	L7 288	56 288	38 589	946	966	.6 966	.6 969	1 69	1 92	.8 1092	
œ	α	 	Φ	20	7	43	43	8	140	145	-512	-508	10	<u>၂</u> သ	-485	
99	99	99	99	99	99	99	99	99	99	99	0 0 0	-89	99	99	-91	
0.08	0.00	0.25	0.03	0.50	0.04	1.24	0.00	0.00	3. 88	1.99	0.00	3.04	0.00	0.01	5.92	

Database: C:\MILSOFT\DATA\NOLIN\PSCREQUESTRINEYVILLEVRINSTALLOPTION Title: 2003-2004 Work Plan Case: NOLIN RECC 10/27/2004 11:30 Page 3

CAP1764	498 0.2 13.	ω	OCR-497 0.0 11.4	• 	OH1744 0.5 9.	12.	OCR-493 0.0 12.	SW1802-A 0.0 12.42	494 0.0 12.	501	Element Nan		3.
	96 0.9	49 [.]	46 0.00	46 2.0	45 2.3	62 0.2	.42 0.0	A 42 0.00	42 1.0	42 0.8	Name Pai		
498	496 0 192	497 0 123	497	OH1744 0 694	REG1818 3 0	494 0 5	494 0 0	494	501 0 149	OCR-508	Parent Name) KW	ָּדָּ מוני מוני מוני מוני	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	27	⊢ 3	0	99	0	ш	0	0	21	13	KVAR		
ABC	ABC 41	ABC 31	ABC 0	ABC 238	ABC 0	ABC 3	ABC 0	ABC 0	ABC 42	ABC 44	Cnf)))	
Capacitor	102-#1/0 A 78	110-#4 ACS 133	006-35-Н О О	110-#4 ACS 371	090-336 AC 371	098-#3/0 A 3	011-70-L O	Open 0	098-#3/0 A 45	098-#3/0 A 89	Conductor Thru	Type/	
7.32Y	7.32Y	7.32Y	7.37Y	7.37Y	7.53Y	7.474	7.47Y	7.47Y	7.47Y	7.47Y	kV	Pri	
122.0	122.0	121.9	122.9	122.9	125.5	124.5	124.5	124.5	124.5	124.5	Volt	Base	
0.00	-0.02	0.96	0.00	2.66	0.45	0.00	0.00	0.00	0.05	0.10	Drop	Element	Uni -
4.05	4.05	4.07	3.12	3.12	0.46	1.53	ω	1.53	53	1.48	Drop	Accum	ts Bas
-14.12	19.05	25.38	0.00	54.60	54.60	0.24	0.00	0.00	6.95	10.94	Amps	Thru	Displayed In Vole Voltage: 120.0-
0	ω	18	0	39	10	0	0	0	ω	ъ	Cap	0/0	n Volts
0	325	510	0	1227	1233	ഗ	0	0	154	243	KW	Thru	S Ct
-310	-263	-235	0	-126	(J)	بسا	0	0	22	ω 5	KVAR		
0	-78	-91	0	-99	-100	98	0	0	99	99	 ''U' ''I']	olo	
0.00	0.62	5.86	0.00	23.30	5.79	0.00	0.00	0.00	0.04	0.15	Loss	kW	

Total 7840	. 7	Losses 0.00	Load Lo	No L	Losses 272		Loops&Metas 0	Gen&Motors Loo	Charging	cance	Capacit	Adjustment	Load 7558
00 0.92	-100	-27	338	0	15.01	1.06	0.49	7.50Y 124.9	106-#2 ACS 70	ABC 70	-27	OCR-615 2.90 337	0.3 3.76
00 0.00	-100	-27	33 8	30	15.01	0.57	0.00	7.53Y 125.4	007-50-Н О 70	ABC 0	0	0.00 0	OCR-615 0.0 0.86
0 0.00	(0	0	0	0.00	1.77	0.00	7.45Y 124.2	110-#4 ACS 0	0 Ω	0	OCR-895 1.15 0	895 0.0 4.36
0 0.00	0	0	0	0	0.00	1.77	0.00	7.45Y 124.2	005-25-Н О 0	00	0	614 0.00 0	OCR-895 0.0 3.21
9 0.83	99	24	164	16	22.33	3.22	0.99	7.37Y 122.8	110-#4 ACS 53	A 53	N ω	OCR-12 2.00 163	12 0.5 6.32
9 0.00	99	24	164	8.9	22.33	2.23	0.00	7.43Y 123.8	005-25-Н О 53	A 0	Ö	0.00 0	OCR-12 0.0 4.32
0 0.00	0	0	0	0	0.00	4.07	0.00	7.32Y 121.9	083-30N FU 0	ABC 0	0	496 0.00 0	FUSE-496 0.0 13.06
9 0.07	99	œ	56	o	7.74	4.33	0.26	7.30Y 121.7	110-#4 ACS 24	A 24	œ	FUSE-495 1.50 `56	495 0.1 14.56
9 0.00	99	æ	56	13	7.74	4.07	0.00	7.32Y 121.9	083-30N FU 24	A 0	0	496 0.00 0	FUSE-495 0.0 13.06
0.00	0	0	0	0	0.00	4.13	0,00	7.31Y 121.9	Open 0	ABC 0	0	493 0.00 0	SW1802-B 0.0 15.26
9 0.01	99	12	88 22	N	3.75	4.13	0.02	7.31Y 121.9	102-#1/0 A 16	ABC 16	12	499 0.60 82	493 0.0 15.26
0.05	99	19	132	W	6.08	4.11	0.06	7.31Y 121.9	102-#1/0 A 37	ABC 21	7	498 0.70 51	499 0.0 14.66
									0	0	0	0.00	0.0 13.96

KEY->

L = Low Voltage

H = High Voltage

C = Capacity Over Limit

G = Generator Out of kvar Limits

KEY->	 KVAR	% Elem Loss	mì	1	Datab Title Case: 10/27
	₩ I I	e H	ı		Database Title: Case: 10/27/20
	9		 	1	Database: C:\MIL Title: 2003-2 Case: NOLIN 10/27/2004 11:3
L = Low Voltage		Length Pare (mi)	1	1	Database: C:\MILSOFT\DA Title: 2003-2004 Wor Case: NOLIN RECC 10/27/2004 11:30 Page
ltage		ren	-Element-		FT\DAT
 	0	t Name KW KVAR	1t	1	C:\MILSOFT\DATA\NOL 2003-2004 Work Plan NOLIN RECC 1 11:30 Page 4
1 1		_		1	IN/PS
-gh Vc	-967	Cons C Cnf On	1	 	CREQU
= High Voltage	1 1	ns onc hru	н	1	JESTRI
Ω	0	ctor	Type/		NEYVI
		kV	Pri		Database: C:\MILSOFT\DATA\NOLIN\PSCREQUESTRINEYVILLEVRINSTALLOPTION Title: 2003-2004 Work Plan Case: NOLIN RECC 10/27/2004 11:30 Page 4
pacit		Vo	B		INSTAI
y Ove:	0	Volt	Base I		LLOPT
= Capacity Over Limit		Drop	Element		NOJ
 	0	Dr		Units -Ba	
G = G	! 	Drop	Accum	Disp se Vo	
enera	430	Amps Cap	Thru	ts Displayed In Volts Base Voltage:120.0-	
cor Ou		Cap	0/0	In Vc: 120.0	
it of kv		KW	Thru	i its	! ! ! !
Generator Out of kvar Limits		KVAR			
,	-528	i I P I H	0/0		
		Loss	KW		1
	1 [; 			1

EREA KY 90903 11 DAYIS HOCCOW

UNITED STATES

\$4.30 AMOUNT

United States Postal Service®

IVERY CONFIRMATION TO

BETH O'DONNELL

EXECUTIVE DIRECTOR

KENTUCKY PUBLIC SERVICE

POBOX 615

FRANKFORT KY 40607

RECEIVED

PUBLIC SERVICE COMMISSION NOV 2 4 2004

