CASE NUMBER: 99-449

United States of America Federal Energy Regulatory Commission

1999 FERC FORM 715 Annual Transmission Planning and Evaluation Report CINERGY Part 4: Transmission Planning Reliability Criteria

Cinergy adheres to ECAR DOCUMENT NUMBER 1 - <u>Reliability Criteria for Evaluation and</u> <u>Simulated Testing of the ECAR Bulk Electric Systems</u> dated

July 27, 1998, a copy of which is available from ECAR. Cinergy also adheres to the NERC Planning Standards document, dated September 1997.

Cinergy also has its own detailed planning criteria, which is shown below. Violations of these criteria would result in one or several of the following actions: expansion of transmission system; operating procedures; or a combination of the two. Acceptance of operating procedures is based on engineering judgment with the consideration of the probability of violation weighed against its consequences and possibly other factors.

The following planning criteria are used in assessing the transmission system.

69 kV AND 138 kV SYSTEM

A facility as defined here shall include 69 kV and 138 kV transmission circuits or any . transformer with a secondary voltage of 69 or 138 kV.

Under normal system peak load conditions, the loading on all facilities will be no higher than 100% of its normal rating. Voltages will be 95% of nominal or higher.

The 69 kV and 138 kV system will be able to withstand any single facility outage during peak load periods without exceeding the emergency limits of any remaining 69 kV or 138 kV facility. Loss of load shall be minimized although it cannot be eliminated in all situations. The voltages on the 69 kV and 138 kV systems shall not be less than 90% under these conditions.

Double contingency line outages are considered only in cases involving the CG&E 138 kV underground cable feeders that supply the West End and Charles substations. For an outage of any other line with one such underground circuit out of service, the loading on all lines will be no higher than 100% of the emergency conductor rating and voltage will be 90% or higher at all points on the CG&E 138 kV system.

A line outage following an outage of a 138-69 kV autotransformer assumes that the 75 MVA mobile autotransformer is installed, a mobile transformer for tertiary load is installed if necessary, and any desirable mitigating switching or other actions are performed. Under such conditions, the loading on all transmission lines will be no higher than 100% of the emergency conductor rating. The loading on the 138-69 kV autotransformers will be no higher than 110% of the nameplate, normal rating if and only if switching by supervisory control is possible which will reduce the loading to 100% of the ...ameplat rating for a single contingency outage. The mobile autotransformer must be limited to 100% of the normal rating under all circumstances. Voltages will be 90% or higher at all points on the 138 kV and 69 kV systems.

Under normal system peak-load conditions, with full generation output, all generating units must remain stable with occurrence of a three-phase fault accompanied by a single pole circuit breaker failure with operation of back-up circuit breakers. With one 138 kV component out-of-service, stable operation of all generating units is to be maintained with a subsequent single phase-to-ground fault accompanied by normal clearing of the fault.

All circuit breakers shall be capable of interrupting the maximum fault current duty imposed on the circuit breaker.

The voltage on the 69 and 138 kV system should not exceed 105% for any load level.

230KV AND 345KV SYSTEM

A facility as defined here shall include, 230 and 345 kV transmission circuits, any transformer with a secondary voltage of 230 kV or above or a generating unit connected to the 230 or 345 kV system.

Under normal system peak load conditions, the loading on all facilities will be no higher than 100% of the normal rating of the facility. Voltages will be 95% or higher.

For a single contingency outage during system peak load conditions, the loading on all transmission facilities will be no higher than 100% of the normal conductor rating. The loading on the autotransformers connected to the 230 and 345 kV systems will be no higher than 100% of their normal rating. Voltages will be 95% or higher at all points on the 230 kV and 345 kV system and 90% or higher on the 138 kV system.

The system will be able to withstand any two outages during peak load periods without exceeding the emergency limits of any remaining facility. Loss of load shall be minimized although it cannot be eliminated in all situations. Credible outages may be mitigated by appropriate operating procedures. Voltages will be 92% or higher at the 230 or 345 kV level and 90% or higher on the 138 kV system under these conditions.

Under normal system peak load conditions with full generation output, all generating units must remain stable with occurrence of a three-phase fault accompanied by a single pole circuit breaker failure with operation of back-up circuit breakers. With one 230 kV or 345 kV component out-of-service, stable operation of all generating units is to be maintained with a subsequent single phase-to-ground fault accompanied by normal clearing of the fault.

All circuit breakers shall be capable of interrupting the maximum fault current duty imposed on the circuit breaker.

The voltage on the 230 and 345 kV system should not exceed 105% for any load level.

These planning criteria are not intended to be absolute or applied without exception. Other factors, such as severity of consequences, availability of emergency switching procedures, probability of occurrence and the cost of remedial action are also considered in the evaluation of the transmission system.

United States of America Federal Energy Regulatory Commission

1999 FERC FORM 715 Annual Transmission Planning and Evaluation Report CINERGY Part 5: Transmission Planning Assessment Practices

The transmission planning assessments by Cinergy use the most recent series of power flow simulation models developed by ECAR, which reflects the current models, utilized by the individual ECAR companies for planning purposes. There are a number of adjustments and changes that must be made to the ECAR cases before they may be utilized effectively for Cinergy planning purposes. The following narrative describes some of the processes Cinergy must use for development of planning studies. When reviewing this process, it is extremely important to note that this is a generalization only, and that any or all parts of this process may change dramatically depending upon individual study requirements.

Initially, a decision must be made as to whether or not the representation of Cinergy in the ECAR base case is adequate for the study requirements. The ECAR model is normally sufficient for all bulk transmission system studies(230 kV and above), whether the case is sufficiently detailed for a particular study depends on the specific area of interest. Cinergy's representation of its transmission system in the ECAR base case retains all major 138 kV substations and transmission lines. Other 138 kV system components and most of the underlying subtransmission networks are equivalized. If it is decided that a more detailed Cinergy model is required, then this model must be inserted into the appropriate ECAR base cases.

The next step is to make adjustments to the output of nearby generating units that will impact Cinergy's transmission system. In most ECAR peak load base cases the generating unit dispatches modeled are based on the various methodologies used by the different companies. This may result in a peak load model in which not all base-load generating units are modeled at maximum output. Based on experience; however, these units tend to operate at maximum output during peak load conditions. Therefore, the dispatch of the following units is reviewed to ensure that they are loaded to the desired MW output levels. These units generally include:

Facility	Desired	Output
Tanner's Creek Units 3 & 4 (345 kV)	705	MW
Miami Fort Units 7 & 8 (345 kV)	1000	MW
Beckjord Unit 6 (345 kV)	414	MW
East Bend Unit 2 (345 kV)	600	MW
Stuart Units 1-4 (345 kV)	2340	MW
Killen Unit 2 (345 kV)	600	MW
Conesville Unit 4 (345 kV)	709	MW
Gallagher Units 1 & 2 (138 kV)	280	MW
Gallagher Units 3 & 4 (230 kV)	280	MW
Cayuga Unit 1 (230 kV)	500	MW
Cayuga Unit 2 (345 kV)	474	MW
Gallagher Units 1 & 2 (138 kV)	280	MW
Gallagher Units 3 & 4 (230 kV)	280	MW
Petersburg Units 1-4 (345 kV)	1682	MW
Ghent Units 2-4 (345 kV)	1486	MW
Ghent Unit 1 (138 kV)	491	MW

When the output of these units is increased, other generation must be decreased to maintain a balance between generation and load. The primary decision as to which generating units should be decreased depends on the objective of the study that is being conducted. Since one goal of planning studies is to evaluate the performance of the system under stress, the decision may hinge upon what provides the most stress to the system for the particular study. If there is uncertainty about which condition should be modeled; several possibilities are evaluated.

Another decision made on a study by study basis is the selection of the regulation generator for each area. Cinergy normally models its regulation generator at the WC Beckjord 138 kV bus, and Dayton Power and Light normally models a regulation generator at the Stuart 345 kV bus. If a study is being conducted in the vicinity of these units, and it is anticipated that swings in generating output levels at these units will impact the study results, a different generating station is selected for the regulation bus.

If studies are being conducted on the transmission and subtransmission systems in the northern area of CG&E, it is important to evaluate the performance of CG&E's system with and without DP&L's 69 kV OH Hutchings units in service. The generation dispatch of these units has a significant impact on CG&E's subtransmission system in this vicinity. During peak load conditions, if the Hutchings units are out of service, CG&E's Carlisle 138-69 kV transformer may overload. Operating procedures are in place to eliminate this problem. First, DP&L conducts switching operations to reconfigure their system to decrease the loading on the transformer. If this does not work, the Carlisle-Hutchings 69 kV line may be opened.

Studies that involve the Batesville - Connersville(Indiana) area should consider the operation of the oil peakers located at the Connersville 138 kV substation. These peakers are normally modeled off in the base case but should be turned on and operated as MVAR output only if the voltage on the 69 and 138 kV system in the area drops below 90% of nominal.

Under peak load conditions and this double contingency outage, the 230-138 kV autotransformer at Gallagher will be loaded above its emergency rating. The generation on the 230 kV bus at Gallagher should be reduced until the loading on the autotransformer is below its emergency rating.

Studies that include outages of 345-138 kV transformers must also include connecting the split 138 kV bus to connect all of the 138 kV bus to the transformer remaining in service at the CG&E Terminal, Red Bank, and Port Union stations. This is necessary to reflect a possible operational mode during a long-term outage of a 345-138 kV transformer at any of these substations.

Studies that are conducted to determine transfer capabilities between Cinergy and other companies are extremely complex and time-consuming as various operational conditions may have significant impact on the results of the study. The generation dispatch, load distribution, and any facility outages that are assumed for the study all may have an impact on the capability that is determined. The results of such a study cannot be regarded as an absolute number or absolute indication of the ability of the system to transfer power because of these operating variations. The number should be considered as an indication of a system's ability to support transfers and withstand contingencies. This number is generally the most meaningful when compared to other studies performed since this will provide an indication of the relative strength of the system.

Another important consideration in transfer studies is existing transfers and the thermal ratings of existing interconnections. Utilities can transfer power from (or through) directly-interconnected companies on a direct interconnection if the total transfer level is less than the thermal rating of the interconnection. The interconnection ratings in the Cinergy power flow base case are adequate to make this determination.

The contingencies that are normally evaluated for Cinergy transfer capabilities include:

- A) Reduction of generation of WC Beckjord 138 kV Unit
 - 1) Outage Pierce 345-138 kV
 - 2) Outage Pierce-Foster 345 kV
 - 3) Outage Silver Grove 345-138 kV
 - 4) Outage either Red Bank 345-138 kV
 - 5) Outage either Terminal 345-138 kV
 - 6) Outage Miami Fort 345-138 kV
 - 7) Outage Buffington 345-138 kV

B) Reduction of generation at Miami Fort 138 kV

- 1) Outage of Silver Grove 345-138 kV
- 2) Outage of Miami Fort 345-138 kV
- 3) Outage of East Bend-Terminal 345 kV
- 4) Outage of Pierce-Foster 345 kV
- 5) Outage of either Red Bank 345-138 kV
- 6) Outage of either Terminal 345-138 kV
- 7) Outage of Buffington 345-138 kV

C) Reduction of generation at Gibson 345 kV

1) Outage of Burr Oak - Leesburg 345 kV(NIPSCO circuit)

- 2) Outage of Trimble County Clifty 345 kV(LG&E circuit)
- 3) Outage of AB Brown Henderson Co. 138 kV(BREC circuit)
- 4) Outage of Speed 345-138 kV
- 5) Outage of Gibson Albion(CIPS) 345 kV
- 6) Outage of Gibson Whitestown 345 kV

This is not an exhaustive list of all possibilities tested when calculating Cinergy import or export capability.

The power flow simulation studies will provide an indication of system performance under a variety of conditions. However, it is important to realize that these studies represent only a part of an entire study. If a new facility addition or a change in the network topology is anticipated, then it is necessary to conduct an extensive series of power flow simulations to determine the performance of the changed system. For proposed system changes, it is also important to conduct a series of short circuit studies. The goal of these studies from a planning perspective is to ensure that a planned project utilizes equipment and designs that will withstand the maximum expected short-circuit levels. Relay engineers must conduct similar studies to devise protection schemes for the new equipment or make any required revisions to existing equipment.

Projects that alter the configuration of the outlets from a generating unit, or add generation, remove generation, etc. must also be subjected to a variety of transient stability tests, to ensure that loss of synchronism of any generating unit does not occur for a wide variety of possible conditions.

United States of America Federal Energy Regulatory Commission

1999 FERC FORM 715 Annual Transmission Planning and Evaluation Report CINERGY

Part 6: Evaluation of Transmission System Performance

As part of Cinergy's conformance to NERC Planning Standard IA, measurements 1, 2 and 5, Cinergy has performed an assessment of its transmission system for the projected 1999 peak summer season. Screering studies using the ECAR 1999 summer case indicated no violations of the NERC Standard under normal and single contingency conditions. Although the studies indicated some voltage violations outside the Cinergy planning criteria of 0.95 to 1.05 per unit, these results were due to a combination of base case equivalizing and base kV of selected 69 kV busses in the CG&E operating company. The 69 kV system of Cinergy's CG&E system is actually operated at 66 kV. There were also two single contingency overloads that appeared in the screening results but these were due to the equivalizing of the 69 kV system in the base case. The following is a general discussion of the assessment of the Cinergy transmission system for the 1999 summer season and for the ten year planning horizon.

Cinergy continuously conducts power flow simulation studies of the existing and planned transmission system to assess its expected performance. The assessments are based on the criteria discussed in Part 4 of Cinergy's FERC 715 filing. While Cinergy believes that these tests provide an accurate assessment of the system as currently planned, there are a number of external events that may influence the results of these studies. A change in any of a number of significant variables may dramatically alter the study results. Therefore, it is essential that Cinergy be aware of these changes and incorporate them into the planning process.

Based on power flow simulations and experience, Cinergy expects the primary focus of future development will be the addition of 345-69 kV and 230-69 kV transformer capacity and a new 345 kV circuit. Studies indicate that additional 69 kV transformer capacity will be required in the Carmel - Noblesville(Indiana) area by the year 2000. The present plan is to add a 345-69 kV substation in the area. The Frankfort(Indiana) area will also need additional 69 kV transformer capacity by the year 1999. Present plans

are to add additional 230-69 kV capacity in the area by the end of 1999. Additional 69 kV transformer capacity is planned for the Shelbyville(Indiana) area by the year 2001. The addition of a 345-69 kV transformer is being studied for this area. Additional 69kV capacity is planned for the Hendricks County(Indiana) area by the year 2002. Also, additional 69kV capacity is being planned for the Clarksville(Indiana) area for the year 2001.

The 138 kV windings of the three 230-138-69 kV transformers at Kokomo Highland Park may overload for large transfers from either west-to-east or south-to-north or during certain generation or transmission outages in the vicinity of the Greentown 765 kV substation. This overload may be reduced or eliminated by splitting the 138 kV bus at Greentown which isolates the AEP Greentown-Hummel Creek and Greentown-Grant 138 kV circuits from the Greentown-Kokomo and Greentown-Wabash 138 kV circuits. There are no plans to expand the transmission system to handle these contingencies due to the low probability of occurrence of all the necessary conditions occurring.

Cinergy's Greentown 765/230/138 kV transformer failed on July 4, 1998. A replacement bank has been ordered and is expected to be in service by July 15, 1999. Should the in service date get delayed, the transmission system in the vicinity could see lower voltages and possible overloads during additional contingencies. Actual voltages and overloads will depend on system conditions such as level of transfers across the system, system load and conditions on neighboring systems. Cinergy has developed operating procedures that will be utilized if necessary to minimize low voltage conditions and eliminate overloads.

As a result of the completed merger between PSI Energy and CG&E to form Cinergy, Cinergy is planning the construction of a new 345 kV circuit between the two operating companies. This circuit will connect into the Batesville - Ghent 345 kV line and loop into the East Bend 345 kV generating station. This circuit was originally planned for completion by December 31, 1999.

On July 11, 1997, Cinergy filed a request with FERC to defer the in-service date of this facility until 12/31/01, to allow the Company additional time to determine if the effort to develop an Independent System Operator in the Midwest could impact the need for this facility. On September 24, 1997, the FERC issued an order in which they granted Cinergy's request to defer the construction of the line.

Overall, the transmission system is expected to perform well with the budgeted transmission projects placed into service, and no significant problems are expected.

Cinergy continues to stay abreast of the changes in the electric utility industry and the effects they may have on the transmission system. Retail wheeling and increased requests for transmission access due to merchant power plants are just two examples of influences that could potentially alter our assessment of the transmission system. Without knowing the final outcome of regulatory changes, it is difficult if not impossible to currently factor these changes into our assessment.

Cinergy

FORM IRP-1

GENERAL SUPPLY - SIDE PLANNING INFORMATION

Marginal Costing Period Duration (1):

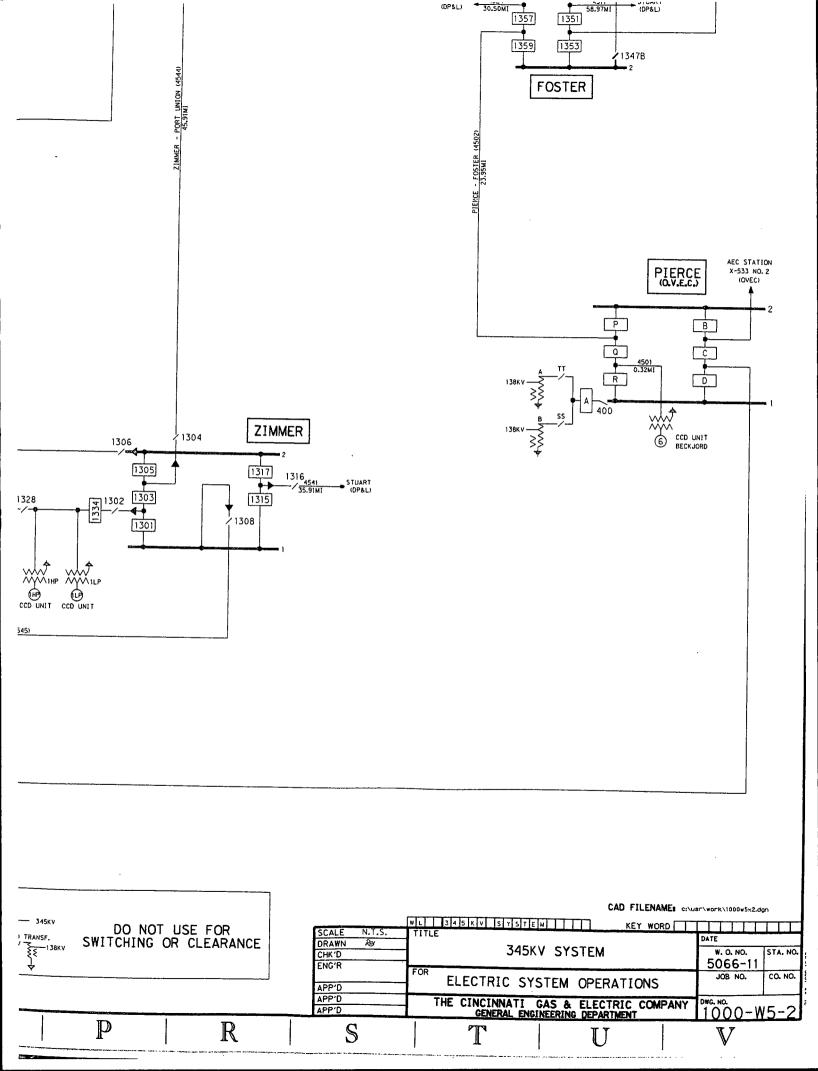
	Summer Season Months (June through September)		Winter Se			
			(All Other Months)			
	On	Mid	Off	On	Mid	Off
	<u>Peak</u>	<u>Peak</u>	Peak	Peak	Peak	<u>Peak</u>
Annual Hours:	(3)	(3)	(3)	<u>(3)</u>	(3)	(3)

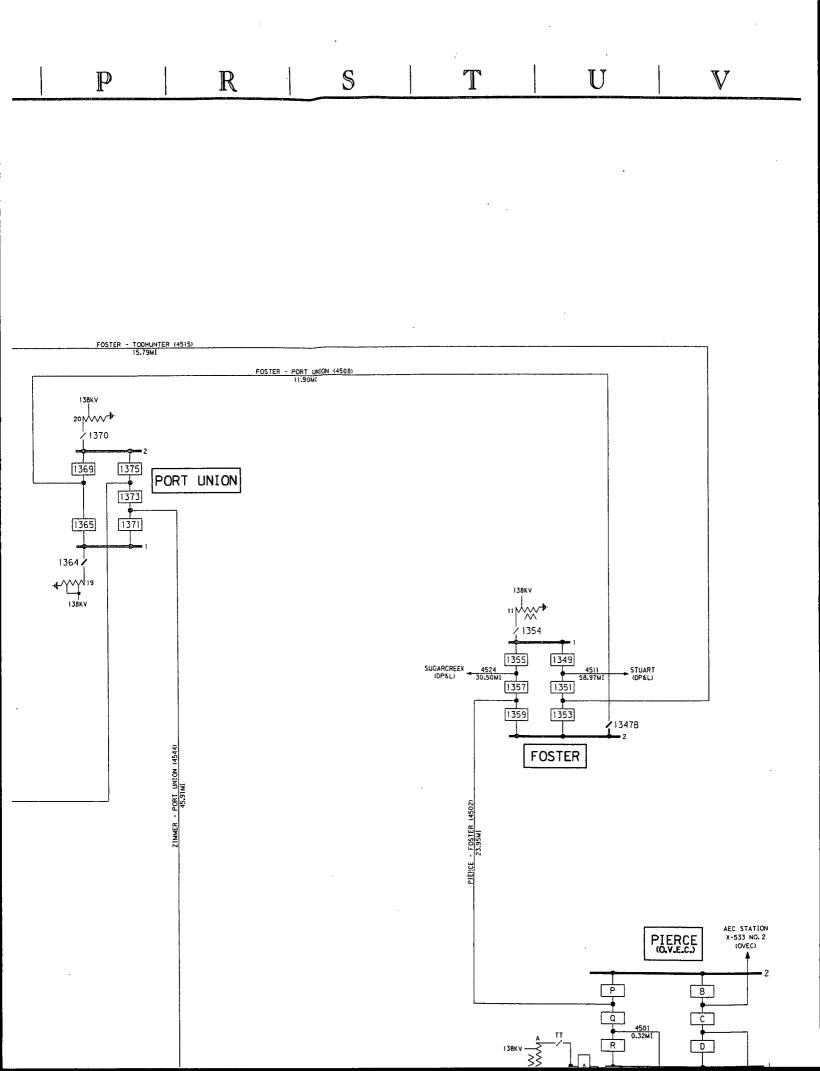
Seasonal Demand Related Capacity Cost Allocation Factors:

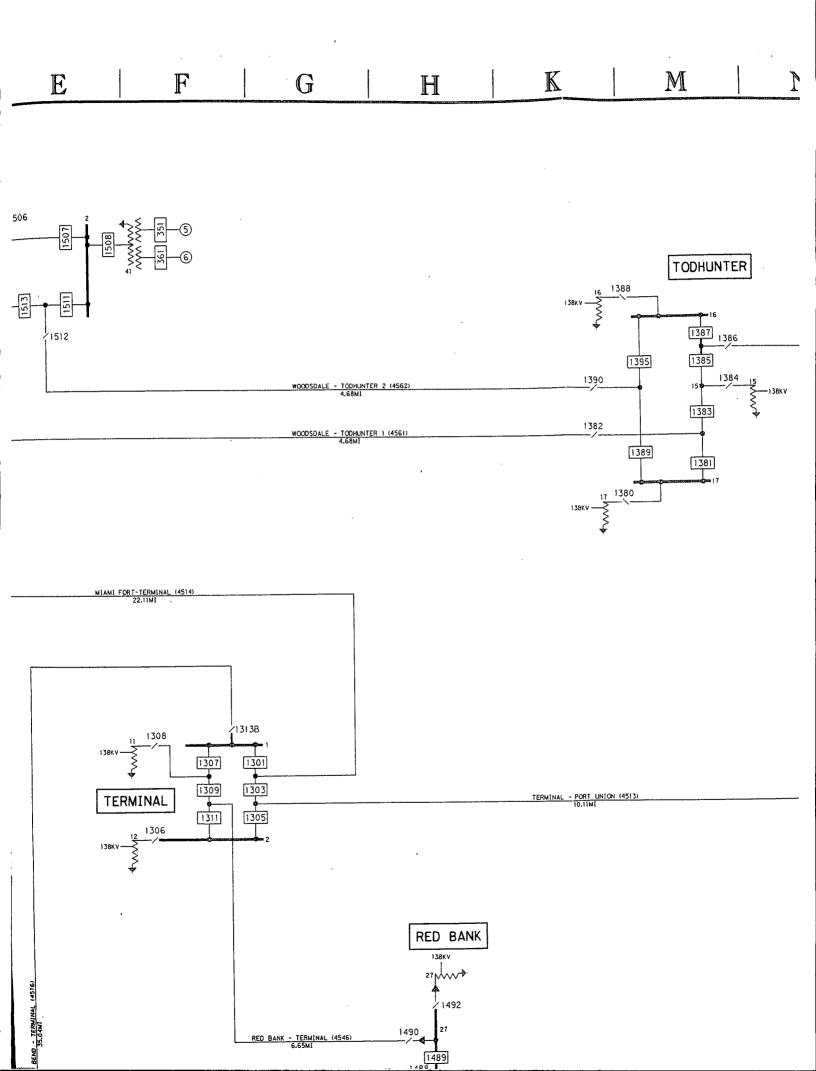
Summer	<u>(3)</u> %	NOTE:	E
Winter	<u>(3)</u> %		0

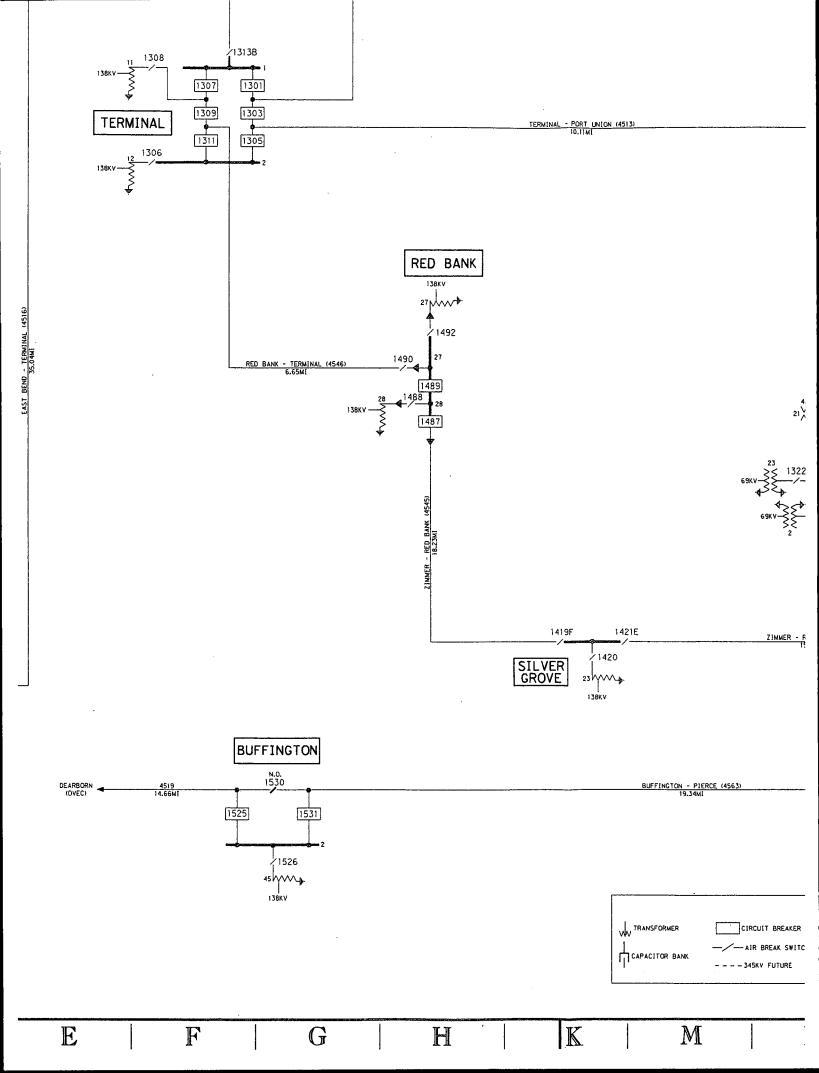
Estimate supplied for reporting purposes only. Cinergy does not use this in the evaluation of potential resources.

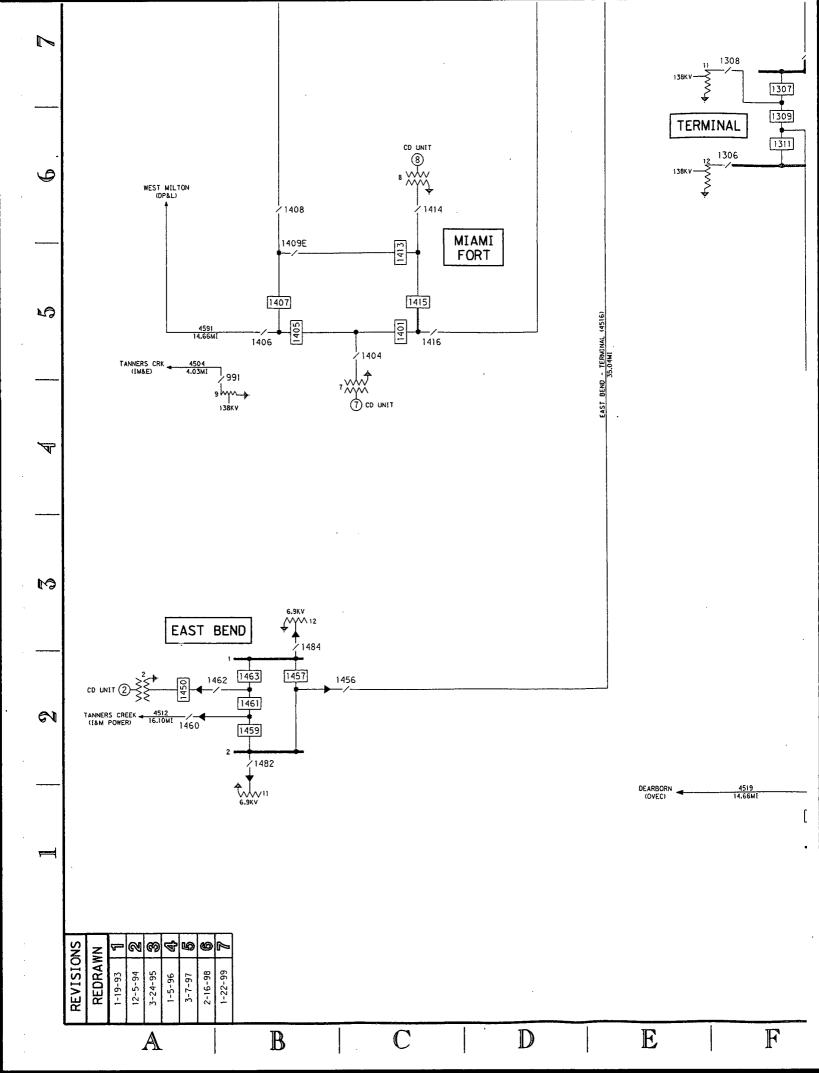
Generating Reserve Criteria:

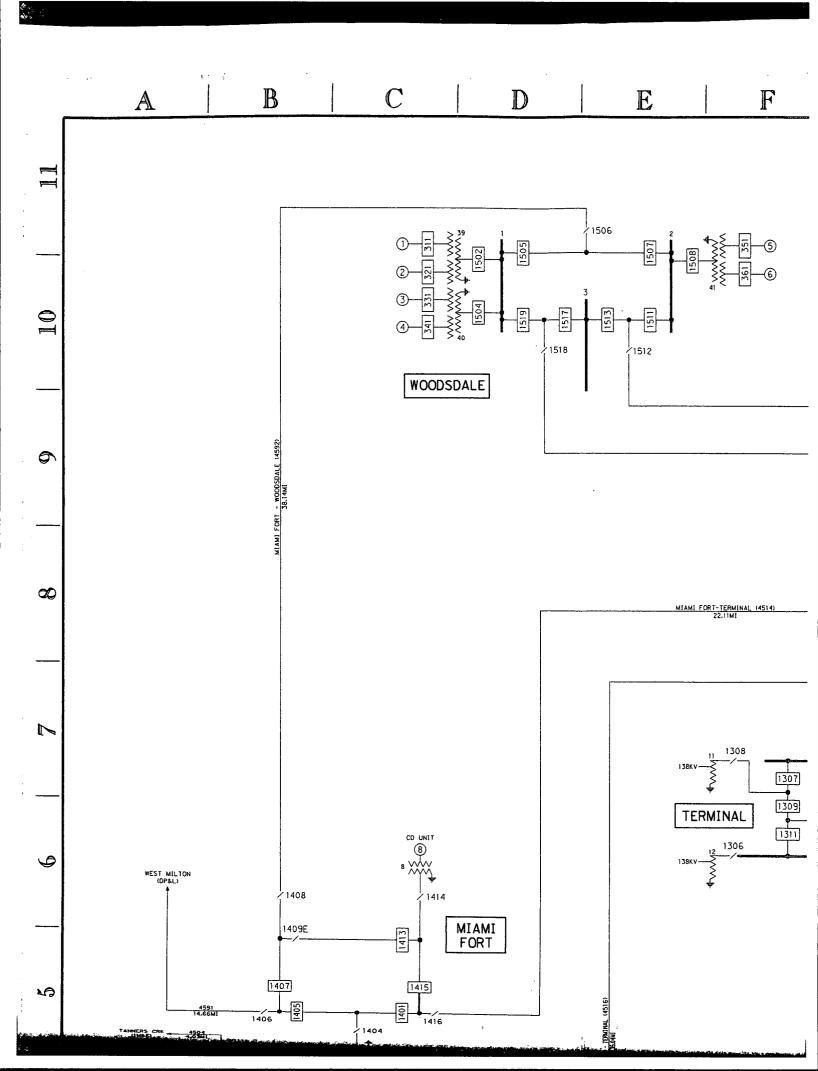

Planned Average Generating Reserve Margin for the IRP Period: (3) % (2)

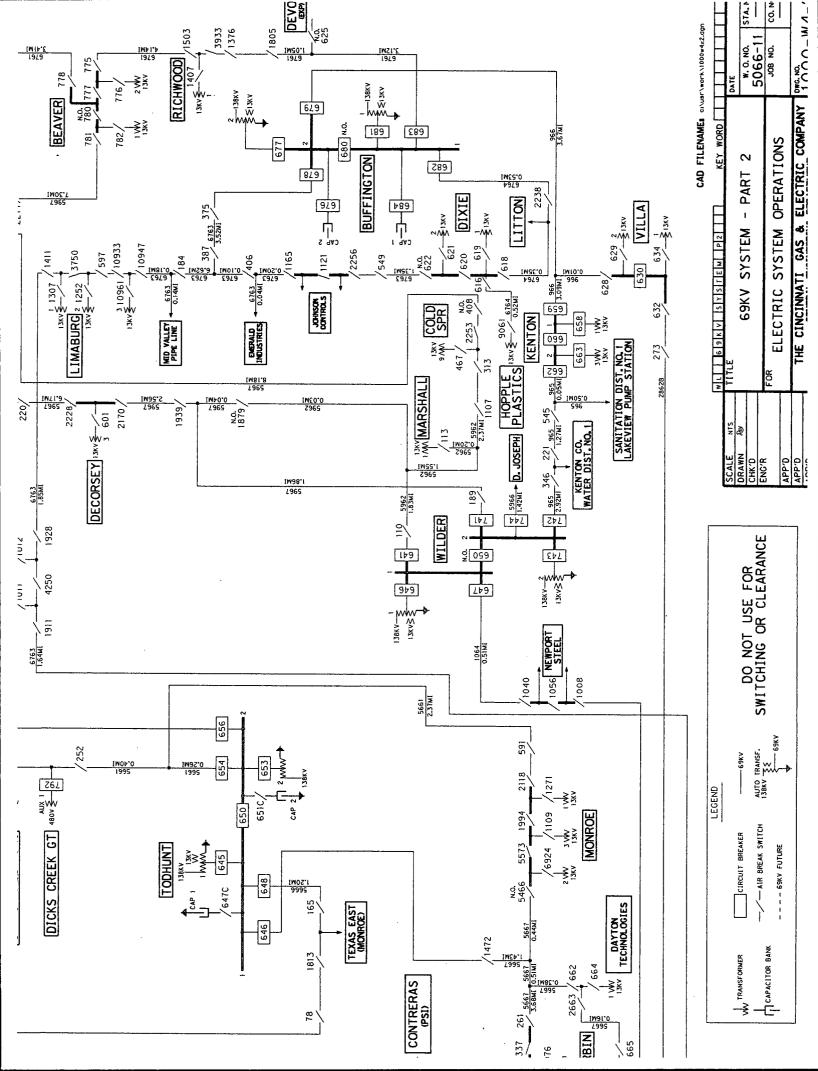

Projected Generating and Transmission Facility Costs:

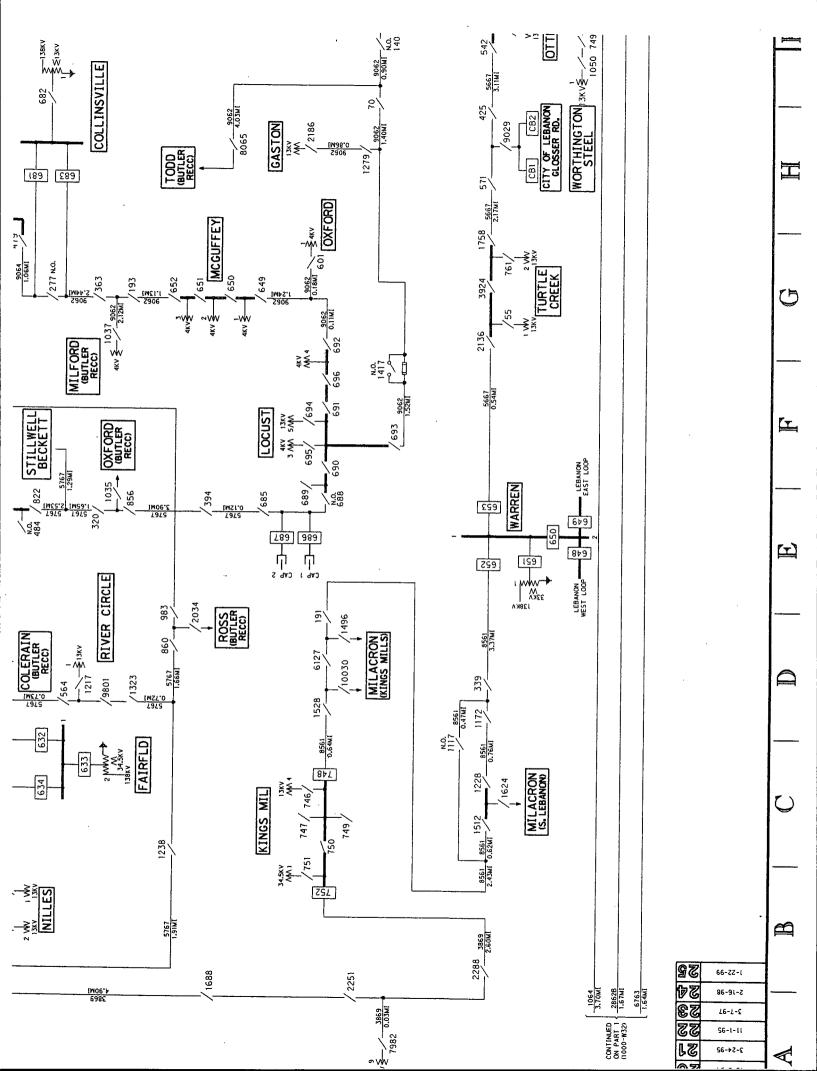

Parameters	Trans. Data Generating Facility Data (3))		
Facility Designation					
Capital Cost (\$/kW)	68.44			 	
Fixed O&M Cost (\$/kW-yr.)	1.51			 	
Escalation Rates (%/yr.):					
Capital Cost	3.15		·····	 	******
Fixed O&M Cost	2.2	<u></u>		 	<u> </u>
LARR Rate (%/yr.)	13.2			 	
Facility Book Life (years)				 	
Capacity Factors:					
Summer	N/A			 	
Winter	<u>N/A</u>			 	

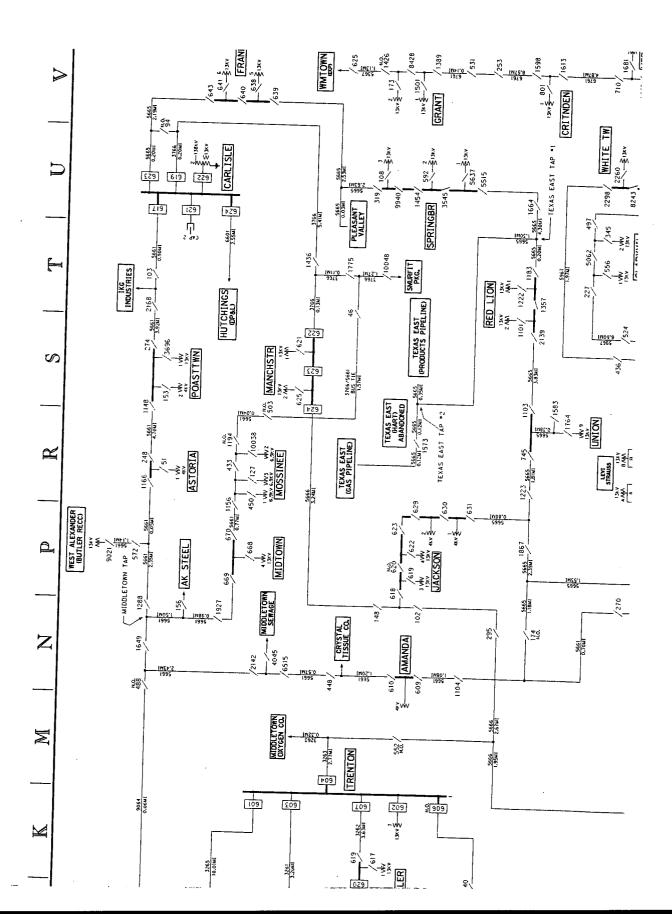

NOTES:

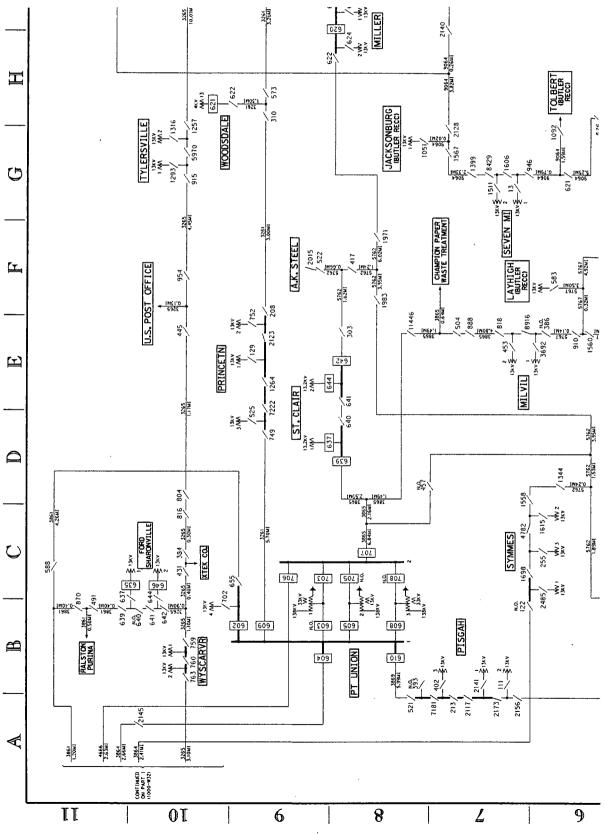

- (1) Period breakdowns are approximate and are provided as a filing requirement only, used by Cinergy.
- (2) This value is the average of the minimum reserve margin constraints used in Proview[™] for the period 1998 through 2018.
- (3) The relevant Generation information is located in Volume II (Ohio Appendix), which is prepared independently.

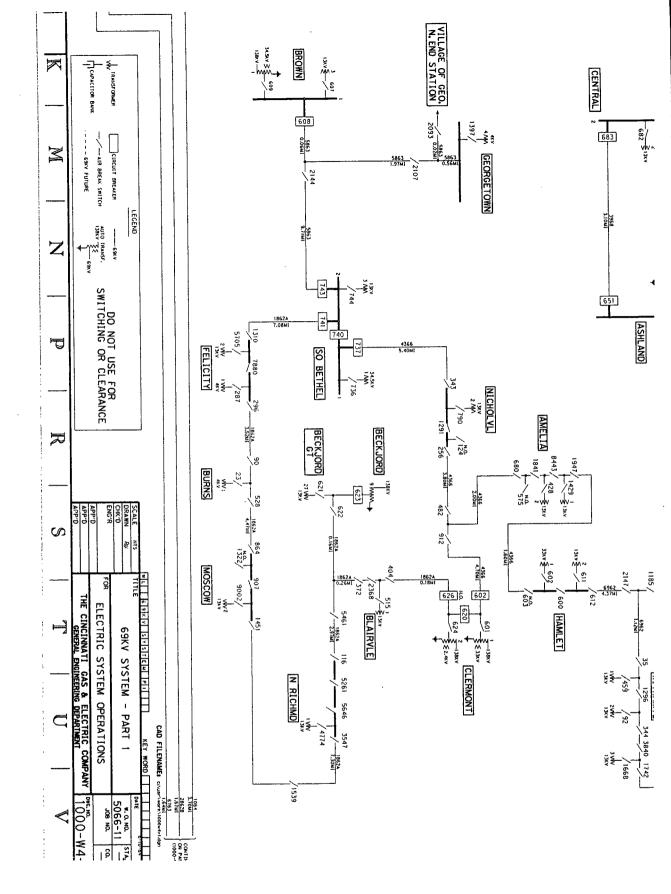


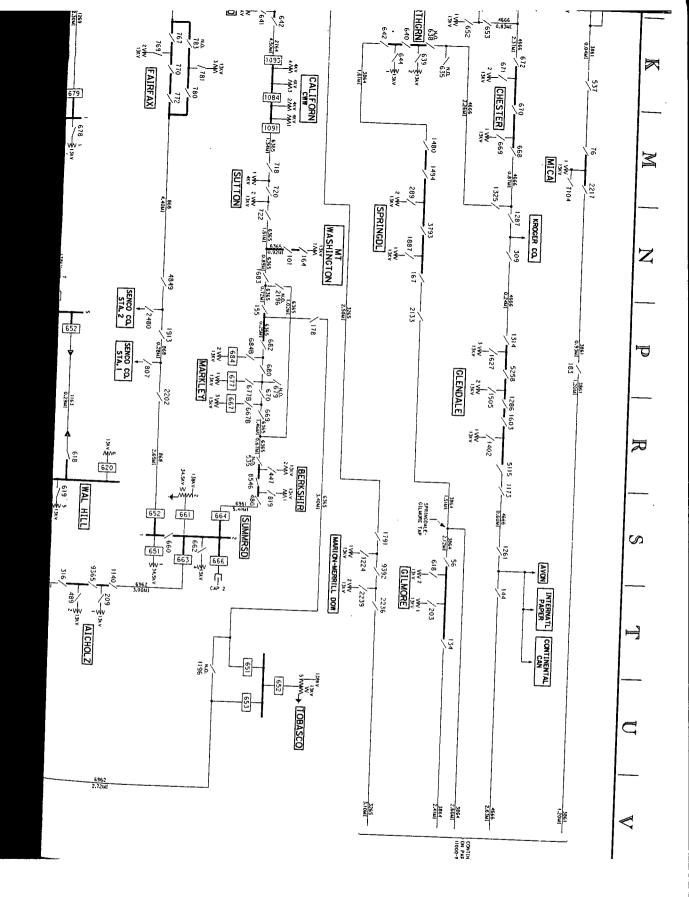


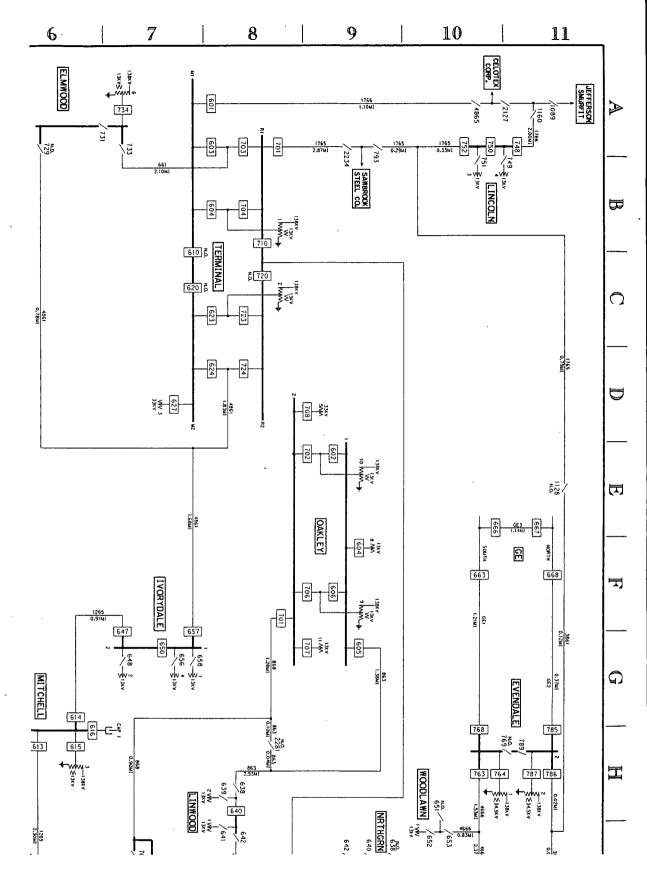


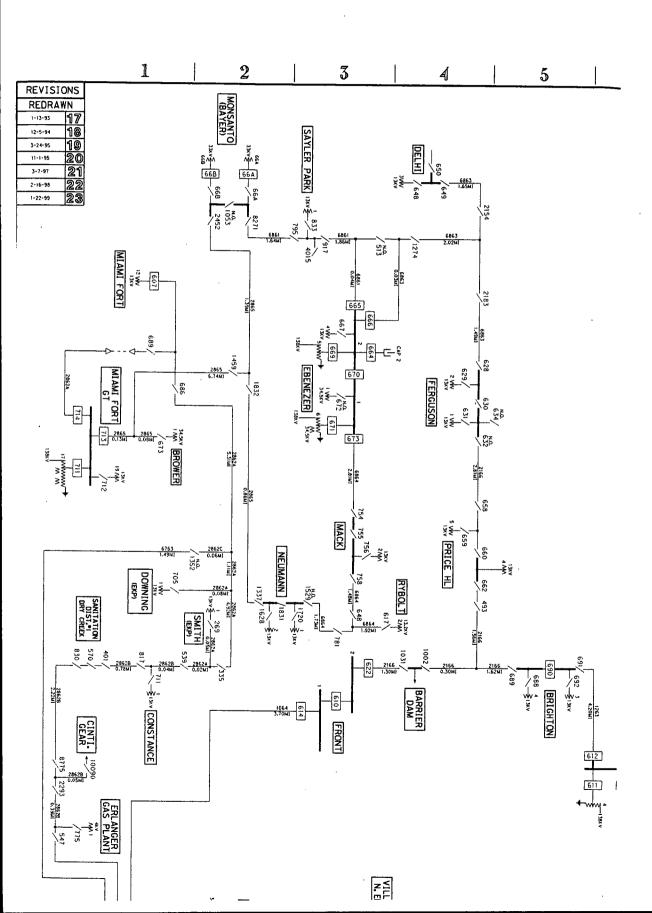


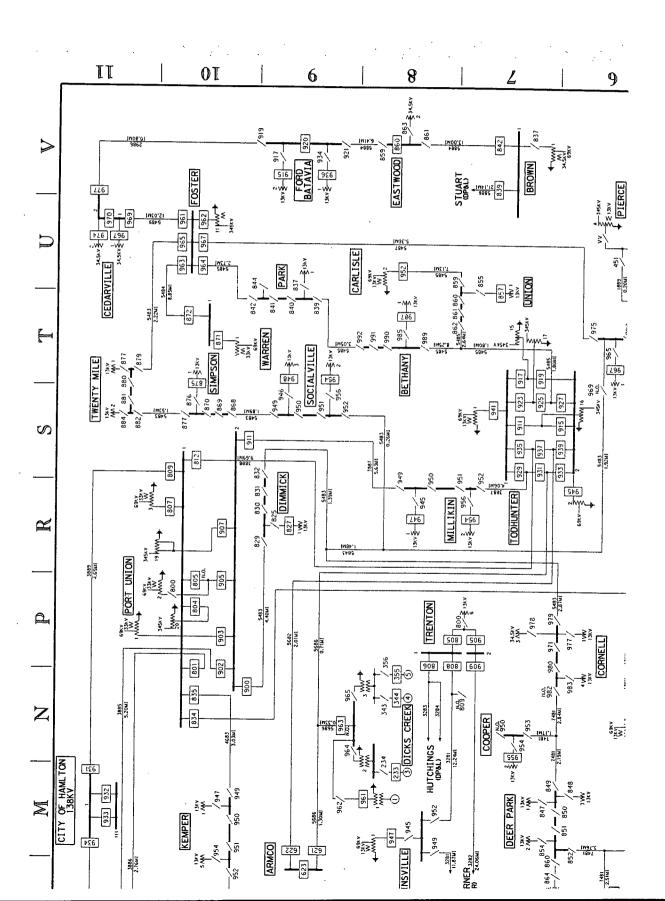


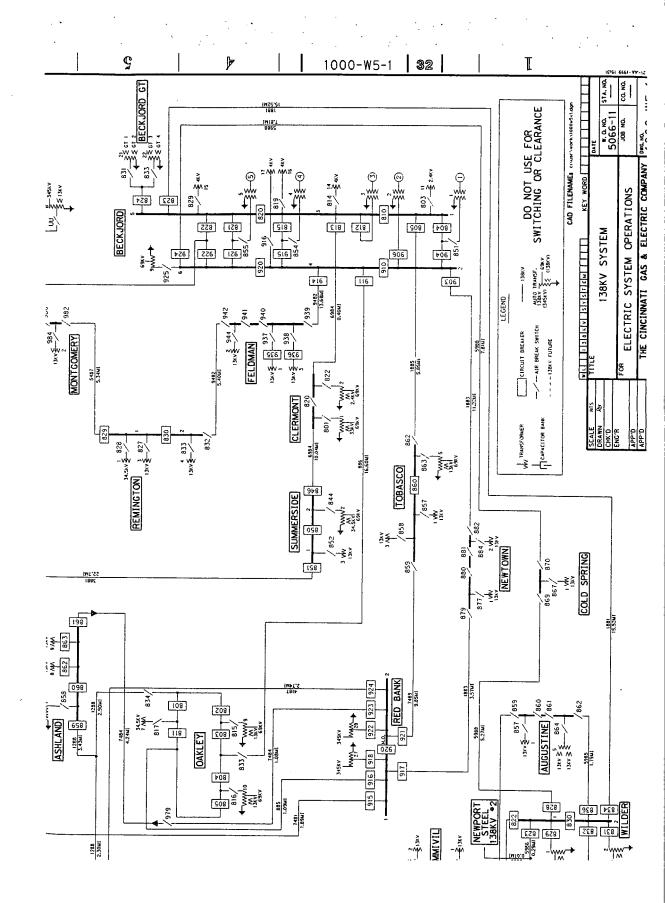


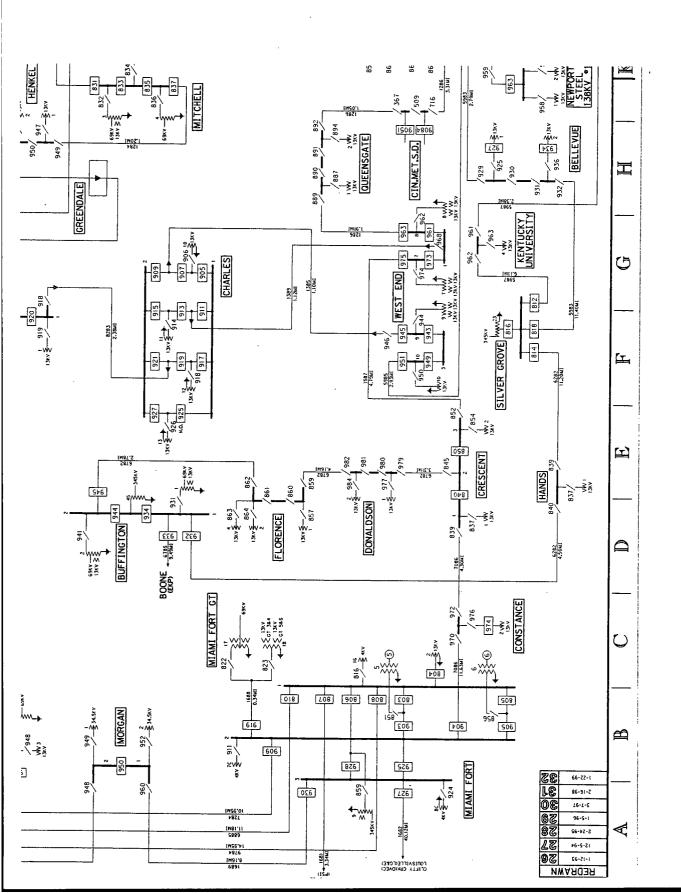


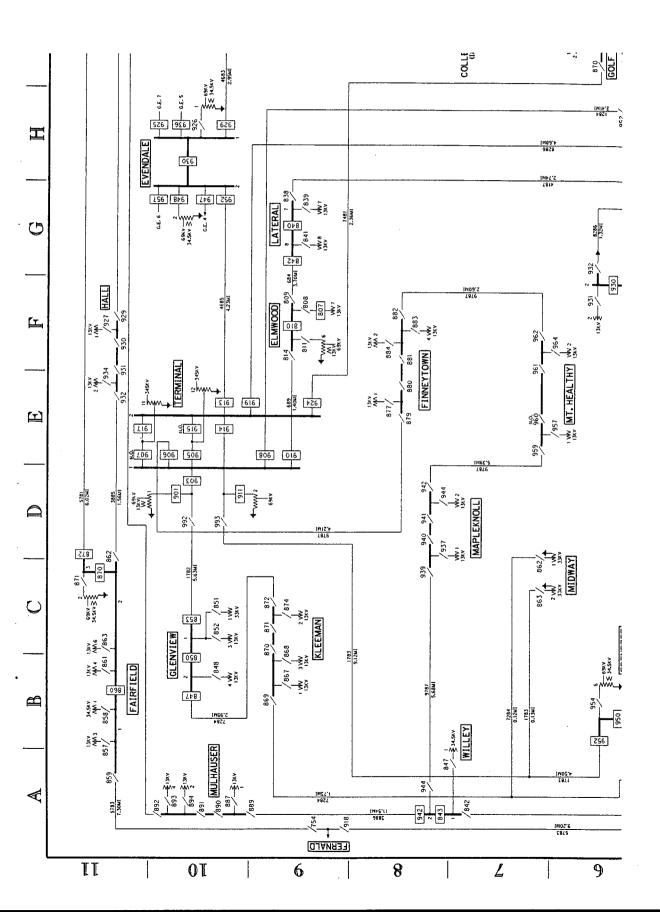


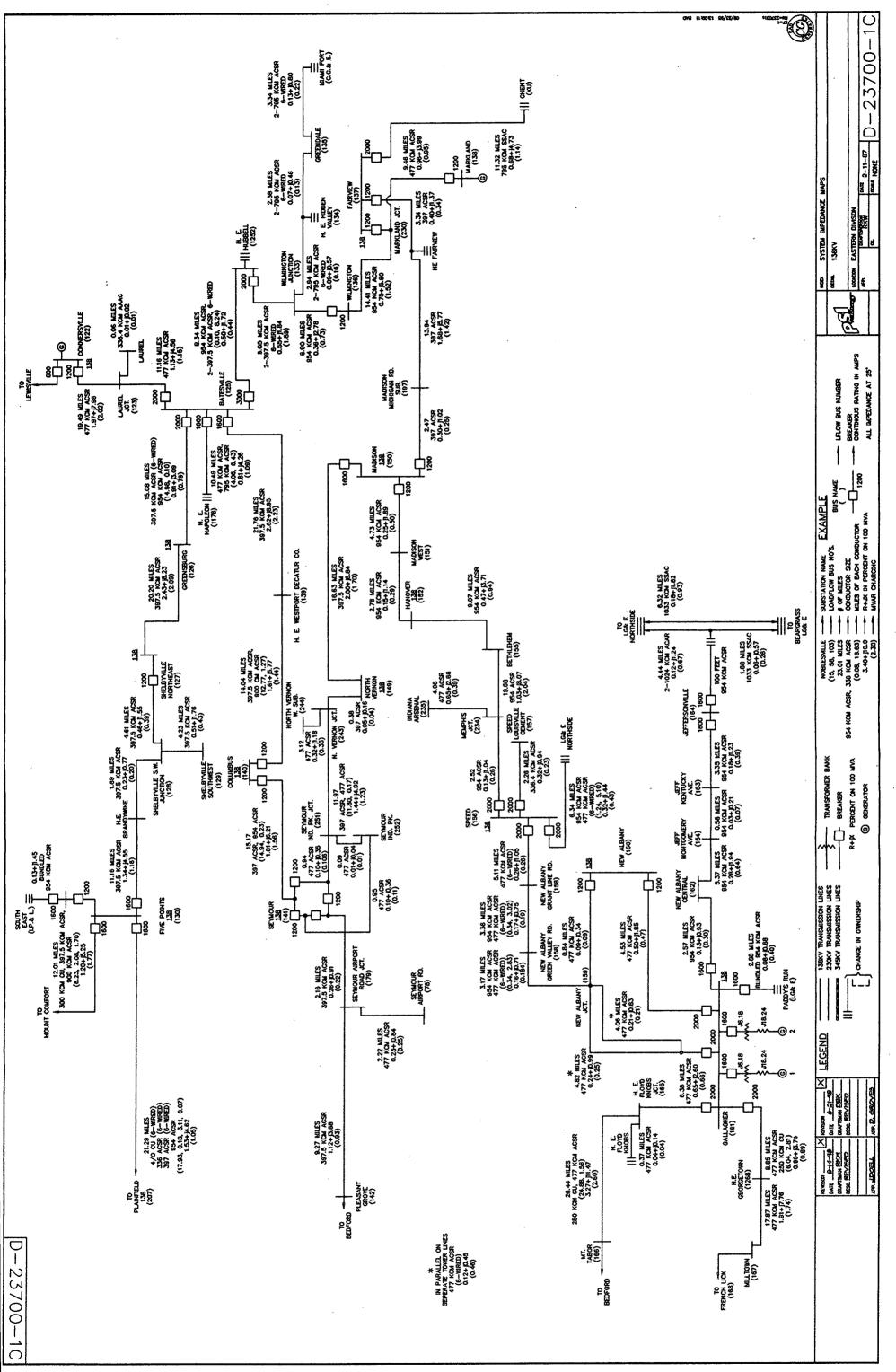


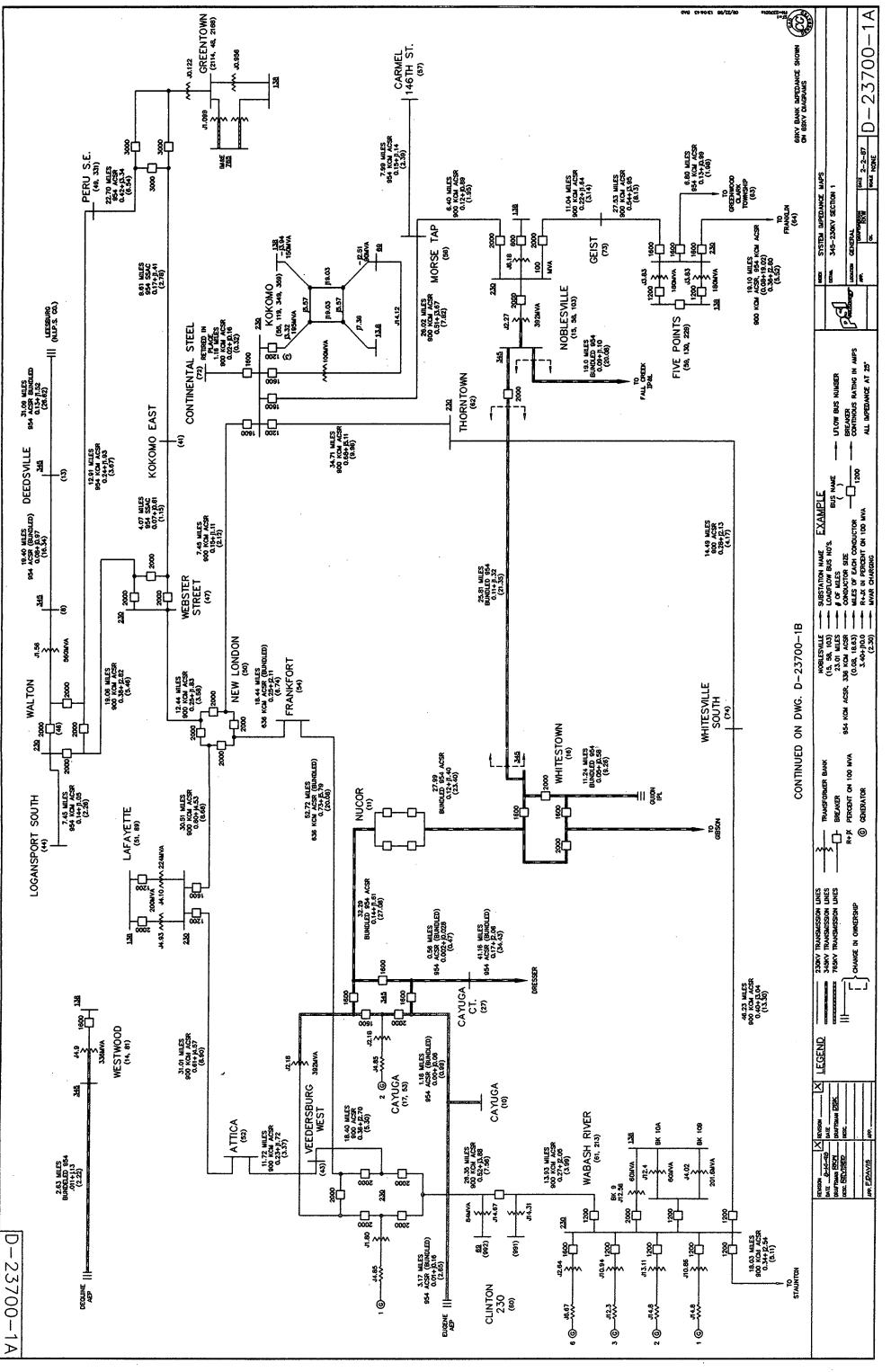


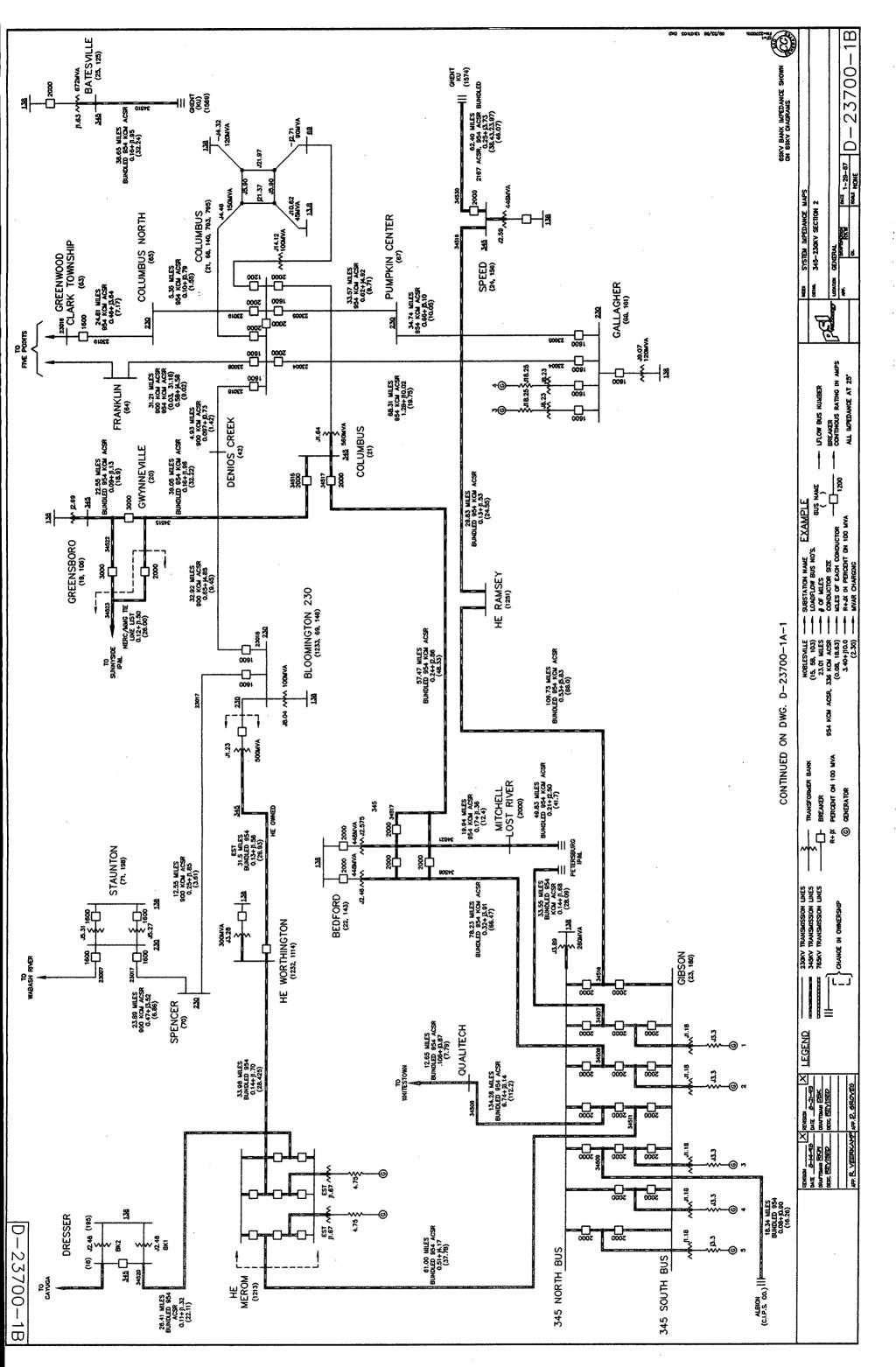


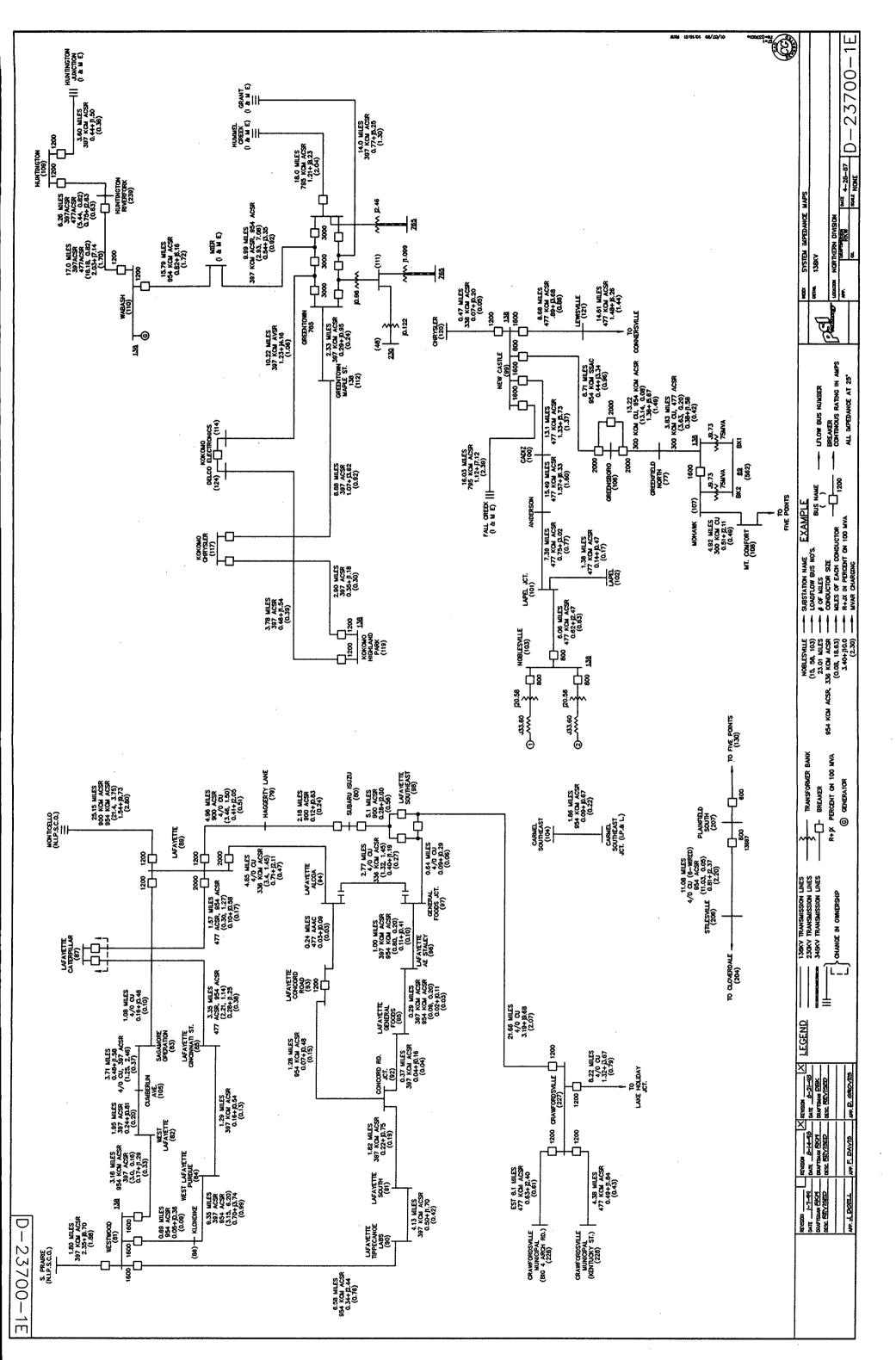


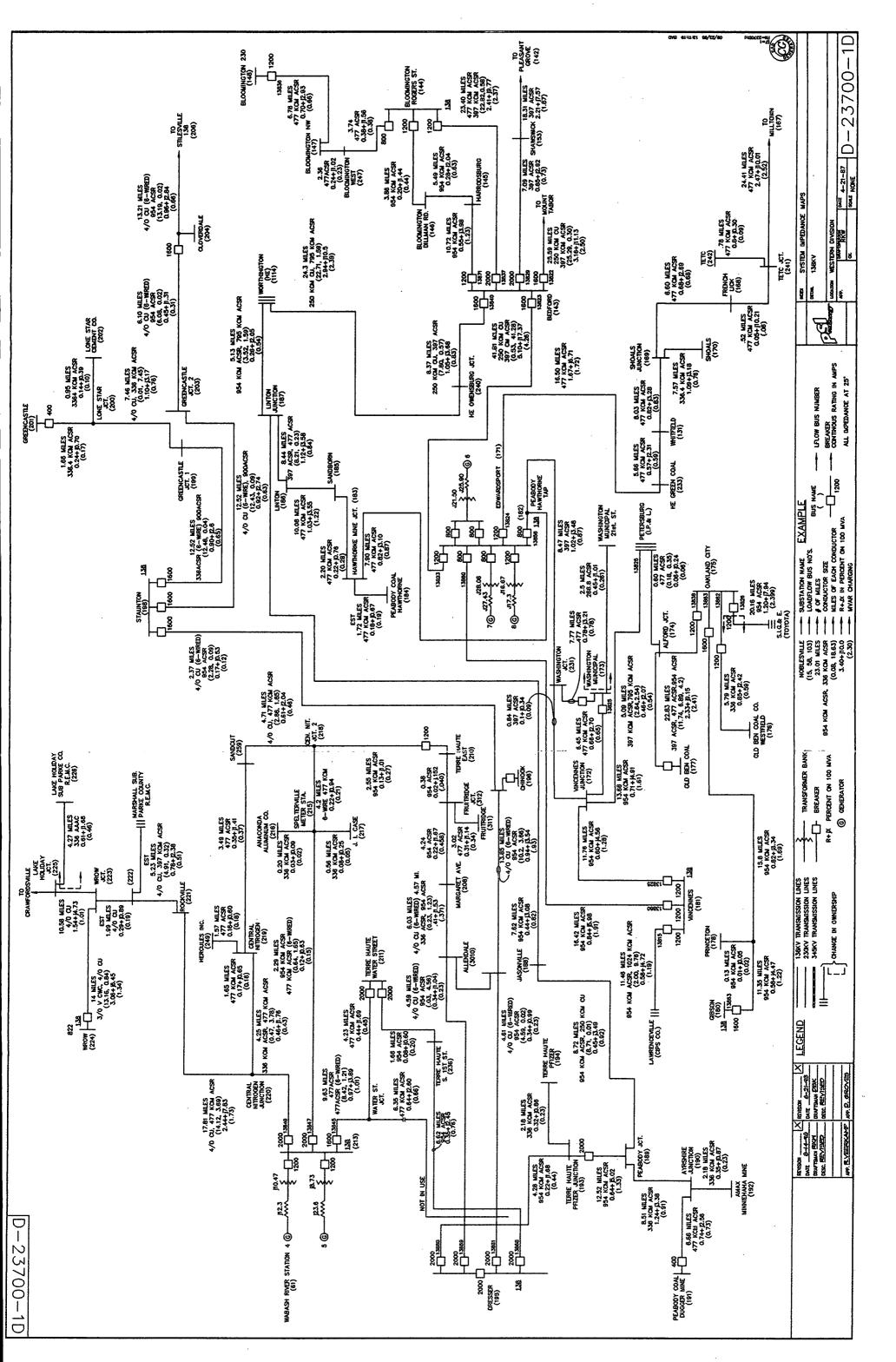


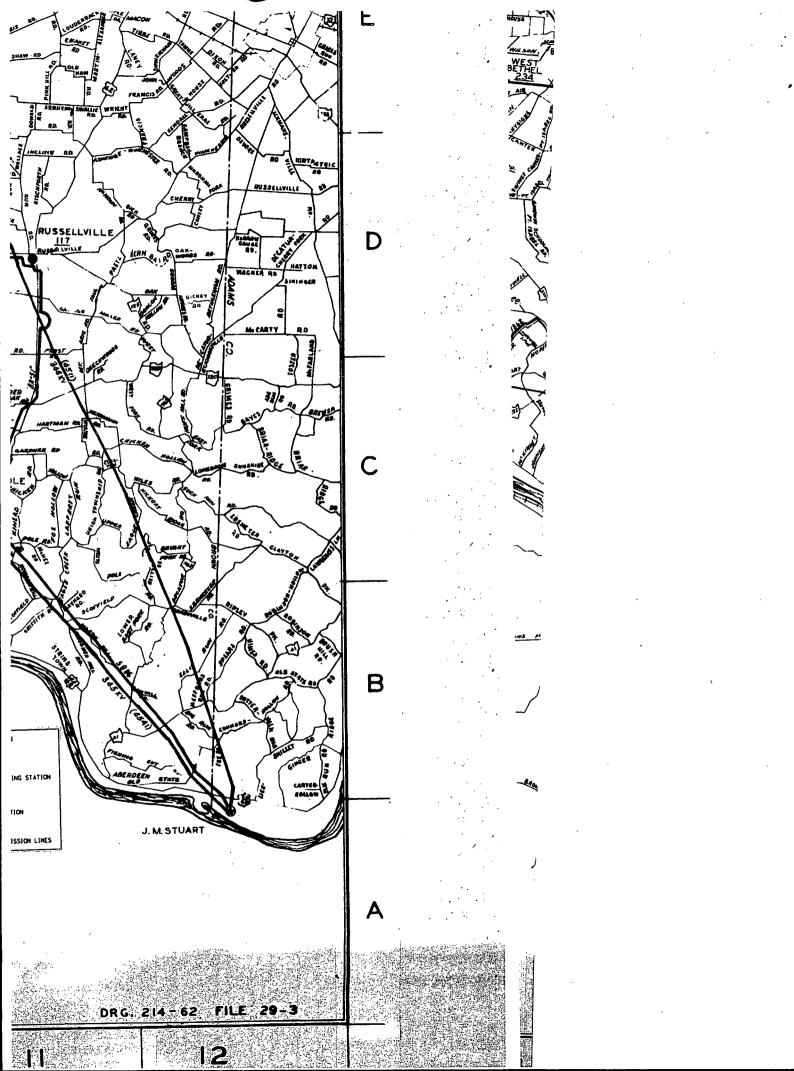


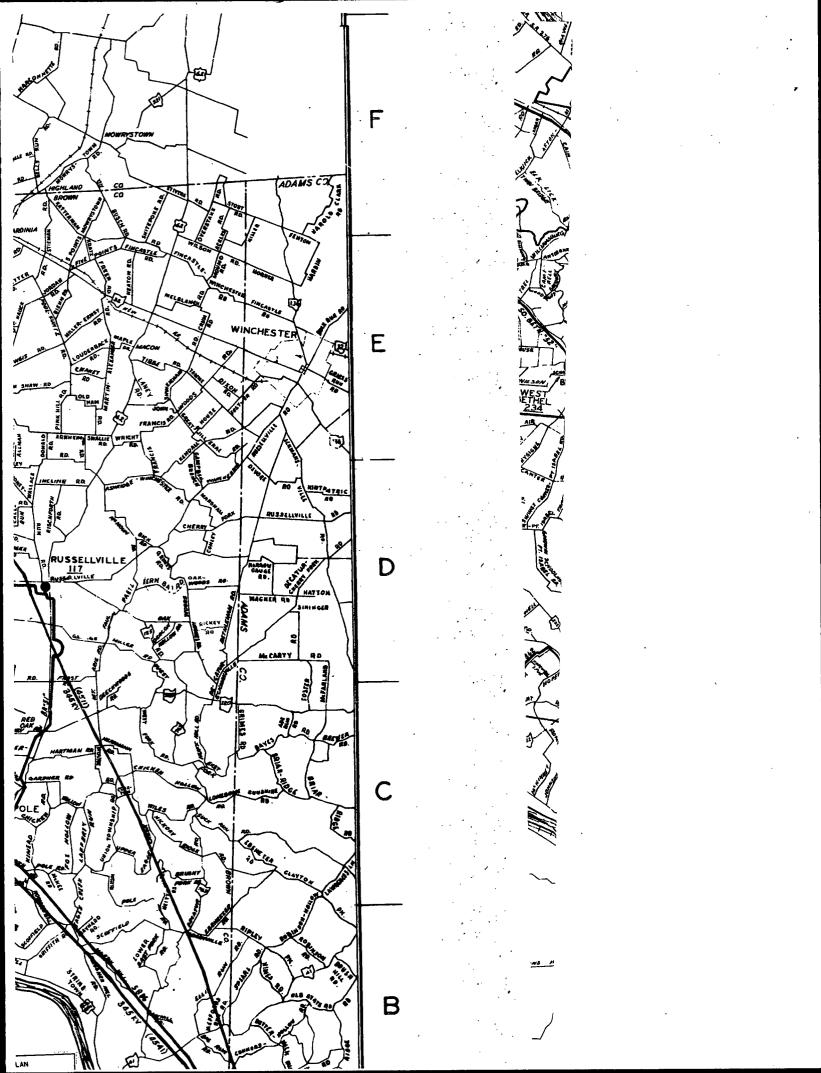


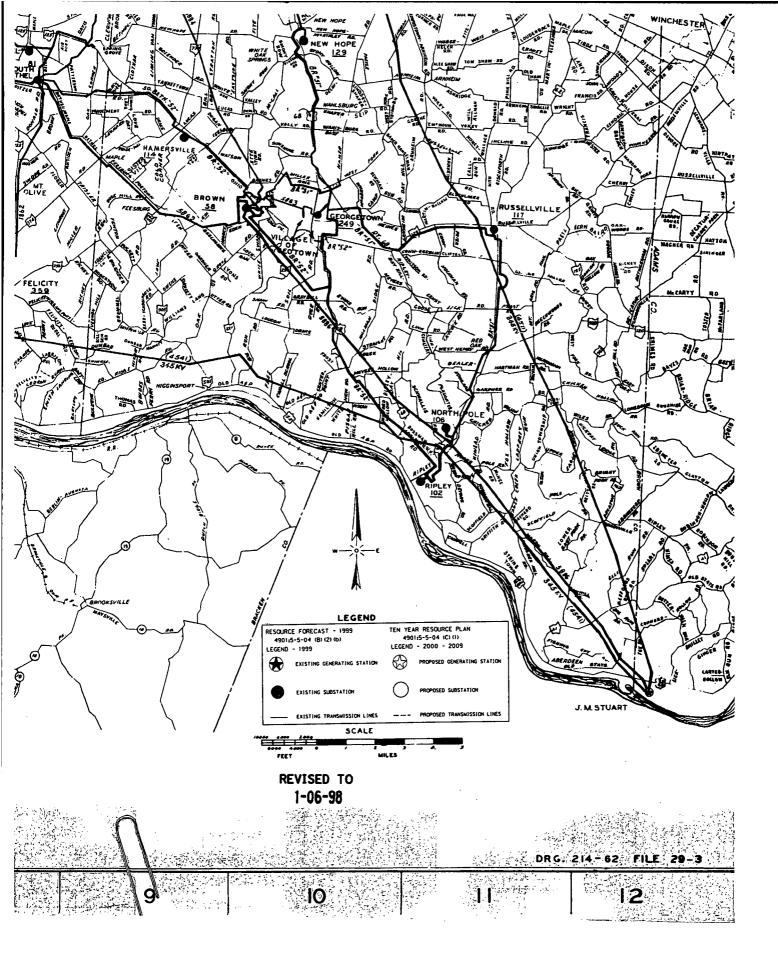


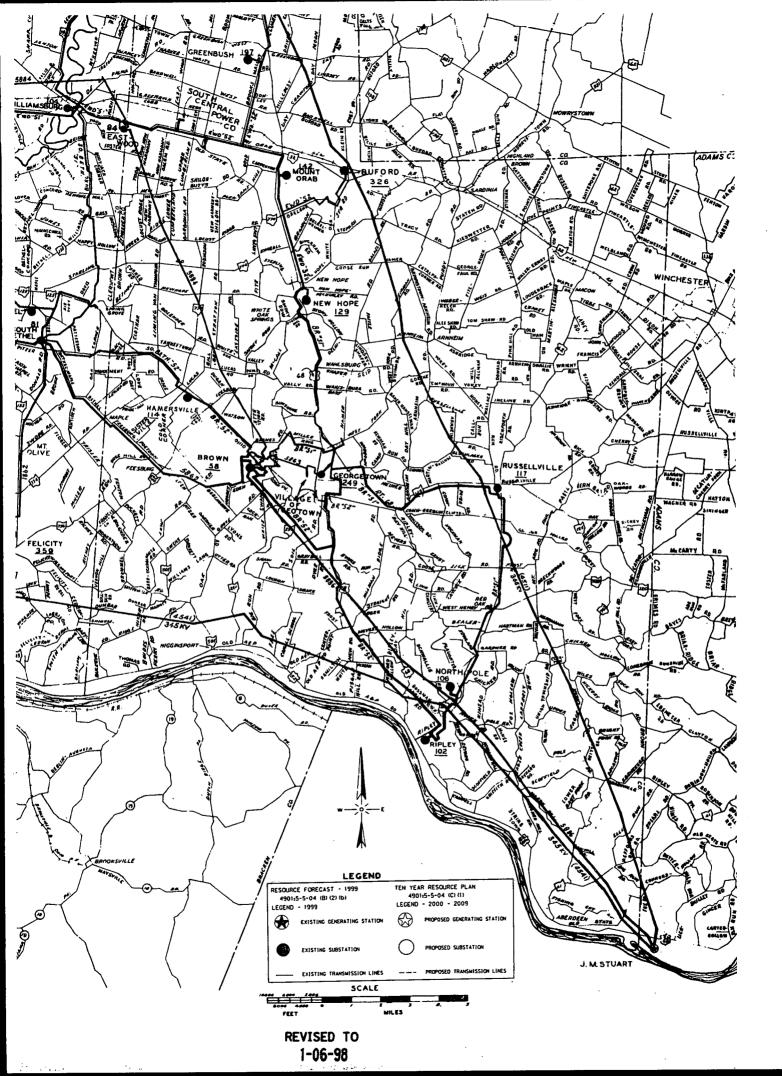


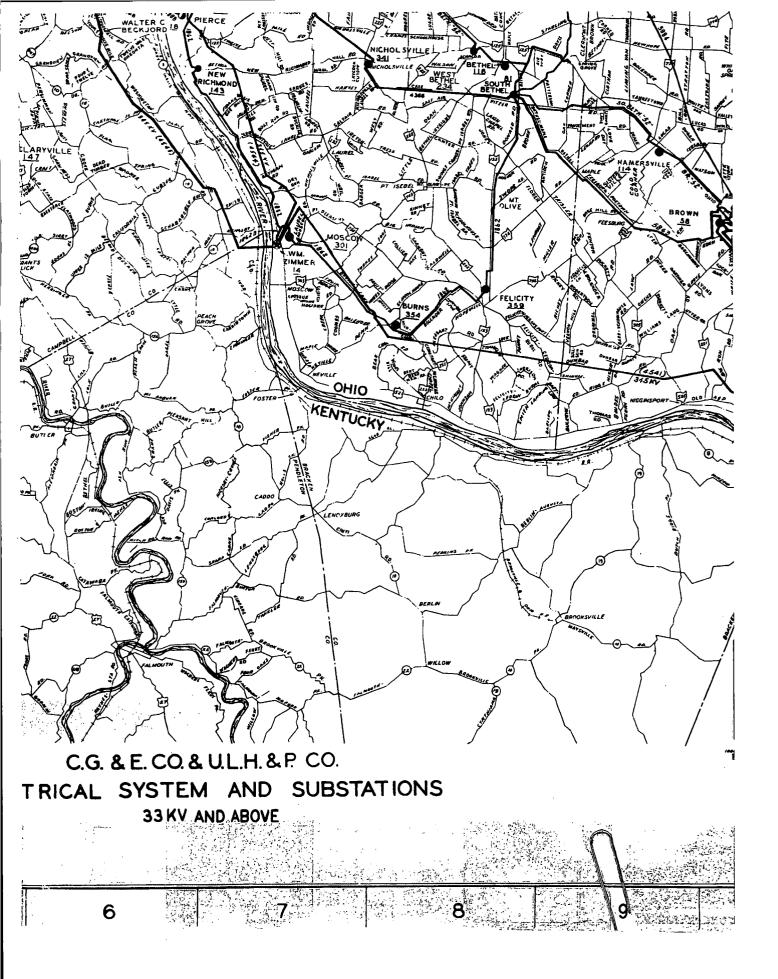


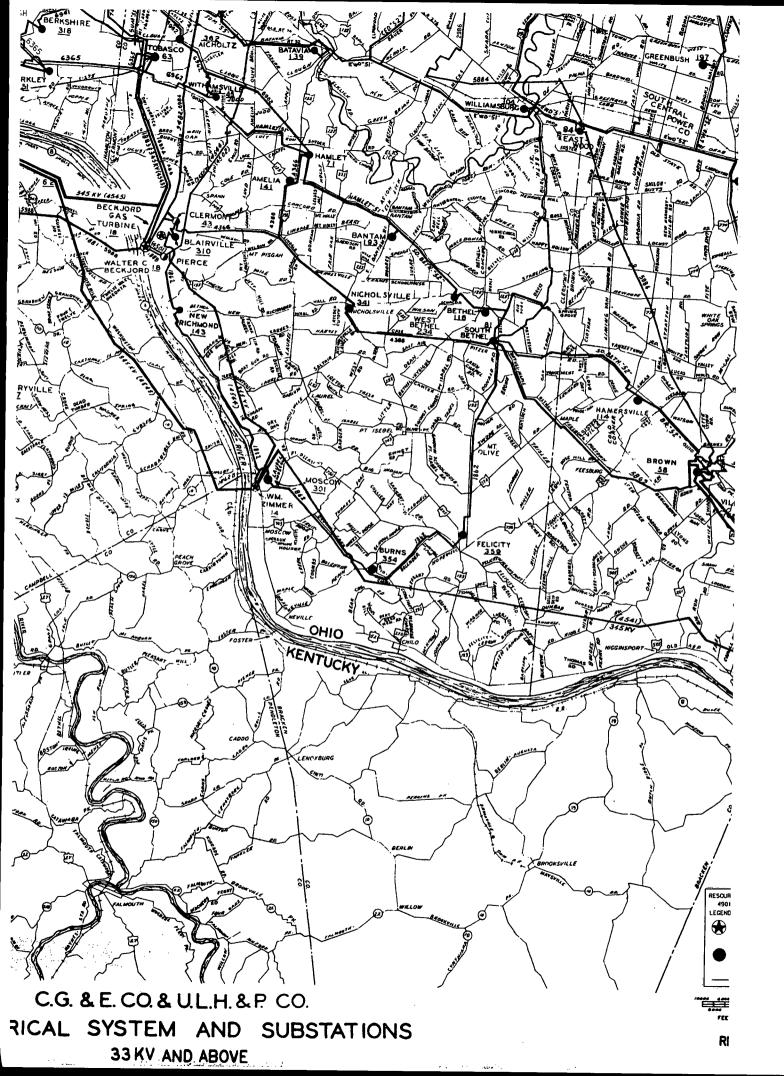


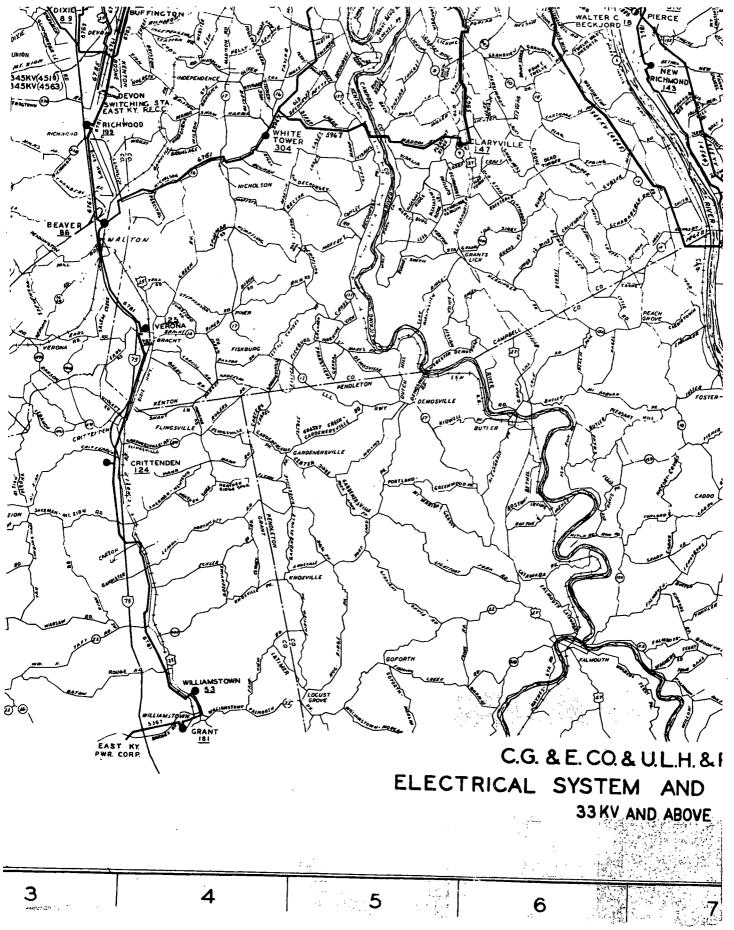


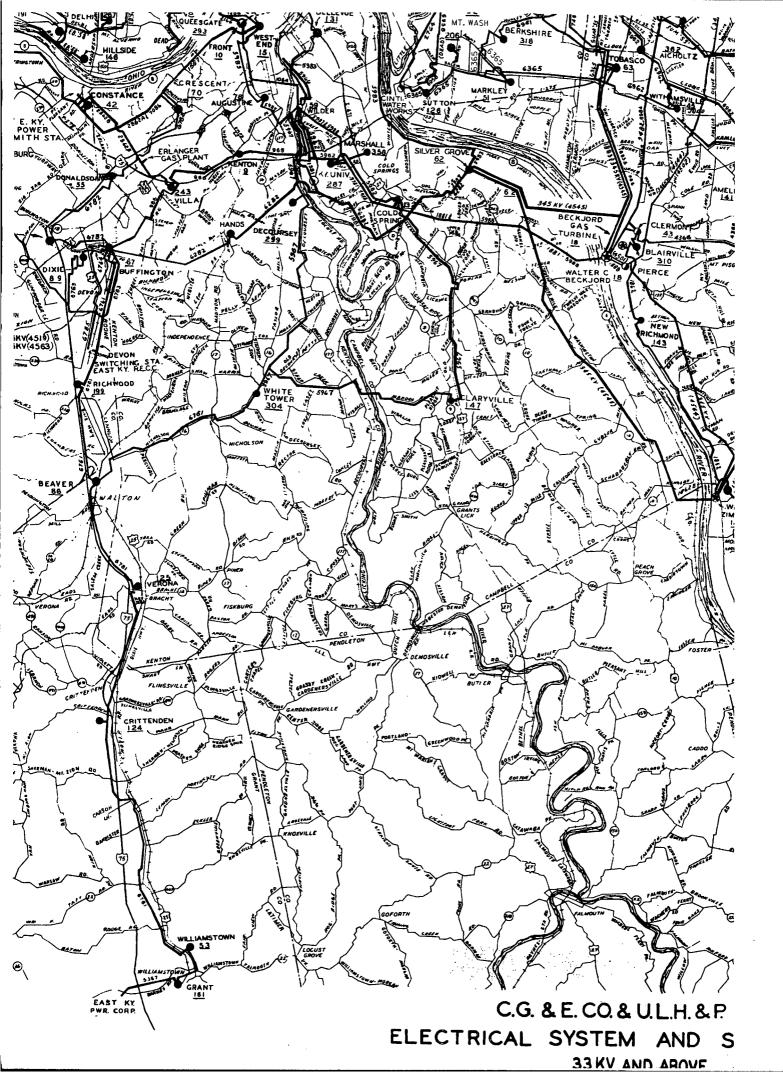


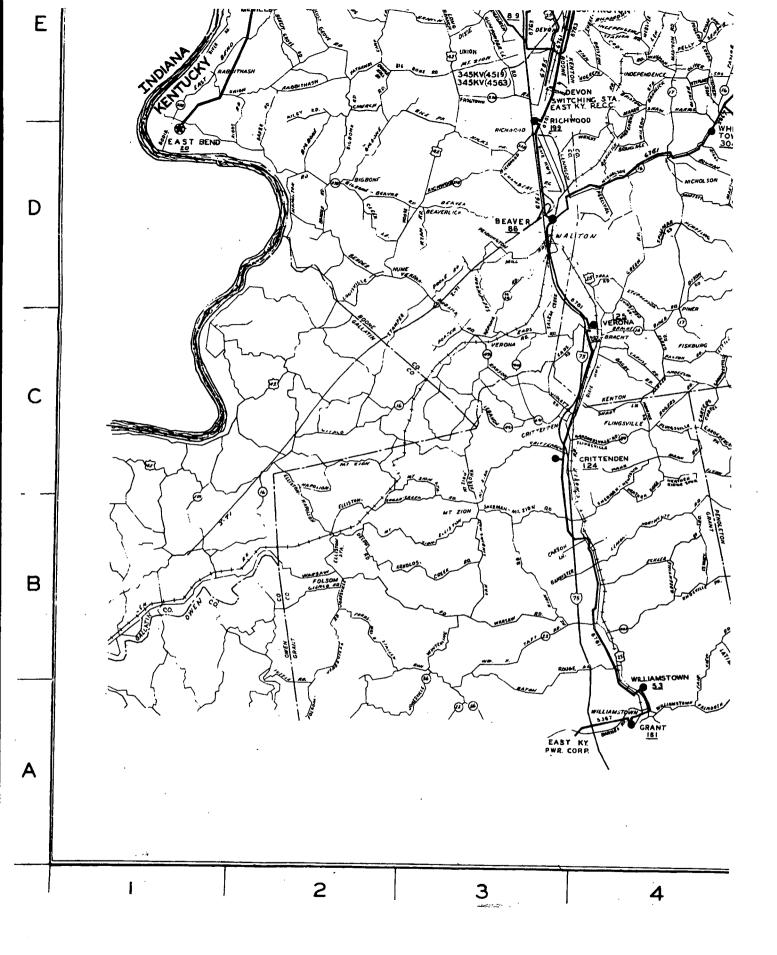


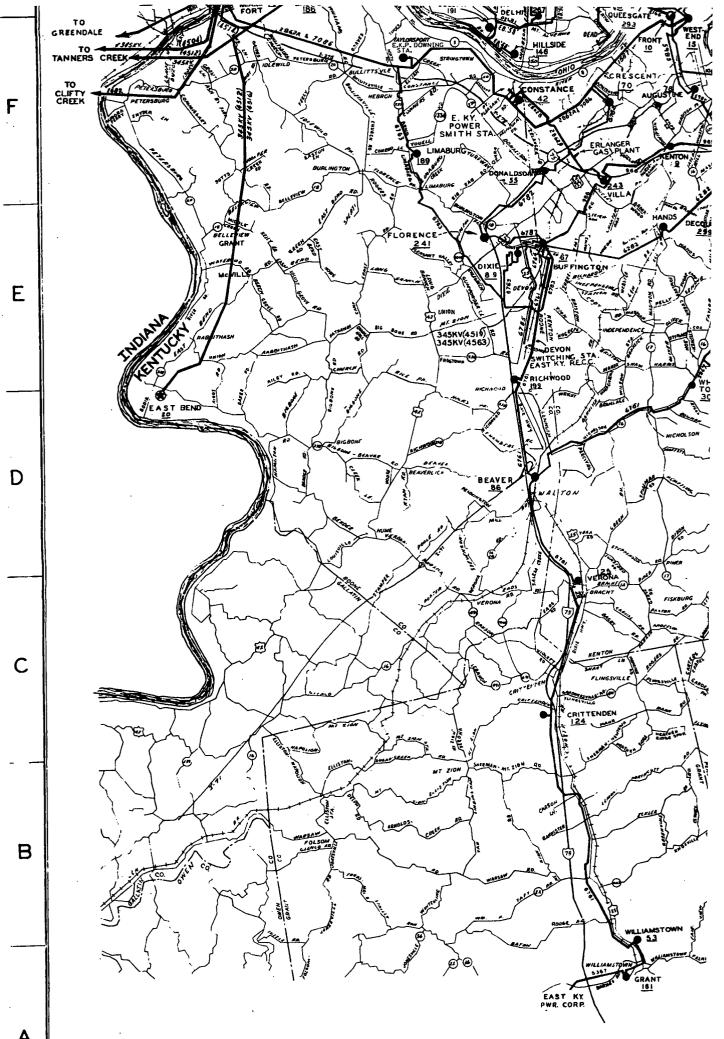


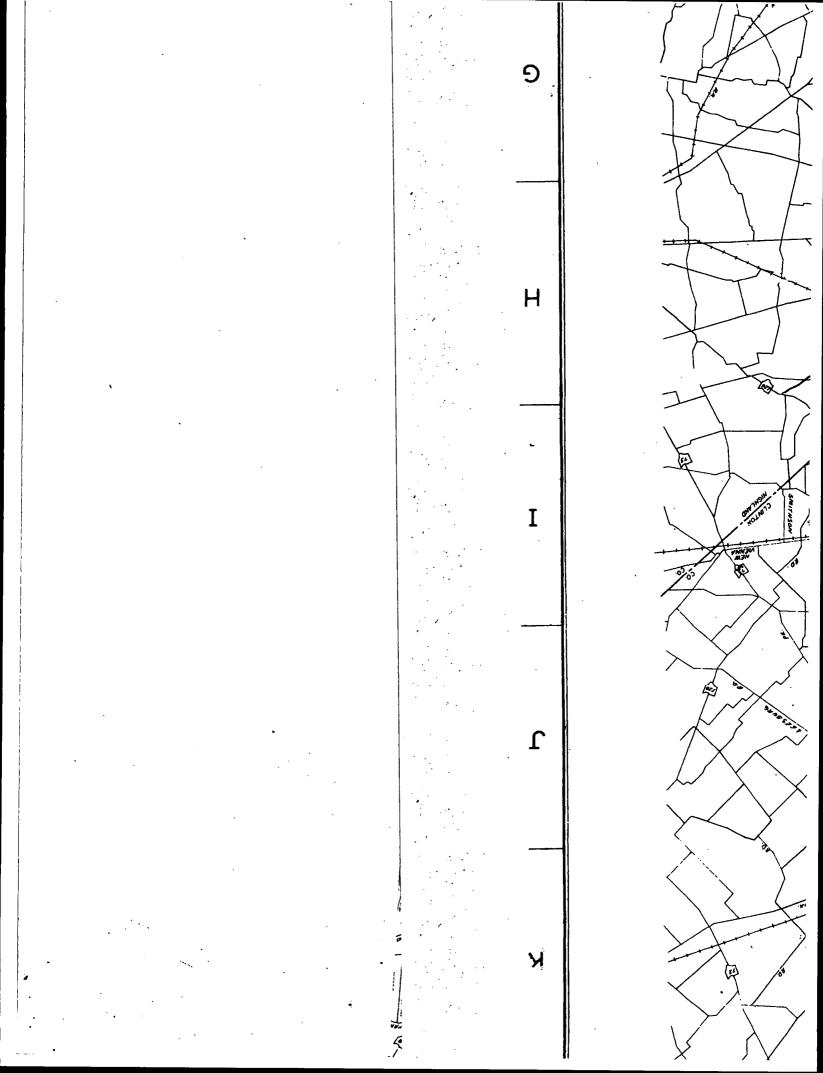


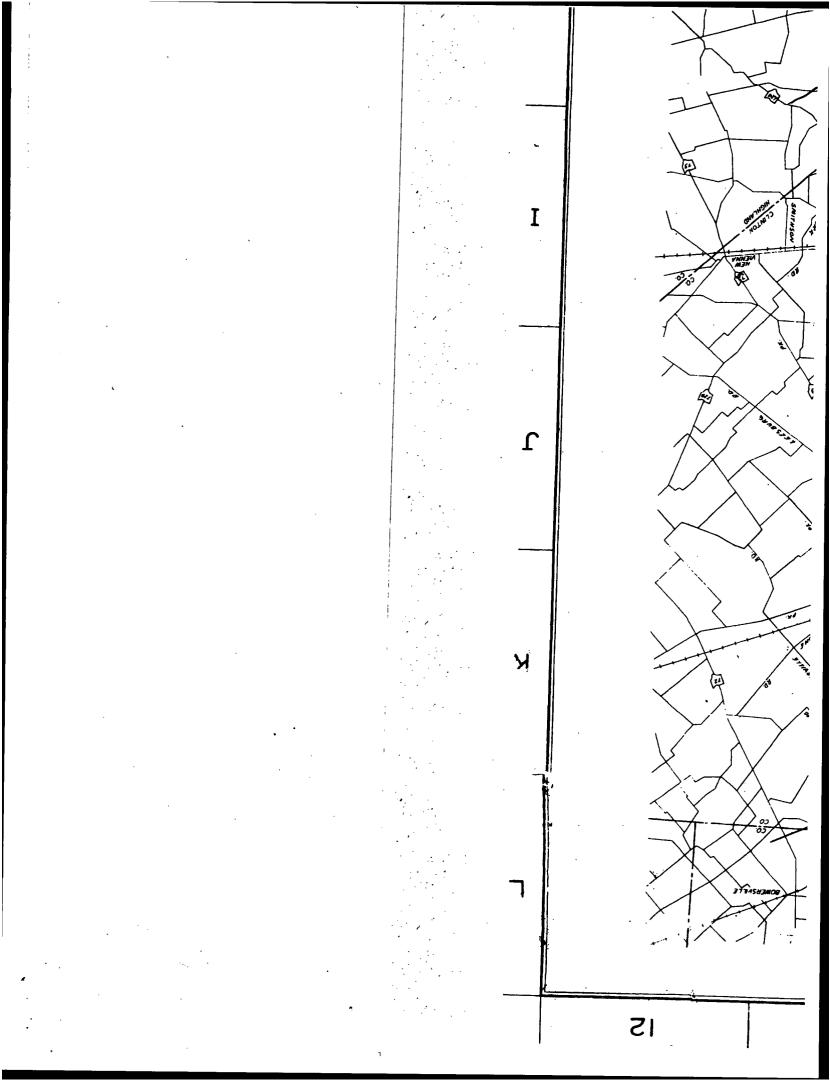


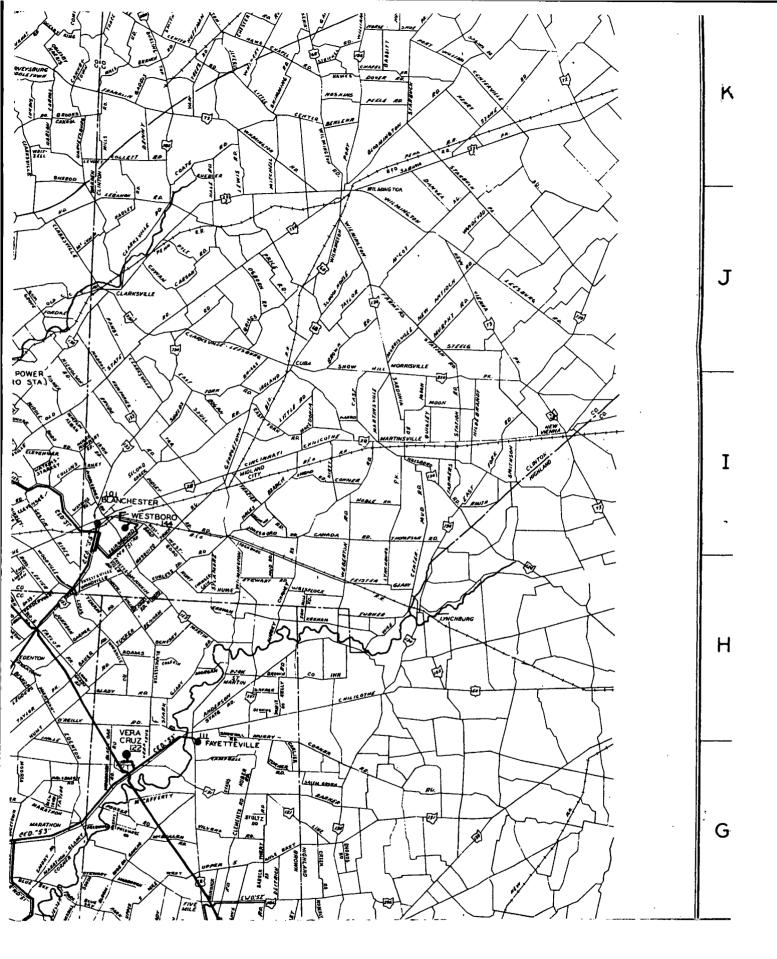




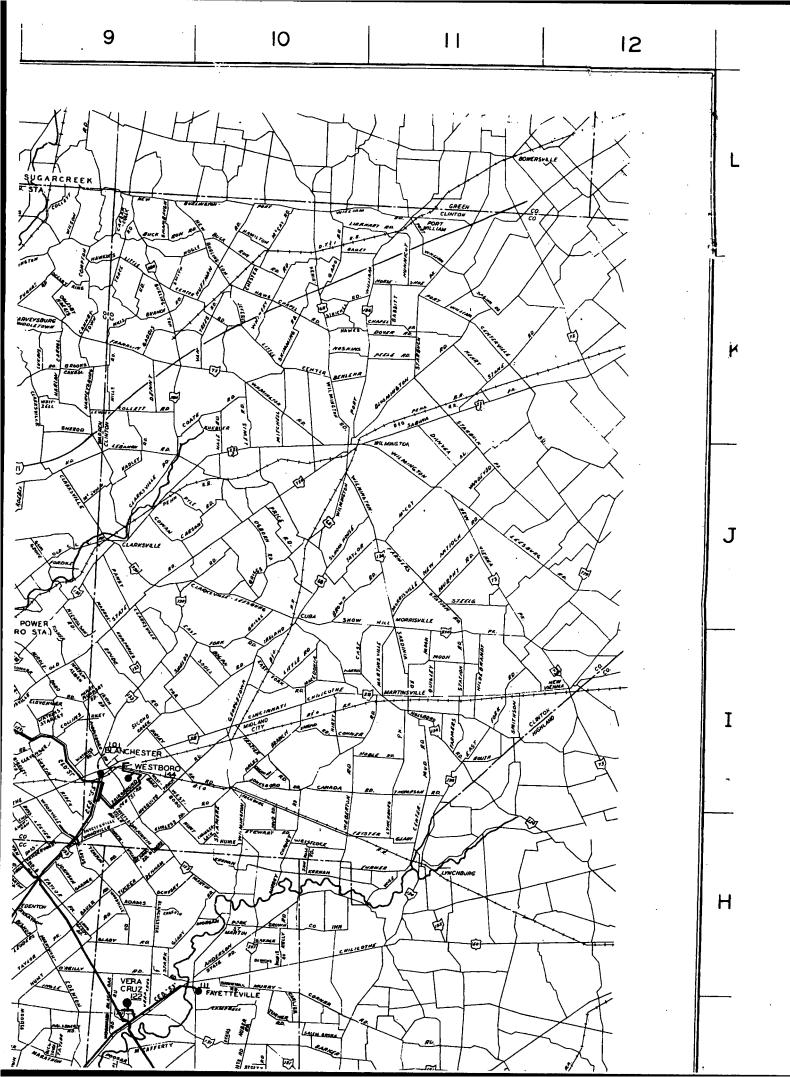


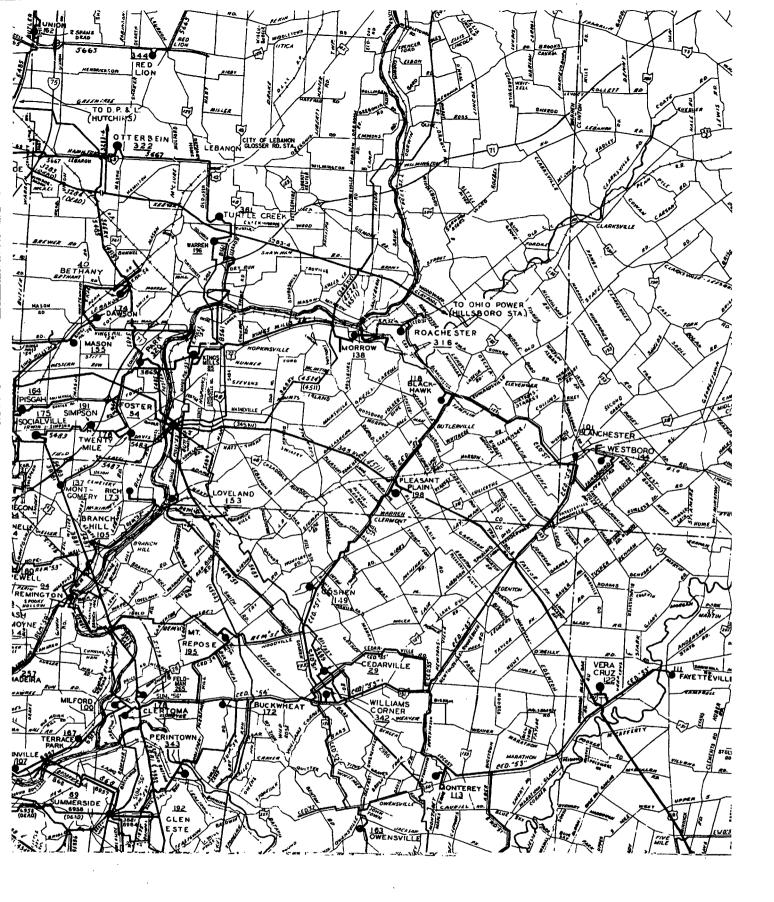


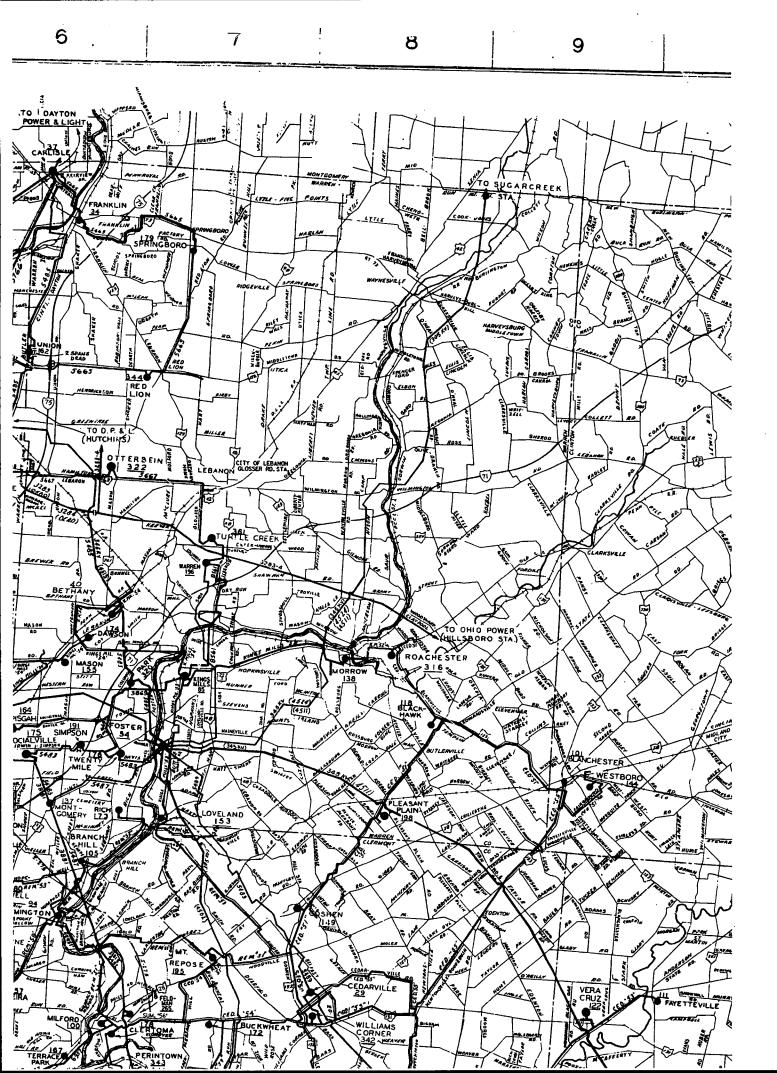


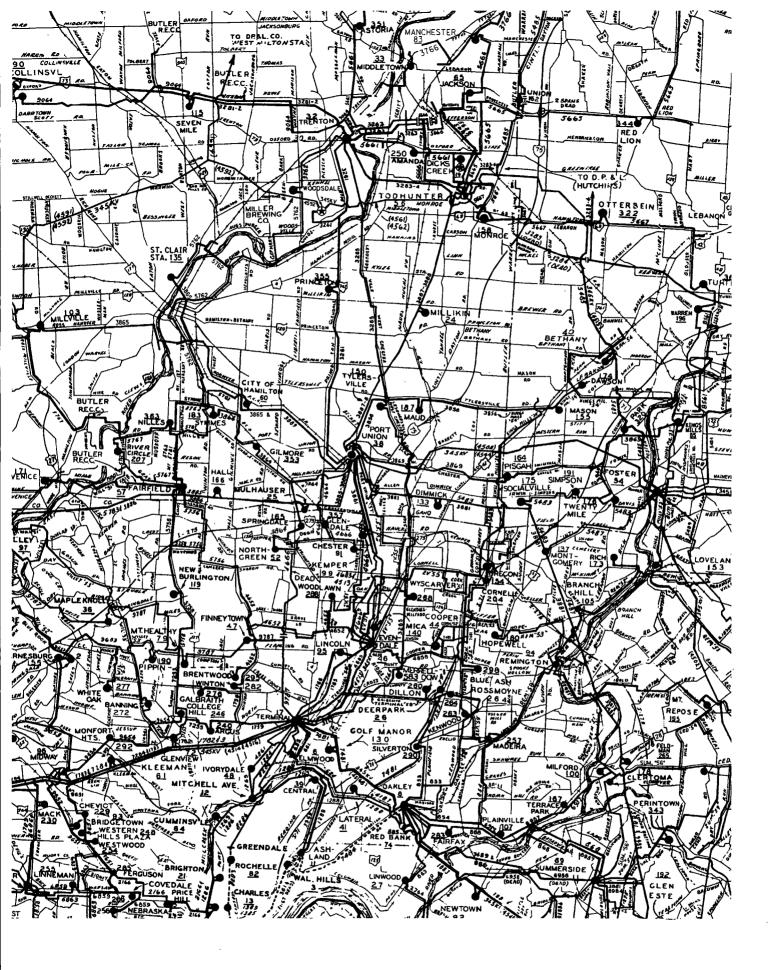


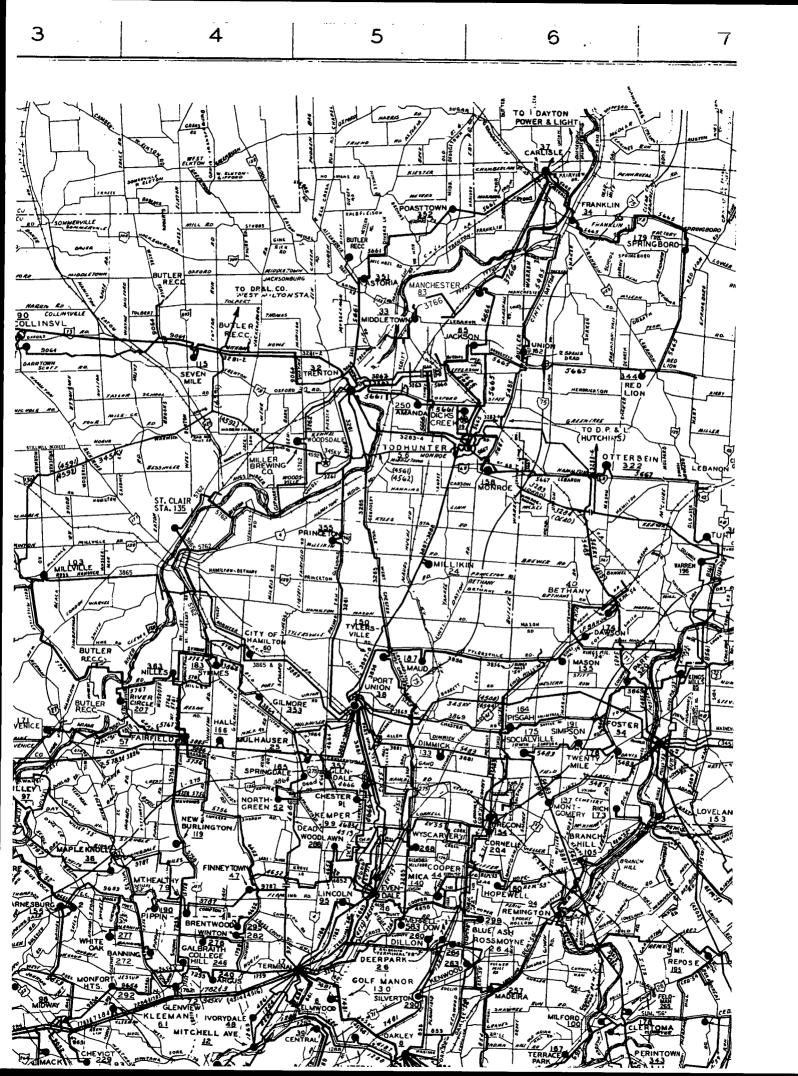
Α

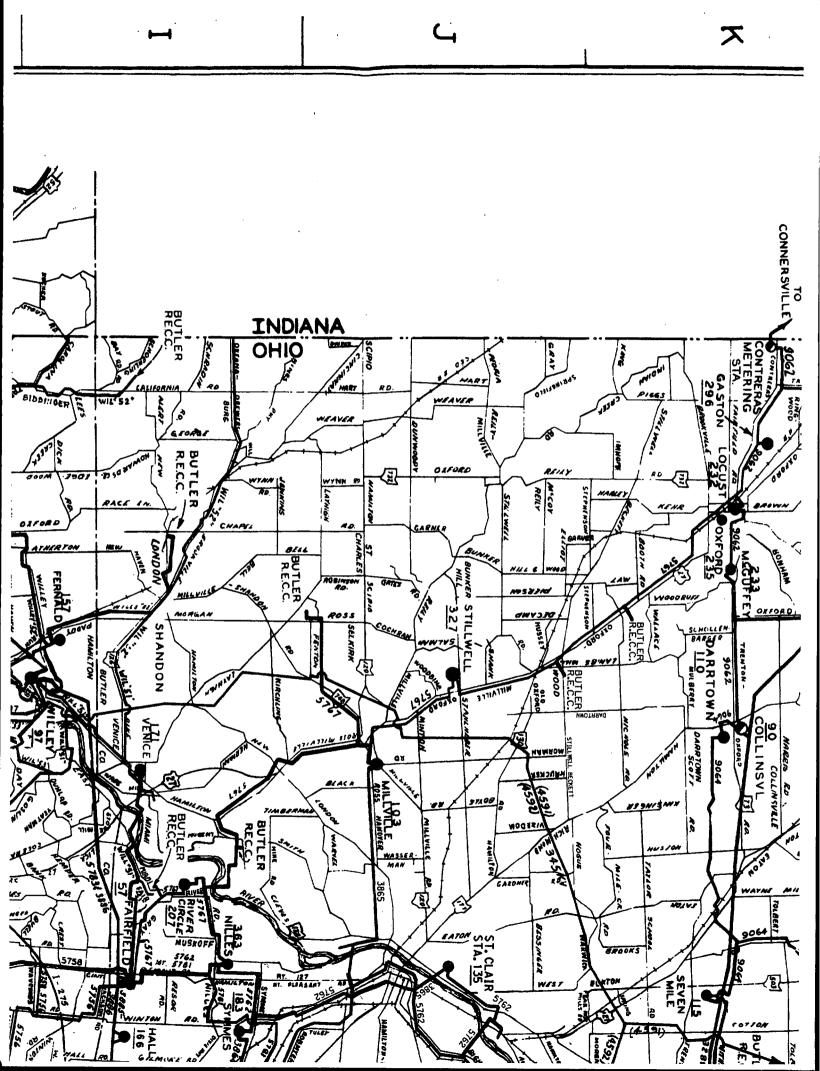


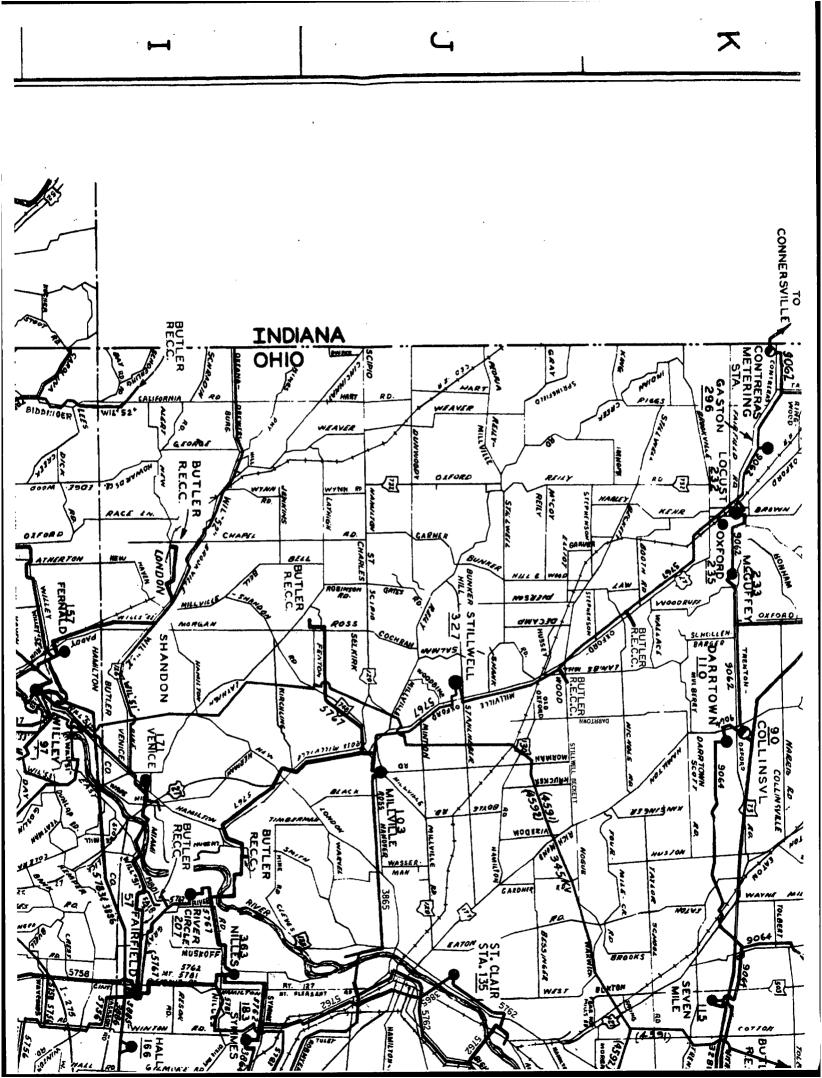


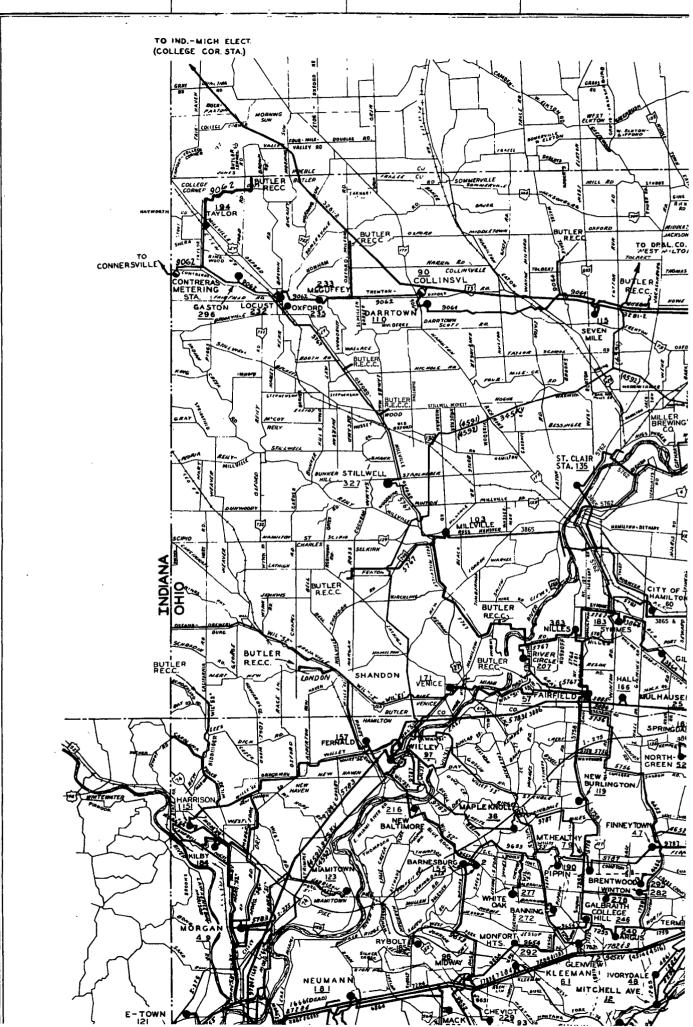



.


.



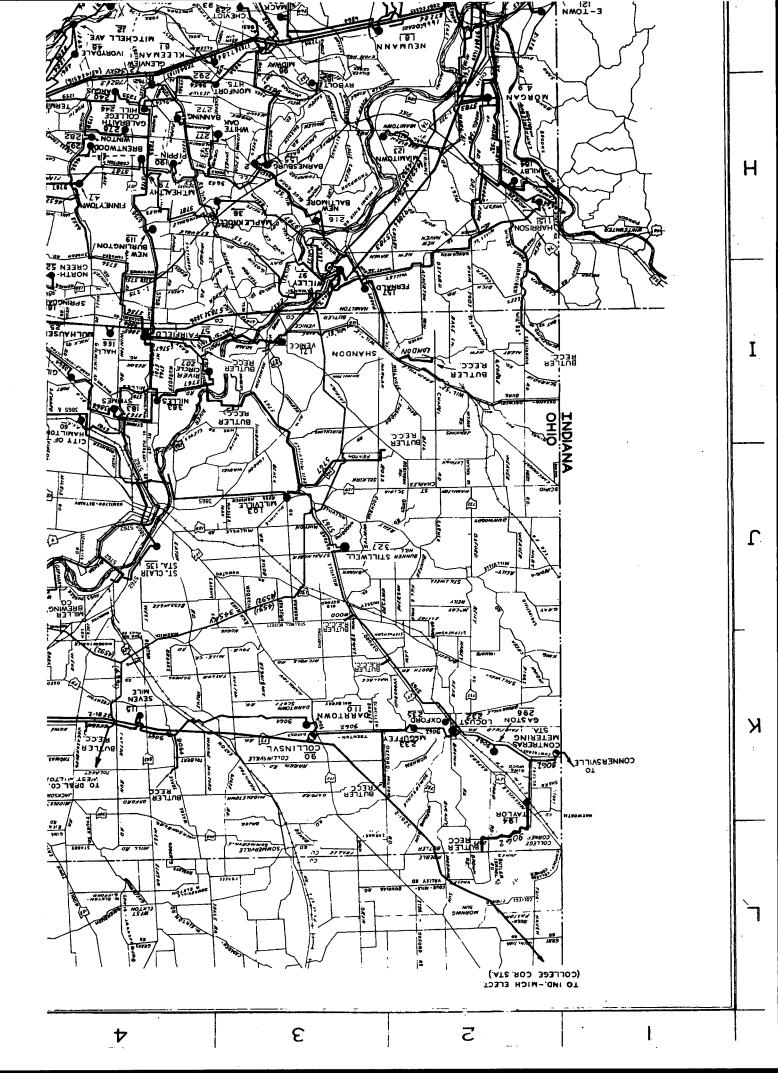


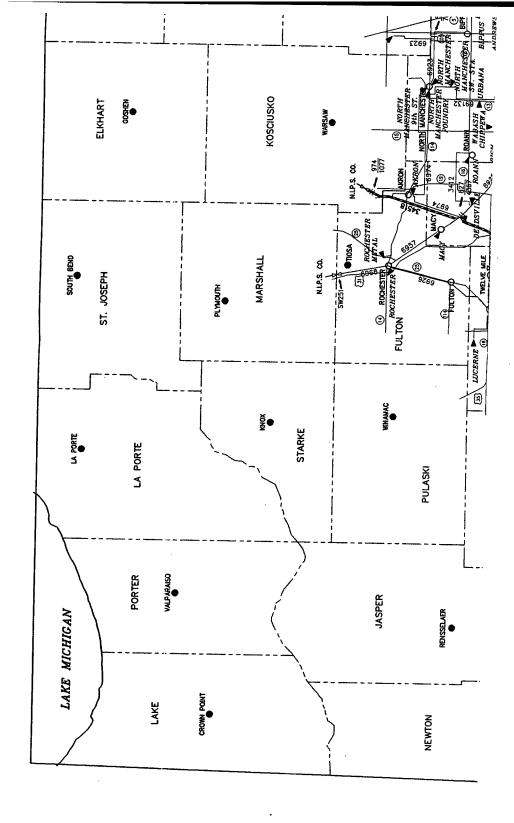


2

1

K

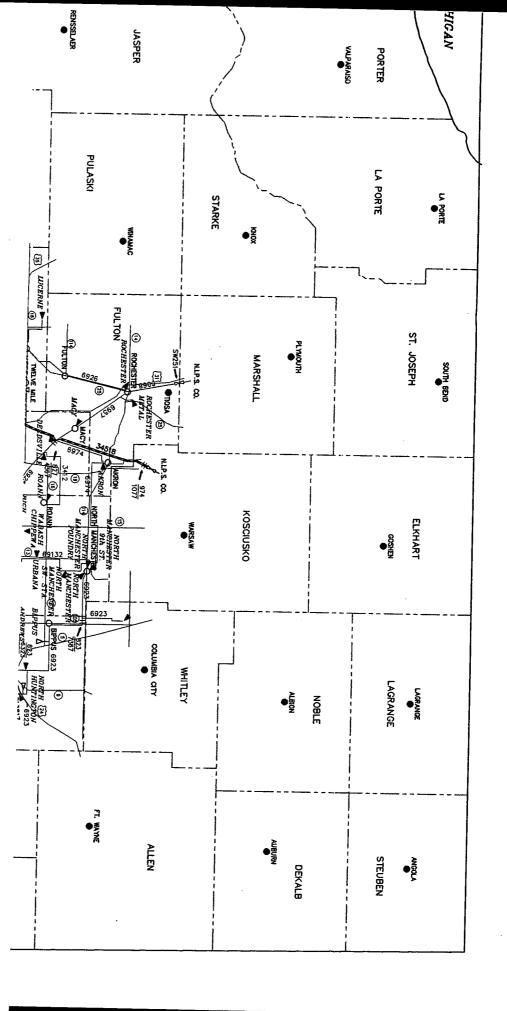

J

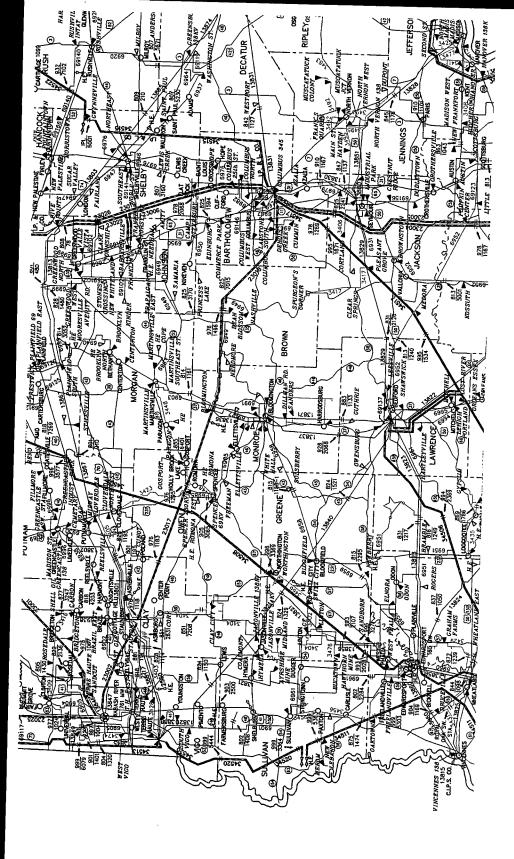

Ι

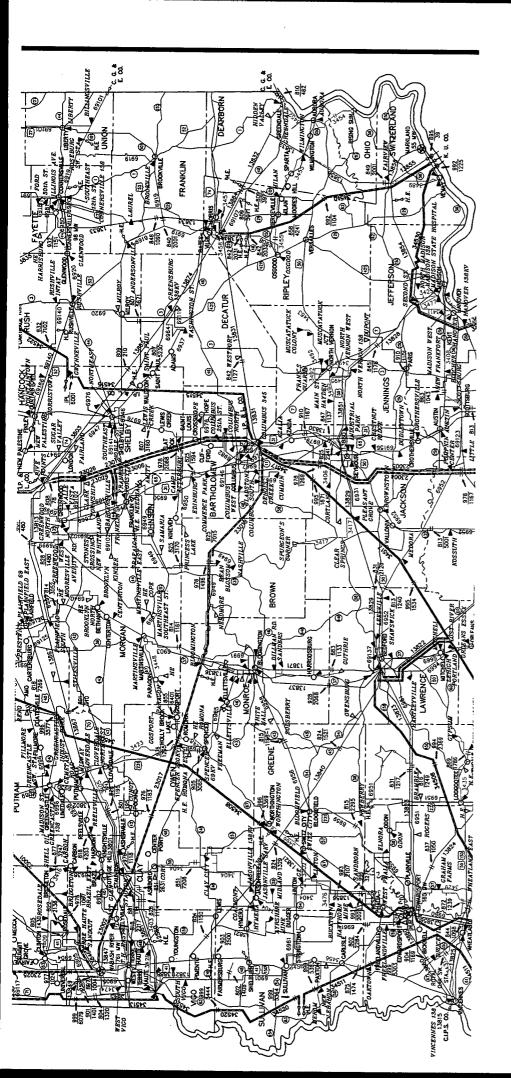
Η

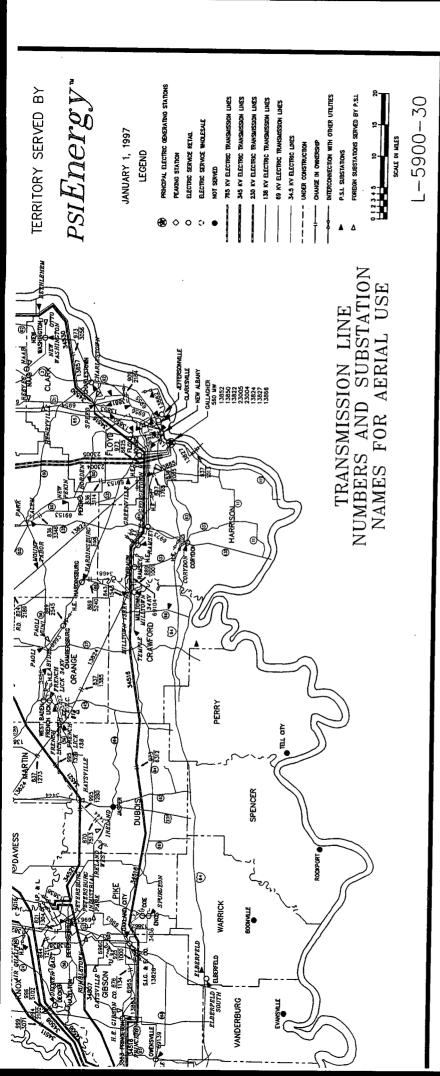
3

4

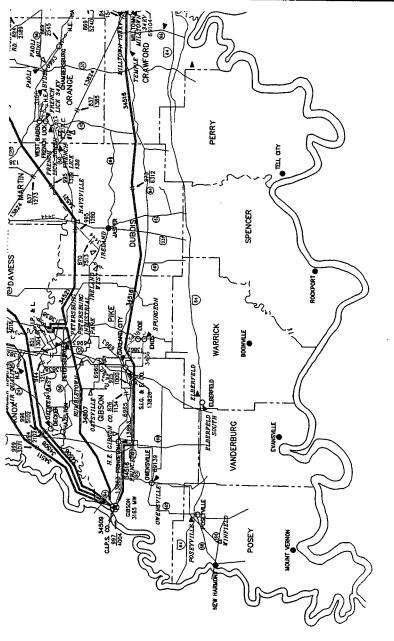

The second second second


100-100


MANA JO, ALA ANTITANA (SA

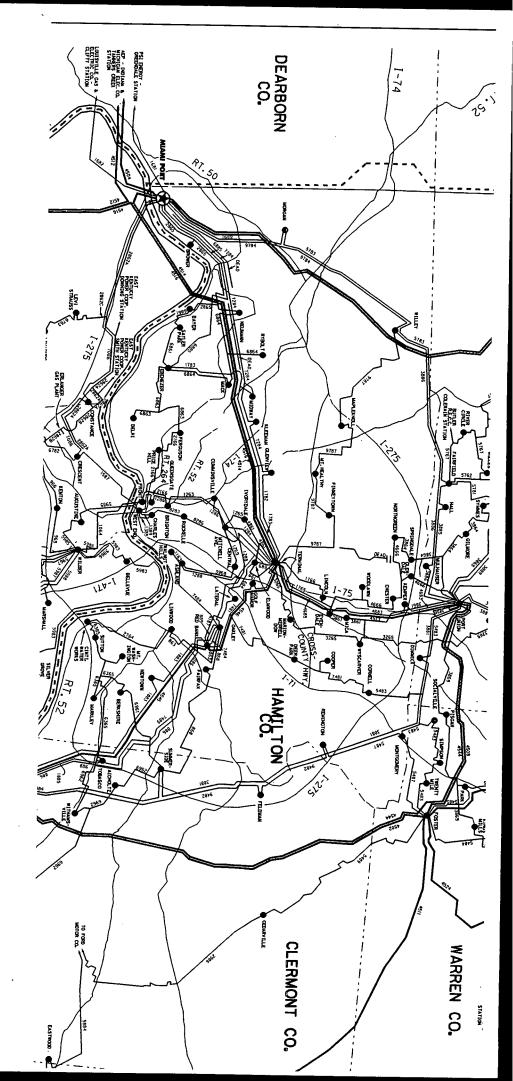

CI INADO

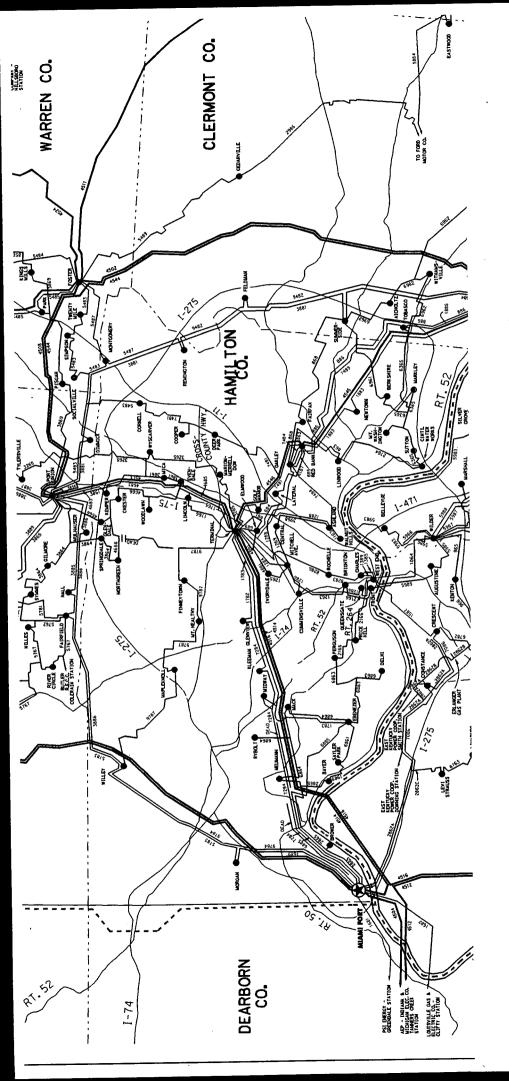
10.1



. .1

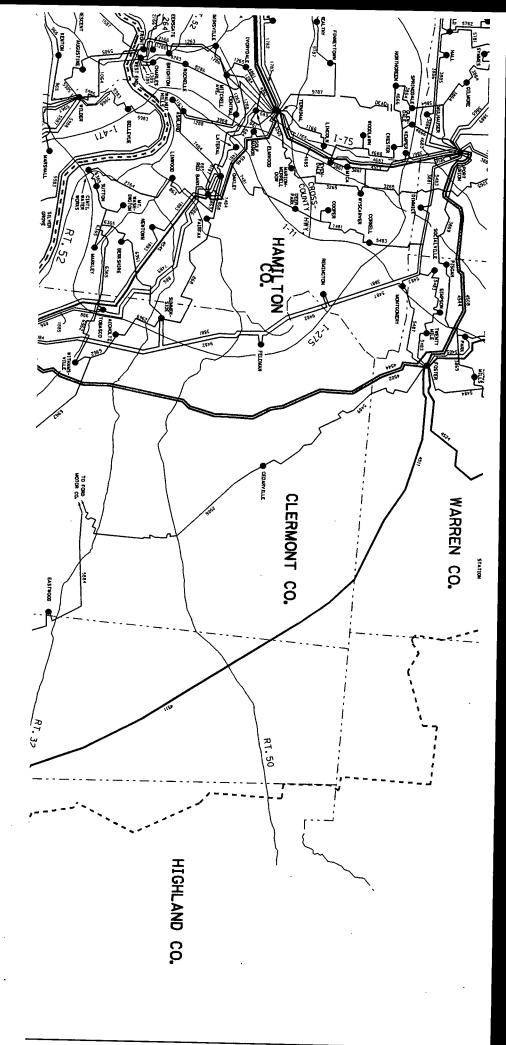
TR

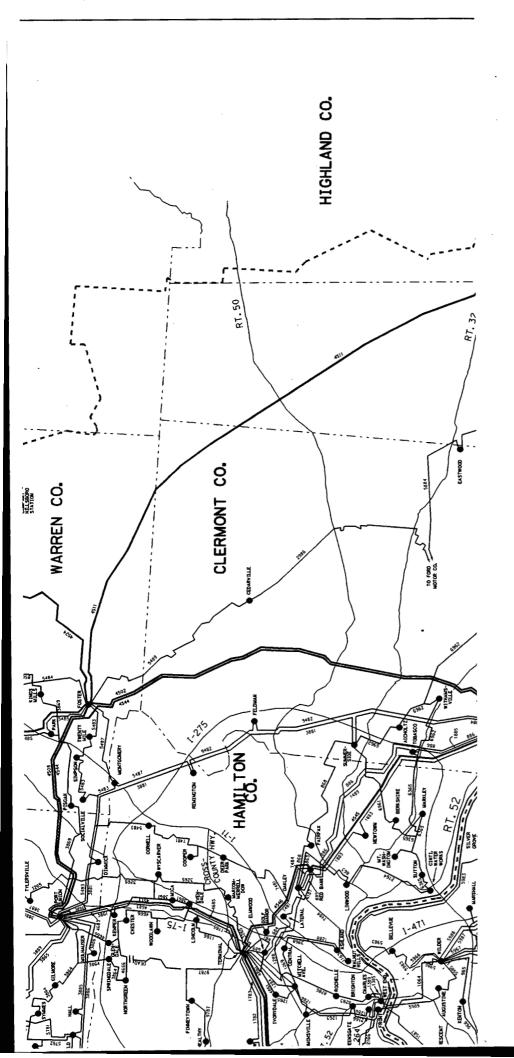

. -1

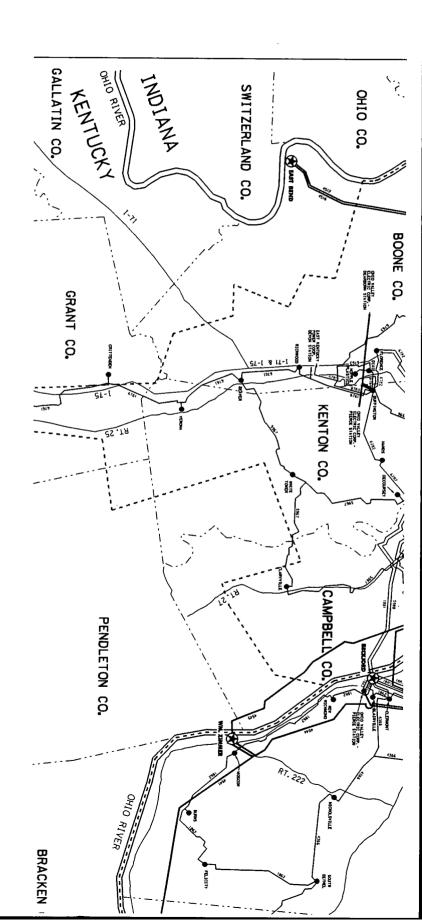

•..

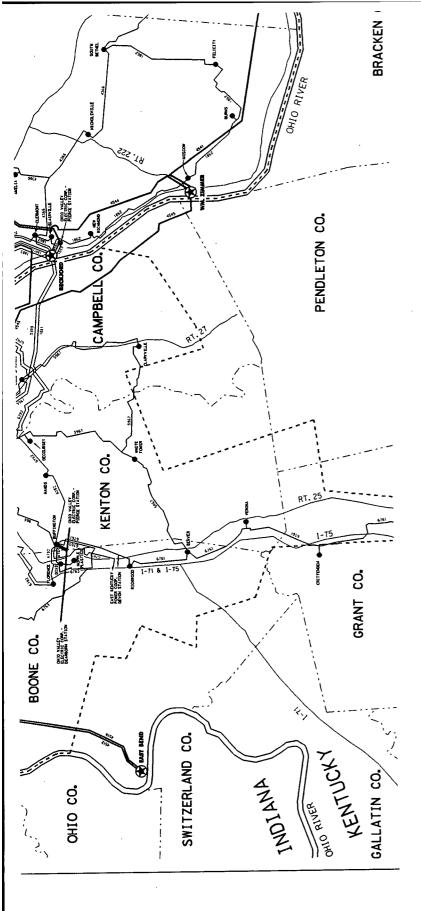
. .

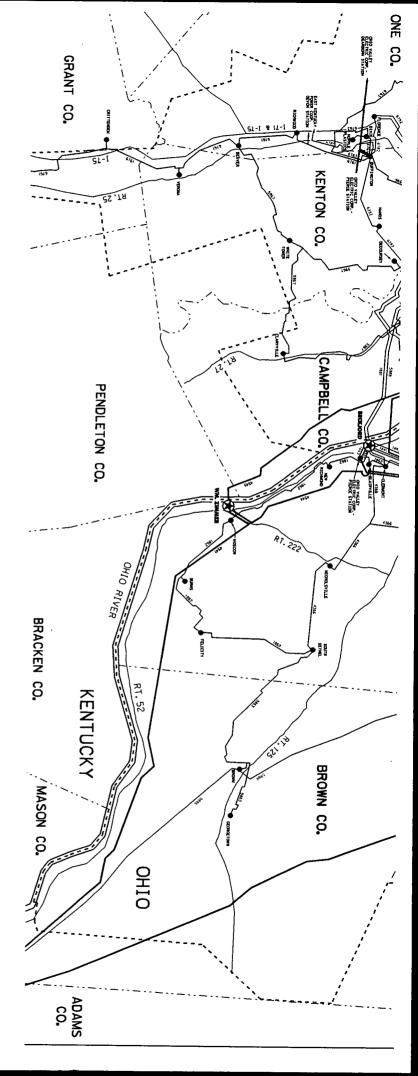
.

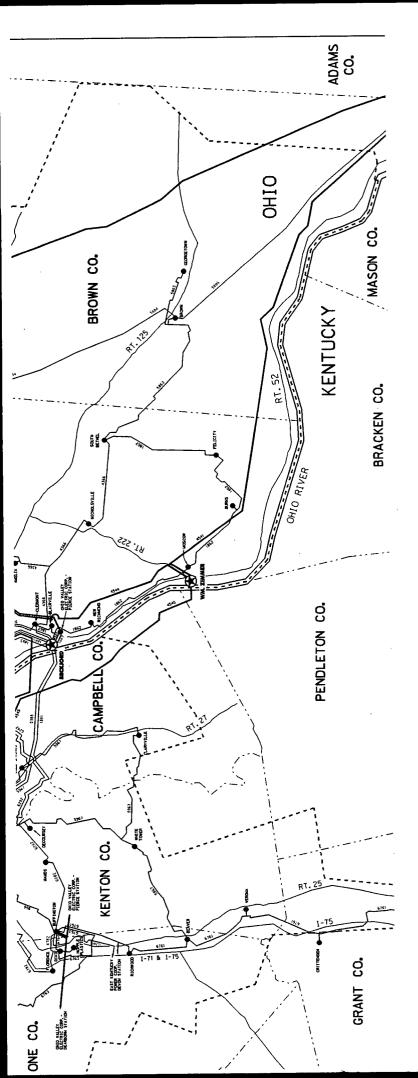

۵

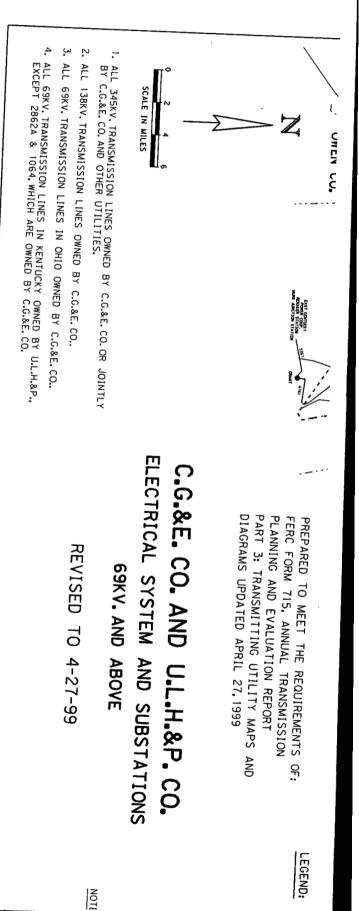


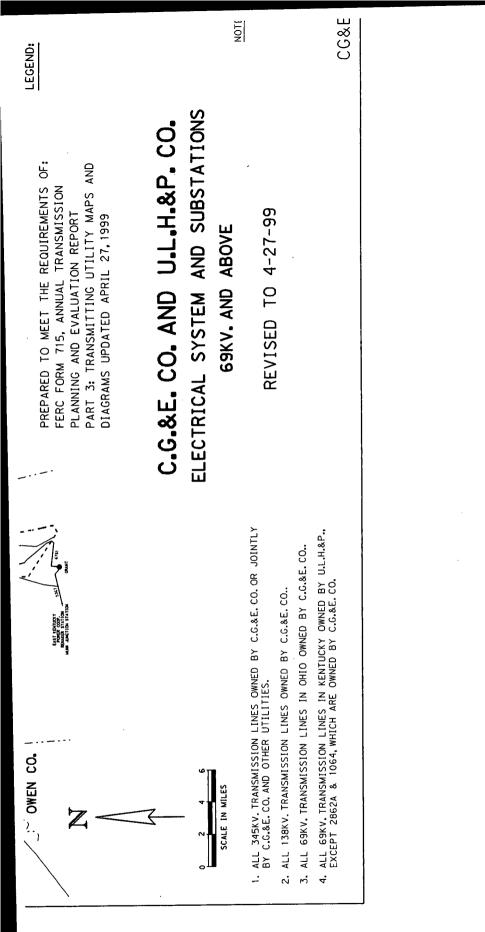



.


. .







CG&E

DIAGRAMS UPDATED APRIL 27, 1999 PART 3: TRANSMITTING UTILITY MAPS AND PLANNING AND EVALUATION REPORT PREPARED TO MEET THE REQUIREMENTS OF: FERC FORM 715, ANNUAL TRANSMISSION

ELECTRICAL SYSTEM AND SUBSTATIONS C.G.&E. CO. AND U.L.H.&P. CO.

69KV. AND ABOVE

REVISED TO 4-27-99

.INES IN KENTUCKY OWNED BY U.L.H.&P. ICH ARE OWNED BY C.G.&E. CO.

LINES OWNED BY C.G.&E. CO..

LINES OWNED BY C.G.&E. CO. OR JOINTLY UTILITIES.

.INES IN OHIO OWNED BY C.G.&E. CO..

GENERATING STATION SUBSTATION NAME

LEGEND:

LINE CIRCUIT NUMBER

TERMINAL (TYPICAL) 345KV. 4545 (TYPICAL)

NEWTOWN (TYPICAL) 138KV 1883 (TYPICAL)

6365(TYPICAL)

SUTTON 69KV.

ELECTRIC SERVICE AREA -----

NOTE: LINES WITH CIRCUIT NUMBER BEGINNING IN '45' ARE 345KV. LINES WITH CIRCUIT NUMBER WITH '8' AS SECOND DIGIT LINES WITH CIRCUIT NUMBER WITH "6" AS SECOND DICIT FROM RIGHT ARE 138KV.

LINES WITH CIRCUIT NUMBER WITH '5' AS SECOND DIGIT FROM RIGHT ARE 69KV.

FROM RIGHT ARE 33KV.

CG&E 🔤 The Energy Service Company

FEEDERS/TRANSRT.DGN

PREPARED TO MEET THE REQUIREMENTS OF: PART 3: TRANSMITTING UTILITY MAPS AND FERC FORM 715, ANNUAL TRANSMISSION PLANNING AND EVALUATION REPORT DIAGRAMS UPDATED APRIL 27, 1999

ELECTRICAL SYSTEM AND SUBSTATIONS C.G.&E. CO. AND U.L.H.&P. CO. 69KV. AND ABOVE

LINES OWNED BY C.G.&E. CO. OR JOINTLY UTILITIES.

LINES OWNED BY C.G.&E. CO ..

INES IN OHIO OWNED BY C.G.&E. CO.

INES IN KENTUCKY OWNED BY U.L.H.&P., ICH ARE OWNED BY C.G.&E. CO.

REVISED TO 4-27-99

Generating Station LEGEND:

LINE CIRCUIT NUMBER SUBSTATION NAME

4545 (TYPICAL) TERMINAL 345KV.

1883 (TYPICAL) NEWTOWN 138KV.

6365 (TYPICAL) SUTTON 69KV.

ELECTRIC SERVICE AREA -----

NOTE: LINES WITH CIRCUIT NUMBER BEGINNING IN '45' ARE 345KV. LINES WITH CIRCUIT NUMBER WITH '8' AS SECOND DIGIT LINES WITH CIRCUIT NUMBER WITH "6" AS SECOND DIGIT FROM RIGHT ARE 138KV.

LINES WITH CIRCUIT NUMBER WITH "5" AS SECOND DIGIT FROM RIGHT ARE 69KV.

In the Energy Service Company FROM RIGHT ARE 33KV. CG&E |

FEEDERS/TRANSRT.DGN

Integrated Resource Plan

KENTUCKY APPENDIX

VOLUME II

NOV - 1999 MULIC STERVICE JU COMMISSION

The Union Light, Heat & Power Company Call NO.99-449

1999

INTEGRATED RESOURCE PLAN

VOLUME II

KENTUCKY APPENDIX

November 1, 1999

By: Cinergy Services Douglas F. Esamann, Vice President 139 E. Fourth St. P.O. Box 960 Cincinnati, Ohio 45201-0960

NOTICE

This state-specific Appendix, Volume II, is an integral part of the Cinergy 1999 IRP filing. Please see the submittal letters and other specific filing attachments contained in the front of Volume I of the <u>Cinergy 1999 Integrated</u> Resource Plan.

Î

Ì

Î

Ì

ł

Í

Î

KENTUCKY APPENDIX

Table of Contents

Section 4(2) Identification of Individuals Responsible for Preparation of the Plan	KA-1
Section 6 Significant Changes	KA-3
Section 7(2)(a) Number of Customers by Class	KA-5
Section 7(2)(b) and (c) Kentucky Portion Weather Normalized Data	KA-7
Section 7(4)(d) DSM Program Data	KA-9
Section 7(4)(e) ULH&P Growth Rates	KA-11
Section 7(5)(a) System Weather Normalized Data	KA-13
Section 7(7)(a) Data Set Description	KA-15
Section 8(4)(b)2, 3, and 4, and 8(4)(c) Energy by Primary Fuel Type, Energy from Utility Purchases, and Energy from Nonutility Purchases	KA-21
Section 9(4) Yearly Average System Rates	KA-23
Section 11(4) Response to Staff's Comments and Recommendations	KA-25

Proprietary and Confidential Information:

IN COMPLIANCE WITH THE CODES OF CONDUCT IN FERC ORDER 889, ALL OF THE FOLLOWING SECTIONS ARE CONTAINED IN THE TRANSMISSION VOLUME OF THIS REPORT, WHICH WAS PREPARED INDEPENDENTLY

Section 8(3)(a) Thermal Capacity of Interconnections

Í

Section 4(2) Identification of Individuals Responsible for Preparation of the Plan

The following individuals are responsible for the preparation of this filing:

Name	Department
Diane L. Jenner	Asset Planning and Analysis
Victor A. Needham	Retail Marketing
James A. Riddle	Market Analysis
Ronald C. Snead	Bulk Transmission Planning

Ĵ

Ĵ

Ì

Í

Ì

Î

KA-1

Î

Î

Í

Ì

Î

j

Ì

Î

Section 6 Significant Changes

The last official IRP filing by the Company at the Kentucky Public Service Commission (KyPSC or Commission) was the 1993 IRP. Since that time, Cinergy became the parent holding company of The Cincinnati Gas & Electric Company and PSI Energy, Inc. Integrated Resource Planning now is performed for the Cinergy system as a whole. In addition, the Kentucky Commission revised its rules effective July 21, 1995. ULH&P and its parent, Cinergy Corp., have attempted to keep the Commission abreast of on-going planning activities and progress by submitting courtesy copies of all IRP filings made in other jurisdictions (Indiana in November 1995 and October 1997, and Ohio in December 1994, June 1995, October 1996, October 1997, and May 1998) since the last IRP filing in Kentucky. Copies of significant orders have also been provided. For these reasons, the Company believes that summarizing in narrative and tabular form all of the changes and improvements made since the 1993 IRP filing (which contained only CG&E/ULH&P information), all within the context of the 1999 IRP document, would be an unproductive activity for ULH&P and the Commission, consuming resources that would be better used elsewhere. Therefore, no such comparisons have been performed within this filing. Also, please see Volume I,

KA-3

Chapter 2, Section E where some changes to the planning process are discussed.

Ì

Ĩ

Ð

Î

Ĵ

Section 7. (2) (b) and (c)

•

Ĵ

1

1

UNION LIGHT, HEAT AND POWER COMPANY WEATHER NORMALIZED

SERVICE AREA ENERGY (MEGAWATT HOURS/YEAR)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
YEAR	RESIDENTIAL	COMMERCIAL	INDUSTRIAL	STREET-HWY LIGHTING	0.P.A.	INTER DEPARTMENT	O.P.U.
1994 1995 1996 1997 1998	1,087,199 1,111,054 1,169,516 1,184,660 1,231,621	818,031 851,040 895,444 926,892 971,613	952,086	14,578 15,018 15,144 15,725 15,713	297,957 332,639 344,991 345,425 346,731	1,250 991 734 625 702	47,427 50,128 52,761 51,409 0
	(8)	(8) (1+2+3+4	(9)	(10)		(11)	(12)
YEAR	COMPANY USE	5+6+7+8 TOTAL CONSUMPTION	LOSSES AND UNACCOUNTED FOR e	(8+9) NET ENERGY FOR LOAD		SUMMER PEAK MW	WINTER PEAK MW
1994 1995 1996 1997 1998	668 965 752 593 771	3,127,232 3,260,835 3,431,429 3,502,606 3,611,292	75,425 154,441 156,031 195,991 36,753	3,202,657 3,415,276 3,587,460 3,698,597 3,648,045		676 721 758 781 771	552 588 618 637 628

KA-7

Section 7(4)(d) DSM Program Data

The DSM Program Data which is contained in DSManager input and output summary reports is voluminous in nature. This data is available for viewing at Cinergy offices during normal business hours. Please contact Van Needham at (513) 287-2609 for more information.

Ĵ

Ì

Section 7. (4) (e)

Í

UNION LIGHT, HEAT AND POWER COMPANY ELECTRIC ENERGY AND PEAK LOAD FORECAST: ANNUAL GROWTH RATES

<u> 1999 -2019</u>

Residential MWH	1.5%
Commercial MWH	1.5%
Industrial MWH	2.6%
Net Energy MWH	1.8%
Summer Peak MW	1.7%
Winter Peak MW	1.5%

Ì

Section 7. (5) (a)

Î

CINERGY WEATHER NORMALIZED

3

SERVICE AREA ENERGY (MEGAWATT HOURS/YEAR)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
YEAR RESI	DENTIAL C	OMMERCIAL	INDUSTRIAL	STREET-HWY LIGHTING	0.P.A.	INTER DEPARTMENT	O.P.U.
1995 13 1996 13 1997 14	3,623,704 3,536,026 3,970,606 4,706,220 5,139,955	11,214,399 11,050,531 11,507,941 12,134,012 12,556,692	15,596,668 16,159,570 16,823,669 17,324,286 18,042,134	159,398 162,795 164,642 167,285 169,180	1,561,361 1,606,386 1,637,680 1,656,816 1,634,350	10,810 10,281 10,054 9,757 8,728	4,546,031 4,471,124 4,548,953 5,129,955 5,348,204
	(8)	(8) (1+2+3+4 5+6+7+8	(9) LOSSES AND	(10) (8+9)		(11) SUMMER	(12) WINTER
	MPANY USE CC	TOTAL DNSUMPTION	UNACCOUNTED FOR e	NET ENERGY FOR LOAD		PEAK MW	PEAK MW
1995 2 1996 2 1997 2	5,006 6,898 7,488 4,377 4,515	46,737,378 47,023,610 48,691,032 51,152,708 52,923,759	3,393,434 3,381,537 3,511,765 3,694,161 3,826,401	50,130,812 50,405,147 52,202,798 54,846,868 56,750,160		9,296 9,352 9,687 10,169 10,516	8,143 8,187 8,480 8,908 9,217

Section 7(7)(a) Data Set Description

The following pages contain the descriptions of the variables contained in the load forecast model.

DESCRIPTION

US AVERAGE HOURLY EARNINGS FOR MANUFACTURING AHEM SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING AHEM@1640 SERVICE AREA AVERAGE PRICE OF ELECTRICITY FOR INDUSTRIAL CUSTOMERS APEIND@CGE SERVICE AREA AVERAGE PRICE OF GAS FOR COMMERCIAL CUSTOMERS APGCOM@CGE SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL CUSTOMERS APGIND@CGE SERVICE AREA AVERAGE PRICE OF GAS FOR OPA CUSTOMER APGOPA@CGE BASE SALES TO ARMCO STEEL CORP. - 190,000,000 KWH ARMCOBASE ACTUAL COOLING DEGREE DAYS CDD BILLING COOLING DEGREE DAYS CDDB BILLING COOLING DEGREE DAYS NORMAL CDDBN COOLING DEGREE DAYS NORMAL CDDN CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS CPI SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL CUSRES@CGE THE DAY OF THE MONTH DAY NUMBER OF DAYS IN THE MONTH DAYS PERSONAL DIVIDEND INCOME DIV@PER SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMER DS@KW@IND@CGE SERVICE AREA DS RATE FOR DEMAND FOR OTHER PUBLIC AUTHORITIES CUSTOMER DS@KW@OPA@CGE SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL CUSTOMER DS@KWH@COM@CGE SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL CUSTOMER DS@KWH@IND@CGE E15@CGE SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION US EMPLOYMENT - FOOD AND PRODUCTS E20 SERVICE AREA EMPLOYMENT - FOOD AND PRODUCTS E20@CGE US EMPLOYMENT - APPAREL AND PRODUCTS E23 SERVICE AREA EMPLOYMENT - APPAREL AND PRODUCTS E23@CGE US EMPLOYMENT - PAPER AND PRODUCTS E26 SERVICE AREA EMPLOYMENT - PAPER AND PRODUCTS E26@CGE US EMPLOYMENT - PRINTING AND PUBLISHING E27 SERVICE AREA EMPLOYMENT - PRINTING AND PUBLISHING E27@CGE US EMPLOYMENT - CHEMICALS AND PRODUCTS E28 SERVICE AREA EMPLOYMENT - CHEMICALS AND PRODUCTS E28@CGE US EMPLOYMENT - RUBBER AND MISCELLANEOUS PLASTICS E30 SERVICE AREA EMPLOYMENT - RUBBER AND MISCELLANEOUS PLASTICS E30@CGE US EMPLOYMENT - PRIMARY METAL INDUSTRIES E33 SERVICE AREA EMPLOYMENT - BUTLER COUNTY - PRIMARY METAL INDUSTRIES E33NS@BUTLER SERVICE AREA EMPLOYMENT - PRIMARY METAL INDUSTRIES E33NS@CGE SERVICE AREA EMPLOYMENT - ALL COUNTIES EXCEPT BUTLER E33NS@CMSA - PRIMARY METALS INDUSTRIES US EMPLOYMENT - FABRICATED METAL PRODUCTS E34 SERVICE AREA EMPLOYMENT - FABRICATED METAL PRODUCTS E34@CGE US EMPLOYMENT - MACHINERY EXCEPT ELECTRICAL E35 SERVICE AREA EMPLOYMENT - MACHINERY EXCEPT ELECTRICAL E35NS@CGE US EMPLOYMENT - ELECTRICAL MACHINERY E36 SERVICE AREA EMPLOYMENT - ELECTRICAL MACHINERY E36NS@CGE E37 US EMPLOYMENT - TRANSPORTATION EOUIPMENT SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT MOTOR VEHICLES & PARTS E371NS@CGE SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT OTHER THAN E372@9NS@CGE MOTOR VEHICLES AND PARTS SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT E37NS@CGE SERVICE AREA EMPLOYMENT - TRANSPORTATION AND PUBLIC UTILITIES E40X@CGE SERVICE AREA EMPLOYMENT - WHOLESALE AND RETAIL TRADE E50X@CGE SERVICE AREA EMPLOYMENT - FINANCE, INSURANCE AND REAL ESTATE E60X@CGE SERVICE AREA EMPLOYMENT - SERVICES E7089@CGE

DESCRIPTION

SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT E90X@CGE SERVICE AREA EMPLOYMENT - TOTAL E@CGE US EMPLOYMENT - MISCELLANEOUS MANUFACTURERS EAOI SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES EAOI@CGE US EMPLOYMENT - ALL OTHER DURABLE GOODS INDUSTRIES EAOIDG SERVICE AREA EMPLOYMENT - ALL OTHER DURABLE GOODS INDUSTRIES EAOIDG@CGE US EMPLOYMENT - ALL OTHER NON-DURABLE GOODS INDUSTRIES EAOINDG SERVICE AREA EMPLOYMENT - ALL OTHER NON-DURABLE GOODS INDUSTRIES EAOINDG@CGE US EMPLOYMENT - CONTRACT CONSTRUCTION EC EMPLOYMENT COST INDEX - PRIVATE WAGES & SALARIES ECIWSP US EMPLOYMENT - COMMERCIAL ECOM SERVICE AREA EMPLOYMENT - COMMERCIAL ECOM@CGE US EMPLOYMENT - TOTAL NONAGRICULTURAL ESTABLISHMENTS EEA EFFICIENCY OF CENTRAL AIR CONDITIONING UNITS IN SERVICE AREA EFF@CAC@CGE EFFICIENCY OF ELECTRIC HEAT PUMP UNITS IN SERVICE AREA EFF@EHP@CGE EFFICIENCY OF WINDOW AIR CONDITIONING UNITS IN SERVICE AREA EFF@RAC@CGE US EMPLOYMENT - FINANCE, INSURANCE AND REAL ESTATE EFIR US EMPLOYMENT - STATE AND LOCAL GOVERNMENT EGSL US EMPLOYMENT - MANUFACTURING EM EM@CGE SERVICE AREA EMPLOYMENT - MANUFACTURING US EMPLOYMENT - TRANSPORTATION AND PUBLIC UTILITIES ER US EMPLOYMENT - SERVICES ESV ET US EMPLOYMENT - WHOLESALE AND RETAIL TRADE QUALITATIVE VARIABLE - FRIDAY FRI FEDERAL GOVERNMENT CONSUMPTION EXPENDITURES & GROSS INVESTMENT GFML92C DEFENSE - CHAINED 1992 DOLLARS ACTUAL HEATING DEGREE DAYS HDD BILLING HEATING DEGREE DAYS HDDB BILLING HEATING DEGREE DAYS NORMAL HDDBN HEATING DEGREE DAYS NORMAL HDDN HUM HUMIDITY - AFTERNOON US INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS JOIND20 JQIND20@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS US INDUSTRIAL PRODUCTION INDEX - APPAREL AND PRODUCTS JQIND23 JQIND23@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - APPAREL AND PRODUCTS US INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS JQIND26 SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS JQIND26@CGE US INDUSTRIAL PRODUCTION INDEX - PRINTING AND PUBLISHING JQIND27 SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PRINTING & PUBLISHING JQIND27@CGE US INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS JQIND28 JQIND28@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS US INDUSTRIAL PRODUCTION INDEX - PETROLEUM REFINING & RELATED INDUSTRIES JQIND29 US INDUSTRIAL PRODUCTION INDEX - RUBBER AND MISCELLANEOUS PLASTICS JQIND30 SERVICE AREA INDUSTRIAL PRODUCTION INDEX-RUBBER & MISCELLANEOUS PLASTICS JQIND30@CGE US INDUSTRIAL PRODUCTION INDEX - LEATHER AND LEATHER PRODUCTS JQIND31 US INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES JOIND33 JQIND33@BUTLER INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES - BUTLER COUNTY JOIND33@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES JOIND33@CINN - ALL COUNTIES EXCEPT BUTLER US INDUSTRIAL PRODUCTION INDEX - FABRICATED METAL PRODUCTS JQIND34 JQIND34@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FABRICATED METAL PRODUCTS US INDUSTRIAL PRODUCTION INDEX - MACHINERY EXCEPT ELECTRICAL JQIND35 SERVICE AREA INDUSTRIAL PRODUCTION INDEX - MACHINERY EXCEPT ELECTRICAL JQIND35@CGE

DESCRIPTION

US INDUSTRIAL PRODUCTION INDEX - ELECTRICAL MACHINERY JOIND36 SERVICE AREA INDUSTRIAL PRODUCTION INDEX - ELECTRICAL MACHINERY JOIND36@CGE US INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS JQIND371 SERVICE AREA INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS JOIND371@CGE US INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS JOIND372 JOIND372@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS SERVICE AREA INDUSTRIAL PRODUCTION INDEX - TRANSPORTATION EQUIPMENT JOIND37@CGE JQINDAOI@CGE SERVICE AREA INDUSTRIAL PRODUCTION INDEX - ALL OTHER INDUSTRIES US INDUSTRIAL PRODUCTION INDEX - ALL OTHER DURABLE GOODS INDUSTRIES JQINDAOIDG US INDUSTRIAL PRODUCTION INDEX - ALL OTHER NON-DURABLE GOODS INDUSTRIES JQINDAOINDG KWH20NS@CGE SERVICE AREA KWH SALES - FOOD AND PRODUCTS SERVICE AREA KWH SALES - INDUSTRIAL - APPAREL AND PRODUCTS KWH23NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - PAPER AND PRODUCTS KWH26NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - PRINTING AND PUBLISHING KWH27NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - CHEMICALS AND PRODUCTS KWH28NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - RUBBER AND MISCELLANEOUS PLASTICS KWH30NS@CGE KWH33LARMNS@CGE SERVICE AREA LESS ARMCO - INDUSTRIAL - PRIMARY METALS INDUSTRIES SERVICE AREA KWH SALES - INDUSTRIAL - PRIMARY METAL INDUSTRIES KWH33NS@ARMCO - ARMCO STEEL CORP. KWH34NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - FABRICATED METAL PRODUCTS SERVICE AREA KWH SALES - INDUSTRIAL - MACHINERY EXCEPT ELECTRICAL KWH35NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - ELECTRICAL MACHINERY KWH36@CGE SERVICE AREA KWH SALES - INDUSTRIAL - MOTOR VEHICLES AND PARTS KWH371NS@CGE KWH372@9NS@CGE SERVICE AREA KWH SALES - INDUSTRIAL - TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS KWH372NS@CGE SERVICE AREA KWH SALES - TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS KWH37NS@CGE SERVICE AREA KWH SALES - AIRCRAFT SERVICE AREA KWH SALES - DURABLE GOODS INDUSTRIES KWHAOIDGNS@CGE SERVICE AREA KWH SALES - NON-DURABLE GOODS KWHAOINDGNS@CGE SERVICE AREA KWH SALES - ALL OTHER INDUSTRIES KWHAOTNS@CGE SERVICE AREA KWH SALES - COMMERCIAL KWHCOMNS@CGE SERVICE AREA KWH SALES - COMPANY USE KWHCUNS@CGE SERVICE AREA KWH SALES - USE PER RESIDENTIAL CUSTOMER KWHCUSRESNS@CGE KWHOPALWPNS@CGE SERVICE AREA KWH SALES - OPA LESS WATER PUMPING SERVICE AREA KWH SALES - OTHER PUBLIC AUTHORITIES KWHOPANS@CGE SERVICE AREA KWH SALES - OPA WATER PUMPING **KWHOPAWPNS@CGE** SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - BETHEL KWHOPUBETHELNS@C SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - BLANCHESTER KWHOPUBLANCNS@C KWHOPUGTOWNNS@C SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - GEORGETOWN SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - HAMMERSVILLE KWHOPUHAMERSNS@C KWHOPULEBANONNS@C SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - LEBANON SERVICE AREA KWH SALES - TOTAL OTHER PUBLIC UTILITIES KWHOPUNS@CGE SERVICE AREA KWH SALES - OTHER PUBLIC UTILITIES - RIPLEY KWHOPURIPLEYNS@C SERVICE AREA KWH SALES - RESIDENTIAL KWHRESNS@CGE SERVICE AREA KWH SALES - STREET LIGHTING KWHSLNS@CGE QUALITATIVE VARIABLE FOR THE END OF AUGUST MAUGEND MINIMUM WAGE MINWAGE MONTH MO MARGINAL PRICE OF ELECTRICITY - RESIDENTIAL MP@RES@CGE MWHSENDNORMNS@CGE MWH SENDOUT - WEATHER NORMALIZED SERVICE AREA MW PEAK - SUMMER MWSPEAK SERVICE AREA MW PEAK - WINTER MWWPEAK US TOTAL POPULATION Ν

DESCRIPTION

N20& US POPULATION AGED 20 AND OVER SERVICE AREA POPULATION AGED 20 AND OVER N20&@CGE US POPULATION AGED 20 TO 64 N20@64 N20@64@CGE SERVICE AREA POPULATION AGED 20 TO 64 US POPULATION AGED 65 AND OVER N65& SERVICE AREA POPULATION AGED 65 AND OVER N65&@CGE N@CGE SERVICE AREA TOTAL POPULATION PCOCP AVERAGE REFINERS' ACQUISITION PRICE - CRUDE OIL - COMPOSITE MONTHLY INCHES OF RAINFALL PRECIP US - REAL PER CAPITA INCOME REALPCYP YIELD ON AA UTILITY BONDS RMMPUAANS RMSHORTREALNS REAL SHORT-TERM INTEREST RATE EFFECTIVE TAX RATE - STATE AND LOCAL CORPORATE INCOME TAXES RTCGSL EFFECTIVE TAX RATE - KENTUCKY CORPORATE INCOME TAXES RTCGSL@KY EFFECTIVE TAX RATE - OHIO CORPORATE INCOME TAXES RTCGSL@OH SAT@CAC@CGE SERVICE AREA SATURATION OF CENTRAL AIR-CONDITIONING SATCACNHP@CGE SERVICE AREA SATURATION OF CENTRAL AIR-CONDITIONING - NO ELECTRIC HEAT PUMP SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING SATMERC@CGE SAT@EHP@CGE SERVICE AREA SATURATION OF ELECTRIC HEAT PUMPS - RESIDENTIAL SATURATION RATE OF ELECTRIC RESISTANCE HEATERS IN SERVICE AREA SAT@ER@CGE SAT@RAC@CGE SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING SERVICE AREA SATURATION OF ELECTRIC SPACE HEAT SAT@SH@CGE SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING SATMERC@CGE SATSODVAP@CGE SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING CLOUD COVER SKY MINIMUM HOURLY TEMPERATURE - MORNING TAM MINIMUM HOURLY TEMPERATURE - MORNING TEMPAM MINIMUM HOURLY TEMPERATURE - EVENING TEMPPM TEMPPM\1 TEMPPML1 MAXIMUM HOURLY TEMPERATURE - AFTERNOON TPMH TPMHL1 TPMH\1 TS@KW@IND@CGE SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMER TS@KWH@IND@CGE SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL CUSTOMER US PERSONAL CONTRIBUTIONS TO SOCIAL INSURANCE TWPER SERVICE AREA PERSONAL CONTRIBUTIONS TO SOCIAL INSURANCE TWPER@CGE v US TOTAL TRANSFER PAYMENTS TO PERSONS SERVICE AREA GOVERNMENT TRANSFER PAYMENTS TO PERSONS V@CGE WAPARMNS@C WEIGHTED AVERAGE OF OFF-PEAK AND SPOT PRICES OF GAS - REFLECTS AVERAGE MARGINAL PRICE PAID BY ARMCO FOR INTERRUPTIBLE GAS WINDAM WIND SPEED MPH - MORNING WIND SPEED MPH - EVENING WINDPM WKDAY QUANTITATIVE VARIABLE INDICATING THE DAY OF THE WEEK WPI051 WHOLESALE PRICE INDEX FOR COAL WPI053 WHOLESALE PRICE INDEX - GAS FUELS WP1053@CGE SERVICE AREA WHOLESALE PRICE INDEX - GAS FUELS WHOLESALE PRICE INDEX - ELECTRIC POWER WPI054 WPI054@CGE SERVICE AREA WHOLESALE PRICE INDEX - ELECTRIC POWER WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM WPI0561 US WAGE AND SALARY DISBURSEMENTS PLUS OTHER INCOME WSD@ADJ WSD@ADJ@CGE SERVICE AREA WAGE AND SALARY DISBURSEMENTS PLUS OTHER INCOME QUALITATIVE VARIABLE - CHRISTMAS WEEK XMAS SERVICE AREA NONFARM PROPRIETORS INCOME YENT@CGE YENTNFADJ NONFARM PROPRIETORS INCOME WITH IVA AND CCADJ PERSONAL INTEREST INCOME YINTPER

DESCRIPTION

YOL	OTHER LABOR INCOME
YP	US PERSONAL INCOME
YP@CGE	SERVICE AREA PERSONAL INCOME
YPPROP@CGE	SERVICE AREA PERSONAL PROPERTY INCOME
YR	YEAR
YRENTADJ	RENTAL INCOME OF PERSONS WITH CAPITAL CONSUMPTION ADJUSTMENT

Section 8(4)(b)2, 3, and 4, and 8(4)(c) Energy by Primary Fuel Type, Energy from Utility Purchases, and Energy from Nonutility Purchases

The energy by primary fuel type, energy from utility purchases, and energy from nonutility purchases are contained in PROSCREEN II® runs which are voluminous. They will be made available for viewing at Cinergy offices during normal business hours. Please contact Diane Jenner at (317) 838-2183 for more information.

1

Section 9(4) Yearly Average System Rates

With the inclusion of estimates of both spot market purchases from, and sales to, the ECAR/MAIN regional electricity market within the PROVIEWTM modeling, the yearly average system rate figures would not accurately reflect projected customer rates, so they have been omitted.

l

Ì

Section 11(4) Response to Staff's Comments and Recommendations

ULH&P last filed an IRP in October 1993. The Kentucky Public Service Commission Staff issued its report on the ULH&P 1993 IRP over four years ago on May 19, 1995. Since that time, DSM has been implemented pursuant to statute and orders of this Commission and the IRP rules were revised. ULH&P and its parent, Cinergy Corp., have attempted to keep the Commission abreast of on-going planning activities and progress by submitting courtesy copies of all IRP filings made in other jurisdictions (Indiana in November 1995 and October 1997, and Ohio in December 1994, June 1995, October 1996, October 1997, and May 1998) since the last IRP filing in Kentucky. Copies of significant orders have been provided also.

In April 1994, H.B. 501 allowing the 'real time recovery' of DSM program costs became law. A ULH&P DSM Collaborative was established in September 1994 to assist the Company with its DSM program activities. Additionally, the Company simultaneously entered into negotiations with the Kentucky Office of the Attorney General, Northern Kentucky Legal Services, Citizens Organized to End Poverty in the Commonwealth, and the Northern Kentucky Citizens Action Commission. These negotiations culminated in a joint application which was approved by the Commission in November

KA-25

1995. This action allowed for subsequent implementation of DSM programs and an income-qualified tariff.

The passage of time along with the progress made both within the Collaborative, and as detailed in the courtesy copies forwarded to the Commission, render the majority of the specific comments and recommendations outlined in the May 1995 Staff Report moot or no longer pertinent. For these reasons, together with the facts outlined above, the Company believes that addressing the Staff's comments and recommendations outlined in their May 1995 report within the context of the 1999 IRP document would be an unproductive activity for ULH&P and the Commission, consuming resources that would be better used elsewhere. However, the Company did review and consider the Staff report as a part of its continually evolving IRP process.

KA-26

Section 8(3)(b)(12)a, b, and g Capacity Factors, Availability Factors, Average Heat Rates, Average Variable, and Total Production Costs

The annual capacity factors, availability factors, average heat rates, average variable and total electricity production costs for each unit (both existing and new) are contained in PROSCREEN II® runs which are voluminous. Cinergy also considers forecasts or projections of them to be trade secrets and confidential and competitive information. They will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317) 838-2183 for more information.

THIS PAGE LEFT BLANK INTENTIONALLY

J

Section 8(3)(b)(12)d Estimated Capital Costs of Planned Units

As discussed in Volume I, Chapter 5, most of the specific technology parameters used in the screening process were based on information taken from The Technical Assessment Guide Supply-Side Technologies (TAG-SupplyTM), Version 3.08, dated August 1998, produced by the Electric Power Research Institute (EPRI) of Palo Alto, California, supplemented by estimates from vendors. EPRI considers this information to be trade secrets and proprietary and confidential. In addition, the information is contained in PROSCREEN II® runs which are voluminous. The information will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of appropriate confidentiality agreements or protective orders. Please contact Diane Jenner at (317) 838-2183 for more information.

THIS PAGE LEFT BLANK INTENTIONALLY

ļ

Section 8(3)(b)(12)f Capital and O&M Escalation Rates

As discussed in Volume I, Chapter 2, the main source of the construction cost and O&M escalation assumptions used was the Standard & Poor's DRI Utility Cost and Price Review for First Quarter, 1998. DRI considers this information to be trade secrets and proprietary and confidential. The information will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of appropriate confidentiality agreements or protective orders. Please contact Jim Riddle at (513) 287-3858 for more information.

THIS PAGE LEFT BLANK INTENTIONALLY

I

Section 9(3) Yearly Revenue Requirements

Cinergy considers the forecasts or projections of yearly revenue requirements from PROSCREEN II® to be trade secrets and confidential and competitive information. They will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317) 838-2183 for more information.

THIS PAGE LEFT BLANK INTENTIONALLY

. ,

ł

1

\bigcirc

Integrated Resource Plan

OHIO APPENDIX

VOLUME II

1

Public Bervice Commission

NOV - 🖠 1999

DECENTO

The Cincinnati Gas & Electric Company

Case NO. 99-449

1999

INTEGRATED RESOURCE PLAN

VOLUME II

OHIO APPENDIX

November 1, 1999

By: Cinergy Services Douglas F. Esamann, Vice President 139 E. Fourth St. P.O. Box 960 Cincinnati, Ohio 45201-0960

NOTICE

This state-specific Appendix, including the STATUS Report, Volume II, is an integral part of the Cinergy 1999 IRP filing. Please see the submittal letters and other specific filing attachments contained in the front of Volume I of the Cinergy 1999 Integrated Resource Plan.

THIS PAGE LEFT BLANK INTENTIONALLY

ľ

-

OHIO APPENDIX

Table of Contents

4901:5-5-01 (D)(2)(a) Ohio Energy Strategy	OA-1
4901:5-5-01 (D)(2)(b) 1997 Special Topic Questions & 95-203-EL-FOR Order Directives Not Addressed Elsewhere	OA-15
4901:5-5-01 (D)(4)(a) and (b) Energy-Price Relationships	OA-35
4901:5-5-01 (D)(5)(b) Hourly Load Data	OA-39
4901:5-5-01 (E)(1)(d)(i) and (ii) Equations and Statistical Test Results	OA-41
Proprietary and Confidential Information:	
Ohio Forms IRP-1 and IRP-2	OA-137
Figures OA-1 and OA-2	OA-139
STATUS Report	

IN COMPLIANCE WITH THE CODES OF CONDUCT IN FERC ORDER 889, ALL OF THE FOLLOWING SECTIONS ARE CONTAINED IN THE TRANSMISSION VOLUME OF THIS REPORT, WHICH WAS PREPARED INDEPENDENTLY

4901:5-5-04 (B)(2) Existing Transmission System Maps

4901:5-5-04 (C) Planned Transmission System Maps

4901:5-5-04 (D)(1) Base Case Plots

4901:5-5-04 (D)(2) Contingency Cases

4901:5-5-04 (D)(3), (D)(4), (D)(7) Reliability Analysis, Adequacy, Transmission System Changes for New Resources

4901:5-5-04 (E)(1) and (E)(2) Transmission Forecast Forms

4901:5-5-04 (F) ECAR

THIS PAGE LEFT BLANK INTENTIONALLY

I

1

Î

Í

İ

ļ

Í

4901:5-5-01

(D) (2) (a) Ohio Energy Strategy

On April 15, 1994, the Public Utilities Commission of Ohio issued <u>The Ohio Energy Strategy Report</u> (OES), the product of lengthy discussion, the collection of comments and ideas, and the assessment of existing state regulations, codes, and policies related to use of energy resources. The OES provides an overall energy policy for the state contained within 7 implementation strategies which include 53 specific initiatives. The major focus of the OES is to "...develop and utilize energy resources in a manner which fosters economic growth, enhances global competitiveness, employs efficiency and conversation standards, and ensures energy security and environmental quality."¹

The Company has received a copy of the OES and has given it consideration. Several of the strategies contain initiatives applicable to electric utilities.

Strategy I

The first strategy on educational needs contains an initiative to educate utility company customers regarding the benefits of energy efficiency. CG&E has, for many years, provided

¹<u>The Ohio Energy Strategy Report</u>, p. 7.

customers with information on energy efficiency. Chapter 4 in Volume I, the Short-Term Implementation Plan, and the Status Report of this 1999 filing contain further information on CG&E's specific educational efforts.

Strategy II

Strategy II focuses on conservation and energy efficiency measures. Some specific initiatives for electric utilities involve: (1) developing lending opportunities for low and moderate income energy consumers, (2) promoting direct load control programs to limit electricity consumption during peak demand hours, and (3) establishing electric utility sponsored energy efficiency awards programs for each utility's service area. CG&E has previously implemented programs in accordance with each of the initiatives. However, the loan program and the direct load control program have been discontinued following review and action by the PUCO. The specifics of the remaining programs are provided in Chapter 4 of Volume I, the Short-Term Implementation Plan, and the Status Report of this 1999 filing. In addition, CG&E has been working with residential customers to examine their energy use efficiency through an audit program, which includes extensive education, efficient refrigerator programs, an education program targeting behavior modification addressing the PIPP eligible customers, and has been weatherizing homes in the service

area. These actions and the discontinuation of nonresidential programs are consistent with PUCO decisions. More detailed information on CG&E's efforts and a discussion of the termination of non-residential programs can be found in Chapter 4 of Volume I, the Short-Term Implementation Plan, and the Status Report of this filing.

Strategy III

Strategy III concentrates on the development of traditional indigenous resources such as coal, oil, and natural gas. The initiatives for electric utilities involve: (1) exploring and establishing cost-effective programs to develop and promote commercial products prepared from fly-ash and other byproducts of coal combustion, and (2) encouraging technology transfer, marketing, and exporting of Ohio-supported clean coal technologies. For several years, CG&E has been selling 100,000 tons or more of fly-ash each year through a marketer. Cinergy is also investing capital dollars at Zimmer Station to make high quality synthetic gypsum that will be sold to a new wallboard manufacturing plant. Cinergy expects to create a significant environmental benefit by converting the by-product from the unit's sulfur dioxide scrubber into synthetic gypsum, rather than landfilling it. The amount of material placed in the station's landfill can be reduced by as much as 77 percent.

Strategy IV

Strategy IV involves the research and development of renewable energy resources to enhance the diversity of supply options. Within this strategy, the major initiative affecting electric utilities is Initiative #34 which states, "Expand the list of alternatives that need to be considered in any integrated resource plan to include cogeneration, district heating, and cooling applications, the distributed utility concept, and research and development for renewable energy resources."² Cogeneration as a future resource option was discussed in Volume I, Section E of Chapter 5 of this filing, which is repeated below:

> It is Cinergy's practice to cooperate with potential cogenerators and independent power producers. A major concern, however, exists in situations where either customers would be subsidizing generation projects through higher than avoided cost buyback rates, or the safety or reliability of the electric system would be jeopardized. Both PSI and CG&E typically receive several requests a year for independent/small power production and cogeneration buyback rates. Currently, on the CG&E system, prospective cogenerators proposing the sale of 100 kW

² The Ohio Energy Strategy Report, p. 110.

or less are sent both a copy of the filed tariff for small power producers of 100 kW and under, and a copy of the standard interconnection agreement. The larger prospective cogenerators are provided with an explanation of the CG&E methodology for determining avoided cost which is market-based and, if requested, interconnection requirements. The CG&E avoided costs are determined on a case-by-case basis depending on MW size, contract length, and the projected reliability of the cogeneration unit. Currently, on the PSI system, prospective cogenerators are given the interconnection requirements and the current rates under Standard Contract Rider No. 50 - Parallel Operation for Qualifying Facility.

A customer's decision to self-generate or cogenerate is, of course, based on economics. Customers know their costs, profit goals, and competitive positions. The cost of electricity is just one of the many costs associated with the successful operation of their business. If customers believe they can lower their overall costs by self-generating, they will investigate this possibility on their own. There is no way that a utility can know all of the projected costs and/or savings associated with a customer's

self-generation. However, during a customer's investigation into self-generation, the customer usually will contact the utility for an estimate of electricity buyback rates. With Cinergy's comparatively low electricity rates and avoided cost buyback rates, cogeneration and small power production are generally uneconomical for most customers.

For these reasons, neither PSI nor CG&E attempts to forecast specific megawatt levels of this activity in their service areas. However, as contracts are signed, the resulting energy and capacity supply will be reflected in future plans. The electric load forecasts discussed in Chapter 3 do consider the impacts on electricity consumption caused by the relative price differences between alternate fuels (such as oil and natural gas) and electricity. As the relative price gap favors alternate fuels, electricity is displaced lowering the forecasted use of electricity and increasing the use of the alternate fuels. Some of the decrease in forecasted electricity consumption may be due to selfgeneration/cogeneration projects, but the exact composition cannot be determined.

Cinergy has direct involvement in the cogeneration area. In December 1996, Cinergy and Trigen Energy Corporation formed a joint venture, Trigen-Cinergy Solutions, LLC. The joint venture company will build, own, and operate cogeneration and trigeneration facilities for industrial plants, office buildings, shopping centers, hospitals, universities, and other major energy users that can benefit from combined heating/cooling and power production economies.

Other supply-side options such as simple-cycle Combustion Turbines, Combined Cycle units, Fuel Cells, coal-fired units, and/or renewables (all discussed later in this chapter) could represent potential non-utility generating units, power purchases, or utility-constructed units. At the time that Cinergy initiates the acquisition of new capacity, a decision will be made as to the best source.

With regard to district heating and cooling applications, Cinergy's joint venture with Trigen Energy Corporation (Trigen-Cinergy Solutions, LLC) is building and managing a centralized chiller system that will cool downtown Cincinnati.

Trigen is the leading owner and operator of district energy systems in North America, with 23 energy facilities in 13 locations.

The opportunities for district heating in downtown Cincinnati are limited because of the number of buildings built with electric resistance heaters. Conversion of these buildings to a hydronic or a steam system would be very expensive. One major economic barrier is the fact that centralized district energy projects must pay income taxes, while building owners that self cool and heat do not pay income taxes on this service, but generally deduct it as an expense item. As a result, the economic efficiencies created by district energy have to be great enough to absorb all the taxes (the Cincinnati Franchise also has a 4% gross receipts tax) and. have a profit remaining, while still being less expensive than self heating or cooling to the building owner/operator.

Fuel Cell technology may be well suited to distributed generation service. Cinergy's research, development, and delivery (RD&D) activities involve Fuel Cell technology. For example, by joining forces with the U.S. Government and Ballard Generation Systems, Cinergy is installing one of the world's first 250 kW class, natural gas-powered, Proton Exchange Membrane (PEM) Fuel Cells. This unit is scheduled

to be installed in 1999 at the Naval Surface Warfare Center located in Crane, Indiana. Cinergy is also licensing a 3 kW hydrogen Fuel Cell from Ballard to help develop military and civilian applications. In addition, Cinergy participates in the IEEE Fuel Cell Standards Committee to establish national standards for stationary deployment. As outlined in Volume I, Section F of Chapter 5, Fuel Cells were included in the supply-side screening analysis.

Cinergy has analyzed the use of renewable resources as discussed in Volume I, Section F of Chapter 5 of this filing. The applicable portion is repeated below:

The information obtained from a continuing review of available alternative energy technologies was considered in the preparation of the 1999 IRP. There is a very limited opportunity to apply renewable resource technologies in Central Indiana, Southwestern Ohio, and Northern Kentucky. With wind speeds averaging 5-6 MPH and relatively low solar power density, generation of significant amounts of electricity using wind or solar energy is not costeffective relative to more conventional technologies. This is not to say that these technologies may not be feasible in supplying limited amounts of power in

very remote locations or in other special applications. However, their use on a large utility scale is not practical in this region and no major breakthroughs on a utility scale are anticipated in the near future. Consequently, under current environmental assumptions, they continue to be not as cost competitive or as reliable in the Midwest as the more conventional power supply technologies.

Biogas, or landfill gas, generally has both high levels of contaminants and a low-heat content resulting in an overall quality far below that required for pipeline quality natural gas. It is possible to process the gas to pipeline quality standards but doing so increases the cost. This low grade gas may be collected, transported short distances and used in various manufacturing processes, but this activity is generally best suited to private enterprise ventures, not utility-scale projects. To Cinergy's knowledge, a few private companies currently collect landfill gas at three or four different landfills within Cinergy's franchised service territory. At the present time, the use of tire-derived fuel is not a significant utility-scale energy source. Over time, as operational and environmental issues are resolved, tires or tire residue may become a competitive, but limited, fuel source.

Municipal solid waste (MSW) burning to produce energy is rarely economical from the energy production standpoint. The technology to burn this waste cleanly and reliably is very expensive. Generally, when communities resort to MSW burning it is to dispose of the waste more economically than alternative methods, not to generate low-cost energy. In most instances, the energy sales help to offset some of the costs associated with burning the waste. Siting a MSW burning facility is also a challenge. Concerns abound about truck traffic, odors, vectors, and air toxins. The Public Utility Regulatory Policies Act of 1978 (PURPA) obligates Cinergy to purchase power and energy from a MSW facility within its franchised service territories. However, Cinergy will defend electric customers against subsidizing the disposal costs of municipal solid wastes.

Biomass energy production facilities are generally limited by the availability of fuel within about a 50-mile radius. This is a result of the bulk material handling problems due to the low heat content of current biomass fuels. This limitation negatively impacts both the size and economics of biomass energy facilities. Development of specialized energy crops and further technology developments will be necessary to permit expansion of biomass-generated energy.

Storage technologies such as Pumped Hydro and Compressed Air Energy Storage (CAES) generally have limited application due to the need for suitable geologic formations. Other storage technologies such as Batteries and Superconducting Magnetic Energy Storage (SMES) are applicable to more areas, but the storage time (one to five hours) is a limiting factor. Presently, batteries perform best in systems that require relatively short bursts of energy on an infrequent basis. Demonstration plants such as the 10 MW CHINO Battery Plant at Southern California Edison have been difficult to maintain and have proven to be more suitable for power delivery system stabilization than as a capacity resource. Other

demonstration projects, such as EPRI's Transportable Battery System, should further quantify the benefits and appropriate applications of battery storage systems. However, at this point in time, large utility scale battery storage systems are not commercially viable.

The focus of Cinergy's R&D efforts with regard to Alternative Technologies is to provide planning and evaluation methods to assure a strategic advantage in the deployment of emerging technologies and the use of storage to manage energy supply. Despite the fact that Alternative Technologies are generally not economic in comparison to more traditional technologies, they were included nevertheless as part of the screening process to allow an economic comparison between the different technologies and to allow sensitivity analysis around base assumptions to be performed.

Strategies V, VI, and VII

These last three Strategies focus on encouraging competition, government policies and programs, and state government as an energy user. While no specific initiatives require direct utility action, CG&E actively supported the passage of customer choice legislation in Ohio, and, as part of Cinergy, has sought and achieved FERC approval for a transmission tariff that does not create market power for CG&E, i.e., it establishes comparability for transmission charges. Cinergy has also been the leader in the establishment of a Midwest Independent System Operator (ISO) for transmission service providers. In addition, Cinergy continues to promote and support customer choice activities throughout the country. 4901:5-5-01

(D) (2) (b) 1999 LTFR Special Topic Questions & 95-203-EL-FOR Order Directives Not Addressed Elsewhere

1999 LTFR Special Topic Questions

TRANSMISSION

Provide a discussion of how your company is preparing to react to the FERC initiatives with regard to independent transmission system operators (ISOs) and other regional transmission organizations (RTOs).

In compliance with the codes of conduct in FERC Order 889, the relevant distribution information is located in the Transmission Volume of this report, which was prepared independently.

CLEAN AIR ACT AMENDMENTS

Describe the status of development of the Company's Phase II Compliance strategy, including a description of any plans submitted to U.S. EPA.

Please explain any changes from last year's description.

Cinergy's Phase II compliance strategy continues to be the same as described last year. Under current assumptions, fuel switching to lower sulfur coals is Cinergy's least-cost compliance strategy for Phase II. The planning process that developed this strategy was described in Chapter 6 of Volume I of Cinergy's 1999 Integrated Resource Plan. Cinergy is coordinating the development of its Phase II compliance implementation plans with AEP and DP&L for the jointly owned generating units.

Cinergy submitted the acid rain Phase II sulfur dioxide permit applications on December 19, 1995. The Kentucky Division for Air Quality (KDAQ) issued the Phase II final permit for East Bend Station on December 11, 1996. The Indiana Department of Environmental Management (IDEM) issued the Phase II final permits for Cayuga, Edwardsport, Gallagher, Gibson, Noblesville, and Wabash River stations on December 31, 1997. The Ohio Environmental Protection Agency (OEPA) issued the Phase II final permits for Beckjord, Miami Fort, and Zimmer stations on January 1, 1998, and for Woodsdale station on April 9, 1998, with an effective date of January 1, 2000.

The U.S. EPA required submittal of acid rain Phase II nitrogen oxides applications by January 1, 1998. Under current assumptions, installation of low NO_x burners as necessary to comply with the nitrogen oxide requirements of the CAAA is Cinergy's least-cost compliance strategy for Phase II. Cinergy's applications and averaging plan for Phase II nitrogen oxides were submitted to IDEM, KDAQ, and OEPA on December 19, 1997. A final permit was issued for East Bend Station on March 9, 1999, and draft permits were issued for Cayuga, Edwardsport, Gallagher, Gibson, Noblesville, and

Wabash River stations on December 18, 1998. Draft permits have not been issued yet for Beckjord, Zimmer, and Miami Fort stations.

GLOBAL CLIMATE CHANGE

Please describe your current and planned activities with regard to global climate change issues (especially CO_2 mitigation).

Include a description of any specific JI/AIJ activities you are undertaking (or plan to initiate).

Cinergy is evaluating its climate change activities in light of the Kyoto Protocol that was adopted at the third meeting of the United Nations Conference of the Parties to the Framework Convention on Climate Change. Over the past five years, Cinergy Corp. has been actively involved in climate change issues. Cinergy has been analyzing its generating and natural gas systems to develop strategies to reduce its greenhouse gas (GHG) emissions.

In February of 1995, Cinergy signed a U.S. Department of Energy (DOE) Climate Challenge Participation Accord. This was done to help demonstrate that voluntary measures could be used to reduce industrial GHG emissions. However, President Clinton has endorsed mandatory targets and timetables and has committed the United States to reducing its GHG emissions by 7 percent below 1990 levels through the time period 2008 to 2012. The Kyoto Protocol does not

provide a credit mechanism for early reductions. Nevertheless, Cinergy intends to continue its efforts to reduce its greenhouse gas emissions by implementing costeffective GHG emission-reducing activities. Cinergy will continue to participate in the U.S. Initiative on Joint Implementation (USIJI) approved Belize Rio Bravo forest preservation and sustainable management project with three other investor owned utilities, The Nature Conservancy, The Programme for Belize (a non-profit environmental organization), and UtiliTree Carbon Company (a utility industry initiative through the Edison Electric Institute). The project includes two components: Component A, forest preservation; and Component B, sustainable forestry practices.

Component A of the project involved the purchase of a 15,000-acre parcel of endangered forest land that links two protected properties with the Rio Bravo Conservation Area. Imminent conversion to agricultural use threatened this property. Winrock International, an independent consultant, measured the greenhouse gas benefit of this purchase and estimated it at more than 800,000 tons of carbon dioxide. This figure is higher than what was originally estimated.

Component B of the project will implement a sustainable forest management program on the Rio Bravo Conservation and Management Area. The program is designed to increase the total pool of sequestered carbon in a 60,000-acre area of the 125,000-acre Rio Bravo Conservation Area, including the area of Component A. It will then seek to extend the sustainable forestry model into adjacent properties. This component also includes plans to develop and implement a marketing strategy for sustainable timber extraction.

Cinergy has committed to invest in the project over a tenyear period. However, Cinergy will receive carbon offsets for a forty-year period. After the first ten years, the Programme for Belize will be self-sufficient based on revenues generated by the sustainable forestry program, forest products program, and environmental tourism. Cinergy estimates that the cost of carbon offsets from the Belize project will be about \$0.64 per ton of CO₂.

Cinergy submits an annual Section 1605(b) report concerning Cinergy's GHG emission reduction and offsetting activities. Cinergy's first report in 1995 identified activities implemented between 1991 and 1995 that reduced or offset Cinergy's GHG emissions. This first report listed activities that reduced or offset Cinergy's GHG emissions by

an estimated 1.3 million tons of CO₂ equivalents. (CO₂ equivalents include actual CO₂ emissions as well as methane converted to CO₂ equivalents by using the Intergovernmental Panel on Climate Change (IPCC) factors for these other GHGs.) Cinergy's 1996, 1997, and 1998 reports listed activities that reduced or offset Cinergy GHG emissions by an estimated 8.3 million tons of CO₂ equivalents. Activities implemented or supported by Cinergy that have reduced or offset its GHG emissions include:

- Electric generation from recovered landfill (methane)
 gas;
- Demand-side management programs;
- Landfill gas recovery for use as a natural gas supply;
- Rio Bravo carbon sequestration project;
- Trees planted at Cinergy facilities;
- Forestry projects with the Ohio and Indiana Chapters of The Nature Conservancy, Ducks Unlimited, and the National Wild Turkey Federation.
- Edison Electric Institute UtiliTree Carbon Co.;
- Beneficial reuse of coal ash;
- Efficiencies created through merged dispatching;
- Power plant efficiency programs;
- Paper and aluminum recycling.

Cinergy's efforts have resulted in a cumulative total of nearly 12.5 million tons of CO_2 equivalent reductions and offsets since 1991.

Cinergy, through its non-regulated subsidiary companies Cinergy Global Power and Trigen-Cinergy Solutions, is developing and implementing a number of renewable energy and higher energy efficiency projects (e.g. cogeneration, district heating and cooling, etc.). These projects are being developed in the United States, including Ohio, and in other countries around the world.

Alternative property and right-of-way management practices are being investigated to reduce annual property management costs. One of the more promising practices appears to be the planting of warm season prairie grasses. Benefits of planting the prairie grasses include less mowing, wildlife habitat, and sequestration of carbon. Cinergy is identifying potential properties and transmission rights-ofway on which to implement the alternative management practices. Cinergy is funding research to develop and implement a protocol to measure the amount of carbon sequestered by the warm season grasses. New technologies are the only long-term solution that would make the large reductions in carbon dioxide (CO₂) emissions necessary to have any real effect on atmospheric carbon concentrations. Research and development will be very important to any effort to reduce CO₂ emissions by the electric industry.

Even without short-term changes in the carbon-based fossil fuels used to generate electricity, electricity can be part of the solution to reducing GHG emissions. Through the promotion of electrotechnologies to replace less efficient use of fossil fuels, GHG emissions can be reduced. The more wide spread use of electrotechnologies will increase CO₂ emissions from the electric sector, but will be more than offset by the overall reduced CO₂ emissions from the fossil fuels that they replace.

DISTRIBUTION SYSTEM PLANNING

Provide a description of the Company's distribution system planning process, including a discussion of how existing system problems are identified, how future growth is estimated and how the impact of that growth on distribution system performance is determined.

Provide a description of all distribution facilities at voltages greater than or equal to 12.5 kV planned or scheduled for years zero through five.

Provide a discussion of the Company's process for obtaining community involvement in the planning and implementation of distribution system enhancements. In compliance with the codes of conduct in FERC Order 889, the relevant distribution information is located in the Transmission Volume of this report, which was prepared independently.

Case No.95-203-EL-FOR Order Directives Not Addressed Elsewhere

WABASH RIVER UNIT OUTAGE MONITORING

Wabash River Station has been eliminating or reducing the amount of Forced Outage Hours for units 2-4. The station staff continuously looks for ways to enhance the station's availability and reduce the Equivalent Forced Outage Rate (EFOR). Both O&M expenditures and capital budget expenditures are involved. Through the efforts of better maintenance practices and increased emphasis on long term planning, the station is working to continue to reduce the amount of Forced Outage Hours (FOH).

Station performance improvement can be seen by looking at the increasing station Net Capacity Factor (NCF). The NCF is increasing, illustrating that the units are running more often and at higher loads than in the past. This is partly a result of the reduction in forced outage hours. Graphs of NCF and EFOR are shown in Figures OA-1 and OA-2 located in the Proprietary and Confidential Information section of this Appendix.

Some of the forced outage hours experienced by Wabash River station are beyond the control of the station. For example, warm weather has caused a lot of extended forced outages due

OA-24

to high river water temperatures. The station requires cooling water from the Wabash River, and during the hot summer months the river water temperature increases. As a result, the station must reduce load or shut down completely at a certain predefined water temperature limit to comply with environmental regulations. Approximately 14% of the forced outage hours the station has experienced between 1991 and 1998 can be attributed to factors that are beyond the control of the station.

Looking at the EFOR for years 1988 to 1999, a couple of items stand out. The major cause of forced outage hours of Unit 4 from 1988 through 1990 was a cracked generator rotor. This has since been replaced, eliminating this cause. In addition, many of the capital expenditures in the past few years address the major availability degraders. For example, the precipitators on Units 2-5 were all upgraded, which has reduced the amount of forced outages due to precipitator failures. This upgrade has also dramatically reduced the amount of precipitator-related derates (partial outages) on these units. Multiple boiler tube replacement projects also have helped to improve the availability of Units 2-4. These include replacement of the unit #4 superheat tubing, unit #5 radiant reheat tubing, and units #2, #3, and #4 spaghetti tubing (section of reheat tubing).

0A-25

Other boiler work centered on the tubing around the front wall burners. The station startup practices were revisited, front wall tubes around the burners were replaced, and oil guns were modified. Recent changes to the air compressors have reduced derates caused by previous inadequate compressed air supply and thus allowed operators to blow soot more effectively on all units.

As the station continues to age, more equipment will begin to wear out, but, by careful planning and budgeting of our resources, the station will be able to minimize the effects of aging.

SPECIFIC RETIREMENT DATE ASSIGNMENT RESULTS

In the 95-203-EL-FOR Order, Cinergy was ordered to establish retirement dates for all generating units with service lives in excess of 40 years and determine the impact of these tentative retirements in developing future resource plans. To perform this analysis, all units that would be 40 years old or older during the 1999-2008 modeling period were considered. Although many units on Cinergy's system fall into this category, Cinergy's performance of engineering condition analysis has shortened the list of units that would be retired during the ten year modeling period under the guidelines given. Using the retirement dates contained

0A-26

in the last depreciation study filed in an electric rate case for each Operating Company (CG&E and PSI Energy), the following retirements were included in this special sensitivity required in the 95-203-EL-FOR Order:

• Miami Fort 5	12/31/2000
• Dicks Creek 1, 3-5	12/31/2000
• Miami Fort CT 3-6	12/31/2000
• Beckjord CT 1-4	12/31/2000
• Wabash River Diesel	12/31/2002
• Miami Wabash 1-4	12/31/2003
• Miami Wabash 5-6	12/31/2004
• Edwardsport 6-8	12/31/2004
• Beckjord 5	12/31/2005
• Miami Fort 6	12/31/2005
• Noblesville 1-2	12/31/2005
• Connersville 1-2	12/31/2007
• Cayuga Diesel	12/31/2007

Figure OA-3 shows the resulting plans. The Least Cost Plan contains the DSM bundle, as did the Base Case Least Cost Plan. The supply-side resources again consist of purchases for 1999-2003, and a number of Combustion Turbines in 2003-2006. The main difference is that the level of purchases and the number of CTs required is higher, as one would expect.

The 2002 CT Plan is identical to the Least Cost Plan through 2001. It contains the DSM bundle. In 2002, two Combustion Turbines are added, and the level of the purchases is smaller than in the Least Cost Plan. In 2003, 2700 MW is purchased, and from 2004 through 2006, the plan is identical to the Least Cost Plan.

The No DSM Plan is identical to the Least Cost Plan, with the exception of the DSM. Again, the main difference between this sensitivity and the Base Case was the level of supply-side resources required.

The 1st CC Plan also contains purchases through 2001. In 2002, one Combined Cycle unit is added along with a 2229 MW purchase. In 2003, two CCs are added along with a 2229 MW purchase; in 2004, twelve CTs are added; and from 2005 to 2006, the plan is identical to the Least Cost Plan.

The values obtained from the PROVIEW[™] model for relative Present Value Total Cost for the four plans are as follows:

	1998 Present Value Total Cost (\$1000)*	<pre>% Change from Least Cost Plan</pre>
Least Cost Plan	\$25,243,886	0.00%
2002 CT Plan	\$25,246,232	+0.01%
No DSM Plan	\$25,253,454	+0.04%
1 st CC Plan	\$25,250,640	+0.03%

* Based on Market Purchases in increments of 300 MW

Again, as stated in Chapter 8, the figures above should be used only for the relative comparison of the four plans.

There is nothing particularly revealing in this sensitivity. As expected, the level of supply-side resources needed to satisfy the reliability criteria is higher because of the unit retirements. Even though some of the units retired are base load units, the least cost resources chosen were still peaking purchases and CTs, as under Base Case conditions.

As stated previously, the modeling of this sensitivity was required by the PUCO in its 95-203-EL-FOR order. However, the actual retirement dates for Cinergy's units are currently unknown (see Figure 5-1).

CLEAR DETERMINATION OF NEED FOR ADDITIONAL RESOURCE OPTIONS The PUCO Staff requested more specific information concerning the determination of need for additional electricity resource options in Case No. 95-203-EL-FOR. As a result, the process is clearly and specifically described in Volume I, Chapter 2 near the end of Section D "Reliability Criteria."

ENGINEERING CONDITION PROGRAMS

The PUCO Staff requested in the Order in Case No. 95-203-EL-FOR that this topic be specifically addressed in all future full-LTFR filings. As specified in the Ohio rules, this topic is addressed generally in Volume I, Chapter 5, Section B, subsections (6) and (7) of this filing. The following is provided in this filing to augment the above sections.

There have been no significant engineering condition assessment studies conducted for any of the Cinergy units since the filing of the 1995 IRP (LTFR). With respect to individual pieces of equipment and components, the focus has been on maintenance, repair, and replacement. Evaluations of potential changes are considered when making decisions around replacement of such components on a case-by-case basis, and generally for larger items, during the budgeting process. The main area of "studies" has been for both the scheduled and potential environmental compliance activities.

QF EVALUATION AND MARKET PRICE DETERMINATION

The PUCO Staff raised concerns in Case No. 95-203-EL-FOR about

OA-30

how a potential QF was evaluated and the methodology then used to determine the market price for electricity to evaluate the potential QF.

As discussed in Volume I, Chapter 2, Section E(2) "Analytical Process," the screening and integration steps undertaken during the development of this IRP involved comparisons to a projected market price for electricity. This is in contrast to the traditional comparison to the utility's internal system costs, or what Staff refers to as "build" costs. All resource decisions, both for existing resources and any future resources are compared to the commodity market price of electricity. Generally, the market price is the cost-to-beat before any other resource alternatives are considered seriously. The Energy Market Forecasting (EMF) model is a proprietary model developed for Cinergy. Cinergy considers all of the inputs, methodology, and the specific outputs of the EMF model to be trade secrets and proprietary competitive information. A brief description of and discussion about the model is contained in Volume I, Chapter 8, Section B(1) "Model Descriptions." Cinergy believes this methodology is consistent with the Commission's finding that, on a goingforward basis, any new resource will be presumed to be at market cost, and, thus, cannot be a stranded cost.

OA-31

As with any other resource alternative, all QF/IPP offers, counteroffers, and negotiations consider the EMF discussed above. Also, as mentioned in Volume I, Chapters 1, 5, and 8, any options surviving the screening or integration phases of the process could ultimately represent potential non-utility generating units, purchases, repowering of existing Cinergy units, or utility constructed units. Figure OA-3

Significantly Different Plans- Retirement Bensitivity

	least Cost	2102 CT 1155	NO DSM Blan	
1999	763MW Purch.	763MW Purch.	763MW Purch.	763MW Purch.
	DSM Bundle	DSM Bundle		DSM Bundle
2000	1600MW Purch.	1600MW Purch.	1600MW Purch.	1629MW Purch.
2001	2200MW Purch.	2200MW Purch.	2200MW Purch.	2229MW Purch.
2002	2500MW Purch.	2-165MW CTS	2500MW Purch.	1-256MW CC
		2200MW Purch.		2229MW Purch.
2003	2-165MW CTS	2700MW Purch.	2-165MW CTS	2-256MW CCS
	2700MW Purch.		2700MW Purch.	2129MW Purch.
2004	14-214MW CTS	14-214MW CTS	14-214MW CTS	12-214MW CTS
2005	2-214MW CTS	2-214MW CTS	2-214MW CTS	2-214MW CTS
2006	4-214MW CTS	4-214MW CTS	4-214MW CTS	4-214MW CTS
2007				
2008				

THIS PAGE LEFT BLANK INTENTIONALLY

ľ

4901:5-5-01

(D) (4) ENERGY-PRICE RELATIONSHIPS

(a) <u>Impacts Due to Energy-Price Changes</u>. The energy price changes identified within the forecast period reflect changes in energy demand due to changes in the real price of energy.

The difference between a forecast based upon a zero percent increase in real energy price and the actual forecast is the basis for the energy demand and peak load impacts provided on the following Tables 1 and 2.

(b) <u>Description of Methodology.</u> The impact of energy-price changes are based upon the same equations and models as the base forecast. Energy-price impacts were identified by comparing the actual forecast to one based upon a zero percent annual increase (1998 - 2019) in the real price of electricity. The resulting differences in energy (MWh) and peak demand (MW) represent the total forecasted impacts of changes in energy prices. (D) (4) (cont'd)

TABLE 1

CG&E

PRICE INDUCED IMPACTS (MWH)

YEAR	RESIDENTIAL	COMMERCIAL	INDUSTRIAL	SENDOUT
1998	(206)	(12,967)	(20,024)	(43,543)
1999	(6,434)	(38,534)	(79 , 941)	(162 , 207)
2000	(19,515)	(68,179)	(172,116)	(320,214)
2001	(33,796)	(97 , 905)	(277 , 681)	(498 , 587)
2002	(45,488)	(128,662)	(391,763)	(685,638)
2003	(58,296)	(162,959)	(522 , 086)	(896 , 857)
2004	(71 , 850)	(198,238)	(664,438)	(1,123,480)
2005	(85,958)	(296,751)	(934,714)	(1,594,481)
2006	(104,741)	(308,180)	(1,165,117)	(1,880,102)
2007	(116,735)	(310,068)	(1,281,092)	(2,018,918)
2008	(119,669)	(311,848)	(1,331,922)	(2,078,951)
2009	(123,360)	(314,246)	(1,363,076)	(2,119,879)
2010	(127,331)	(318,665)	(1,396,659)	(2,167,319)
2011	(132,084)	(323,546)	(1,433,012)	(2,219,217)
2012	(137,392)	(327,575)	(1,461,712)	(2,262,169)
2013	(142,618)	(333,330)	(1,494,176)	(2,311,867)
2014	(148,946)	(337,922)	(1,525,668)	(2 , 359 , 678)
2015	(155 , 255)	(342,879)	(1,559,990)	(2,411,261)
2016	(161,891)	(348,783)	(1,590,993)	(2,461,030)
2017	(167,856)	(353,609)	(1,626,632)	(2,513,003)
2018	(175,144)	(359 , 709)	(1,660,864)	(2,566,897)
2019	(182,760)	(366,186)	(1,694,237)	(2,620,970)

4901:5-5-01

(D) (4) (cont'd)

TABLE 2

CG&E

PRICE INDUCED IMPACTS (MWH)

YEAR	SUMMER PEAK	WINTER PEAK
1000	(10)	(1.4)
1998	(10)	(14)
1999	(31)	(34)
2000	(61)	(59)
2001	(92)	(84)
2002	(126)	(112)
2003	(163)	(141)
2004	(202)	(190)
2005	(293)	(247)
2006	(334)	(272)
2007	(355)	(282)
2008	(364)	(287)
2009	(370)	(292)
2010	(378)	(299)
2011	(387)	(305)
2012	(394)	(311)
2013	(403)	(318)
2014	(410)	(324)
2015	(419)	(331)
2016	(427)	(337)
2017	(436)	(344)
2018	(445)	(351)
2019	(455)	(358)

THIS PAGE LEFT BLANK INTENTIONALLY

.

4901:5-5-01

(D) (5) (b) HOURLY LOAD DATA

The 1998 hourly load data mentioned in Volume I, General Appendix, represents hourly sendout for the total CG&E service area, part of which is in Kentucky and Indiana. To provide an indication of the percentage of the total system that is in Ohio, ratios have been computed for recent seasonal peaks. The proportions are as follows:

	To	tal	Percent
		Cinergy	
1000 5	<u>Ohio</u>	System	<u>Ohio</u>
1998 Summer Peak	3981	10,430	38.38
1998 Winter Peak	3348	8735	38.38

THIS PAGE LEFT BLANK INTENTIONALLY

.

4901:5-5-01

(E) (1) (d) (i) and (ii) EQUATIONS and STATISTICAL TEST RESULTS Following is a display of all the relevant equations and statistical test results used in the development of the CG&E franchised service territory load forecast.

SERVICE AREA EQUATIONS

U.S. AVERAGE HOURLY EARNINGS FOR MANUFACTURING

REGRESSION RESULTS:

LEAST SQUARES WITH 2ND ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1979:1 TO 1997:4 (76 OBS.) DEPENDENT VARIABLE: LAHEM

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

CONSTANT PDL (LECIWSP, 1, 2, FAR) 0) 2.356 0.0042415 555.46 1)

\0 0.56444 0.0096215 . \1 0.28222 0.0048107 .

LAG SUM: 0.84667 STD. ERR.: 0.014432 MEAN LAG: 0.33333

2)	0.0046002	0.0014804	3.1075	Q804
3)	1.3597	0.10942	12.426	RHO1
4)	-0.42535	0.108	-3.9384	RHO2

R-BAR SOUARED: 0.9998 DURBIN-WATSON: 2.04 STANDARD ERROR:0.0025764 NORMALIZED:0.0011171

+*

٠

U.S. AVERAGE HOURLY EARNINGS FOR MANUFACTURING

WHERE:

LAHEM =LOG (AHEM) LECIWSP =LOG (ECIWSP) Q804 QUALITATIVE VARIABLE - FOURTH QUARTER, 1980

AND :

AHEM ECIWSP US AVERAGE HOURLY EARNINGS FOR MANUFACTURING EMPLOYMENT COST INDEX - WAGES AND SALARIES, ALL PRIVATE INDUSTRY WORKERS

FORECAST EQUATION:

1>AHEM=EXP(<2.356>+PDL(LECIWSP,1,2,FAR,<0.56444,0.28222>)+AHEM@AR2)

SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1972:1 TO 1997:4 (104 OBS.) DEPENDENT VARIABLE: LRELAHEM

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 0.040867 0.016368 2.4968 CONSTANT 1) 0.19352 0.083328 2.3224 LRELCHEM 2) PDL (LRELPCNT283337,1,2,FAR)

\0 0.085222 0.024153 . + * + \1 0.042611 0.012077 . + *+ LAG SUM: 0.12783 STD. ERR.: 0.03623 MEAN LAG: 0.33333

3) ~0.013113 0.0052375 -2.5036 Q751 4) 0.02053 0.0044732 4.5896 Q801851 5) 0.80356 0.058366 13.768 RHO R-BAR SQUARED:0.83666 DURBIN-WATSON:1.77 STANDARD ERROR:0.0065986 NORMALIZED:0.065255

SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING

WHERE :	
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LRELCHEM	=LOG((EM@CGE/EM@CGE 1)/(EM/EM 1))
LRELPCNT283337	=LOG(((E280CGE+E33NS0CMSA+E33NS0BUTLER+E371NS0CGE +E37209NS0CGE)/EM0CGE)/((E28+E33+E37)/EM))
Q751	QUALITATIVE VARIABLE - FIRST QUARTER, 1975
Q801851	QUALITATIVE VARIABLE - FIRST QUARTER, 1980 TO FIRST QUARTER, 1985
AND:	
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
E28@CGE	SERVICE AREA EMPLOYMENT - CHEMICALS AND PRODUCTS
E33NS@CMSA	CINCINNATI CMSA EMPLOYMENT - PRIMARY METAL INDUSTRIES
E33NS@BUTLER	SERVICE AREA EMPLOYMENT - BUTLER COUNTY - PRIMARY METAL INDUSTRIES
E371NS@CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT MOTOR VEHICLES AND PARTS
E37209NS0CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS
EM@CGE	SERVICE AREA EMPLOYMENT - MANUFACTURING
E28	US EMPLOYMENT - CHEMICALS AND PRODUCTS
E33	US EMPLOYMENT - PRIMARY METAL INDUSTRIES
E37	US EMPLOYMENT - TRANSPORTATION EQUIPMENT
EM	US EMPLOYMENT - MANUFACTURING

FORECAST EQUATION:

1>AHEMNS@1640=AHEM*EXP(<0.041681>+<0.20024>*LRELCHEM&& 2>+PDL(LRELPCNT283337,1,2,FAR,<0.084026,0.042013>)&& 3>+AHEMNS@1640@AR1) REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1970:1 TO 1995:4 (104 OBS.) DEPENDENT VARIABLE: LWSDE@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0)	0.1632	0.021526	7.5819	CONSTANT
1)	0.91645	0.007347	124.74	LWSDE
2)	0.02204	0.0050802	4.3383	Q704
3)	-0.012289	0.0050786	-2.4198	Q711
4)	-0.010115	0.0044164	-2.2904	Q741
5)	-0.011673	0.0044159	-2.6434	Q751
6)	-0.014449	0.0044157	-3.2722	Q811
7)	0.84741	0.052062	16.277	RHO

R-BAR SQUARED:0.99979 DURBIN-WATSON:2.20 STANDARD ERROR:0.0057876 NORMALIZED:0.002053

SERVICE AREA WAGE AND SALARY DISBURSEMENTS

WHERE :	
LWSDE@CGE	=LOG (WSD@ADJ@CGE/E@CGE)
LWSDE	=LOG (WSD@ADJ@CGE/E@CGE)
Q704	QUALITATIVE VARIABLE - FOURTH QUARTER, 1970
Q711	QUALITATIVE VARIABLE - FIRST QUARTER, 1971
Q741	QUALITATIVE VARIABLE - FIRST QUARTER, 1974
Q751	QUALITATIVE VARIABLE - FIRST QUARTER, 1975
Q811	QUALITATIVE VARIABLE - FIRST QUARTER, 1981
AND :	
WSD@ADJ@CGE	SERVICE AREA WAGE AND SALARY DISBURSEMENTS PLUS OTHER INCOME
E@CGE	SERVICE AREA EMPLOYMENT - TOTAL

.

FORECAST EQUATION:

1>WSD@ADJ@CGE=E@CGE*EXP(<0.1632>+<0.91645>*LWSDE+WSDE@CGE@AR1)

SERVICE AREA PERSONAL PROPERTY INCOME

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1973:1 TO 1995:4 (92 OBS.) DEPENDENT VARIABLE: LRPCYPPROP@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0)	0.012095	0.022428	0.5393	CONSTANT
1)	0.99331	0.027162	36.57	LRPCYPPROP
2)	-0.0061929	0.0016406	-3.7748	Q651854*Q1
3)	0.014996	0.0058056	2.583	Q831
4)	0.013412	0.0055577	2.4132	Q901+Q902
5)	0.9122	0.042719	21.353	RHO

R-BAR SQUARED:0.99875 DURBIN-WATSON:1.75 STANDARD ERROR:0.0075344 NORMALIZED:0.0095744

SERVICE AREA PERSONAL PROPERTY INCOME

WHERE:	
LRPCYPPROP@CGE	=LOG(YPPROP@CGE/(N@CGE*CPI))
LRPCYPPROP	=LOG((YRENTADJ+INTBUS+DIV)/(N*CPI))
Q651854	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO
-	FOURTH QUARTER, 1985
Q1	QUALITATIVE VARIABLE - FIRST QUARTER
Q831	QUALITATIVE VARIABLE - FIRST QUARTER, 1983
Q901	QUALITATIVE VARIABLE - FIRST QUARTER, 1990
Q902	QUALITATIVE VARIABLE - SECOND QUARTER, 1990
AND:	
YPPROP@CGE	SERVICE AREA PERSONAL PROPERTY INCOME
N@CGE	SERVICE AREA TOTAL POPULATION
YRENTADJ	RENTAL INCOME OF PERSONS WITH CAPITAL CONSUMPTION ADJUSTMENT
INTBUS	NET INTEREST COMPONENT OF NATIONAL INCOME
DIV	DIVIDENDS
N	US TOTAL POPULATION
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

FORECAST EQUATION:

1>YPPROP@CGE=(CPI*N@CGE)*EXP(<0.012095>+<0.99331>*LRPCYPPROP&& 2>+YPPROP@CGE@AR1) **REGRESSION RESULTS:**

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1970:1 TO 1995:4 (104 OBS.) DEPENDENT VARIABLE: LRPCYENT@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

 0) -0.21388
 0.070836
 -3.0194
 CONSTANT

 1) 1.0663
 0.062315
 17.111
 LRPCYENT

 2) -0.029995
 0.012404
 -2.4182
 Q781

 3) -0.030105
 0.01246
 -2.4162
 Q831

 4) 0.029923
 0.012403
 2.4126
 Q891

 5) 0.030923
 0.012364
 2.501
 Q901

 6) -0.034828
 0.012443
 -2.7989
 Q911

 7) 0.98364
 0.017664
 55.686
 RHO

R-BAR SQUARED:0.98549 DURBIN-WATSON:1.72 STANDARD ERROR:0.017343 NORMALIZED:-0.052397

1

SERVICE AREA NONFARM PROPRIETORS INCOME

WHERE:	
LRPCYENT@CGE	=LOG(YENT@CGE/(N@CGE*CPI))
LRPCYENT	=LOG (YENTNFADJ/ (N*CPI)
0781	QUALITATIVE VARIABLE - FIRST QUARTER, 1978
0831	QUALITATIVE VARIABLE - FIRST QUARTER, 1983
0891	QUALITATIVE VARIABLE - FIRST QUARTER, 1989
<u>0</u> 901	QUALITATIVE VARIABLE - FIRST QUARTER, 1990
Q911	QUALITATIVE VARIABLE - FIRST QUARTER, 1991
AND:	
YENT@CGE	SERVICE AREA NONFARM PROPRIETORS INCOME
N@CGE	SERVICE AREA TOTAL POPULATION
YENTNFADJ	NONFARM PROPRIETORS INCOME WITH IVA AND CCADJ
N	US TOTAL POPULATION
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

FORECAST EQUATION:

1>YENT@CGE=(N@CGE*CPI)*EXP(<-0.21388>+<1.0663>*LRPCYENT&& 2>+YENT@CGE@AR1) REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1980:1 TO 1995:4 (64 OBS.) DEPENDENT VARIABLE: LPCV@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0)-0.0384120.021836-1.7591CONSTANT1)0.997070.01997349.92LPCV2)0.0122890.00341633.5972Q821+Q8223)-0.00892290.0034174-2.611Q9014)0.96980.03048531.812RHO

R-BAR SQUARED:0.99975 DURBIN-WATSON:1.75 STANDARD ERROR:0.004745 NORMALIZED:0.0056349 .

SERVICE AREA TRANSFER PAYMENTS TO PERSONS

WHERE :	
LPCV@CGE	=LOG (V@CGE/N@CGE)
LPCV	=LOG (VG/N)
0821	QUALITATIVE VARIABLE - FIRST QUARTER, 1982
0822	QUALITATIVE VARIABLE - SECOND QUARTER, 1982
Q901	QUALITATIVE VARIABLE - FIRST QUARTER, 1990
AND:	
V@CGE	SERVICE AREA TRANSFER PAYMENTS TO PERSONS
N@ CGE	SERVICE AREA TOTAL POPULATION
VG	US GOVERNMENT TRANSFER PAYMENTS TO PERSONS
N	US TOTAL POPULATION

FORECAST EQUATION:

1>V@CGE=(N@CGE) *EXP(<-0.038412>+<0.99707>*LPCV&& 2>+V@CGE@AR1) SERVICE AREA PERSONAL CONTRIBUTION TO SOCIAL INSURANCE

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1976:1 TO 1995:4 (80 OBS.) DEPENDENT VARIABLE: LPCTWPER@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) -0.048615 0.011961 -4.0646 CONSTANT 1) 1.0223 0.016608 61.554 LPCTWPER 2) -0.016044 0.0039961 -4.015 Q811 3) -0.014233 0.0039342 -3.6177 Q821 4) 0.95956 0.031475 30.487 RHO

R-BAR SQUARED:0.99985 DURBIN-WATSON:1.71 STANDARD ERROR:0.005443 NORMALIZED:0.11453 .

SERVICE AREA PERSONAL CONTRIBUTION TO SOCIAL INSURANCE

WHERE :

LPCTWPER@CGE LPCTWPER Q811 Q821	=LOG(TWPER@CGE/N20@64@CGE) =LOG(TWPER/N20@64) QUALITATIVE VARIABLE - FIRST QUARTER, 1981 QUALITATIVE VARIABLE - FIRST QUARTER, 1982	
AND:		
TWPER@CGE	SERVICE AREA PERSONAL CONTRIBUTIONS TO SOCIAL INSURANCE	
N200640CGE	SERVICE AREA POPULATION AGED 20 TO 64	
TWPER	US PERSONAL CONTRIBUTIONS TO SOCIAL INSURANCE	
N20064	US POPULATION AGED 20 TO 64	

.

.

FORECAST EQUATION:

1>TWPER@CGE=(N20@64@CGE) *EXP(<-0.048615>+<1.0223>*LPCTWPER&& 2>+TWPER@CGE@AR1)

SERVICE AREA EMPLOYMENT - FOOD AND PRODUCTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1968:1 TO 1997:4 (120 OBS.) DEPENDENT VARIABLE: LE20@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 8.6885 0.22969 37.826 CONSTANT 1) PDL (LJQIND20, 2, 6, BOTH) \0 0.12099 0.049724 + * . 0.20165 0.082873 \1 \2 0.24198 0.099448 \з 0.24198 0.099448 + 0.20165 0.082873 \4 + + • \5 0.12099 0.049724 + * + LAG SUM: 1.1293 STD. ERR.: 0.46409 MEAN LAG: 2.5 2) PDL (LJQE20,2,6,BOTH) -0.17733 0.047575 \0 + * + -0.29555 0.079291 \1 ٠ \2 -0.35466 0.095149 \З -0.35466 0.095149 + + -0.29555 0.079291 \4 + + -0.17733 0.047575 + * + \5 LAG SUM: -1.6551 STD. ERR.: 0.44403 MEAN LAG: 2.5 3) PDL (LRELRTCGSL@OH, 1, 8, FAR) -0.028717 0.012662 \0 -0.025127 0.011079 \1 -0.021538 0.0094967 -0.017948 0.0079139 \2 \3 -0.014358 0.0063311 \4 \5 -0.010769 0.0047483 \6 -0.0071792 0.0031656 +* +. -0.0035896 0.0015828 \7 +*. LAG SUM: -0.12923 STD. ERR.: 0.05698 MEAN LAG: 2.3333 4) -0.045376 0.0091724 -4.947 5) 0.078506 0.013206 5.9447 Q683 Q651824 6) -0.029751 0.0091737 -3.243 Q692 7) 0.97271 0.02118 45.926 RHO R-BAR SQUARED:0.99599 DURBIN-WATSON:1.91 STANDARD ERROR:0.012791 NORMALIZED:0.0013235

(e)

SERVICE AREA EMPLOYMENT - FOOD AND PRODUCTS

WHERE :

=LOG (E200CGE)
=LOG(JQIND20)
=LOG(JQIND20/E20)
=LOG (RTCGSL@OH/RTCGSL)
QUALITATIVE VARIABLE - THIRD QUARTER, 1968
QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO
FOURTH QUARTER, 1982
QUALITATIVE VARIABLE - SECOND QUARTER, 1969
SERVICE AREA EMPLOYMENT - FOOD AND PRODUCTS
US INDUSTRIAL PRODUCTION INDEX - FOOD AND PRODUCTS
US EMPLOYMENT - FOOD AND PRODUCTS
EFFECTIVE TAX RATE - OHIO CORPORATE INCOME TAXES
EFFECTIVE TAX RATE - STATE AND LOCAL CORPORATE
INCOME TAXES - US

FORECAST EQUATION:

1>E20@CGE=EXP(<8.6885>&& 2>+PDL(LJQIND20,2,6,BOTH,<0.12099,0.20165,0.24198,0.24198,0.20165, 3>0.12099>)&& 4>+PDL(LJQE20,2,6,BOTH,<-0.17733,-0.29555,-0.35466,-0.35466,-0.29555, 5>-0.17733>)&& 6>+PDL(LRELRTCGSL@OH,1,8,FAR,<-0.028717,-0.025127,-0.021538,-0.017948, 7>-0.014358,-0.010769,-0.0071792,-0.0035896>)+E20@CGE@AR1) SERVICE AREA EMPLOYMENT - PAPER AND PRODUCTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION ___________ FREQUENCY: Q INTERVAL: 1975:1 TO 1997:4 (92 OBS.) DEPENDENT VARIABLE: LE26@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE CONSTANT 0) 9.7207 0.054139 179.55 1) PDL (LJQIND26, 1, 4, FAR) 0.19786 0.038496 + * + \0 +* + \1 0.1484 0.028872 • 0.098932 0.019248 +*+ \2 . \3 0.049466 0.0096239 *+ LAG SUM: 0.49466 STD. ERR.: 0.096239 MEAN LAG: 1 2) PDL (LRELAHEM, 1, 4, FAR) -0.36771 0.1256 \0 + -0.27578 0.094198 * + \1 . -0.18386 0.062799 + * + \2 \З -0.091928 0.031399 +*+ . LAG SUM: -0.91928 STD. ERR.: 0.31399 MEAN LAG: 1 3) PDL (LJQE26, 2, 12, BOTH) -0.033762 0.0041476 \0 *+ +*+ \1 -0.061898 0.0076039 -0.084406 0.010369 +* + \2 -0.10129 0.012443 -0.11254 0.013825 -0.11817 0.014516 \3 + *+ +* + \4 \5 + *+ -0.11817 0.014516 \6 + *+ -0.11254 0.013825 -0.10129 0.012443 -0.084406 0.010369 +* + \7 8/ + *+ \9 +* + -0.061898 0.0076039 \10 +*+ 11-0.033762 0.0041476 *+ LAG SUM: -1.0241 STD. ERR.: 0.12581 MEAN LAG: 5.5 4) -0.02188 0.009092 -2.4065 Q802 5) -0.021116 0.0090901 -2.323 Q902 6) 0.027813 0.010774 2.5813 7) 0.030815 0.010582 2.9119 8) 0.9065 0.044018 20.594 Q851 0852 RHO R-BAR SQUARED:0.97997 DURBIN-WATSON:1.80 STANDARD ERROR: 0.012251 NORMALIZED: 0.001312

SERVICE AREA EMPLOYMENT - PAPER AND PRODUCTS

WHERE :	
LE260CGE	=LOG (E260CGE)
LJQIND26	=LOG (JQIND26)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LJQE26	=LOG(JQIND26/E26)
Q802	QUALITATIVE VARIABLE - SECOND QUARTER, 1980
Q902	QUALITATIVE VARIABLE - SECOND QUARTER, 1990
Q851	QUALITATIVE VARIABLE - FIRST QUARTER, 1985
Q852	QUALITATIVE VARIABLE - SECOND QUARTER, 1985
AND:	
E260CGE	SERVICE AREA EMPLOYMENT - PAPER AND PRODUCTS
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
JQIND26	US INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS
E26	US EMPLOYMENT - PAPER AND PRODUCTS

FORECAST EQUATION:

1>E26@CGE=EXP(<9.7207>&& 2>+PDL(LJQIND26,1,4,FAR,<0.19786,0.1484,0.098932,0.049466>)&& 3>+PDL(LRELAHEM,1,4,FAR,<-0.36771,-0.27578,-0.18386,-0.091928>)&& 4>+PDL(LJQE26,2,12,BOTH,<-0.033762,-0.061898,-0.084406,-0.10129,-0.11254, 5>-0.11817,-0.11817,-0.11254,-0.10129,-0.084406,-0.061898,-0.033762>)&& 6>+E26@CGE@AR1)

SERVICE AREA EMPLOYMENT - CHEMICALS AND PRODUCT REGRESSION RESULTS: LEAST SQUARES WITH 2ND ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1970:1 TO 1997:4 (112 OBS.) DEPENDENT VARIABLE: LE28@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 10.071 0.022746 442.75 CONSTANT PDL (LJQIND28, 1, 8, FAR) 1) 0.25302 0.032813 \0 +* + 0.22139 0.028711 + *+ \1 \2 0.18977 0.02461 *** 0.15814 0.020508 0.12651 0.016406 \3 **\4** \5 0.094883 0.012305 0.063255 0.0082032 \6 \7 0.031628 0.0041016 .+* LAG SUM: 1.1386 STD. ERR.: 0.14766 MEAN LAG: 2.3333 2) PDL (LJQE28, 1, 8, FAR) -0.19011 0.033288 + * \0 + + * + -0.16634 0.029127 \1 -0.14258 0.024966 \2 +* + -0.11882 0.020805 -0.095053 0.016644 \3 +*+ \4 \5 + -0.07129 0.012483 -0.047527 0.008322 \6 17 -0.023763 0.004161 LAG SUM: -0.85548 STD. ERR.: 0.1498 MEAN LAG: 2.3333 3) PDL (LRELAHEM, 1, 3, FAR) -0.23669 0.087854 -0.15779 0.058569 -0.078897 0.029285 \0 ٠ \1 + * + \2 +* + . LAG SUM: -0.47338 STD. ERR.: 0.17571 MEAN LAG: 0.66667 4) PDL (LRELRTCGSL@OH, 1, 8, FAR) -0.017966 0.0046519 -0.01572 0.0040704 \0 * \1 + -0.013475 0.0034889 + * + \2 -0.011229 0.0029075 + *+ \3 -0.0089831 0.002326 + * \4 \5 -0.0067373 0.0017445 + *+ \6 -0.0044915 0.001163 -0.0022458 0.00058149 \7 LAG SUM: -0.080848 STD. ERR.: 0.020934 MEAN LAG: 2.3333 5) 0.030712 0.0041757 7.3551 6) -0.011075 0.0041913 -2.6423 7) 0.013683 0.0042095 3.2504 8) -0.017433 0.0041914 -4.1592 9) -0.022216 0.0041812 -5.3133 10) -0.018276 0.004177 -4.375 11) 1 3751 Q711 Q752 Q861 Q884 Q944 Q971 -4.3755 11) 1.3751 0.079538 12) -0.56204 0.080324 17.288 RHO1 -6.9972 RHO2 R-BAR SQUARED:0.99079 DURBIN-WATSON:2.14 STANDARD ERROR:0.007472 NORMALIZED:0.00074801

WHERE :	
LE28@CGE	=LOG(E28@CGE)
LJOIND28	=LOG(JQIND28)
LJQE28	=LOG(JQIND28/E28)
LRELAHEM	=log (Ahemns@1640/Ahem)
LRELRTCGSL@OH	=log(rtcgsl@oh/rtcgsl)
Q711	QUALITATIVE VARIABLE - FIRST QUARTER, 1971
Q752	QUALITATIVE VARIABLE - SECOND QUARTER, 1975
Q861	QUALITATIVE VARIABLE - FIRST QUARTER, 1986
Q884	QUALITATIVE VARIABLE - FOURTH QUARTER, 1988
Q944	QUALITATIVE VARIABLE - FOURTH QUARTER, 1994
Q971	QUALITATIVE VARIABLE - FIRST QUARTER, 1997
AND :	
E28@CGE	SERVICE AREA EMPLOYMENT - CHEMICALS AND PRODUCTS
JQIND28	US INDUSTRIAL PRODUCTION INDEX - CHEMICALS AND PRODUCTS
E28	US EMPLOYMENT - CHEMICALS AND PRODUCTS
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
RTCGSL@OH	EFFECTIVE TAX RATE - OHIO CORPORATE INCOME TAXES
RTCGSL	EFFECTIVE TAX RATE - STATE AND LOCAL CORPORATE INCOME TAXES - US

FORECAST EQUATION:

1>E28@CGE=EXP(<10.071>+PDL(LJQIND28,1,8,FAR,<0.25302,0.22139,0.18977,0.15814,0 2>+PDL(LJQE28,1,8,FAR,<-0.19011,-0.16634,-0.14258,-0.11882,-0.095053,-0.07129, 3>+PDL(LRELAHEM,1,3,FAR,<-0.23669,-0.15779,-0.078897>)&& 4>+PDL(LRELRTCGSL@OH,1,8,FAR,<-0.017966,-0.01572,-0.013475,-0.011229,-0.008983 5>+E28@CGE@AR2)

REGRESSION RESULTS: LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1969:2 TO 1997:4 (115 OBS.) DEPENDENT VARIABLE: LE33NS@BUTLER COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 11.618 1.2456 9.3267 CONSTANT 1) PDL (LJQIND33, 1, 3, FAR) 0.42456 0.05759 + * + \0 • 0.28304 0.038393 0.14152 0.019197 . *+ \1 +*+ \2 LAG SUM: 0.84913 STD. ERR.: 0.11518 MEAN LAG: 0.66667 2) PDL (LJQIND371, 1, 3, FAR) . . + . +*+ \0 0.098921 0.030767 * \1 0.065947 0.020511 • + 0.032974 0.010256 \2 LAG SUM: 0.19784 STD. ERR.: 0.061534 MEAN LAG: 0.66667 3) PDL(LJQE33,1,4,FAR) \0 -0.38213 0.079182 + • + -0.2866 0.059386 -0.19107 0.039591 \1 + * + \2 + *+ -0.095534 0.019795 +*+ . \З LAG SUM: -0.95534 STD. ERR.: 0.19795 MEAN LAG: 1 4) PDL (LRELAPGI, 2, 12, BOTH) \0 -0.013795 0.0065374 +*+ \1 -0.025291 0.011985 * + \2 -0.034488 0.016344 * + + -0.041385 0.019612 \3 + + -0.045984 0.021791 -0.048283 0.022881 \4 + \5 * + \6 -0.048283 0.022881 + 17 -0.045984 0.021791 + + -0.041385 0.019612 \8 + + 9\ -0.034488 0.016344 \10 -0.025291 0.011985 * + -0.013795 0.0065374 \11 +*+ LAG SUM: -0.41845 STD. ERR.: 0.1983 MEAN LAG: 5.5 5) -0.95029 0.29536 -3.21746) 0.067934 0.017463 3.89027) -0.24019 0.017453 -13.7628) -0.045301 0.017294 -2.61959) -0.037203 0.017671 -2.105410) 0.97584 0.020375 47.893LRELAHEM\6 Q753 Q863 Q902+Q903 Q933 RHO R-BAR SQUARED:0.9877 DURBIN-WATSON:1.90 STANDARD ERROR:0.023982 NORMALIZED:0.0027047

SERVICE AREA EMPLOYMENT - PRIMARY METAL - BUTLER COUNTY

SERVICE AREA EMPLOYMENT - PRIMARY METAL - BUTLER COUNTY

LE33NS@BUTLER	=LOG (E33NS@BUTLER)
LJQIND33	=LOG(JQIND33)
LJQIND371	=LOG(JQIND371)
LJQE33	=LOG(JQIND33/E33)
LRELAPGI	=LOG(APGIND@CGE/WPI053)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
Q753	QUALITATIVE VARIABLE - THIRD QUARTER, 1975
Q863	QUALITATIVE VARIABLE - THIRD QUARTER, 1986
Q902	QUALITATIVE VARIABLE - SECOND QUARTER, 1990
Q903	QUALITATIVE VARIABLE - THIRD QUARTER, 1990
Q933	QUALITATIVE VARIABLE - THIRD QUARTER, 1993
AND:	
E33NS@BUTLER	SERVICE AREA EMPLOYMENT - BUTLER COUNTY - PRIMARY METAL INDUSTRIES
JQIND371	US INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS
JQIND33	US INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES
E33	US EMPLOYMENT - PRIMARY METAL INDUSTRIES
APGIND@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL CUSTOMERS
WP1053	WHOLESALE PRICE INDEX - GAS FUELS
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING

FORECAST EQUATION:

WHERE :

1>E33NS@BUTLER=EXP(<11.618>&& 2>+PDL(LJQIND33,1,3,FAR,<0.42456,0.28304,0.14152>)&& 3>+PDL(LJQIND371,1,3,FAR,<0.098921,0.065947,0.032974>)&& 4>+PDL(LJQE33,1,4,FAR,<-0.38213,-0.2866,-0.19107,-0.095534>)&& 5>+PDL(LRELAPGI,2,12,BOTH,<-0.013795,-0.025291,-0.034488, 6>-0.041385,-0.045984,-0.048283,-0.048283,-0.045984,-0.041385, 7>-0.034488,-0.025291,-0.013795>)&& 8>+<-0.95029>*LRELAHEM\6&& 9>+E33NS@BUTLER@AR1)

REGRESSION RESULTS: LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1967:1 TO 1997:4 (124 OBS.) DEPENDENT VARIABLE: LE33NS@CMSA COEFFICIENT STD. ERROR T-STAT INDEPENDENT VARIABLE 0) 8.8019 0.28531 30.85 CONSTANT PDL (LJQIND33, 1, 4, FAR) 1) \0 0.37828 0.041243 + *+ • +*+ \1 0.28371 0.030932 . 0.18914 0.020621 \2 . +* \З 0.09457 0.010311 *+ . LAG SUM: 0.9457 STD. ERR.: 0.10311 MEAN LAG: 1 2) PDL(LJQE33,1,4,FAR) \0 -0.1616 0.04565 \1 -0.1212 0.034237 +

 \3
 -0.0404
 0.011412

 LAG SUM:
 -0.404
 STD. ERR.:
 0.11412

 MEAN LAG:
 1

 + * + +*+ 3) PDL (LRELAPEI, 1, 8, FAR) -0.090184 0.045605 \0 -0.078911 0.039904 \1 -0.067638 0.034204 \2 -0.056365 0.028503 \3 -0.045092 0.022802 * \4 -0.033819 0.017102 \5 + * + -0.022546 0.011401 \6 + *+. -0.011273 0.0057006 \7 +* LAG SUM: -0.40583 STD. ERR.: 0.20522 MEAN LAG: 2.3333 4)0.0175330.0078582.23125)0.293010.0384527.62016)-0.530610.041668-12.734 QOIL*LRPCOCP Q651802 Q651884 7) 0.081545 0.029728 2.743 Q803 8) -0.12198 0.022852 -5.3378 9) -0.20069 0.028408 -7.0645 10) -0.070302 0.022862 -3.0751 Q811 Q891954 Q951 11) 0.80636 0.053112 15.182 RHO R-BAR SQUARED:0.98393 DURBIN-WATSON:1.93 STANDARD ERROR:0.029341 NORMALIZED:0.0036753

SERVICE AREA EMPLOYMENT - PRIMARY METAL - CINCINNATI CMSA

WHERE	:

LE33NS@CMSA	=LOG (E33NS@CMSA)
LJQIND33	=LOG(JQIND33)
LJQE33	=LOG(JQIND33/E33)
LRELAPEI	=LOG(APEIND@CGE/WPI054)
	=LOG (JQIND33) =LOG (JQIND33/E33) =LOG (APEIND@CGE/WPI054) QUALITATIVE VARIABLE ~ THIRD QUARTER, 1981 TO FOURTH QUARTER, 1992
LRPCOCP	=LOG(PCOCP/CPI)
LRPCOCP Q651802	SECUND DUARIER, 1900
Q651884	
Q803	QUALITATIVE VARIABLE ~ THIRD QUARTER, 1980
Q811 Q891954	QUALITATIVE VARIABLE - FIRST QUARTER, 1989 TO FOURTH QUARTER, 1995
Q951	QUALITATIVE VARIABLE = FIRST QUARTER, 1995
AND:	
E33NS@CMSA	CINCINNATI CMSA EMPLOYMENT - PRIMARY METAL INDUSTRIES
JQIND33	US INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES
E33	US EMPLOYMENT - PRIMARY METAL INDUSTRIES
APE IND @ CGE	SERVICE AREA AVERAGE PRICE OF ELECTRICITY FOR INDUSTRIAL CUSTOMERS
WP1054	WHOLESALE PRICE INDEX - ELECTRIC POWER
PCOCP	AVERAGE REFINERS' ACQUISITION PRICE - CRUDE OIL COMPOSITE
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

_

FORECAST EQUATION:

1>E33NS@CMSA=EXP(<8.8019>&& 2>+PDL(LJQIND33,1,4,FAR,<0.37828,0.28371,0.18914,0.09457>)&& 3>+PDL(LJQE33,1,4,FAR,<-0.1616,-0.1212,-0.080799,-0.0404>)&& 4>+PDL(LRELAPEI,1,8,FAR,<-0.090184,-0.078911,-0.067638, 5>-0.056365,-0.045092,-0.033819,-0.022546,-0.011273>)&& 6>+<0.017533>*(QOIL*LRPCOCP)&& 7>+E33NS@CMSA@AR1) SERVICE AREA EMPLOYMENT - INDUSTRIAL MACHINERY AND EQUIPMENT

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1967:1 TO 1997:4 (124 OBS.) DEPENDENT VARIABLE: LE35NS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 9.313 0.086613 107.52 CONSTANT 1) 0.96162 0.076029 12.648 LJQIND35 PDL (LRELAHEM, 1, 6, FAR) 2) -0.37167 0.10249 -0.30972 0.085405 * \0 + + + * + \1 + * + -0.24778 0.068324 \2 -0.18583 0.051243 -0.12389 0.034162 -0.061944 0.017081 + * + \3 +*+ \4 \5 +*+. LAG SUM: -1.3008 STD. ERR.: 0.3587 MEAN LAG: 1.6667 PDL(LJQE35,1,2,FAR) 3) -0.73219 0.058876 +*+ \0 -0.3661 0.029438 +*+ \1 . LAG SUM: -1.0983 STD. ERR.: 0.088313 MEAN LAG: 0.33333 4) 0.92432 0.034271 26.971 RHO R-BAR SQUARED:0.98416 DURBIN-WATSON: 1.90

STANDARD ERROR: 0.014373 NORMALIZED: 0.0014284

SERVICE AREA EMPLOYMENT - INDUSTRIAL MACHINERY AND EQUIPMENT

WHERE :	
LE35NS@CGE	=LOG(E35NS@CGE)
LJQIND35	=LOG(JQIND35)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LJQE35	=LOG (JQIND35/E35)
AND:	
E35NS@CGE	SERVICE AREA EMPLOYMENT - INDUSTRIAL MACHINERY AND EQUIPMENT
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
JQIND35	US INDUSTRIAL PRODUCTION INDEX - INDUSTRIAL MACHINERY AND EQUIPMENT
E35	US EMPLOYMENT - INDUSTRIAL MACHINERY AND EQUIPMENT

FORECAST EQUATION:

1>E35NS@CGE=EXP(<9.313>+<0.96162>*LJQIND35&& 2>+PDL(LRELAHEM,1,6,FAR,<-0.37167,-0.30972,-0.24778,-0.18583,-0.12389, 3>-0.061944>)&& 4>+PDL(LJQE35,1,2,FAR,<-0.73219,-0.3661>)+E35NS@CGE@AR1) SERVICE AREA EMPLOYMENT - ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _______ FREQUENCY: Q INTERVAL: 1969:1 TO 1997:4 (116 OBS.) DEPENDENT VARIABLE: LE36NS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 5.9887 0.70011 8.554 CONSTANT PDL(LJQIND36,1,2,FAR) 1) 0.57857 0.080326 0.28929 0.040163 . +* \0 + * + 1LAG SUM: 0.86786 STD. ERR.: 0.12049 MEAN LAG: 0.33333 PDL(LJQE36,1,6,FAR) 2) -0.27057 0.035604 + *+ \0 \1 -0.22548 0.02967 + *+ -0.18038 0.023736 +*+ \2 -0.13529 0.017802 -0.09019 0.011868 -0.045095 0.005934 \З +*+ \4 +* +* . \5 LAG SUM: -0.947 STD. ERR.: 0.12461 MEAN LAG: 1.6667 3) -0.594 0.25721 -2.3094 4) 0.28815 0.076076 3.7877 5) 0.093172 0.020816 4.4759 6) 0.035812 0.016612 2.1558 7) -0.034135 0.016316 -2.0922 8) 0.8509 0.048775 17.446 P=BBP SOURCE: 0.04204 LRELAHEM\1 LRELE15\2 Q681784 Q743+Q744 Q891 RHO R-BAR SQUARED:0.94304 DURBIN-WATSON:1.79

STANDARD ERROR: 0.021255 NORMALIZED: 0.0023454

SERVICE AREA EMPLOYMENT - ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT

WHERE:	
LE36NS@CGE	=LOG (E36NS@CGE)
LJQIND36	=LOG(JQIND36)
LJQE36	=LOG(JQIND36/E36)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LRELE15	=LOG(E15@CGE/EC)
Q681784	QUALITATIVE VARIABLE - FIRST QUARTER, 1968 TO FOURTH QUARTER, 1978
0743	QUALITATIVE VARIABLE - THIRD QUARTER, 1974
0744	QUALITATIVE VARIABLE - FOURTH QUARTER, 1974
Q891	QUALITATIVE VARIABLE - FIRST QUARTER, 1989
AND:	
E36NS@CGE	SERVICE AREA EMPLOYMENT - ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT
JQIND36	US INDUSTRIAL PRODUCTION INDEX - ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT
E36	US EMPLOYMENT - ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
E150CGE	SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION
EC	US EMPLOYMENT - CONTRACT CONSTRUCTION

FORECAST EQUATION:

1>E36NS@CGE=EXP(<5.9887>+PDL(LJQIND36,1,2,FAR,<0.57857,0.28929>)&&
2>+PDL(LJQE36,1,6,FAR,<-0.27057,-0.22548,-0.18038,-0.13529,
3>-0.09019,-0.045095>)&&
4>+<-0.594>*LRELAHEM\1&&
5>+<0.28815>*LRELE15\2&&
6>+E36NS@CGE@AR1)

Į

SERVICE AREA EMPLOYMENT - MOTOR VEHICLES AND PARTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1974:1 TO 1997:4 (96 OBS.) DEPENDENT VARIABLE: LE371NS@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 9.2852 0.28223 32.9 CONSTANT 1) PDL (LJQIND371,1,4,FAR) \0 0.30983 0.041304 . + * + \1 0.23238 0.030978 . +*+ \2 0.15492 0.020652 . +* \3 0.077459 0.010326 . *+ LAG SUM: 0.77459 STD. ERR.: 0.10326 MEAN LAG: 1

2)

PDL (LJQE37,1,2,FAR)

\0 -0.35325 0.1842 + * + . \1 -0.17663 0.092098 + * + . LAG SUM: -0.52988 STD. ERR.: 0.2763 MEAN LAG: 0.33333

3)

PDL (LRELAHEM, 2, 16, BOTH)

\7 -0.31489 0.13256 + * \8 -0.31489 0.13256 + *	+*+. + *+. + +. + +. + +. + +. + +. + +. + +. + +. + +.
4) -0.51152 0.2323 -2.202 LRELA 5) 0.76955 0.058219 13.218 GMSHU 6) -0.1156 0.053946 -2.1429 Q763 7) -0.1577 0.053811 -2.9306 Q764	PEI\10 TDOWN
8) -0.17276 0.049116 -3.5173 Q803 9) -0.17475 0.048896 -3.5739 Q813	
10) -0.16833 0.049166 -3.4237 Q862	
11) -0.23661 0.049006 -4.8282 Q871	
12) 0.49542 0.088656 5.5881 RHO R-BAR SQUARED:0.97289	
DURBIN-WATSON: 2.06	
STANDARD ERROR: 0.054412 NORMALIZED	:0.0060788

SERVICE AREA EMPLOYMENT - MOTOR VEHICLES AND PARTS

WHERE:	
LE371NS@CGE	=LOG(E371NS@CGE)
LJQIND371	=LOG(JQIND371) =LOG(JQIND37/E37)
LJQE37	=LOG(JQIND37/E37)
LRELAHEM	=LOG (AHEMNS@164U/AHEM)
LRELAPEI	=LOG(APEIND@CGE/WPI054)
GMSHUTDOWN	QUALITATIVE VARIABLE ~ INDICATES CLOSING OF GM'S LOCAL PLANTS
Q763	QUALITATIVE VARIABLE ~ THIRD QUARTER, 1976
Q764	QUALITATIVE VARIABLE ~ FOURTH QUARTER, 1976
Q803	QUALITATIVE VARIABLE - THIRD QUARTER, 1980
Q813	QUALITATIVE VARIABLE - THIRD QUARTER, 1981
Q862	QUALITATIVE VARIABLE - SECOND QUARTER, 1986
Q871	QUALITATIVE VARIABLE - FIRST QUARTER, 1987
AND:	
E371NS@CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT MOTOR VEHICLES AND PARTS
JQIND371	US INDUSTRIAL PRODUCTION INDEX - MOTOR VEHICLES AND PARTS
JQIND37	US INDUSTRIAL PRODUCTION INDEX - TRANSPORTATION EQUIPMENT
E37	US EMPLOYMENT - TRANSPORTATION EQUIPMENT
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
APEIND@CGE	SERVICE AREA AVERAGE PRICE OF ELECTRICITY FOR INDUSTRIAL CUSTOMERS
WP1054	WHOLESALE PRICE INDEX - ELECTRIC POWER

FORECAST EQUATION:

1>E371NS@CGE=EXP(<9.2852>&&
2>+PDL(LJQIND371,1,4,FAR,<0.30983,0.23238,0.15492,0.077459>)&&
3>+PDL(LJQE37,1,2,FAR,<-0.35325,-0.17663>)&&
4>+PDL(LRELAHEM,2,16,BOTH,<-0.069975,-0.1312,-0.18369,-0.22742,
5>-0.26241,-0.28865,-0.30614,-0.31489,-0.31489,-0.30614,
6>-0.28865,-0.26241,-0.22742,-0.18369,-0.1312,-0.069975>)&&
7>+<-0.51152>*LRELAPEI\10&&
8>+E371NS@CGE@AR1)

SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT OTHER THAN AUTOS

REGRESSION RESULTS:

LEAST SOUARES WITH 2ND ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1973:1 TO 1997:4 (100 OBS.) DEPENDENT VARIABLE: LE37209NS0CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 7.1147 1.2194 5.8345 CONSTANT PDL (LJQIND372,2,5,BOTH) 1) 0.069674 0.020658 +* + \0 . 0.11148 0.033052 0.12541 0.037184 0.11148 0.033052 0.069674 0.020658 + * + + + * + \1 . \2 . + * + \3 : \4 +* + LAG SUM: 0.48772 STD. ERR.: 0.1446 MEAN LAG: 2 2) PDL (LGFML92C, 1, 4, FAR) 0.14566 0.081023 0.10924 0.060767 \0 + * 10.072829 0.040512 \2 0.036414 0.020256 .+* + \3 LAG SUM: 0.36414 STD. ERR.: 0.20256 MEAN LAG: 1 PDL (LJQE37, 2, 5, BOTH) 3) \0 -0.10992 0.025146 +* + + * + \1 -0.17587 0.040233 -0.19785 0.045262 -0.17587 0.040233 \2 + * + \з -0.10992 0.025146 +* + \4 LAG SUM: -0.76943 STD. ERR.: 0.17602 MEAN LAG: 2 4) PDL (LRELRTCGSL@OH, 2, 12, BOTH) \0 -0.022738 0.0053674 + *+ \1 -0.041686 0.0098402 \2 -0.056845 0.013419 + * + * + \3 -0.068214 0.016102 + + * + \4 -0.075793 0.017891 + * \5 -0.079583 0.018786 + \6 -0.079583 0.018786 * + + \7 -0.075793 0.017891 + * + \8 -0.068214 0.016102 + * + -0.056845 0.013419 + * + \9 -0.041686 0.0098402 + *+ \10 -0.022738 0.0053674 \11 LAG SUM: -0.68972 STD. ERR.: 0.16281 MEAN LAG: 5.5 5) 0.10926 0.025665 4.2571 6) -0.12616 0.0077809 -16.214 7) 0.060954 0.014976 4.0701 8) -0.10085 0.0077709 -12.978 9) -0.035377 0.0078125 -4.5282 10) 1.6138 0.073995 21.81 11) -0.69172 0.069009 -10.024 B-RAB SQUARED:0 99542 Q651813 0763 Q814 0881 Q931 RHO1 RHO2 R-BAR SQUARED:0.99542 DURBIN-WATSON: 2.01 STANDARD ERROR: 0.015696 NORMALIZED: 0.0016307

SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT OTHER THAN AUTOS

WHERE:	
LE372@9NS@CGE	=LOG (E3720 9NS0 CGE)
LJQIND372	=LOG(JQIND372)
LGFML92C	=LOG (GFML92C)
LJOE37	=LOG(JQIND37/E37)
LRELRTCGSL@OH	=LOG (RTCGSLOH/RTCGSL)
Q651813	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO THIRD QUARTER, 1981
0763	QUALITATIVE VARIABLE - THIRD QUARTER, 1976
Q814	QUALITATIVE VARIABLE - FOURTH QUARTER, 1981
0881	QUALITATIVE VARIABLE - FIRST QUARTER, 1988
Q931	QUALITATIVE VARIABLE - FIRST QUARTER, 1993
AND :	
E37209NS0CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS
JQIND372	US INDUSTRIAL PRODUCTION INDEX - AIRCRAFT AND PARTS
GFML92C	FEDERAL GOVERNMENT PURCHASES FOR NATIONAL DEFENSE - CHAINED 1992 DOLLARS
JQIND37	US INDUSTRIAL PRODUCTION INDEX ~ TRANSPORTATION EQUIPMENT
E37	US EMPLOYMENT - TRANSPORTATION EQUIPMENT
RTCGSLOOH	EFFECTIVE TAX RATE - OHIO CORPORATE INCOME TAXES
RTCGSL	EFFECTIVE TAX RATE - STATE AND LOCAL CORPORATE INCOME TAXES - US
	INCOME IAAES - US

FORECAST EQUATION:

1>E372@9NS@CGE=EXP(<7.1147>&& 2>+PDL(LJQIND372,2,5,BOTH,<0.069674,0.11148,0.12541,0.11148,0.069674>)&& 3>+PDL(LGFML92C,1,4,FAR,<0.14566,0.10924,0.072829,0.036414>)&& 4>+PDL(LJQE37,2,5,BOTH,<-0.10992,-0.17587,-0.19785,-0.17587,-0.10992>)&& 5>+PDL(LRELRTCGSL@OH,2,12,BOTH,<-0.022738,-0.041686,-0.056845,-0.068214, 6>-0.075793,-0.079583,-0.079583,-0.075793,-0.068214,-0.056845,-0.041686, 7>-0.022738>)+E372@9NS@CGE@AR2)

SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - DURABLE GOODS **REGRESSION RESULTS:** LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1971:1 TO 1997:4 (108 OBS.) DEPENDENT VARIABLE: LEAOIDG@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 8.1878 0.393 20.834 CONSTANT 1) 0.39282 0.12802 3.0684 LJQINDAOIDG 2) PDL (LJQEAOIDG, 2, 12, BOTH) \0 -0.030026 0.0059173 *+ -0.055047 0.010848 \1 +* + \2 -0.075064 0.014793 + * + \3 -0.090077 0.017752 + * + -0.10009 0.019724 -0.10509 0.02071 -0.10509 0.02071 \4 + * + \5 + * - + + * \6 + -0.10009 0.019724 + * + \7 \8 -0.090077 0.017752 + * + -0.075064 0.014793 + * + \9 \10 -0.055047 0.010848 \11 -0.030026 0.0059173 +* + *+ LAG SUM: -0.91078 STD. ERR.: 0.17949 MEAN LAG: 5.5 PDL(LEC, 1, 2, FAR) 3) 0.37337 0.086814 0.18668 0.043407 \0 \1 +*+ LAG SUM: 0.56005 STD. ERR.: 0.13022 MEAN LAG: 0.33333 PDL (LRELAHEM, 1, 2, FAR) 4) -0.38066 0.19774 \0 + + + * + . -0.19033 0.098869 \1 LAG SUM: -0.57099 STD. ERR.: 0.29661 MEAN LAG: 0.33333 5) 0.012065 0.0037959 3.1784 Q1*Q851964 6) -0.03641 0.012587 -2.8926 7) -0.03009 0.012753 -2.3595 8) 0.043806 0.013098 3.3445 Q784 Q824 Q961 9) 0.97123 0.022914 42.387 RHO R-BAR SQUARED:0.97865 DURBIN-WATSON:1.72 STANDARD ERROR:0.017455 NORMALIZED:0.0016707

SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - DURABLE GOODS

WHERE :	
LEAOIDG@CGE	=LOG (EAOIDG@CGE)
LJOINDAOIDG	=LOG(JQINDAOIDG)
LJOEAOIDG	=LOG (JQINDAOIDG/EAOIDG)
LEC	=LOG(EC)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
01	QUALITATIVE VARIABLE - FIRST QUARTER
0851964	QUALITATIVE VARIABLE - FIRST QUARTER, 1985 TO
	FOURTH QUARTER, 1996
Q784	QUALITATIVE VARIABLE - FOURTH QUARTER, 1978
Q824	QUALITATIVE VARIABLE - FOURTH QUARTER, 1982
Q961	QUALITATIVE VARIABLE - FIRST QUARTER, 1996
AND:	
EAOIDG@CGE	SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - DURABLE GOODS
JQINDAOIDG	US INDUSTRIAL PRODUCTION INDEX - ALL OTHER INDUSTRIES - DURABLE GOODS
EAOIDG	US EMPLOYMENT - ALL OTHER DURABLE GOODS INDUSTRIES
EC	US EMPLOYMENT - CONTRACT CONSTRUCTION
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING

FORECAST EQUATION:

1>EAOIDG@CGE=EXP(<8.1878>+<0.39282>*LJQINDAOIDG&& 2>+PDL(LJQEAOIDG,2,12,BOTH,<-0.030026,-0.055047,-0.075064,-0.090077, 3>-0.10009,-0.10509,-0.10509,-0.10009,-0.090077,-0.075064,-0.055047, 4>-0.030026>)&& 5>+PDL(LEC,1,2,FAR,<0.37337,0.18668>)&& 6>+PDL(LRELAHEM,1,2,FAR,<-0.38066,-0.19033>)+EAOIDG@CGE@AR1) SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - NONDURABLE GOODS

REGRESSION RESULTS:

STANDARD ERROR:0.010228

LEAST SOUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1971:3 TO 1997:4 (106 OBS.) DEPENDENT VARIABLE: LEAOINDG@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 9.7487 0.23483 41.513 CONSTANT PDL (LJQINDAOINDG, 1, 5, FAR) 1) 0.25488 0.042944 \0 + * + . \1 0.2039 0.034355 +* + . 0.15293 0.025766 0.10195 0.017177 + *+ \2 . \3 . +*+ . +* 0.050976 0.0085887 \4 LAG SUM: 0.76463 STD. ERR.: 0.12883 MEAN LAG: 1,3333 2) PDL (LJQEAOINDG, 1, 4, FAR) -0.26151 0.055398 -0.19613 0.041549 -0.13075 0.027699 \٥ * + + \1 + * + \2 + *+ -0.065377 0.01385 +*+ . \3 LAG SUM: -0.65377 STD. ERR.: 0.1385 MEAN LAG: 1 3) PDL (LRELAHEM, 2, 12, BOTH) -0.03153 0.014997 \0 +*+ -0.057805 0.027495 * + \1 -0.078825 0.037493 \2 + + \3 -0.094589 0.044991 + -0.1051 0.04999 -0.11035 0.05249 -0.11035 0.05249 -0.1051 0.04999 \4 + \5 + \6 + * \7 + + -0.094589 0.044991 -0.078825 0.037493 * \8 + \9 * + -0.057805 0.027495 \10 * + + \11 -0.03153 0.014997 LAG SUM: -0.9564 STD. ERR.: 0.45491 MEAN LAG: 5.5 +*+ 4) -0.25081 0.059859 -4.1901 5) -0.0034187 0.0014685 -2.328 LRELAPEI\14 Q3 6) -0.021301 0.0074245 -2.8691 7) 0.017848 0.0075268 2.3713 8) 0.020074 0.0074142 2.7075 9) 0.96036 0.027076 35.468 Q751 Q903 Q964 RHO R-BAR SQUARED:0.96723 DURBIN-WATSON:1.68

NORMALIZED:0.00099775

SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - NONDURABLE GOODS

WHERE :	
LEAOINDG@CGE	=LOG (EAOINDG@CGE)
LJQINDAOINDG	=LOG (JQINDAOINDG)
LJQEAOINDG	=LOG (JQINDAOINDG/EAOINDG)
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LRELAPEI	=LOG(APEIND@CGE/WPI054)
03	QUALITATIVE VARIABLE - THIRD QUARTER
0751	QUALITATIVE VARIABLE - FIRST QUARTER, 1975
0903	QUALITATIVE VARIABLE - THIRD QUARTER, 1990
Q964	QUALITATIVE VARIABLE - FOURTH QUARTER, 1996
AND :	
EAOINDG@CGE	SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES - NONDURABLE GOODS
JQINDAOINDG	US INDUSTRIAL PRODUCTION INDEX - ALL OTHER INDUSTRIES - NONDURABLE GOODS
EAOINDG	US EMPLOYMENT - ALL OTHER NON-DURABLE GOODS INDUSTRIES
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
APE IND@CGE	SERVICE AREA AVERAGE PRICE OF ELECTRICITY FOR INDUSTRIAL CUSTOMERS
WPI054	WHOLESALE PRICE INDEX - ELECTRIC POWER

FORECAST EQUATION:

1>EAOINDG@CGE=EXP(<9.7487>&& 2>+PDL(LJQINDAOINDG,1,5,FAR,<0.25488,0.2039,0.15293,0.10195,0.050976>)&& 3>+PDL(LJQEAOINDG,1,4,FAR,<-0.26151,-0.19613,-0.13075,-0.065377>)&& 4>+PDL(LRELAHEM,2,12,BOTH,<-0.03153,-0.057805,-0.078825,-0.094589,-0.1051,-0.1 5>+<-0.25081>*LRELAPEI\14+<-0.0034187>*Q3+EAOINDG@CGE@AR1)

SERVICE AREA EMPLOYMENT - COMMERCIAL **REGRESSION RESULTS:** LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1981:1 TO 1997:4 (68 OBS.) DEPENDENT VARIABLE: LECOM@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 8.8884 0.17075 52.054 CONSTANT 1.0958 1) 0.025411 43.122 LECOM 2) PDL (LRELPCYP, 1, 2, FAR) \0 0.27737 0.14071 * 0.27737 0.14071 . + 0.13869 0.070355 . + * + + \1 LAG SUM: 0.41606 STD. ERR.: 0.21106 MEAN LAG: 0.33333 3) PDL (LRELAHEM, 1, 8, FAR) -0.054692 0.023961 -0.047855 0.020966 \0 \1 -0.041019 0.017971 \2 \3 -0.034182 0.014976 -0.027346 0.011981 -0.020509 0.0089855 -0.013673 0.0059903 \4 * + \5 \6 +* +. -0.0068364 0.0029952 \7 +*. LAG SUM: -0.24611 STD. ERR.: 0.10783 MEAN LAG: 2.3333 4) PDL (LRELAPEC, 1, 8, FAR) -0.035215 0.010007 -0.030813 0.0087562 -0.026411 0.0075053 \0 + \1 \2 -0.022009 0.0062545 -0.017607 0.0050036 -0.013206 0.0037527 -0.0088037 0.0025018 + * + \3 * + \4 \5 + *+ \6 +*+ -0.0044018 0.0012509 \7 +* LAG SUM: -0.15847 STD. ERR.: 0.045032 MEAN LAG: 2.3333 5) 0.007165 0.003008 2.382 Q874 6) -0.0097307 0.0030116 -3.2311 Q951 7) 0.01193 0.0030098 3.9637 8) 0.72945 0.082951 8.7938 Q971 0.082951 8.7938 RHO R-BAR SQUARED:0.99953 DURBIN-WATSON:1.74 STANDARD ERROR:0.003714 NORMALIZED: 0.00028362

SERVICE AREA EMPLOYMENT - COMMERCIAL

WHERE :	
LECOM@CGE	=LOG(ECOM@CGE)
LECOM	=LOG (ECOM)
LRELPCYP	=LOG(($YP@CGE/N@CGE$)/(YP/N))
LRELAHEM	=LOG (AHEMNS@1640/AHEM)
LRELAPEC	=LOG (APECOM@CGE/WPI054)
Q874	QUALITATIVE VARIABLE - FOURTH QUARTER, 1987
Q951	QUALITATIVE VARIABLE = FIRST QUARTER, 1995
Q971	QUALITATIVE VARIABLE - FIRST QUARTER, 1997
AND:	
ECOM@CGE	SERVICE AREA EMPLOYMENT ~ COMMERCIAL
	US EMPLOYMENT - COMMERCIAL
ECOM	
YP@CGE	SERVICE AREA PERSONAL INCOME
N@CGE	SERVICE AREA TOTAL POPULATION
YP	US PERSONAL INCOME
N	US TOTAL POPULATION
AHEMNS@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
AHEM	US AVERAGE HOURLY EARNINGS FOR MANUFACTURING
APECOM@CGE	SERVICE AREA PRICE OF ELECTRICITY FOR COMMERCIAL CUSTOMERS
WPI054	WHOLESALE PRICE INDEX - ELECTRIC POWER

FORECAST EQUATION:

1>ECOM@CGE=EXP(<8.8884>&& 2>+<1.0958>*LECOM&& 3>+PDL(LRELPCYP,1,2,FAR,<0.27737,0.13869>)&& 4>+PDL(LRELAHEM,1,8,FAR,<-0.054692,-0.047855,-0.041019, 5>-0.034182,-0.027346,-0.020509,-0.013673,-0.0068364>)&& 6>+PDL(LRELAPEC,1,8,FAR,<-0.035215,-0.030813,-0.026411, 7>-0.022009,-0.017607,-0.013206,-0.0088037,-0.0044018>)&& 8>+ECOM@CGE@AR1) SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT

REGRESSION RESULTS:

LRELPCYP

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1968:1 TO 1997:4 (120 OBS.) DEPENDENT VARIABLE: LE90X@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 1.3864 3.9392 0.35195 0) CONSTANT PDL (LEGSL, 2, 4, BOTH) 1) \0 0.19931 0.017057 +*+ . +*+ 10.29896 0.025586 • • \2 0.29896 0.025586 +*+ 0.19931 0.017057 +*+ \З . LAG SUM: 0.99654 STD. ERR.: 0.085286 MEAN LAG: 1.5 2) PDL (LRELPCYP, 1, 3, FAR) 0.19398 0.092822 . + 0.12932 0.061882 . + * 0.064658 0.030941 . +* + \0 \1 + \2 LAG SUM: 0.38795 STD. ERR.: 0.18564 MEAN LAG: 0.66667 3) PDL (LRMINWAGE, 1, 5, FAR) \0 -0.030323 0.015034 * -0.024259 0.012028 × \1 + . + * + . -0.018194 0.0090207 \2 -0.012129 0.0060138 + * + . \3 \4 -0.0060647 0.0030069 LAG SUM: -0.09097 STD. ERR.: 0.045103 MEAN LAG: 1.3333 +*+. PDL (LRELPOP, 2, 8, BOTH) 4) \0 0.057385 0.02815 . + * + \1 0.10042 0.049262 + . • \2 0.12912 0.063337 * + 0.14346 0.070374 \3 + 0.14346 0.070374 \4 + + 0.12912 0.063337 \5 + × 0.10042 0.049262 \6 + • • 0.057385 0.02815 . + * + \7 LAG SUM: 0.86077 STD. ERR.: 0.42225 MEAN LAG: 3.5 Q651734 Q714 Q743 Q754 Q773
 10)
 0.021196
 0.0052073
 4.0704

 11)
 -0.016753
 0.0051881
 -3.2291
 Q791 Q971 12) 0.90754 0.038338 23.672 RHO R-BAR SQUARED:0.99849 DURBIN-WATSON:1.71 STANDARD ERROR:0.0070019 NORMALIZED:0.00060988 SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT WHERE : LE90X@CGE =LOG(E90X@CGE) =LOG (N@CGE * (EGSL/N)) LEGSL

=LOG((YP@CGE/N@CGE)/(YP/N))

LRMINWAGE	=LOG (MINWAGE/CPI)
LRELPOP	=LOG (N@CGE/N)
Q651734	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO
	FOURTH QUARTER, 1973
Q714	QUALITATIVE VARIABLE - FOURTH QUARTER, 1971
Q743	QUALITATIVE VARIABLE - THIRD QUARTER, 1974
Q754	QUALITATIVE VARIABLE - FOURTH QUARTER, 1975
Q773	QUALITATIVE VARIABLE - THIRD QUARTER, 1977
Q791	QUALITATIVE VARIABLE - FIRST QUARTER, 1979
Q971	QUALITATIVE VARIABLE - FIRST QUARTER, 1997
AND:	
E90X@CGE	SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT
	US EMPLOYMENT - STATE AND LOCAL GOVERNMENT
EGSL	
YP@CGE	SERVICE AREA PERSONAL INCOME
YP	US PERSONAL INCOME
MINWAGE	MINIMUM WAGE
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
N@CGE	SERVICE AREA TOTAL POPULATION
N	US TOTAL POPULATION

FORECAST EQUATION:

1>E90X@CGE=EXP(<1.3864>&&
2>+PDL(LEGSL,2,4,BOTH,<0.19931,0.29896,0.29896,0.19931>)&&
3>+PDL(LRELPCYP,1,3,FAR,<0.19398,0.12932,0.064658>)&&
4>+PDL(LRMINWAGE,1,5,FAR,<-0.030323,-0.024259,
5>-0.018194,-0.012129,-0.0060647>)&&
6>+PDL(LRELPOP,2,8,BOTH,<0.057385,0.10042,0.12912,
7>0.14346,0.14346,0.12912,0.10042,0.057385>)&&
8>+E90X@CGE@AR1)

SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1975:1 TO 1997:4 (92 OBS.) DEPENDENT VARIABLE: LE15@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 8.7337 0.21589 40.454 CONSTANT 1) PDL(LEC,1,3,FAR) \0 0.60335 0.066372 + *+ • 0.40224 0.044248 \1 +*+ • \2 0.20112 0.022124 +* LAG SUM: 1.2067 STD. ERR.: 0.13274 MEAN LAG: 0.66667 2) PDL (RMSHORTREALNS, 2, 6, BOTH) -0.0018288 0.00058301 -0.0030481 0.00097168 \0 * -\1 + + \2 -0.0036577 0.001166 + + \3 -0.0036577 0.001166 * + + -0.0030481 0.00097168 -0.0018288 0.00058301 \4 * + + \5 + * + LAG SUM: -0.017069 STD. ERR.: 0.0054414 MEAN LAG: 2.5 3)0.659350.317354)1.34140.65765 2.0777 2.0397 LRELCHECOM

4) 1.3414 0.65765 2.0397 LRELPCYP 5) 0.049831 0.016442 3.0308 Q801 6) 0.95799 0.029901 32.039 RHO R-BAR SQUARED:0.98928 DURBIN-WATSON:1.99 STANDARD ERROR:0.021013 NORMALIZED:0.0020199

SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION

WHERE : =LOG(E15@CGE) LE15@CGE =LOG(EC) LEC REAL SHORT-TERM INTEREST RATE RMSHORTREALNS =LOG ((ECOM@CGE/ECOM@CGE(1) / (ECOM/ECOM(1))LRELCHECOM LRELPCYP Q801 AND: E15@CGE EC ECOM@CGE ECOM YP@CGE N@CGE ΥP

=LOG((YP@CGE/N@CGE)/(YP/N)) QUALITATIVE VARIABLE - FIRST QUARTER, 1980 SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION US EMPLOYMENT - CONTRACT CONSTRUCTION SERVICE AREA EMPLOYMENT - COMMERCIAL US EMPLOYMENT - COMMERCIAL SERVICE AREA PERSONAL INCOME SERVICE AREA TOTAL POPULATION US PERSONAL INCOME US TOTAL POPULATION

FORECAST EQUATION:

N

1>E15@CGE=EXP(<8.7337>&& 2>+PDL(LEC,1,3,FAR,<0.60335,0.40224,0.20112>) && 3>+PDL (RMSHORTREALNS, 2, 6, BOTH, <-0.0018288, -0.0030481, 4>-0.0036577,-0.0036577,-0.0030481,-0.0018288>) && 5>+<0.65935>*LRELCHECOM&& 6>+<1.3414>*LRELPCYP&& 7>+E15@CGE@AR1)

SERVICE AREA PERSONAL INCOME

EQUATION:

YP@CGE=WSD@ADJ@CGE+YPPROP@CGE+YENT@CGE+V@CGE-TWPER@CGE

WHERE :

Ĵ

Ĵ

YP@CGE	SERVICE AREA PERSONAL INCOME
V@CGE	SERVICE AREA TOTAL TRANSFER PAYMENTS
WSD@ADJ@CGE	SERVICE AREA WAGE AND SALARY DISBURSEMENTS PLUS
	OTHER INCOME
YENT@CGE	SERVICE AREA NONFARM PROPRIETORS INCOME
YPROP@CGE	SERVICE AREA PERSONAL PROPERTY INCOME
TWPER@CGE	SERVICE AREA PERSONAL CONTRIBUTIONS FOR
	SOCIAL INSURANCE

EQUATION:

EM@CGE=E20@CGE+E26@CGE+E28@CGE+E33NS@BUTLER+E33NS@CMSA&& +E35NS@CGE+E36NS@CGE+E371NS@CGE+E372@9NS@CGE+EA0IDG@CGE+EA0INDG@CGE

WHERE:

EM@CGE	SERVICE AREA EMPLOYMENT - MANUFACTURING
EAOIDGNS@CGE	SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES
-	- DURABLE GOODS
EAOINDGNS@CGE	SERVICE AREA EMPLOYMENT - ALL OTHER INDUSTRIES
	 NON-DURABLE GOODS
E20@CGE	SERVICE AREA EMPLOYMENT - FOOD AND PRODUCTS
E260CGE	SERVICE AREA EMPLOYMENT - PAPER AND PRODUCTS
E280CGE	SERVICE AREA EMPLOYMENT - CHEMICALS AND PRODUCTS
E33NS@BUTLER	SERVICE AREA EMPLOYMENT - PRIMARY METALS
	INDUSTRIES - BUTLER COUNTY
E33NS@CINN	SERVICE AREA EMPLOYMENT - PRIMARY METALS
	INDUSTRIES - ALL COUNTIES EXCEPT BUTLER
E35NS@CGE	SERVICE AREA EMPLOYMENT - MACHINERY EXCEPT
	ELECTRICAL
E36NS@CGE	SERVICE AREA EMPLOYMENT - ELECTRICAL MACHINERY
E371NS@CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION
	EQUIPMENT MOTOR VEHICLES AND PARTS
E372@9NS@CGE	SERVICE AREA EMPLOYMENT - TRANSPORTATION
	EQUIPMENT OTHER THAN MOTOR VEHICLES
	AND PARTS

SERVICE AREA EMPLOYMENT - TOTAL

EQUATION:

E@CGE=EM@CGE+ECOM@CGE+E9OX@CGE+E15@CGE

WHERE:

EM@CGE SERVICE AREA EMPLOYMENT - MANUFACTURING
ECOM@CGE SERVICE AREA EMPLOYMENT - COMMERCIAL
E90X@CGE SERVICE AREA EMPLOYMENT -
STATE AND LOCAL GOVERNMENT
E15@CGE SERVICE AREA EMPLOYMENT - CONTRACT CONSTRUCTION

ELECTRIC EQUATIONS

I

l

Ì

Î

Ż

Í

SERVICE AREA CUSTOMERS - RESIDENTIAL

LEAST SQUARES WITH 2ND ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1973:1 TO 1997:4 (100 OBS.) DEPENDENT VARIABLE: LCUSRES@CGE

Ĩ

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 1.7554 1.1148 1.5746 1) 0.43725 0.069382 6.302 0) 1.7554 1.5746 CONSTANT LRPCYP@CGEMA32 2) PDL (LN20&@CGE, 1, 4, FAR) 0.29662 0.036657 0.22246 0.027493 \0 +* + . \1 +*+ • 0.074154 0.0091643 . ++ M: 0.74154 emp ----0.14831 0.018329 \2 /3 LAG SUM: 0.74154 STD. ERR.: 0.091643 MEAN LAG: 1 3) 0.01676 0.00084748 19.776 4) 0.0054559 0.00066291 8.2302 5) 0.0019543 0.00066354 2.9453 6) 0.0030538 0.00049343 6.1889 7) 1.6155 0.075134 21.501 8) -0.68679 0.074931 -9.1656 Q651932 Q752 Q753 Q941 RH01 RHO2 R-BAR SQUARED: 0.9999 DURBIN-WATSON: 2.05 STANDARD ERROR:0.00099642 NORMALIZED:0.000075319

SERVICE AREA CUSTOMERS - RESIDENTIAL

WHERE :	
LCUSRES@CGE	=LOG (CUSRES@CGE)
LRPCYP@CGEMA32	32 MONTH MOVING AVERAGE OF REAL PER CAPITA SERVICE AREA PERSONAL INCOME
LN20&@CGE	=LOG (N20&@CGE)
Q651932	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO SECOND QUARTER, 1993
0752	QUALITATIVE VARIABLE - SECOND QUARTER, 1975
Q753	QUALITATIVE VARIABLE - THIRD QUARTER, 1975
Q941	QUALITATIVE VARIABLE - FIRST QUARTER, 1994
AND :	
CUSRES@CGE	SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL
N20&@CGE	SERVICE AREA POPULATION AGED 20 AND OVER

Į

I

ĺ

FORECAST EQUATION:

1>CUSRES@CGE≈EXP(<1.7554>&& 2>+<0.43725>*LRPCYP@CGEMA32&& 3>+PDL(LN20&@CGE,1,4,FAR,<0.29662,0.22246,0.14831,0.074154>)&& 4>+CUSRES@CGE@AR2) KWH USE PER CUSTOMER - RESIDENTIAL

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: M 1981:1 TO 1997:12 (204 OBS.) INTERVAL: DEPENDENT VARIABLE: LKWHCUSRESNS@CGE

COEFFICIENT STD. ERROR T-STAT INDEPENDENT VARIABLE

2.3368 0.37357 6.2555 CONSTANT 0) PDL (LRPCYP@CGE@APP, 2, 10, BOTH) 1) 0.01739 0.0012305 0.031302 0.002215 \0 1 0.041736 0.0029533 ١Ĵ 0.048692 0.0034455 0.05217 0.0036916 0.05217 0.0036916 0.048692 0.0034455 0.041736 0.0029533 \4 \5 16 17 18 0.031302 0.002215 LAG SUM: 0.38258 STD. ERR.: 0.027072 MEAN LAG: 4.5 PDL (LRMP@RES@CGE@APP, 2, 12, BOTH) 2) -0.0023721 0.00080067 \0 -0.0043488 0.0014679 -0.0059302 0.0020017 \1 \2 \3 -0.0071163 0.002402 * -0.007907 0.0026689 -0.0083023 0.0028024 -0.0083023 0.0028024 -0.007907 0.0026689 -0.0071163 0.002402 \6 \7 \8 -0.0059302 0.0020017 * \ 9 \10 -0.0043488 0.0014679 + \11 -0.0023721 0.00080067 LAG SUM: -0.071954 STD. ERR.: 0.024287 MEAN LAG: 5.5 +*+ 0.00082165 0.00022784 0.0022097 0.00024142 0.00051124 0.00019962 0.00014087 0.00050315 HEAT*HDDB@EFF 3.6062 3) COOL*CDDB@EFF@CAC 9.1527 2.5611 4) (MMAY+COOL) *CDDB@EFF@RAC 5) 2.7998 (MNOV) *HDDB 6) 0.00035542 0.000047226 7.526 (MDEC) *HDDB 7) 0.00035542 0.000047226 0.00038862 0.000046059 0.00035075 0.00004628 0.00033811 0.000047359 0.00027699 0.00004966 0.00026851 0.00011002 0.00045233 0.00011767 0.00050253 0.00011676 0.00054069 0.00011072 -0.044598 0.0071058 (MJAN) *HDDB (MFEB) *HDDB 8) 8.4375 7.5789 7.1393 9) (MMAR) *HDDB 10) 5.5777 (MAPR+MMAY) *HDDB 11) 2.4407 (MJUN) *CDDB 12) (MJUL) *CDDB (MAUG) *CDDB 13) 3.8442 14) 4.3038 (MSEP) *CDDB 4.8834 15) -6.2762 16) MMAY 17) -0.06509 0.023967 м856 18) -0.051722 19) -0.056308 20) 0.091882 0.023996 -2.1554M857 -3.0234M954+M955 0.018624 0.023578 3.897 м967 21) -0.064966 0.023974 -2.7099 M973

22)	-0.10689	0.024817	-4.3071	M974
23)	-0.1074	0.024436	-4.3951	M975
24)	0.11145	0.023651	4.7124	M977
25)	0.19947	0.068607	2.9075	RHO
R-BA	R SQUARED:0	. 98721		
DURB	IN-WATSON:1	. 97		
STAN	DARD ERROR:	0.023239	NORMALIZED :	0.003432

KWH USE PER CUSTOMER - RESIDENTIAL

WHERE :

HERE:	-I OG (JERIGUEDEC))CBCCE)
LKWHCUSRESNS@CGE	
LRPCYPECGEEAPP	=LOG (APPLSTK@EFF@CGE* (YP@CGE/N@CGE/CPI))
LRMPGRESCCGECAPP	
HEAT	QUALITATIVE VARIABLE - HEATING MONTHS, NOVEMBER THROUGH MAY
HDDBGEFF	=HDDB*(SAT@ER@CGE+SAT@EHP@CGE*EFF@EHP@CGE)
CDDB@EFF@CAC	=CDDB*EFF@CAC@CGE*(SAT@EHP@CGE+SAT@CACnHP@CGE)
COOL	QUALITATIVE VARIABLE - COOLING MONTHS, JUNE THROUGH OCTOBER
CDDB@EFF@RAC	-CDDB*EFF@RAC@CGE*SAT@RAC@CGE
MNOV	OUALITATIVE VARIABLE - NOVEMBER
MDEC	QUALITAITVE VARIABLE - DECEMBER
MJAN	QUALITATIVE VARIABLE - JANUARY
MFEB	OUALITATIVE VARIABLE - FEBRUARY
MMAR	QUALITATIVE VARIABLE - MARCH
MAPR	QUALITATIVE VARIABLE - APRIL
HDDB	BILLING HEATING DEGREE DAYS
MJUN	OUALITATIVE VARIABLE - JUNE
	QUALITATIVE VARIABLE - JULY
MJUL	QUALITATIVE VARIABLE - JULI OUALITATIVE VARIABLE - AUGUST
MAUG	
MSEP	QUALITATIVE VARIABLE - SEPTEMBER
CDDB	BILLING COOLING DEGREE DAYS
MMAY	QUALITATIVE VARIABLE - MAY
M856	QUALITATIVE VARIABLE - JUNE, 1985
M857	QUALITATIVE VARIABLE - JULY, 1985
M954	QUALITATIVE VARIABLE - APRIL, 1995
M955	QUALITATIVE VARIABLE - MAY, 1995
M967	QUALITATIVE VARIABLE - JULY, 1996
M973	QUALITATIVE VARIABLE - MARCH, 1997
M974	QUALITATIVE VARIABLE - APRIL, 1997
M975	QUALITATIVE VARIABLE - MAY, 1997
M977	QUALITATIVE VARIABLE - JULY, 1997
AND :	
KWHCUSRESNS@CGE	SERVICE AREA KWH SALES - USE PER RESIDENTIAL CUSTOMER
YP@CGE	SERVICE AREA PERSONAL INCOME
NCCGE	SERVICE AREA TOTAL POPULATION
APPLSTK@EFF@CGE	EFFICIENT APPLIANCE STOCK
MPORESOCGE	MARGINAL PRICE OF ELECTRICITY - RESIDENTIAL
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
HDDB	BILLING HEATING DEGREE DAYS
SATQERQCGE	SATURATION RATE OF ELECTRIC RESISTANCE HEATERS IN SERVICE AREA
EFF@EHP@CGE	EFFICIENCY OF ELECTRIC HEAT PUMP UNITS IN SERVICE AREA
EFF@CAC@CGE	EFFICIENCY OF CENTRAL AIR CONDITIONING UNITS IN SERVICE AREA
SAT@EHP@CGE	SERVICE AREA SATURATION OF ELECTRIC HEAT PUMPS - RESIDENTIAL
SATECACHPECGE	SERVICE AREA SATURATION OF CENTRAL AIR CONDITIONING WITHOUT HEAT PUMP
CDDB	BILLING COOLING DEGREE DAYS
EFFERACECGE	EFFICIENCY OF WINDOW AIR CONDITIONING UNITS IN SERVICE AREA
SATORACOCGE	SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING

SERVICE AREA SATURATION OF WINDOW AIR CONDITIONING

FORECAST EQUATION:

SAT@RAC@CGE

```
1>KWHCUSRESNS@CGE=EXP(<2.2743>66
2>+PD1(LRPCYP@CGE@APF,2,10,BOTH,<0.017587,0.031657,0.04221,0.049245,
3>0.052762,0.052762,0.049245,0.04221,0.031657,0.017587>)66
4>+DD1(LRMP@RES@CGE@APF,2,12,BOTH,<0.0023289,-0.0042696,~0.0058221,
5>-0.0058221,-0.0042696,-0.0023289>)66
7>+<0.00079976>*(HEAT*HDDB@EFF%6AC)66
8>+<0.00022221>*(COOL*CDDB@EFF%CAC)66
10>+<0.00051595>*((MANY+COOL)*CDDB@EFF@RAC)66
11>+<0.00035195>*((MANY+COOL)*CDDB@EFF@RAC)66
11>+<0.00035191>*((MANY+HDDB)66
11>+<0.00035147>*((MATH)*HDDB)66
11>+<0.00035147>*((MATH)*HDDB)66
15>+<0.0003614>*((MATH)*HDDB)66
15>+<0.000257>*((MATH)*HDDB)66
15>+<0.000257>*((MATH)*HDDB)66
15>+<0.000257>*((MATH)*HDDB)66
15>+<0.000257>*((MATH)*HDDB)66
15>+<0.000257>*((MATH)*HDDB)66
15>+<0.0002614>*((MATH)*HDDB)66
15>+<0.00042614>*((MATH)*HDDB)66
15>+<0.00042614>*((MATH)*HDB)66
15>+<0.00042614>*((MATH)*HDB)66
15>+<0.0004805>*((MATH)*HDB)66
15>+<0.0004805>*((MATH)*HDB)66
15>+<0.0004805>*((MATH)*HDB)66
15>+<0.0004805>*((MATH)*HDB)66
15>+<0.0004
```

KWH SALES - COMMERCIAL

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION ______

FREQUENCY: M INTERVAL: 1975:1 TO 1997:12 (276 OBS.) DEPENDENT VARIABLE: LKWHCOMNS@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 0.96664 0.052168 18.529 LECOM@CGE PDL (LDS@KWH@COM@CPI,1,2,FAR) LECOM@CGE 1) \0 -0.10423 0.026296 + * + \1 -0.052114 0.013148 + * + LAG SUM: -0.15634 STD. ERR.: 0.039444 MEAN LAG: 0.33333 . .

2)

PDL (LRAPGCOM@CGE, 1, 4, FAR)

+

.

\0	0.013214	0.006481		+	*
\1	0.0099103	0.0048608		+ *	+
\2	0.0066069	0.0032405		+ • +	
\З	0.0033034	0.0016203	. +	*+	
LAG S	SUM: 0.033034	1 STD. ERR	.: 0	.016203	1
MEAN	LAG: 1				

3)	0.00014701	0.000014316	10 269	HDDB
4)	0.00068978	0.000040414	17.068	CDDB
5)	6.1805	0.54586	11.323	MJAN
6)	6.1525	0.54605	11.267	MFEB
7)	6.1417	0.54601	11.248	MMAR
8)	6.1227	0.54575	11.219	MAPR
9)	6.1348	0.5456	11.244	MMAY
10)	6.2122	0.54551	11.388	MJUN
11)	6.2267	0.54555	11.414	MJUL
12)	6.2241	0.54567	11.406	MAUG
13)	6.2381	0.54576	11.43	MSEP
14)	6.1546	0.54589	11.274	MOCT
15)	6.1105	0.54593	11.193	MNOV
16)	6.1656	0.54581	11.296	MDEC
17)	-0.086922	0.018023	-4.8227	M7511
18)	0.040291	0.018002	2.2382	M7711
19)	-0.042482	0.019967	-2.1276	M805
20)	-0.052158	0.020002	-2.6077	M806
21)	0.075678	0.017848	4.2401	M817
22)	-0.040228	0.017817	-2.2578	M849
23)	0.06511	0.017834	3.6508	M9111
24)	0.097284	0.017843	5.4523	M914
25)	0.044129	0.017844	2.4731	M927
26)	0.083508	0.020692	4.0357	M938
27)	-0.067116	0.02319	-2.8942	M939
28)	0.11918	0.020742	5.7458	M9310
29)	0.10649	0.017837	5.9701	M954
30)	0.049137	0.01784	2.7543	M956
31)	-0.054778	0.020061	-2.7305	M972
32)	-0.046974	0.020128	-2.3337	M973
33)	0.074978	0.017868	4.1963	M977
34)	0.63374	0.046562	13.611	RHO
	AR SQUARED:(
DURE	BIN-WATSON: 2	2.05		

STANDARD ERROR:0.020593 NORMALIZED:0.0010475

WHERE :	
LKWHCOMNS@CGE	=LOG (KWHCOMNS@CGE)
LECOM@CGE	=LOG (ECOM@CGE)
LDS@KWH@COM@CPI	=LOG (DS@KWH@COM@CGE/CPI)
LRAPGCOM@CGE	=LOG (APGCOM@CGE/CPI)
HDDB	BILLING HEATING DEGREE DAYS
CDDB	BILLING COOLING DEGREE DAYS
MJAN	QUALITATIVE VARIABLE - JANUARY
MFEB	QUALITATIVE VARIABLE - FEBRUARY
MMAR	QUALITATIVE VARIABLE - MARCH
MAPR	QUALITATIVE VARIABLE - APRIL
MMAY	QUALITATIVE VARIABLE - MAY
MJUN	QUALITATIVE VARIABLE - JUNE
MJUL	QUALITATIVE VARIABLE - JULY
MAUG	QUALITATIVE VARIABLE - AUGUST
MSEP	QUALITATIVE VARIABLE - SEPTEMBER
MOCT	QUALITATIVE VARIABLE - OCTOBER
MNOV	QUALITATIVE VARIABLE - NOVEMBER
MDEC	QUALITAITVE VARIABLE - DECEMBER
M7511	QUALITATIVE VARIABLE - NOVEMBER, 1975
M7711	QUALITATIVE VARIABLE - NOVEMBER, 1977
M805	QUALITATIVE VARIABLE - MAY, 1980
M806	QUALITATIVE VARIABLE - JUNE, 1980
M817	QUALITATIVE VARIABLE - JULY, 1981
M849	QUALITATIVE VARIABLE - SEPTEMBER, 1984
M9111	QUALITATIVE VARIABLE - NOVEMBER, 1991
M914	QUALITATIVE VARIABLE - APRIL, 1991
м927	QUALITATIVE VARIABLE - JULY, 1992
M938	QUALITATIVE VARIABLE - AUGUST, 1993
м939	QUALITATIVE VARIABLE - SEPTEMBER, 1993
M9310	QUALITATIVE VARIABLE - OCTOBER, 1993
M954	QUALITATIVE VARIABLE - APRIL, 1995
м956	QUALITATIVE VARIABLE - JUNE, 1995
M972	QUALITATIVE VARIABLE - FEBRUARY, 1997
м973	QUALITATIVE VARIABLE - MARCH, 1997
M977	QUALITATIVE VARIABLE - JULY, 1997
AND .	

AND :

KWHCOMNS@CGE	KWH SALES - COMMERCIAL
ECOMOCGE	SERVICE AREA EMPLOYMENT - COMMERCIAL
DS@KWH@COM@CGE	SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL
	CUSTOMER
APGCOM@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR COMMERCIAL
	CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

FORECAST EQUATION:

1>KWHCOMNS@CGE=EXP(<0.96664>*LECOM@CGE&&
2>+PDL(LDS@KWH@COM@CPI,1,2,FAR,<-0.10423,-0.052114>)&&
3>+PDL(LRAPGCOM@CGE,1,4,FAR,<0.013214,0.0099103,0.0066069,0.0033034>)&&
4>+<0.00014701>*HDDB&&
5>+<0.00068978>*CDDB&&
6>+<6.1805>*MJAN+<6.1525>*MFEB+<6.1417>*MMAR+<6.1227>*MAPR+<6.1348>*MMAY&&
7>+<6.2122>*MJUN+<6.2267>*MJUL+<6.2241>*MAUG+<6.2381>*MSEP+<6.1546>*MOCT&&
8>+<6.1105>*MNOV+<6.1656>*MDEC&&
9>+KWHCOMNS@CGE@AR1)

KWH SALES - FOOD AND PRODUCTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1972:1 TO 1997:4 (104 OBS.) DEPENDENT VARIABLE: LKWH20NS@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 18.056 0.28526 63.298 CONSTANT 1) PDL (LJQIND200CGE,1,2,FAR) \0 0.55009 0.17695 . + * + \1 0.27505 0.088474 . + *+ LAG SUM: 0.82514 STD. ERR.: 0.26542 MEAN LAG: 0.33333

* +

+ * +

*

2)

PDL (LDS@KW@IND@CPI, 2, 8, BOTH)

PDL (LDS@KWH@IND@OIL, 1, 4, FAR)

1. 1. ¹. 1.

\0 -0.014797 0.0074743 -0.025895 0.01308 \1 -0.033294 0.016817 \2 + \З -0.036993 0.018686 + \4 -0.036993 0.018686 + -0.033294 0.016817 \5 + \6 -0.025895 0.01308 + \7 -0.014797 0.0074743 LAG SUM: -0.22196 STD. ERR.: 0.11211 MEAN LAG: 3.5

3)

\0 -0.045554 0.019302 + \1 -0.034165 0.014477 + * + \2 -0.022777 0.009651 + * + . -0.011388 0.0048255 \3 +*+ . LAG SUM: -0.11388 STD. ERR.: 0.048255 MEAN LAG: 1

7) -0.12934 8) -0.083287 9) -0.076636 10) 0.99	0.000035617 0.0079379 0.024117 0.024138 0.024059 0.013833	8.4972 -14.96 -5.2609 -5.3629 -3.4505 -3.1854 71.569	Q3*CDDB HDDB Q2 Q922 Q932 Q952 RHO
R-BAR SQUARED:0. DURBIN-WATSON:1.	.86		
STANDARD ERROR: (0.033062	NORMALIZED:0	.0018328

KWH SALES - FOOD AND PRODUCTS

WHERE:	
LKWH20NS@CGE	=LOG (KWH20NS@CGE)
LJOIND200CGE	=LOG (JQIND20@CGE)
LDS@KW@IND@CPI	=LOG (DS@KW@IND@CGE/CPI)
LDS@KWH@IND@OIL	=LOG (DS@KWH@IND@CGE/WPI0561)
03	QUALITATIVE VARIABLE - THIRD QUARTER
ČDDB	BILLING COOLING DEGREE DAYS
HDDB	BILLING HEATING DEGREE DAYS
02	QUALITATIVE VARIABLE - SECOND QUARTER
0922	QUALITATIVE VARIABLE - SECOND QUARTER, 1992
0932	QUALITATIVE VARIABLE - SECOND QUARTER, 1993
0952	QUALITATIVE VARIABLE - SECOND QUARTER, 1995
¥	
AND:	
KWH20NS@CGE	KWH SALES - FOOD AND PRODUCTS
JOIND200CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX - FOOD
• H • •	AND PRODUCTS
DS@KW@IND@CGE	SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL
	CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
DS@KWH@IND@CGE	SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL
	CUSTOMER
WPI0561	WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM

FORECAST EQUATION:

1>KWH20NS@CGE=EXP(<18.08>+PDL(LJQIND20@CGE,1,2,FAR,<0.57799,0.28899>)&& 2>+PDL(LDS@KW@IND@CPI,2,8,BOTH,<-0.014675,-0.025682,-0.033019, 3>-0.036688,-0.036688,-0.033019,-0.025682,-0.014675>)&& 4>+PDL(LDS@KWH@IND@OIL,1,4,FAR,<-0.041606,-0.031205,-0.020803,-0.010402>)&& 5>+<0.00008661>*(Q3*CDDB)+<-0.000053231>*HDDB&& 6>+<-0.040779>*Q2+KWH20NS@CGE@AR1) KWH SALES - PAPER AND PRODUCTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1976:1 TO 1997:4 (88 OBS.) DEPENDENT VARIABLE: LKWH26NS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) PDL(LJQIND26@CGE,1,5,FAR)

\0 0.3123 0.08746 . + * + \1 0.24984 0.069968 . + * + \2 0.18738 0.052476 . + * + \3 0.12492 0.034984 . + *+ \4 0.062459 0.017492 . *+ LAG SUM: 0.93689 STD. ERR.: 0.26238 MEAN LAG: 1.3333

1)

PDL (LDS@KWH@IND@AHEM, 1, 3, FAR)

\0 -0.10347 0.040872 + * + . \1 -0.068983 0.027248 + * + . \2 -0.034491 0.013624 +* + . LAG SUM: -0.20695 STD. ERR.: 0.081745 MEAN LAG: 0.66667

2)

PDL (LDS@KW@IND@CPI, 1, 2, FAR)

0A-97

\0 -0.073843 0.033067 + * + . \1 -0.036922 0.016534 + * + . LAG SUM: -0.11077 STD. ERR.: 0.049601 MEAN LAG: 0.33333

3) 17.457 0.50042 34.884 Q1 4) 17.518 0.5005 35.001 Q2 5) 17.525 0.50019 35.037 Q3 6) 17.496 0.50063 34.948 Q4 7) ~0.12661 0.032759 -3.8648 Q781 8) 0.068554 0.032703 2.0962 Q921 9) 0.13314 0.032741 4.0665 Q931 10) ~0.74514 0.03266 -2.2815 Q963 11) 0.73133 0.072704 10.059 RHO R-BAR SQUARED:0.91053 DURBIN-WATSON:1.96 STANDARD ERROR:0.039432 NORMALIZED:0.0021308

KWH SALES - PAPER AND PRODUCTS

WHERE :	
LKWH26NS@CGE	=LOG (KWH26NS@CGE)
LJQIND26@CGE	=LOG(JQIND26@CGE)
LDS@KWH@IND@AHEM	=LOG (DS@KWH@IND@CGE/AHEM@1640)
LDSCKWCINDCCPI	=LOG (DS@KW@IND@CGE/CPI)
Q1	QUALITATIVE VARIABLE – FIRST QUARTER
Q2	QUALITATIVE VARIABLE - SECOND QUARTER
Q3	QUALITATIVE VARIABLE - THIRD QUARTER
Q4	QUALITATIVE VARIABLE - FOURTH QUARTER
Q781	QUALITATIVE VARIABLE - FIRST QUARTER, 1978
Q921	QUALITATIVE VARIABLE - FIRST QUARTER, 1992
Q931	QUALITATIVE VARIABLE - FIRST QUARTER, 1993
Q963	QUALITATIVE VARIABLE - THIRD QUARTER, 1996
AND :	
KWH26NS@CGE	SERVICE AREA KWH - INDUSTRIAL - PAPER AND PRODUCTS
JQIND260CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX - PAPER AND PRODUCTS
DS@KWH@IND@CGE	SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL CUSTOMER
AHEM@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR MANUFACTURING
DS@KW@IND@CGE	SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

FORECAST EQUATION:

1>KWH26NS@CGE=EXP(PDL(LJQIND26@CGE,1,5,FAR,<0.3123, 2>0.24984,0.18738,0.12492,0.062459>)&& 3>+PDL(LDS@KWH@IND@AHEM,1,3,FAR,<-0.10347,-0.068983,-0.034491>)&& 4>+PDL(LDS@KW@IND@CPI,1,2,FAR,<-0.073843,-0.036922>)&& 5>+<17.457>*Q1+<17.518>*Q2+<17.525>*Q3+<17.496>*Q4&& 6>+KWH26NS@CGE@AR1)

KWH SALES - CHEMICALS AND PRODUCTS REGRESSION RESULTS: LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1968:1 TO 1997:4 (120 OBS.) DEPENDENT VARIABLE: LKWH28NS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) PDL (LJQIND28@CGE, 1, 3, FAR) 0.4431 0.029337 +*+ \0 . 0.2954 0.019558 \1 \2 *+ • +* 0.1477 0.009779 LAG SUM: 0.8862 STD. ERR.: 0.058674 MEAN LAG: 0.66667 PDL (LTS@KWH@IND@OIL, 2, 12, BOTH) 1) -0.0045935 0.0023509 \0 -0.0084214 0.0043099 1 * + \2 -0.011484 0.0058771 \З -0.01378 0.0070526 -0.015312 0.0078362 -0.016077 0.008228 \4 \5 + -0.016077 0.008228 \6 17 -0.015312 0.0078362 ٠ \8 -0.01378 0.0070526 + * -0.01378 0.0070326 -0.011484 0.0058771 -0.0084214 0.0043099 -0.0045935 0.0023509 * \9 + + * \10 + + 11+* +. LAG SUM: -0.13934 STD. ERR.: 0.071309 MEAN LAG: 5.5 2) PDL (LTS@KWH@IND@AHEM, 1, 2, FAR) \0 -0.066289 0.025321 + * + \1 -0.033145 0.012661 + * LAG SUM: -0.099434 STD. ERR.: 0.037982 MEAN LAG: 0.33333 + + + 3) PDL (LTS@KWH@IND@COAL, 2, 12, BOTH) -0.010666 0.0029016 -0.019555 0.0053197 -0.026666 0.0072541 -0.031999 0.0087049 \٥ +*+ \1 + * + \2 \3 + * + + -0.035555 0.0096721 -0.037333 0.010156 -0.037333 0.010156 \4 \5 * + + * \6 ÷ + -0.035555 0.0096721 -0.031999 0.0087049 -0.026666 0.0072541 * \7 + + ¥ \8 + + * 19 + + -0.019555 0.0053197 10 + \11 -0.010666 0.0029016 LAG SUM: -0.32355 STD. ERR.: 0.088016 MEAN LAG: 5.5 +*+ 4) 0.000014835 0.0000038263 3.877 Q1*HDDB*(1-Q651824) 5) 0.00017378 0.000041406 4.1969 CDDB 6) 16.901 7) 16.939 8) 16.875 0.48379 0.48411 0.4866 0.48418 34.935 Q1 34.99 Q2 34.679 Q3 9) 16.954 35.015 Q4 10) 0.087408 11) 0.70942 0.031649 2.7618 Q923 0.064338 11.027 RHO R-BAR SQUARED: 0.97816 DURBIN-WATSON: 2.19

STANDARD ERROR:0.036022

NORMALIZED: 0.0018837

WHERE:	
LKWH28NS@CGE	=LOG (KWH28NS@CGE)
LJQIND280CGE	=LOG (JQIND280CGE)
	=LOG (TS@KWH@IND@CGE/WPI0561)
LTS@KWH@IND@OIL	
LTS@KWH@IND@AHEM	=LOG (IS@KWH@IND@CGE/WPI051)
LTS@KWH@IND@COAL	
HDDB	BILLING HEATING DEGREE DAYS
Q651824	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO
	FOURTH QUARTER, 1982
CDDB	BILLING COOLING DEGREE DAYS
Q1	QUALITATIVE VARIABLE - FIRST QUARTER
Õ2	QUALITATIVE VARIABLE - SECOND QUARTER
Q3	QUALITATIVE VARIABLE - THIRD QUARTER
Q4	QUALITATIVE VARIABLE - FOURTH QUARTER
0923	QUALITATIVE VARIABLE - THIRD QUARTER, 1992
0925	X •••••••
AND :	
KWH28NS@CGE	SERVICE AREA KWH SALES - INDUSTRIAL - CHEMICALS
	AND PRODUCTS
JQIND280CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX -
• = = = • • • • = =	CHEMICALS AND PRODUCTS
WPT0561	WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM
AHEM@1640	SERVICE AREA AVERAGE HOURLY EARNINGS FOR
ALLENG I DED	MANUFACTURING
TS@ KWH@ IND@ CGE	SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL
TSERMIGINDECCE	CUSTOMER
TTDTOE1	PRODUCER PRICE INDEX - COAL
WPI051	

FORECAST EQUATION:

1>KWH28NS@CGE=EXP(PDL(LJQIND28@CGE,1,3,FAR,<0.4431,0.2954,0.1477>)&&
2>+PDL(LTS@KWH@IND@OIL,2,12,BOTH,<-0.0045935,-0.0084214,-0.011484,
3>-0.01378,-0.015312,-0.016077,-0.016077,-0.015312,-0.01378,-0.011484,
4>-0.0084214,-0.0045935>)&&
5>+PDL(LTS@KWH@IND@AHEM,1,2,FAR,<-0.066289,-0.033145>)&&
6>+PDL(LTS@KWH@IND@CAL2,12,BOTH,<-0.010666,-0.019555,-0.026666,
7>-0.031999,-0.035555,-0.037333,-0.037333,-0.035555,-0.031999,-0.026666,
8>-0.019555,-0.010666>)&&
9>+<0.000014835>*(Q1*HDDB*(1-Q651824))+<0.00017378>*CDDB+<16.901>*Q1+<16.939>*

KWH SALES - PRIMARY METALS LESS - AK STEEL CO.

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1976:1 TO 1997:4 (88 OBS.) DEPENDENT VARIABLE: LKWH33NS@ARMCO@BASE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE CONSTANT 0) 10.152 3.5672 2.8459 10.152 3.5672 2.9898 0.55979 1) 5.341 (Q651854) *LJQIND33@BUTLER (1-Q651854) *LJQIND33@BUTLER 2) 1.558 0.62727 2.4838 PDL (LTS@KW@IND@CPI, 2, 14, BOTH) 3) \0 -0.013992 0.0067938 +* +. + * + \1 -0.025984 0.012617 . -0.035978 0.01747 * + \2 -0.043973 0.021352 \3 -0.04997 0.024264 ∖4 -0.053967 0.026205 -0.055966 0.027175 \5 + + \6 + \7 -0.055966 0.027175 -0.053967 0.026205 -0.04997 0.024264 \8 + \9 + \10 -0.043973 0.021352 \11 -0.035978 0.01747 + -0.025984 0.012617 \12 * + \13 -0.013992 0.0067938 +* +. LAG SUM: -0.55966 STD. ERR.: 0.27175 MEAN LAG: 6.5 4) PDL (LTS@KWH@IND@WAPARM, 1, 4, FAR) \0 -0.38911 0.15485 + -0.29184 0.11614 -0.19456 0.077426 + \1 + * \2 * + + . -0.097279 0.038713 \3 +*+ . LAG SUM: -0.97279 STD. ERR.: 0.38713 MEAN LAG: 1 5) -0.525 0.21372 -2.4565 6) -0.55924 0.22477 -2.488 Q651854 Q651954 7) 0.09121 0.0449 2.0314 Q3 8) -0.52061 0.19193 -2.7125 Q902+Q903 9) 0.69506 0.1979 3.5122 10) 0.68459 0.077704 8.8102 Q914 RHO R-BAR SQUARED:0.77573 DURBIN-WATSON: 2.22 STANDARD ERROR:0.23784 NORMALIZED:0.013359

KWH SALES - PRIMARY METALS - AK STEEL CO.

WHERE :	
LKWH33NS@ARMCO@BASE	
LJQIND33@BUTLER	=LOG (JQIND33@BUTLER)
LTS@KW@IND@CPI	=LOG (TS@KW@IND@CGE/CPI)
LTS@KWH@IND@WAPARM	=LOG (TS@KWH@IND@CGE/WAPARMNS@C)
Q651854	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1985
Q651954	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO FOURTH QUARTER, 1995
Q3	QUALITATIVE VARIABLE - THIRD QUARTER
0902	QUALITATIVE VARIABLE - SECOND QUARTER, 1990
0903	QUALITATIVE VARIABLE - THIRD QUARTER, 1990
0914	QUALITATIVE VARIABLE - FOURTH QUARTER, 1991
2914 2914	Tour and the second s
AND:	
KWH33NS@ARMCO	SERVICE AREA SALES - INDUSTRIAL - PRIMARY METAL INDUSTRIES - AK STEEL CORP.
KWH33NS@ARMCO@BASE	BASE KWH SALES TO AK STEEL - 190,000,000 KWH
JQIND330BUTLER	INDUSTRIAL PRODUCTION INDEX - PRIMARY METAL INDUSTRIES - BUTLER COUNTY ONLY
TS@KW@IND@CGE	SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
TS@KWH@IND@CGE	
WAPARMNS@C	WEIGHTED AVERAGE OF OFF-PEAK AND SPOT PRICES OF
	GAS - REFLECTS AVERAGE MARGINAL PRICE PAID BY AK STEEL FOR INTERRUPTIBLE GAS

FORECAST EQUATION:

1>KWH33NS@ARMCO=ARMCOBASE+EXP(<10.152>&& 2>+<1.558>*LJQIND33@BUTLER&& 3>+PDL(LTS@KW@IND@CPI,2,14,BOTH,<-0.013992,-0.025984,-0.035978, 4>-0.043973,-0.04997,-0.053967,-0.055966,-0.055966,-0.053967, 5>-0.04997,-0.043973,-0.035978,-0.025984,-0.013992>)&& 6>+PDL(LTS@KWH@IND@WAPARM,1,4,FAR,<-0.38911,-0.29184,-0.19456,-0.097279>)&& 7>+<0.09121>*Q3&& 8>+KWH33NS@ARMCO@AR1)

KWH SALES - PRIMARY METALS - LESS AK STEEL CO. REGRESSION RESULTS: ORDINARY LEAST SQUARES _____ FREQUENCY: Q INTERVAL: 1976:1 TO 1997:4 (88 OBS.) DEPENDENT VARIABLE: LKWH33LARMNS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE PDL (LJQIND33@CMSA, 1, 2, FAR) 0) 0.56823 0.021632 *+ \0 0.28412 0.010816 \1 LAG SUM: 0.85235 STD. ERR.: 0.032448 MEAN LAG: 0.33333 PDL (LTS@KWH@IND@APG, 2, 10, BOTH) 1) -0.020404 0.0071643 -0.036727 0.012896 \0 +* + * \1 + -0.048969 0.017194 \2 * -0.057131 0.02006 \3 + -0.061212 0.021493 \4 + \5 -0.061212 0.021493 + \6 -0.057131 0.02006 + * + -0.048969 0.017194 * \7 + 18 -0.036727 0.012896 + -0.020404 0.0071643 \9 +* + LAG SUM: -0.44888 STD. ERR.: 0.15761 MEAN LAG: 4.5 2) PDL (LTS@KW@IND@CPI, 2, 6, BOTH) -0.042207 0.012075 -0.070345 0.020124 \0 + * + 1+ \2 -0.084413 0.024149 ٠ \3 -0.084413 0.024149 + * + -0.070345 0.020124 \4 + -0.042207 0.012075 \5 + * - + LAG SUM: -0.39393 STD. ERR.: 0.1127 MEAN LAG: 2.5 3) 0.070394 0.02404 2.9282 Q813974*LRPCOCP 4) 14.173 5) 14.171 1.4176 9.9977 Q1 9.9992 Q2 6) 14.172 1.4189 9.9877 Q3 7) 14.153 1.4192 9.9721 Q4 8) 0.43362 0.042185 10.279 Q864882 9) -0.3963 0.072083 -5.4978 10) -0.51466 0.10171 -5.0602 Q803+Q804 0811 11) -0.24438 0.096167 -2.5412 12) 0.19064 0.094936 2.0081 Q823 Q834 13) 0.19106 0.093982 2.033 Q923 14) 0.21359 0.093539 2.2834 Q924 15) -0.24324 0.095875 -2.5371 Q963 16) -0.26976 0.095494 -2.8249 17) -0.49917 0.09673 -5.1605 Q972 Q973 R-BAR SQUARED:0.93112 DURBIN-WATSON:1.95 STANDARD ERROR:0.090279 NORMALIZED:0.004938

WHERE :				
LKWH33LARMNS@CGE	=LOG (KWH33LARMNS@CGE)			
LJOIND330CMSA	=LOG (JQIND33@CMSA)			
	=LOG (JQINDSSECMSA) =LOG (TSEKWHEINDECGE/APGINDECGE)			
LTS@KWH@IND@APG	=LOG(TS@KW@IND@CGE/CPI)			
LTS@KW@IND@CPI	QUALITATIVE VARIABLE - THIRD QUARTER, 1981 TO			
Q813974				
LRPCOCP Q1 Q2 Q3 Q4 Q864882	=LOG(PCOCP/CPI)			
	QUALITATIVE VARIABLE - FIRST QUARTER			
QI	QUALITATIVE VARIABLE - SECOND QUARTER			
Q2	QUALITATIVE VARIABLE - THIRD QUARTER			
03	QUALITATIVE VARIABLE - FOURTH QUARTER			
Q4	QUALITATIVE VARIABLE - FOURTH QUARTER, 1986 TO			
Q864882	SECOND QUARTER, 1988			
	QUALITATIVE VARIABLE - THIRD QUARTER, 1980			
Q803	QUALITATIVE VARIABLE - THIRD QUARTER, 1980			
Q804	QUALITATIVE VARIABLE - FOURTH QUARTER, 1980			
Q811	QUALITATIVE VARIABLE - FIRST QUARTER, 1981			
Q823	QUALITATIVE VARIABLE - THIRD QUARTER, 1982			
Q834	QUALITATIVE VARIABLE - FOURTH QUARTER, 1983			
Q923	QUALITATIVE VARIABLE - THIRD QUARTER, 1992			
Q924	QUALITATIVE VARIABLE - FOURTH QUARTER, 1992			
Q963	QUALITATIVE VARIABLE - THIRD QUARTER, 1996			
Q972	QUALITATIVE VARIABLE - SECOND QUARTER, 1997			
Q803 Q804 Q811 Q823 Q834 Q923 Q924 Q963 Q972 Q973	QUALITATIVE VARIABLE - THIRD QUARTER, 1997			
AND: KWH33LARMNS@CGE	SERVICE AREA LESS AK STEEL - INDUSTRIAL - PRIMARY			
KWH33LARMM36CGE	METAL INDUSTRIES			
JOIND33@CMSA	CINCINNATI CMSA INDUSTRIAL PRODUCTION INDEX -			
001ND226CH3A	PRIMARY METAL INDUSTRIES			
TS@KWH@IND@CGE	SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL CUSTOMER			
APGIND@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL			
•••••••••••	CUSTOMERS			
TS@KW@IND@CGE	SERVICE AREA TS RATE FOR DEMAND FOR INDUSTRIAL			
	CUSTOMER			
PCOCP	AVERAGE REFINERS' ACQUISITION PRICE - CRUDE OIL -			
	COMPOSITE			
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS			
~~~	· ·			

## FORECAST EQUATION:

1>KWH33LARMNS@CGE=EXP(PDL(LJQIND33@CMSA,1,2,FAR,<0.56823,0.28412>)&& 2>+PDL(LTS@KWH@IND@APG,2,10,BOTH,<-0.020404,-0.036727,-0.048969, 3>-0.057131,-0.061212,-0.061212,-0.057131,-0.048969,-0.036727,-0.020404>)&& 4>+PDL(LTS@KW@IND@CPI,2,6,BOTH,<-0.042207,-0.070345,-0.084413, 5>-0.084413,-0.070345,-0.042207>)&& 6>+<0.070394>*LRPCOCP&& 7>+<14.173>*Q1+<14.171>*Q2+<14.172>*Q3+<14.153>*Q4) KWH SALES - MACHINERY - EXCEPT ELECTRICAL

**REGRESSION RESULTS:** 

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION _____ FREQUENCY: Q INTERVAL: 1969:1 TO 1997:4 (116 OBS.) DEPENDENT VARIABLE: LKWH35NS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 18.349 0.12821 143.11 CONSTANT 1) 0.65882 0.058183 11.323 LJQIND35@CGE PDL (LDS@KW@IND@CPI, 2, 7, BOTH) 2) -0.010277 0.0051299 \0 + * + . \1 -0.017617 0.0087941 + * + . -0.022022 0.010993 \2 + + \3 -0.02349 0.011725 + + -0.022022 0.010993 \4 + -0.017617 0.0087941 * \5 + -0.010277 0.0051299 \6 + * + LAG SUM: -0.12332 STD. ERR.: 0.061558 MEAN LAG: 3 3) PDL (LRWP10561, 2, 6, BOTH) \0 0.010445 0.0050073 + * + 0.017408 0.0083455 * \1 + + • 0.02089 0.010015 0.02089 0.010015 0.017408 0.0083455 \2 # + + \3 * + + \4 + . 0.010445 0.0050073 + • + \5 LAG SUM: 0.097485 STD. ERR.: 0.046735 MEAN LAG: 2.5 4) 0.000010435 0.0000028352 3.6805 HDDB 5) 0.000031808 0.0000099409 3.1997 CDDB*Q651862 6) 0.000077179 0.00001049 7.3572 CDDB* (1-Q651862) 7) -0.086774 0.028117 -3.0861 Q781 8) -0.084531 0.027549 -3.0684 Q782 9) -0.059669 0.024231 -2.4625 Q793 10) 0.081917 0.024536 3.3387 0801 0.15611 0.82947 4.7441 Q651862 0.032907 11) 12) 0.05186 15.994 RHO R-BAR SQUARED:0.96387 DURBIN-WATSON:2.01 STANDARD ERROR:0.030865 NORMALIZED:0.0017057

KWH SALES - MACHINERY - EXCEPT ELECTRICAL

WHERE:	
LKWH35NS@CGE	=LOG (KWH35NS@CGE)
LJQIND350CGE	=LOG (JQIND35@CGE)
LDS@KW@IND@CPI	=LOG (DS@KW@IND@CGE/CPI)
	=LOG (WPI0561/CPI)
LRWPI0561	
HDDB	BILLING HEATING DEGREE DAYS
CDDB	BILLING COOLING DEGREE DAYS
0781	QUALITATIVE VARIABLE - FIRST QUARTER, 1978
õ782	QUALITATIVE VARIABLE - SECOND QUARTER, 1978
0793	QUALITATIVE VARIABLE - THIRD QUARTER, 1979
	QUALITATIVE VARIABLE - FIRST QUARTER, 1980
Q801	
Q651862	QUALITATIVE VARIABLE - FIRST QUARTER, 1965 TO
	SECOND QUARTER, 1986
AND :	
KWH35NS@CGE	SERVICE AREA KWH SALES - INDUSTRIAL - INDUSTRIAL
· -	MACHINERY AND EQUIPMENT
JOIND350CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX -
0210000000	INDUSTRIAL MACHINERY AND EQUIPMENT
DS@KW@IND@CGE	SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL
	CUSTOMER
WPI0561	WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

#### FORECAST EQUATION:

1>KWH35NS@CGE=EXP(<18.349>&& 2>+<0.65882>*LJQIND35@CGE&& 3>+PDL(LDS@KW@IND@CPI,2,7,BOTH,<-0.010277,-0.017617, 4>-0.022022,-0.02349,-0.022022,-0.017617,-0.010277>)&& 5>+PDL(LRWPI0561,2,6,BOTH,<0.010445,0.017408,0.02089, 6>0.02089,0.017408,0.010445>)&& 7>+<0.000010435>*HDDB&& 8>+<0.000077179>*CDDB&& 9>+KWH35NS@CGE@AR1) KWH SALES - ELECTRICAL MACHINERY

**REGRESSION RESULTS:** 

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION 

FREQUENCY: Q INTERVAL: 1968:2 TO 1997:4 (119 OBS.) DEPENDENT VARIABLE: LKWH36NS@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 14.188 1,1866 11.957 CONSTANT PDL (LJQIND36@CGE, 1, 3, FAR) 1) 0.22147 0.039694 0.14764 0.026463 0.073822 0.013231 \0 + * + . . . +*+ +* + \1 \2 LAG SUM: 0.44293 STD. ERR.: 0.079389 MEAN LAG: 0.66667 PDL (LDS@KW@IND@CPI, 1, 2, FAR) 2)

+ + + . + * + . \0 -0.094106 0.04788 -0.047053 0.02394 \1 LAG SUM: -0.14116 STD. ERR.: 0.07182 М

MEAN LAG: 0.33333	
3)	PDL (LDS@KWH@IND@APG,2,10,BOTH)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ .
\9 -0.016647 0.0059195 +* \9 -0.36623 STD. ERR.: 0.13023 MEAN LAG: 4.5	+ .
<ul> <li>4) 0.000086395 0.0000098999 8.7269</li> <li>5) -0.000097376 0.0000033241 -2.9294</li> <li>6) 0.084915 0.029448 2.8835</li> <li>7) -0.070147 0.029387 -2.387</li> <li>8) 0.07683 0.029371 2.6159</li> <li>9) -0.061525 0.029378 -2.0943</li> <li>10) -0.13166 0.034285 -3.8401</li> <li>11) 0.10685 0.033683 3.1722</li> <li>12) -0.20258 0.029192 -6.9396</li> <li>13) 0.93712 0.031994 29.29</li> <li>R-BAR SQUARED:0.98748</li> </ul>	CDDB HDDB Q761 Q793 Q804 Q831 Q883 Q884 Q922 RHO
DURBIN-WATSON: 2.15	

STANDARD ERROR:0.039823 NORMALIZED:0.00229

# KWH SALES - ELECTRICAL MACHINERY

WHERE :	
LKWH36NS@CGE	=LOG (KWH36NS@CGE)
LJOIND36@CGE	=LOG (JQIND36@CGE)
LDS@KW@IND@CPI	=LOG (DS@KW@IND@CGE/CPI)
LDS@KWH@IND@APG	=LOG (DS@KWH@IND@CGE/APGIND@CGE)
CDDB	BILLING COOLING DEGREE DAYS
HDDB	BILLING HEATING DEGREE DAYS
0761	QUALITATIVE VARIABLE - FIRST QUARTER, 1976
0793	QUALITATIVE VARIABLE - THIRD QUARTER, 1979
0804	QUALITATIVE VARIABLE - FOURTH QUARTER, 1980
0831	QUALITATIVE VARIABLE - FIRST QUARTER, 1983
0883	QUALITATIVE VARIABLE - THIRD QUARTER, 1988
0884	QUALITATIVE VARIABLE - FOURTH QUARTER, 1988
-	QUALITATIVE VARIABLE - SECOND QUARTER, 1992
Q922	VOADITATIVO VIALIDOD DIGGIO EDIGIO P
AND :	
KWH36NS@CGE	SERVICE AREA KWH SALES - INDUSTRIAL - ELECTRONIC
KANDONDECOL	AND OTHER ELECTRICAL EQUIPMENT
JOIND36@CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX -
DOINDOGCOT	ELECTRONIC AND OTHER ELECTRICAL EQUIPMENT
DS@KW@IND@CGE	SERVICE AREA DS RATE FOR DEMAND FOR INDUSTRIAL
DSGKAGINDGCGE	CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
DS@KWH@IND@CGE	SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL
DSGEWHGINDGCGE	CUSTOMER
2 2 4 1 W 8 4 6 6 7	SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL
APGIND@CGE	CUSTOMERS
	COSTORERS

#### FORECAST EQUATION:

1>KWH36NS@CGE=EXP(<14.188>&& 2>+PDL(LJQIND36@CGE,1,3,FAR,<0.22147,0.14764,0.073822>)&& 3>+PDL(LDS@KW@IND@CPI,1,2,FAR,<-0.094106,-0.047053>)&& 4>+PDL(LDS@KWH@IND@APG,2,10,BOTH,<-0.016647,-0.029965,-0.039953,-0.046611, 5>-0.049941,-0.049941,-0.046611,-0.039953,-0.029965,-0.016647>)&& 6>+<0.000086395>*CDDB+<-0.0000097376>*HDDB+KWH36NS@CGE@AR1) KWH SALES - MOTOR VEHICLES AND PARTS

REGRESSION RESULTS:

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION 

FREQUENCY: Q INTERVAL: 1970:1 TO 1997:4 (112 OBS.) DEPENDENT VARIABLE: LKWH371NS@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0)

PDL (LJQIND371@CGE, 2, 5, BOTH)

\0 0.088737 0.015184 . 0.14198 0.024295 . 0.088737 0.015184 +*+ . + * + + * + \1 0.15973 0.027331 0.14198 0.024295 0.088737 0.015184 \2 + * + \З +*+ \4 LAG SUM: 0.62116 STD. ERR.: 0.10629 MEAN LAG: 2

1)

PDL (LTS@KW@IND@CPI, 2, 14, BOTH)

$ \begin{array}{cccc} & & -0 & .004752 \\ 1 & & -0 & .0088252 \\ 2 & & -0 & .012219 \\ 3 & & -0 & .014935 \\ 4 & & -0 & .016971 \\ 5 & & -0 & .018329 \\ 6 & & -0 & .019008 \\ 7 & & -0 & .019008 \\ 8 & & -0 & .018329 \\ 9 & & -0 & .018329 \\ 9 & & -0 & .018329 \\ 10 & & -0 & .018329 \\ 11 & & -0 & .012219 \\ 12 & & -0 & .0088252 \\ \end{array} $	0.0055349 0.0067648 0.0076873 0.0083023 0.0086098 0.0083023 0.0083023 0.0083023 0.0076873 0.0067648 0.0055349 0.0039974	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0.0039974	+ * + +* +
LAG SUM: -0.19008 MEAN LAG: 6.5	STD. ERR.:	0.086098
2)		PDL (LTS@KWH@IND@APG,1,2,FAR)

\0 -0.11906 0.058772 + * + . \1 -0.059531 0.029386 + * + . LAG SUM: -0.17859 STD. ERR.: 0.088158 MEAN LAG: 0.33333

3) $0.00018378$ 4) 16.633 5) 16.695 6) 16.583 7) 16.642 8) $-0.46424$ 9) $-0.25141$ 10) $-0.18284$ 11) $0.26198$ 12) $0.29626$ 13) $0.14071$ 14) $-0.1758$ 15) $0.12675$ 16) $0.29218$	$\begin{array}{c} 0.000073161\\ 0.83343\\ 0.83412\\ 0.83791\\ 0.8341\\ 0.078537\\ 0.054803\\ 0.054689\\ 0.054689\\ 0.065889\\ 0.074751\\ 0.065246\\ 0.068568\\ 0.054762\\ 0.054762\\ 0.054629 \end{array}$	2.512 19.957 20.015 19.791 19.952 -5.9112 -4.5876 -3.3433 3.9761 3.9634 2.1565 -2.5639 2.3146 5.3484	CDDB Q1 Q2 Q3 Q4 Q651802 Q704 Q713 Q724 Q731 Q732 Q803 Q813 Q881
17) 0.69099	0.068304	10.116	RHO
R-BAR SQUARED: ( DURBIN-WATSON: ]	0.89608		
STANDARD ERROR	0.065023	NORMALIZE	D:0.0035887

THEDE	•	
MALKE	٠	

HERE:	
LKWH37209NS0CGE	=LOG (KWH37209NS0CGE)
LJQIND3720CGE	=LOG (JQIND372@CGE)
LTS@KWH@IND@CPI	=LOG (TS@KWH@IND@CGE/CPI)
LTS@KWH@IND@APG	=LOG (TS@KWH@IND@CGE/APGIND@CGE)
LTS@KWH@IND@OIL	=LOG (TS@KWH@IND@CGE/WPI0561)
CDDB	BILLING COOLING DEGREE DAYS
CDDB HDDB Q651774	BILLING HEATING DEGREE DAYS
0651774	QUALITATIVE VARIABLE - FIRST QUARTER, 1965TO
<b>H</b>	FOURTH QUARTER, 1974
01	QUALITATIVE VARIABLE - FIRST QUARTER
02	QUALITATIVE VARIABLE - SECOND QUARTER
Q3	QUALITATIVE VARIABLE - THIRD QUARTER
04	QUALITATIVE VARIABLE - FOURTH QUARTER
0781	OUALITATIVE VARIABLE - FIRST QUARTER, 1978
0914	QUALITATIVE VARIABLE - FOURTH QUARTER, 1991
0922	QUALITATIVE VARIABLE - SECOND QUARTER, 1992
0923	QUALITATIVE VARIABLE - THIRD QUARTER, 1992
0942	OUALITATIVE VARIABLE - SECOND QUARTER, 1994
0961	QUALITATIVE VARIABLE - FIRST QUARTER, 1996
Q973	QUALITATIVE VARIABLE - THIRD QUARTER, 1997
AND :	
KWH37209NS0CGE	SERVICE AREA KWH SALES - INDUSTRIAL -
	TRANSPORTATION EQUIPMENT OTHER THAN MOTOR VEHICLES AND PARTS
JOIND3720CGE	SERVICE AREA INDUSTRIAL PRODUCTION INDEX -
041120,1000	AIRCRAFT AND PARTS
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
APGIND@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL
· · · ·	CUSTOMERS
TS@KWH@IND@CGE	SERVICE AREA TS RATE FOR USAGE FOR INDUSTRIAL
-	CUSTOMER

WPI0561 WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM

FORECAST EQUATION:

```
1>KWH372@9NS@CGE=EXP(<0.41393>*LJQIND372@CGE&&
2>+<-0.24541>*LTS@KWH@IND@CPI**
3>+PDL(LTS@KWH@IND@APG,2,12,BOTH,<-0.0041233,-0.0075594,-0.010308,
4>-0.01237,-0.013744,-0.014432,-0.014432,-0.013744,-0.01237,
5>-0.010308,-0.0075594,-0.0041233>)&&
6>+PDL(LTS@KWH@IND@OIL,2,14,BOTH,<-0.0027258,-0.0050623,-0.0070093,
7>-0.0085669,-0.0097351,-0.010514,-0.010903,-0.010903,-0.010514,
8>-0.0097351,-0.0085669,-0.0070093,-0.0050623,-0.0027258>)&&
9>+<0.00017783>*CDDB&&
10>+<-0.000023366>*HDDB&&
11>+<15.738>*Q1+<15.703>*Q2+<15.604>*Q3+<15.7>*Q4&&
12>+KWH372@9NS@CGE@AR1)
```

KWH SALES - ALL OTHER INDUSTRIALS

REGRESSION RESULTS:

STANDARD ERROR:0.021508

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: Q INTERVAL: 1971:1 TO 1997:4 (108 OBS.) DEPENDENT VARIABLE: LKWHAOINS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 17.583 0.49144 35.779 CONSTANT 1) PDL (LJQINDAOIDG@CGE, 1, 3, FAR) 0.21079 0.044763 0.14053 0.029842 + * \0 + + * + \1 . \2 0.070263 0.014921 +*+ LAG SUM: 0.42158 STD. ERR.: 0.089527 MEAN LAG: 0.66667 2) 0.96035 0.090411 10.622 LJQINDAOINDG@CGE PDL (LDS@KWH@IND@APG, 2, 5, BOTH) 3) -0.011429 0.005712 + * \0 -0.018286 0.0091392 + * + \1 . \2 -0.020572 0.010282 + ٠ + -0.018286 0.0091392 -0.011429 0.005712 \3 + * + \4 + + LAG SUM: -0.080001 STD. ERR.: 0.039984 MEAN LAG: 2 PDL (LDS@KWH@IND@OIL, 1, 9, FAR) 4) \0 -0.019166 0.0093347 1 -0.017036 0.0082975 * + \2 -0.014907 0.0072603 -0.012777 0.0062231 -0.010648 0.0051859 \3 \4 \5 * -0.0085181 0.0041488 * . -0.0063886 0.0031116 *+ **6** 17 -0.0042591 0.0020744 +*+ -0.0021295 0.0010372 \8 +* LAG SUM: -0.095829 STD. ERR.: 0.046674 MEAN LAG: 2.6667 PDL (LDS@KWH@IND@COAL, 2, 9, BOTH) 5) -0.011455 0.0053944 -0.020365 0.0095901 \0 \1 * + . -0.026729 0.012587 -0.030547 0.014385 -0.03182 0.014985 -0.030547 0.014385 * \2 + + \З + + * \4 \5 + * + -0.026729 0.012587 * + \6 + -0.020365 0.0095901 -0.011455 0.0053944 \7 + * + \8 +* + LAG SUM: -0.21001 STD. ERR.: 0.098898 MEAN LAG: 4 
 MEAN LAG: 4

 6)
 0.0001443 0.0000127 11.362 

 7)
 0.000033417 0.000095825 3.4873 

 0.074551 0.018564 -4.016 

 0.071647 -1.8617 

 2.440 2.440 CDDB HDDB Q1 Q4 10) -0.044624 11) -0.062259 12) 0.061395 0.018287 Q771 -2.4402 -3.1393 õ781 0.017839 3.4416 Q
933 13) -0.080096 0.01763 -4.5431 Q962 14) -0.049553 0.017876 -2.772 Q972 15) 0.75023 0.063622 11.792 RHO R-BAR SOUARED: 0.99329 DURBIN-WATSON: 1.88

NORMALIZED:0.0011091

OA-113

WHERE	
MILLINE	٠

LKWHAOINS@CGE	=LOG (KWHAOINS@CGE)
	· · · · ·
LJQINDAOIDG@CGE	=LOG (JQINDAOIDG@CGE)
LJQINDAOINDG@CGE	=LOG(JQINDAOINDG@CGE)
LDS@KWH@IND@APG	=LOG (DS@KWH@IND@CGE/APGIND@CGE)
LDS@KWH@IND@OIL	=LOG (DS@KWH@IND@CGE/WPI0561)
LDS@KWH@IND@COAL	=LOG (DS@KWH@IND@CGE/WPI051)
CDDB	BILLING COOLING DEGREE DAYS
HDDB	BILLING HEATING DEGREE DAYS
Q1	QUALITATIVE VARIABLE - FIRST QUARTER
Q4	QUALITATIVE VARIABLE - FOURTH QUARTER
Q771	QUALITATIVE VARIABLE - FIRST QUARTER, 1977
Q781	QUALITATIVE VARIABLE - FIRST QUARTER, 1978
Q933	QUALITATIVE VARIABLE - THIRD QUARTER, 1993
Q962	QUALITATIVE VARIABLE - SECOND QUARTER, 1996
Q972	QUALITATIVE VARIABLE - SECOND QUARTER, 1997
AND :	
	SERVICE AREA KWH SALES - ALL OTHER INDUSTRIES
KWHAOINS@CGE	
JQINDAOIDG@CGE	SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER INDUSTRIES - DURABLE GOODS
JQINDAOINDG@CGE	SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER
	INDUSTRIES - NON-DURABLE GOODS

<b>JQINDAOINDG@CGE</b>	SERVICE AREA INDUSTRIAL PRODUCTION - ALL OTHER
	INDUSTRIES - NON-DURABLE GOODS
APGIND@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR INDUSTRIAL
	CUSTOMERS
WPI0561	WHOLESALE PRICE INDEX FOR CRUDE PETROLEUM
DS@KWH@IND@CGE	SERVICE AREA DS RATE FOR USAGE FOR INDUSTRIAL
	CUSTOMER
WP1051	WHOLESALE PRICE INDEX FOR COAL

FORECAST EQUATION:

1>KWHAOINS@CGE=EXP(<17.583>&& 2>+PDL(LJQINDAOIDG@CGE,1,3,FAR,<0.21079,0.14053,0.070263>)&& 3>+<0.96035>*LJQINDAOINDG@CGE&& 4>+PDL(LDS@KWH@IND@APG,2,5,BOTH,<-0.011429,-0.018286, 5>-0.020572,-0.018286,-0.011429>)&& 6>+PDL(LDS@KWH@IND@OIL,1,9,FAR,<-0.019166,-0.017036,-0.014907, 7>-0.012777,-0.010648,-0.0085181,-0.0063886,-0.0042591,-0.0021295>)&& 8>+PDL(LDS@KWH@IND@COAL,2,9,BOTH,<-0.011455,-0.020365,-0.026729, 9>-0.030547,-0.03182,-0.030547,-0.026729,-0.020365,-0.011455>)&& 10>+<0.0001443>*CDDB&& 11>+<0.000033417>*HDDB&& 12>+<-0.074551>*Q1+<-0.013339>*Q4&& 13>+KWHAOINS@CGE@AR1) KWH SALES - STREET LIGHTING

**REGRESSION RESULTS:** 

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION

FREQUENCY: Q INTERVAL: 1977:1 TO 1997:4 (84 OBS.) DEPENDENT VARIABLE: LKWHSL@CGE

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0	)	10.266	1.1572	8.872	CONSTANT
1	)	0.47722	0.07897	6.0431	LCUSRES@CGE
2	)	-0.52993	0.19028	-2.7851	LOG(.50*SATMERC@CGE+.50*SATSODVAP@CGE)
3	)	-0.024637	0.0032644	-7.5473	Q782+Q812
4	)	-0.038287	0.0043169	-8.8689	Q791
5	)	-0.013441	0.0033389	-4.0256	Q793+Q913
6	)	-0.012888	0.0054399	-2.3692	Q794
7	)	-0.0324	0.005094	-6.3605	Q801
8	)	0.030092	0.004612	6.5247	Q811
9	)	-0.020204	0.0043179	-4.6792	Q851
10	)	-0.050708	0.0043163	-11.748	Q911
11	)	0.88797	0.05018	17.696	RHO

4

R-BAR SQUARED:0.95981 DURBIN-WATSON:2.06 STANDARD ERROR:0.0057717 NORMALIZED:0.00033973

# KWH SALES - STREET LIGHTING

WHERE:	
LKWHSL@CGE	=LOG(KWHSL@CGE)
LCUSRES@CGE	=LOG (CUSRES@CGE)
SATMERCOCGE	SERVICE AREA SATURATION OF MERCURY VAPOR STREET LIGHTING
SATSODVAP@CGE	SERVICE AREA SATURATION OF SODIUM VAPOR STREET LIGHTING
Q782	QUALITATIVE VARIABLE - SECOND QUARTER, 1978
0812	QUALITATIVE VARIABLE - SECOND QUARTER, 1981
0791	QUALITATIVE VARIABLE - FIRST QUARTER, 1979
ō793	QUALITATIVE VARIABLE - THIRD QUARTER, 1979
0913	QUALITATIVE VARIABLE - THIRD QUARTER, 1991
0794	QUALITATIVE VARIABLE - FOURTH QUARTER, 1979
0801	QUALITATIVE VARIABLE - FIRST QUARTER, 1980
0811	QUALITATIVE VARIABLE - FIRST QUARTER, 1981
0851	QUALITATIVE VARIABLE - FIRST QUARTER, 1985
Q911	QUALITATIVE VARIABLE - FIRST QUARTER, 1991
AND :	
KWHSL@CGE	SERVICE AREA KWH SALES - STREET LIGHTING
CUSRES@CGE	SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL

Î

### FORECAST EQUATION:

1>KWHSL@CGE=EXP(<10.266>+<0.47722>*LCUSRES@CGE&& 2>+<-0.52993>*(LOG(.50*SATMERC@CGE+.50*SATSODVAP@CGE))&& 3>+KWHSL@CGE@AR1)

0A-116

KWH SALES - OTHER PUBLIC AUTHORITIES: LESS WATER PUMPING

**REGRESSION RESULTS:** 

LEAST SQUARES WITH FIRST-ORDER AUTOCORRELATION CORRECTION FREQUENCY: M INTERVAL: 1976:1 TO 1997:12 (264 OBS.) DEPENDENT VARIABLE: LKWHOPALWPNS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE 0) 3.0096 1.6801 1.7913 CONSTANT PDL (LE90X@CGE, 1, 2, FAR) 1) \0 0.75681 0.108 . \1 0.3784 0.053999 . +* LAG SUM: 1.1352 STD. ERR.: 0.162 + * + MEAN LAG: 0.33333 2) PDL (LDS@KWH@OPA@CPI, 1, 2, FAR) -0.17035 0.036449 -0.085177 0.018224 \0 + * + + *+ \1 LAG SUM: -0.25553 STD. ERR.: 0.054673 MEAN LAG: 0.33333 3) PDL (LDS@KWH@OPA@APG, 1, 6, FAR) -0.032617 0.0081805 \0 + * + -0.027181 0.006817 1+ \2 -0.021745 0.0054536 + * + -0.016309 0.0040902 + * + \3 -0.010872 0.0027268 **\4** +*+ -0.0054362 0.0013634 +*+. \5 LAG SUM: -0.11416 STD. ERR.: 0.028632 MEAN LAG: 1.6667 0.00033534 0.000047148 7.1125 0.00054793 0.00003844 14.254 CDDB+M7618412 4) CDDB* (1-M7618412) 5) 6) 0.00015136 0.00001388 10.905 HDDB*M7618412 7) 0.00013133 0.0000132 9.9491 HDDB* (1-M7618412) 8) 0.029912 0.0070139 4.2647 MJUN 0.041976 0.0072628 5.7796 9) MSEP 0.071922 10) 0.031175 2.307 M7612 11) 0.10292 0.031488 3.2685 M775 12) -0.11259 0.035267 -3.1924M782 13) -0.098339 0.035198 -2.7938 M783 14) -0.10869 0.031117 -3.4931 M892 15) -0.15093 0.031326 -4.8181 M928 16) 0.14427 0.036163 3.9893 M939 17) -0.11532 0.039725 -2.903 M9310 18) -0.27315 0.035571 -7.6791 M9311 19) -0.25554 0.031483 -8.1167 M941 20) -0.242090.031124 -7.7784 M943 21) 0.077123 2.4198 0.031872 M946 22) 0.11604 0.031361 3.7001 M9410 23) -0.17132 0.032084 -5.3396 M969 24) -0.085884 25) -0.16519 0.031163 -2.7559 M9611 0.03116 -5.3015 M9711 26) -0.19079 0.031856 -5.9892 M958 27) 0.56662 0.050713 11.173 RHO R-BAR SQUARED:0.96671 DURBIN-WATSON: 2.09 STANDARD ERROR:0.035745 NORMALIZED:0.00195

## KWH SALES - OTHER PUBLIC AUTHORITIES: LESS WATER PUMPING

WHERE:	
--------	--

1101/10 .	
LKWHOPALWPNS@CGE	=LOG (KWHOPALWPNS@CGE)
LE90X@CGE	=LOG(E90X@CGE)
	=LOG (DS@KWH@OPA@CGE/CPI)
LDS@KWH@OPA@APG	=LOG (DS@KWH@OPA@CGE/APGOPA@CGE)
CDDB	BILLING COOLING DEGREE DAYS
HDDB	BILLING HEATING DEGREE DAYS
M7618412	QUALITATIVE VARIABLE - JANUARY, 1976 TO DECEMBER, 1984
MJUN	QUALITATIVE VARIABLE - JUNE
MSEP	QUALITATIVE VARIABLE - SEPTEMBER
M7612	QUALITATIVE VARIABLE - DECEMBER, 1976
MSEP M7612 M775 M782 M783 M892 M928	QUALITATIVE VARIABLE - MAY, 1977
M782	QUALITATIVE VARIABLE - FEBRUARY, 1978
M783	QUALITATIVE VARIABLE - MARCH, 1978
M892	QUALITATIVE VARIABLE - FEBRUARY, 1989
M928	QUALITATIVE VARIABLE - AUGUST, 1992
м939	QUALITATIVE VARIABLE - SEPTEMBER, 1993
	QUALITATIVE VARIABLE - OCTOBER, 1993
M9310 M9311 M941 M943 M946 M9410 M969 M9611 M9611	QUALITATIVE VARIABLE - NOVEMBER, 1993
M941	QUALITATIVE VARIABLE - JANUARY, 1994
M943	QUALITATIVE VARIABLE - MARCH, 1994
м946	QUALITATIVE VARIABLE - JUNE, 1994
M9410	QUALITATIVE VARIABLE - OCTOBER, 1994
м969	QUALITATIVE VARIABLE - SEPTEMBER, 1996
м9611	QUALITATIVE VARIABLE - NOVEMBER, 1996
M9711	QUALITATIVE VARIABLE - NOVEMBER, 1997
м958	QUALITATIVE VARIABLE - AUGUST, 1995
AND:	
<b>KWHOPALWPNS@CGE</b>	KWH SALES - OPA LESS WATER PUMPING
E90X@CGE	SERVICE AREA EMPLOYMENT - STATE AND LOCAL GOVERNMENT
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS
DS@KWH@OPA@CGE	SERVICE AREA DS RATE FOR USAGE FOR OTHER PUBLIC AUTHORITIES CUSTOMER
APGOPA@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR OPA CUSTOMER

FORECAST EQUATION:

1>KWHOPALWPNS@CGE=EXP(<3.0096>+PDL(LE90X@CGE,1,2,FAR,<0.75681,0.3784>) && 2>+PDL(LDS@KWH@OPA@CPI,1,2,FAR,<-0.17035,-0.085177>) && 3>+PDL(LDS@KWH@OPA@APG,1,6,FAR,<-0.032617,-0.027181,-0.021745,-0.016309, 4>-0.010872,-0.0054362>) && 5>+<0.00033534>*(CDDB*M7618412)+<0.00054793>*(CDDB*(1-M7618412)) && 6>+<0.00015136>*(HDDB*M7618412)+<0.00013133>*(HDDB*(1-M7618412)) && 7>+<0.029912>*MJUN+<0.041976>*MSEP+KWHOPALWPNS@CGE@AR1)

KWH SALES - OTHER PUBLIC AUTHORITIES: WATER PUMPING **REGRESSION RESULTS:** ORDINARY LEAST SQUARES FREQUENCY: M INTERVAL: 1976:1 TO 1997:12 (264 OBS.) DEPENDENT VARIABLE: LKWHOPAWPNS@CGE COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE PDL (LCUSRESNS@CGE, 1, 2, FAR) 0) \0 0.53537 0.02629 *+ 0.26769 0.013145 + 1 LAG SUM: 0.80306 STD. ERR.: 0.039436 MEAN LAG: 0.33333 PDL (LDS@KW@OPA@CPI, 1, 2, FAR) 1) -0.032558 0.0079741 \0 -0.016279 0.0039871 + *+ \1 LAG SUM: -0.048837 STD. ERR.: 0.011961 MEAN LAG: 0.33333 (MMAY+MJUN+MJUL+MAUG+MSEP) * (PRC+PRC\1) 2) -0.0095175 0.0016215 -5.8697 -0.0052336 0.002296 -2.2795 0.00038223 0.000077084 4.9586 0.000057184 0.000027217 2.101  $(MNOV+MOCT+MAPR) \bullet (PRC+PRC \1)$ 3) -0.0052336 CDD 4) (MDEC+MJAN+MFEB+MMAR+MAPR) *HDD 5) 11.517 0.5157 MJAN 6) 5.9392 7) 5.8591 0.51446 11.389 MFEB 8) 5.9151 0.51352 11.519 MMAR 11.581 9) 5.9431 0.51316 MAPR 10) 6.0431 0.51074 11.832 MMAY 6.0803 0.51194 11.877 MJUN 11) 12) 6.1025 0.51288 11.898 MJUL 13) 0.51234 11.931 MAUG 6.1126 6.0953 0.51127 11.922 MSEP 14) 15) 6.0226 0.51143 11.776 MOCT 16) 5.9687 0.51183 11.661 MNOV 11.443 5.8925 0.51496 MDEC 17) 18) 0.17615 0.022074 7.9802 SUMMER885888 0.043989 M789 19) 0.46039 10.466 20) 0.12455 0.043445 2.8668 M8011 0.7882 0.044582 17.68 M826 21) -3.6706 22) -0.16184 0.04409 M9111 -4.1166 23) -0.17864 0.043395 M9112 24) -0.29605 0.044325 -6.679 M926 25) -0.22915 0.043715 -5.2419 M927 0.04332 26) -0.18353 -4.2365 M923 27) -0.22951 0.044082 -5.2063 M937 0.044128 28) -0.16766 -3.7994 M968 -2.1347M972 29) -0.093054 0.043592 30) 0.22624 0.044217 5.1167 M9710 R-BAR SQUARED:0.894 DURBIN-WATSON:1.71 STANDARD ERROR:0.042186 NORMALIZED:0.0025455

KWH SALES - OTHER PUBLIC AUTHORITIES: WATER PUMPING

WHERE :	
LKWHOPAWPNS@CGE	=LOG(KWHOPAWPNS@CGE)
LCUSRESNS@CGE	•
LDS@KW@OPA@CPI	=LOG (DS@KW@OPA@CGE/CPI)
PRC	PRECIPITATION
CDD	ACTUAL COOLING DEGREE DAYS
HDD	ACTUAL HEATING DEGREE DAYS
MJAN	QUALITATIVE VARIABLE - JANUARY
MFEB	QUALITATIVE VARIABLE - FEBRUARY
MMAR	QUALITATIVE VARIABLE - MARCH
MAPR	QUALITATIVE VARIABLE - APRIL
MMAY	OUALITATIVE VARIABLE - MAY
MJUN	QUALITATIVE VARIABLE - JUNE
MJUL	QUALITATIVE VARIABLE - JULY
MAUG	QUALITATIVE VARIABLE - AUGUST
MSEP	QUALITATIVE VARIABLE - SEPTEMBER
MOCT	QUALITATIVE VARIABLE - OCTOBER
MNOV	QUALITATIVE VARIABLE - NOVEMBER
MDEC	QUALITAITVE VARIABLE - DECEMBER
SUMMER885888	QUALITATIVE VARIABLE - MAY, 1988 THRU AUG, 1988
M789	QUALITATIVE VARIABLE - SEPTEMBER, 1978
M8011	QUALITATIVE VARIABLE - NOVEMBER, 1980
M826	QUALITATIVE VARIABLE - JUNE, 1982
M9111	QUALITATIVE VARIABLE - NOVEMBER, 1991
M9112	QUALITATIVE VARIABLE - DECEMBER, 1991
M926	QUALITATIVE VARIABLE - JUNE, 1992
M927	QUALITATIVE VARIABLE - JULY, 1992
M923	QUALITATIVE VARIABLE - MARCH, 1992
M937	QUALITATIVE VARIABLE - JULY, 1993
M968	QUALITATIVE VARIABLE - AUGUST, 1996
M972	QUALITATIVE VARIABLE - FEBRUARY, 1997
M9710	QUALITATIVE VARIABLE - OCTOBER, 1997
AND :	
KWHOPAWPNS@CGE	KWH SALES - OPA WATER PUMPING
CUSRESNS@CGE	SERVICE AREA ELECTRIC CUSTOMERS - RESIDENTIAL
DS@KW@OPA@CGE	SERVICE AREA DS RATE FOR DEMAND FOR OTHER PUBLIC AUTHORITIES CUSTOMER

CPI

FORECAST EQUATION:

1>KWHOPAWPNS@CGE=EXP(PDL(LCUSRESNS@CGE,1,2,FAR,<0.53537,0.26769>)&&
2>+PDL(LDS@KW@OPA@CPI,1,2,FAR,<-0.032558,-0.016279>)&&
3>+<-0.0095175>*((MMAY+MJUN+MJUL+MAUG+MSEP)*(PRECIP+PRECIP\1))&&
4>+<-0.0052336>*((MNOV+MOCT+MAPR)*(PRECIP+PRECIP\1))
5>+<0.00038223>*CDD&&
6>+<0.000057184>*((MDEC+MJAN+MFEB+MMAR+MAPR)*HDD)&&
7>+<5.9392>*MJAN+<5.891>*MFEB+<5.9151>*MMAR+<5.9431>*MAPR+<6.0431>*MMAY&&
8>+<6.0803>*MJUN+<6.1025>*MJUL+<6.1126>*MAUG+<6.0953>*MSEP+<6.0226>*MOCT&&
9>+<5.9687>*MNOV+<5.8925>*MDEC)

CONSUMER PRICE INDEX (ALL URBAN) ~ ALL ITEMS

KWH SALES - OTHER PUBLIC UTILITIES : BETHEL, OHIO

•

REGRESSION RESULTS:

ORDINARY LEAST SQUARES _____

FREQUENCY: M INTERVAL: 1976:1 TO 1997:12 (264 OBS.) DEPENDENT VARIABLE: LKWHOPUBETHELNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

1)	0.4275	0.051806	8.252	LKWHRESNS@CGE
2)	0.45928	0.038062	12.067	LKWHCOMNS@CGE
3)	0.000091674	0.000032746	2.7995	HDDB
4)	-3.2412	0.44401	-7.2997	MJAN
5)	-3.1842	0.44255	-7.1952	MFEB
6)	-3.3219	0.44101	-7.5325	MMAR
7)	-3.2273	0.43767	-7.3738	MAPR
8)	-3.2528	0.43466	-7.4834	MMAY
9)	-3.3212	0.44021	-7.5447	MJUN
10)	-3.3915	0.44967	-7.5421	MJUL
11)	-3.3634	0.45158	-7.4481	MAUG
12)	-3.3689	0.44745	-7.529	MSEP
13)	-3.2798	0.43542	-7.5324	MOCT
14)	-3.1723	0.43549	-7.2844	MNOV
15)	-3.2382	0.44103	-7.3423	MDEC
16)	-0.056086	0.0099926	-5.6127	GASR731796
17)	0.12941	0.045953	2.8161	M829
18)	0.13148	0.04549	2.8904	M834
19)	0.12939	0.045501	2.8437	M836
20)	0.15973	0.045319	3.5246	M843
	-0.16032		-3.5397	M945
22)	0.18661	0.045377	4.1124	M948
23)	-0.21069	0.045549	-4.6255	M949
24)	-0.11145	0.04543	-2.4533	M9710

R-BAR SQUARED:0.96589 DURBIN-WATSON:2.11 STANDARD ERROR:0.044024 NORMALIZED:0.0030711

WHERE :	
LKWHCOMNS@CGE	=LOG (KWHCOMNS@CGE)
LECOM@CGE	=LOG (ECOM@CGE)
LDS@KWH@COM@CPI	=LOG (DS@KWH@COM@CGE/CPI)
LRAPGCOM@CGE	=LOG (APGCOM@CGE/CPI)
HDDB	BILLING HEATING DEGREE DAYS
CDDB	BILLING COOLING DEGREE DAYS QUALITATIVE VARIABLE - JANUARY
MJAN	QUALITATIVE VARIABLE - JANUARY
MFEB	QUALITATIVE VARIABLE – FEBRUARY
MMAR	QUALITATIVE VARIABLE - MARCH
MMAR MAPR MJUR MJUL MAUG MSEP MOCT MNOV	QUALITATIVE VARIABLE - APRIL
MMAY	QUALITATIVE VARIABLE - MAY
MJUN	QUALITATIVE VARIABLE - JUNE
MJUL	QUALITATIVE VARIABLE - JULY
MAUG	QUALITATIVE VARIABLE - JULY QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - SEPTEMBER
MSEP	QUALITATIVE VARIABLE - SEPTEMBER
MOCT	QUALITATIVE VARIABLE - OCTOBER
MDEC M7511 M7711 M805 M806	QUALITAITVE VARIABLE - DECEMBER
M7511	QUALITATIVE VARIABLE - NOVEMBER, 1975
M7711	QUALITATIVE VARIABLE - NOVEMBER, 1977
M805	QUALITATIVE VARIABLE - MAY, 1980
M806	QUALITATIVE VARIABLE - JUNE, 1980
MB06 MB17 MB49 M9111 M914 M927 M938 M939 M9310	QUALITATIVE VARIABLE - JULY, 1981
M849	QUALITATIVE VARIABLE - SEPTEMBER, 1984
м9111	QUALITATIVE VARIABLE - NOVEMBER, 1991
M914	QUALITATIVE VARIABLE - APRIL, 1991
м927	QUALITATIVE VARIABLE - JULY, 1992
м938	QUALITATIVE VARIABLE - AUGUST, 1993
м939	QUALITATIVE VARIABLE - SEPTEMBER, 1993
м9310	QUALITATIVE VARIABLE - OCTOBER, 1993
MJJ4	QUALITATIVE VARIABLE - APRIL, 1995
м956	QUALITATIVE VARIABLE - JUNE, 1995
м972	QUALITATIVE VARIABLE - FEBRUARY, 1997
м973	QUALITATIVE VARIABLE - MARCH, 1997
м977	QUALITATIVE VARIABLE - JULY, 1997
AND :	
KWHCOMNS@CGE	KWH SALES - COMMERCIAL
ECOMPCGE	SERVICE AREA EMPLOYMENT - COMMERCIAL

KWHCOMNS@CGE	KWH SALES - COMMERCIAL
ECOM@CGE	SERVICE AREA EMPLOYMENT - COMMERCIAL
DS@KWH@COM@CGE	SERVICE AREA DS RATE FOR USAGE FOR COMMERCIAL
	CUSTOMER
APGCOM@CGE	SERVICE AREA AVERAGE PRICE OF GAS FOR COMMERCIAL CUSTOMER
CPI	CONSUMER PRICE INDEX (ALL URBAN) - ALL ITEMS

FORECAST EQUATION:

1>KWHOPUBETHELNS@C=EXP(<0.42154>*LKWHRESNS@CGE&& 2>+<0.46739>*LKWHCOMNS@CGE&& 3>+<0.000097568>*HDDB&& 4>+<-3.2893>*MJAN+<-3.2279>*MFEB+<-3.3683>*MMAR+<-3.2689>*MAPR&& 5>+<-3.2958>*MMAY+<-3.3626>*MJUN+<-3.43>*MJUL+<-3.4068>*MAUG&& 6>+<-3.4082>*MSEP+<-3.3223>*MOCT+<-3.2141>*MNOV+<-3.2802>*MDEC) KWH SALES - OTHER PUBLIC UTILITIES : BLANCHESTER, OHIO

**REGRESSION RESULTS:** 

ORDINARY LEAST SQUARES

FREQUENCY: M INTERVAL: 1975:1 TO 1997:12 (276 OBS.) DEPENDENT VARIABLE: LKWHOPUBLANCNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	2.9897 2.9705 3.0211 3.127 3.048 -0.017924 0.11626 -0.11816 0.1284 -0.091804	0.032488 0.000028476 0.37467 0.37348 0.37247 0.36996 0.36775 0.37243 0.38033 0.38194 0.37829 0.36868 0.36827 0.37243 0.0084918 0.040576 0.040451 0.040413 0.040487	5.3232 6.8723 8.0759 8.2705 7.9997 8.3279 8.2604 8.1044 7.711 7.8277 7.8526 8.1943 8.4911 8.184 -2.1107 2.8651 -2.9211 3.1773 -2.2675	LOG (KWHRESNS@CGE) LOG (KWHCOMNS@CGE) HDDB MJAN MFEB MMAR MAPR MMAY MJUN MJUL MAUG MSEP MOCT MNOV MDEC GASR731796 M785 M826 M843 M914
20) 21)	-0.091804 -0.1167		-2.2675 -2.8716	

R-BAR SQUARED:0.9594 DURBIN-WATSON:1.98 STANDARD ERROR:0.039314

NORMALIZED:0.0026245

KWH SALES - OTHER PUBLIC UTILITIES : BLANCHESTER, OHIO

WHERE :				
LKWHOPUBLANCNS@C	=LOG (KWHOPUBLANCNS@C)			
KWHRESNS@CGE	KWH SALES - RESIDENTIAL			
KWHCOMNS@CGE	KWH SALES - COMMERCIAL			
HDDB	BILLING HEATING DEGREE DAYS			
MJAN	QUALITATIVE VARIABLE - JANUARY			
MFEB	QUALITATIVE VARIABLE - FEBRUARY			
MMAR	QUALITATIVE VARIABLE - MARCH			
MAPR	QUALITATIVE VARIABLE - APRIL			
MMAY	QUALITATIVE VARIABLE - MAY			
MJUN	QUALITATIVE VARIABLE - JUNE			
MJUL	QUALITATIVE VARIABLE - JULY			
MAUG	QUALITATIVE VARIABLE - AUGUST			
MSEP	QUALITATIVE VARIABLE - SEPTEMBER			
MOCT	QUALITATIVE VARIABLE - OCTOBER			
MNOV	QUALITATIVE VARIABLE - NOVEMBER			
MDEC	QUALITAITVE VARIABLE - DECEMBER			
GASR731796	QUALITATIVE VARIABLE - JANUARY, 1973 TO JUNE, 1979			
	- GAS HOOKUP RESTRICTION			
M785	QUALITATIVE VARIABLE - MAY, 1978			
M826	QUALITATIVE VARIABLE - JUNE, 1982			
M843	QUALITATIVE VARIABLE - MARCH, 1984			
M914	QUALITATIVE VARIABLE - APRIL, 1991			
M9310	QUALITATIVE VARIABLE - OCTOBER, 1993			
M956	QUALITATIVE VARIABLE - JUNE, 1995			
AND :				

L

KWHOPUBLANCNS@C KWH SALES - OTHER PUBLIC UTILITIES - BLANCHESTER

FORECAST EQUATION:

1>KWHOPUBLANCNS@C=EXP(<0.4242>*LOG(KWHRESNS@CGE)&& 2>+<0.17294>*LOG (KWHCOMNS@CGE) && 3>+<0.0001957>*HDDB&& 4>+<3.0258>*MJAN+<3.0889>*MFEB+<2.9796>*MMAR+<3.081>*MAPR+<3.0378>*MMAY&& 5>+<3.0184>*MJUN+<2.9327>*MJUL+<2.9897>*MAUG+<2.9705>*MSEP+<3.0211>*MOCT&& 6>+<3.127>*MNOV+<3.048>*MDEC)

KWH SALES - OTHER PUBLIC UTILITIES : GEORGETOWN, OHIO

**REGRESSION RESULTS:** 

ORDINARY LEAST SQUARES -----

FREQUENCY: M INTERVAL: 1976:1 TO 1997:12 (264 OBS.) DEPENDENT VARIABLE: LKWHOPUGTOWNNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) 1) 2)	1.5645 0.40206 0.25402	0.46046 0.027474 0.030314	3.3978 14.635 8.3796	CONSTANT LKWHRESNS@CGE LKWHCOMNS@CGE
2) 3)	0.00027941			M6518712*HDDB
4)	0.0002926	0.000015303		(1-M6518712) *HDDB
5)	0.0000887	0.000046373	1.9127	(1-M6518712) *CDDB
6)	-0.024955	0.0090989	-2.7426	GASR731796
7)	-0.10556	0.0104	-10.15	MMAR
8)	-0.034132	0.011501	-2.9676	MJUL
9)	-0.043189	0.011085	-3.8963	MSEP
10)	0.056328	0.010094	5.5804	MNOV
11)	0.090022	0.042131	2.1367	M788
12)	0.097313	0.041112	2.367	M834
13)	0.14156	0.042028	3.3683	M843
14)	0.10407	0.04252	2.4477	M937
15)	0.14341	0.042219	3.3968	M939
16)	0.20795	0.042085	4.9411	м943
17)	0.12097	0.041282	2.9304	M946
18)	0.16284	0.041568	3.9174	M948
19)	0.14527	0.041461	3.5038	M952
20)	0.12918	0.04109	3.1438	M955
21)	0.11447	0.042369	2.7017	M959
22)	0.10446	0.041496	2.5174	M9510
23)	0.13715	0.042006	3.265	M9511
24)	0.12871	0.041527	3.0994	M962
25)	0.095203	0.042149	2.2587	M963
26)	0.11551	0.041306	2.7965	M965
27)	0.094108	0.042032	2.239	M967
28) 29)	0.12138 0.091685	0.042122 0.042135	2.8815	M9611
29) 30)	0.091885	0.042135	2.176 2.2767	M973
30)	0.15344	0.041422	2.2/6/ 3.6517	M975
32)	0.10814	0.04202	2.5566	M978 M979
33)	0.12582	0.041675	3.0192	M979 M9710
557	0.12302	0.0410/2	5.0192	M9/10

R-BAR SQUARED:0.96688 DURBIN-WATSON: 2.13 STANDARD ERROR: 0.0407 NORMALIZED: 0.0027641

WHI	WHERE:				
	LKWHOPUGTOWNNS@C	=LOG (KWHOPUGTOWNNS@C)			
	LKWHRE SNS@CGE	=LOG (KWHRESNS@CGE)			
	LKWHCOMNS@CGE	=LOG (KWHCOMNS@CGE)			
	HDDB	BILLING HEATING DEGREE DAYS			
	M6518712	QUALITATIVE VARIABLE - JANUARY, 1965 TO DECEMBER, 1987			
	CDDB	BILLING COOLING DEGREE DAYS			
	GASR731796	QUALITATIVE VARIABLE - JANUARY, 1973 TO JUNE, 1979 - GAS HOOKUP RESTRICTION			
	MMAR	QUALITATIVE VARIABLE - MARCH			
	MJUL	QUALITATIVE VARIABLE - JULY			
	MSEP	QUALITATIVE VARIABLE - SEPTEMBER			
	MNOV	QUALITATIVE VARIABLE - NOVEMBER			
	M788	QUALITATIVE VARIABLE - AUGUST, 1978			
	MMAR MJUL MSEP MNOV M788 M834 M843	QUALITATIVE VARIABLE - APRIL, 1983			
	M843	QUALITATIVE VARIABLE - MARCH, 1984			
	м937	QUALITATIVE VARIABLE - JULY, 1993			
	M843 M937 M939 M943 M946 M948 M952 M955 M959 M9510 M9511 M962 M963 M963 M965 M967 M9611 M973 M973 M975	QUALITATIVE VARIABLE - SEPTEMBER, 1993			
	M943	QUALITATIVE VARIABLE - MARCH, 1994			
	M946	QUALITATIVE VARIABLE - JUNE, 1994			
	M948	QUALITATIVE VARIABLE - AUGUST, 1994			
	м952	QUALITATIVE VARIABLE - FEBRUARY, 1995			
	M955	QUALITATIVE VARIABLE - MAY, 1995			
	M959	QUALITATIVE VARIABLE - SEPTEMBER, 1995			
	M9510	QUALITATIVE VARIABLE - OCTOBER, 1995			
	M9511	QUALITATIVE VARIABLE - NOVEMBER, 1995			
	м962	QUALITATIVE VARIABLE - FEBRUARY, 1996			
	м963	QUALITATIVE VARIABLE - MARCH, 1996			
	м965	QUALITATIVE VARIABLE - MAY, 1996			
	M967	QUALITATIVE VARIABLE - JULY, 1996			
	M9611	QUALITATIVE VARIABLE - NOVEMBER, 1996			
	M973	QUALITATIVE VARIABLE - MARCH, 1997			
	M975	QUALITATIVE VARIABLE - MAY, 1997			
	M978 M979	QUALITATIVE VARIABLE - AUGUST, 1997			
	M979	QUALITATIVE VARIABLE - SEPTEMBER, 1997			
	M9710	QUALITATIVE VARIABLE - OCTOBER, 1997			
1	AND :				
	KWHOPUGTOWNNS@C				
	KWHRESNS@CGE	KWH SALES - RESIDENTIAL			
	KWHCOMNS@CGE	KWH SALES - COMMERCIAL			

#### FORECAST EQUATION:

1>KWHOPUGTOWNNS@C=EXP(<1.5645>+<0.40206>*LKWHRESNS@CGE&& 2>+<0.25402>*LKWHCOMNS@CGE+<0.00027941>* (M6518712*HDDB) && 3>+<0.0002926>*((1-M6518712)*HDDB)+<0.0000887>*((1-M6518712)*CDDB) && 4>+<-0.024955>*GASR731796+<-0.10556>*MMAR+<-0.034132>*MJUL&& 5>+<-0.043189>*MSEP+<0.056328>*MNOV)

KWH SALES - OTHER PUBLIC UTILITIES : HAMERSVILLE, OHIO

.

.

REGRESSION RESULTS:

ORDINARY LEAST SQUARES

FREQUENCY: M INTERVAL: 1982:1 TO 1997:12 (192 OBS.) DEPENDENT VARIABLE: LKWHOPUHAMERSNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) -6.2597	0.56527	-11.074	CONSTANT
1) 0.48772	0.065929	7.3977	LOG (KWHRESNS@CGE)
2) 0.45604	0.049159	9.2767	LOG (KWHCOMNS@CGE)
3) 0.00033725	0.000035473	9.5071	HDDB
4) -0.08378	0.0163	-5.1398	MJAN
5) -0.081112	0.01448	-5.6018	MMAR
6) 0.054486	0.014035	3.8821	MAPR
7 ) -0.078114	0.017934	-4.3555	MJUN
8 ) -0.16635	0.029801	-5.582	MJUL
9 ) -0.13108	0.031782	-4.1244	MAUG
10) -0.097715	0.025287	-3.8643	MSEP
11) 0.11299	0.014001	8.0698	MNOV
12) 0.10613	0.050595	2.0977	M821
13) 0.11323	0.050426	2.2455	M843
14) -0.1477	0.049243	-2.9994	M9212
15) 0.12296	0.050211	2.4489	M944
16) -0.24284	0.049457	-4.9102	M945
17) 0.12636	0.050452	2.5046	M948
18) -0.13033	0.050481	-2.5818	M949
19) 0.17409	0.049196	3.5387	м955
20) 0.13832	0.049623	2.7875	M9510

R-BAR SQUARED:0.96143 DURBIN-WATSON:1.94 STANDARD ERROR:0.048469

NORMALIZED:0.0038293

KWH SALES - OTHER PUBLIC UTILITIES : HAMERSVILLE, OHIO

WHERE	;

<b>L</b>		
	LKWHOPUHAMERSNS@C	=LOG (KWHOPUHAMERSNS@C)
	KWHRESNS@CGE	KWH SALES - RESIDENTIAL
	KWHCOMNS@CGE	KWH SALES - COMMERCIAL
	HDDB	BILLING HEATING DEGREE DAYS
	MJAN	QUALITATIVE VARIABLE - JANUARY
	MMAR	QUALITATIVE VARIABLE - MARCH
	MAPR	QUALITATIVE VARIABLE - APRIL
	MJUN	QUALITATIVE VARIABLE - JUNE
	MJUL	QUALITATIVE VARIABLE - JULY
	MAUG	QUALITATIVE VARIABLE - AUGUST
	MSEP	QUALITATIVE VARIABLE - SEPTEMBER
	MNOV	QUALITATIVE VARIABLE - NOVEMBER
	M821	QUALITATIVE VARIABLE - JANUARY, 1982
	M843	QUALITATIVE VARIABLE - MARCH, 1984
	M9212	QUALITATIVE VARIABLE - DECEMBER, 1992
	M944	QUALITATIVE VARIABLE - APRIL, 1994
	M945	QUALITATIVE VARIABLE - MAY, 1994
	M948	QUALITATIVE VARIABLE - AUGUST, 1994
	M949	QUALITATIVE VARIABLE - SEPTEMBER, 1994
	м955	QUALITATIVE VARIABLE - MAY, 1995
	M9510	QUALITATIVE VARIABLE - OCTOBER, 1995

AND:

KWHOPUHAMERSNS@C KWH SALES - OTHER PUBLIC UTILITIES

FORECAST EQUATION:

EKWHOPUHAMERSNS@C 1>KWHOPUHAMERSNS@C=EXP(<-6.2597>&& 2>+<0.48772>*LOG(KWHRESNS@CGE)&& 3>+<0.45604>*LOG(KWHCOMNS@CGE)&& 4>+<0.00033725>*HDDB&& 5>+<-0.08378>*MJAN+<-0.081112>*MMAR+<0.054486>*MAPR+<-0.078114>*MJUN&& 6>+<-0.16635>*MJUL+<-0.13108>*MAUG+<-0.097715>*MSEP+<0.11299>*MNOV) KWH SALES - OTHER PUBLIC UTILITIES : LEBANON, OHIO

REGRESSION RESULTS:

LEAST SQUARES WITH 2ND ORDER AUTOCORRELATION CORRECTION 

FREQUENCY: M INTERVAL: 1985:1 TO 1997:12 (156 OBS.) DEPENDENT VARIABLE: LKWHOPULEBANONNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

1)	0.25808	0.056358	4.5794	LKWHRESNS@CGE
2)	0.70774	0.053817		LKWHCOMNS@CGE
3)	-3.1837	0.6154	-5.1733	MJAN
4)	-3.1157	0.61317	-5.0813	MFEB
5)	-3.2824	0.60997	-5.3813	MMAR
6)	-3.1971	0.6062	-5.2739	MAPR
7)	-3.2692	0.60232	-5.4277	MMAY
8)	-3.2676	0.60685	-5.3846	MJUN
9)	-3.2867	0.61424	-5.3509	MJUL
10)	-3.2747	0.61485	-5.326	MAUG
11)	-3.2854	0.61168	-5.3711	MSEP
12)	-3.2884	0.60323	-5.4513	MOCT
13)	-3.1565	0.60461	-5.2207	MNOV
14)		0.61151		MDEC
15)	-0.15446	0.039513	-3.9091	M8511
16)	-0.38718	0.037472	-10.333	M8512
17)	-0.23743	0.039236	-6.0513	M861
18)	-0.16849	0.039043	-4.3156	M868
19)	0.11365	0.03922	2.8977	M8610
20)	-0.12848	0.0373	-3.4446	M871
21)	-0.1602	0.038885	-4.1198	M872
22)	0.26868	0.039276	6.8407	M874
23)	0.32378	0.037246	8.693	M875
24)	-0.098852	0.036898	-2.6791	M889
25)	-0.10189	0.037997	-2.6816	M914
26)			-2.0319	M936
27)				M9310
28)	-0.091389			M9411
29)	-0.14773	0.040673		M954
30)	0.15133	0.037572	4.0276	м955
31)	-0.12835	0.039424	-3.2556	M956
32)	0.11197	0.037279	3.0035	M968
33)	-1.1131	0.037319	-29.826	M977
34)	-0.42749	0.039234	-10.896	M978
35)	0.094462		2.4105	M9710
36)	-0.1706	0.08496	-2.008	RH01
37)	0.33026	0.087047	3.7941	RHO2

R-BAR SQUARED:0.95722 DURBIN-WATSON: 2.07 STANDARD ERROR:0.037708 NORMALIZED:0.0023581

KWH SALES - OTHER PUBLIC UTILITIES : LEBANON, OHIO

THEDE	٠
HILD CAD	٠

RE :		
	LKWHOPULEBANONNS@C	=LOG (KWHOPULEBANONNS@C)
	LKWHRESNS@CGE	=LOG (KWHRESNS@CGE)
	LKWHCOMNS@CGE	=LOG (KWHCOMNS@CGE)
	MJAN	QUALITATIVE VARIABLE - JANUARY
	MFEB	QUALITATIVE VARIABLE - FEBRUARY
	MMAR	QUALITATIVE VARIABLE - MARCH
	MAPR	QUALITATIVE VARIABLE - APRIL
	MMAY	QUALITATIVE VARIABLE - MAY
	MJUN	QUALITATIVE VARIABLE - JUNE
	MJUL	QUALITATIVE VARIABLE - JULY
	MAUG	QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - SEPTEMBER
	MSEP	QUALITATIVE VARIABLE - SEPTEMBER
	MOCT	QUALITATIVE VARIABLE - OCTOBER
	MNOV	QUALITATIVE VARIABLE - NOVEMBER
	MDEC	QUALITAITVE VARIABLE - DECEMBER
	M8511	QUALITATIVE VARIABLE - NOVEMBER, 1985
	M8512	QUALITATIVE VARIABLE - DECEMBER, 1985
	M861	QUALITATIVE VARIABLE - JANUARY, 1986
	M868	QUALITATIVE VARIABLE - AUGUST, 1986
	M8610	QUALITATIVE VARIABLE - OCTOBER, 1986
	M871	QUALITATIVE VARIABLE - JANUARY, 1987
	M872	QUALITATIVE VARIABLE - FEBRUARY, 1987
	M874	QUALITATIVE VARIABLE - APRIL, 1987
	M875	QUALITATIVE VARIABLE - MAY, 1987
	M889	QUALITATIVE VARIABLE - SEPTEMBER, 1988
	M914	QUALITATIVE VARIABLE - APRIL, 1991
	м936	QUALITATIVE VARIABLE - JUNE, 1993
	м9310	QUALITATIVE VARIABLE - OCTOBER, 1993
	M9411	QUALITATIVE VARIABLE - NOVEMBER, 1994
	M954	QUALITATIVE VARIABLE - APRIL, 1995
	м955	QUALITATIVE VARIABLE - MAY, 1995
	M956	QUALITATIVE VARIABLE - JUNE, 1995
	M968	QUALITATIVE VARIABLE - AUGUST, 1996
	M977	QUALITATIVE VARIABLE - JULY, 1997
	M978	QUALITATIVE VARIABLE - AUGUST, 1997
	M9710	QUALITATIVE VARIABLE - OCTOBER, 1997
A	ND :	<pre>-LOG (KWHCSONS@CGE) -LOG (KWHCSONS@CGE) QUALITATIVE VARIABLE - JANUARY QUALITATIVE VARIABLE - FEBRUARY QUALITATIVE VARIABLE - MARCH QUALITATIVE VARIABLE - APRIL QUALITATIVE VARIABLE - APRIL QUALITATIVE VARIABLE - JULY QUALITATIVE VARIABLE - JULY QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE - SEPTEMBER QUALITATIVE VARIABLE - NOVEMBER QUALITATIVE VARIABLE - DECEMBER QUALITATIVE VARIABLE - DECEMBER QUALITATIVE VARIABLE - DECEMBER, 1985 QUALITATIVE VARIABLE - DECEMBER, 1985 QUALITATIVE VARIABLE - DECEMBER, 1985 QUALITATIVE VARIABLE - DECEMBER, 1986 QUALITATIVE VARIABLE - DECEMBER, 1986 QUALITATIVE VARIABLE - AUGUST, 1986 QUALITATIVE VARIABLE - AUGUST, 1986 QUALITATIVE VARIABLE - AUGUST, 1987 QUALITATIVE VARIABLE - MAY, 1987 QUALITATIVE VARIABLE - APRIL, 1987 QUALITATIVE VARIABLE - MAY, 1987 QUALITATIVE VARIABLE - MAY, 1987 QUALITATIVE VARIABLE - SEPTEMBER, 1988 QUALITATIVE VARIABLE - DURE, 1993 QUALITATIVE VARIABLE - DURE, 1993 QUALITATIVE VARIABLE - DURE, 1993 QUALITATIVE VARIABLE - DURE, 1993 QUALITATIVE VARIABLE - APRIL, 1995 QUALITATIVE VARIABLE - MAY, 1987 QUALITATIVE VARIABLE - MAY, 1995 QUALITATIVE VARIABLE - DOCTOBER, 1994 QUALITATIVE VARIABLE - DUNE, 1995 QUALITATIVE VARIABLE - MAY, 1997 QUALITATIVE VARIABLE - MAY, 1997 QUALITATIVE VARIABLE - JUNE, 1997 QUALITATIVE VARIABLE - AUGUST, 1997 QUALITATIVE VARIABLE - OCTOBER, 1997 QUALITATIVE VARIABLE - AUGUST, 1997 QUALITATIVE VARIABLE - AUGUST,</pre>
	KWHOPULEBANONNS@C	KWH SALES - OTHER PUBLIC UTILITIES - LEBANON
	KWHDESNSACCE	KWH SALES - RESTDENTIAL

KWHRESNS@CGE	
KWHCOMNS@CGE	

KWH SALES - RESIDENTIAL KWH SALES - COMMERCIAL

## FORECAST EQUATION:

EKWHOPULEBANONNS@C 1>KWHOPULEBANONNS@C=EXP(<0.38582>*LKWHRESNS@CGE&& 2>+<0.64172>*LKWHCOMNS@CGE&& 3>+<-4.4845>*MJAN+<-4.4091>*MFEB+<-4.5514>*MMAR+<-4.4658>*MAPR&& 4>+<-4.4964>*MMAY+<-4.5233>*MJUN+<-4.5603>*MJUL+<-4.5393>*MAUG&& 5>+<-4.5526>*MSEP+<-4.5181>*MOCT+<-4.4164>*MNOV+<-4.4834>*MDEC) KWH SALES - OTHER PUBLIC UTILITIES : RIPLEY, OHIO

**REGRESSION RESULTS:** 

ORDINARY LEAST SQUARES

FREQUENCY: M INTERVAL: 1979:1 TO 1997:12 (228 OBS.) DEPENDENT VARIABLE: LKWHOPURIPLEYNS@C

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

0) -0.039204	0.33582	-0.11674	CONSTANT
1) 0.32722	0.026184	12.497	LKWHRESNS@CGE
2) 0.37832	0.026392	14.335	LKWHCOMNS@CGE
3) 0.05476	0.014123	3.8773	MFEB
4) 0.063569	0.013264	4.7924	MNOV
5) -0.10087	0.022087	-4.567	M8378312
6) -0.18259	0.053151	-3.4353	м793
7) 0.11613	0.052928	2.1942	M834
8) -0.1862	0.054009	-3.4476	M842
9) -0.16307	0.052744	-3.0918	M863
	0.052735	-3.1245	M893
11) -0.15633	0.052695	-2.9667	M913
12) -0.1206	0.052793	-2.2844	M9212
13) -0.14069	0.052631	-2.6732	M934
14) -0.14868	0.05301	-2.8048	M935
15) -0.17091	0.052939	-3.2283	м936
16) -0.21859	0.053289	-4.1019	M9310
17) -0.19284	0.053082	-3.6328	M945
18) -0.15785	0.052923	-2.9827	M949
19) 0.092352	0.038378	2.4064	M952+M9511
20) -0.14107	0.052705	-2.6765	м953
21) 0.10783	0.053016	2.0338	M959
22) 0.20132	0.053091	3.792	M978

R-BAR SQUARED:0.90673 DURBIN-WATSON:1.80 STANDARD ERROR:0.052458

NORMALIZED:0.0037519

KWH SALES - OTHER PUBLIC UTILITIES : RIPLEY, OHIO

WHERE:

RE :		
	LKWHOPURIPLEYNS@C	≈LOG (KWHOPURIPLEYNS@C)
	LKWHRESNS@CGE	=log(kwhresns@cge)
	LKWHCOMNS@CGE	=LOG (KWHCOMNS@CGE)
	MFEB	QUALITATIVE VARIABLE - FEBRUARY
	MNOV	QUALITATIVE VARIABLE - NOVEMBER
	M8378312	QUALITATIVE VARIABLE - JULY, 1983 TO DECEMBER, 1983
	м793	QUALITATIVE VARIABLE - MARCH, 1979
	M834	QUALITATIVE VARIABLE - APRIL, 1983
	M842	QUALITATIVE VARIABLE - FEBRUARY, 1984
	м863	QUALITATIVE VARIABLE - MARCH, 1986
	м893	QUALITATIVE VARIABLE - MARCH, 1989
	м913	QUALITATIVE VARIABLE - MARCH, 1991
	м9212	QUALITATIVE VARIABLE - DECEMBER, 1992
	м934	QUALITATIVE VARIABLE - APRIL, 1993
	м935	QUALITATIVE VARIABLE - MAY, 1993
	м936	QUALITATIVE VARIABLE - JUNE, 1993
	м9310	QUALITATIVE VARIABLE - OCTOBER, 1993
	M945	QUALITATIVE VARIABLE - MAY, 1994
	M949	QUALITATIVE VARIABLE - SEPTEMBER, 1994
	м952	QUALITATIVE VARIABLE - FEBRUARY, 1995
	M9511	QUALITATIVE VARIABLE - NOVEMBER, 1995
	м953	QUALITATIVE VARIABLE - MARCH, 1995
	м959	QUALITATIVE VARIABLE - SEPTEMBER, 1995
	м978	QUALITATIVE VARIABLE - AUGUST, 1997
• •		
A	ND:	
		KWH SALES - OTHER PUBLIC UTILITIES - RIPLEY
	KWHRESNS@CGE	KWH SALES - RESIDENTIAL

FORECAST EQUATION:

1>KWHOPURIPLEYNS@C=EXP(<-0.039204>&& 2>+<0.32722>*LKWHRESNS@CGE&& 3>+<0.37832>*LKWHCOMNS@CGE&& 4>+<0.05476>*MFEB+<0.063569>*MNOV) SERVICE AREA SUMMER MW PEAK

REGRESSION RESULTS:

ORDINARY LEAST SQUARES -----

FREQUENCY: M INTERVAL: 1971:4 TO 1989:7 (220 OBS.) DEPENDENT VARIABLE: LOG (MWSPEAK)

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

1) 2)	-4.0294 -3.5488	0.31281 0.1652	-12.881 -21.482	MJUN MJUL+MAUG
ŝ,	0.96722	0.025713	37.616	MJUN*LSENDDAYS
4)	0.93218	0.011902	78.319	(MJUL+MAUG) *LSENDDAYS
5)	0.01003			TPMH*MJUN
6 )		0.0012095		TPMH* (MJUL+MAUG)
7)	0.0032659			TPMHL1 *MJUN
8)	0.0033325	0.00070082		TPMHL1* (MJUL+MAUG)
9)	0.0039527	0.0013999	2.8237	TAM*MJUN
10)	0.0037529	0.0008198		TAM* (MJUL+MAUG)
11)	0.0028717	0.00077624	3.6995	HUM*MJUN
12)	0.00064929	0.00031633	2.0526	HUM* (MJUL+MAUG)
13)		0.000061773		JULY4WKALT*TPMH
14)	0.00063724	0.000080203	7.9454	MAUGEND * TPMH
	-0.060662			M715
		0.028399		M717
17)	-0.069015	0.025833	-2.6716	
18)	-0.067137	0.026479	-2.5355	M766
	-0.11709		* · · = = *	M801
	0.061363		2.3587	M822
	0.064487		2.5071	M823
	-0.072714		-2.7731	
	0.052793		2.0207	M8412
•	-0.056399	0.026502	-2.1281	M858
	0.078284	0.026068	3.0031	M875
	0.09443	0.025845	3.6538	M876
	0.052699		2.044	M877
	0.079331		3.0584	M878
-	0.080692 0.088209	0.025891 0.025824	3.1166	M879
•	-0.06002	0.025824	3.4158	M8711
31)	-0.00002	0.02000	-2.3031	м895

R-BAR SQUARED:0.97969 DURBIN-WATSON:1.21 STANDARD ERROR: 0.025458 NORMALIZED: 0.003124

#### SERVICE AREA SUMMER MW PEAK

WHERE:

SERVICE AREA MW PEAK - SUMMER MWSPEAK LSENDDAYS =LOG (MWHSENDNORMNS@CGE/DAYS) TPMH\1 TPMHL1 MINIMUM HOURLY TEMPERATURE - MORNING TAM QUALITATIVE VARIABLE - JUNE MJUN HUMIDITY - AFTERNOON HUM QUALITATIVE VARIABLE - JULY MJUL QUALITATIVE VARIABLE - AUGUST QUALITATIVE VARIABLE FOR THE WEEK OF JULY 4TH MAUG JULY4WKALT QUALITATIVE VARIABLE FOR THE END OF AUGUST MAUGEND MAXIMUM HOURLY TEMPERATURE - AFTERNOON QUALITATIVE VARIABLE - MAY, 1971 QUALITATIVE VARIABLE - JULY, 1971 TPMH M715 M717 QUALITATIVE VARIABLE - OCTOBER, 1972 M7210 QUALITATIVE VARIABLE - JUNE, 1976 QUALITATIVE VARIABLE - JANUARY, 1980 M766 M801 QUALITATIVE VARIABLE - FEBRUARY, 1982 QUALITATIVE VARIABLE - FEBRUARY, 1982 QUALITATIVE VARIABLE - MARCH, 1982 QUALITATIVE VARIABLE - NOVEMBER, 1984 M822 M823 M8411 M8412 QUALITATIVE VARIABLE - DECEMBER, 1984 QUALITATIVE VARIABLE - AUGUST, 1985 QUALITATIVE VARIABLE - MAY, 1987 M858 M875 QUALITATIVE VARIABLE - JUNE, 1987 M876 QUALITATIVE VARIABLE - JULY, 1987 QUALITATIVE VARIABLE - JULY, 1987 QUALITATIVE VARIABLE - AUGUST, 1987 QUALITATIVE VARIABLE - SEPTEMBER, 1987 M877 M878 M879 QUALITATIVE VARIABLE - NOVEMBER, 1987 M8711 QUALITATIVE VARIABLE - MAY, 1989 M895 AND :

MWHSENDNORMNS@CGE MWH SENDOUT - WEATHER NORMALIZED DAYS NUMBER OF DAYS IN THE MONTH

FORECAST EQUATION:

1>MWSPEAK=EXP(<-3.5488>&& 2>+<0.93218>*LOG(MWHSENDNS@CGE/31)&& 3>+<0.010459>*TPMH&& 4>+<0.0033325>*TPMHL1&& 5>+<0.0037529>*TAM&& 6>+<0.00064929>*HUMIDITY) SERVICE AREA WINTER MW PEAK

**REGRESSION RESULTS:** 

ORDINARY LEAST SQUARES

FREQUENCY: M INTERVAL: 1975:4 TO 1985:2 (119 OBS.) DEPENDENT VARIABLE: LOG(MWWPEAK)

COEFFICIENT STD.ERROR T-STAT INDEPENDENT VARIABLE

1) -1.522	0.15508	-9.8144	AMPEAK*MDEC
2) -1.6454	0.15704	-10.478	AMPEAK*MJAN
3) -1.6053	0.15554	-10.321	AMPEAK*MFEB
4) 0.88821			AMPEAK* (MDEC+MJAN+MFEB) *LSENDDAYS
5) -0.0053279	0.0011625	-4.5833	TEMPAMBLO@0*TEMPAM*MDEC*AMPEAK
6) -0.006196	0.0016252	-3.8125	(1-TEMPAMBLO@0) *TEMPAM*MDEC*AMPEAK
7 ) $-0.0060219$	0.00087915	-6.8497	TEMPAMBLO@0*TEMPAM*MJAN*AMPEAK
8) -0.0041116	0.0010779	-3.8145	
9) -0.0035267	0.00061921	-5.6955	TEMPAM*MFEB*AMPEAK
10) 0.0013696	0.00072876	1.8793	WINDAM*AMPEAK*MJAN
11) -0.00084088	0.00041138	-2.044	TEMPPML1 * AMPEAK
12) -3.0691	0.48774	-6.2924	PMPEAK*MDEC
13) -1.2707	0.29456	-4.3139	PMPEAK*MJAN
14) -1.2356	0.29153	-4.2383	PMPEAK*MFEB
15) 1.0296	0.045219	22.769	PMPEAK*LSENDDAYS*MDEC
16) 0.855	0.026805	31.898	PMPEAK*LSENDDAYS● (MJAN+MFEB)
17) -0.0062746	0.00081425	-7.706	TEMPPM*PMPEAK* (MDEC+MFEB)
18) -0.0073107	0.0007465	-9.7933	TEMPPM*PMPEAK*MJAN
19) -0.077575	0.011938	-6.498	XMAS*AMPEAK
20) -0.068725	0.021188	-3.2437	M777
21) -0.053074	0.02137	-2.4835	M7711
22) -0.059197	0.023506	-2.5183	м786
23) 0.037981	0.008317	4.5667	M788+M768+M802+M815+M827+M845+M846

R-BAR SQUARED:0.98263 DURBIN-WATSON:1.48 STANDARD ERROR:0.019773

NORMALIZED:0.0024652

#### SERVICE AREA WINTER MW PEAK

WHERE:

RE:	
MWWPEAK	SERVICE AREA MW PEAK - WINTER QUALITATIVE VARIABLE - TEMPAM BELOW 0
TEMPAMBLO@0	QUALITATIVE VARIABLE - TEMPAM BELOW 0
TEMPAM	MINIMUM HOURLY TEMPERATURE - MORNING
WINDAM	WIND SPEED MPH - MORNING
TEMPPML1	TEMPPM\1
LSENDDAYS	=LOG (MWHSENDNORMNS@CGE/DAYS)
MDEC	QUALITAITVE VARIABLE - DECEMBER
MFEB	QUALITATIVE VARIABLE - FEBRUARY
TEMPPM	MINIMUM HOURLY TEMPERATURE - EVENING
TEMPAMBLO@0 TEMPAM WINDAM TEMPPML1 LSENDDAYS MDEC MFEB TEMPPM PMPEAK MJAN XMAS AMPEAK M777 M7711 M776 M7711 M786 M788 M768 M802 M815	QUALITATIVE VARIABLE - EVENING PEAK
MJAN	QUALITATIVE VARIABLE - JANUARY
XMAS	QUALITATIVE VARIABLE - CHRISTMAS WEEK
AMPEAK	QUALITATIVE VARIABLE - MORNING PEAK
M777	QUALITATIVE VARIABLE - JULY, 1977
M7711	QUALITATIVE VARIABLE - NOVEMBER, 1977
M786	QUALITATIVE VARIABLE - JUNE, 1978
M788	QUALITATIVE VARIABLE - AUGUST, 1978
м768	QUALITATIVE VARIABLE - AUGUST, 1976
M802	QUALITATIVE VARIABLE - FEBRUARY, 1980
M815 M827	QUALITATIVE VARIABLE - MAY, 1981
M827	QUALITATIVE VARIABLE - JULY, 1982
M845	QUALITATIVE VARIABLE - MAY, 1984
M846	QUALITATIVE VARIABLE - JUNE, 1984
AND :	

MWHSENDNORMNS@CGE MWH SENDOUT - WEATHER NORMALIZED DAYS NUMBER OF DAYS IN THE MONTH

FORECAST EQUATION:

1>MWWPEAK=EXP(<-1.6454> 2>+<0.88821>*LOG(MWHSENDNS@CGE@JAN/31) 3>+<-0.0041116>*TEMPAM 4>+<0.0013696>*WINDAM 5>+<-0.00084088>*TEMPPML1)

#### Cinergy

#### FORM IRP-1

#### GENERAL SUPPLY - SIDE PLANNING INFORMATION

#### Marginal Costing Period Duration (1):

	Summ	er Season	Months	Winter Season Months			
	(June t	rough Sep	tember)	(All Other Months)			
	On Mid Off		Off	On	Mid	Off	
	Peak	Peak	<u>Peak</u>	<u>Peak</u>	<u>Peak</u>	<u>Peak</u>	
Annual Hours:	784	262	1882	1562	1041	3229	

#### Seasonal Demand Related Capacity Cost Allocation Factors:

Summer 100 % Winter 0 %

NOTE: Estimate supplied for reporting purposes only. Cinergy does not use this in the evaluation of potential resources.

#### Generating Reserve Criteria:

Planned Average Generating Reserve Margin for the IRP Period: 17.0 % (2)

#### Projected Generating and Transmission Facility Costs:

Parameters	<u>Trans. Data</u>	Generating Facility Data
Facility Designation		
Capital Cost (\$/kW) (4)	(3)	
Fixed O&M Cost (\$/kW-yr) (4)	(3)	
Cost Escalation Rates (%/yr):		
Capital Cost	(3)	
Fixed O&M Cost	(3)	
LARR Rate (%/yr)	(3)	11.9 11.9
Facility Book Life (years)		30 30
Capacity Factors:		
Summer	N/A	Varies by Year, see note (5)
Winter	N/A	Varies by Year, see note (5)

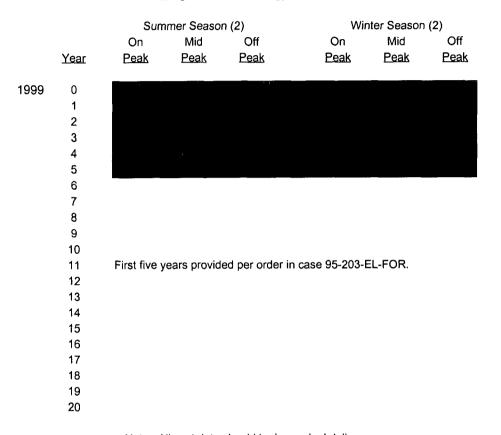
Note: Capital and fixed O&M costs are in 1999 dollars, and capital costs include an estimate of AFUDC.

NOTES: (1) Period breakdowns are approximate and are provided as a filing requirement only, they are NOT necessarily recommended or used by Cinergy.

(2) This value is the System Planning Reserve Margin from the March 2, 1994, Operating Agreement among PSI, CG&E, and Cinergy Services, Inc.

(3) In compliance with FERC Order 889, the relevant transmission information is located in Volume II, which was prepared independently.

(4) The values shown are relative values used for planning purposes. Absolute values may vary considerable depending on many factors, including but not limited to: unit size, seasonal derating, specific site requirements, equipment vendor(s), ultimate number of units planned on a specific site and future and/or unforeseen regulatory requirements. Costs are based on ISO MW ratings.


(5) For generating facilities, capacity factor varies by year depending on, among other things, new unit additions, relative fuel costs, purchased power costs, and the actual performance of the other generating units on the system.

#### Cinergy

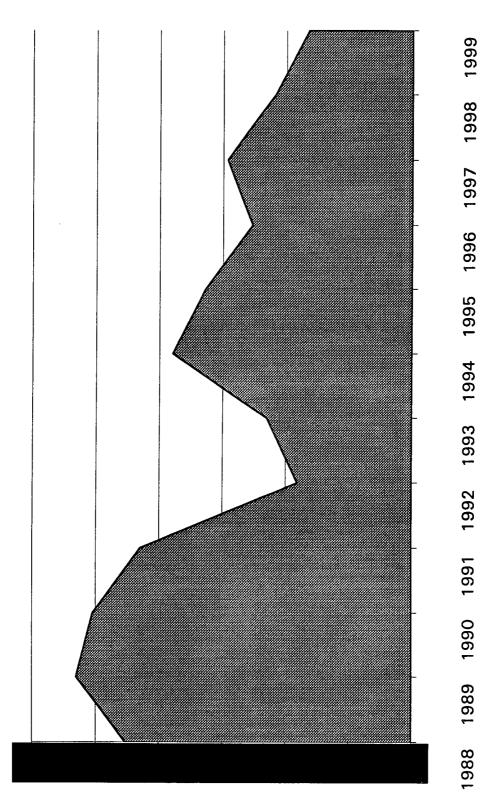
### FORM IRP-2

#### PROJECTED ON-SYSTEM VARIABLE ELECTRIC ENERGY COSTS

#### Marginal Variable Energy Costs (\$/MWh) (1)

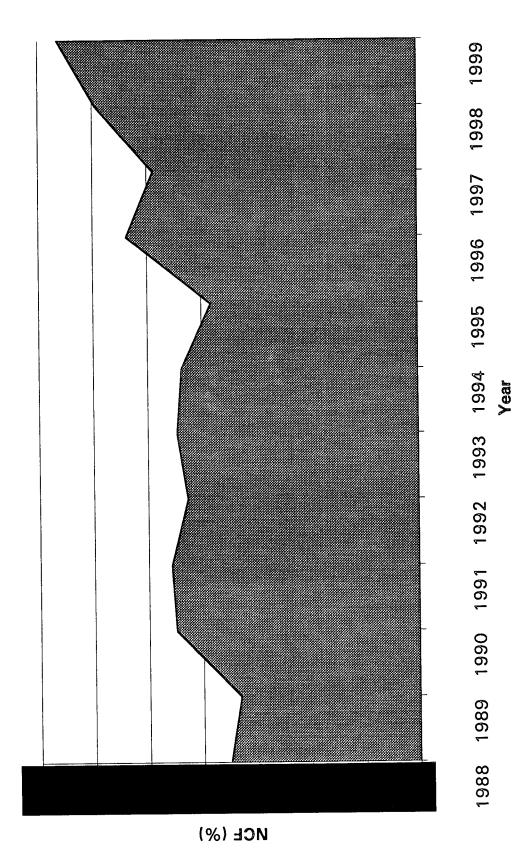


Note: All cost data should be in nominal dollars.


The marginal variable energy cost information is considered by Cinergy to be trade secrets and confidential and competitive information. The redacted information will be made available to appropriate parties upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317)838-2183 for more information.

NOTES: (1) Estimated average marginal energy costs for the periods shown. Estimated costs of SO₂ allowances consumed are included. Cinergy is dispatched against the energy market.

(2) Period breakdowns are approximate and are provided as a filing requirement only, they are NOT necessarily recommended or used by Cinergy. Refer to Form IRP-1 for period duration.




Wabash River Station EFOR 1988 - 1999



Year

0A-139



Wabash River Station NCF 1988 - 1999

Figure OA-2





The Cincinnati Gas & Electric Company

1999

# INTEGRATED RESOURCE PLAN

STATUS REPORT

November 1, 1999

By: Cinergy Services Douglas F. Esamann, Vice President 139 East Fourth Street P.O. Box 960 Cincinnati, Ohio 45201-0960

5

# NOTICE

This STATUS Report is an integral part of the Cinergy 1999 IRP filing. Please see the submittal letters and other specific filing attachments contained in the front of Volume I of the <u>Cinergy 1999 Integrated Resource Plan</u>. For ease of comparison with past Short-Term Implementation Plans (STIPs), the same major headings as in the STIPs have been used.

# THIS PAGE LEFT BLANK INTENTIONALLY

.

1

ſ

l

P

Ï

STATUS-ii

# TABLE OF CONTENTS

Planned New Generation and Transmission Facilities	. STATUS-1
Planned Improvements in Operations of Existing Generation, Transmission, and Distribution	. STATUS-2
Environmental Compliance Projects	. STATUS-2
Inlet Cooling	. STATUS-2
Zimmer Synthetic Gypsum Project	STATUS-3
Planned Conservation, Load Modification, or Other Demand-Side Management Programs	STATUS-4
Electric Weatherization	STATUS-4
Energy Decisions Program	STATUS-5
Energy Maintenance Services	STATUS-8
General Use Program	STATUS-10
Homebuyer Energy Education	STATUS-12
Home Energy House Call	STATUS-14
Learn and Earn Pilot	STATUS-16
Learn and Earn	STATUS-18
Library Partnership Program	STATUS-20
New Home Owners' Training	STATUS-23
Non-Profit Energy Management Program (NEMP).	STATUS-24
Ohio Energy Project	STATUS-26
PIPP Orientation Program	STATUS-28
Problem Diagnostic Service Test	STATUS-31
Securities Issued	STATUS-33

ſ

I

# THIS PAGE LEFT BLANK INTENTIONALLY

### Planned New Generation and Transmission Facilities

There were no expenditures in 1998 on new generation facilities.

In compliance with the codes of conduct in FERC Order 889, the relevant transmission and distribution information is located in the Transmission Volume of this report, which was prepared independently.

# <u>Planned Improvements in Operations of Existing</u> Generation, Transmission, and Distribution

### Environmental Compliance Projects

In 1998, Cinergy made changes to some of its existing generating units as part of its compliance strategy for both the Federal Clean Air Act Amendments and state and local requirements. Several Projects have been consolidated for reporting purposes. The general types of projects included:

- 1) NO_x control projects.
- 2) Boiler Optimization

	PSI	CG&E	Cinergy
Estimated 1998 Expenditures	\$ 292,602	\$ 2,940,099	\$ 3,232,701
Actual 1998 Expenditures	\$ 198,206	\$ 2,956,248	\$ 3,154,454

### Inlet Cooling

Cinergy has made Inlet Cooling changes to some of the Combustion Turbine units (see Figure GA-8-4 found in the General Appendix for the units affected). The expenditures for this project were budgeted for and occurred primarily in 1999.

	PSI	CG&E	Cinergy
Estimated 1998 Expenditures	\$ -	\$ -	\$ -
Actual 1998 Expenditures	\$ 16,781	\$ 70,477	\$ 87,258

#### Zimmer Synthetic Gypsum Project

Cinergy is investing capital dollars at Zimmer Station to make high quality synthetic gypsum that will be sold to a new wallboard manufacturing plant. Cinergy expects to create a significant environmental benefit by converting the by-product from the unit's sulfur dioxide scrubber into synthetic gypsum, rather than landfilling it. The amount of material placed in the station's landfill can be reduced by as much as 77 percent. The expenditures for this project will occur primarily in 1999 and 2000.

	PSI	CG&E	Cinergy
Estimated 1998 Expenditures	\$ -	\$ 60,000	\$ 60,000
Actual 1998 Expenditures	\$ -	\$ 53,900	\$ 53,900

In compliance with the codes of conduct in FERC Order 889, the relevant transmission and distribution information is located in the Transmission Volume of this report, which was prepared independently.

### Planned Conservation, Load Modification, or Other Demand-

### Side Management Programs (Ohio Only)

Please note that estimated and actual expenditures reported throughout this section are for OHIO ONLY (not CG&E System).

#### Electric Weatherization

### Program Description

The Electric Weatherization Program provides energy education and direct installation of energy saving measures in the homes of CG&E's electrically heated residential customers with income levels up to 200% of the poverty level. This program is only available to customers whose homes are being weatherized as part of the State Weatherization program. The program consists of the direct installation of specific DSM measures and energy education on the energy savings features of the measures. This program results in a reduction in the energy consumption of electric appliances and provides energy education for participants so that they can learn how to save energy and lower their electric bills. The measures available for installation under this program are:

- weatherization measures
- compact fluorescent lamps
- low flow showerheads
- faucet aerators

- pipe wrap
- water heater wraps
- waterbed covers

### Process Evaluation

This "piggyback" program was not evaluated in 1998. Evaluation is expected in early 2000.

### Impact Evaluation

This "piggyback" program was not evaluated in 1998. Evaluation is expected in early 2000.

#### Program Costs

Estimated 1998 Expenditures \$350,000

Actual 1998 Expenditures

\$162

### Program Performance

The program began at the end of 1998.

#### Energy Decisions

#### Program Description

The Energy Decisions program was jointly developed by CG&E

and the Educational Work Team of CG&E's Collaborative Effort. It is an annual educational series of training programs for area science and physics teachers.

This program focuses on energy use and economic decisionmaking for educators. The program offers the following classes: Three one-day classes for teachers (grades 2-9), and a one-week Summer Institute class. Class participants are assessed a nominal fee for materials.

All of the classes offered under this program are conducted in cooperation with the University of Cincinnati's Center for Economic Education (the Center). Educators who complete the one-day session receive one-quarter graduate credit hour. Completion of the five day Summer Institute class earns each educator three graduate credit hours. All recruiting for these classes is the responsibility of the Center.

Each course is taught primarily by staff of the Center, CG&E staff, and area science teachers. CG&E, Cinergy/Community Energy Partnership (CCEP), and the Center jointly developed the class topics.

### Process Evaluation

Feedback from class participants is considered in the design of future class curricula.

### Impact Evaluation

The Energy Decisions program has been designed as an educational program. Therefore, no attempt has been made to calculate load impacts.

### Program Costs

ĺ

Estimated 1998 Expenditures	\$70 <b>,</b> 000
Actual 1998 Expenditures	\$70,800

### Promotional Efforts

The Center for Economic Education at the University of Cincinnati is responsible for promoting this program. Teachers apply to participate in the program through the internet.

### Program Performance

Energy Decisions has been selected to receive the Governor's Award of Excellence for Energy Efficiency. More

than 145 educators participated in one-day classes for educators were offered during 1998. Each class consisted of approximately 35 to 40 science and physics teachers from schools located in the CG&E service territory. The Summer Institute session was held in June 1998. One of the goals of the Summer Institute is to encourage teachers to incorporate energy economics into the school curriculum. Ιt is hoped that at every Summer Institute at least one science teacher from each of the area school districts will participate in the class to facilitate this goal. The Center and CG&E cooperatively taught this class. CG&E discussed subjects ranging from how CG&E determines generation needs to the calculation of a typical bill. Tours of a power plant and an alternate energy source also were included in the class. There was a nominal charge of \$20.00 for materials. Forty-five educators attended the Summer Institute in 1998.

#### Energy Maintenance Services

### Program Description

This pilot program was designed to determine whether or not an energy maintenance program could result in energy savings for elderly/disabled customers with income levels less than 150% of poverty guidelines.

### Process Evaluation

An evaluation was completed in 1998. It revealed high customer satisfaction and an increase in the efficiency of participants' homes.

### Impact Evaluation

No formal impact evaluation was conducted in 1998.

### Program Costs

Estimated 1998 Expenditures	\$84,000
Actual 1998 Expenditures	\$57 <b>,</b> 450

### Program Performance

The program began in July 1998 and was completed in October 1998. Two hundred and one customers were served in 1998, exceeding the program goal to serve 200 customers.

#### General Use Program

### Program Description

This program was designed to install energy savings measures in the homes of income-qualified electric customers throughout the CG&E service territory. This "piggyback" program promotes electric efficiency measures in low-income customers' homes as State Weatherization Agencies provide their services. Using an organization already in the home, these measures can be installed cost-effectively.

The program is delivered in conjunction with the State Weatherization Program through Community Action Agencies (CAA's) as a piggyback effort to their existing services. The CAA's solicit participation in this program. This program is only available to customers whose homes are being weatherized as part of the State Weatherization program. The program consists of the direct installation of specific DSM measures and energy education on the energy savings features of the measures. This program results in a reduction in the energy consumption of electric appliances and provides energy education for participants so that they can learn how to save energy and lower their electric bills. The measures available for installation under this program are:

- compact fluorescent lamps
- low flow showerheads
- faucet aerators
- pipe wrap
- water heater wraps
- waterbed covers

### Process Evaluation

No process evaluation was performed in 1998.

# Impact Evaluation

An impact evaluation was conducted in 1996. The results indicated that the program was not cost effective with a Total Resource Cost (TRC) test benefit/cost (B/C) ratio of 0.56.

#### Program Costs

1998 Estimated Expenditures	\$15,000
1998 Actual Expenditures	\$15,800

### Program Performance

Seventy-eight customers were served in 1998. They following

measures were installed in clients' homes: 213 compact fluorescent lamps 8 water heater jackets 25 insulated water heater pipes 23 low flow showerheads 61 faucet aerators 0 waterbed covers

# Homebuyer Energy Education

# Program Description

This program provides energy efficiency education to firsttime homebuyers in low/moderate income communities. The training is conducted by the Communities United for Action (CUFA), which added an energy education component to its existing homebuyer training classes. CUFA is a grassroots coalition consisting of forty-four community groups, which was formed in 1980 to bring together residents of low and moderate income communities to work on common concerns. The energy education component of the program focuses on three primary areas: 1) guidance on how to shop for an energy efficient home, 2) making a home more energy efficient (measures to incorporate), and 3) conserving energy by reduced consumption and energy efficient measures. Besides the energy efficiency component, these classes also educate

potential buyers on the following subjects: budgeting, qualifying for a loan, how to work with a realtor, how to shop for a home, sales contracts, applying for a loan, credit, etc. Each participant receives a compact fluorescent lamp.

#### Process Evaluation

No process evaluation was performed in 1998. However, participant evaluations are kept on file.

### Impact Evaluation

Since this is an education program, there are currently no plans to perform an impact evaluation.

### Program Costs

Expected 1998 Expenditures	\$18,850
Actual 1998 Expenditures	\$19,140

### Program Performance

Eleven classes were conducted in 1998 and 225 customers were served.

### Home Energy House Call

### Program Description

The Home Energy House Call (HEHC) consists of three major components:

- Home Energy Survey
- Comprehensive Energy Audit & Review
- Measures Installation Opportunity

When a Home Energy House Call is requested by a customer, a qualified home energy specialist visits the site to gather information about the home. A questionnaire about the energy usage also is completed.

The energy specialist gives the customer a detailed report that explains how the customer's home uses energy each month. The specialist also will check the home for air leaks, inspect the furnace filter, and look at the insulation levels in different areas. If needed, the specialist will recommend cost saving do-it-yourself measures to make the home more energy efficient.

In addition to helping the customer with energy efficiency, the Home Energy House Call assists the customer with "Earth Perks." This part of the program looks at the natural

resources and pollution prevention needs of the customer's home and community and offers a list of action items. This list of action items is prioritized by the home's environmental profile.

### Program Evaluation

An evaluation was completed in 1998. The evaluation of the HEHC service showed a very successful program. A strong majority of participants are more knowledgeable about saving energy as a result of the audit. Participants implemented 39% of recommended measures within 6 months to 2 years after the audit and another 11% were still planned at the time of the survey. These findings indicate that customers have taken or plan to take 50% of all recommended actions contained in their audit report. Minor measures (items with low investment costs) were implemented at a much higher rate (74%) than major measures and most of the minor measures were implemented in less than 2 months, although there are some exceptions. The majority of all measures implemented (80%) were installed by customers and 17% were contracted out. Customer satisfaction with specific program components was very good and ranged from 8.2 to 9.6 on a 10-point scale. Saving money and learning about the home drove participation and many participants enrolled in the program for non-energy related reasons.

### Impact Evaluation

An energy savings analysis was performed as part of the program evaluation discussed above. This study revealed that electric customers saved as much as 19 percent of their annual energy consumption. Home Energy House Call is essentially an educational program. No energy or demand impacts have been attributed to the program in the Integrated Resource Plan.

### Program Costs

Estimated 1998 Expenditures	\$350,000
Actual 1998 Expenditures	\$390,000

### Program Performance

During 1998, 4,500 audits were completed. More details are available in the 1998 CCEP Annual Report and in the evaluation reports.

### Learn and Earn Pilot

### Program Description

The Learn and Earn Pilot program was initiated to educate

customers receiving Percentage of Income Payment Plan (PIPP) benefits about energy consumption within their homes. Eligible customers also receive education to help them reduce their energy usage and to assist them with money management so the participants can reduce their PIPP arrearages.

### Process and Impact Evaluation

As a result of the process and impact evaluation completed by TecMRKT Works, an outside market research firm, the major findings were:

- Customer enrollment is strong
- Incentives drove participation but customers perceived education and information to be more valuable
- Agency familiarity is not necessary for participation
- Program drop out rate is very low
- Customer satisfaction is strong for program components and the home visits
- Baseline estimation methods worked well for the program as a whole

• Participants reduced their energy consumption Complete details of their findings are available under

separate cover. An impact evaluation completed in 1999 revealed average savings of 1.5 percent of gas consumption and 5.7 percent of electricity consumption.

#### Program Costs

Estimated 1998 Expenditures	\$226 <b>,</b> 700
Actual 1998 Expenditures	\$207,000

### Program Performance

The goal of the pilot program was 150 customers. However, one provider was not able to perform the work as requested. For the pilot program, 126 customers started the program and 96 actually completed the program in its entirety.

### Learn and Earn

#### Program Description

The Learn and Earn Program is a continuation and expansion of the pilot program that was conducted in 1998. The program provides a series of individual training and counseling sessions to participants on energy usage and conservation, as well as budget management. This program is open to any Percentage of Income Payment Plan (PIPP) customer as of January 1, 1998. The education sessions,

which include a home energy audit, in-home basics education program, and follow-up counseling sessions for participants, are provided by social service/weatherization agencies now serving the PIPP customers. As an incentive for Program participation and energy consumption changes, CG&E, through the Providers, offers customers a two-part incentive award; the first incentive for Program Participation and the second incentive for lowering monthly energy consumption from a pre-determined baseline amount of energy consumption.

### Process and Impact Evaluation

The evaluation of the pilot program is described above. This expanded program began in November 1998.

### Program Costs

Estimated Expenditures through 1999	\$384,000
Actual 1998 Expenditures	\$49,300

### Program Performance

At the end of 1998, initial visits had been completed for 151 customers. 1998 expenditures reflect the related costs.

### Library Partnership Program

### Program Description

The Library Partnership Program was a new program that uses libraries as the distribution points for energy education materials. Cinergy has the expertise and energy information, which it would like to share with the community. Libraries are an excellent distribution system for information, but often don't have the energy-related or the financial resources to identify and obtain the specialized materials required. Together the partnership provides a mechanism to get quality energy information to the interested public.

The Cinergy/Community Energy Partnership (CCEP) has developed this program with five main elements:

- Energy Materials: CCEP provides funding and guidance for the libraries to buy energy books, videos, computer disks and materials. This is in the form of a grant to the library. The library and CCEP will publicize the availability of this energy information.
- Adult Workshops: Cinergy will provide internal and/or community experts to provide energy workshops in the local libraries, some of which will be associated with other library activities. Participants will receive

energy information and a compact fluorescent light bulb (CFL) to install in their home to start them saving.

- Children's Workshops: Energy Workshops will be held for children using the Ohio Energy Project, an existing program that the CCEP has funded for the past several years. The Ohio Energy Project uses trained high school aged instructors that relate well to young audiences.
- Displays: Energy displays will be circulated among the local libraries to demonstrate energy issues. Initial displays will relate to the workshop topics as well as general energy information and include how to read your energy meter, energy and the environment, energy conservation tips, low-income assistance programs, energy conservation in new construction, and fluorescent lighting energy savings.
- Energy Meters: Small plug-in energy meters will be loaned to library patrons to help them understand what a specific appliance consumes. Manufactured by Pacific Technologies, these devices read cumulative kWh over the time period installed.

### Impact Evaluation

This is primarily an educational program and no impacts have

been included in the Integrated Resource Plan; therefore, there are currently no plans to perform an impact evaluation.

### Program Costs

Estimated 1998 Expenditures	\$35,000
Actual 1998 Expenditures	\$39,800

#### Promotional Efforts

Cinergy and the library systems have promoted this program through various marketing channels including direct mail, newsletters, media, and community posters.

### Program Performance

Grants totaling \$30,000 were awarded to eight libraries. An average of 5 participants attended each of the adult programs. Two children's programs were conducted and 3 more will be held in the Spring of 1999. Springboro rescheduled for 1999.

There was limited attendance at the Adult Programs, in spite of aggressive promotion via flyers, press releases, local newspaper ads and direct mailings to library patrons. Given the attendance and the fact that all of the participating

libraries had extensive energy materials at the end of 1998, the program was not continued in 1999.

### New Home Owners' Training

### Program Description

The New Home Owners' Training program focuses on helping new homeowners understand how energy impacts their new home investment and finances. This information is incorporated into an existing "Life As a Homeowner Class" offered by the Better Housing League which is a one-night/morning 3-hour class offered monthly. Participants are educated about energy efficient upgrades and how they can make their home less expensive to maintain. They are also provided a compact fluorescent bulb. The program is designed to educate customers on energy consumption within their home, so they can modify their energy use behavior and reduce their energy consumption. Basic budgeting and money management skills are also included in the program.

### Process Evaluation

Participant evaluations are on file with the Better Housing League.

#### Impact Evaluation

This is primarily an educational program; therefore, there are currently no plans to perform an impact evaluation.

#### Program Costs

Estimated 1998 Expenditures	\$11,450
Actual 1998 Expenditures	\$5,690

#### Promotional Efforts

The Better Housing League promotes the program through its community contacts.

#### Program Performance

Twelve workshops were conducted serving 408 participants in 1998.

#### Non-Profit Energy Management Program

#### Program Description

The Non-Profit Energy Management Program (NEMP) is an energy audit and financial assistance service offered to nonprofit, social service agencies in the CG&E service area. The audit is provided at no cost to the customer and the program funds 50% percent of the cost of energy efficiency

#### STATUS-24

improvements implemented by participants with a 5-year or less simple payback up to \$3,000. Workshops are also periodically offered to representatives of the targeted market segment to encourage participation in the program and to provide energy education. The program is designed to help non-profit social-service organizations reduce their own overhead costs through sound energy management practices. In theory, reducing these costs frees-up money to be applied to the provision of agency services.

#### Process Evaluation

None performed in 1998.

#### Impact Evaluation

None performed in 1998.

#### Program Costs

Estimated 1998 Expenditures	\$235,000
Actual 1998 Expenditures	\$30,750

## Program Performance

Forty audits and three workshops were planned. Contractor issues resulted in completion of only four audits and one

workshop in 1998. The program has been re-bid, and will now be provided through another contractor for the duration of the program.

#### Ohio Energy Project

#### Program Description

This is an education program designed to increase energy and environmental awareness to Ohio students, parents, and communities. Ohio Energy Project uses the method of children teaching children to get the word across. It provides unbiased information on the ten major energy sources. Energy education is provided through educational materials and leadership training workshops for students and teachers in grades K-12. The materials, developed by the national office, are designed to educate students at all levels of learning, which includes students with learning disabilities, gifted and talented students, and students that maintain average grades. An "Energy Kit," containing 30 energy activities, is provided to teachers free of charge. The activities emphasize cooperative learning and are developed to be entertaining as well as educational for the students. The Leadership Training Workshops are unique in that teachers attend workshops in their area with several of their students. The workshops are conducted by area high

STATUS-26

school students and demonstrate the success of "kids teaching kids." The goal of the workshops is to have students return to their schools and conduct similar activities for their classmates and community members.

#### Program Costs

Estimated 1998 Expenditures	\$110,000
Actual 1998 Expenditures	\$110,000

#### Program Performance

This program was identified in the Ohio Energy Strategy Report, under Strategy I: Educational Needs and Benefits, as an implementation strategy. The strategy recommends expansion of the Ohio Energy Project. As a response to the Strategy Report, CG&E funded the first state regional office in July 1994. Cinergy was presented the Regional Award at the 1995 Ohio Energy Project Youth Awards Banquet on May 17, 1995.

This program was presented the 1995 Ohio BEST (Building Excellent Schools Today) Practices Award and was recognized by the Ohio Business Roundtable (a business and education partnership) as a successful program.

#### PIPP Orientation Program

#### Program Description

The PIPP Orientation Program (PIPP-OR) is intended to provide orientation and education to customers about Percentage of Income Payment Plan (PIPP) and other possible payment options.

The objective of the PIPP Orientation Service is to educate new PIPP enrollees on the full implications of PIPP, review other payment options, and to educate the customer on potential strategies to save on their energy bill. If, during the course of the service, the <u>customer</u> determines another payment option to be superior to PIPP, then the customer will be enrolled in the chosen payment option plan and removed from the PIPP enrollee list. This service will also arrange for weatherization of customers who are currently missed. The initial test of this service concept will be from July 13 through September 11 and help approximately 200 customers.

The goal of the program was to increase the customer's understanding of PIPP and its obligations. Through this better understanding, it was anticipated that people would stay on PIPP for a shorter period and would shift to other

STATUS-28

billing plan options or reduce the rate of arrearage accumulation. The program evaluation measured the length of time these customers were on PIPP versus customers who had not received the orientation. It also compared the level of understanding of PIPP among participants and nonparticipants.

Two area providers delivered this service to Cinergy's PIPP customers in Ohio. Working in Neighborhoods (WIN) and People working Cooperatively (PWC) scheduled the appointments with the customers and visited the customer's homes to provide the program information. The program manager conducted a training class with the providers to give them the details of how to read customer bills, payment options, energy saving materials and the like.

Providers reviewed the following information with and provided the following services to customers:

- a) customer's gas and electric usage history
- b) PIPP program details and obligations
- c) alternative payment options
- d) walk through energy audit
- e) energy saving materials
- f) compact fluorescent bulbs
- g) application of weatherization services, if applicable

#### STATUS-29

h) other social service assistance, if applicable

#### Program Costs

Estimated 1998 Expenditures	\$30,000
Actual 1998 Expenditures	\$31,260

#### Program Performance

An evaluation based upon a small sample indicated that the program was well designed and operated and that PIPP-OR participants were very satisfied with the program. Additionally, the evaluation found that participants' desire to move off of the PIPP was increased by education and other services provided. Participants also reported that they were better able to control their energy consumption as a result of the program. However, there appeared to be no difference in the PIPP knowledge level between participants, non-participants, and those who refused to participate, providing evidence that the program did not significantly increase customer knowledge levels.

The CCEP did not authorize this program to continue in 1999.

#### **Problem Diagnostic Service Test**

## Program Description

The Problem Diagnostic Services program provides customers who have high bill problems, heating/cooling problems, and moisture problems with an in-depth field analysis and recommendations. These problems are often observed during a regular energy audit (House Call audit) but require more indepth analysis tools to diagnose the problem. Diagnostic tools such as blower door tests and infrared scans are used for this service.

#### Process Evaluation

The evaluation plan was developed and planned for completion in 1999.

#### Impact Evaluation

The evaluation plan was developed and planned for completion in 1999.

#### Program Costs

Estimated 1998 Expenditures	\$20,000
Actual 1998 Expenditures	\$16,000

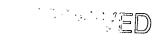
## Program Performance

The program began in June 1998 and fifty clients had been served by the end of 1998. The evaluation results will be reviewed and the CCEP will decide whether to develop the program to full scale in 1999.

#### Securities Issued

CG&E and its subsidiaries (including ULH&P), and PSI estimate that a combination of internal and external funds will be used to meet their capital needs. External funds will be used for refinancing of maturing debt and preferred stock, and the early refunding of existing high-cost debt and preferred stock, in addition to financing other capital needs.

## THIS PAGE LEFT BLANK INTENTIONALLY






# Integrated Resource Plan

INDIANA APPENDIX

VOLUME II





NUV - 🖡 1999

PUSLIC SERVICE COMMISSION

PSI Energy, Inc. CARL NO. 99-449

1999

#### INTEGRATED RESOURCE PLAN

#### VOLUME II

## INDIANA APPENDIX

## November 1, 1999

By: Cinergy Services Douglas F. Esamann, Vice President 139 E. Fourth St. P.O. Box 960 Cincinnati, Ohio 45201-0960

## NOTICE

This state-specific Appendix, Volume II, is an integral part of the Cinergy 1999 IRP filing. Please see the submittal letters and other specific filing attachments contained in the front of Volume I of the <u>Cinergy 1999 Integrated</u> <u>Resource Plan</u>.

## THIS PAGE LEFT BLANK INTENTIONALLY



## INDIANA APPENDIX

## Table of Contents

	Page
Section 4(1) Load Forecast Data Set	IA-1
Section 4(3) Schedule for End-Use Surveys	IA-3
Sections 4(5) and 5(a)(7) Evaluation of Previous 10 Years of Forecasts	IA-5
Section 4(16)(A) and (D) Avoided Cost Explanation	IA-9
Section 4(17) 1998 Hourly System Lambda	IA-11
Section 5(a)(1) Load Shapes	IA-13
Section 5(a)(2) Disaggregated Load Shapes	IA-31
Section 5(a)(4) Weather Normalized Energy and Demand Levels	IA-85
Section 5(a)(8) Explanation of Why End-Use Methodology Was Not Used	IA-89
Section 6(a)(4) and (c)(2) Air Emissions	IA-91
Sections 6(b)(3) and 8(8)(C) Avoided Cost	IA-93
Sections 6(b)(6),(7) and 7(b) PSI DSM Program Data	IA-95
Section 6(b)(8) Annual Penetrations Utilized for PSI DSM Programs	IA-97
Sections 7(d)(1) and (2) Benefit/Cost Test Components and Equations	IA-99
Section 8(8)(D) Impact of a Planned Addition on Rates.	IA-101

IN COMPLIANCE WITH THE CODES OF CONDUCT IN FERC ORDER 889, ALL OF THE FOLLOWING SECTIONS ARE CONTAINED IN THE TRANSMISSION VOLUME OF THIS REPORT, WHICH WAS PREPARED INDEPENDENTLY

Section 4(15) System-Wide Reliability Measure

Section 6(d)(3) PSI 138 kV Transmission Project Descriptions



#### Section 4(1) Load Forecast Dataset

The PROSCREEN II[®] Load Forecast Dataset (LFA module) utilized in developing Cinergy's 1999 IRP is voluminous in nature. In addition, New Energy Associates treats the format of this information as trade secrets and proprietary and confidential.

This data will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Jim Riddle at (513) 287-3858 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

-----

l

1 ( 1 () 1 ()

Section 4(3) Schedule for End-Use Surveys

In the residential sector, PSI is currently on a three-year schedule for conducting customer end-use surveys. The most recent survey was conducted during 1997. The current schedule calls for surveys to be conducted during 2000, and again in 2003. This schedule may be modified according to the information needs of the Cinergy forecasting department and other departments.

In the commercial sector, the last survey was conducted in 1991.

There has been no formal survey work conducted in the industrial sector. This is due to the nature of the sector itself. The industrial sector is a heterogeneous mix of distinct operations. Even customers within the same SIC (Standard Industrial Code) can exhibit significant differences in processes and energy use patterns. For this reason, a formal on-site census is the preferred method for gathering useful end-use information. Currently, Cinergy has no plans to conduct a formal industrial end-use census. This may also be modified according to the information needs of the Cinergy forecasting department and other departments.

See also the "Long-Term Electric and Gas Load Forecasts" report provided in the General Appendix contained in Volume I.

Sections 4(5) and 5(a)(7) Evaluation of Previous 10 Years of Forecasts

Tables are attached showing actual versus forecast for the previous ten years.

In general, the methodology, the kinds of equations and the types of data used have remained consistent over the past decade. In addition, on more than one occasion during this time period, the IURC has passed judgment on the reasonableness of the forecast and the methodology. Finally, the State Utility Forecasting Group (SUFG), though using models quite distinct from PSI's, has produced forecasts that are similar.

Feb. 98						7362 6120 11551 65 4601 28899 28899
Feb. 97					7093 5932 10277 4760 28122	7368 6069 11185 4584 4584 29266
Feb. 96					7070 5872 5872 10305 60 4784 28101	7168 5944 10672 60 4814 28458 28458
Jun 95 Fi				6673 5650 9572 60 4501 4501 26455 6818 6818 6818 6818 5707 1007 1007 12303	6560 5723 10248 4794 27383	6907 5680 10336 60 4614 27597
			6785 6785 9571 9571 4383 26515 26515	6937 5907 10071 59 59 4567 4567 7015 7015 6055 10157 688 588 27975	7089 6199 10241 4783 28372	7197 6365 10303 60 4882 28807 28807
82 Dec. 94			6340 8754 8754 5430 8754 55 56 6475 6475 5616 5616 5107 55 55434	6578 5775 8159 8159 4161 25733 25733 8602 8682 8211 8211 8211 8211 8211 8211 821	6739 6083 9405 805 4337 26804	6832 6204 9746 66 44336 27280
vatts 2. Dec. 92		6150 5189 8132 38259 38259 23359	6369 6358 6537 6538 8538 60 80 6543 8584 8788 8788 8708 8702 25107	6840 5848 8872 8872 8872 80 60 6724 6724 6724 6724 6724 6724 6724 6726 8059 8055 8013	6783 6120 9224 80 80 26434 26434	6867 6244 8559 60 4225 27085 27085
PSI Energy Sales Forecasts - Comparison to Actuals in Thousand of Megawatts Dec. 88 Eec. 88 Feb. 91		5676 5033 8095 588 8095 58 58 5991 5169 8346 8346 8346 8346 23420	6347 8527 8527 8527 8527 805 860 8683 8683 8683 8683 8683 8683 8683	6535 5784 9082 80 80 80 4211 25852 2684 8284 8284 8297 8297 8297 8297 8297 8297 8297 8297	6700 5989 8583 858 60 60 28742	6788 6078 9803 9803 4495 27224 27224
barison to Actuals in Feb. 91	5683 74810 7792 3834 2383	5805 4944 4944 8058 505 53 607 6075 5284 8038 8038 8038 8038 23284	6138 5489 5489 8482 860 80 6194 6194 8082 8093 8093 800 800 800 8005	6274 6223 8645 8645 8645 8088 6359 6359 8679 8679 8779 8779 8779 8779 8779 877	6432 6122 9118 4279 26011	6504 6220 8402 66 66 7371 28557 28557
es Forecasts - Com Dec. 89	5810 7045 7045 5743 5743 5743 7007 7007 7007 7007 7007 7007 7007 7	5783 5080 7727 7727 80 5283 5283 5283 5283 5283 5283 5283 5283		6036 5854 8584 8584 8584 8584 80 80 80 80 80 80 80 80 80 80 80 80 80	6207 5976 8948 8948 3985 3985 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 25176 2517 2517 2517 2517 2517 2517 2517 2517	6294 6080 9127 9127 4073 25634 25634 25634 25634 25634
PSI Energy Sal Dec. 88						
Actual	5642 5642 6975 69875 5757 21123 21123 2757 5781 7702 5781 7702 5781 7702 5781 7702 5781 7702 5781 7702 5781 7702 5781 7702 5781 5781 5781 5781 5781 5781 5781 5781	6249 5148 5148 5888 5888 5888 5974 5974 5150 5150 5354 5354 5354 5354 5354 5354 5354 53	6580 6745 6745 6745 8745 8745 8643 25048 9610 9610 9279 9610 9278 9610 25854 25854	6941 5609 5809 4465 4465 26646 7201 7201 7201 5928 6015 6015 6015 6015 6015 27846	7058 5947 10230 10230 65 6741 4741 28041	7284 0288 0790 10790 4865 28409 29409 29409
	1989 Domestic Commercial Industrial Other Sales for Resale Total Sales 1990 Domestic Commercial Industrial Other Sales for Resale Total Sales	1991 Domestic Commercial Industrial Other Safes for Resale Total Sales 1992 Domestic Commercial Industrial Otherstica Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Commercial Com	1993 Domestic Commercial Industrial Other Sales for Resale 1994 1994 Domestic Commercial Industrial Chher Sales for Resale Total Sales	1995 Domestic Commercial Industrial Andustrial Commercial Industrial Commestic Commercial Industrial Cother Sales for Resale Total Sales	1997 Domestic Commercial Industriel Other Sales for Resale Total Sales Total Sales	Domestic Commercial Industrial Other Sales for Resale Total Sales

Feb. 1998										5791
Feb. 1997									5587	5760
Dec. 1996									5596	5522
Jun. 1995							5340	5494	5614	5435
Dec. 1994							5470	5487	5594	5555
Dec. 1992					4862	5015	5108	5187	5289	5327
Apr. 1992				4650	4836	4980	5069	5168	5252	5298
Feb. 1991			4604	4756	4872	4982	5078	5173	5283	5310
Dec. 1989		4348	4471	4638	4744	4847	4968	5080	5188	5230
Dec. 1988	4304	4424	4585	4700	4830	4949	5083	5158	5232	5263
Actual	4304	4642	4907	4827	5110	5161	5581	5623	5676	5705

	Feb. 1998										5342
	Feb. 1997									5201	1929
	Dec. 1996								4950	5052	4973
	Jun. 1995							4822	4961	5069	4838
	Dec. 1994 Ju							5003	5084	5086	5014
swatte	Dec. 1982 D					4294	4461	4546	4812	4683	4694
on to Actual in Meg	Apr. 1992 C				4333	4483	4577	4656	4731	4750	4858
PSI Enorgy Coincidont Winter Peek Forocasts - Comparison to Actual in Megawetts	Feb. 1991 A			4229	4357	4479	4579	4676	4761	4856	4887
cidont Winter Peak f	Dec. 1989 1		4088	4160	4283	4395	4478	4571	4665	4757	4781
PSI Enorgy Coin	Dec. 1988	4127	4346	4466	4610	4748	4880	5013	5125	5210	5241
	Actual	3815	4418	4136	4268	4481	4937	4657	4949	5102	4665
		1988-89	1989-80	1990-91	1991-92	1992-83	1993-94	1994-95	1995-96	1996-97	1997-98

IA-8

- - -

#### Section 4(16)(A) and (D) Avoided Cost Explanation

The avoided costs used in screening the DSM programs included in this IRP were based on the energy market price forecast. Cinergy considers this forecast to be a trade secret and confidential and competitive information. It will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317) 838-2183 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

Ŷ

Î

Ì

Ţ

Section 4(17) 1998 Hourly System Lambda

The 1998 hourly system lambda data is voluminous in nature. This data will be made available to appropriate parties for viewing at Cinergy offices and at other locations during normal business hours. Please contact Diane Jenner at (317) 838-2183 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

Į

Î

İ

Î

I

l

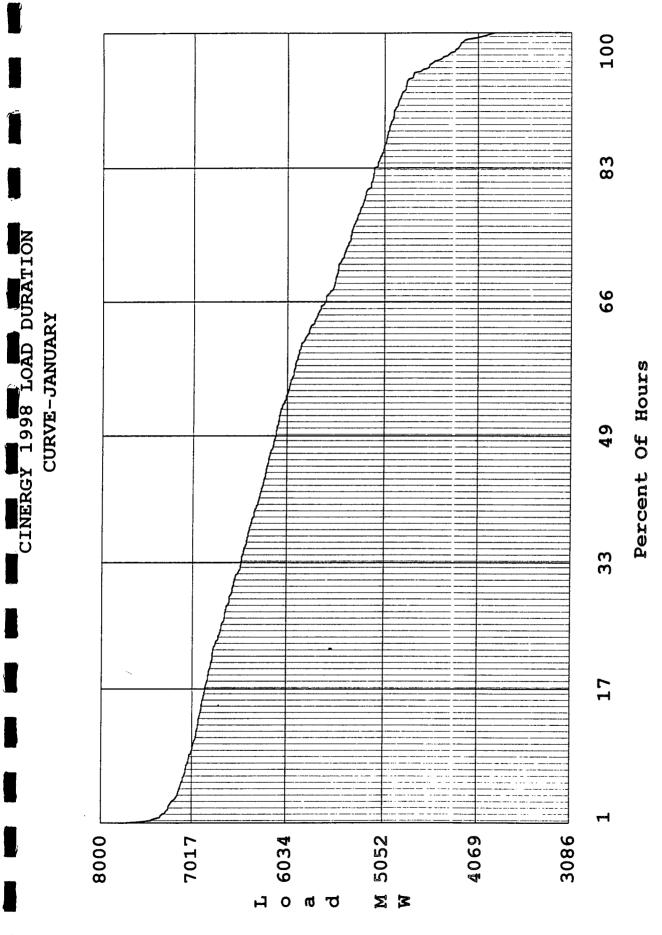
Į

Section 5(a)(1) Load Shapes

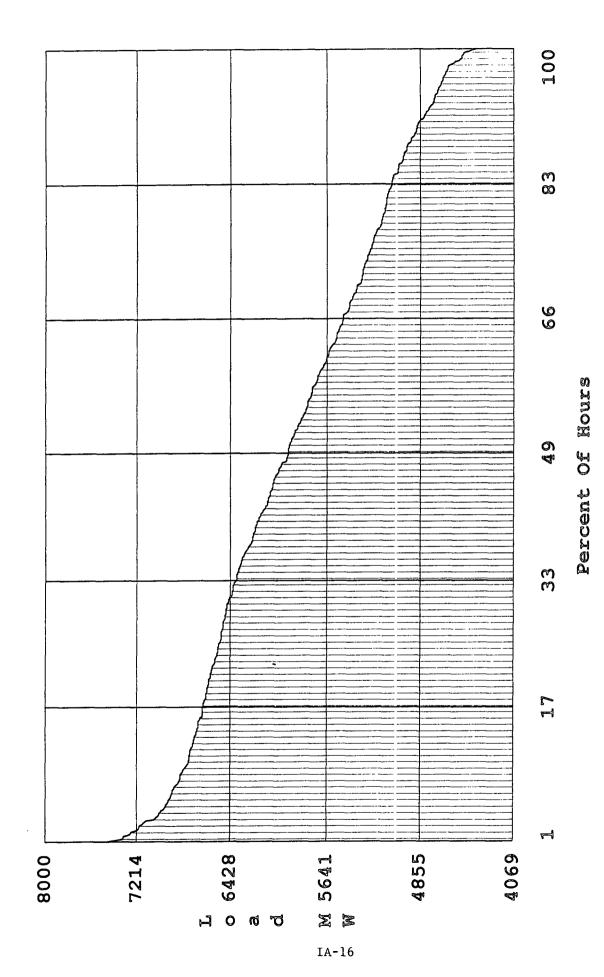
(A) and (B) Annual and seasonal load shapes are discussed in Volume I, Chapter 3, Section E of Cinergy's 1999 IRP. For the forecast period, no significant trends or changes from the historic load shapes are expected.

(C) A graphical representation of the monthly load shapes for 1998 is attached. For the forecast period, no significant trends or changes from the historic load shapes are expected.

(D) Summer and winter peak day load shapes are contained in Volume I, Chapter 3, Section E of Cinergy's 1999 IRP. Typical Summer and Winter weekday and weekend shapes are attached. The typical week load shapes for each month that were utilized in the 1999 IRP are contained in Cinergy's PROSCREEN II[®] dataset, the format of which New Energy Associates treats as trade secrets and proprietary and confidential. This data will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317) 838-2183 for more information.


# THIS PAGE LEFT BLANK INTENTIONALLY

Î


Í

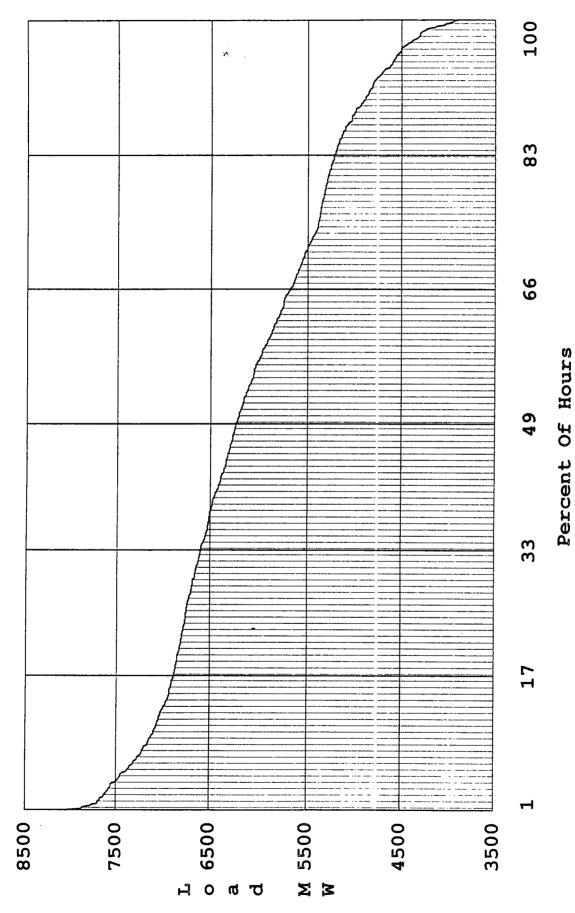
Ĩ

Ű

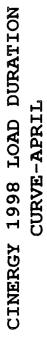


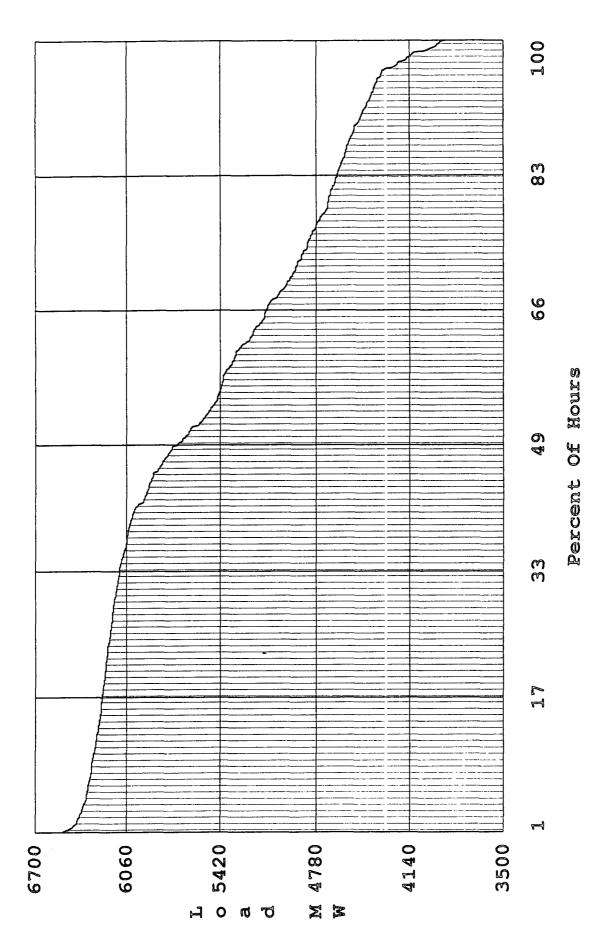
CINERGY 1998 LOAD DURATION CURVE-FEBRUARY




Î

I


ľ

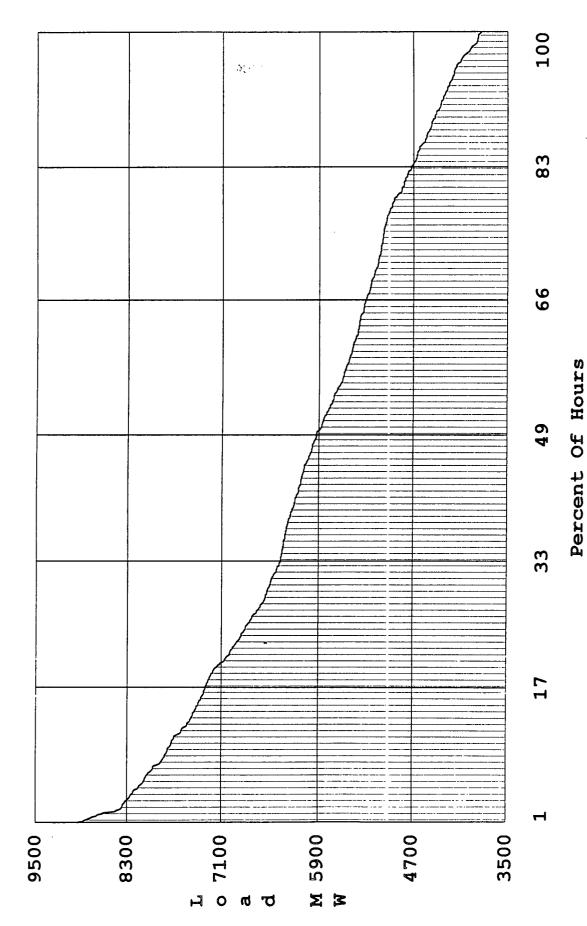

J

Î



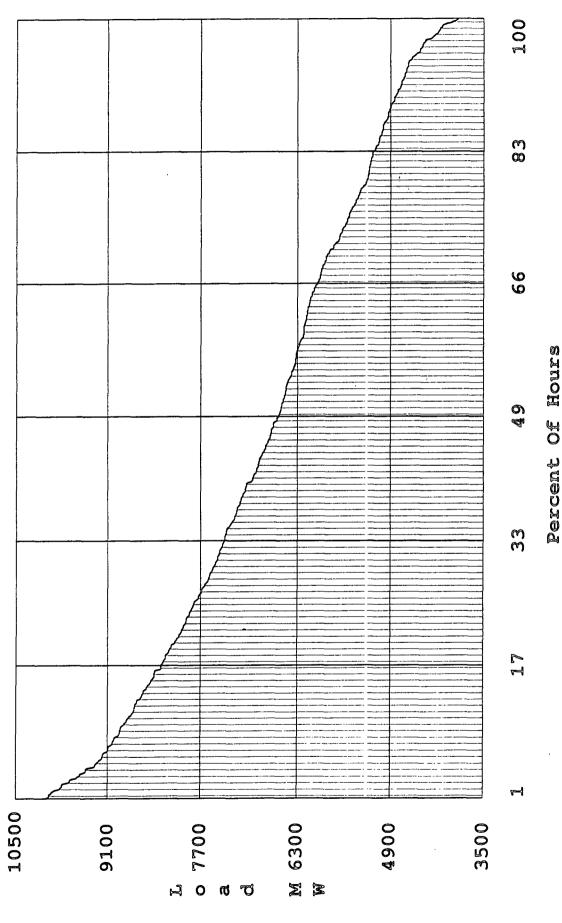
CINERGY 1998 LOAD DURATION CURVE-MARCH





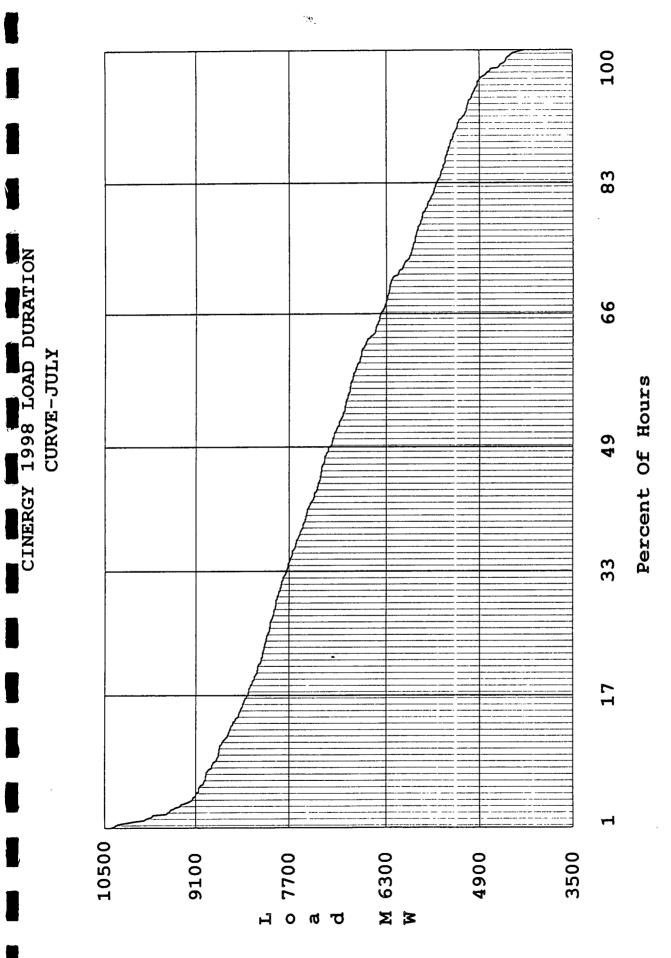

Ì

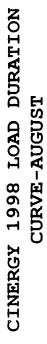
ľ

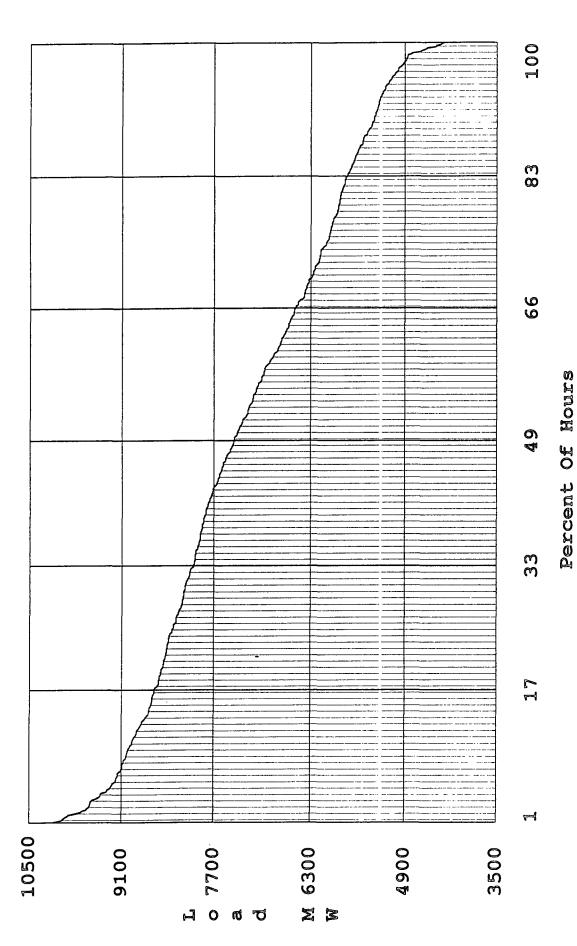

1

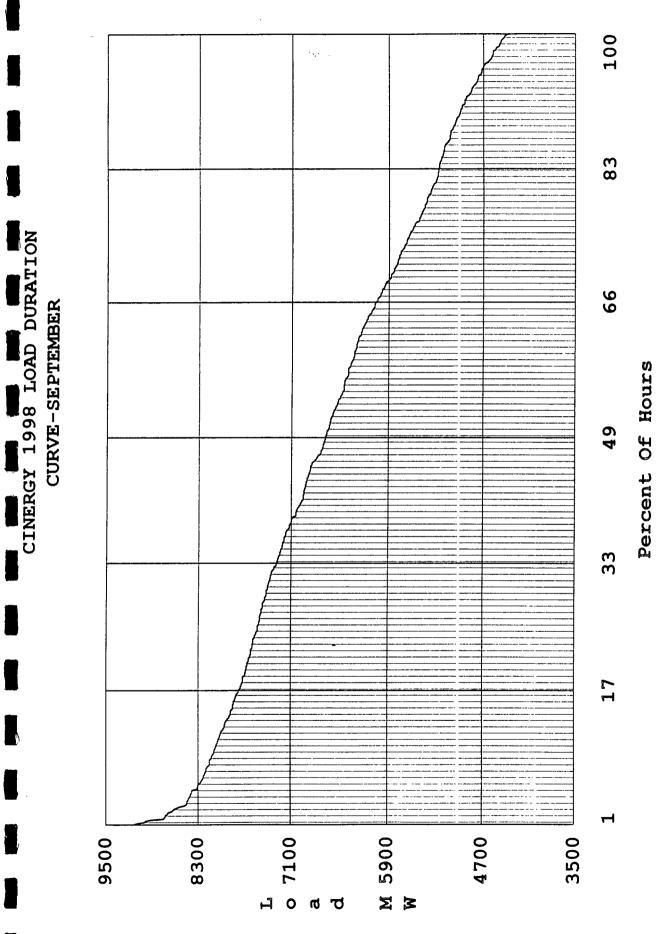
Î



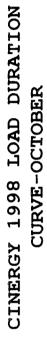

CINERGY 1998 LOAD DURATION CURVE-MAY и. • •

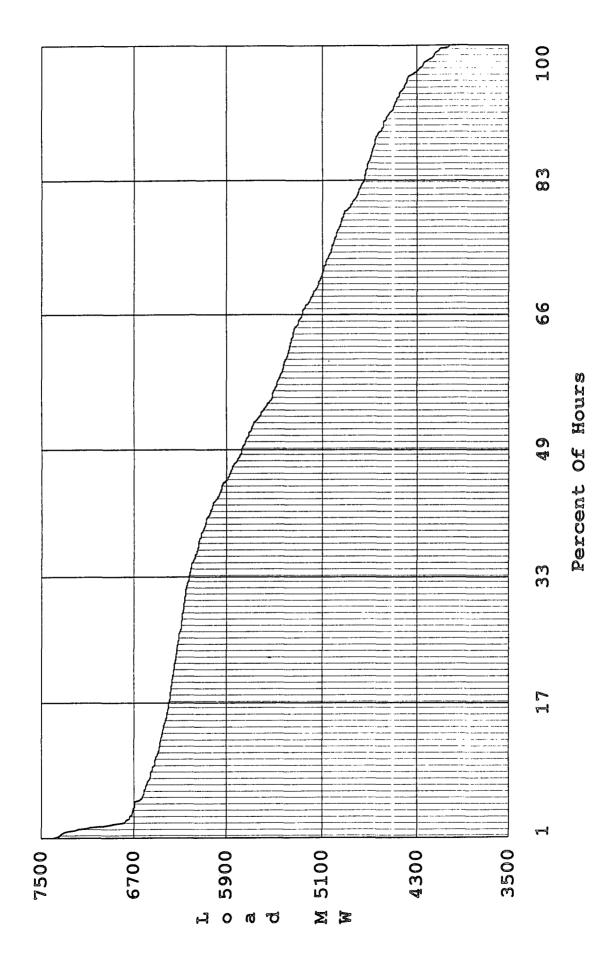

CINERGY 1998 LOAD DURATION CURVE-JUNE



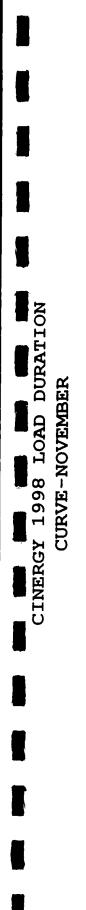


Î

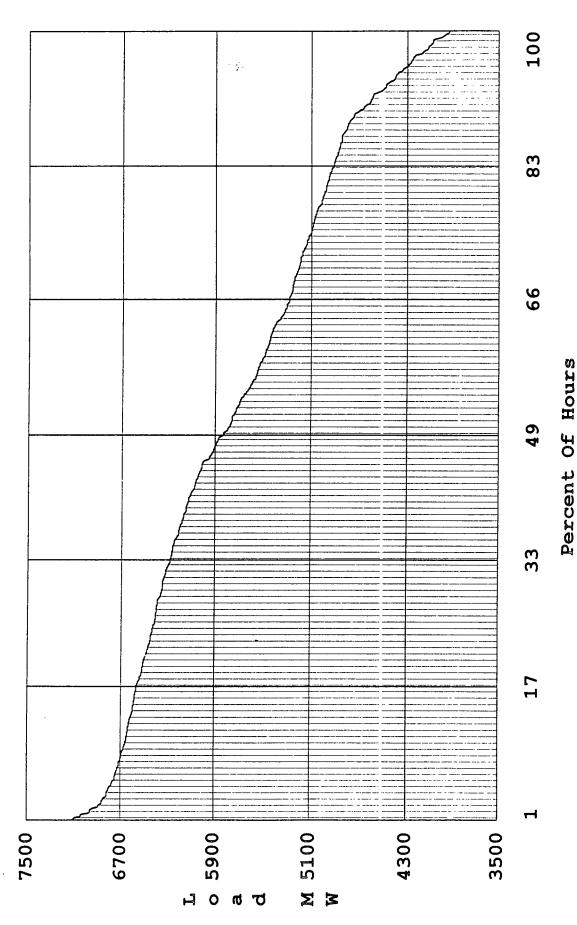
H



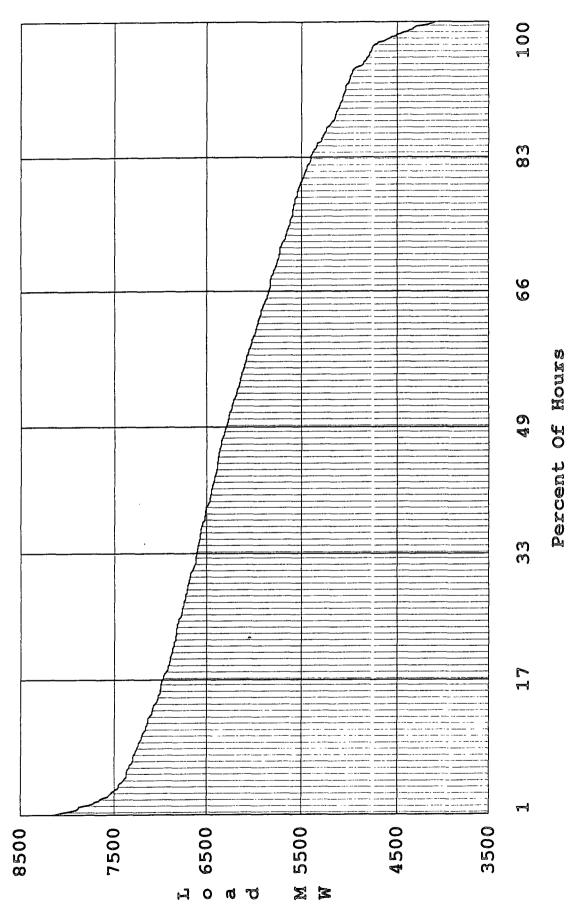




÷.

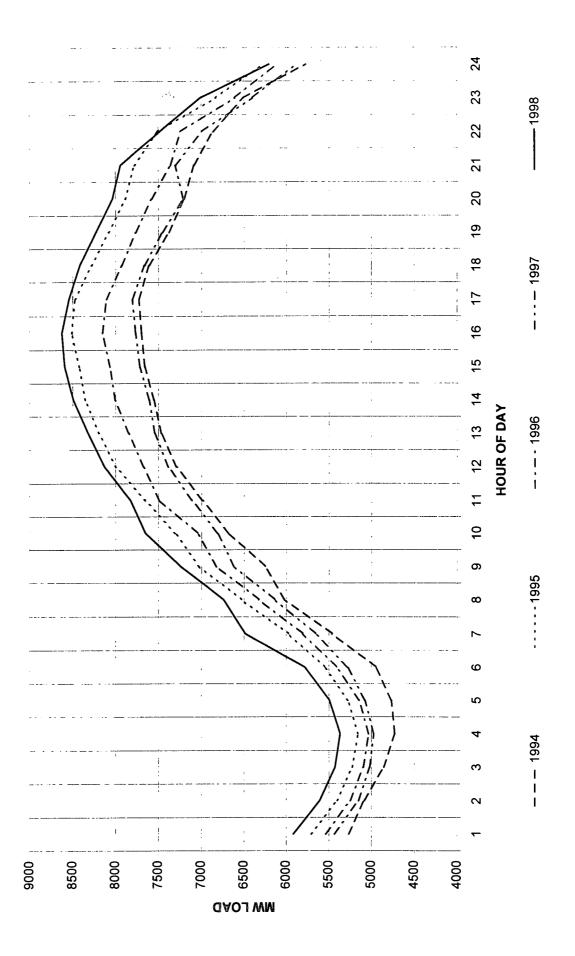




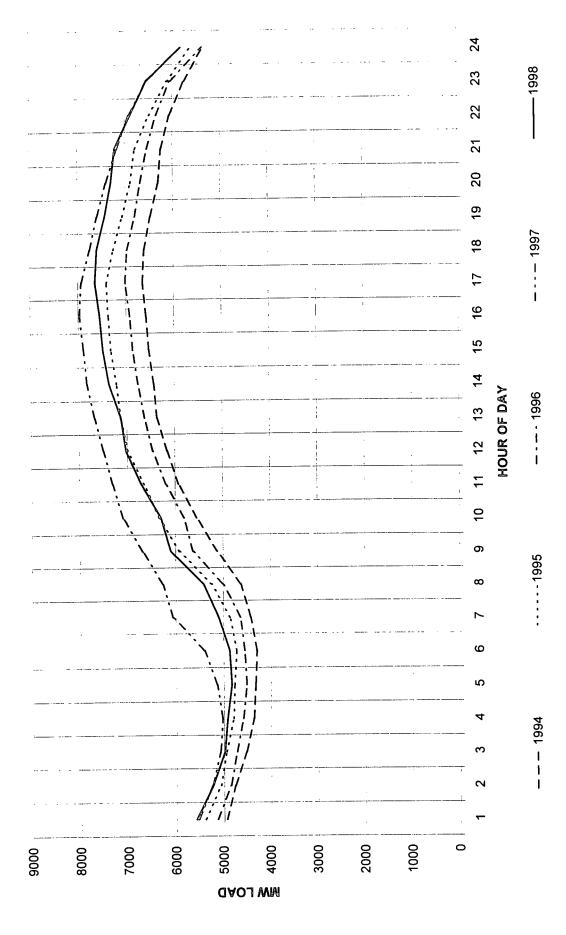

Ì

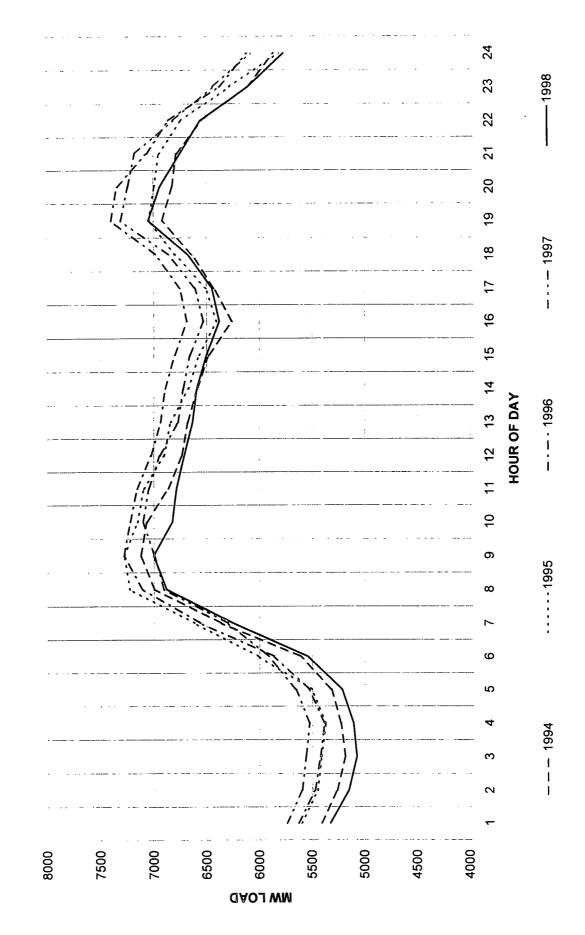




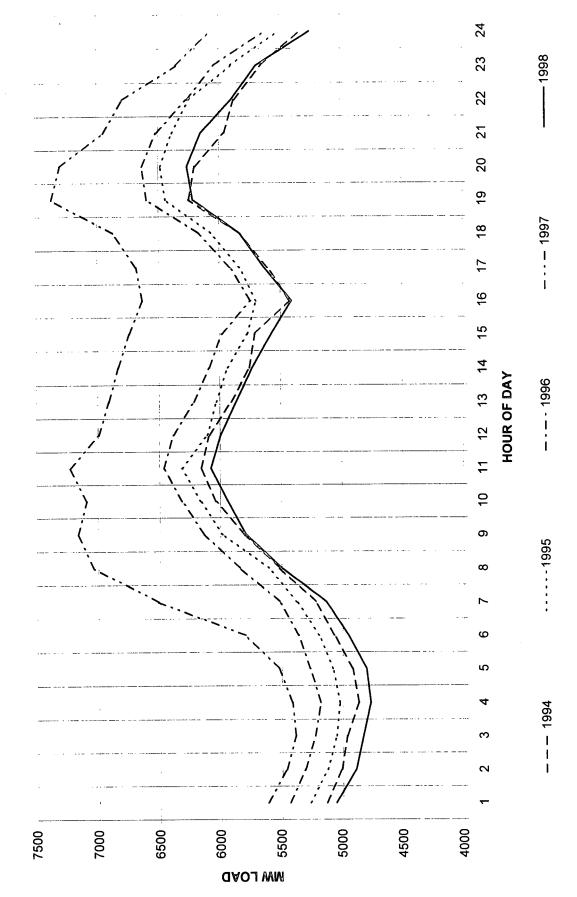

į.

CINERGY 1998 LOAD DURATION CURVE-DECEMBER





Ţ

**CINERGY TYPICAL SUMMER WEEKDAY 24-HOUR LOAD SHAPE** 




CINERGY TYPICAL SUMMER WEEKEND 24-HOUR LOAD SHAPE





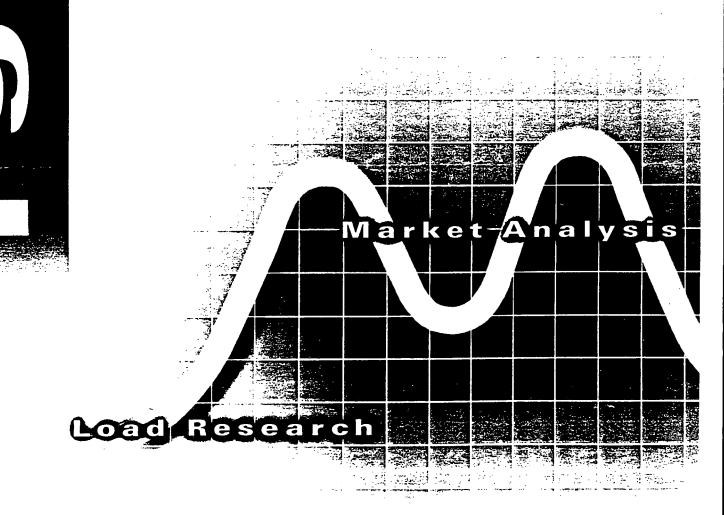
**CINERGY TYPICAL WINTER WEEKDAY 24-HOUR LOAD SHAPE** 





Section 5(a) (2) Disaggregated Load Shapes

This information, to the extent available, is contained in the document, "Load Characteristics," produced by the Load Research department. A copy is attached. A brief explanation of this load research effort is contained in Volume I, Chapter 3, Section D of Cinergy's 1999 IRP document.


#### THIS PAGE LEFT BLANK INTENTIONALLY

.

1

Ţ







#### Table of Contents

I

Ì

	Page
Section 1 - Introduction	2
Listing of Current Load Research Programs	4
Map of the Territory Served by the Company	
Section 2 - Load Duration Curves	7
Section 3 - Sample Statistics	11
PSI Energy	
Residential	
General R060	14
Water Heating R061	16
Heating and Water Heating X061	18
High Efficiency	20
Farm	
Farm with Residence FSB	22
Farm only FSC	
Commercial	
General C110	26
Space Heating K110	28
Total Electric TEC	30
Optional OCS	
Low Load Factor LLF (Sec/Sec)	
Industrial	
Medium Load Factor MLF (Sec/Sec)	36
CG&E	
Residential - Ohio	39
- Kentucky	41
Distribution Service	
Small/Secondary - Ohio	43
Less than 12.5KV - Ohio	45
Less than 12.5KV - Kentucky	<del>4</del> 7
Appendix - Glossary of Terms	49

# Section 1

## Introduction

#### Section 1—Introduction

Fundamentally, electric Load Research is conducted by utilities to determine an unknown element or characteristic, namely demand (kW or MW) of the customers it serves. Load Research is necessary, because in a real world where resources are limited, complete customer load information is not available or practical to collect. However, the demand of the various customer classes, each with a unique requirement for service, has a profound effect upon the efficient operation of company resources. Electric Load Research at the end-use or premise level is fundamental to this understanding of the relationship between the customer's load characteristics and the supply of electrical services.

As such. Cinergy is committed to an on-going Load Research program. Analysis and presentation of system and load characteristics are performed on the company's various customer classes in the Load Research section. This information is currently being utilized internally in Cost of Service studies and Rate Design to establish the company's rate levels and pricing strategies. Load Forecasting to assist in developing long-range forecasts, and Market Research to assist in determining end-use and market segment load characteristics. Often the information is also used externally by the Commission Staff, State Utility Forecasting Group and various consultants representing the company.

The sources of the information presented in these studies are from randomly selected samples from customer classes where demand data is unavailable, otherwise it is derived from demand meter billing information. When demand data for a customer class is unknown, statistical sampling techniques are utilized to select customer accounts. The watt-hour meters of the customer selected to participate in a Load Research study are removed and replaced by a load profile metering device. Every attempt is made to assure installation of the demand metering device on the selected customer, keeping substitutions to a minimum, thus attempting to maintain the randomness of the sample. Substitutions are made when necessary due to customer refusals and meter configuration problems. In an attempt to select alternatives with characteristics as similar to those of the primary selection as possible, substitution criteria area utilized for evaluation of possible alternatives such as: 12 month consumption history, type and age of dwelling and the location. These precautions are taken to insure that the sample is representative of the customer class or group under study.

This report consists of tables and graphs which display the various load characteristics of the company's customer classes (residential, commercial and industrial) and the total system for the calendar year 1996. As such, it is intended to be a summary of Load Research Programs for 1996.

Any request for other information of this type or additional analyses can be directed to the Load Research section.

IA-36

# PSI Energy

## Load Research Studies

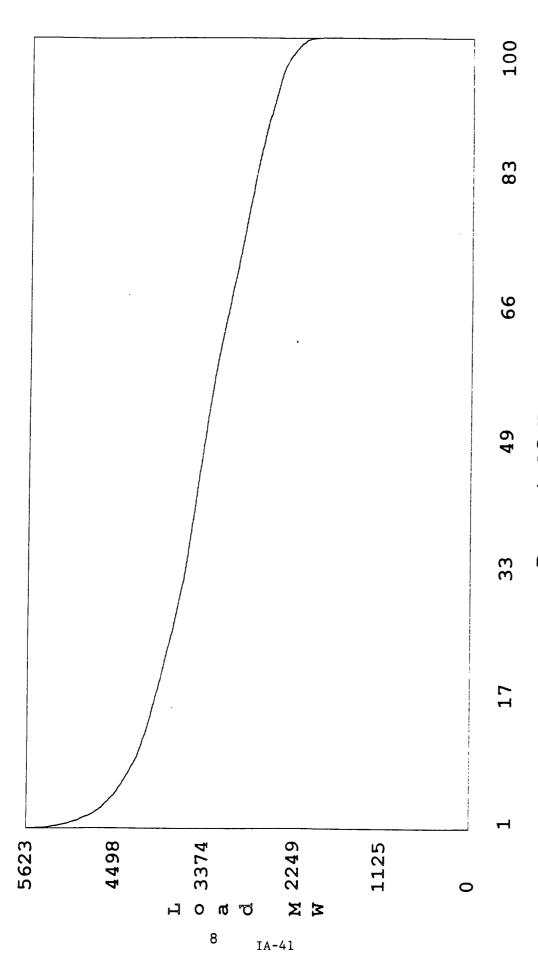
	Current	Installation Date of Current	Turne of
Description	Sample Size	Sample	Type of Study
Residential Studies			
Residential Service (RS)			
General - R060	150	Dec '93	Stratified - 3 Strata
Water Heating - R061	120	Jul '94	Stratified - 3 Strata
Space Heating - X061	100	Jul '93	Stratified - 3 Strata
Optional High Efficiency-X081	100	May '91	Stratified - 3 Strata
Farm Services			
Residential With Farm - FSB	65	Dec '91	Stratified - 3 Strata
Farm Only - FSC	155	Dec '91	Stratified - 4 Strata
Commercial/Industrial Studies			
Commercial Service (CS) General - C110	195	May '91	Stratified - 5 Strata
Heating - K110	59	May '91 May '91	Stratified - 3 Strata
TEC	30	Jan '96	Stratified - 2 Strata
OCS	30	Jan '96	Stratified - 2 Strata
Low Load Factor - LLF	194	Jun '91	Stratified - 5 Strata
Medium Load Factor - MLF	95	Jun '91	Stratified - 5 Strata

## CG&E

### Load Research Studies

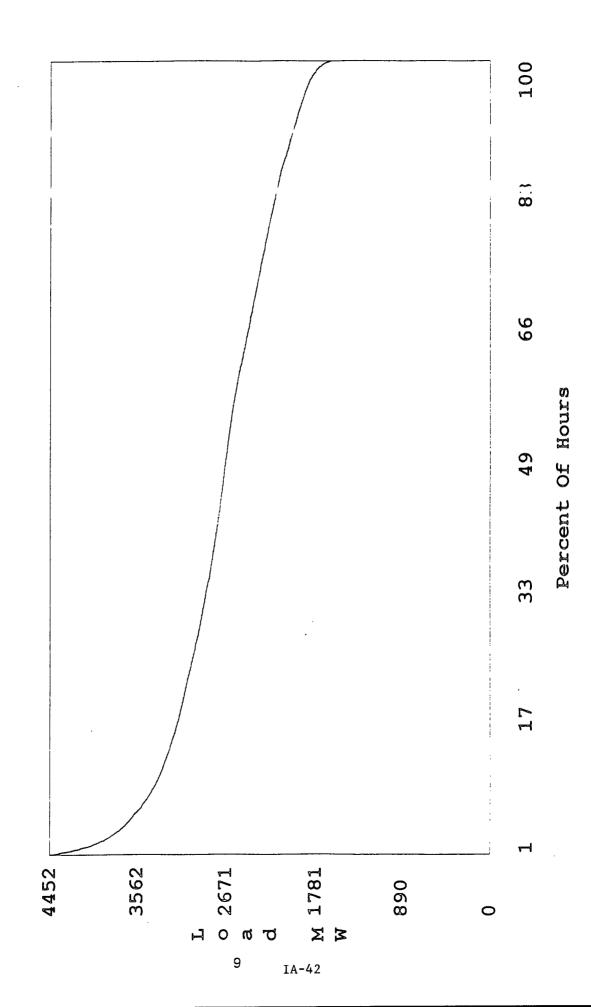
	· · · · · · · · · · · · · · · · · · ·	Installation	· · · · · · · · · · · · · · · · · · ·
Description	Current Sample Size	Date of Current Sample	Type of Study
Electric Service			
Residential			
Ohio	165	Apr '94	Stratified - 4 Strata
Kentucky	150	Jan '96	Stratified - 3 Strata
Commercial-Distribution Service			
Dist Sml - Secondary (OH)	155	Apr '93	Stratified - 3 Strata
Less Than 12.5 kV (OH)	152	Nov '93	Stratified - 9 Strata
Less Than 12.5 kV (KY)	188	Nov '93	Stratified - 7 Strata

IA-38

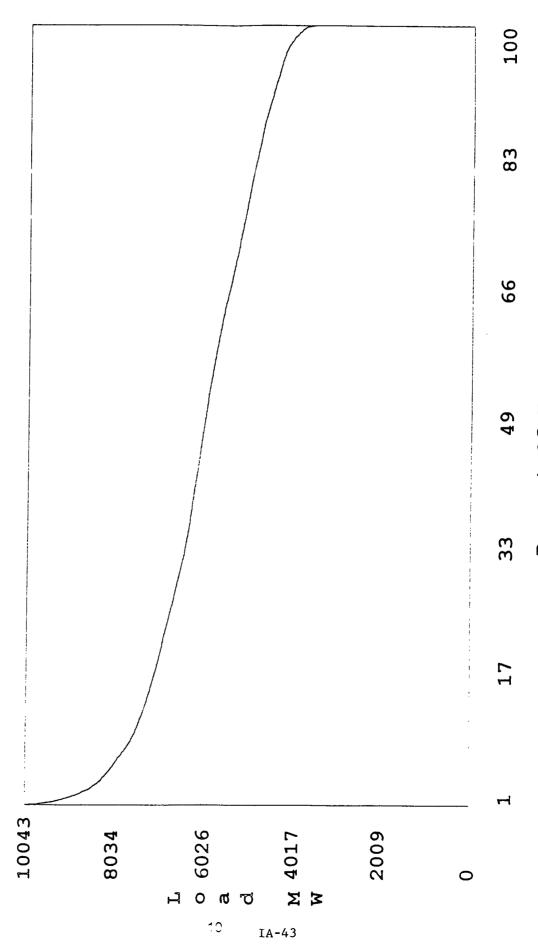



# Section 2

Load Duration Curves


IA-40






Percent Of Hours





# 1996 CINERGY System Load Duration Curve



Percent Of Hours

# Section 3

)

R

## Sample Statistics

#### Section—Sample Statistics

The following section contains tables detailing demand and energy statistics for the major Load Research studies during 1996. Included are sample size, energy use per customer, relevant maximum demands, load factors and coincident factors. All PSI statistics are calculated on 30 minute intervals except for those at the time of monthly system peak. All CG&E statistics are calculated on 15 minute intervals except for those at the time of monthly system peak. Both PSI and CG&E monthly system peak statistics are calculated on 60 minute intervals.

# **PSI Energy Statistics**

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	123	130	132	138
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT RS PEAK	1.542	1.772	1.516	1.032
DAY,DATE	WED,31	SUN,04	THU,07	WED,10
TIME ENDED	9:00PM	9:00PM	8:00PM	6:00AM
RELATIVE PRECISION	12.8%	11.6%	12.6%	11.6%
AT TIME OF SYSTEM PEAK	1.216	1.1457	1.088	0.916
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	14.8%	9.5%	12.0%	13.6%
NONCOINCIDENT DEMAND	4.914	5.282	4.956	5.085
RELATIVE PRECISION	7.5%	7.2%	7.5%	7.6%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	65.4%	56.5%	59.6%	78.4%
AT TIME OF SYSTEM PEAK	82.9%	87.4%	83.0%	88.4%
BASED ON NONCOIN. DEMAND	20.5%	18.9%	18.2%	15.9%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	31.4%	33.6%	30.6%	20.3%
AT TIME OF SYSTEM PEAK	29.0%	25.6%	26.0%	21.7%
POPULATION STATISTICS				
TOTAL CUSTOMERS	292,855	292,941	293,830	294,409
MWH SALES	223,831	229,534	217,693	200,156
USAGE (KWH/CUST.)	764	784	741	680

Ì

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
139	138	138	133	133	129	130	116
2.135 SUN,19 3:30PM 14.9%	2.873 SUN,30 5:30PM 9.3%	2.701 MON,01 5:00PM 8.3%	2.912 WED,07 5:30PM 9.0%	2.118 SUN,08 4:00PM 10.6%	1.291 THU,31 9:30PM 23.3%	1.498 TUE,26 7:30PM 16.7%	1.732 THU,19 7:30PM 14.0%
1.753 MON,20 2:00PM 14.6%	2.500 FRI,28 5:00PM 9.2%	2.485 FRI,19 3:00PM 9.3%	2.798 WED,07 4:00PM 7.8%	1.874 FRI,06 3:00PM 8.6%	1.130 TUE,01 8:00PM 13.2%	1.121 WED,27 8:00AM 10.3%	1.651 THU,19 7:00PM 11.3%
5.486 8.4%	6.402 6.2%	6.334 6.8%	6.438 7.2%	5.806 7.5%	5.150 10.2%	5.620 7.4%	5.435 7.3%
40.7% 49.6% 15.9%	45.8% 52.6% 20.5%	51.9% 56.5% 22.2%	51.3% 53.4% 23.2%	46.6% 52.7% 17.0%	60.4% 69.0% 15.1%	64.8% 86.6% 17.3%	62.4% 65.5% 19.9%
38.9% 37.1%	44.9% 44.8%	46.6% 44.9%	45.2% 49.9%	36.5% 38.1%	25.1% 26.6%	26.7% 23.8%	31.9% 35.2%
295,018	295,249	295,859	296,393	297,300	298,115	298,832	299,704
179,928	191,429	263,648	315,182	308,922	247,842	177,508	202,636
610	648	891	1,063	1,039	831	594	676

15

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	98	104	104	109
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT RS PEAK	1.969	2.376	2.262	1.652
DAY,DATE	WED,31	SUN,04	THU,07	WED,10
TIME ENDED	9:00PM	9:00PM	8:00PM	6:00AM
RELATIVE PRECISION	11.9%	12.0%	14.0%	15.8%
AT TIME OF SYSTEM PEAK	1.521	1.674	1.755	1,392
DAY, DATE	WED,31	FRI,02	FRI,08	<b>TUE</b> ,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	11.3%	11.5%	10.1%	12.7%
NONCOINCIDENT DEMAND	6.794	7.049	7.219	6,942
RELATIVE PRECISION	7.4%	7.1%	6.9%	6.1%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	68.8%	55.2%	55.8%	67.5%
AT TIME OF SYSTEM PEAK	89.1%	78.3%	72.0%	80.1%
BASED ON NONCOIN. DEMAND	20.0%	18.6%	17.5%	16.1%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	29.0%	33.7%	31.3%	23.8%
AT TIME OF SYSTEM PEAK	27.0%	28.4%	29.2%	23.8%
POPULATION STATISTICS				
TOTAL CUSTOMERS	120,103	120,375	120,034	120,007
MWH SALES	122,511	126,721	121,130	110,855
USAGE (KWH/CUST.)	1,020	1,053	1,009	924

Ţ

MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
106	106	109	109	102	104	108	93
2.628 SUN,19 3:30PM 13.0%	3.227 SUN,30 5:30PM 9.6%	2.859 MON,01 5:00PM 7.9%	3.425 WED,07 5:30PM 8.2%	2.418 SUN,08 4:00PM 12.4%	1.327 THU,31 9:30PM 12.9%	2.080 TUE,26 7:30PM 12.5%	2.102 THU,19 7:30PM 11.8%
2.121 MON,20 2:00PM 11.8%	2.623 FRI,28 5:00PM 9.9%	2.568 FRI,19 3:00PM 8.2%	3.129 WED,07 4:00PM 7.3%	2.009 FRI,06 3:00PM 10.5%	1.228 TUE,01 8:00PM 12.4%	1.737 WED,27 8:00AM 13.1%	2.141 THU,19 7:00PM 12.0%
7.653 5.6%	7.637 6.6%	7.364 7.1%	7.677 7.1%	6.813 8.1%	6.413 9.3%	7.263 7.2%	7.863 6.2%
45.3% 56.2% 15.6%	47.9% 58.9% 20.2%	54.1% 60.3% 21.0%	49.8% 54.5% 22.2%	46.5% 55.9% 16.5%	73.4% 79.3% 15.2%	59.3% 71.0% 17.0%	65.2% 64.0% 17.4%
34.3% 32.8%	42.3% 40.2%	38.8% 41.0%	44.6% 46.9%	35.5% 34.9%	20.7% 23.0%	28.6% 28.5%	26.7% 32.8%
119,909	119,821	119,720	119,696	119,732	119,764	119,804	119,959
99,404	98,869	123,791	140,302	136,599	114,076	92,661	107,386
829	825	1,034	1,172	1,141	953	773	895

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	79	88	89	92
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT RS PEAK	4.836	5.752	4.688	3.566
DAY,DATE	WED,31	SUN,04	THU,07	WED,10
TIME ENDED	9:00PM	9:00PM	8:00PM	6:00AM
RELATIVE PRECISION	9.6%	6.9%	8.3%	9.8%
AT TIME OF SYSTEM PEAK	4.800	5.352	5.299	2.975
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	6.1%	5.2%	6.6%	8.8%
NONCOINCIDENT DEMAND	10.914	12.462	11.948	10.638
RELATIVE PRECISION	6.6%	5.8%	6.0%	7.8%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	66.2%	56.1%	62.3%	53.4%
AT TIME OF SYSTEM PEAK	66.7%	60.3%	55.1%	64.0%
BASED ON NONCOIN. DEMAND	29.3%	25.9%	24.4%	17.9%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	44.3%	46.2%	39.2%	33.5%
AT TIME OF SYSTEM PEAK	51.8%	49.0%	52.5%	33.7%
POPULATION STATISTICS				
TOTAL CUSTOMERS	127,938	127,782	127,958	128,126
MWH SALES	296,808	335,031	313,177	254,236
USAGE (KWH/CUST.)	2,320	2,622	2,448	1,984

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

and the second second

R

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
94	93	92	89	83	88	87	82
2.553	3.047	2.688	2.914	2.246	2.307	3.657	4.863
SUN,19	SUN,30	MON,01	WED,07	SUN,08	THU,31	TUE,26	THU,19
3:30PM	5:30PM	5:00PM	5:30PM	4:00PM	9:30PM	7:30PM	7:30PM
13.6%	12.2%	11.6%	11.2%	12.7%	18.0%	16.6%	10.1%
2.042	2.894	2.463	2.663	1.959	1.521	3.524	4.803
MON,20	FRI,28	FRI,19	WED,07	FR1,06	TUE,01	WED,27	THUR,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
15.2%	9.9%	11.7%	9.2%	11.2%	14.0%	13.5%	9.2%
9.593	8.616	7.464	7.992	7.825	8.830	9.675	10.920
7.4%	6.8%	9.1%	9.3%	11.6%	10.8%	9.9%	7.5%
57.8%	52.8%	55.1%	55.2%	54.9%	61.5%	61.8%	56.2%
72.3%	54.8%	60.1%	60.4%	62.9%	93.3%	64.1%	56.9%
15.4%	18.4%	19.8%	20.1%	15.7%	16.1%	23.4%	25.0%
		<b></b>	00 50/	00.7%	00.40/	07.00/	
26.6%	35.4%	36.0%	36.5%	28.7%	26.1%	37.8%	44.5%
26.1%	40.1%	39.4%	38.4%	30.0%	20.9%	44.1%	52.0%
128,027	127,865	127,896	127,807	128,166	128,542	128,779	129,067
181,466	128,104	132,627	147,600	144,272	126,621	127,162	217,809
1,417	1,002	1,037	1,155	1,126	985	987	1,688

.

19

#### RESIDENTIAL RATE - HIGH EFFICIENCY 1996

ŀ

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	85	91	91	96
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT RS PEAK	6.347	8.635	6.145	4.871
DAY,DATE	WED,31	SUN,04	THU,07	WED,10
TIME ENDED	9:00PM	9:00PM	8:00PM	6:00AM
RELATIVE PRECISION	14.3%	8.5%	8.9%	10.6%
AT TIME OF SYSTEM PEAK	6.632	7.485	7.890	3.876
DAY, DATE	WED,31	FRI,02	FRI,08	<b>TUE,09</b>
	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	10.4%	9.5%	7.5%	10.8%
NONCOINCIDENT DEMAND	12.717	15.687	14.997	12.799
RELATIVE PRECISION	7.7%	6.8%	6.4%	7.4%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	60.2%	47.9%	58.1%	49.6%
AT TIME OF SYSTEM PEAK	57.7%	55.2%	45.2%	62.3%
BASED ON NONCOIN. DEMAND	30.1%	26.3%	23.8%	18.9%
BASED ON MAX. DIV. DEMAND	49.9%	55.0%	41.0%	38,1%
AT TIME OF SYSTEM PEAK	60.6%	54.6%	61.4%	36.4%
POPULATION STATISTICS				
TOTAL CUSTOMERS	17,361	17,665	18,052	18,304
MWH SALES	49,832	61,071	57,836	44,871
USAGE (KWH/CUST.)	2,870	3,457	3,204	2,451

#### RESIDENTIAL RATE - HIGH EFFICIENCY 1996

Ì

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
95	93	91	94	91	91	88	80
3.412	3.532	3.039	3.537	2.866	2.764	4.106	6.2473
SUN,19	SUN,30	MON,01	WED,07	SUN,08	THU,31	TUE,26	THU,19
3:30PM	5:30PM	5:00PM	5:30PM	4:00PM	9:30PM	7:30PM	7:30PM
12.6%	10.0%	12.3%	11.6%	13.2%	11.2%	10.7%	10.9%
3.500	3.201	2.919	3.245	2.161	2.256	4.992	6.679
MON,20	FRI,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
14.0%	10.9%	10.2%	9.1%	13.3%	15.1%	12.0%	10.5%
11.106	9.223	8.455	8.789	8.309	9,905	11.398	13.334
7.9%	6.0%	6.8%	7.0%	6.7%	11.1%	7.5%	9.4%
55.2%	55.2%	60.9%	57.2%	53.4%	59.5%	68.0%	54.3%
66.0%	60.9%	63.4%	62.4%	70.8%	72.9%	55.9%	50.8%
16.9%	21.1%	21.9%	23.0%	18.4%	16.6%	24.5%	25.5%
30.7%	38.3%	35.9%	40.2%	34.5%	27.9%	36.0%	46.9%
31.4%	40.8%	39.6%	42.3%	31.2%	28.2%	52.3%	57.6%
18,638	18,884	19,087	19,503	19,750	20,092	20,308	20,580
32,344	24,172	24,918	27,770	27,196	25,075	24,759	40,920
1,735	1,280	1,306	1,424	1,377	1,248	1,219	1,988

#### FARM RATE - FSB 1996

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	51	56	56	61
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT RS PEAK DAY,DATE TIME ENDED RELATIVE PRECISION	2.987 WED,31 9:00PM 11.7%	3.977 SUN,04 9:00PM 10.2%	3.547 THU,07 8:00PM 13.5%	2.621 WED,10 6:00AM 12.9%
AT TIME OF SYSTEM PEAK DAY, DATE TIME ENDED RELATIVE PRECISION	3.135 WED,31 8:00AM 13.0%	3.532 FRI,02 9:00AM 9.4%	3.537 FRI,08 8:00AM 11.7%	2.505 TUE,09 8:00AM 13.6%
NONCOINCIDENT DEMAND RELATIVE PRECISION	8.500 14.4%	9.697 11.2%	8.971 12.5%	8.252 12.9%
LOAD FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK BASED ON NONCOIN. DEMAND	84.0% 80.0% 29.5%	66.7% 75.1% 27.4%	66.5% 66.7% 26.3%	70.6% 73.8% 22.4%
COINCIDENCE FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK	35.1% 42.4%	41.0% 42.4%	39.5% 46.2%	31.7% 36.9%
POPULATION STATISTICS				
TOTAL CUSTOMERS	6,747	6,716	6,735	6,729
MWH SALES	12,506	13,472	12,986	11,071
USAGE (KWH/CUST.)	1,854	2,006	1,928	1,645

## FARM RATE - FSB 1996

Π

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
60	61	61	60	60	59	59	55
1.891	2.871	2.594	3.231	2.475	3.611	4.395	4.686
SUN, 19	SUN,30	MON,01	WED,07	SUN,08	THU,31	TUE,26	THU,19
3:30PM	5:30PM	5:00PM	5:30PM	4:00PM	9:30PM	7:30PM	7:30PM
22.8%	18.1%	11.5%	10.4%	17.4%	27.4%	23.3%	21.3%
2.159	2.652	3.021	3.420	2.134	1.762	4.318	4.561
MON,20	FRI,28	FRI,19	WED,07	FR1,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
25.3%	14.8%	10.3%	9.4%	12.6%	15.2%	25.4%	19.4%
7.778	8.224	8.397	9.046	8.047	9.498	12.178	10.934
14.8%	13.7%	12.1%	10.7%	12.5%	16.8%	14.4%	12.8%
80.1%	60.4%	69.1%	61.0%	66.3%	56.7%	72.9%	59.3%
70.2%	65.4%	59.4%	54.2%	79.9%	116.2%	74.2%	61.0%
19.5%	21.1%	21.4%	21.8%	20.4%	21.6%	26.3%	25.4%
24.3%	34.9%	30.9%	36.9%	30.8%	38.0%	36.1%	42.9%
33.6%	37.9%	42.0%	44.3%	31.2%	21.3%	40.1%	48.2%
6,721	6,723	6,714	6,711	6,712	6,717	6,735	6,741
9,387	7,991	8,825	9,529	9,279	8,540	9,788	15,184
1,397	1,189	1,314	1,420	1,383	1,271	1,453	2,252

. .

## FARM RATE - FSC 1996

Ĩ

F

F

Ì

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	140	135	133	145
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT RS PEAK DAY,DATE TIME ENDED RELATIVE PRECISION	1.727 WED.31 9:00PM 9.0%	1.701 SUN,04 9:00PM 28.0%	1.187 THU,07 8:00PM 15.0%	1.018 WED,10 6:00AM 8.7%
AT TIME OF SYSTEM PEAK DAY, DATE TIME ENDED RELATIVE PRECISION	1.747 WED,31 8:00AM 28.0%	1.474 FRI,02 9:00AM 7.1%	1.388 FRI,08 8:00AM 25.4%	1.151 TUE,09 8:00AM 11.4%
NONCOINCIDENT DEMAND RELATIVE PRECISION	5.166 22.6%	5.259 34.6%	3.506 30.6%	3.608 17.1%
LOAD FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK BASED ON NONCOIN. DEMAND	84.0% 83.0% 28.1%	71.0% 82.0% 23.0%	79.3% 67.8% 26.8%	92.9% 82.2% 26.2%
COINCIDENCE FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK	33.4% 36.8%	32.4% 31.2%	33.9% 45.4%	28.2% 36.3%
POPULATION STATISTICS				
TOTAL CUSTOMERS	3,218	3,204	3,208	3,198
MWH SALES	3,479	2,882	2,409	2,474
USAGE (KWH/CUST.)	1.081	899	751	774

## FARM RATE - FSC 1996

 $\left( \right)$ 

ļ

Í

S

Í

1

N

7

MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
145	144	148	146	146	146	144	128
0.991 SUN,19 3:30PM 17.6%	0.936 SUN,30 5:30PM 12.7%	1.211 MON,01 5:00PM 10.2%	1.532 WED,07 5:30PM 39.8%	1.018 SUN,08 4:00PM 16.9%	3.971 THU,31 9:30PM 32.0%	3.918 TUE,26 7:30PM 47.6%	1.886 THU,19 7:30PM 45.6%
0.975 MON,20 2:00PM 19.5%	0.998 FRI,28 5:00PM 19.8%	1.257 FRI,19 3:00PM 12.2%	1.617 WED,07 4:00PM 38.1%	1.029 FRI,06 3:00PM 15.7%	1.185 TUE,01 8:00PM 16.7%	3.223 WED,27 8:00AM 44.5%	1.947 THU,19 7:00PM 44.0%
3.740 19.0%	3.120 29.9%	3.438 13.1%	3.553 21.9%	3.946 20.5%	8.739 23.3%	10.235 26.8%	7.426 14.5%
90.4% 91.9% 24.0%	85.2% 80.0% 25.6%	79.0% 76.1% 27.8%	66.4% 62.9% 28.6%	80.1% 79.2% 20.7%	55.7% 186.7% 25.3%	93.3% 113.4% 35.7%	89.7% 86.9% 22.8%
26.5% 30.2%	30.0% 35.5%	36.0% 41.3%	43.1% 50.9%	25.8% 30.8%	45.4% 14.3%	38.3% 32.9%	25.4% 27.5%
3,191	3,187	3,181	3,179	3,174	3,177	3,180	3,175
2,349	1,679	2,042	2,244	2,054	2,321	4,044	7,890
736	527	642	706	647	731	1,272	2,485

25

- -

IA-58

#### COMMERCIAL RATE - C110 1996

Í

Ì

Î

Î

Ì

Ĩ

Î

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	162	167	168	177
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT CS PEAK	2.802	3.101	2.629	2.648
DAY,DATE	FRI, 19	FRI,02	FRI,08	TUE,09
TIME ENDED	11:00AM	12:30PM	10:00AM	9:30AM
RELATIVE PRECISION	9.9%	8.6%	9.3%	9.5%
AT TIME OF SYSTEM PEAK	2.105	2.688	2.014	2.259
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	7.9%	9.5%	8.6%	10.8%
NONCOINCIDENT DEMAND	5.363	5.979	5.647	6.451
RELATIVE PRECISION	11.3%	10.5%	11.1%	11.4%
LOAD FACTOR			•	
BASED ON MAX. DIV. DEMAND	66.4%	63.1%	67.5%	64.9%
AT TIME OF SYSTEM PEAK	88.4%	72.8%	88.1%	76.1%
BASED ON NONCOIN. DEMAND	34.7%	32.7%	31.4%	26.6%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	52.2%	51.9%	46.6%	37.5%
AT TIME OF SYSTEM PEAK	42.4%	48.7%	38.8%	41.0%
POPULATION STATISTICS				
TOTAL CUSTOMERS	56,059	55,924	55,735	55,687
MWH SALES	77,250	82,487	81,182	74,822
USAGE (KWH/CUST.)	1,378	1,475	1,457	1,344

### COMMERCIAL RATE - C110 1996

,

l

Í

Î

ľ

Ì

2

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
176	173	172	169	16 <b>4</b>	167	171	159
3.689 MON,20 1:30PM 12.0%	3.903 FRI,28 2:30PM 10.7%	3.954 FRI,19 1:30PM 9.4%	4.193 WED,07 3:00PM 7.2%	3.535 TUE,03 2:00PM 10.4%	2.796 TUE,15 2:00PM 12.2%	2.764 FRI,15 11:00AM 13.0%	2.795 FRI,20 11:00AM 9.8%
3.660 MON,20 2:00PM 11.8%	3.434 FRI,28 5:00PM 11.8%	3.849 FRI,19 3:00PM 8.9%	3.993 WED,07 4:00PM 6.6%	3.329 FRI,06 3:00PM 7.6%	1.846 TUE,01 8:00PM 10.9%	2.060 WED,27 8:00AM 15.0%	2.613 THU,19 7:00PM 10.4%
7.043 11.7%	7.247 11.8%	7.191 11.1%	7.186 9.3%	6.852 11.1%	6.044 11.0%	5.813 12.4%	5.702 11.1%
48.2% 48.5% 25.2%	54.7% 62.2% 29.5%	56.9% 58.5% 31.3%	56.0% 58.8% 32.7%	51.8% 54.9% 26.7%	58.5% 88.6% 27.1%	63.3% 84.9% 30.1%	65.9% 70.5% 32.3%
52.4% 55.2%	53.9% 50.0%	55.0% 57.1%	58.4% 58.5%	51.6% 51.7%	46.3% 33.3%	35.6% 38.5%	49.0% 49.4%
55,884	56,025	56,116	56,152	56,172	56,253	56,238	56,232
69,183	70,469	84,841	94,700	92,737	81,578	67,876	72,676
1,238	1,258	1,512	1,686	1,651	1,450	1,207	1,292

## COMMERCIAL RATE - K110 1996

Ŷ

Î

Î

.

.

·	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	56	53	53	56
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT CS PEAK	8.452	9.520	9.129	5.814
DAY,DATE	FRI,19	FRI,02	FRI,08	TUE,09
TIME ENDED	11:00AM	12:30PM	10:00AM	9:30AM
RELATIVE PRECISION	10.3%	7.9%	11.8%	14.1%
AT TIME OF SYSTEM PEAK	7.796	10.157	8.933	6.008
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	8.1%	7.8%	10.5%	13.0%
NONCOINCIDENT DEMAND	14.822	17.046	16.232	13.893
RELATIVE PRECISION	14.1%	10.8%	11.4%	12.8%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	62.7%	59.1%	55.3%	57.3%
AT TIME OF SYSTEM PEAK	68.0%	55.4%	56.6%	55.5%
BASED ON NONCOIN. DEMAND	35.8%	33.0%	31.1%	24.0%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	57.0%	55.8%	56.2%	41.8%
AT TIME OF SYSTEM PEAK	57.7%	65.2%	63.1%	50.2%
POPULATION STATISTICS				
TOTAL CUSTOMERS	3,480	3,483	3,486	3,482
MWH SALES	13,340	15,931	14,593	12,199
USAGE (KWH/CUST.)	3,833	4,574	4.186	3,504

~ ~

## COMMERCIAL RATE - K110 1996

ĺ

ļ

ì

Ì

Ŷ

Ì

Ż

i

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
55	54	52	53	52	50	51	47
4.944	5.512	5.515	6.455	5.004	4.378	6.228	9.001
MON,20	FRI,28	FRI,19	WED,07	TUE,03	TUE,15	FRI,15	FRI,20
1:30PM	2:30PM	1:30PM	3:00PM	2:00PM	2:00PM	11:00AM	11:00AM
15.6%	12.5%	13.3%	11.5%	11.9%	13.8%	13.9%	13.7%
4.939	4.989	5.523	6.640	5.243	2.887	7.095	8.221
MON,20	FRI,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
15.2%	11.1%	12.8%	12.6%	14.5%	26.6%	14.9%	8.7%
12.008	11.833	11.044	11.145	11.779	12.705	14.706	15.372
14.7%	14.0%	15.4%	14.7%	19.2%	17.6%	17.7%	13.4%
58.9%	61.6%	61.4%	57.5%	57.5%	62.0%	71.4%	58.0%
59.0%	68.1%	61.3%	55.9%	54.9%	94.0%	62.7%	63.5%
24.3%	28.7%	30.7%	33.3%	24.4%	21.4%	30.3%	34.0%
41.2%	46.6%	49.9%	57.9%	42.5%	34.5%	42.4%	58.6%
46.9%	47.4%	54.5%	66.0%	49.9%	25.9%	54.2%	58.6%
3,475	3,468	3,460	3,458	3,462	3,455	3,453	3,457
8,878	7,570	8,226	8,685	8,640	7,722	7,187	10,555
2,555	2,183	2,377	2,511	2,496	2,235	2,081	3,053

29

- -

## COMMERCIAL RATE - TEC 1996

Ì

Ĵ

Í

Û

Ì

Ķ

Î

ľ

ĺ

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	18	22	21	20
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT CS PEAK	102.559	126.743	103.336	79.697
DAY,DATE	WED,31	MON,05	FRI,08	TUE,09
TIME ENDED	11:00AM	10:30AM	11:30AM	9:30AM
RELATIVE PRECISION	8.8%	8.8%	10.9%	10.7%
AT TIME OF SYSTEM PEAK	103.188	113.382	98.917	79.225
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	7.2%	9.7%	8.9%	7.0%
	139.145	152.12	128.079	105.89
RELATIVE PRECISION	6.1%	8.7%	8.1%	7.4%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	83.1%	64.5%	70.7%	78.1%
AT TIME OF SYSTEM PEAK	82.6%	72.2%	73.9%	78.6%
BASED ON NONCOIN. DEMAND	61.2%	53.8%	57.1%	58.8%
BASED ON MAX. DIV. DEMAND	73.7%	83.3%	80.7%	75.3%
AT TIME OF SYSTEM PEAK	76.6%	76.9%	80.6%	78.1%
POPULATION STATISTICS				
TOTAL CUSTOMERS	196	197	198	199
MWH SALES	11,303	12,003	11,301	10,170
USAGE (KWH/CUST.)	56,671	60,928	57,074	51,103

## COMMERCIAL RATE - TEC 1996

ļ

Ĩ

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
20	22	22	18	19	20	21	21
94.003	96.489	100.994	111.996	90.547	77.753	81.939	105.445
MON,20	WED,19	WED,17	THU,22	FRI,06	WED,02	TUE,26	FRI,20
12:00NO	12:00NO	12:00NO	12:00NO	12:30PM	12:00NO	10:30AM	11:00AM
11.5%	10.3%	8.5%	8.7%	9.0%	11.5%	10.5%	11.4%
92.224	89.748	102.757	112.697	86.32	71.893	85.721	107.551
MON,20	FRI,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
13.5%	8.5%	7.7%	7.4%	8.6%	10.3%	10.4%	11.1%
113.125	115.559	120.523	132.066	105.668	104.242	119.756	132.455
10.9%	8.2%	6.7%	7.0%	7.2%	7.3%	9.9%	9.5%
69.1%	72.7%	73.1%	75.1%	68.5%	79.6%	88.3%	72.5%
70.5%	78.2%	71.9%	74.6%	71.8%	86.1%	84.4%	71.0%
57.4%	60.7%	61.3%	63.7%	58.7%	59.4%	60.4%	57.7%
83.1%	83.5%	83.8%	84.8%	85.7%	74.6%	68.4%	79.6%
84.2%	79.7%	87.3%	88.0%	84.7%	72.4%	74.4%	85.0%
199	196	203	200	200	199	199	200
9,318	9,273	10,676	12,028	9,898	9,478	9,626	10,525
46,825	47,311	52,590	60,139	49,490	47,630	48,370	52,624

IA-64

 $\sim 1$ 

### COMMERCIAL RATE- OCS 1996

į

Ĵ

Ì

Í

Î

Ì

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	23	27	27	27
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT CS PEAK	17.968	24.063	21.866	14.895
DAY,DATE	FRI,19	FRI,02	FRI,08	TUE,09
TIME ENDED	11:00AM	12:30PM	10:00AM	9:30AM
RELATIVE PRECISION	13.1%	8.5%	11.2%	10.7%
AT TIME OF SYSTEM PEAK	18.579	25.086	20.584	14.106
DAY, DATE	WED,31	FRI,02	FRI,08	TUE,09
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	8.9%	7.6%	7.4%	11.9%
NONCOINCIDENT DEMAND	30.065	36.36	34.500	32.016
RELATIVE PRECISION	9.8%	5.8%	6.7%	7.9%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	78.7%	64.6%	65.1%	92.1%
AT TIME OF SYSTEM PEAK	76.1%	62.0%	69.1%	97.2%
BASED ON NONCOIN. DEMAND	47.1%	42.8%	41.2%	42.8%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	59.8%	66.2%	63.4%	46.5%
AT TIME OF SYSTEM PEAK	65.7%	73.3%	64.6%	49.1%
POPULATION STATISTICS				
TOTAL CUSTOMERS	70	71	68	68
MWH SALES	736	813	764	711
USAGE (KWH/CUST.)	10,515	11.450	11.233	10.452

## COMMERCIAL RATE- OCS 1996

Î

Ĩ

Í

Ì

Î

Ì

Í

Î

Ĩ

1

Î

MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
29	29	30	26	27	28	28	30
10 155	10 465	19.591	19.819	18.446	15.552	16.744	19.816
18.155 MON,20	19.465 FRI,28	FRI,19	WED,07	TUE,03	TUE,15	FRI,15	FRI,20
1:30PM	2:30PM	1:30PM	3:00PM	2:00PM	2:00PM	11:00AM	11:00AM
9.7%	10.2%	7.8%	9.6%	2.007 W	10.9%	12.3%	9.1%
9.770	10.276	7.074	5.078	0.570	10.376	12.570	3.170
19.296	18.421	19.125	18.930	19.409	17.004	17.552	21.987
MON,20	FRI,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
9.6%	8.5%	8.5%	8.5%	8.7%	6.3%	9.0%	6.9%
28.203	28.780	28.734	29.702	28.684	29.883	29.905	34.446
6.2%	6.0%	5.2%	7.5%	6.3%	8.5%	8.3%	7.4%
77.0%	77.4%	78.6%	79.2%	77.5%	88.4%	85.7%	75.4%
76.5%	81.8%	80.5%	82.9%	73.6%	80.8%	81.8%	68.0%
49.6%	52.4%	53.6%	52.8%	49.8%	46.0%	48.0%	43.4%
64.4%	67.6%	68.2%	66.7%	64.3%	52.0%	56.0%	57.5%
68.6%	67.1%	69.8%	66.3%	71.2%	62.4%	64.4%	69.9%
68	67	67	67	67	66	66	67
678	672	731	763	731	729	698	698
							_
9,965	10,035	10,904	11,387	10,907	11,044	10,583	10,423



## COMMERCIAL RATE - LLF ( SEC / SEC ) 1996

Í

ĺ

Ĵ

[]

Ĵ

Ĩ

	AAL	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	166	168	163	170
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT CS PEAK DAY,DATE TIME ENDED RELATIVE PRECISION	26.927 WED,31 11:00AM 8.9%	29.601 MON,05 10:30AM 8.7%	27.421 FRI,08 11:30AM 9.4%	24.955 TUE,09 9:30AM 11.8%
AT TIME OF SYSTEM PEAK DAY, DATE TIME ENDED RELATIVE PRECISION	23.460 WED,31 8:00AM 10.9%	28.935 FRI,02 9:00AM 8.4%	23.339 FRI,08 8:00AM 11.6%	23.387 TUE,09 8:00AM 11.8%
NONCOINCIDENT DEMAND RELATIVE PRECISION	38.563 9.0%	42.977 9.3%	39.377 9.5%	40.814 10.3%
LOAD FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK BASED ON NONCOIN. DEMAND	56.2% 64.6% 39.3%	53.9% 61.1% 37.1%	54.1% 63.5% 35.9%	55.0% 58.7% 33.6%
COINCIDENCE FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK	69.8% 64.4%	68.9% 63.6%	66.4% 59.3%	61.1% 60.6%
POPULATION STATISTICS				
TOTAL CUSTOMERS	16,968	17,087	17,050	17,094
MWH SALES	181,690	195,430	195,463	180,307
USAGE (KWH/CUST.)	10,708	11,437	11,464	10,548

## COMMERCIAL RATE - LLF ( SEC / SEC ) 1996

ł

Ì

Î

Î,

Î

Î

Ì

Í

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
169	171	174	167	171	170	166	158
30.139	28.711	27.881	32.766	30.060	28.309	28.770	28.213
MON,20	WED,19	WED,17	THU,22	FRI,06	WED,02	TUE,26	FRI,20
12:00NO	12:00NO	12:00NO	12:00NO	12:30PM	12:00NO	10:30AM	11:00AM
10.0%	10.6%	7.3%	10.6%	7.8%	11.7%	10.1%	11.3%
29.016	19.318	25.907	25.603	27.098	14.486	24.102	17.976
MON,20	FRI,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM 11.6%	3:00PM 7.6%	4:00PM 6.8%	3:00PM 6.5%	8:00PM 12.4%	8:00AM 12.1%	7:00PM 9.8%
9.2%	11.070	7.0%	0.0%	0.0%	12.470	12.170	9.0%
42.922	42.124	42.103	46.611	43.330	42.836	43.172	43.323
9.3%	9.3%	9.6%	9.7%	9.4%	10.8%	10.3%	10.7%
46.9%	52.2%	55.1%	51.5%	47.8%	49.3%	52.7%	54.1%
48.7%	77.6%	59.3%	65.9%	53.0%	96.3%	62.9%	84.9%
32.9%	35.6%	36.5%	36.2%	33.1%	32.6%	35.1%	35.2%
70.2%	68.2%	66.2%	70.3%	69.4%	66.1%	66.6%	65.1%
71.0%	47.8%	64.2%	57.4%	65.5%	35.7%	59.1%	44.1%
17,169	17,213	17,209	17,234	17,284	17,296	17,304	17,330
171,534	173,628	189,291	199,541	200,772	196,107	181,934	194,263
9,991	10,087	11,000	11,578	11,616	11,338	10,514	11,210

35

IA-68

## INDUSTRIAL RATE - MLF ( SEC / SEC ) 1996

1

ľ

V

Ĩ

Î

ĺ

Î

Û

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	87	88	88	88
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT MLF PEAK	74.189	76.115	71.327	84.694
DAY,DATE	WED,31	THU,01	FRI,08	FRI,19
TIME ENDED	10:00AM	10:30AM	10:30AM	12:30PM
RELATIVE PRECISION	13.4%	7.1%	6.3%	3.3%
AT TIME OF SYSTEM PEAK	70.710	73.269	66.289	72.920
DAY, DATE	WED,31	FRI,02	FRI,08	<b>TUE.09</b>
TIME ENDED	8:00AM	9:00AM	8:00AM	8:00AM
RELATIVE PRECISION	14.5%	7.9%	7.6%	4.0%
NONCOINCIDENT DEMAND	91.277	97,402	90.021	104.178
RELATIVE PRECISION	11.9%	5.7%	4.7%	4.1%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	81.1%	82.2%	79.7%	76.4%
AT TIME OF SYSTEM PEAK	85.1%	85.4%	85.7%	88.7%
BASED ON NONCOIN. DEMAND	65.9%	64.3%	63.1%	62.1%
BASED ON MAX. DIV. DEMAND	81.3%	78.1%	79.2%	81.3%
AT TIME OF SYSTEM PEAK	79.6%	77.3%	75.8%	72.1%
POPULATION STATISTICS				
TOTAL CUSTOMERS	1,771	1,782	1,771	1,771
MWH SALES	74,790	79,069	75,368	86,197
USAGE (KWH/CUST.)	42,230	44,371	42,557	48,672

IA-69

## INDUSTRIAL RATE - MLF (SEC / SEC) 1996

Y

ľ

/

Î

Ì

MAY	JUN	JUL	AUG SEP OCT		NOV	DEC	
88	89	87	84	84	81	84	87
78.612	92.048	93.417	92.167	85.581	75.835	61.795	68.318
MON,20	FRI,21	FRI,19	THU,22	FRI,06	WED,02	WED,06	THU,19
12:30PM	12:30PM	12:00NO	12:00NO	12:00NO	12:30PM	11:00AM	11:00AM
6.4%	4.8%	3.7%	4.5%	4.0%	4.1%	8.2%	6.1%
78.437	89.213	93.465	92.201	85.173	69.823	58.889	70.544
MON,20	FR1,28	FRI,19	WED,07	FRI,06	TUE,01	WED,27	THU,19
2:00PM	5:00PM	3:00PM	4:00PM	3:00PM	8:00PM	8:00AM	7:00PM
6.5%	5.9%	4.1%	4.6%	4.0%	4.0%	12.6%	5.8%
88.689	105.262	106.286	106.074	98.089	90.550	82.566	85.910
5.8%	5.0%	4.0%	4.1%	4.4%	4.9%	9.4%	4.9%
				70 604	70 404	05 404	00 50/
68.9%	74.4%	73.8%	76.5%	73.5%	76.1%	85.4% 89.6%	82.5% 79.9%
69.0%	76.8%	73.8%	76.5%	73.8%	82.6% 63.7%	63.9%	79.9% 65.6%
61.0%	65.1%	64.9%	66.5%	64.1%	03.7%	03.9%	05.0%
88.6%	87.4%	87.9%	86.9%	87.3%	83.7%	74.8%	79.5%
90.1%	86.4%	89.2%	88.9%	88.6%	79.8%	73.6%	84.4%
50.176	00.470	03.270	00.070	00.070	10.070	. 0.070	•
1,774	1,768	1,762	1,763	1,771	1,768	1,758	1,755
65,141	83,181	90,306	86,756	88,997	78,561	71,942	73,411
36,720	47,048	51,252	49,209	50,253	44,435	40,923	41,830

- -

~

# **CG&E** Statistics

ĺ

Î

Ì

## RESIDENTIAL RATE - OHIO 1996

ł

Į

ļ

ļ

J

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	143	155	149	158
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT RS PEAK DAY,DATE TIME ENDED RELATIVE PRECISION	2.974 SUN,07 7:00PM 8.4%	2.904 SUN,04 7:30PM 8.3%	2.442 FRI,08 7:45PM 11.5%	1.874 MON,08 8:30PM 9.9%
AT TIME OF SYSTEM PEAK DAY, DATE TIME ENDED RELATIVE PRECISION	2.477 FRI,19 7:00PM 7.1%	2.118 MON,05 10:00AM 7.5%	2.165 FRI,08 8:00AM 6.9%	1.411 MON,01 11:00AM 9.7%
NONCOINCIDENT DEMAND RELATIVE PRECISION	8.047 5.2%	8.072 4.8%	7.713 4.8%	7.230 5.3%
LOAD FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK BASED ON NONCOIN. DEMAND	54.2% 65.0% 20.0%	52.3% 71.7% 18.8%	55.3% 62.4% 17.5%	56.9% 75.5% 14.7%
COINCIDENCE FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK	37.0% 41.4%	36.0% 34.6%	31.7% 38.0%	25.9% 27.1%
POPULATION STATISTICS				
TOTAL CUSTOMERS	553,137	553,881	553,680	553,577
MWH SALES	724,109	648,358	563,456	484,651
USAGE (KWH/CUST.)	1,309	1,171	1,018	875

### RESIDENTIAL RATE - OHIO 1996

Í

1

Í

J

Ì

Í

Î

MAY	JUN	JUL	AUG	G SEP OCT		NOV	DEC
159	154	156	157	153	155	158	158
2.668	3.149	2.945	3.329	2.478	1.343	2.131	2.723
SUN,19	SUN,30	SUN,07	WED,07	SUN,08	SUN,20	MON,11	THU,19
5:30PM	4:45PM	6:00PM	5:15PM	5:45PM	9:15AM	7:15PM	9:30PM
10.3%	8.8%	8.7%	7.5%	9.0%	17.9%	10.5%	8.6%
2.327	2.468	2.739	2.843	2.199	0.889	1.848	2.463
MON,20	MON,17	WED,17	TUE,06	THU,05	WED,02	TUE,26	THU,19
4:00PM	4:00PM	5:00PM	4:00PM	5:00PM	3:00PM	7:00PM	7:00PM
10.5%	8.4%	6.8%	6.3%	7.8%	17.2%	8.6%	6.5%
7.637	7.574	7.427	7.608	7.217	5.661	7.438	8.043
5.5%	5.5%	5.8%	5.3%	6.5%	7.5%	6.0%	4.7%
39.2%	43.1%	48.2%	45.5%	44.6%	57.1%	58.7%	51.4%
44.9%	55.0%	51.9%	53.2%	50.3%	86.3%	67.7%	56.8%
13.7%	17.9%	19.1%	19.9%	15.3%	13.6%	16.8%	17.4%
34.9%	41.6%	39.7%	43.8%	34.3%	23.7%	28.7%	33.9%
40.8%	42.7%	48.1%	47.9%	40.9%	22.8%	35.1%	41.8%
551,749	551,712	551,919	552,270	553,040	554,494	556,011	559,248
397,148	446,864	615,409	567,673	574,453	377,575	414,992	587,134
720	810	1,115	1,028	1,039	681	746	1,050

## **RESIDENTIAL RATE - KENTUCKY** 1996

ſ

Ì

l

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	93	125	126	134
MAXIMUN DEMAND (KW/CUST.)				
CLASS MAX. DIV. AT RS PEAK	2.859	2.893	2.414	1.835
DAY,DATE	WED,31	SUN,04	FRI,08	MON,01
TIME ENDED	7:45PM	9:00PM	8:15PM	8:30PM
RELATIVE PRECISION	21.7%	9.3%	18.9%	14.1%
AT TIME OF SYSTEM PEAK	1.970	2.311	2.288	1.337
DAY, DATE	THU,25	THU,01	FR1,08	MON,01
TIME ENDED	8:00AM	7:00PM	8:00PM	12:00NO
	10.3%	12.5%	11.3%	14.6%
NONCOINCIDENT DEMAND	8.200	8.029	7.702	7.139
RELATIVE PRECISION	7.6%	7.3%	7.0%	7.6%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	55.5%	49.5%	52.4%	53.7%
AT TIME OF SYSTEM PEAK	80.6%	62.0%	55.3%	73.8%
BASED ON NONCOIN. DEMAND	19.4%	17.8%	16.4%	13.8%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	34.9%	36.0%	31.3%	25.7%
AT TIME OF SYSTEM PEAK	34.1%	38.6%	41.4%	26.2%
POPULATION STATISTICS				
TOTAL CUSTOMERS	108,308	109,872	109,138	109,355
MWH SALES	133,988	121,167	103,904	89,432
USAGE (KWH/CUST.)	1,237	1,103	952	818

IA-74

## RESIDENTIAL RATE - KENTUCKY ·1996

ĺ

ł

1

MAY	JUN	JUL	AUG	SEP OCT NOV		DEC	
133	138	138	137	137	139	140	139
2.335	2.640	2.759	2.913	2.357	1.506	2.122	2.608
MON,20	SUN,30	WED,17	WED,07	SUN,08	THU,24	THU,28	THU,19
9:30PM	5:15PM	5:30PM	4:45PM	7:45PM	8:30PM	9:30AM	10:00PM
12.9%	10.7%	9.0%	9.6%	13.1%	12.6%	14.5%	11.6%
1.748	2.063	2.500	2.578	1.754	0.712	1.868	2.288
MON,20	MON,17	TUE,02	WED,21	THU,05	MON,28	TUE,26	THU,19
4:00PM	4:00PM	5:00PM	5:00PM	3:00PM	3:00PM	8:00PM	7:00PM
12.2%	12.6%	7.6%	7.5%	9.2%	10.9%	8.9%	7.1%
6.671	7.140	7.324	7.161	6.714	6.943	7.256	7.436
6.5%	6.9%	7.1%	8.5%	8.9%	8.8%	7.4%	6.6%
40.1%	46.4%	51.1%	50.0%	43.0%	58.3%	57.3%	51.0%
53.6%	59.3%	56.4%	56.4%	57.8%	123.4%	65.1%	58.2%
14.1%	17.1%	<b>`19.3%</b>	20.3%	15.1%	12.7%	16.8%	17.9%
35.0%	37.0%	37.7%	40.7%	35.1%	14.4%	29.3%	35.1%
35.0%	37.2%	44.6%	46.9%	35.0%	21.7%	35.8%	42.6%
113,259	111,945	110,747	110,462	111,019	112,139	111,578	111,294
73,659	84,387	116,858	109,125	108,653	69,959	76,739	110,868
650	754	1,055	988	979	624	688	996

*~* 

# DISTRIBUTION SERVICE - OHIO ( SML/SEC ) 1996

ļ

1

Í

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	131	141	139	145
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT DM PEAK	2.817	2.917	2.672	2.669
DAY,DATE	WED,24	MON,05	MON,04	MON,22
	12:00NO	9:30AM	9:45AM	2:45PM
RELATIVE PRECISION	13.3%	10.5%	13.2%	13.8%
AT TIME OF SYSTEM PEAK	1.689	2.903	1.681	2.490
DAY, DATE	FRI,19	MON,05	FRI,08	MON,01
TIME ENDED	7:00PM	10:00AM	8:00AM	11:00AM
	10.6%	10.2%	11.2%	10.5%
NONCOINCIDENT DEMAND	5.841	5.921	5.634	6.034
RELATIVE PRECISION	11.4%	10.2%	11.2%	10.0%
LOAD FACTOR				
BASED ON MAX. DIV. DEMAND	58.8%	56.4%	54.6%	52.8%
AT TIME OF SYSTEM PEAK	98.0%	56.7%	86.7%	56.6%
BASED ON NONCOIN. DEMAND	28.3%	27.8%	25.9%	23.4%
COINCIDENCE FACTOR				
BASED ON MAX. DIV. DEMAND	48.2%	49.3%	47.4%	44.2%
AT TIME OF SYSTEM PEAK	33.2%	56.3%	34.1%	47.9%
POPULATION STATISTICS				
TOTAL CUSTOMERS	34,475	34,763	34,827	34,786
MWH SALES	43,591	42,009	38,345	37,228
USAGE (KWH/CUST.)	1,264	1,208	1,101	1,070

# DISTRIBUTION SERVICE - OHIO ( SML/SEC ) 1996

Ć,

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
146	144	142	145	138	141	138	136
3.288	3.230	3.584	3.652	3.244	2.660	2.498	2.700
MON,20	WED,19	TUE,02	TUE,20	THU,05	WED,02	TUE,26	MON,09
3:00PM	2:30PM	1:15PM	2:00PM	12:45PM	1:45PM	12:00NO	11:45AM
11.6%	11.0%	9.2%	9.6%	12.3%	12.5%	13.4%	11.2%
2.965	2.927	2.267	3.292	2.070	2.602	1.557	1.734
MON,20	MON,17	WED,17	TUE,06	THU,05	WED,02	TUE,26	THU,19
4:00PM	4:00PM	5:00PM	4:00PM	5:00PM	3:00PM	7:00PM	7:00PM
11.7%	10.8%	9.9%	9.3%	11.6%	12.2%	11.8%	10.6%
6.186	5.803	6.224	6.275	5.834	5.564	5.736	5.689
10.7%	11.0%	10.9%	10.5%	12.0%	12.3%	12.1%	11.4%
43.8%	48.9%	49.1%	51.0%	44.3%	48.6%	57.0%	54.9%
48.5%	54.0%	77.6%	56.6%	69.4%	49.7%	91.5%	85.4%
23.3%	27.2%	28.3%	29.7%	24.6%	23.2%	24.8%	26.0%
53.2%	55.7%	57.6%	58.2%	55.6%	47.8%	43.5%	47.5%
54.9%	57.0%	41.5%	59.7%	40.8%	55.3%	32.2%	35.2%
04.000	05.000	25.054	25.074	25 205	25 164	25.065	25 000
34,933	35,069	35,254	35,274	35,395	35,164	35,268	35,222
34,010							
	36,790	46,488	44,264	44,570	33,579	33,263	41,066

IA-77

## DISTRIBUTION SERVICE - KENTUCKY ( LESS THAN 12.5KV ) 1996

V

Ĭ

	JAN	FEB	MAR	APR
SAMPLE STATISTICS				
CUSTOMERS IN SAMPLE	142	159	153	169
MAXIMUN DEMAND (KW/CUST.) CLASS MAX. DIV. AT DS PEAK DAY,DATE TIME ENDED RELATIVE PRECISION	13.370 FRI,19 11:30AM 8.2%	14.312 MON,05 10:45AM 6.6%	13.039 FRI,08 10:15AM 8.1%	12.596 MON,22 12:00NO 8.4%
AT TIME OF SYSTEM PEAK DAY, DATE TIME ENDED RELATIVE PRECISION	10.931 THU,25 8:00AM 7.8%	9.813 THU,01 7:00PM 6.1%	9.172 FRI,08 8:00PM 8.0%	12.186 MON,01 12:00NO 7.2%
NONCOINCIDENT DEMAND RELATIVE PRECISION	20.618 8.5%	21.911 7.8%	20.965 9.5%	21.785 7.7%
LOAD FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK BASED ON NONCOIN. DEMAND	65.4% 79.9% 42.4%	59.4% 86.7% 38.8%	60.9% 86.6% 37.9%	59.9% 62.4% 34.6%
COINCIDENCE FACTOR BASED ON MAX. DIV. DEMAND AT TIME OF SYSTEM PEAK	64.8% 58.5%	65.3% 49.2%	62.2% 48.2%	57.8% 61.1%
POPULATION STATISTICS				
TOTAL CUSTOMERS	10,057	10,325	10,210	10,177
MWH SALES	67,647	64,606	60,608	57,839
USAGE (KWH/CUST.)	6,726	6,257	5,936	5,683

:-

## DISTRIBUTION SERVICE - KENTUCKY ( LESS THAN 12.5KV )

1996

.

Y

MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
167	167	167	167	169	169	169	166
16.725	16.358	17.072	21.491	14.652	14.505	13.800	13.307
MON,20	MON,24	WED,17	THU,22	FRI,06	WED,02	WED,13	FR1,20
12:45PM	12:30PM	1:45PM	12:15PM	11:45PM	12:45PM	10:15AM	10:00AM
7.4%	6.9%	12.7%	8.4%	15.4%	10.3%	16.6%	7.7%
14.146	14.500	13.262	16.513	13.606	10.886	8.971	10.07
MON,20	MON,17	TUE,02	WED,21	THU,05	MON,28	TUE,26	THU,19
4:00PM	4:00PM	5:00PM	5:00PM	3:00PM	3:00PM	8:00PM	7:00PM
6.5%	6.1%	8.1%	5.5%	7.6%	7.1%	8.3%	7.4%
25.651	26.310	25.793	31.011	21.488	22.981	21.589	22.137
12.3%	13.7%	12.7%	9.5%	15.1%	12.4%	13.0%	11.4%
48.9%	57.0%	57.1%	55.0%	50.4%	53.6%	56.4%	59.4%
57.8%	64.3%	73.5%	71.6%	55.5%	71.5%	86.8%	78.5%
31.9%	35.4%	37.8%	38.1%	34.4%	33.9%	36.0%	35.7%
65.2%	62.2%	66.2%	69.3%	68.2%	63.1%	63.9%	60.1%
60.7%	61.5%	56.2%	58.3%	68.2%	54.1%	46.2%	51.0%
10,473	10,330	10,430	10,376	10,375	10,328	10,395	10,360
	·						·
58,874	65,559	74,316	84,178	62,582	59,196	56,065	65,870
5,621	6,347	7,125	8,113	6,032	5,731	5,393	6,358

IA-81

# Appendix

ļ

ľ

## **Glossary of Terms**

Average Demand—kWh usage during a specified interval, divided by the number of hours in that interval. Demand is measured in kilowatts (kW).

Class—Customers who have similar specified load characteristics or uses (residential, commercial, industrial) and are served under one rate schedule (RS, CS, LLF, MLF, etc.).

Coincident Demand at the Time of System Peak—The sum of two or more demands which occur in the same time interval as the system peak.

**Coincident Factor**—(Reciprocal of Diversity Factor)-A measure in ratio form of the extent to which a set of customers, group or class maximum demands coincide. It is the ratio of the diversified maximum demand of a group of customers to the sum of the maximum demands of the individual components of the group.

**Control Area Load**—The demand (measured in MW) on an electric system or the amount of electricity required for each hour of each day. This measure is confined to the company's service territory. Alternatively, the total generation in the control area plus the net interchange of power from the interconnected utilities.

**Demand**—The rate at which electric energy is delivered to or by a system, part of a system, or a piece of equipment. It is expressed in kW or other suitable unit at a given instant or averaged over any designated period of time.

**Demand Interval**—The period of time during which the electric energy flow or load is averaged in determining demand, such as 60-minute, 30-minute, 15-minute or instantaneous.

**Diversified Demand**—The sum of the simultaneous demands of a group of customers. Determined by direct measurement or by the addition of the load curves of the individual customers constituting the group or class.

**Diversity Factor**—(Reciprocal of Coincident Factor) The ratio of the noncoincident maximum demands to the class maximum diversified demand during the same time interval within the same class.

**Energy**—The kWh supplied to or used by an individual customer, a group of customers, or a class of customers.

**Group**—Customers with similar characteristics within a class: RS (Class) X061 (Group)-residences with electric heat and electric water heating.

IA-83

Load—The amount of electric power delivered or required at any specific point or points on a system.

Load Characteristics—All or each of the features of the electric service rendered, including the quantity of energy supplied, the load or demand, the time of its occurrence, and derivable factors, such as coincidence factor and load factor.

Load Curve—A curve on a chart showing power (kW) supplied, plotted against time of occurrence, and illustrating the varying magnitude of the load during the period covered.

Load Factor—The ratio of the kWH usage in a time period to the product of the maximum load and the number of hours in the period, multiplied by 100:

 $\frac{\text{kWh x 100}}{(\text{Hours in Period x Maximum Demand})} = \text{Load Factor}$ 

Noncoincident Maximum Demand—The sum of two or more individual customer maximum demands. Meaningful when a time interval is established (day, week, month or year)

**Rate Code**—Grouping customers, with like requirements for service, for billing, books and records.

System Peak—The highest 60 minute integrated control area demand during a specific measuring period (i.e., annually, monthly, etc.). System Peak can be based on Control Area, Native or Production criteria.

Section 5(a)(4) Weather Normalized Energy and Demand Levels

This information is contained in the attached set of tables.

# THIS PAGE LEFT BLANK INTENTIONALLY

Ţ

1

Ì

ļ

PSI ENERGY ACTUAL ENERGY SALES IN KWH (THOUSANDS) 1990-1998 BILLED

%CH	4.6	5.4	0.8	6.7	3.2	4.2	3.4	0.8	4.8
TOTAL SALES	22,086,741	23,278,801	23,471,325	25,047,711	25,855,237	26,929,566	27,846,332	28,075,318	29,410,214
%СН	-1.7		1.7		0.9	4.8	3.9	2.2	5.1
SALES FOR RESALE	3,691,354	3,868,225	3,934,762	4,224,550	4,261,812	4,465,068	4,640,566	4,740,906	4,982,402
%СН	5.9	5.5	0.6	6.6	3.7	4.0	3.3	0.6	4.7
TOTAL RETAIL SALES	18,395,387	19,410,576	19,536,563	20,823,161				23,334,412	24,427,812
%CH	1.4	0.0	1.5	1.0	2.4	3.0	1.6	1.3	0.9
Public Street & Highway Lighting	58,339	58,313	59,210	59,788	61,212	63,038	64,055	64,859	65,465
%CH	10.2	3.3	5.0	4.5	6.3	4.0	3.8	2.3	5.3
INDUSTRIAL	7,702,316	7,955,596	8,353,505	8,728,425	9,279,380	9,650,345	10,015,319	10,242,033	10,789,845
%CH	3.8	6.1	0.0	5.7	3.0	3.6	2.0	0.7	5.3
%CH COMMERCIAL	4,853,767	5,148,085	5,149,539	5,445,120	5,609,893	5,810,210	5,925,737	5,969,256	6,288,073
	2.5	8.1	4.4	10.3	0.8	4.5	3.7	-2.0	3.2
RESIDENTIAL	5,780,965	6,248,582	5,974,309	6,589,828	6,642,940	6,940,905	7,200,655	7,058,264	7,284,429
YEAR	1990	1991	1992	1993	1994	1995	1996	1997	1998

# PSI ENERGY WEATHER-NORMALIZED ENERGY SALES IN KWH (THOUSANDS) 1990-1998 BILLED

%СН	6.6	1.0	5.1	3.6	3.6	-0.6	3.2	7.2	4.6
TOTAL SALES	22,677,341	22,912,194	24,082,650	24,942,795	25,851,647	25,690,210	26,506,040	28,424,057	29,722,265
%CH	1.7	-2.7	9.4	1.8	1.6	-2.1	1.5	13.9	5.1
SALES FOR RESALE	3,871,566	3,767,110	4,120,483	4,194,133	4,259,255	4,171,882	4,234,999	4,824,682	5,069,663
%СН	7.6	1.8	4.3	3.9	4.1	-0.3	3.5	6.0	4.5
TOTAL RETAIL SALES	18,805,775	19,145,084	19,962,167	20,748,662	21,592,392	21,518,328	22,271,041	23,599,375	24,652,602
%CH	1.4	0.0	1.5	1.0	2.4	3.0	1.6	1.3	6.0
PUBLIC STREET & HIGHWAY LIGHTING	58,339	58,313	59,210	59,788	61,212	63,038	64,055	64,860	65,474
%CH	10.2	3.3	5.0	4.5	6.3	4.0	3.8	2.1	5.4
INDUSTRIAL	7,702,316	7,955,596	8,353,505	8,728,425	9,279,380	9,650,345	10,015,319	10,229,714	10,783,945
%СН	5.1	2.5	3.8	3.3	3.5	<b>4</b> 8	4.8	7.6	4.2
RESIDENTIAL %CH COMMERCIAL	4,935,796	5,060,053	5,252,530	5,423,340	5,615,503	5,348,750	5,606,159	6,033,970	6,289,732
КСН	6.7	-0.6	3.7	3.8	1.5	-2.7	2.0	10.4	3.3
RESIDENTIAL	6,109,324	6,071,122	6,296,922	6,537,109	6,636,297	6,456,195	6,585,508	7,270,831	7,513,451
YEAR	1990	1991	1992	1993	1994	1995	1996	1997	1998

# PSI ENERGY ACTUAL AND WEATHER-NORMALIZED PEAKS (MW) 1990-1998

WINTER	WEATHER ACTUAL NORMALIZED	4,418 4,141								
	ACT	4'7	4,1	4,2	4,4	4,9	4,6	4,9	5,	4,6
SUMMER										5,766
	R ACTUAL									8 5,705
	YEAR	1990	1991	1992	1993	1994	1995	1996	1997	1995

Į

1

### Section 5(a)(8) Explanation of Why End-Use Methodology Was Not Used

Many different forecasting methodologies exist, each with its own strengths and weaknesses. Historically, PSI Energy has projected energy requirements through econometric analysis. Econometric methods are a means of representing economic behavior through statistical techniques such as regression analysis. The primary factors affecting energy use, such as income, employment, price, weather and the like are included in the equations used to project energy requirements.

In PSI's view, the forecasts derived from these models have appeared to be reasonable. In addition, these models previously have been presented to, and accepted by, the IURC in many formal proceedings over the past few years. However, PSI continuously reviews its forecasting methodology and makes modifications and refinements each year to make the forecasting methodology as accurate and reliable as possible, given all the variables and uncertainties involved.

## THIS PAGE LEFT BLANK INTENTIONALLY

Ì

Ì

ľ

Ì

Ì

Section 6(a)(4) and (c)(2) Air Emissions

The air emissions projections for Cinergy's existing and planned units is voluminous in nature. This data will be made available to appropriate parties for viewing at Cinergy offices and at other locations during normal business hours. Please contact Diane Jenner at (317) 838-2183 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

ł

·

P

,

Sections 6(b)(3) and 8(8)(C) Avoided Cost

The avoided costs of the DSM included in this IRP were based on the energy market price forecast. Cinergy considers this forecast to be a trade secret and confidential and competitive information. It will be made available to appropriate parties for viewing at Cinergy offices during normal business hours upon execution of an appropriate confidentiality agreement or protective order. Please contact Diane Jenner at (317) 838-2183 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

1

I

B

Sections 6(b)(6),(7) and 7(b) PSI DSM Program Data

The DSM Program Data which is contained in DSManager input and output summary reports is voluminous in nature. This data will be made available to appropriate parties for viewing at Cinergy offices during normal business hours. Please contact Van Needham at (513) 287-2609 for more information.

## THIS PAGE LEFT BLANK INTENTIONALLY

Ï

Î

Section 6(b)(8) Annual Penetrations Utilized for PSI DSM Programs

The Annual Penetrations are shown below:

Total Penetration for PSI Energy's Current Demand - Side Management Programs Program Years 2000 - 2002 DSM Settlement Agreement & 1999 IRP

						Residenti	Smart		
Year	Motors (1)	Lighting	(1)	HVAC	(1)	Incentives	(2)	\$aver	(3)
2000	0.04%	18		18		18		32%	
2001	0.048	18		18		18		32%	
2002	0.048	18		18		18		32%	

Based upon number of PSI customers at or below 500 kW peak demand.
 Based upon the number of residential customers with electric heat and/or water heat.
 Based upon the number of new completions.

(3) Based upon the number of new completions.

# THIS PAGE LEFT BLANK INTENTIONALLY

## Section 7(d)(1) and (2) Benefit/Cost Test Components and Equations

#### BENEFIT/COST TEST MATRIX

:

				Totai	
	Parcipant	Utility	Ratepayer	Resource	Societal
Senefits:	Test	Test	Impact Test	Test	<u>7 est</u>
Customer Electric Bill Decrease	×				
Customer Non-electric Bill Decrease	x				
Customer O&M and Other Cost Decrease	x			x	x
Customer Income Tax Decrease	x			x	
Customer Investment Decrease	x			x	x
Customer Rebates Received	x				
Utility Revenue Increase			x		
Utility Electric Production Cost Decrease		x	x	×	x
Litility Generation Capacity Credit		x	x	×	x
Utility Transmission Capacity Credit		_× _	x	x	×
Utility Distribution Capacity Credit	·	x	x	x	x
Utility Administrative Cost Decrease		x	x	×	x
Utility Cap. Administrative Cost Decrease		x	x	x	x j
Noneiectric Acquisition Cost Decrease				x	x
Utility Sales Tax Cost Decrease		×	×	×	
Costa:					
Customer Electric Bill Increase	x				
Customer Non-electric Bill Increase	x			x	
Customer C&M and Other Cost Increase	x			x	x
Customer Income Tax Increase	x			X	
Customer Capital Investment Increase	x			X	<b>x</b> ·
Utility Revenue Decrease			x		
Utility Electric Production Cost Increase		×	x	X	x
Utility Generation Capacity Debit		×	X	X	x
Utility Transmission Capacity Debit		X	×	x	x
Utility Distribution Capacity Debit		x	x	×	×
Utility Recates Paid		x	x		
Utility Administrative Cost Increase		×	×	x	x
Utility Cap. Administrative Cost Increase		x	x	x	x
Nonelectric Acquisition Cost Increase				x	x.
Utility Sales Tax Cost Increase		x	X	X	

Benefit/Cost Ratio = Total Benefits/Total Costa

## THIS PAGE LEFT BLANK INTENTIONALLY

Section 8(8)(D) Impact of a Planned Addition on Rates

Information concerning the impact of each individual planned resource addition by itself is not available and is not useful because an IRP, by definition, is an <u>integrated</u> <u>combination</u> of resources which together provide energy services in a reliable, efficient, and economic manner while factoring in environmental considerations.

IA-101

## THIS PAGE LEFT BLANK INTENTIONALLY

۱.,