CASE NUMBER: 99-059 VI-C-58; Boxle

PRD-410

RECEIVED

MAR 2 2 2004

PUBLIC SERVICE COMMISSION

March 19, 2004

Honorable Thomas M. Dorman, Executive Director Kentucky Public Service Commission 211 Sower Boulevard P. O. Box 615 Frankfort, Kentucky 40602

Subject: Sample Meter Test Plan – Annual Report Case No. 99-059

Dear Mr. Dorman:

In compliance with the Commission's Order in the above referenced Case, Atmos Energy is hereby filing its annual report on the Company's Sample Meter Testing Program for the year 2003. We continue to be pleased with the results of this program and we intend to file an application for extending this pilot later this month.

If the Commission or Staff has any questions regarding this matter, please contact our Compliance Manager, Barry Wigginton, at 270-685-8171.

Sincerely,

Jany L Growt

Gary L. Smith Vice President, Marketing & Regulatory Affairs

Cc: Rad Cook Barry Wigginton John Willis Bruce Tucker

March 8, 2004

ATMOS ENERGY KENTUCKY DIVISION 2003 METER SAMPLING ANNUAL REPORT

Atmos Energy Kentucky Division completed the fifth year of its statistical sampling of their meter population with the following results:

A total of 5,851 meters making up 76 control groups or meter families were sampled. All meter families were tested in accordance with the sampling as set forth in the Kentucky Public Service Commission's Order (Case Number 99-059) dated August 24, 1999.

The meter sampling program is proving to be excellent for both the company and the customers. The customer and the company benefit for the same reason; poor performing meters will be identified and removed from service. This allows quality meters to stay in service for and extended length of time.

Attached are the results of the 2003 meter sampling program. It shows all meter groups passed.

Should you have any questions, please call (270) 683-4068.

Sincerely,

Brune Jucker

Bruce Tucker Measurement Supervisor

2003 Family Status	Passed Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed
Total Rejects Allowed	15 22	15	22	22	22	22	22	22	22	15	ы	22	ę	22	Q	9	11	9	9	5	15	22	22	15	Q
Total Failed Meters	- 4	4	ო	ო	2	Q	4	9	S	~	0	4	0	7	-	0	~	0	-	N	4	5	7	0	ę
Total Sampled	200 200	125	200	200	200	200	200	200	200	125	œ	200	13	200	32	32	80	32	32	80	125	200	200	125	32
Total Mtrs in Family	3376 8351	3031	9634	10000	8768	4197	6704	5754	0666	1371	31	8720	58	5213	290	162	520	226	214	1049	2936	4347	5310	1246	155
Family Codes	AC250E AC250F	AC250F89	AC250G	AC250G95	AC250G98	AL175A	AL175B	AL175C	AL175D	AL175E	AL175F	AL175G	AL225A	AL225A63	AL225B	AL425C	AL425D	AL425E	AL425F	AL425G	L250	R175A	R175B	R175C	R175G

2003 ATMOS ENERGY KENTUCKY METER SAMPLING RESULTS

...

,

ς.

* .

Passed Passed Passed	Passed Passed	Passed	Passed Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed
5 22 3	= =	52	6 22	22	22	22	8	9	8	~	~	ы	-	-	15	-	4	9	4	0	ω	œ	8
0 9 0	м м	. ט	- 0	7	4	9	8	-	7	0	0	0	-	0	ę	0	2	S	4	۴-	4	4	0
80 200 125	80 80	200	32 200	200	200	200	50	32	50	8	ო	8	~	2	125	ę	20	32	20	ŝ	50	50	50
1047 8614 3035	864 628	4615	182 3642	4272	4172	9317	460	265	319	26	ę	39	-	7	2803	13	148	194	109	27	317	488	341
	.	163	~		10	397		163	~		•		<i>/</i> D			2	Q	Щ	Ľ,	g		0	0
R200C R200D R200E	R200G R250A	R250A63	R250B R275F	R275F	R275G	R275G97	R415A	R415A63	R415B	R415C	R415D	R415F	R415G	S175A	S250	AL800c	AL800D	AL800E	AL800F	AL800G	R750	AL1000	AI1400

1 . . .

、 · ·

A12300	343	50	0	œ	Passed
250B	191	32	~	9	Passed
80B	89	13	0	n	Passed
500B	26	œ	0	7	Passed
AL5000	75	13	0	ო	Passed
DU5000	4	0	0	~	Passed
R3000	116	20	0	4	Passed
R10000	47	œ	0	7	Passed
16M	58	13	0	n	Passed
23M	43	œ	0	7	Passed
2M	49	œ	0	7	Passed
2M ROMET	7	0	0	~	Passed
3.6M600	7	7	0	-	Passed
38M	22	S	0	0	Passed
3M	230	32	0	9	Passed
5M	129	20	0	4	Passed
7M	160	32	0	9	Passed
80	26	ø	0	0	Passed
11.5M400	7	7	0	-	Passed
11C	18	ŝ	0	7	Passed
11M	86	13	0	n	Passed
1.5M	46	œ	0	7	Passed
OBSOLETES	4844	4844			
TOTAL	154204	10695			

4 ··· • •

•

•

~

FEB - 3 2003

PUBLIC SERVICE COMMISSION

January 30, 2003

Honorable Thomas M.Dorman Executive Director Kentucky Public Service Commission 211 Sower Boulevard P. O. Box 615 Frankfort, KY 40602

1

Subject: Annual Report - Sample Meter Test Plan Case No. 99-059

Dear Mr. Dorman:

In compliance with the Commission's Order in the above referenced matter, Atmos Energy is hereby filing its second Annual Report.

All technical questions should be directed to Mr. Barry Wigginton, Manager of Compliance, at 270-685-8171.

Sincerely,

Gaby Smith Vice President, Marketing

ml

Enclosures

cc: Mr. Barry Wigginton Mr. John Willis

2401 New Hartford Road, Owensboro, Kentucky 42303-1312 P 270-685-8000 F 270-685-8052 atmosenergy.com

January 15, 2003

ATMOS ENERGY KENTUCKY DIVISION 2002 METER SAMPLING ANNUAL REPORT

Atmos Energy Kentucky Division completed the fourth year of its statistical sampling of their meter population with the following results:

A total of 6,382 meters making up 103 control groups or meter families were sampled. All meter families were tested in accordance with the sampling as set forth in the Kentucky Public Service Commission's Order (Case No. 99-059) dated August 24, 1999.

The meter sampling program is proving to be excellent for both the company and customers. The customer and company benefit for the same reason; namely poor performing meters will be identified and removed from service. This allows quality meters to stay in service for an extended length of time.

Attached are the results of the 2002 meter sampling program. It shows all meter groups passed.

Also, please be advised that Atmos Energy, Kentucky Division, for the past five (5) years, has been utilizing Columbia Gas Companies Meter Shop as its meter testing and repair outsourcer. Beginning 2003 the Kentucky Division will be utilizing North American Service Group, a subsidiary of American Meter Company.

Should you have any questions, please call (270-685-8171).

Sarry aleggenton

Barry Wigginton Manager of Compliance

2002 ATMOS ENERGY KENTUCKY METER SAMPLING RESULTS

Samples taken for year 2002

ლ
g
22
1

	Total Mtrs in Family	Total Sampled	Total Failed Meters	Total Rejects Allowed	2002 Family Status
	(a)	(q)	Ø	(p)	(e)
AC250D	-	-	0	-	passed
AC250E	3782	200	5	22	passed
AC250F	8805	200	7	22	passed
AC250F89	3150	125	9	15	passed
AC250G	3738	200	ო	22	passed
AC250G98	8718	200	4	22	passed
AC250G94	6014	200	7	22	passed
AC250F95	10011	200	Q	22	passed
	284	50	-	ω	passed
AL175A63	34	32	2	9	passed
	4425	200	10	22	passed
	7048	200	8	22	passed
	5959	200	10	22	passed
	8076	200	5	22	passed
175D79	2286	125	ω	15	passed
AL175E	1496	125	-	15	passed
AL175F	39	ω	0	0	passed
AL175G	8688	200	-	22	passed
AL225A63	9174	200	13	22	passed
AL225A	70	13	0	ო	passed
AL225B	290	50	0	8	passed
AL225C	13	5	0	-	passed
AL225D	11	e	0	~	passed

τ

•

Family	Total Mtrs in family	Total Sampled	Total Failed Meters	Total Reject Allowed	2002 Family Status
R415A63	633	80	ę	1	passed
R415A	528	80	80	11	passed
R415B	361	50	0	ω	passed
R415C	34	80	-	7	passed
R415D	4	2	0	-	passed
R415E	2	2	0	-	passed
R415F	45	œ	0	7	passed
R415G	~	~	0	←	passed
R750A63	93	20	←	4	passed
R750A	84	13	0	ო	passed
R750B	117	20	0	4	passed
R750C	ო	2	0	-	passed
R750D	12	ო	0	-	passed
R750E	ო	7	0	-	passed
R750F	45	œ	0	0	passed
R750G	25	2ı	0	7	passed
S-175	ę	2	0	~	passed
S250F	2812	125	5	15	passed
R250A63	787	200	14	22	passed
R250A	209	80	4	11	passed
R250B	214	32	2	9	passed
R250C	-	-	0	-	passed
R250D	25	5	-	7	passed
R250E	4	4	0	-	passed
11500400G		-	0		passed
11CG	8	2	0	-	passed
11MG	80	13	00	რ ი	passed
1906	ŝ	Ø	D	۷	passed

U 1

.

Family codes	Total Mtrs in familv	Total Sampled	Total Failed Meters	Total Reject Allowed	2000 Family Status
16MG	55	13	0	ę	passed
1M600G	8	2	0	-	passed
23MG	43	80	0	7	passed
250BG	240	32	-	9	passed
2M175	36	80	0	-	passed
2MROMETG	2	7	0	-	passed
3600M600	2	7	0	-	passed
38MG	22	ß	0	2	passed
3MG	220	32	0	9	passed
500BG	35	œ	0	0	passed
5MG	102	20	0	4	passed
7MG	154	32	0	4	passed
80BG	111	20	0	4	passed
8CG	7	2	0	~	passed
5000DUG	4	2	0	~	passed
5000ALG	76	13	-	e	passed
10000RG	47	8	0	2	passed
3000RG	122	20	-	4	passed
AL1400G	343	50	0	ø	passed
AL2300G	345	50	0	ω	passed
AL425A	~	~	0	-	passed
AL425B	-	-	0	-	passed
AL425C	190	32	-	9	passed
AL425D	578	80	-	11	passed
AL425E	247	32	-	9	passed
AL425F	237	32	0	9	passed
AL425G	1088	80	ო	,	passed
AL800C	15	ю	0	2	passed
AL800D	171	32	0	9	passed
AL800E	216	32	0	9	passed

• •

ო

Family codes	Total Mtrs in family	Total Sampled	Total Failed Meters	Total Reject Allowed	2000Family Status
AL800F	125	20	0	4	passed
AL800G	33	ω	0	0	passed
L250G	2921	125	4	15	passed
R175A63	48	8	0	7	passed
R175A	4566	200	7	22	passed
R175B	5596	200	17	22	passed
R175C	1373	125	8	15	passed
R175D	20	2	0	2	passed
R175E	9	2	0	~	passed
R175F	ო	2	0	-	passed
R175G	160	32	0	9	passed
ROUR	~	~	C	~	passed
	1 1 2 1	ı G) .	. .	pessed
R2000	8850	300	- 7	<u>.</u>	passed
R200F	3177	125		22	passed
R200F	5	5	0	~	passed
R200G	870	80	٣	1	passed
R275B	~	-	0	~	passed
R275E	3838	200	ი	22	passed
R275F	4463	200	9	22	passed
R275G	4140	200	0	22	passed
R275G97	9279	200	11	22	passed
OBSOLETES	1810	1810			
TOTAL	162916	8192			

۰,

.

RECEIVED

MAR 1 8 2002

PUBLIC SERVICE

March 15, 2002

Honorable Thomas M. Dorman Executive Director Kentucky Public Service Commission 211 Sower Boulevard P.O. Box 615 Frankfort, Kentucky 40602

Subject: Annual Report on Sample Meter Testing - Case No. 99-059

Dear Mr. Dorman:

Pursuant to the Commission's Order in the above-referenced case, I am enclosing the annual report on Western Kentucky Gas Company's Sample Meter Testing Program for the year 2001. We continue to be pleased with the results of this program.

Should the Staff or the Commission have any questions, please call our Compliance Manager, Barry Wigginton, at 1-270-683-4068.

Sincerely yours,

Iam

William J. Septer VP – Rates & Regulatory Affairs

Enclosures

2401 New Hartford Road

n an an Araba An tao amin' ao amin' amin'

WESTERN KENTUCKY GAS COMPANY 2001 METER SAMPLING ANNUAL REPORT

Western Kentucky Gas Company has completed the third year of statistically sampling its meter population with the following results:

A total of 6,432 meters making up 103 control groups or meter families were sampled. All meter families were tested in accordance with the sampling as set forth in the Kentucky Public Service Commission's Order (Case No. 99-059) dated August 24, 1999.

One of the meter groups failed. This group comprised of only one subject meter was removed, tested and retired. In the 2000 program, a group, identified as AC250C consisting of (5) five meters were pulled, tested and retired as outlined in the letter dated March 30, 2001.

Meter sampling continues to be an excellent program for both the company and customers. The customer and company benefit for the same reason; namely poor performing meters will be identified and removed from service. This allows quality meters to stay in service for an extended length of time.

Attached are the results of the program for 2001.

2001 WESTERN KENTUCKY GAS METER SAMPLING RESULTS

.

1 1 1

Samples taken for year 2001 2/26/02

Eamily	Total Mtrs in	ota	I OTAL FALLED				
	Family	Sampled	Meters	Allowed	Status	Fast	Slow
	(a)	(q)	Ø	(q)	(e)	()	(6)
AC250C	5	2	0	-	passed		
AC250D	4	7	0	-	passed		
AC250E	3782	200	~	22	passed		-
AC250F	8805	200	5	22	passed	ო	2
AC250F89	3367	200	e	22	passed	2	-
AC250G	3933	200	2	22	passed		7
AC250G98	8747	200	-	22	passed		-
AC250G94	6213	200	ო	22	passed	-	7
AC250F95	9985	200	4	22	passed	.	ო
AL1000	321	50	0	ω	passed		
AL175A63	42	ø	0	7	passed		
AL175A	4635	200	0	22	passed		
A175B	7264	200	10	22	passed	7	e
AL175C	6171	200	13	22	passed	6	4
AL175D	8281	200	0	22	passed	7	
AL175E	1626	125	ო	15	passed	2	-
AL175F	47	8	~	0	passed	-	
AL175G	8664	200	7	22	passed		-
AL225A63	9415	200	9	22	passed	4	0
AL225A	83	13	0	e	passed		
AL225B	341	50	e	80	passed	2	-
AL225C	18	5	0	0	passed		
AL225D	14	က	0	~	passed		
AL225E	4	2	0	-	passed		

Family	Total Mtrs	Total	Total Failed	Total Reject	2000 Family	No.Failed	No. Failed
codes	in family	Sampled	Meters	Allowed	Status	Fast	Slow
AL225F	2	~~	0	-	passed		
R415A63	702	80	ი	11	passed	ю	9
R415A	593	80	ო	11	passed	0	-
R415B	396	50	0	8	passed		
R415C	39	8	0	7	passed		
R415D	9	2	0	-	passed		
R415E	4	~-	0		passed		
R415F	49	8	0	N	passed		
R415G	-	-	0	~	passed		
		ç	c	~	passed		
K/ 50A03	1 - 4	07 S	o c	•	passed		
R/50A	103	8	-	t -	passed	Ŧ	
R750B	134	20	- (+ t	passed	-	
R750C	£	7	0	<u> </u>	passed		
R750D	13	ო	0	•	passed		
R750E	5	0	0	-	passed		
R750F	48	80	0	0	passed		
R750G	31	ω	0	0	passed		
S250F	2790	125	~~	15	passed	~-	
R250A63	7984	200	ო	22	passed	2	~
R250A	190	80	7	11	passed	2	
R250B	246	32	ς	9	passed	-	7
R250C	~	-	-	-	failed	-	
R250D	32	ω	0	2	passed		
R250E	9	2	0	←	passed		
11500400G	-	~-	0	-	passed		
1106	80	7	0	-	passed		
11MG	80	13	0	e	passed		
15CG	33	8	0	5	passed		

Family	Total Mtrs	Total	Total Failed	Total Reject	2000 Family	No.Failed	No. Failed
codes	in family	Sampled	Meters	Allowed	Status	Fast	Slow
16MG	57	13	0	ю	passed		
1M600G	80	2	0	~	passed		
23MG	43	80	0	7	passed		
250BG	240	32	0	9	passed		
2MG	-	-	0	-	passed		
2MROMETG	7	7	0	-	passed		
3600M600	2	2	0	-	passed		
38MG	52	5	0	0	passed		
3MG	205	32	0	9	passed		
500BG	37	8	0	0	passed		
5MG	102	20	0	4	passed		
7MG	150	20	0	4	passed		
80BG	127	20	0	4	passed		
8CG	7	2	0	-	passed		
5000DUG	e	7	0	-	passed		
5000ALG	79	13	0	ო	passed		
10000RG	47	80	0	2	passed		
3000RG	123	20	0	4	passed		
AL1400G	345	50	0	8	passed		
AL2300G	344	50	0	ø	passed		
AL425C	211	32	0	9	passed		
AL425D	646	80	F	11	passed		-
AL425E	273	32	0	9	passed		
AL425F	250	32		9	passed		~-
AL425G	1081	80	0	1	passed		
AL800A	-	-	0	÷	passed		
AL800B	~	~	0	~-	passed		
AL800C	18	5	0	ъ	passed		
AL800D	198	32	0	9	passed		
AL800E	234	32	0	9	passed		

4 •

٨

ო

Family	Total Mtrs	Total	Total Failed	Total Reject	2000Family	No.Failed	No. Failed
codes	in family	Sampled	Meters	Allowed	Status	Fast	Slow
	007	ĊĊ	c	~	pessed		
ALOUUT	133	N V	>	F			
AL800G	33	8	0	2	passed		
L250G	2851	125	2	15	passed	7	
R175A63	61	13	0	e	passed		
R175A	4768	200	14	22	passed	ი	5
R175B	5822	200	4	. 22	passed	0	2
R175C	1502	125	7	15	passed	7	5
R175D	25	S	-	0	passed		↽
R175E	ø	2	0	-	passed		
R175F	5	7	0	-	passed		
R175G	168	32		9	passed		.
R200B	4	7	0	~	passed		
R200C	1257	125	0	15	passed	0	
R200D	9072	200	e	22	passed	2	
R200E	3388	200	S	22	passed	e	2
R200F	4	7	0	~	passed		
R200G	864	80	-	11	passed		
R275E	4031	200	5	22	passed	4	-
R275F	4586	200	2	22	passed	2	
R275G	4117	200	5	22	passed	ო	7
R275G97	9238	200	0	22	passed		
TOTAL	162783	6432	136	825		79	57

43 F

4.

March 30, 2001

ŝ

1

Honorable Thomas M. Dorman Executive Director Kentucky Public Service Commission 211 Sower Boulevard P.O. Box 615 Frankfort, Kentucky 40602

Subject: Annual Report - Sample Meter Test Plan Case No. 99-059

Dear Mr. Dorman:

In compliance with the Commission's Order in the above referenced matter, Western Kentucky Gas Company is hereby filing its second Annual Report.

MISSION

All technical questions should be directed to Mr. Barry Wigginton, Supervisor of Measurement, at 270-683-4068.

Sincerely yours,

enter, Man

William J. Senter VP – Rates & Regulatory Affairs

Enclosures

cc: Mr. Barry Wigginton Mr.John Willis

J

March 30, 2001

WESTERN KENTUCKY GAS COMPANY 2000 METER SAMPLING ANNUAL REPORT

Western Kentucky Gas completed the second year for statistical sampling of their meter population with the following results:

A total of 7,602 meters making up 123 control groups or meter families were sampled. All meter families were tested in accordance with the sampling procedure as set forth in the Kentucky Public Service Commission's Order in Case No. (99-059) dated August 24, 1999.

Five of the meter groups failed. Three of the groups are comprised of eleven (11) field test turbine meters that will be tested again next year. The fourth group contained one meter and it was removed from service. The fifth group contained seven (7) meters of which two (2) were pulled with the remaining five (5) to be removed within the next eighteen (18) months.

The meter sampling program is proving to be a better program than the periodic testing program for both customers and the utility. The customer and the company benefits for the same reason; namely poor performing meters will be identified and removed from service. This allows quality meters to stay in service for an extended length of time.

Attached are the results of the program as requested by the order. Should you have any questions, please call (270) 683-4068.

any Wiggiston

Barry Wigginton Supervisor of Measurement

2000 WESTERN KENTUCKY GAS METER SAMPLING RESULTS

۰, ۱

Family codes	Total Mtrs in Family	Total Sampled	Total Failed Meters	Total Rejects Allowed	2000 Family Status	No. Failed Fast	No. Failed Slow
AC250A	1	1	-	. 1	passed	-	_
AC250C	7	2		· · · · · · · · · · · · · · · · · · ·	failed	1	
AC250D	6	2	-	_	passed		-
AC250E	3,958	200	2	22	passed	2	-
AC250F	9,882	200	8	22	passed	6	2
AC250F8	3,561	200	-	22	passed	-	-
AC250G	3,949	200	-	22	passed	-	-
AC250G9	8,732	200	2	22	passed	2	-
AC250G9	6,383	200	4	22	passed	4	-
AC250F9	9,895	200	4	22	passed	2	2
AL1000A	429	50	-	8	passed	-	-
AL1000B	35	8	1	2	passed	-	1
AL1000C	22	5	-	2	passed	-	-
AL1000D	80	13	-	3	passed	-	-
AL1000E	86	13	-	3	passed	-	-
AL1000F	101	20	-	4	passed	-	-
AL1000G	86	13	-	3	passed	-	-
AL175A	4,750	200	8	22	passed	5	3
A175B	7,437	200	4	22	passed	3	1
AL175C	6,347	200	5	22	passed	5	-
AL175D	8,480	200	5	22	passed	4	1
AL175D7	2,523	125	5	15	passed	5	-
AL175E	1,741	125	-	15	passed	-	-
AL175F	13	3	-	1	passed	-	-
AL175G	8,606	200	8	22	passed	6	2
AL225A	6,938	200	5	22	passed	3	2
AL225B	393	50	3	. 8	passed	-	3
AL225C	23	5	-	2	passed	-	-
AL225D	18	5	-	2	passed	-	-
AL225E	6	2	-	1	passed	-	-
R415A	1,413	125	10	15	passed	3	7
R415B	443	50	2	8	passed	1	1
R415C	45	8	-	2	passed	-	-
R415D	8	2	-	1	passed	-	-
R415E	6	2	-	1	passed	-	-
R415F	62	13	1	3	passed	1	-
R415G	1	1	-	1	passed	-	-
AL2300G	350	50	-	8	passed	-	-
T306G	2	2	-	1	passed	-	-
AL1400G	344	50	-	8	passed	-	-
3000RG	125	20	1	4	passed	-	1

Family codes	Total Mtrs in family	Total Sampled	Total Failed Meters	Total Reject Allowed	2000 Family Status	No.Failed Fast	No. Failed Slow
R750A	201	32	1	6	passed	-	1
R750B	150	20	1	4	, passed	-	1
R750C	6	2	-	1	, passed	-	-
R750D	16	5	1	2	passed	-	1
R750E	5	2	-	1	passed	-	-
R750F	55	13	-	3	passed	-	-
S250F	2,780	125	-	15	passed	-	-
R250A54	33	33	3	6	passed	1	2
R250A59	2,874	125	9	15	passed	8	1
R250A60	1,204	125	2	15	passed	2	-
R250A61	2,126	125	3	15	passed	3	-
R250A62	1,604	125	3	15	passed	2	1
R250A63	1,635	125	3	15	passed	2	1
R250A68	879	80	2	11	passed	1	1
R250B	279	32	1	6	passed	1	-
R250C	68	68	3	8	, passed	3	-
R250D	40	8	-	2	, passed	-	-
R250E	8	2	-	1	, passed	-	-
R250F	2	2	-	1	passed	-	-
11500400	1	1	-	1	passed	-	-
11CG	1	1	-	1	, passed	-	-
11MG	79	13	-	3	, passed	-	-
15CG	15	3	-	1	passed	-	-
16MG	57	13	-	3	, passed	-	-
1M600G	8	2	-	1	passed	-	-
23MG	42	8	-	2	passed	-	-
250BG	263	32	-	6	passed	-	-
2MG	1	1	-	1	passed	-	-
2MROME	2	2	-	1	passed	-	-
3600M60	2	2	-	1	passed	-	-
38MG	21	5	-	2	passed	-	-
3GTG	3	3	-	1	passed	-	-
3MG	184	32	-	6	passed	-	-
4GTG	9		1 ⊮	1	👞 failed	*	· · · · · · · · · · · · · · · · · · ·
500BG	46	8	-	2	passed	-	-
5MG	101	20	-	4	passed	-	-
6GTG	<u></u>	্ 🐑 1	1	1 , 1 ,	failed	· · · · · · · · · · · · · · · · · · ·	1
7MG	145	20	-	4	passed	-	-
80BG	155	32	1	6	passed	-	1
8CG	7	2	-	1	passed	-	-
8GTG	2	2	-	1	passed	-	-
5000DUG	3	2	-	1	passed	-	-
5000ALG	80	13	-	3	passed	-	-
10000RG	48	8	-	2	passed	-	-

Family	Total Mtrs	Total	Total Failed	Total Reject	2000 Family	No.Failed	No. Failed
codes	in family	Sampled	Meters	Allowed	Status	Fast	Slow
		01040, La 1 0,	· · · · · · · · · · · · · · · · · · ·		لم الم	, ,	
T608G	4	na n		(mi) mile	and a construction of the free states of the		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
AL425A	1	1	-	1	passed	-	-
AL425B	3	3	. –	1	passed	-	-
AL425C	243	32	-	6	passed	-	-
AL425D	728	80	2	11	passed	1	1
AL425E	321	50	1	8	passed	1	-
AL425F	294	50	2	8	passed	1	1
AL425G	1,099	80	1	11	passed	-	1
AL800A	2	2	-	1	passed	-	-
AL800B	2	2	-	1	passed	-	-
AL800C	22	5	-	2	passed	-	-
AL800D	221	32	-	6	passed	-	-
AL800E	257	32	-	6	passed	-	-
AL800F	157	32	-	6	passed	-	-
AL800G	39	8	-	2	passed	-	-
L250G	2,871	125	1	15	passed	1	-
R175A	5,021	200	4	22	passed	1	3
R175B	6,012	200	6	22	passed	3	3
R175C	1,631	125	3	15	passed	2	1
R175D	33	8	-	2	passed	-	-
R175D	11	3	-	1	passed	-	_
-R175F	1	mar 1	1.	E 1	🦾 failed	in marine 1 c	
R175G	188	32	-	6	passed	-	-
R200A5	8,976	200	-	22	passed	-	-
R200B	6	2	-	· 1	passed	-	-
R200C	1,385	125	4	15	passed	3	1
R200D	9,284	200	6	22	passed	3	3
R200E	3,566	200	8	22	passed	4	4
R200F	6	2	-	1	passed	-	-
R200G	875	80	3	11	passed	2	1
R275A	2	2	-	1	passed	-	-
R275B	1	1	-	1	passed	-	-
R275D	1	1	-	1	passed	-	-
R275E	4,215	200	2	22	passed	1	1
R275F	4,677	200	2	22	passed	1	1
R275G	4,045	200	3	22	passed	3	-
R275G97	9,154	200	-	22	passed	• -	-
S175	236	236	-	6	passed	-	-
Total	178,115	7,602	164	953		106	58

Western Kentucky Gas Company

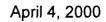
April 7, 2000

Honorable Martin J. Huelsmann Executive Director Kentucky Public Service Commission 211 Sower Boulevard P.O. Box 615 Frankfort, Kentucky 40602

Subject: Annual Report - Sample Meter Test Plan Case No. 99-059

Dear Mr. Huelsmann:

In compliance with the Commission's Order in the above referenced matter, Western Kentucky Gas Company is hereby filing its first Annual Report.


All technical questions should be directed to Mr. Barry Wigginton, Supervisor of Measurement, at 270-683-4068.

Sincerely yours,

William J. Senter C. VP – Rates & Regulatory Affairs

Enclosures

Cc: Mr. Barry Wigginton Mr.John Willis

WESTERN KENTUCKY GAS COMPANY 1999 METER SAMPLING ANNUAL REPORT

Western Kentucky Gas completed the first year of its meter sampling program with the following results.

A total of 5,371 meters making up 66 control groups or meter families were sampled. All meter families were tested in accordance with the sampling procedure as set forth in the Kentucky Public Service Commission's Order in Case No. 99-059 dated August 24, 1999.

One meter group failed. This 92 meter group of Rockwell 250's has been examined to determine what was the cause for bad test results. The year purchased, last year tested, location of customer, service technician involved and actual test results were reviewed to find a trend. With only one year of data it is difficult to determine the problem. Therefore, the remaining meters in this group will be removed within the next eighteen months since no other means of identification of deviant meters can be determined.

For year 2000 testing, the remaining passing groups of Rockwell 250's will be subdivided into smaller groups in a proactive effort to further identify potential problems in the findings of next year's inquiry.

Administering and monitoring meter sampling is a complex program when compared to periodic testing. It is however, a better program for our customers and the utility. The customer and utility benefits because a poor performing group of meters will be identified and removed from service. This allows quality meters to stay in service for an extended length of time.

Attached are the results of the program as directed in the Commission's Order. All questions regarding this report should be directed to Barry Wigginton, Supervisor of Measurement, at 270-683-4068. **1999 WESTERN KENTUCKY GAS METER SAMPLING RESULTS**

.

v

Samples taken for year 1999 ` 0-500 cfh

No. Failed Slow	()									-		9	4	2				ი	0		-						4	-	,
No. Failed Fast	(4)					2		ო		-	ო	80		2	~~		-	7	-	-								-	
Ratio Failed	(d/c=g)*100	0.0%	0.0%	0.0%	0.0%	1.0%	0.0%	1.5%	0.0%	1.0%	1.5%	7.0%	2.0%	2.0%	0.8%	%0.0	0.5%	5.0%	3.8%	12.5%	20.0%	%0.0	0.0%	0.0%	%0.0	%0.0	5.0%	4.0%	
1999 Family Status	()	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	passed	
Total Rejects 1999 Family Allowed Status	(e)	~ -	-	-		22	22	22	22	22	22	22	22	22	15	0	22	22	11	2	7	-	-	-	-	9	11	ø	
Total Failed Meters	(p)	O	0	0	0	2	0	ო	0	2	ო	14	4	4	-	0	-	10	ę	~	~	0	0	0	0	0	4	2	
Total Sampled	٥	с.	5	ო	e	200	200	200	200	200	200	200	200	200	125	5	200	200	80	ø	5	2	-	2	2	32	80	50	
Total Mtrs Req'd in Program	(q)	e.	5	0	ę	200	200	200	200	200	200	200	200	200	125	5	200	200	80	80	5	2	2	2	2	32	80	50	
Total Mtrs in Family	(a)	e	0 0	ι m	10	4379	9682	3983	9834	9543	6933	5236	8108	6941	1979	18	8351	7609	502	32	23	80	-	ო	2	213	827	291	
Family codes		0304	030B	030C	030D	030E	030F	030F89	030G98	030G95	030G94	031A	031B	031C	031E	031F	031G	032A	032B	032C	032D	032E	032F	034A	034B	034C	034D	034E	

otal mtrs req	Total mtrs req
in program Sampled	in program Sa
8	
13	13
200	200
200	200
7	2
200	200
200	000
50	200
0	200 50

~

• ;

v							
No. Failed Slow	0						83
No.Failed Fast						0	66
Ratio Failed	15.4%	0.0%	0.0%	0.0%	0.0%	1.6%	2.8%
1999 Family Status	passed	passed	passed	passed	passed	passed	
Total Reject 1999 Family Allowed Status	ß	-	-	15	4	15	648
Total Failed Meters	7	0	0	0	0	2	149
Total Sampled	13	ę	2	125	20	125	5371
Total mtrs req in program	13	ო	2	125	20	125	5373
Total Mtrs in family	57	12	9	3041	150	3071	155056
Family codes	062D	062E	062F	138F	210C	210G	TOTAL
					į		

.

RONALD G. SHEFFER MARK R. HUTCHINSON JEFFREY R. KINNEY ' GENE E. BROOKS ' CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR. ' REBECCA T. KASHA ' PETER B. LEWIS ' HOWARD E. FRASIER, JR. ' JAMES A. SIGLER JOHN A. SHEFFER EDWIN A. JONES MARC A. LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWN S. KELSEY ' TINA R. MCFARLAND ' A. J. MANION ' DONNA M. SAUER ' LIZBETH L. BAKER

<u>Sheffer hutchinson kinney</u>

115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com BRIAN F. HAARA ² SCOTT A. HOOVER WILLIAM H. MAY ² KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER ² ANNE G. DEDMAN ² JULIE V. OVERSTREFT JULIE V. OVERSTREFT JENNIFER CASTELLI ¹ TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD

> <u>OF COUNSEL</u> JOHN N. HUGHES ROBERT A. MARSHALL

' ADMITTED TO IN BAR ' ADMITTED TO IN AND KY BAR ' ADMITTED TO IN AND OH BAR ' ADMITTED TO KY AND TN BAR ' ADMITTED TO IN, IL AND KY BAR ALL OTHERS ADMITTED IN KY ONLY

September 23, 1999

FEDERAL EXPRESS

Ms. Helen Helton Executive Director Public Service Commission P.O. Box 615 730 Schenkel Lane Frankfort, Kentucky 40602

RE: Western Kentucky Gas Company Case No. 99-059

Dear Helen:

By its Order of August 24, 1999, the Commission approved Western's proposed statistical sample meter test plan for a period of five years. The Commission's order directed Western to notify it of the time frame for implementation of the Plan.

Western will begin implementation of the Plan on October 1, 1999 which is the beginning of its next fiscal year (FY 2000). Western will file the first annual report with the Commission by April 1, 2000.

If you should need anything further please advise. Thanks.

Very truly yours,

SHEFFER-HUTCHINSON-KINNEY

Mark R. Hutchinson

MRH:bkk c: Bill Senter Jack Hughes

HENDERSON

INDEX FOR CASE: 99-059 WESTERN KENTUCKY GAS COMPANY Deviation STATISTICAL SAMPLE METER TEST PLAN

SEQ

ENTRY

KY. PUBLIC SERVICE COMMISSION AS OF : 08/25/99

IN THE MATTER OF THE APPLICATION OF WESTERN KENTUCKY GAS COMPANY, A DIVISION OF ATMOS ENERGY CORPORATION, FOR APPROVAL OF A STATISTICAL SAMPLE METER TEST PLAN FOR POSTIVE DISPLACEMENT METERS PURSUANT TO 807 KAR 5:022, SECTION 8(5)(C)

NBR	DATE	REMARKS
0001	02/17/99	Application.
0002	02/18/99	Acknowledgment letter.
0003	04/02/99	Data Request Order; response due 4/19; schedules 4/30 informal conference.
M0001	04/19/99	MARK HUTCHINSON WESTERN KY GAS-RESPONSE TO ORDER OF APRIL 2,99
0004	05/03/99	Informal Conference Memorandum
M0002	05/14/99	MARK HUTCHINSON WESTERN KY GAS-RESPONSE TO INFORMAL CONFERENCE MEMO
M0003	06/02/99	MARK HUTCHINSON WESTERN KY GAS-REVISED GAS METER PERFORMANCE CONTROL PROGRAM
0005	06/24/99	Order entered; requests for hearing due 7/6 or case stands submitted
M0004	07/01/99	DOUGLAS WALTHER WESTERN KY GAS-MOTION FOR HEARING
0006	07/15/99	Order entered setting hearing for 10/7/99; IC schedule if response w/i 20 days.
M0005	08/04/99	MARK HUTCHINSON WESTERN KY GAD-RESPONSE TO PSC ORDER OF JULY 15,99
0007	08/24/99	FINAL ORDER APPROVING PROPOSED STATISTICAL SAMPLE METER TEST PLAN

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KY. 40602 (502) 564-3940

CERTIFICATE OF SERVICE

RE: Case No. 99-059 WESTERN KENTUCKY GAS COMPANY

I, Stephanie Bell, Secretary of the Public Service Commission, hereby certify that the enclosed attested copy of the Commission's Order in the above case was served upon the following by U.S. Mail on August 24, 1999.

See attached parties of record.

Secretary of the Commission

SB/sa Enclosure Mr. William J. Senter Vice President, Rates & Regulatory Western Kentucky Gas Company 2401 New Harford Road Owensboro, KY. 42303 1312

Honorable Mark R. Hutchinson Attorney at Law Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, KY. 42303

Douglas Walther Atmos Energy Corporation P. O. Box 650250 Dallas, TX. 75265

Honorable Jack N. Hughes Attorney at Law 124 West Todd Street Frankfort, KY. 40601

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY)GAS COMPANY, A DIVISION OF ATMOS ENERGY)CORPORATION, FOR APPROVAL OF A)STATISTICAL SAMPLE METER TEST PLAN FOR)COSITIVE DISPLACEMENT METERS PURSUANT)TO 807 KAR 5:022, SECTION 8(5)(C))

<u>O R D E R</u>

On April 19, 1999, Western Kentucky Gas Company ("WKG") filed an application requesting approval of a statistical sample meter test plan for positive displacement gas meters pursuant to 807 KAR 5:022, Section 8(5)(c). On June 1, 1999, WKG filed a revised plan pursuant to the informal conference between WKG and Commission Staff on April 30, 1999. The Commission on June 24, 1999, by Order, notified WKG that Commission Staff will recommend that its plan be rejected for reasons stated in the Order. The Commission on July 15, 1999, by Order, scheduled a formal hearing for October 7, 1999 and an informal conference if WKG files a second revised sample meter test plan that addresses positively each of the eight issues set out in our June 24, 1999 Order.

On August 4, 1999, WKG filed a second amended plan consistent with the similar plan previously approved by the Commission for other gas utilities.¹ WKG's plan is based on American National Standard for Sampling Procedures and Tables for

¹ WKG's amended plan is attached to its August 4, 1999 second amended application as Attachment 1.

Inspection by Attributes that corresponds to ANSI/ASQC Z1.4-1993. WKG has requested to test samples of all its gas meters under the terms of the revised plan in lieu of 100 percent testing required under 807 KAR 5:022, Section 8(5). WKG has further requested to test samples of new gas meters under the terms of the revised plan in lieu of 100 percent testing required under 807 KAR 5:022, Section 8(3)(a)1.

WKG estimates annual savings of approximately \$319,730 from implementing the statistical sample meter test plan, as compared to the costs of current periodic testing.

WKG states that the safety inspection will not be changed in any way with this program.

After consideration of the record and being otherwise sufficiently advised, the Commission finds that:

1. WKG's plan should be accepted for a pilot period of 5 years.

WKG should file an annual report with the Commission no later than April
 1 of each year under this program.

3. At the end of the 5 year pilot program, WKG will file its final evaluation and analysis of the program and whether it intends to continue with the plan in lieu of the periodic testing.

4. The formal hearing scheduled for October 7, 1999 should be cancelled.

IT IS HEREBY ORDERED that:

1. WKG's proposed statistical sample meter test plan is approved for a period of 5 years from the date of this Order. WKG shall file its final evaluation of the

-2-

plan with the Commission along with any application to continue or notice of discontinuance of the plan no later than April 1, 2004.

2. WKG is granted a deviation from 807 KAR 5:022, Section 8(3)(a)1, for new gas meters for a period of the pilot sampling test plan.

3. Within 30 days of the date of this Order, WKG shall notify the Commission of the time frame for implementation of the plan. WKG shall file the first annual report no later than April 1, 2000 and subsequent reports within 12 months.

4. The hearing set for October 7, 1999 is cancelled.

Done at Frankfort, Kentucky, this 24th day of August, 1999.

By the Commission

ATTEST:

tive Directo

RONALD G. SHEFFER MARK R. HUTCHINSON JEFFREY R. KINNEY ' GENE E. BROOKS ' CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR. ' REBECCA T. KASHA ' PETER B. LEWIS ' HOWARD E. FRASIER, JR. ' JAMES A. SIGLER JOHN A. SHEFFER EDWIN A. JONES MARC A. LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWN S. KELSEY ' TINA R. MCFARLAND ' A. J. MANION ' DONNA M. SAUER ' LIZBETH L. BAKER

•The Law Firm Of • <u>sheffer • hutchinson • kinney</u>

115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com

AUG 0 4 1999

PULLIC & MOE COMMIDICI BRIAN F. HAARA ² SCOTT A. HOOVER WILLIAM H. MAY ² KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER ² ANNE G. DEDMAN ² MICHAEL L. MEYER ² JULIE V. OVERSTREET JENNIFER CASTELLI ¹ TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD

<u>OF COUNSEL</u> JOHN N. HUGHES ROBERT A. MARSHALL

' ADMITTED TO IN BAR ' ADMITTED TO IN AND KY BAR ' ADMITTED TO IN AND OH BAR ' ADMITTED TO KY AND TN BAR ' ADMITTED TO IN, IL AND KY BAR ALL OTHERS ADMITTED IN KY ONLY

August 3, 1999

FEDERAL EXPRESS

Ms. Helen Helton Executive Director Public Service Commission P.O. Box 615 730 Schenkel Lane Frankfort, Kentucky 40602

> RE: Response of Western Kentucky Gas Company Case No. 99-059

Dear Helen:

Please file the original and ten (10) copies, of the enclosed Response of Western Kentucky Gas Company to the Commission's order of July 15, 1999.

If there are any problems or questions with the enclosed, please do not hesitate to call me.

Very truly yours,

SHEFFER-HUTCHINSON-KINNEY

Mark R. Hutchinson

MRH:bkk

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

7.03 0 4 **809**

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY)GAS COMPANY, A DIVISION OF ATMOS ENERGY)CORPORATION, FOR APPROVAL OF A STATISTICAL)SAMPLE METER TEST PLAN FOR POSITIVE)DISPLACEMENT METERS PURSUANT TO)807 KAR 5:022, SECTION 8(5)(C))

CASE NO. 99-059

RESPONSE

On July 15, 1999, the Commission issued an order setting an October 7, 1999, hearing date for Western's Gas Meter Performance Control Program. The order also required Western to file within twenty (20) days a second revised plan including a positive response to the eight issues raised in objection to Western's program in order for the Commission to set another informal conference on this matter. Since Western continues to maintain that many if not all of the issues to be heard can largely be resolved in an informal conference prior to hearing, Western is submitting a second revised Gas Meter Performance Control Program. For clarification purposes, Western submits the following responses to the concerns raised by the Staff. The eight concerns stated by the Staff are listed in bold print below, followed by a summary of Western's revised positions on these eight issues:

1. WKG will not institute a sample to test new meters.

Western's program includes sample testing of new meter groups in accordance with ANSI Z1.4, normal inspection level II, and an AQL of 1.0. If the sample from any group fails the test, the entire group will be rejected.

- WKG's plan will test residential gas meters in year ten as the initial year for testing in lieu of year one. WKG will not be able to establish records for the meters installed during its proposed five year pilot plan.
 Western has modified its plan so that meters will become eligible for sampling in a control group beginning in the first (1st) year of service with an Acceptable Quality Level (AQL) of 6.5.
- 3. WKG's plan is deviating from a random selection of samples. WKG is proposing to include meters removed for other reasons during normal operations as a substitute for the random number generated by random generation program. Western has modified its plan so that meters are not removed for other reasons

during normal operations as a substitute for the random number generated by the random generation program

4. WKG's plan established a group size more than 10,000 meters. The Commission has limited the group size for other plans to 10,000 meters to control the limiting quality and the value of customer's risk within the required parameters. Western has removed Sample size group *M*, 10,001 to 35,000, from its program.

5. WKG's plan is not clear in specifying the changes to the inspection parameters. WKG used a general statement as referring to the broad spectrum of ANSI Z1.4 Standard.

Page nine of ANSI Z1.4 is the flow chart for the "switching rules". This is applicable for all Z1.4 programs listed in the standard and explains the process very well. For clarity, Western will attach the chart to the filed plan. Control groups will be switched between tightened, normal and reduced testing per the ANSI Ż1.4 flowchart.

6. WKG's plan has not established a clear removal program for meters which fail in testing. The plan is changing the inspection level from one to another rather than removal of bad meters.

Western commits that any control group that fails in testing will be subject to removal within 18 months. Reasonable effort will be made to identify a sub group that represents the bad meters during the 18 months. Otherwise, all meters in the control group will be removed.

- 7. WKG's plan excludes the obsolete meter types from the program. Western has modified its plan to include all meters in its Gas Meter Performance Control Program.
- 8. WKG's plan has not confirmed that the plan will not change the safety programs such as the inspection of safety regulators, curb boxes and other safety issues conducted during periodic meter testing.
 Western agrees to continue testing or inspection of service regulators, relief valves, and the second during periodic meter testing.

vents and curb boxes operability in accordance with the KAR regulations in effect at the time of approval of this program or as subsequently amended. Western agrees that its Gas Meter Performance Control Program will not change, in any way, Western's safety programs or Western's handling of any other safety issues during periodic meter testing.

Attached hereto as Attachment 1 is Western's Revised Gas Meter Performance

Control Program, which incorporates the changes discussed above. Although Western

believes that the revisions reflected in the attached revised program should eliminate all of the Staff's concerns, Western nevertheless believes that it is appropriate to hold an informal conference in September to insure mutual understanding of Western's revised program.

Respectfully submitted this 3rd day of August, 1999.

Douglas Walther Atmos Energy Corporation P.O. Box 650250 Dallas, Texas 75265

Mark R. Hutchinson SHEFFER-HUTCHINSON-KINNEY 115 East Second Street

John N. Hughes 124 W. Todd Street Frankfort, Kentucky 40601

By: Millie

Attorneys for Atmos Energy

CERTIFICATE OF SERVICE

This is to certify that an original, plus ten copies, was this day served upon the Kentucky Public Service Commission, 730 Schenkel Lane, Frankfort, Kentucky 40602 by overnight Federal Express, on this the 3rd day of August, 1999.

. Hutch:

Mark R. Hutchinson

O:\USERS\BKK\WKG\PSC\RESPONSE.059

II. CONTROL GROUP SAMPLING

The primary consideration in drawing a random sample is that each observance in the population must have an equal chance to be included in the sample. This ensures that the sample is representative of the population and the results of the sample are valid. Meters will be selected at random until there are enough meters in the sample to satisfy the sample size requirements.

A. As a part of this meter sampling plan, WKG will use the sample selection process as stated in ANSI Z1.4 Section 7.2 Sampling:

When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion. In so doing, the units from each part of the lot or batch shall be selected at random, as defined in ANSI/ASQC Standard A2-1987.

- B. Sample sizes for each control group will be determined using the "Sample Size Code Letters" table for General Inspection Level II from ANSI Z1.4, using 6.5 as the designated Acceptable Quality Level (AQL). All control groups eligible will be accepted or rejected as allowed by ANSI Z1.4 with its designated AQL for single sampling.
- C. Control groups will be switched between tightened, normal and reduced testing per ANSI Z1.4 Section 11.6. for accuracy, improvement or removal. When normal inspection is in effect, tightened inspection shall be instituted when a control group is operating within the high limits of the specified acceptable limits for five consecutive tests.

Single Sampling Plan (AQL = 6.5)										
Lot or Batch Size	Sample	Normal Inspection		Tightened Inspection			Reduced Inspection			
	Size Code	Samples	Ac	Re	Samples	Ac	Re	Samples	Ac	Re
2 to 8	A	2	0	1	2	0	1	2	0	1
9 to 15	В	3	0	1	3	0	1	2	0	1
16 to 25	C	5	0	1	5	0	1	2	0	1
26 to 50	D	8	1	2	8	0	1	3	0	2
51 to 90	E	13	2	3	13	1	2	5	1	3
91 to 150	F	20	3	4	20	2	3	8	1	4
151 to 280	G	32	5	6	32	3	4	13	2	5
281 to 500	н	50	7	8	50	5	6	20	3	6
501 to 1200	J	80	10	11	80	8	9	32	5	8
1201 to 3200	к	125	14	15	125	12	13	50	7	10
3201 to 10000	L	200	21	22	200	18	19	80	10	13

Accept--(AC) --means accept the control group with no more than this quantity of defective meters.

Reject--(RE) --means reject the control group with equal or greater to this number of defective meters.

III. CREATION OF METER CONTROL GROUPS

Control groups of positive displacement gas meters will be created and maintained according to the following parameters:

- A. Gas meters will be segregated into groups with similarly identifiable characteristics based on two criteria:
 - 1. Control groups of all gas meters being placed into service shall be established according to purchase, field test or remanufacture year, type, model, class, manufacturer and composition.
 - 2. Control Groups composed of like meters with different years of installation may be established. When this is done, the earliest installation year of all the combined like meters will become the controlling year of installation for the new control group.
- B. When created, each group will be assigned a descriptive title and control group number to facilitate identification.
- C. New control groups will be established and identified at the end of each year from those gas meters installed during the year between January 1 and December 31.

IV. INSPECTION PARAMETERS

All control groups will be switched between tightened, normal and reduced testing per the ANSI Z1.4 flowchart.

Gas meters, shall be deemed as accurate after removal from service if the average of the Open Test (full capacity) and Check Test (20 percent capacity) is not more than plus or minus 2 percent error.

- A. A control group can become eligible for reduced sampling after ten years of sampling has been completed without failures. The reduced inspection level will be according to Reduced Sampling. At the first occurrence of unacceptable sampling the group will return to normal sampling.
- B. A control group will be subjected to tightened inspection parameters when two out of five years fail the normal sampling criteria. The tightened inspection level will be according to Tightened Sampling. A control group will return to Normal Inspection from Tightened Inspection when five years of sampling has been completed with an acceptable level.

3

V. ACCURACY IMPROVEMENT

Any control group that fails in testing will be subject to removal within 18 months. Every effort will be made to identify a sub group that represents the bad meters during the 18 months. Otherwise, all meters in the control group will be removed.

A. The control group of meters in any sampling inspection plan may be subdivided in an effort to identify the deviant subgroup. If, by the removal of a specific subgroup of meters, it can be demonstrated that the original control group of meters now meets the accuracy standard under General Inspection Level II for Normal Inspection, the remaining meters in the original control group shall remain in service.

B. If a deviate sub-group of meters cannot be identified to improve the control group's accuracy, then every reasonable effort will be made to remove the entire control group of meters from the service within 18 months once it has failed the applicable governing standard for the control group under ANSI Z1.4.

Meters shall be excluded from the sampling criteria for the following reasons:

- 1. Damage not associated with normal operating conditions that may have altered how the meter was actually performing while in service.
- 2. Meters which WKG suspects have been tampered with or meters removed by theft and later recovered by WKG.

VI. PERFORMANCE CLASSIFICATION TIME PARAMETERS

Scheduled control group testing for each test year shall begin January 1 and be completed by December 31 of the test year. The finalized test results will be published for review and a copy submitted to the Public Service Commission. The annual published review of WKG's Gas Meter Performance Control Plan shall detail at minimum the following items for each control group:

- Control Group Identification Number
- Model
- Purchase or Repair Year
- Balance of Control Group on Jan 1 and Dec 31 of Each Test Year
- Number of Meters Removed Under Scheduled Sampling
- Number of Meters Removed for Other Reasons
 - Accept Level for Specified Test
 - Number of Meter Accepted
 - Reject Level For Specified Test
 - Number of Meters Rejected
 - Percentage of Rejected Meters Over 2 Percent Fast
 - Percentage of Rejected Meters Over 2 Percent Slow

VII. SAMPLING PLAN FOR NEW METERS

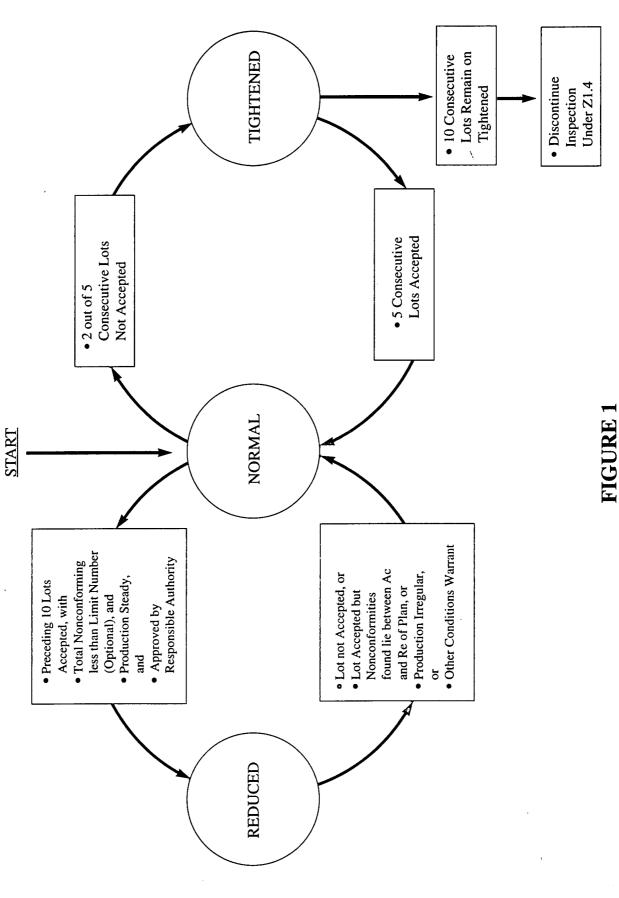
Testing new meters: The plan includes sample testing of new meter groups in accordance with ANSI Z1.4, normal inspection level II, and an AQL of 1.0. If the sample from any group fails the test, the entire group will be rejected.

VIII. PERIODIC TEST OPTION

If WKG, at a later date, decides to switch its entire meter population from Sample Testing back to the KPSC's current Periodic Test Schedule, a time frame equal to half of the average in service age of WKG's installed positive displacement meter population at that time shall be allowed for WKG to bring the service life of its meters into compliance with the KPSC's Periodic Test Schedule. Control groups that may fail within that period will continue to be removed within 18 months of issue of the Removal Order.

IX. MAXIMUM IN-SERVICE LIFE

No meter in this program will be in service more than 35 years. All meters still in service at 35 years will be removed from the system within 18 months.


X. ANNUAL REPORT

WKG proposes to file an annual report with the KPSC which will include identification and test results of each control group, test results for the new meters including manufacturer's test records, evaluation and analysis of the data, and any corrective action taken. WKG will also address direct cost savings and the overall effectiveness of this program.

XI. PUBLIC SAFETY

WKG agrees to continue testing or inspection of service regulators, relief valves, vents and curb boxes operability in accordance with the KAR regulations in effect at the time of approval of this plan or as subsequently amended. Western agrees that its Gas Meter Performance Control Program will not change, in any way, Western's safety programs or Western's handling of any other safety issues during periodic meter testing.

Switching Rules for ANSI Z1.4 System

SWITCHING RULES

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KY. 40602 (502) 564-3940

July 15, 1999

To: All parties of record

RE: Case No. 99-059

We enclose one attested copy of the Commission's Order in the above case.

Sincerely, Stephan Due

Stephanie Bëll Secretary of the Commission

SB/rlm Enclosure Mr. William J. Senter Vice President, Rates & Regulatory Western Kentucky Gas Company 2401 New Harford Road Owensboro, KY 42303 1312

Honorable Mark R. Hutchinson Attorney at Law Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, KY 42303

Douglas Walther Atmos Energy Corporation P. O. Box 650250 Dallas, TX 75265

Honorable Jack N. Hughes Attorney at Law 124 West Todd Street Frankfort, KY 40601

..

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY GAS COMPANY, A DIVISION OF ATMOS ENERGY CORPORATION, FOR APPROVAL OF A STATISTICAL SAMPLE METER TEST PLAN FOR POSTIVE DISPLACEMENT METERS PURSUANT TO 807 KAR 5:022, SECTION 8(5)(C)

) CASE NO. 99-059

<u>ORDER</u>

On July 1, 1999, applicant, Western Kentucky Gas Company ("WKG"), by counsel, filed a motion for hearing pursuant to the Commission's Order entered on June 24, 1999 and, in addition, requested a second informal conference (a copy of the June 24, 1999 Order is attached for reference). On April 30, 1999, an informal conference was conducted and WKG's application which requested a deviation from the regulations in order to allow WKG to use a statistical sample meter test plan was fully and completely discussed. Subsequently, WKG filed a revised application/test plan. During the informal conference it was determined by Commission Staff, that WKG's sample meter test plan was deficient in eight (8) specific areas. WKG's revised test plan did not resolve the eight (8) deficiencies. After consulting with Commission Staff, reviewing the record and being otherwise sufficiently advised, IT IS ORDERED as follows:

1. A formal hearing in this matter shall be conducted on October 7, 1999, at 10:00 a.m., Eastern Daylight Time, in Hearing Room 1 of the Commission's offices at 730 Schenkel Lane, Frankfort, Kentucky.

2. A second informal conference will be scheduled if WKG files a second revised sample meter test plan which addresses positively each of the eight (8) specific

deficiencies as set out in the attached Order entered on June 24, 1999 within 20 days of the date of this Order.

3. The matter is subject to information request by Commission Staff in order to further examine and re-examine all aspects of WKG's sample meter test plan(s) including but not limited to any such plan(s) filed subsequent to the date of this Order.

Done at Frankfort, Kentucky, this 15th day of July, 1999.

By the Commission

ATTEST:

Executive Director

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY) GAS COMPANY, A DIVISION OF ATMOS ENERGY) CORPORATION, FOR APPROVAL OF A)C STATISTICAL SAMPLE METER TEST PLAN FOR) POSITIVE DISPLACEMENT METERS PURSUANT) TO 807 KAR 5:022, SECTION 8(5)(C))

) CASE NO. 99-059

<u>ORDER</u>

On April 19, 1999, Western Kentucky Gas Company ("WKG") filed an application requesting approval of a statistical sample meter test plan for positive displacement gas meters pursuant to 807 KAR 5:022, Section 8(5)(c). On June 1, 1999, WKG filed a revised plan pursuant to the informal conference between WKG and Commission Staff on April 30, 1999. The plan is based on American National Standard for Sampling Procedures and Tables for Inspection by Attributes ("ANSI Z1.4"). WKG has requested to test samples of new or remanufactured gas meters under the terms of the revised plan in lieu of 100 percent testing required under the regulation.

After consideration of the record, Commission Staff is prepared to recommend to the Commission that WKG's application pursuant to 807 KAR 5:022, Section 8(5)(c) for approval of a statistical sample meter test plan be denied for the following reasons:

1. WKG's plan will not institute a sample to test new meters.

2. WKG's plan will test residential gas meters in year ten as the initial year for testing in lieu of year one. WKG will not be able to establish records for the meters installed during its proposed five year pilot plan.

3. WKG's plan is deviating from a random selection of samples. WKG is proposing to include meters removed for other reasons during normal operations as a substitute for the random number generated by random generation program.

4. WKG's plan established group size more than 10,000 meters. The Commission has limited the group size for other plans to 10,000 meters to control the limiting quality and the value of customer's risk within the required parameters.

5. WKG's plan is not clear in specifying the changes to the inspection parameters. WKG used a general statement as referring to the broad spectrum of ANSI Z1.4 Standard.

6. WKG's plan has not established a clear removal program for meters which fail in testing. The plan is changing the inspection level from one to another rather than removal of bad meters.

WKG's plan excludes the obsolete meter types from the program.

8. WKG's plan has not confirmed that the plan will not change the safety programs such as the inspection of safety regulators, curb boxes and other safety issues conducted during periodic meter testing.

WKG estimates annual savings of approximately \$319,730 from implementing the statistical sample meter test plan, as compared to the costs of current periodic testing.

IT IS HEREBY ORDERED that WKG has 10 days from the date of this Order to file a written request for a hearing. If no request for a hearing is filed, the matter will be submitted to the Commission for a decision on the record.

-2-

Done at Frankfort, Kentucky, this 24th day of June, 1999.

By the Commission

ATTEST:

Executive Director

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

PECE/1/15/ JUL - 1 1999 VELIC SERVICE

In the Matter Of:

THE APPLICATION OF WESTERN KENTUCKY GAS COMPANY FOR APPROVAL OF A STATISTICAL METER TEST PLAN FOR POSITIVE DISPLACEMENT METERS PURSUANT TO 807 KAR 5:022 SECTION 8(5)(C)

CASE NO. 99-059

MOTION FOR HEARING

Western Kentucky Gas Company, (Western), by counsel, pursuant to the Commission's order of June 24, 1999, requests a hearing in this matter.

To facilitate the disposition of this matter, resolve a number of issues and limit the scope of the hearing, Western requests that an informal conference be scheduled at least two weeks prior to the hearing. This will provide the parties the opportunity to prepare for and address at the hearing the issues identified at the conference.

Respectfully submitted:

Douglas Walther Atmos Energy Corporation P.O. Box 650205 Dallas, TX 75265

Mark R. Hutchinson SHEFFER - HUTCHINSON -KINNEY 115 E. Second St. Owensboro, KY 42303

John N. Hughes 124 West Todd Street Frankfort, KY 40601 (502) 227-7270

By: John N. Jufflo Attorneys for Western Kentucky Gas Company

meters-9.059

\varTheta BELLSOUTH

BellSouth Telecommunications, Inc. P.O. Box 32410 Louisville, Kentucky 40232 502 582-8219 Fax 502 582-1573 Creighton E. Mershon, Sr. General Counsel – Kentucky

June 30, 1999

Helen C. Helton Executive Director Public Service Commission 730 Schenkel Lane P.O. Box 615 Frankfort, KY 40602 RECEMED

JUL - 1 1999

PUELIC SERVICE COMMISSION

RE: Approval of the Resale Agreement Negotiated by BellSouth

- Telecommunications, Inc., and DAVCO, Inc., Pursuant to Sections 251 and
 - 252 of the Telecommunications Act of 1996
 - KPSC Case No. 98-196

Dear Helen:

In late April 1998, BellSouth filed with the Commission the Resale Agreement between BellSouth and DAVCO. On July 17, 1998, the Commission approved the agreement subject to the filing of an amendment in the case reflecting accurate federal charges. As indicated in BellSouth's Motions for Extension of Time filed last August and October, BellSouth has been unsuccessful in its numerous attempts to obtain from DAVCO a signed amendment reflecting the accurate charge. In order that the Commission may close this case, on June 21, 1999, the Commission requested that BellSouth file a statement confirming that it is in fact charging DAVCO the accurate federal charge.

BellSouth states that DAVCO is no longer providing service in its region and that service to DAVCO was disconnected on February 1, 1999, for non payment. Should DAVCO provide service in BellSouth's region in the future, BellSouth will confirm with the Commission that it is charging DAVCO the accurate federal charge.

Please contact me if I can be of further assistance in this matter.

Sincerely,

Creighton E. Mershon, & by Creighton E. Mershon, Sr. Desitt All

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KY. 40602 (502) 564-3940

June 24, 1999

To: All parties of record

RE: Case No. 99-059

We enclose one attested copy of the Commission's Order in the above case.

Sincerely,

Stephanie Bell Secretary of the Commission

SB/sa Enclosure Mr. William J. Senter Vice President, Rates & Regulatory Western Kentucky Gas Company 2401 New Harford Road Owensboro, KY 42303 1312

Honorable Mark R. Hutchinson Attorney at Law Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, KY 42303

Douglas Walther Atmos Energy Corporation P. O. Box 650250 Dallas, TX 75265

Honorable Jack N. Hughes Attorney at Law 124 West Todd Street Frankfort, KY 40601

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY)GAS COMPANY, A DIVISION OF ATMOS ENERGY)CORPORATION, FOR APPROVAL OF A) CASE NO. 99-059STATISTICAL SAMPLE METER TEST PLAN FOR)POSITIVE DISPLACEMENT METERS PURSUANT)TO 807 KAR 5:022, SECTION 8(5)(C))

<u>ORDER</u>

On April 19, 1999, Western Kentucky Gas Company ("WKG") filed an application requesting approval of a statistical sample meter test plan for positive displacement gas meters pursuant to 807 KAR .5:022, Section 8(5)(c). On June 1, 1999, WKG filed a revised plan pursuant to the informal conference between WKG and Commission Staff on April 30, 1999. The plan is based on American National Standard for Sampling Procedures and Tables for Inspection by Attributes ("ANSI Z1.4"). WKG has requested to test samples of new or remanufactured gas meters under the terms of the revised plan in lieu of 100 percent testing required under the regulation.

After consideration of the record, Commission Staff is prepared to recommend to the Commission that WKG's application pursuant to 807 KAR 5:022, Section 8(5)(c) for approval of a statistical sample meter test plan be denied for the following reasons:

1. WKG's plan will not institute a sample to test new meters.

2. WKG's plan will test residential gas meters in year ten as the initial year for testing in lieu of year one. WKG will not be able to establish records for the meters installed during its proposed five year pilot plan.

3. WKG's plan is deviating from a random selection of samples. WKG is proposing to include meters removed for other reasons during normal operations as a substitute for the random number generated by random generation program.

4. WKG's plan established group size more than 10,000 meters. The Commission has limited the group size for other plans to 10,000 meters to control the limiting quality and the value of customer's risk within the required parameters.

5. WKG's plan is not clear in specifying the changes to the inspection parameters. WKG used a general statement as referring to the broad spectrum of ANSI Z1.4 Standard.

6. WKG's plan has not established a clear removal program for meters which fail in testing. The plan is changing the inspection level from one to another rather than removal of bad meters.

7. WKG's plan excludes the obsolete meter types from the program.

8. WKG's plan has not confirmed that the plan will not change the safety programs such as the inspection of safety regulators, curb boxes and other safety issues conducted during periodic meter testing.

WKG estimates annual savings of approximately \$319,730 from implementing the statistical sample meter test plan, as compared to the costs of current periodic testing.

IT IS HEREBY ORDERED that WKG has 10 days from the date of this Order to file a written request for a hearing. If no request for a hearing is filed, the matter will be submitted to the Commission for a decision on the record.

-2-

Done at Frankfort, Kentucky, this 24th day of June, 1999.

By the Commission

ATTEST:

Executive Director

RONALD G. SHEFFER MARK R. HUTCHINSON JEFFREY R. KINNEY GENE E. BROOKS 1 CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR. REBECCA T. KASHA * PETER B. LEWIS' HOWARD F. FRASIER, IR. IAMES A. SIGLER JOHN A. SHEFFER EDWIN A. JONES MARC A. LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWN S. KELSEY * TINA R. McFARLAND ? A. J. MANION ' DONNA M. SAUER LIZBETH L. BAKER

<u>sheffer·hutchinson·kinney</u>

115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com BRIAN F. HAARA' SCOTT A. HOOVER WILLIAM H. MAY' KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER' ANNE G. DEDMAN' MICHAEL L. MEYER' JULIE V. OVERSTREET JENNIFER CASTELLI' TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD OF COUNSEL

JOH N. HUGHES JOHN N. HUGHES ROBERT A. MARSHALL ' ADMITTED TO IN BAR ' ADMITTED TO IN AND KY BAR

ADMITTED TO IN AND OH BAR
 ADMITTED TO KY AND TN BAR
 ADMITTED TO IN, IL AND KY BAR
 ALL OTHERS ADMITTED IN KY ONLY

May 26, 1999

Honorable Helen C. Helton Executive Director Kentucky Public Service Commission 730 Schenkel Drive Frankfort, Kentucky 40602

RE: Case No. 99-059 Western Kentucky Gas Company

Dear Ms. Helton:

Enclosed is Western's revised Gas Meter Performance Control Program. Western personnel met with members of the Commission Staff in an informal conference on April 30. The staff made various suggestions for changes to Western's Program. The enclosed revised Program incorporates several of the Staff's suggestions. As to those suggestions which have not been incorporated, I am enclosing a Memorandum which explains why Western does not concur with the Staff.

Very truly yours,

SHEFFER-HUTCHINSON-KINNEY

Mark R. Hutchinson

MRH:bkk

cc: Mr. Eddie Smith, PSC
 Mr. Dale Wright, PSC
 Mr. Bill Senter, WKG
 Mr. David Doggette, WKG
 Mr. John Willis, WKG
 Mr. Douglas Walther, Senior Attorney

REC. JUN 0 1 1999 UELIC BERVICE COMMISSION

M E M O R A N D U M

RECEIVED JUN 0 1 1999

PUSLIC BERVICE COMMISSION

TO: KY Public Service Commission Staff

- FROM: David H. Doggette, and John M. Willis
- **DATE:** May 21, 1999

5.

SUBJECT: Case 99-059 Response to Informal Conference Issues expressed via KPSC Staff Memorandum of April 30, 1999

Attached is our revised Gas Meter Performance Control Program which incorporates some, but not all, of the Staff's recommendations. For those recommendations which were not incorporated into the plan we have provided an explanation below.

- 1. "WKG will institute a tightened inspection to improve the performance of control groups operating within the high limits of the specified acceptable standard." See the revised Gas Meter Performance Control Program.
- 2. "WKG will sample test the meters in year one."

WKG's submission of test data for meter failure and in-test results of the prior twenty years warrants statistical consideration for year ten as the initial year for testing. Other natural gas distribution companies have similar programs that have had successful results.

3. "WKG will clarify the random selection of sample for any control group."

WKG will perform the sample testing for the correct, specified number of meters based on the control group size in accordance with the ANSI Z1.4. One of WKG's objectives is to provide excellent customer service by minimizing interruptions of service as stated in 807 KAR 5:022 section 1 (2) (b) which states "each utility shall make all reasonable efforts to prevent interruptions of service...". This will be accomplished by a random number generation program or by other removals as the opportunity randomly occurs through normal operations.

- 4. "WKG will confirm that the sample test will not change the schedule for testing service regulators, relief valves, vents and curb boxes operability." See the revised Gas Meter Performance Control Program.
 - **"WKG will sample test new meters."** WKG believes it appropriate to rely on the test results of KPSC certified meter shops. The quality assurance for transporting meters was explained in the previous informal meeting. The ANSI Z1.4 sampling program does not require initial sampling of previously tested meters.
- 6. "WKG will limit meter life without testing to 35 years."

See the revised Gas Meter Performance Control Program.

7. "WKG will limit the group size to 10,000 meters."

Former Mil Std 105D made no provision for additional samples to be pulled for groups above 10,000. This standard has been replaced by ANSI Z1.4, which has provisions for establishing a larger group size with a corresponding larger sample size. However, few groups are expected to be established above the 10,000 size as documented in the previously supplied groupings.

8. "WKG will clarify the method of segregating the meters into homogeneous groups." See the revised Gas Meter Performance Control Program.

ATTACHMENT 1

WESTERN KENTUCKY GAS COMPANY

GAS METER PERFORMANCE CONTROL PROGRAM

RECEIVED JUN 0 1 1999 UDLIC SERVICE COMMISSION

Introduction

Western Kentucky Gas Company's Gas Meter Performance Control Program is a procedure designed to provide a continuous high level of quality in the measurement of gas delivered to our customers while controlling metering cost. A high level of accuracy will be achieved by applying modern sampling and statistical techniques in the evaluation of gas meter performance. The primary goal of the program is the detection and removal of groups of like meters not meeting prescribed performance standards as defined by the Kentucky Public Service Commission (KPSC). In accomplishing this goal, WKG expects to create an inservice environment that will produce a high level of metering accuracy while prolonging gas meter service life. To that end, WKG will achieve significant savings by reducing unnecessary testing of high quality, better performing meters. Specifically, WKG estimates that this program will result in approximately nine thousand (9,000) fewer meters being tested annually. WKG proposes that this sampling program, once initiated, run for a test period of five years and be re-evaluated to ensure WKG and KPSC objectives are achieved.

I. GENERAL DESCRIPTION OF PROGRAM

WKG's Gas Meter Performance Control Program is based on the American National Standard ANSI/ASQC Z1.4: Sampling Procedures and Tables for Inspection by Attributes, covering all classes of positive displacement diaphragm gas meters. Under Performance Control, WKG's gas meter populations will be classified into control groups representing populations of equivalent makes and sizes purchased or repaired within five consecutive years at a maximum. Once created, a control group would be subject to sample testing based on its rated capacity class as follows:

A. Residential class—rated capacity up to and including 500 cubic feet per hour

All new and remanufactured residential class meters will be tested under the current guidelines of the KPSC prior to installation. Meters will become eligible for sampling in a control group beginning in the 10^{th} year of service with an Acceptable Quality Level (AQL) of 6.5.

B. Commercial class—501 cubic feet per hour up to 1500 cubic feet per hour

Positive displacement meters will become eligible for sampling in a control group beginning in the 1st year of service with an AQL of 6.5.

C. Commercial class—above 1500 cubic feet per hour

Positive displacement meters will become eligible for sampling in a control group beginning in the 1st year of service with an AQL of 6.5.

II. CONTROL GROUP SAMPLING

The primary consideration in drawing a random sample is that each observance in the population must have an equal chance to be included in the sample. This ensures that the sample is representative of the population and the results of the sample are valid. Meters will be selected at random until there are enough meters in the sample to satisfy the sample size requirements.

A. As a part of this meter sampling plan, WKG will use the sample selection process as stated in ANSI Z1.4 Section 7.2 Sampling:

When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion. In so doing, the units from each part of the lot or batch shall be selected at random, as defined in ANSI/ASQC Standard A2-1987.

- B. Sample sizes for each control group will be determined using the "Sample Size Code Letters" table for General Inspection Level II from ANSI Z1.4, using 6.5 as the designated Acceptable Quality Level (AQL). All control groups eligible will be accepted or rejected as allowed by ANSI Z1.4 with its designated AQL for single sampling.
- C. Control groups will be switched between tightened, normal and reduced testing per ANSI Z1.4 Section 11.6. for accuracy, improvement or removal. When normal inspection is in effect, tightened inspection shall be instituted when a control group is operating within the high limits of the specified acceptable limits for five consecutive tests.

	Single S	Sampling) Pla	<u>n (</u>	AQL = 6	.5)				
Lot or Batch Size	Sample	Normal Inspection			Tightened Inspection			Reduced Inspection		
	Size Code	Samples	Ac	Re	Samples	Ac	Re	Samples	Ac	Re
2 to 8	A	2	0	1	2	0	1	2	0	1
9 to 15	В	3	0	1	3	0	1	2	0	1
16 to 25	С	5	0	1	5	0	1	2	0	1
26 to 50	D	8	1	2	8	0	1	3	0	2
51 to 90	E	13	2	3	13	1	2	5	1	3
91 to 150	F	20	3	4	20	2	3	8	1	4
151 to 280	G	32	5	6	32	3	4	13	2	5
281 to 500	н	50	7	8	50	5	6	20	3	6
501 to 1200	J	80	10	11	80	8	9	32	5	8
1201 to 3200	к	125	14	15	125	12	13	50	7	10
3201 to 10000	L	200	21	22	200	18	19	80	10	13
10001 to 35000	М	315	21	22	315	18	19	125	10	13

Accept--(AC) -- means accept the control group with no more than this quantity of defective meters.

Reject--(RE) --means reject the control group with equal or greater to this number of defective meters.

Control group sampling will, where possible, be accomplished through the testing of meters randomly selected for sample testing. Other routine meter changes and removals obtained during the calendar year may be included as part of the random sample for any control group

if it can be properly documented that the integrity of ANSI Z1.4 Section 7.2 Sampling is maintained.

III. CREATION OF METER CONTROL GROUPS

Control groups of positive displacement gas meters will be created and maintained according to the following parameters:

- A. Gas meters will be segregated into groups with similarly identifiable characteristics based on two criteria:
 - 1. Control groups of all gas meters being placed into service shall be established according to purchase, field test or remanufacture year, type, model, class, manufacturer and composition.
 - 2. Control Groups composed of like meters with different years of installation may be established. When this is done, the earliest installation year of all the combined like meters will become the controlling year of installation for the new control group.
- B. When created, each group will be assigned a descriptive title and control group number to facilitate identification.
- C. New control groups will be established and identified at the end of each year from those gas meters installed during the year between January 1 and December 31.

IV. INSPECTION PARAMETERS

All control groups will begin testing according to the ANSI/ASQC Z1.4 General Inspection Level II for Normal Sampling. All changes to the inspection parameters will be done according to Section 11.6.

Gas meters, shall be deemed as accurate after removal from service if the average of the Open Test (full capacity) and Check Test (20 percent capacity) is not more than plus or minus 2 percent error.

- A. A control group can become eligible for reduced sampling after ten years of sampling has been completed without failures. The reduced inspection level will be according to Reduced Sampling. At the first occurrence of unacceptable sampling the group will return to normal sampling.
- B. A control group will be subjected to tightened inspection parameters when two out of five years fail the normal sampling criteria. The tightened inspection level will be according to Tightened Sampling. A control group will return to Normal Inspection from Tightened Inspection when five years of sampling has been completed with an acceptable level.

V. ACCURACY IMPROVEMENT

When a control group is classified in a tightened status and a failure occurs, one of the following actions will occur:

A. The control group of meters in any sampling inspection plan may be subdivided in an effort to identify the deviant subgroup. If, by the removal of a specific subgroup of meters, it can be demonstrated that the original control group of meters now meets the accuracy standard under General Inspection Level II for Normal Inspection, the remaining meters in the original control group shall remain in service.

B. If a deviate sub-group of meters cannot be identified to improve the control group's accuracy, then every reasonable effort will be made to remove the entire control group of meters from the service within 18 months once it has failed the applicable governing standard for the control group under ANSI Z1.4.

Meters shall be excluded from the sampling criteria for the following reasons:

- 1. Damage not associated with normal operating conditions that may have altered how the meter was actually performing while in service.
- 2. Meters which WKG suspects have been tampered with or meters removed by theft and later recovered by WKG.

VI. PERFORMANCE CLASSIFICATION TIME PARAMETERS

Scheduled control group testing for each test year shall begin January 1 and be completed by December 31 of the test year. The finalized test results will be published for review and a copy submitted to the Public Service Commission. The annual published review of WKG's Gas Meter Performance Control Plan shall detail at minimum the following items for each control group:

- Control Group Identification Number
- Model
- Purchase or Repair Year
- Balance of Control Group on Jan 1 and Dec 31 of Each Test Year
- Number of Meters Removed Under Scheduled Sampling
- Number of Meters Removed for Other Reasons
 - Accept Level for Specified Test
 - Number of Meter Accepted
 - Reject Level For Specified Test
 - Number of Meters Rejected
 - Percentage of Rejected Meters Over 2 Percent Fast
 - Percentage of Rejected Meters Over 2 Percent Slow

VII. SAMPLING PLAN FOR METER OUT-TEST

All new meters purchased by WKG will be subject to 100 percent testing by the manufacturer before shipment to WKG. The manufacturer's test results for each meter must accompany the meter at the time it is received by WKG or before shipment The calibration

standard for all new remanufactured, and repaired gas meters being placed into service shall comply with the KPSC rules.

VIII. FIRST YEAR REPLACEMENT OF OBSOLETE METER TYPES

WKG will exclude all obsolete meter types from the sampling program. These meters have been identified through an analysis of historical meter performance and testing data. Our intent is to remove these meters during the first year of the statistical sampling program in addition to the randomly sampled meters selected for first year testing.

IX. PERIODIC TEST OPTION

If WKG, at a later date, decides to switch its entire meter population from Sample Testing back to the KPSC's current Periodic Test Schedule, a time frame equal to half of the average in service age of WKG's installed positive displacement meter population at that time shall be allowed for WKG to bring the service life of its meters into compliance with the KPSC's Periodic Test Schedule. Control groups that may fail within that period will continue to be removed within 18 months of issue of the Removal Order.

X. MAXIMUM IN-SERVICE LIFE

No meter in this program will be in service more than 35 years. All meters still in service at 35 years will be removed from the system within 18 months.

XI. ANNUAL REPORT

WKG proposes to file an annual report with the KPSC which will include identification and test results of each control group, test results for the new meters including manufacturer's test records, evaluation and analysis of the data, and any corrective action taken. WKG will also address direct cost savings and the overall effectiveness of this program.

XII. PUBLIC SAFETY

WKG will continue testing or inspection of service regulators, relief valves, vents and curb boxes operability in accordance with the KAR regulations in effect at the time of approval of this plan or as subsequently amended. RONALD G. SHEFFER MARK R. HUTCHINSON JEFFREY R. KINNEY' GENE E. BROOKS' CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR.' REBECCA T. KASHA' PETER B. LEWIS' HOWARD E. FRASIER, JR. ' JAMES A. SIGLER JOHN A. SHEFFER EDWIN A. JONES MARC A. LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWN S. KELSEY' TINA R. MCFARLAND' A. J. MANION' DONNA M. SAUER' LIZBETH L. BAKER

<u>The Law Firm Of</u>. <u>sheffer·hutchinson·kinney</u>

115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com

May 11, 1999

RECEIVED

MAY 1 4 1999

PUBLIC SERVICE COMMISSION BRIAN F. HAARA ' SCOTT A. HOOVER WILLIAM H. MAY ' KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER ' ANNE G. DEDMAN ' MICHAEL L. MEYER ' JULIE V. OVERSTREET JENNIFER CASTELLI ' TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD

<u>OF COUNSEL</u> JOHN N. HUGHES ROBERT A. MARSHALL

ADMITTED TO IN BAR ADMITTED TO IN AND KY BAR ADMITTED TO IN AND OH BAR ADMITTED TO IN AND TN BAR ADMITTED TO IN, IL AND KY BAR ALL OTHERS ADMITTED IN KY ONLY

Kentucky Public Service Commission 720 Schenkel Lane Frankfort, Kentucky 40601

Attention: Helen Helton, Executive Director

RE: Case No. 99-059 Western Kentucky Gas Company

Dear Helen:

C:

Western Kentucky Gas Company concurs with the file memo by the Commission Staff regarding the Informal Conference on April 30 with representatives of Western Kentucky Gas Company. Western will submit a revised Gas Meter Performance Control Program by the end of the month. The Company does want to reiterate that some areas of disagreement identified at the Informal Conference will not be revised; and, the Company reserves its right to request a hearing before the Commission on those items on which we cannot reach agreement with the Staff. The Company looks forward to discussing its revisions with the Staff at a follow up Informal Conference as soon as possible following our re-submission to see if agreement can be reached.

Very truly yours,

SHEFFER HUTCHINSON KINNEY

Mark R. Hutchinson

Mr. Eddie Smith, PSC Mr. Dale Wright, PSC Mr. Bill Senter, WKG Mr. David Doggette, WKG Mr. John Willis, WKG Mr. Douglas Walther, Senior Attorney

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KENTUCKY 40602 www.psc.state.ky.us (502) 564-3940 Fax (502) 564-3460

Paul E. Patton Governor

May 3, 1999

Hon. Mark R. Hutchinson Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, Kentucky 42303

Hon. John N. Hughes 124 West Todd Street Frankfort, Kentucky 40601

> Re: Case No. 99-059 Western Kentucky Gas Company

Gentlemen:

Attached is a copy of the memorandum which is being filed into the record of the above-referenced case. If you have any comments that you would like to make regarding the contents of the informal conference memorandum, please do so within five days of receipt of this letter. Please distribute this memorandum to your client.

Should you have any questions regarding same, please contact Dale Wright of our Legal Division at (502) 564-3940, Extension 235.

Sincerely, Helen C. Helton

Executive Director

Attachment

AN EQUAL OPPORTUNITY EMPLOYER M/F/D

Ronald B. McCloud, Secretary Public Protection and Regulation Cabinet

Helen Helton Executive Director Public Service Commission

INTRA – AGENCY MEMORANDUM

KENTUCKT PUBLIC SERVICE COMMISSION

TO:	Main Case File				
	Case No. 99-059				

- THROUGH: William Bowker, Director Division of Engineering
- FROM: Faud Sharifi, Team Leader

DATE: April 30, 1999

SUBJECT: Informal Conference

On April 30, 1999 an informal conference was held at the Commission offices in the above referenced case. Attendees at the meeting were listed in the attached attendee's sheet.

Staff and Western Kentucky Gas Company "WKG" discussed WKG's response to the Commission's information order dated April 2, 1999, and other issues related to the proposed sample meter-testing plan.

By May 31, 1999 WKG will file an amended sample testing plan and may include the following information:

- 1. WKG will institute a tightened inspection to improve the performance of control groups operating within the high limits of the specified acceptable standard.
- 2. WKG will sample test the meters in year one.
- 3. WKG will clarify the random selection of sample for any control group.
- 4. WKG will confirm that the sample testing will not change the schedule for testing service regulators, relief valves, vents, and curb boxes operability.
- 5. WKG will sample test new meters.
- 6. WKG will limit meter life without testing to 35 years.
- 7. WKG will limit the group size to 10,000 meters.
- 8. WKG will clarify the method of segregating the meters into homogeneous groups.

Case NO. 199-05° IC- WKG

Denis Hildenbrand HARRY AMBURGEY Navid Noccite John Willin Bill Senku Fand Sharifi Wel Wright

PSC/Meter Standards Laboratory PSC/ENGINEERING WKG WK6 WKG PSC. Pse

RONALD G. SHEFFER MARK R. HUTCHINSON IEFFREY R. KINNEY GENE E. BROOKS CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR. 2 REBECCA T. KASHA' PETER B. LEWIS² HOWARD E. FRASIER, JR. JAMES A. SIGLER JOHN A. SHEFFER EDWIN A. JONES MARC A. LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWN S. KELSEY ² TINA R. McFARLAND ² A. J. MANION ' DONNA M. SAUER LIZBETH L. BAKER

•The Law Firm Of• <u>sheffer·hutchinson·kinney</u>

> 115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com

> > RECEVED

APR 1 9 1999

PUELIC SERVICE COMMISSION BRIAN F. HAARA ' SCOTT A. HOOVER WILLIAM H. MAY' KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER ' ANNE G. DEDMAN ' MICHAEL L. MEYER ' JULIE V. OVERSTREET JENNIFER CASTELLI ' TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD

<u>OF COUNSEL</u> JOHN N. HUGHES ROBERT A. MARSHALL

' ADMITTED TO IN BAR ' ADMITTED TO IN AND KY BAR ' ADMITTED TO IN AND OH BAR ' ADMITTED TO KY AND TN BAR ' ADMITTED TO IN, II. AND KY BAR ALL OTHERS ADMITTED IN KY ONLY

April 16, 1999

FEDERAL EXPRESS

Ms. Helen Helton Executive Director Public Service Commission P.O. Box 615 730 Schenkel Lane Frankfort, Kentucky 40602

> RE: Response of Western Kentucky Gas Company Case No. 99-059

Dear Helen:

Please file the original and ten (10) copies, of the enclosed Response of Western Kentucky Gas Company to the Commission's order of April 2, 1999.

If there are any problems or questions with the enclosed, please do not hesitate to call me.

Very truly yours,

SHEFFER-HUTCHINSON-KINNEY

Mark R. Hutchinson

MRH:bkk

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

)

)

)

DECEIVED

APR 1 9 1999

In the Matter of :

The Application of Western Kentucky Gas Company, a division of Atmos Energy Corporation, for Approval of a Statistical Sample Meter Test Plan for Positive Displacement Meters Pursuant to 807 KAR 5:022, Section 8 (5)(c) PUBLIC SERVICE COMMISSION

Case No. 99 - 059

RESPONSE OF WESTERN KENTUCKY GAS COMPANY TO THE COMMISSION'S INFORMATION REQUEST DATED APRIL 2, 1999

NOW COMES, Western Kentucky Gas Company ("WKG") in the abovereferenced matter pertaining to WKG's proposed Gas Meter Performance Control Program and offers the following responses to the information request issued by the Commission on April 2, 1999:

1. Explain how the statistical sampling test plan will improve WKG's meter quality and meter maintenance program.

Response

The Gas Meter Performance Control Program is designed to improve meter quality by providing the same if not higher level of quality in the measurement of gas delivered to our customers while reducing metering cost. A high level of accuracy will be achieved by applying modern sampling and statistical techniques in the evaluation of gas meter performance. The primary goal of the program is the early detection and removal of groups of like meters not meeting prescribed performance standards as defined by the Commission. In accomplishing this goal, WKG expects to create an in-service environment that will produce a high level of metering accuracy while prolonging gas meter service life. To that end, WKG will achieve significant savings by reducing unnecessary testing and unnecessary removal of high quality, better performing meters, and allowing us to place appropriate attention to lesser performing meters requiring changeout and/or maintenance.

The primary benefits of the program are long-term metering accuracy and lower operational costs. This equates to an improvement in the quality of our meter program.

Witness: John Willis

2. Provide statistical records and bar graphs for meter testing for the past 20 years.

Response

See attached Schedule A with 20 year bar graphs and data. Also, the meter test results have been provided to the commission quarterly for the past twenty years.

Witness: John Willis

3. Refer to Attachment 1 of WKG's filing. Provide the following:

a. Why do the residential class meters become eligible for sample testing in year 10 and not the first year in service.

Response

Historic data for WKG's meter population has indicated that a failure prior to ten years has seldom occurred. The stringent quality requirements for the meter manufacturers set by the PSC have helped ensure exceptional quality during first part of the meter's life.

Witness: John Willis

b. How does WKG define a random selection of a sample? Will the inclusion of meters removed from service for other reasons than sample testing contradict the random selection of a sample?

Response

The entire meter population records are placed in a Microsoft Access database. A query is then run against the records assigning a random number to every record. The randomizing feature in Microsoft is a random number generator. The meters in each control group are then sorted in ascending random number order. Meters are then selected from the top until the sample requirements are met. Each year this process is repeated. ANSI Z1.4 does not imply that the inclusion of meters removed from service for other reasons will impact the randomness of the program.

c. How is a group subjected to tightened inspection?

Response

ANSI Z1.4 Section 11.6 is very specific how the testing is conducted. Previously, MIL STD 105D did not address this area and therefore it has been a variable of statistical sampling plans. WKG will follow the requirements of ANSI Z1.4, General Inspection Level II, single sampling and an AQL of 6.5.

Witness: John Willis

d. What are the obsolete meters? Provide number, type, years of service and any data available for these meters.

Response

Please refer to the attached Schedule B which includes the requested information for all meters that will not be considered for sampling.

Witness: John Willis

e. Under what conditions would WKG propose to go back to periodic testing? Explain in detail.

Response

Our industry is constantly being bombarded with change. The full impact of unbundling, changes in the meter manufacturing industry and emerging technologies could potentially cause any conditions which make reestablishing periodic testing necessary.

Witness: John Willis

4. Why was 40 years maximum life in service proposed by WKG's plan?

Response

As the program moves forward through the years, the number of groups will increase and the quantity of meters in the mature groups will be greatly reduced. The management of the control groups will eventually become a burden for the small number of meters still in service. WKG believes that the active meters after 40 years can be removed without greatly impacting the total number tested each year.

5. Refer to Attachment 2. What is the anticipated largest group size and its sample size for residential, commercial and industrial meters?

Response

Statistical sampling is not class of service dependent. The largest group submitted is 27,534 and its associated sample size is 315, which is fully dependent upon the statistical sampling requirement. It is anticipated that as the program continues more groups will be added to the list. Only a reduction in size of the groups is expected.

Witness: John Willis

6. Using WKG's current meter database, provide the following:

a. Number and size of control groups. Is there a limit for the size of the control groups?

Response

Please refer to Attachment 2 in WKG's filing. The size is determined by the criteria.

Witness: John Willis

b. Criteria for segregating the meters into homogeneous control groups. Will the year placed in service be considered one of the criteria?

Response Yes. Please refer to Attachment 1, III. Creation of Meter Control Groups.

Witness: John Willis

c. Criteria for combining control groups.

Response There is no anticipated combining of groups.

Witness: John Willis

d. Criteria for subdividing a control group.

Response

Subdivision of a group will be determined on each specific case. The criteria will be targeted to identifying poor performers in the group.

7. Provide WKG's shipping procedure to assure that the meters tested by the manufacturer or WKG's meter shop conform to the limits set forth in the test facility.

Response

WKG has instituted a procedure ensuring that the accuracy of meters is the same upon arrival at their destination as they were when they left the meter shop. There are two meters used in verifying the accuracy of transit meters. One is an American AC250 and the other is an Equimeter R-200. These meters have the tops painted red, so no one will be confused as to the purpose of these meters. They are tested and routinely loaded on the meter truck and shipped to all points of delivery. After which they are returned to the provers for testing to determine if there was a shift in proof while in transit.

Witness: John Willis

8. How does WKG propose to improve the performance of a control group which has a test record within the high limit of the specified acceptable standard?

Response

If a control group is within acceptable standards, no action is required.

Witness: John Willis

9. What corrective action will be taken for a group under reduced inspection when the group is rejected? Will it be removed or re-inspected under normal inspection?

Response

ANSI Z1.4 Section 10 is very specific how the corrective action is conducted. Previously, MIL STD 105D did not address this area and therefore it has been a variable of statistical sampling plans. WKG will follow the requirements of ANSI Z1.4, General Inspection Level II, single sampling and an AQL of 6.5.

Witness: John Willis

10. Will WKG continue its safety inspections on customers' service lines as it currently does if the sample testing plan is implemented? Explain.

Response

Yes. WKG will continue to make systematic inspections of its system to ensure that the Commission's safety requirements are being met.

11. How often will WKG test the customer's piping for leaks under the proposed plan?

Response

WKG will test the customer's piping for leaks whenever service is initiated or reestablished.

Witness: John Willis

12. Document the frequency with which WKG's personnel find safety problems when inspecting a customer's premises during meter changes.

Response

WKG needs more time to provide a response to this request. A response will be provided as soon as possible but no later than April 30, the date scheduled for an Informal Conference on this matter.

Witness: John Willis

13. Refer to 807 KAR 5:006, Section 25(5)(C). Will the proposed plan change the interval for curb box and curb valve inspections?

Response

No. The curb box and curb valve inspection program is currently independent of and will continue to be independent of the meter changeout program.

Witness: John Willis

14. Will the proposed plan change the test interval for individual residential customer service regulators, vents and relief valves?

Response

Yes. The test interval will change to coincide with the frequency of meter changeouts.

Witness: John Willis

15. In the proposed plan, how many times in a 5-year period would WKG employees be on a customer's premises (excluding meter reading)?

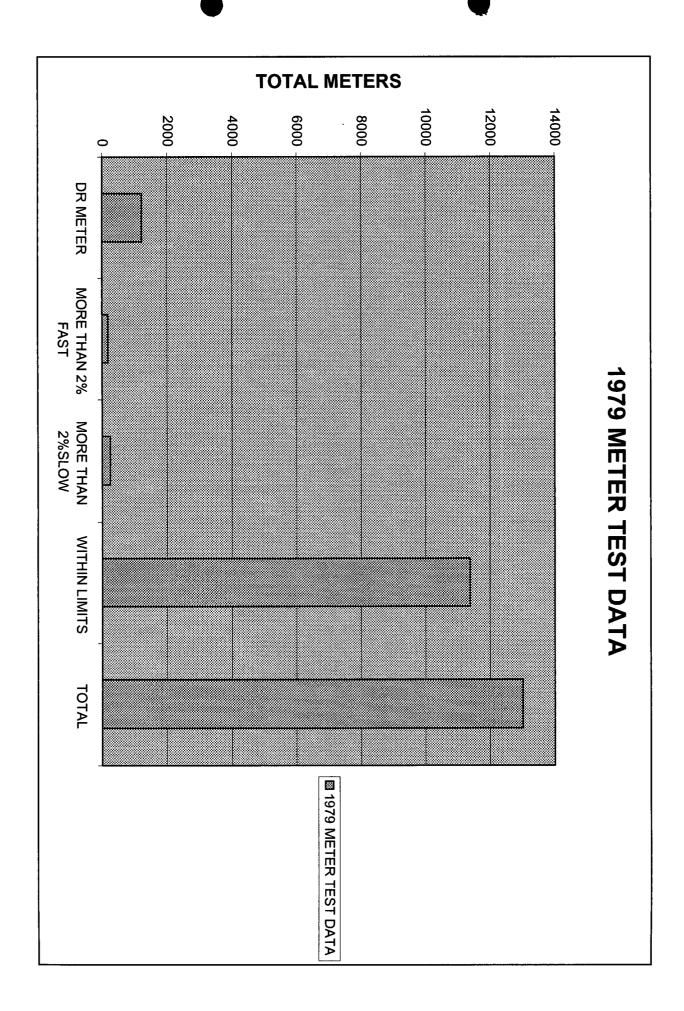
Response

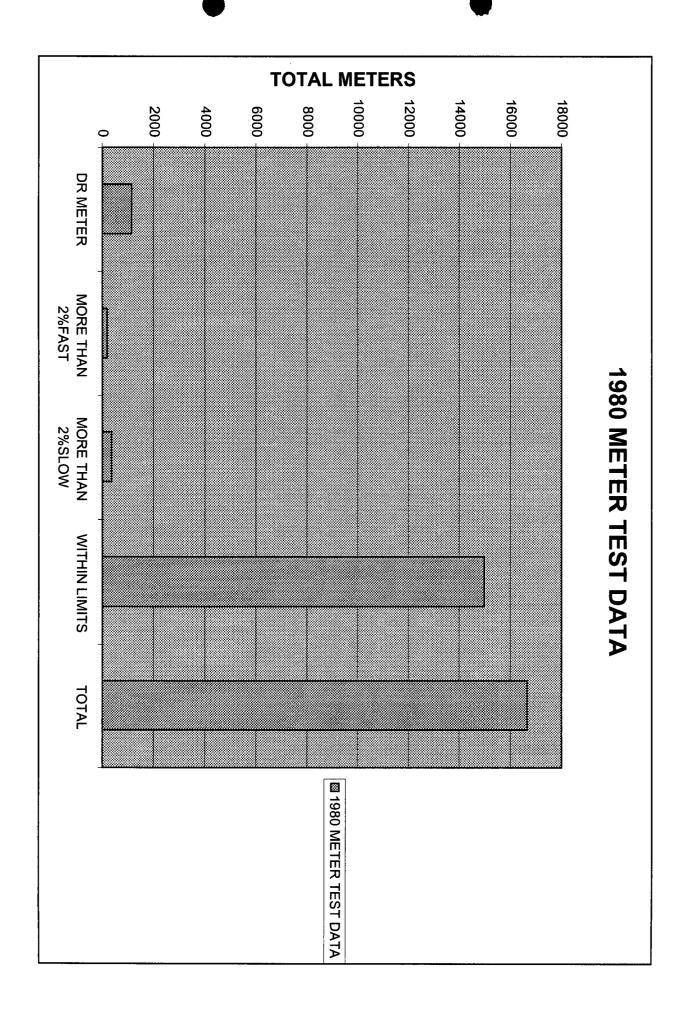
A WKG employee will be on a customer's premises at least once in a five year period to conduct a leak survey.

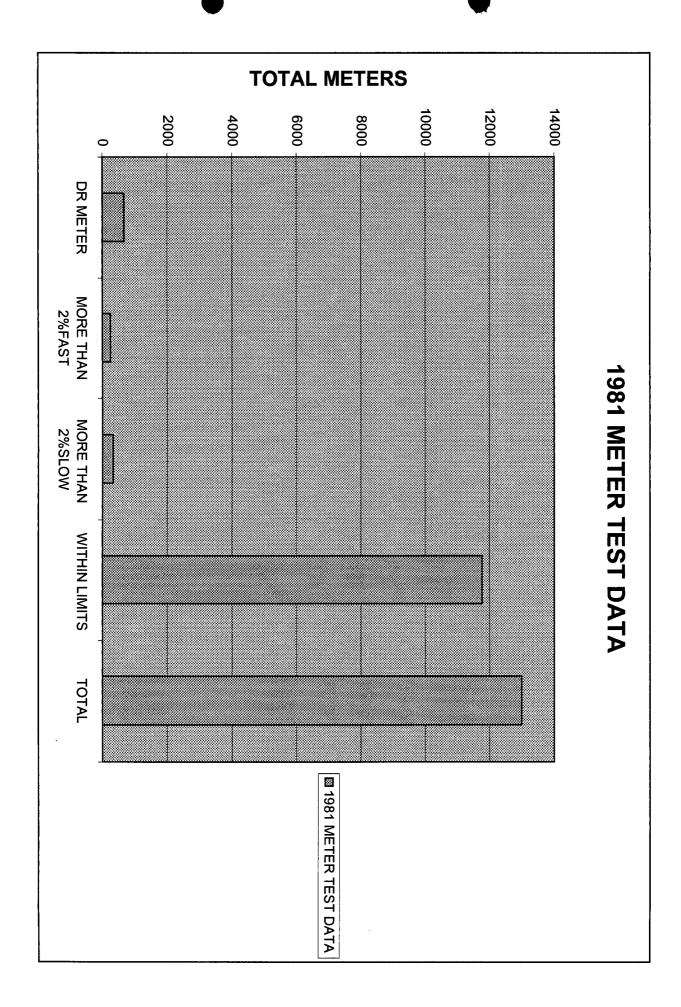
CERTIFICATE OF SERVICE

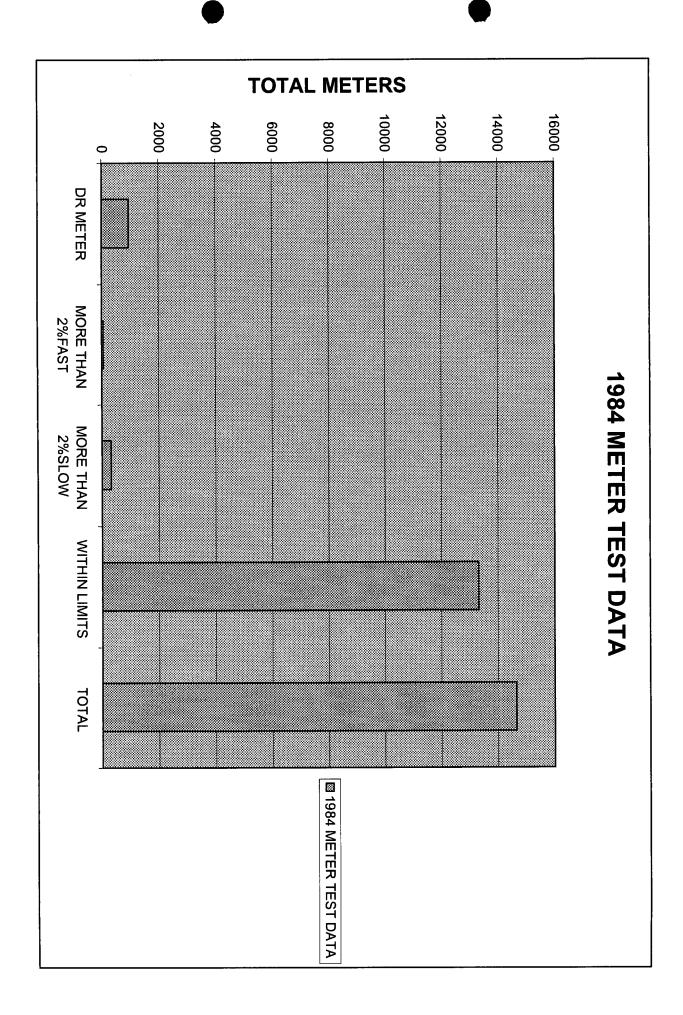
This is to certify that an original, plus ten (10) copies, of Western Kentucky Gas Company's Response was this day forwarded to the Kentucky Public Service Commission, 730 Schenkel Road, Frankfort, Kentucky 40601, by Federal Express, on this the <u>/6</u> day of April, 1999.

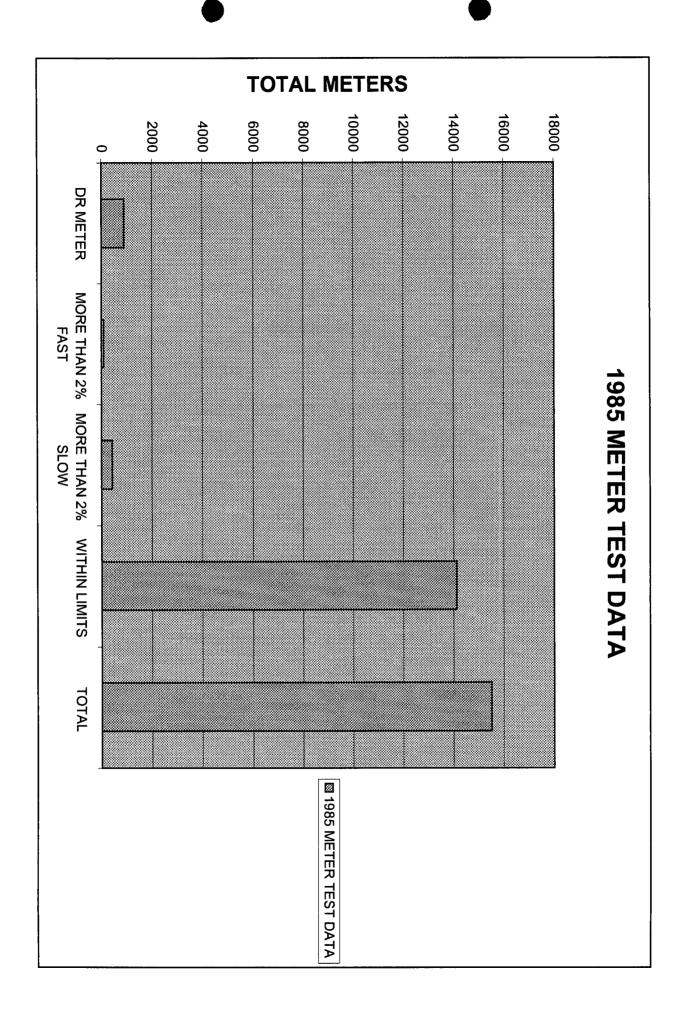
SCHEDULE A

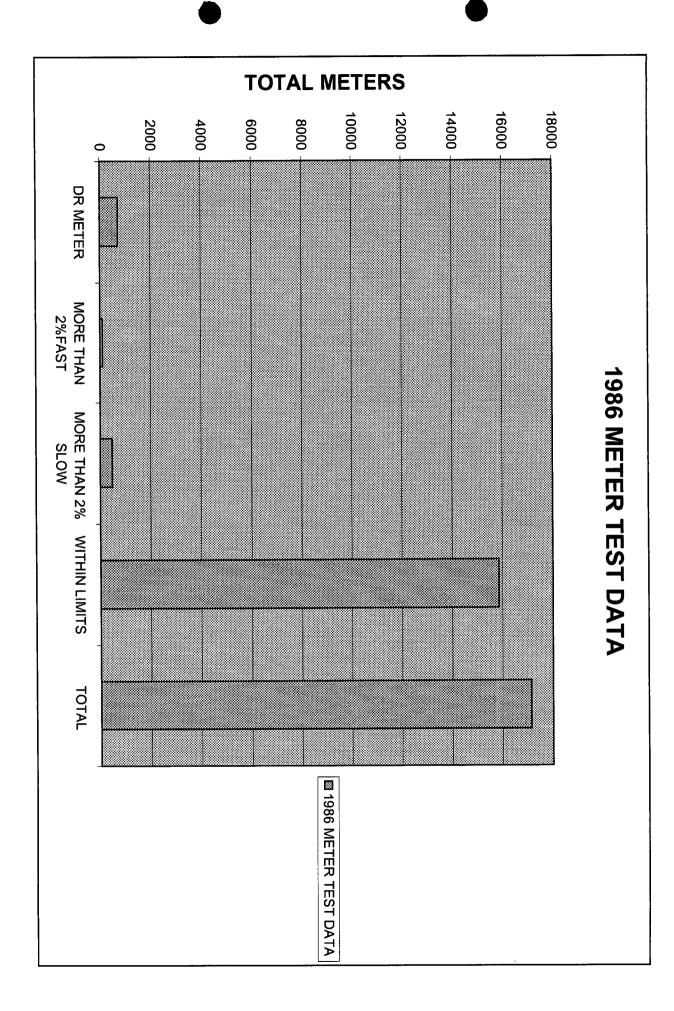

- Records: 20 Years Data for Domestic Meters for WKG
 - Bar Graphs

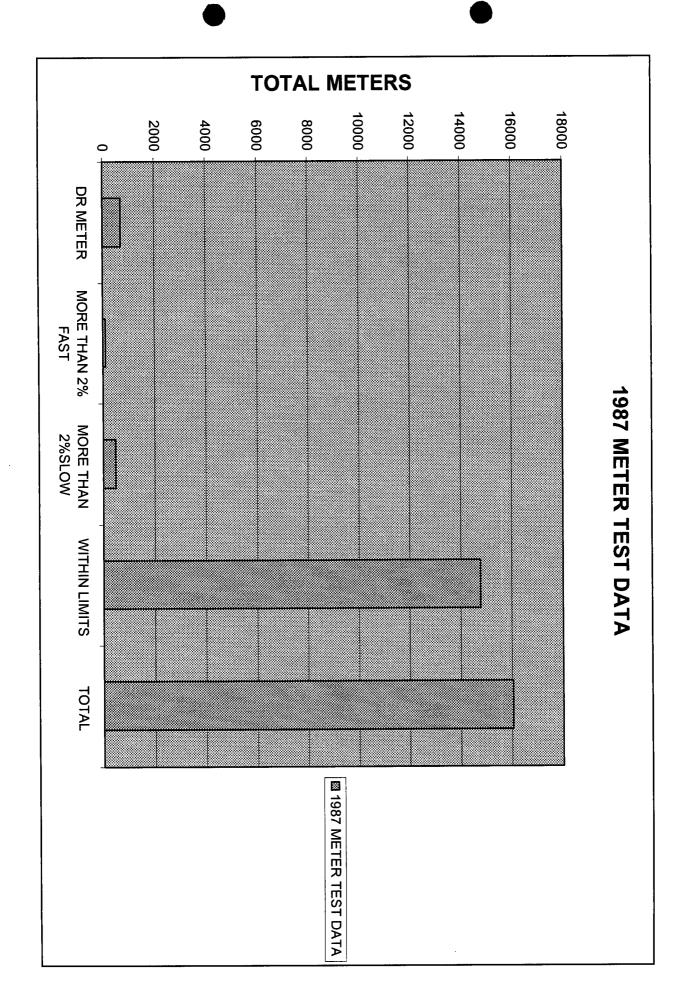

,

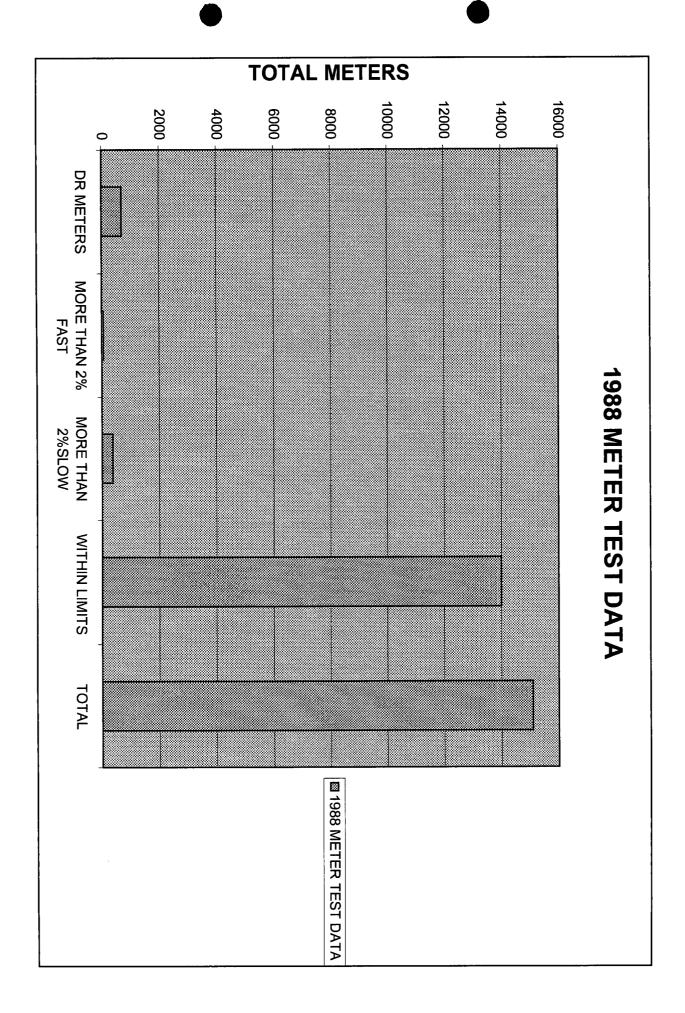

20 YEARS DATA FOR DOMESTIC METERS FOR WKG

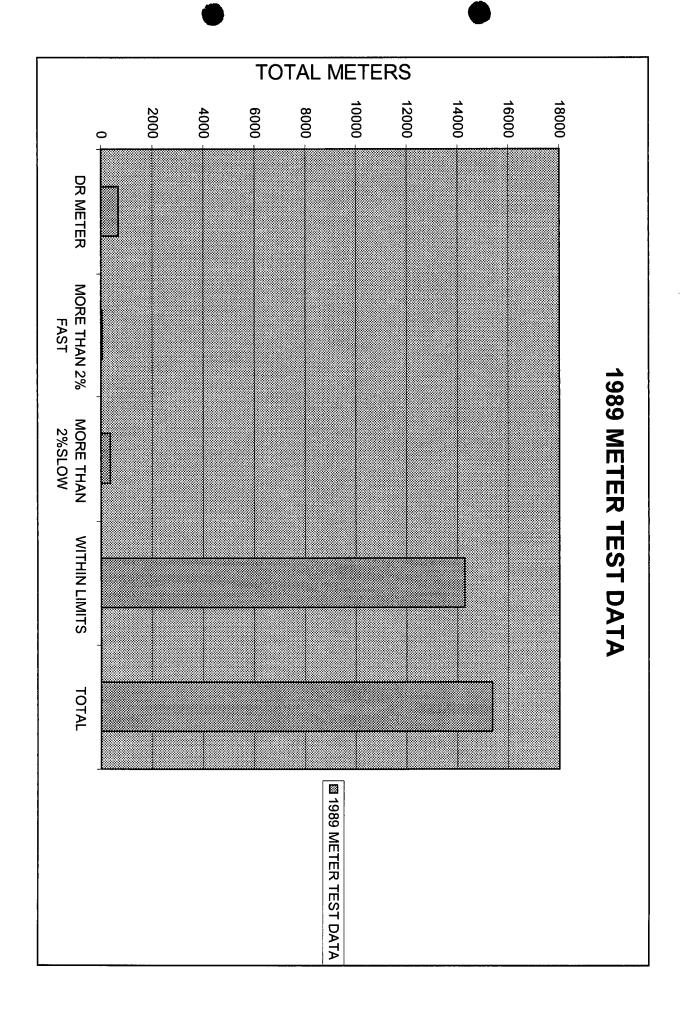

	DR	MORE THAN	MORE THAN	WITHIN		
DATE	METERS	2% FAST	2% SLOW		TOTAL	% Failure
1998	435	32	158	12423	13048	1.51%
1997	831	32	192	15093	16148	1.46%
1996	707	51	419	15937	17114	2.86%
1995	629	23	478	15614	16744	3.11%
1994	689	43	476	16094	17302	3.12%
1993	500	45	315	13731	14591	2.55%
1992	639	22	336	14127	15124	2.47%
1991	780	12	437	15693	16922	2.78%
1990	795	33	380	13774	14982	2.91%
1989	677	51	365	14276	15369	2.83%
1988	691	51	365	13986	15093	2.89%
1987	698	98	480	14761	16037	3.77%
1986	710	102	467	15850	17129	3.47%
1985	886	85	422	14114	15507	3.47%
1984	954	58	318	13313	14643	2.75%
1983	*					
1982	•					
1981	660	247	323	11760	12990	4.62%
1980	1141	187	357	14975	16660	3.51%
1979	1215	177	243	11376	13011	3.56%

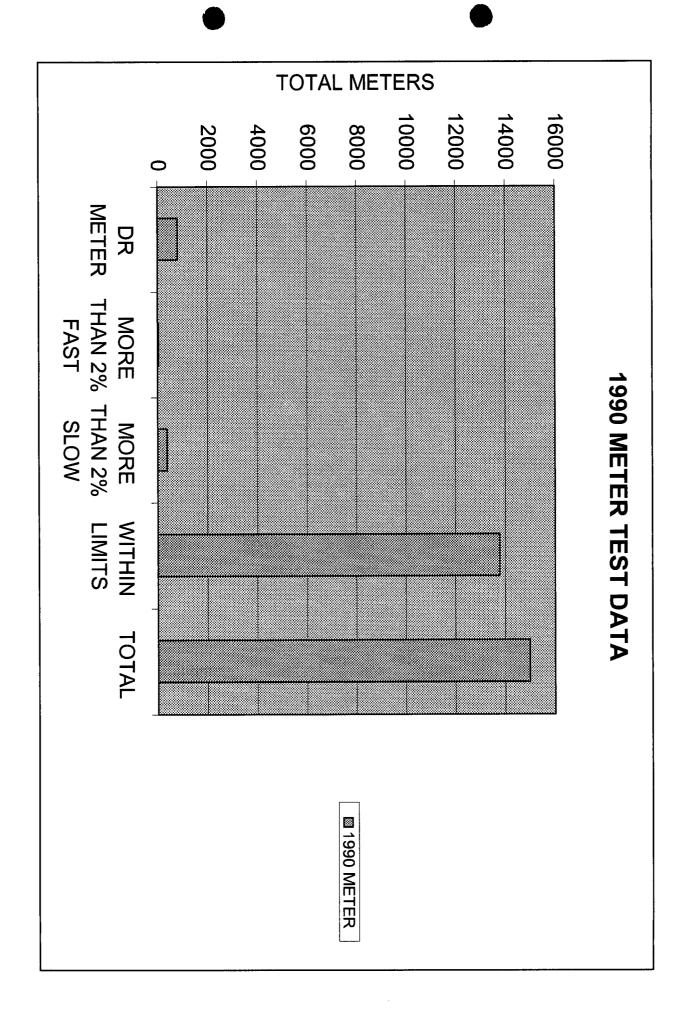

* INSUFFICIENT DATA FOR THE YEAR.

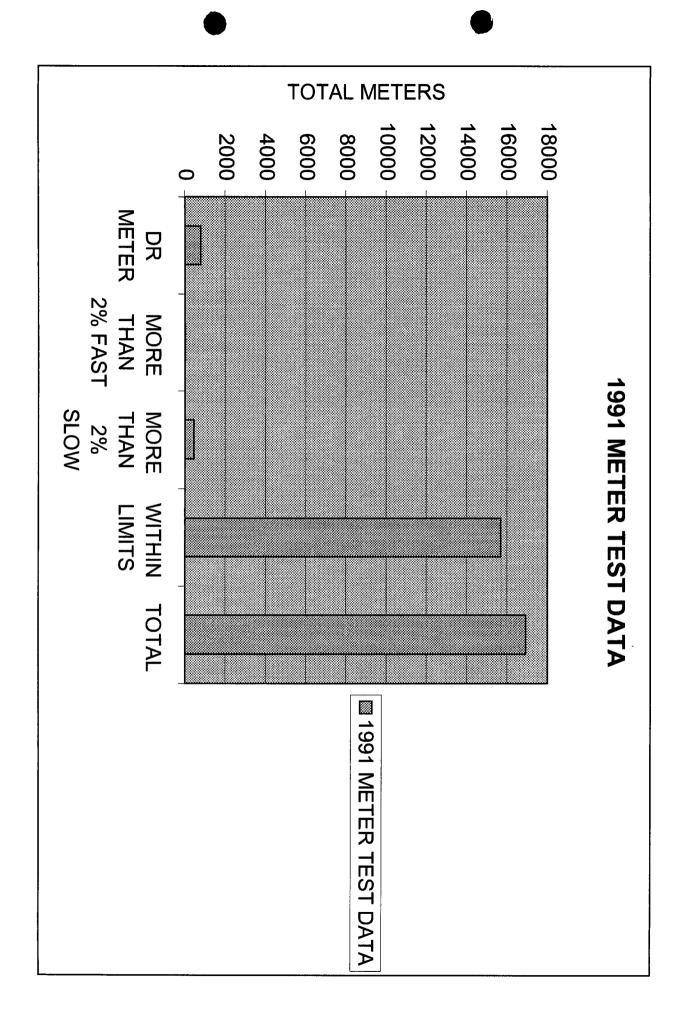


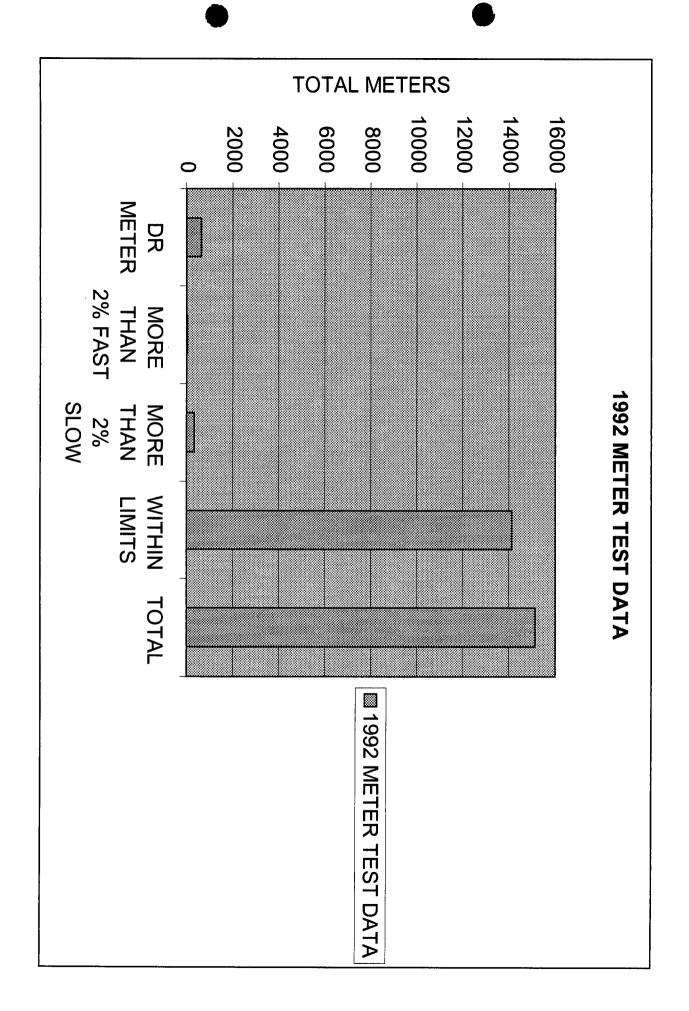


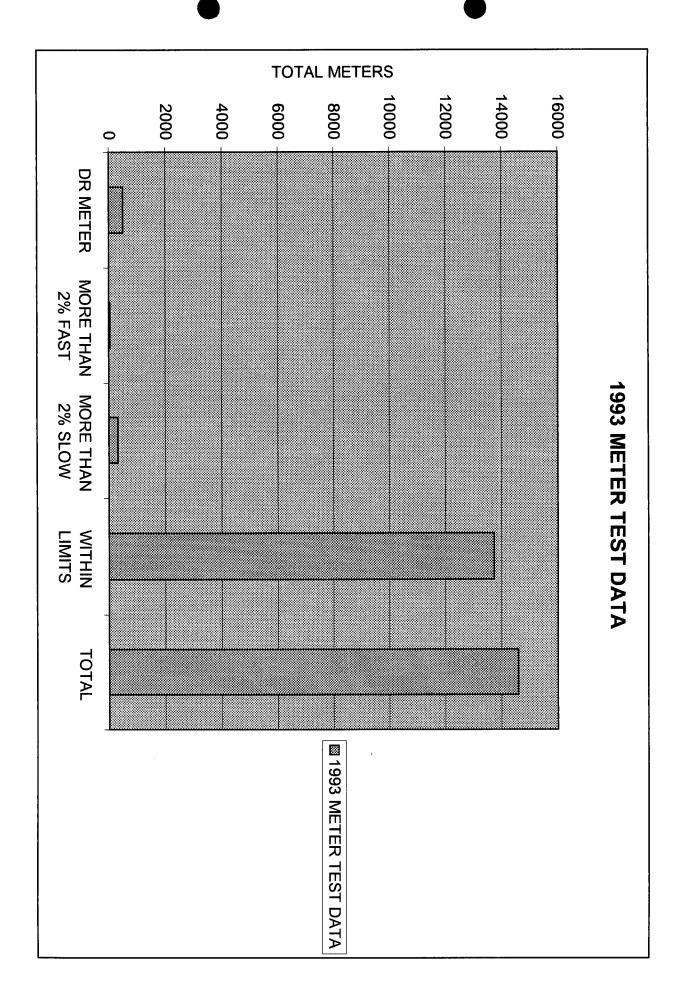


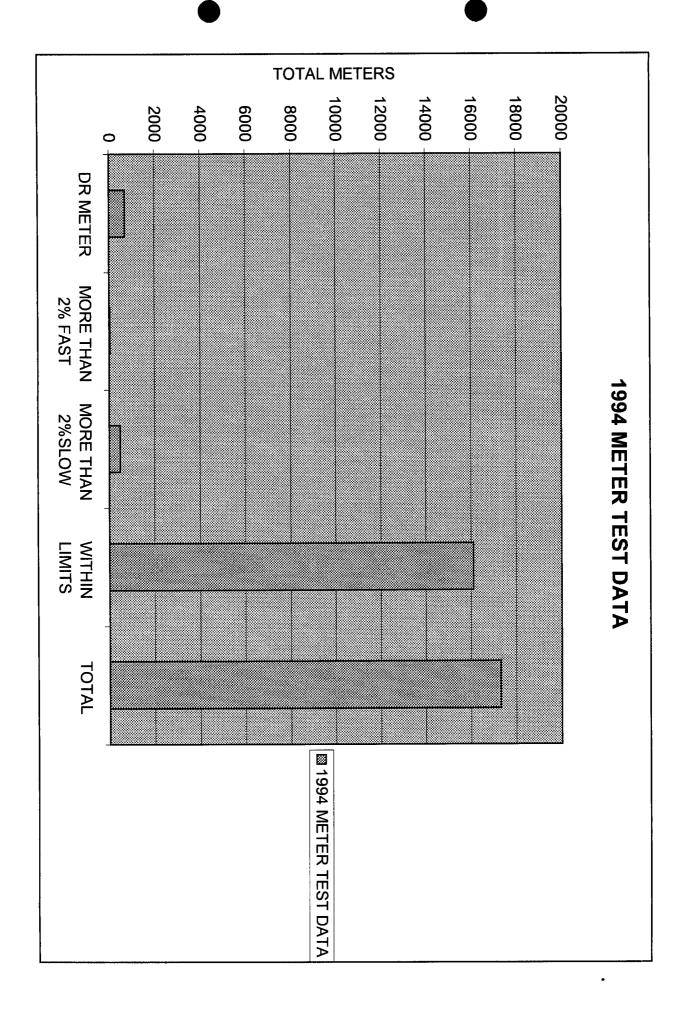


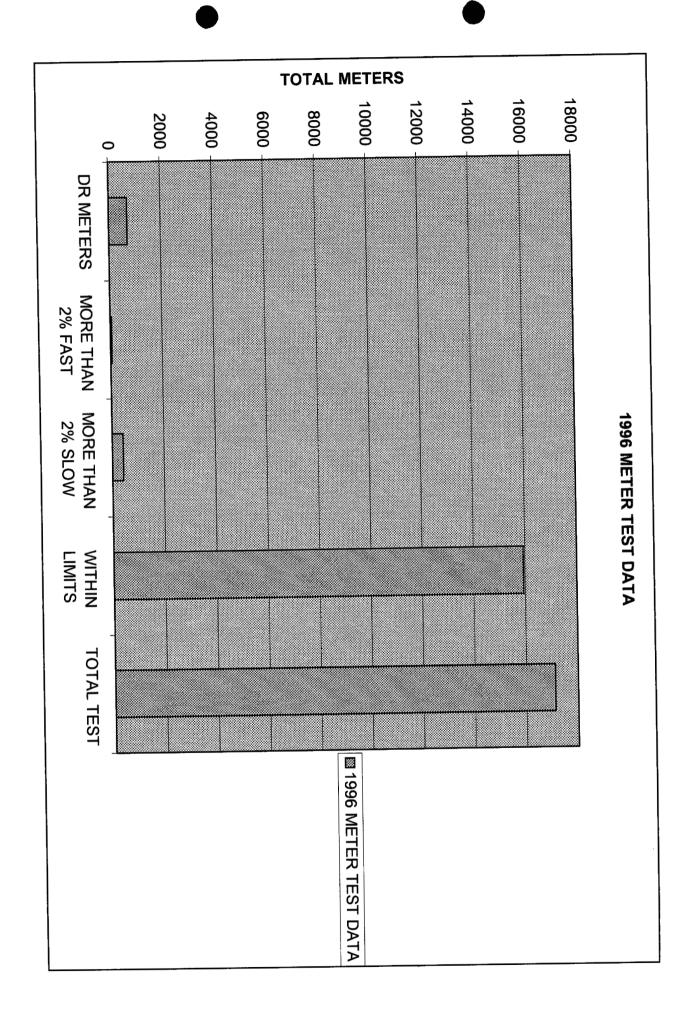


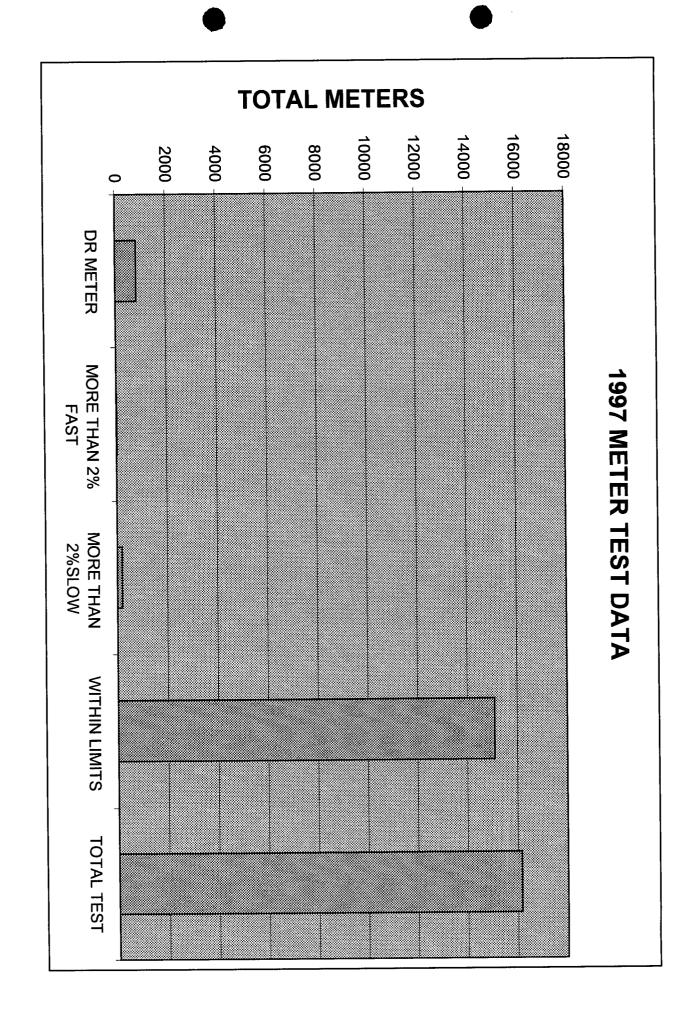


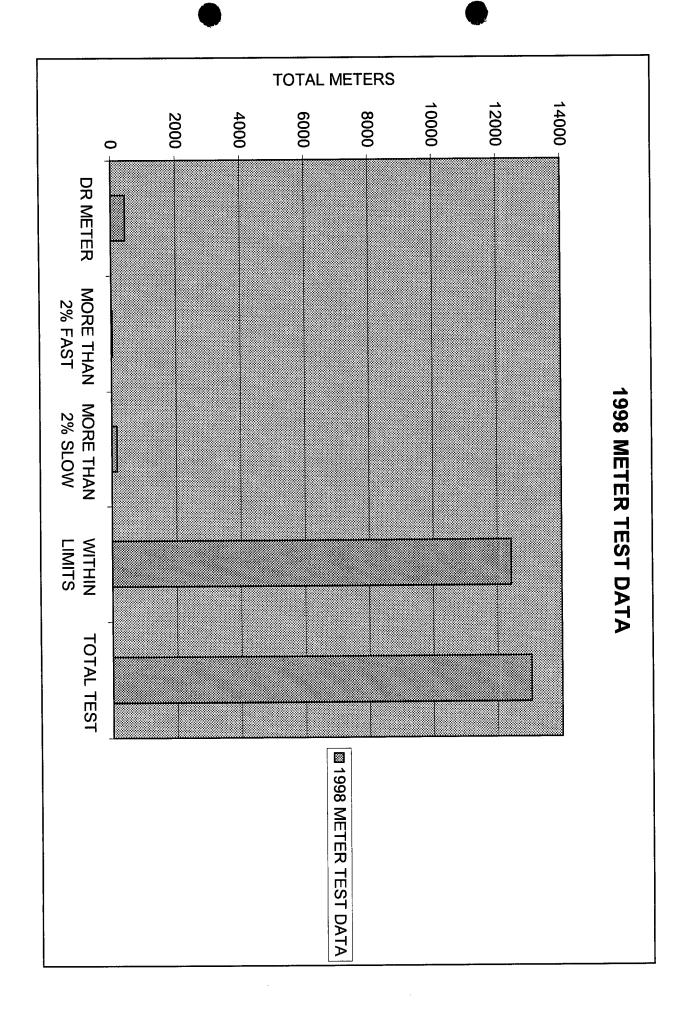












SCHEDULE B

• Obsoletes

ć

Size Code	Brand	Model	Meter Number	Account Number	Purchase Date	Last Tes
010	American	5-B	2725448	592016003401	58	1288
010	American	5-B	4069281	593008028400	53	1288
010	American	5-B	3687988	560018084502	51	1088
010	American	5-B	4352360	551020034300	55	1188
010	American	5-B	4200123	551020034100	54	1188
010	American	5-B	4111947	560010060500	54	1088
010	American	5-B	3687987	553007016101	61	1188
010	American	5-B	4348494	537009020700	65	1188
010	American	5-B	3826199	560006036100	52	1088
010	American	5-B	3826028	592012029203	52	1288
010	American	5-B	3569244	500007352900	51	0391
010	American	5-B	4348359	592012035500	55	1188
010	American	5-B	4144600	550003014100	60	1188
010	American	5-B	3874909	592016006100	52	1288
010	American	5-B	2508976	592012033200	49	1188
010	American	5-B	2737213	592019004400	50	1288
010	American	5-B	2143599	555005002001	47	0889
010	American	5-B	3684232	592010016300	51	1188
010	American	5-B	3826279	592013004500	52	1288
010	American	5-B	4294669	592018011200	54	1188
010	American	5-B 5-B	3688024	593009011900	51	1288
010	American	5-B	2421620	593007048800	48	1288
010	American	5-B	2939603	550004006100	50	0289
010	American	5-B	2283058	592015011400	48	1188
010	American	5-B	2421813	550107026700	48	1188
010	American	5-В 5-В	3684193	550015007700	51	0289
010	American	5-B	4126199	550010043003	54	1188
010	American	5-B	4294704	550111015300	54	1188
010	American	5-В 5-В	4069470	550005090600	63	1188
010	American	<u>5-В</u>	3983627	550004017900	53	1188
010	American	5-B	2170268	550002044100	46	1188
010	American	5-B	4065537	551020002700	61	1188
	\$	<u>5-В</u>		550020039300	51	1188
010 010	American	<u>5-В</u>	3681463 3826165	560014053600	56	1088
010	}	5-В 5-В	3826266	560007012800	50	1088
***********************	American	&		550011002600	55	1188
010	American	5-B	4348461	593009026400	49	1288
010	American	5-B	2508242 4139408	550119003202	49 54	1188
010	American	5-B	.}	550003008605	54 50	1188
010 010	American	5-B	2906344	550014000504	50 54	1188
***********************************	American	5-B	4144695	}	47	1188
010	American	5-B	2179208	550005086200	**************************************	1188
010	American	5-B	2421848	550115044800	48	
010	American	5-B	3927045	550119045000	53 51	1188
010	American	5-B	3684639	550119044900	51	1188
010	American	5-B	4111927	550111016600	54	1188
010	American	5-B	2508919	595016022408	49	1188
010	American	5-B	2283055	595016022500	61	1188
010	American	5-B	4200250	550021030001	44	1188

010	American	5-B	3761942	537003019900	52	1288
010	American	5-B	2170334	593009017702	47	1188
010	American	5-B	3688266	537007009901	51	1188
010	American	5-B	2517687	537008015600	66	1188
010	American	5-B	4296439	537012024603	55	1188
010	American	5-B	3684703	537019053200	51	1188
010	American	5-B	2357145	537003037700	47	1188
010	American	5-B	4335409	537015032400	55	1188
010	American	5-B	2191818	537003014204	47	1188
010	American	5-B	4335417	504016035600	55	1288
010	American	5-B	3762166	560006067506	52	1088
010	American	5-B	4200285	537021055500	54	1188
010	American	5-B	3927205	560014045800	52	1088
010	American	5-B	4369121	560015028001	55	1088
010	American	5-B	4200091	560013003900	54	1088
010	American	5-B	4348543	560015027900	55	1088
010	American	5-B	4369140	560006067601	55	1088
010	American	5-B	4104393	560002080400	53	1088
010	American	5-B	3578616	560007001301	51	1088
010	American	5-B	3776629	560006020803	52	1088
010	American	5-B	3762123	531015003000	52	0289
010	American	5-B	3826327	531015014300	52	0289
010	American	5-B	4369133	560002080600	55	1088
010	American	5-B	3684663	537019025000	51	1188
010	American	5-B	3870670	592106020500	52	1088
010	American	5-B	3826335	593009017600	52	1188
010	American	5-B	2906274	593007011100	50	1188
010	American	5-B	3605098	593007005700	51	1288
010	American	5-B	3783890	592012020900	52	1288
010	American	5-B	3856720	592015032600	52	1288
010	American	5-B	3569198	592013000201	62	1288
010	American	5-B	4111939	592013043701	54	1188
010	American	5-B	4348397	592013041300	55	1288
010	American	5-B	3783156	592013016301	52	1188
010	American	5-B	3776629	560006020802	52	1088
010	American	5-B	2224485	566008025000	67	1188
010	American	5-B	4069206	550009024205	53	1188
010	American	5-B	4204789	592016023600	54	1288
010	American	5-B	2509040	592012001162	49	1288
010	American	5-B	3825825	560004072203	52	1088
010	American	5-B	4204732	560018111202	54	1088
010	American	5-B	3761985	592016024500	51	1288
010	American	5-B	3533519	592106018100	65	1288
010	American	5-B	4065479	592012005202	53	1188
010	American	5-B	2272831	592016031100	48	1188
010	American	5-B	4294638	592106021100	54	1188
010	American	5-B	4294647	560016026900	54	1088
010	American	5-B	2224485	566008025000	67	1188
010	American	5-B	3569190	550116012902	48	0289

010	American	5-B	3926673	500008219300	53	1288
010	American	5-B	3826035	560019020604	56	1088
010	American	5-B	3826612	560007010303	52	1088
010	American	5-B	3972574	560016017601	52	1088
010	American	5-B	4240927	500008210900	54	1288
010	American	5-B	4023557	550006022400	53	1188
010	American	5-B	2143597	500009308200	47	1288
010	American	5-B	3684655	550010012403	51	0289
010	American	5-B	4065525	560016046000	71	1088
010	American	5-B	2344601	550119057703	48	0289
010	American	5-B	4111914	515021038100	51	0289
010	American	5-B	4189812	550016026406	47	0289
010	American	5-B	3926645	550008010204	53	0289
010	American	5-B	3687962	550114011500	51	0289
010	American	5-B	4200566	550114002209	46	0289
010	American	5-B	4407248	550013084450	55	0289
010	American	5-B	3684642	550007079100	51	0289
010	American	5-B	4000969	550007062000	53	0289
010	American	5-B	4294699	519017001602	56	0989
010	American	5-B	2143597	500009308200	47	1288
010	American	5-B	4001011	565004024700	53	1188
010	American	5-B	4348492	537012021300	55	1188
010	American	5-B	1917040	500019539007	42	1188
010	American	5-B	4294671	537001040300	55	1188
010	American	5-B	4348492	537012021301	55	1188
010	American	5-B	3896525	565003001500	55	1188
010	American	5-B	4348368	565002000200	53	1188
010	American	5-B	3874886	565001023501	48	1188
010	American	5-B	4104409	565005029801	54	1188
010	American	5-B	4200562	560010049803	54	1088
010	American	5-B 5-B	4348485	565014006300	53	1188
010	American	5-B	3688198	500003265800	51	1288
010	American	5-B	2421920	565002018200	58	1188
010		5-B	0450007	565013046700	57	1188
010	American American	5-B 5-B	2159927 2159927	565013046700	57	1188
010	American	5-B	4200606	537007034000	55	1188
010	American	5-B	4204736	560018083101	54	1088
010		5-B	3896615	560010000101	52	1000
	American			560018012000	55	1088
010	American	5-B 5-B	4348393 3605077	560017052800	51	1088
010 010	American		3927198	565013008900	52	1188
010	American	5-B	4431350	596106020602	55	1188
	American	5-B	3927242	550015005100	53	0289
010	American	5-B		55007061806	68	0289
010	American	5-B	4164553		****	0289
010	American	5-B	4348525	550119036100	55	0289
010	American	5-B	4348499	550006048000	55	
010	American	5-B	4369303	550007080200	55	0289
010	American	5-B	4348365	550007056905	55	0289
010	American	5-B	1778590	562017028103	69	0389

010	American	5 -B	4431399	596001027400	55	1188
010	American	5-B	2950293	507014032301	50	1188
010	American	5-B	3688154	596106022401	51	1188
010	American	5-B	3856783	550005065301	52	0289
010	American	5-B	4369130	596001005800	71	1188
010	American	5-B	3826568	596005001950	52	1188
010	American	5-B	3972252	596002005200	53	1188
010	American	5 -B	4294666	596004016300	54	1188
010	American	5-B	4204449	596004016200	54	1188
010	American	5-B	3927134	596007024701	53	1188
010	American	5-B	3776415	596003013903	52	1188
010	American	5-B	2272795	596003009400	52	1188
010	American	5-B	3926971	596005028800	53	1188
010	American	5-B	4348336	550115004900	55	0289
010	American	5-B	4065521	500018407000	53	1288
010	American	5-B	3926900	550015004000	53	0289
010	American	5-B	3870594	500019539103	52	1188
010	American	5-B	2421639	500008219100	48	1288
010	American	5-B	3927091	550104001300	53	0289
010	American	5-B	4126224	550012052100	54	0289
010	American	5-B	3856514	550119016200	52	0289
010	American	5-B	3926980	550007061900	53	0289
010	American	5-B	2873817	550006050600	55	0289
010	American	5-B	3926729	500003245300	53	1288
010	American	5-B	4296435	550007079300	54	0289
010	American	5-B	3569185	550002012601	48	0289
010	American	5-B	4070030	550114037601	53	0289
066	Rockwell	R-800	0019497	562017007100	70	1094
066	Rockwell	R-801	0037773	585019024600	57	1094
066	Rockwell	R-802	0010409	562017006500	57	1094
066	Rockwell	R-803	0011677	530012010202	57	0694
066	Rockwell	R-804	0009937	560004012300	57	1094
066	Rockwell	R-805	0021633	537070000103	57	1094
066	Rockwell	R-806	0011512	501006147851	57	1094
066	Rockwell	R-807	0011512	501006147851	57	1094
066	Rockwell	R-808	0010817	562008025600	57	1094
066	Rockwell	R-809	0011682	560121005290	57	1094
066	Rockwell	R-810	0011510	550010047702	57	1094
066	Rockwell	R-811	0011510	550010047701	57	1094
066	Rockwell	R-812	0008894	500018540900	57	1094
066	Rockwell	R-813	0009939	500011130700	57	1094
066	Rockwell	R-814	0010816	500018440500	57	1094
066	Rockwell	R-815	0015516	500012088200	70	1094
066	Rockwell	R-816	0011690	500003147950	55	1094
066	Rockwell	R-817	0011513	500018411500	55	1094
066	Rockwell	R-818	0023979	564011005050	65	1096
066	Rockwell	R-819	0011673	560121037400	57	1094
066	Rockwell	R-820	0035332	500018442900	74	1094
066	Rockwell	R-821	0011516	590012029600	55	0895

066	Rockwell	R-822	0077808	555007026700	65	1096
066	Rockwell	R-823	0017322	555004024890	69	1096
066	Rockwell	R-824	0011678	560006023201	57	1094
066	Rockwell	R-825	0010821	500010395603	57	1094
066	Rockwell	R-826	0011518	560006052800	57	1094
066	Rockwell	R-827	0011679	587002005200	57	1094
066	Rockwell	R-828	0010408	500015172050	57	0294
066	Rockwell	R-829	0010831	500017203100	57	1094
075	Sprague	S-175	2203143	537010019807	73	0598
075	Sprague	S-176	2202708	537019013101	73	0496
075	Sprague	S-177	2202872	537007044604	73	0496
075	Sprague	S-178	1597847	537017024800	69	0496
075	Sprague	S-179	2089428	537003001806	72	0496
075	Sprague	S-180	2202823	537005008202	73	0496
075	Sprague	S-181	1939864	537106006000	71	0991
075	Sprague	S-182	1939695	537017010600	71	0190
075	Sprague	S-183	1597691	537021046200	69	0190
075	Sprague	S-184	1778991	537016001203	70	0190
075	Sprague	S-185	1597679	537019099110	69	0190
075	Sprague	S-186	1597725	537012024652	69	0190
075	Sprague	S-187	1597725	537012024653	69	0190
075	Sprague	S-188	1939792	537017006357	71	0991
075	Sprague	S-189	1939751	537017040200	71	0991
075	Sprague	S-190	1939554	537019047901	71	0991
075	Sprague	S-191	1597672	537004019700	69	0190
075	Sprague	S-192	1939742	537001048000	71	1091
075	Sprague	S-193	1597848	537017070500	69	0190
075	Sprague	S-194	1939663	537015019102	71	0991
075	Sprague	S-195	1939840	537010050124	71	0991
075	Sprague	S-196	1939788	537019056400	71	0991
075	Sprague	S-197	1939921	537009005790	71	0991
075	Sprague	S-198	1939827	537017064700	71	0991
075	Sprague	S-199	2089604	537001051100	72	0592
075	Sprague	S-200	2089340	537011002901	72	0592
075	Sprague	S-201	2089634	537007055000	72	0592
075	Sprague	S-202	2089689	537001032700	72	0692
075	Sprague	S-203	1939982	537001001202	71	0991
075	Sprague	S-204	1597770	537013020403	69	0190
075	Sprague	S-205	1778697	537015007400	70	1289
075	Sprague	S-206	1778785	537010062903	70	1289
075	Sprague	S-207	1597695	537012001200	69	0190
075	Sprague	S-208	1778989	537002032700	70	0190
075	Sprague	S-209	1939845	537020027800	71	0190
075	Sprague	S-210	1939845	537020027800	71	0190
075	Sprague	S-211	1597779	537007032300	69	0190
075	Sprague	S-212	1778839	537002025701	70	0190
075	Sprague	S-213	1597828	537017044200	69	0190
075	Sprague	S-214	1597731	537019002800	69	0190
075	Sprague	S-215	1597831	537004032801	69	0190

075	Sprague	S-216	1778557	537014016201	70	1289
075	Sprague	S-217	2089624	537007030302	72	0496
075	Sprague	S-218	2203117	537003016200	73	0190
075	Sprague	S-219	2203116	530020004000	73	0493
075	Sprague	S-220	1597788	537016019203	69	0190
075	Sprague	S-221	1597633	537019000406	69	0190
075	Sprague	S-222	1597809	537021055905	69	0190
075	Sprague	S-223	1597603	537017049600	69	0190
075	Sprague	S-224	1778564	537013019300	70	0190
075	Sprague	S-225	1597750	537007032401	69	0190
075	Sprague	S-226	1597841	537016011600	69	0190
075	Sprague	S-227	2203062	521103011700	73	0795
075	Sprague	S-228	1939667	521208014500	71	0795
075	Sprague	S-229	2202858	522009025500	73	0793
075	Sprague	S-230	1939723	522009002301	71	0392
075	Sprague	S-231	1939723	522009002300	71	0392
075	Sprague	S-232	1939731	522009020105	71	0392
075	Sprague	S-233	2202709	522009018900	73	0793
075	Sprague	S-234	1597766	522009010502	61	0190
075	Sprague	S-235	2202776	522009000700	73	0793
075	Sprague	S-236	2202826	521113000400	73	0795
075	Sprague	S-237	1939791	521208003501	71	0795
075	Sprague	S-238	2202905	521208000401	73	0795
075	Sprague	S-239	1939688	521103014300	71	0795
075	Sprague	S-240	2202751	521208016250	73	0795
075	Sprague	S-241	2202712	523010011000	73	0793
075	Sprague	S-242	1597803	522009014700	61	0190
075	Sprague	S-243	2202866	522009011202	73	0793
075	Sprague	S-244	2202977	530012016800	73	0593
075	Sprague	S-245	2203040	522010006500	73	0795
075	Sprague	S-246	2202759	522009021800	73	0793
075	Sprague	S-247	2202976	522009019302	73	0793
075	Sprague	S-248	2203098	522009016401	73	0793
075	Sprague	S-249	2203020	522009002800	73	0793
075	Sprague	S-250	2203020	522009018803	73	0793
075	Sprague	S-250	2089520	521113001100	72	0795
075	Sprague	S-251	2203126	522009019700	73	0793
075	Sprague	S-252	2203120	522009001503	73	0793
075	Sprague	S-254	2203154	522009015400	73	0793
075	Sprague	S-255	2203043	522009025601	73	0793
075	Sprague	S-256	2202963	522009022200	73	0793
075	Sprague	S-257	2202822	522009023900	73	0793
075	Sprague	S-258	2203103	522010002400	73	0793
075	Sprague	S-259	2202862	518019013200	73	0293
075	Sprague	S-260	1939747	521207001400	71	0795
075	Sprague	S-261	2089329	520016007200	72	0892
075	Sprague	S-262	2202915	519017057900	73	0793
075	Sprague	S-263	1778754	519017046201	70	0293
075	Sprague	S-264	1778754	519017046201	70	0293

075	Sprague	S-265	1597775	521208005300	69	0190
075	Sprague	S-266	1597680	519017022901	69	0190
075	Sprague	S-267	1597818	521105003400	69	0190
075	Sprague	S-268	2089354	518019024750	72	0892
075	Sprague	S-269	1939586	518019030200	61	0291
075	Sprague	S-270	2089343	518019020600	62	0190
075	Sprague	S-271	2089435	516012003600	72	0293
075	Sprague	S-272	2202778	516011002200	73	0293
075	Sprague	S-273	2202962	516012010200	73	0793
075	Sprague	S-274	2203019	519017052703	73	0793
075	Sprague	S-275	2202998	521107005300	73	0793
075	Sprague	S-276	2203085	521107001100	73	0793
075	Sprague	S-277	2202846	521103000501	73	0793
075	Sprague	S-278	2203130	521108007603	73	0793
075	Sprague	S-279	2203065	521208004302	73	0793
075	Sprague	S-219 S-280	2203058	521200004002	73	0793
075	Sprague	S-280	1597675	521208015700	69	0190
075	Sprague	S-281	2202803	521103000600	73	0793
075	Sprague	S-283	2202985	523010019200	73	0793
075	Sprague	S-283	2202903	521103000800	73	0793
075		S-285	2202301	521106006000	73	0793
	Sprague	S-285	2202768	521103000700	73	0793
075	Sprague	<i></i>	2202768	521103000700	73	0793
075	Sprague	S-287			73	0793
075	Sprague	S-288	2203091	521208004202		0793
075	Sprague	S-289	1597782	521207009350	69 73	0392
075	Sprague	S-290	2203184	521108000400	73	0793
075	Sprague	S-291	2203144	532019009203		1093
075	Sprague	S-292	2202753	531017013550	72	0493
075	Sprague	S-293	2203025	532019010501	73	0493
075	Sprague	S-294	2203151	532019023101	73	
075	Sprague	S-295	2203162	532013015600	73	0593
075	Sprague	S-296	1597663	532009002700	69	0493 0493
075	Sprague	S-297	2202752	532019002300	73	
075	Sprague	S-298	2202802	532019004000	73	0493
075	Sprague	S-299	2203068	533018020000	73	1093
075	Sprague	S-300	2202944	532013014500	73	0493
075	Sprague	S-301	2202746	532009014600	73	0493
075	Sprague	S-302	2202720	532013016100	73	0493
075	Sprague	S-303	2202956	531016001101	73	0493
075	Sprague	S-304	2202733	531017014850	73	1093
075	Sprague	S-305	2089566	522009002504	72	0795
075	Sprague	S-306	2202834	532013015400	73	0493
075	Sprague	S-307	1778958	537020020900	70	0496
075	Sprague	S-308	2203180	537015015400	73	0496
075	Sprague	S-309	2202786	537019023701	73	0496
075	Sprague	S-310	1778798	537019020800	70	0496
075	Sprague	S-311	2203028	537001033800	73	0496
075	Sprague	S-312	2202925	537013009600	73	0496
075	Sprague	S-313	2202978	532003005604	73	0493

075	Sprague	S-314	2089527	537019070500	72	0496
075	Sprague	S-315	2203139	531015018802	73	0493
075	Sprague	S-316	1778876	537010044601	70	0496
075	Sprague	S-317	2202754	537019014401	73	0496
075	Sprague	S-318	2203102	534007009000	73	1093
075	Sprague	S-319	2202851	533018026309	73	1093
075	Sprague	S-320	2202851	533018026308	73	1093
075	Sprague	S-321	2089476	533018023300	72	1093
075	Sprague	S-322	2089411	537019034300	72	0496
075	Sprague	S-323	2202853	530019001100	73	0493
075	Sprague	S-324	2202948	531015013404	73	0493
075	Sprague	S-325	2203001	530011010800	73	1093
075	Sprague	S-326	2202840	530011021201	73	1093
075	Sprague	S-327	2202934	530019027800	73	0493
075	Sprague	S-328	2202934	530019027800	73	0493
075	Sprague	S-329	2202735	530019002904	73	0493
075	Sprague	S-330	2203137	530019017301	73	0493
075	Sprague	S-331	2202848	530006012501	73	0493
075	Sprague	S-332	2203137	530019017300	73	0493
075	Sprague	S-333	1939881	530006014501	71	0289
075	Sprague	S-334	1778878	524004032201	70	0795
075	Sprague	S-335	2202811	524004026701	73	0392
075	Sprague	S-336	2202860	523010015603	73	0793
075	Sprague	S-337	2202914	523010007901	73	0793
075	Sprague	S-338	2203049	530019032400	73	1093
075	Sprague	S-339	2202975	530021009900	73	0493
075	Sprague	S-340	2203159	531017004281	73	0493
075	Sprague	S-341	2203032	531017002700	73	0493
075	Sprague	S-342	2089550	530021017300	72	0994
075	Sprague	S-343	2202929	530012000050	73	1093
075	Sprague	S-344	2202995	530020018201	73	0593
075	Sprague	S-345	2202795	530007028102	73	0493
075	Sprague	S-346	2089378	530010000250	72	1093
075	Sprague	S-347	1939505	537017044410	71	0496
075	Sprague	S-348	2202749	530005018603	73	1093
075	Sprague	S-349	2203182	530020006102	73	0493
075	Sprague	S-350	2202784	530021000506	73	1093
075	Sprague	S-351	2202941	530019020401	73	1093
075	Sprague	S-352	2089662	537011010800	72	0792
075	Sprague	S-353	2202781	530019009001	73	0493
075	Sprague	S-354	2202928	530021025802	73	1093
075	Sprague	S-355	1597824	540012018003	69	0190
)75	Sprague	S-356	2089632	540012017702	72	0190
075	Sprague	S-357	1597698	540012017901	69	0190
075	Sprague	S-358	1597715	540012017602	69	0190
075	Sprague	S-359	1939763	540012017402	71	0190
075	Sprague	S-360	1778836	540012017502	70	0190
)75	Sprague	S-361	1778644	540012017806	79	0190
075	Sprague	S-362	2203054	540012017200	73	0190

075	Sprague	S-363	1597811	540012018508	69	0190
075	Sprague	S-364	1597614	540012017307	69	0190
075	Sprague	S-365	1597826	540012018701	69	0190
075	Sprague	S-366	1597794	540012020800	69	0190
075	Sprague	S-367	2202938	537005025400	73	0693
075	Sprague	S-368	1597752	540012018206	79	0190
075	Sprague	S-369	1597655	540012018102	69	0190
075	Sprague	S-370	2089247	540012020704	72	0190
075	Sprague	S-371	1778819	540016003701	70	1094
075	Sprague	S-372	1778738	541006000800	70	1188
075	Sprague	S-373	2089605	541009002002	72	1188
075	Sprague	S-374	1939607	541008014100	71	1088
075	Sprague	S-375	1778726	541006011400	70	1188
075	Sprague	S-376	1939509	541006013102	71	1088
075	Sprague	S-377	1778832	541008018600	70	1188
075	Sprague	S-378	2089227	541006003400	72	0394
075	Sprague	S-379	1939526	541006003800	71	0394
075	Sprague	S-380	2089417	541008003100	72	0394
075	Sprague	S-381	1597807	540012018605	69	0190
075	Sprague	S-382	1597605	540001006100	69	0190
075	Sprague	S-383	2089500	538018033701	72	0592
075	Sprague	S-384	2089641	538018018703	72	0692
075	Sprague	S-385	2203038	538018018502	73	0593
075	Sprague	S-386	2203031	538018022100	73	0593
075	Sprague	S-387	2203078	538018014700	73	0593
075	Sprague	S-388	2203026	538018006500	73	0593
075	Sprague	S-389	2203020	538018018100	73	0593
075	********	S-390	2203024	538018021800	73	0593
075	Sprague Sprague	S-391	2203024	538018031700	73	0794
075	Sprague	S-392	3836988	538018018800	84	0794
075	Sprague	S-392 S-393	1939648	538018028200	71	0695
		S-394	1778542	540012018406	70	0190
075 075	Sprague Sprague	S-394 S-395	1597814	540012010400	69	0190
	Sprague Sprague		\$1507700	E 4004000000	69	0190
075 075	Sprague	S-396 S-397	1597736 2203136	540012020600	73	0190
075	Sprague	S-397	1597780	540004011400	69	0190
	Sprague	S-398 S-399	1778993	540003020103	70	0190
075	Sprague		1597798	540016007802	69	0190
075	Sprague Sprague	S-400	1597822	540010007802	69	0190
075	Sprague	S-401	1939796	540002017109	71	0190
075 075	Sprague	S-402	1597637	540002000600	69	0190
075	Sprague	S-403 S-404	1597637	540002000000	79	0190
*******	Sprague			540003019708	79 70	0190
075	Sprague	S-405	1778677	***************************************		0190
075	Sprague	S-406	1939757	540016020703	71	
075	Sprague	S-407	1778525	540003019808	70	0190
075	Sprague	S-408	1939699	541010006903	71	0394
075	Sprague	S-409	1597689	538018011703	69	0695
075	Sprague	S-410 S-411	1778552 3836984	550009011600 541006020001	70 84	1190 0394

.

075	Sprague	S-412	1597820	550015015100	69	0190
075	Sprague	S-413	1597666	550009081000	69	0190
075	Sprague	S-414	1597649	550119019012	60	0190
075	Sprague	S-415	1778547	550116017902	70	0190
075	Sprague	S-416	1778884	550001070500	70	1190
075	Sprague	S-417	2089350	550021000904	72	1190
075	Sprague	S-418	1778791	550115054400	70	1190
075	Sprague	S-419	1597677	550013061000	69	0190
075	Sprague	S-420	1597769	550119024202	69	0190
075	Sprague	S-421	1597662	550013055800	69	0190
075	Sprague	S-422	1778888	550008061100	70	1190
075	Sprague	S-423	1597649	550119019013	60	0190
075	Sprague	S-424	2089598	550005093900	72	1190
075	Sprague	S-425	1597704	550014002500	69	0190
075	Sprague	S-426	1778700	550114007700	70	1190
075	Sprague	S-427	1939616	550010008801	71	1190
075	Sprague	S-428	1778895	550116014400	70	1190
075	Sprague	S-429	1778910	550010070200	70	1190
075	Sprague	S-430	1939602	550013051306	71	0190
075	Sprague	S-431	1597718	550005052800	69	0190
075	Sprague	S-432	1939588	550009011500	71	1190
075	Sprague	S-433	1597601	550115035601	69	0190
075	Sprague	S-434	1939953	550116014800	71	1190
075	Sprague	S-435	1939984	550005041400	71	0190
075	Sprague	S-436	1597712	550114026300	69	0190
075	Sprague	S-437	1778723	550010063400	70	1190
075	Sprague	S-438	1778694	550012077800	70	1190
075	Sprague	S-439	2089588	538018015401	72	0792
075	Sprague	S-440	2202856	541012036000	73	1094
075	Sprague	S-441	2089253	541008016605	72	0394
075	Sprague	S-442	1597730	550015018702	69	0496
075	Sprague	S-443	1939694	550003015202	71	0196
075	Sprague	S-444	2203022	550119018500	73	0496
075				650440075000	70	0.400
075	Sprague Sprague	S-445 S-446	1778897 2089621	550118075000	72	0496 0196
075	Sprague	S-447	2203087	550115015200	73	0496
075		S-447 S-448	1778745	550005081003	70	0398
075	Sprague	S-449	2089433	550003028600	70	1190
	Sprague			550001044600	70	1190
075 075	Sprague Sprague	S-450 S-451	1778802 1939725	550009099700	70	1190
075	Sprague	S-451 S-452	2202816	541006031100	73	0394
075 075	Sprague	S-452 S-453	2202818	550012067800	73	0190
075 075		S-455 S-454	1597772	550006015901	69	0190
575 075	Sprague Sprague	S-454 S-455	1778615	550005087803	70	1190
075 075	Sprague	S-455 S-456		550009012100	70	********
****************	Sprague		2089471			1190
075	Sprague	S-457	1939709	550116010001	71	1190
075 075	Sprague	S-458	1778766	550114025901 550115020700	70 69	0190 0190
	Sprague	S-459	1597773			
075	Sprague	S-460	1597674	550010084200	69	0190

075	Sprague	S-461	1939787	550008102300	71	1190
075	Sprague	S-462	1778852	550001056700	70	1190
075	Sprague	S-463	1939531	550010053001	71	1190
075	Sprague	S-464	1778912	550017005501	70	0190
075	Sprague	S-465	1778755	550009022900	70	1190
075	Sprague	S-466	2089591	537017075208	72	0592
075	Sprague	S-467	2203010	537008016209	73	0593
075	Sprague	S-468	2089474	537011010120	72	0592
075	Sprague	S-469	1939841	537019084900	71	0192
075	Sprague	S-470	1939594	537014002350	72	0592
075	Sprague	S-471	2089284	537019077209	72	0692
075	Sprague	S-472	1778532	537019082100	70	0192
075	Sprague	S-473	1939914	537019085000	71	0192
075	Sprague	S-474	2089346	537004053100	72	0692
075	Sprague	S-475	2089468	537019077905	72	0792
075	Sprague	S-476	2089674	537019084700	72	0192
075	Sprague	S-477	2089522	537010030401	72	0792
075	Sprague	S-478	1939550	537019084800	71	0192
075	Sprague	S-479	1778594	537019085100	70	0192
075	Sprague	S-480	1939541	537019041500	71	0792
075	Sprague	S-481	2203027	537019027813	73	0192
075	Sprague	S-482	2203027	537019027813	73	0192
075	Sprague	S-483	2203027	537019027814	73	0192
075	Sprague	S-484	2202788	537011018501	73	0593
075	Sprague	S-485	2203100	537106011800	73	0593
075	Sprague	S-486	2203036	537004039700	73	0693
075	Sprague	S-487	2202831	537004043200	73	0593
075	Sprague	S-488	2089344	516011001400	72	0892
075	Sprague	S-489	1778573	537001001900	70	0693
075	Sprague	S-490	1778749	515005031800	70	0293
075	Sprague	S-491	2202782	537021032191	73	0693
075	Sprague	S-492	2089625	538018005305	72	0692
075	Sprague	S-493	2089516	537017039200	72	0592
075	Sprague	S-494	2089586	537016017400	72	0592
075	Sprague	S-495	2089505	537001022000	72	0792
075	Sprague	S-496	2089242	537021024901	72	0692
075	Sprague	S-497	1778716	537005009700	70	0692
075	Sprague	S-498	2089698	537011000481	72	0792
075	Sprague	S-499	2089637	537017055550	72	0792
)75	Sprague	S-500	2089451	537002017903	72	0692
)75	Sprague	S-501	2089582	537021033371	72	0792
)75	Sprague	S-502	2089432	537010030251	62	0692
075	Sprague	S-503	2089696	537017049550	72	0792
)75	Sprague	S-504	2089337	537014040600	72	0692
075	Sprague	S-505	2089680	537011010053	72	0592
)75	Sprague	S-506	2089553	537010050901	72	0792
075	Sprague	S-507	2089451	537002017904	72	0692
075	Sprague	S-508	2202807	537002025000	73	0593
075	Sprague	S-509	2089690	537012005504	72	0692

075	Sprague	S-510	1778522	537011000800	70	0792
075	Sprague	S-511	1778847	537019085200	56	0192
075	Sprague	S-512	2089494	537106003121	72	0692
075	Sprague	S-513	2089525	537019023500	72	0592
075	Sprague	S-514	2089657	537011000700	72	0792
075	Sprague	S-515	2089477	537010007107	72	0592
075	Sprague	S-516	2089677	537011009700	72	0792
075	Sprague	S-517	1939560	537019082500	71	0192
075	Sprague	S-518	2089596	537001011401	72	0592
075	Sprague	S-519	2089663	537011000442	72	0792
075	Sprague	S-520	2089316	537019082300	72	0192
075	Sprague	S-521	2089686	537014005300	72	0592
075	Sprague	S-522	2089658	537013047007	72	0795
075	Sprague	S-523	2202906	537019069401	73	0593
075	Sprague	S-524	2202812	537005025507	73	0794
075	Sprague	S-525	1778618	537003040210	70	0794
075	Sprague	S-526	1597719	537019001607	69	0794
075	Sprague	S-527	2202902	537017058401	73	0794
075	Sprague	S-528	2203011	537106004100	73	0695
075	Sprague	S-529	1939575	537017007600	71	0695
075	Sprague	S-530	2202774	537106004000	73	0695
075	Sprague	S-531	2203013	537106002700	73	0695
075	Sprague	S-532	2089493	537019030661	72	0695
075	Sprague	S-533	2203113	537007014803	73	0695
075	Sprague	S-534	1939515	537016014402	71	0794
075	Sprague	S-535	1939666	537002036604	71	0695
075	Sprague	S-536	1939929	537011056510	71	0794
075	Sprague	S-537	1778579	537017084804	70	0795
075	Sprague	S-538	1778608	537012011305	70	0795
075	Sprague	S-539	1597791	538018006401	69	0190
075	Sprague	S-540	1597700	538018035405	69	0190
075	Sprague	S-541	1778835	538018010104	70	0190
075	Sprague	S-542	2089665	538018025100	72	0991
075	Sprague	S-543	1939824	538018017404	71	0991
075	Sprague	S-544	1778815	538018011400	70	0991
075	Sprague	S-545	2089207	538018017800	72	0592
075	Sprague	S-546	1778516	538018016600	70	0792
075	Sprague	S-547	2202896	538018024300	73	0692
075	Sprague	S-548	2089627	537020045230	72	0692
075	Sprague	S-549	2203069	537106000010	73	0695
)75	Sprague	S-550	2089216	537020024802	72	0794
075	Sprague	S-551	2202849	537017030910	73	0593
)75	Sprague	S-552	1597616	537021032050	69	0593
)75	Sprague	S-553	2202918	537014032651	76	0593
075	Sprague	S-554	2203097	537009002371	73	0593
075	Sprague	S-555	1597817	537019063103	69	0593
	Sprague	S-556	2089213	537017028411	72	0593
075	Sprague	S-557	2202919	537106005600	73	0593
075	Sprague	S-558	2202965	537011002120	73	0693

)75	Sprague	S-559	2202911	537004054104	73	0593
75	Sprague	S-560	2203199	537003031802	73	0593
)75	Sprague	S-561	2202939	537004041303	73	0794
75 75	Sprague	S-562	3836987	537017072700	84	0794
75 75	Sprague	S-563	2089352	537017051802	72	0794
)75	Sprague	S-564	2089204	538018030201	72	0592
)75	Sprague	S-565	1939813	537106000820	71	0794
)75	Sprague	S-566	2089579	537016010002	72	0794
)75)75	Sprague	S-567	1939724	537017018700	71	0794
)75	Sprague	S-568	2202880	537020010500	73	0794
)75)75	Sprague	S-569	2202725	537017059900	73	0794
		S-570	2202810	537106003401	73	0794
)75	Sprague	S-570 S-571	1939887	537017061800	71	0794
)75	Sprague Sprague	S-571	2202981	537021020202	73	0794
075 075	Sprague	S-572	3836985	537008047004	84	0794
)75)75	Sprague	S-573 S-574	2202842	537013045102	73	0794
075	Sprague	S-574 S-575	1597625	537019009801	69	0794
075	Sprague	S-575 S-576	1778870	537017013601	70	0794
075	Sprague	S-576 S-577	2203016	537017056201	73	0794
075	Sprague	S-577 S-578	2089444	500008179807	72	0992
075	Sprague	S-579	2089615	500019421904	72	0892
075	Sprague	S-579 S-580	2202895	500016121400	73	1293
075	Sprague	S-580 S-581	2202923	500008138300	73	1293
075	Sprague	S-582	2202320	500012392702	73	0693
075	Sprague	S-583	2089382	500003149300	72	0892
075	Sprague	S-584	2089201	500003276100	72	1293
075	Sprague	S-585	2089613	500012136208	72	0992
075	Sprague	S-586	2202897	500117303500	73	1293
075	Sprague	S-587	2089218	500008179706	72	0992
075	Sprague	S-588	2089367	500018417607	72	0892
075	Sprague	S-589	2089362	500010400102	72	0992
075	Sprague	S-590	2089655	500016277700	72	0992
075	Sprague	S-590 S-591	1939721	500012390300	71	0392
075	Sprague	S-591 S-592	2202820	50007298900	73	0194
075	Sprague	S-592 S-593	2089535	500017172605	72	0992
075	Sprague Sprague	S-593	22025355	500016162501	73	1293
075 075	Sprague	S-595	2202700	515216003701	73	0793
		S-596	2203023	500014145605	73	1293
075	Sprague Sprague	S-597	2202845	500117329100	73	1293
075		S-598	2202907	500008191200	73	1293
075	Sprague Sprague	S-599	2089262	500009170108	72	0693
075 075	Sprague	S-600	2202953	500008136900	73	1293
		S-601	2202815	500008191001	73	1293
075	Sprague Sprague	S-602	1939714	500018424500	71	0392
075	Sprague	S-602	1939539	500008191300	71	1293
075	Sprague	S-603	2202830	500014258351	73	1293
075	Sprague	S-604 S-605	2089315	500015298251	72	1293
075	Sprague	S-605 S-606	2009313	500117287900	73	1293
075 075	Sprague Sprague	S-606 S-607	1939706	500117290100	71	1293

075	Sprague	S-608	1778623	500014077000	70	1293
075	Sprague	S-609	1939652	500008191107	71	1293
075	Sprague	S-610	1597796	500020159401	69	0191
075	Sprague	S-611	2202714	500017219601	73	0392
075	Sprague	S-612	1778711	500009168409	70	0191
075	Sprague	S-613	1939708	500017160704	71	0191
075	Sprague	S-614	1778952	500016168200	70	0291
075	Sprague	S-615	1778776	500012368904	70	0191
075	Sprague	S-616	1939768	500015178101	71	0191
075	Sprague	S-617	1778629	500016166800	70	0291
075	Sprague	S-618	1778810	500011128906	70	0291
075	Sprague	S-619	2089644	500014195604	72	1191
075	Sprague	S-620	1778653	500018420000	70	0291
075	Sprague	S-621	1939783	500009143801	71	0191
075	Sprague	S-622	1778704	500003120100	70	0191
075	Sprague	S-623	1778903	500005120301	70	0191
075	Sprague	S-624	1778954	500011143700	70	0291
075	Sprague	S-625	1778580	500009172000	70	0191
075	Sprague	S-626	2089416	500015134301	72	0992
075	Sprague	S-627	2089299	500017237905	71	0492
075	Sprague	S-628	2089483	500015245506	72	0992
075	Sprague	S-629	2089236	500003282400	72	0892
075	Sprague	S-630	1939736	500019477200	71	0392
075	Sprague	S-631	2089239	500012391801	72	0692
075	Sprague	S-632	1778856	500011128502	70	0191
075	Sprague	S-633	2202972	500012393400	73	0492
075	Sprague	S-634	1778671	500013163300	70	1194
075	Sprague	S-635	1939590	500020283001	71	0892
075	Sprague	S-636	2089317	500018514500	72	0892
075	Sprague	S-637	2089251	500011208200	72	0492
075	Sprague	S-638	2089393	500015258300	72	0692
075	Sprague	S-639	1778641	500016137002	70	0992
075	Sprague	S-640	1778918	500016298202	70	0291
075	Sprague	S-641	2089595	500020345900	72	0892
075	Sprague	S-642	2089573	500015178402	72	1295
075	Sprague	S-643	2203005	500019463301	73	1295
075	Sprague	S-644	2203161	500011209700	73	1295
075	Sprague	S-645	2202726	500008002304	73	0795
075	Sprague	S-646	2202952	500011151400	73	1295
)75	Sprague	S-647	2203073	500008241903	73	1295
)75	Sprague	S-648	1778562	501006171101	70	0291
075	Sprague	S-649	2203198	500010510800	73	0195
075	Sprague	S-650	1778784	501005063900	70	0291
075	Sprague	S-651	1778969	500011149801	7 0	1295
075	Sprague	S-652	1939599	500014228102	71	0995
)75	Sprague	S-653	1939691	500015232501	71	1295
075	Sprague	S-654	2203034	500020263101	73	1295
)75	Sprague	S-655	2089656	500019554300	72	1295
075	Sprague	S-656	2202763	500013082501	73	0194

075	Sprague	S-657	1778683	500009248605	70	1295
)75	Sprague	S-658	2089513	501006133301	72	0992
)75	Sprague	S-659	2202821	501006047503	73	1293
)75	Sprague	S-660	2203128	501006047005	73	1293
)75	Sprague	S-661	2203128	501006047004	73	1293
)75	Sprague	S-662	2203115	501006162601	73	1293
)75	Sprague	S-663	2089592	501006050705	72	0892
)75)75	Sprague	S-664	2089400	500018384708	72	1295
)75	Sprague	S-665	2089225	501006003059	72	0892
075	Sprague	S-666	1778849	500008186103	70	1295
075	Sprague	S-667	2089304	501006026250	72	0892
075	Sprague	S-668	2089692	501006037900	72	0892
075	Sprague	S-669	1778520	501006030401	70	0291
075	Sprague	S-670	1939749	501006022300	71	0191
075	Sprague	S-671	1778854	501006128000	70	0291
075	Sprague	S-672	1778820	501006045200	70	0191
	***************************************	S-673	2089272	501006003073	72	0892
075	Sprague	S-673	2203104	500020304300	73	0194
075	Sprague	S-074 S-675	2089381	500011204301	72	1295
075	Sprague	S-675 S-676	2089363	500011204001	72	1295
075	Sprague	S-677	1778517	500008136500	70	0194
075	Sprague	S-678	2202930	500015156405	73	0194
075	Sprague		2202930	500117319100	73	0194
075	Sprague	S-679		500016113200	72	1295
075	Sprague	S-680	2089697	500020271100	73	0194
075	Sprague	S-681	2202833 1778673	500020271100	70	0695
075	Sprague	S-682	1939583	500020288761	70	1194
075	Sprague	S-683	2089610	500008145100	72	0194
075	Sprague	S-684	1939990	500008127700	71	0194
075	Sprague	S-685	1778693	500019374008	70	1194
075	Sprague	S-686		500008126500	73	0194
075	Sprague	S-687	2203008	500003266500	73	0194
075	Sprague	S-688	2202893	500016139800	69	1094
075	Sprague	S-689	1597739	500004149150	71	0795
075	Sprague	S-690	1939564	500004149150	71	1295
075	Sprague	S-691	1939720	500015174402	71	1295
075	Sprague	S-692	1939568		71	0795
075	Sprague	S-693	1939752	500003242791 500020310200		1295
075	Sprague	S-694	2202783	***************************************	73 72	1295
075	Sprague	S-695	2089622	500015308802 500007146800	75	0795
075	Sprague	S-696	2202769		70	1295
075	Sprague	S-697	1778740	500010524506	70 70	0191
075	Sprague	S-698	1778885	500014249208		0795
075	Sprague	S-699	1597795	500007146700	69 72	1295
075	Sprague	S-700	2089583	500004160300	72	1295
075	Sprague	S-701	1939998	500011189900	71	1295
075	Sprague	S-702	2203059	500015305100	73	1295
075	Sprague	S-703	1939716	500011193500	71	0395
075	Sprague	S-704	2089274	500013172802	72	1295
075	Sprague	S-705	2202721	500019520902	73	1295

075	Sprague	S-706	1597618	500012326600	69	0190
075	Sprague	S-707	1597648	500016247200	69	0190
075	Sprague	S-708	1778663	500014075700	70	0190
075	Sprague	S-709	2202838	500012384601	73	0190
075	Sprague	S-710	1597706	500015316801	69	0190
075	Sprague	S-711	2202950	500012370500	73	0190
075	Sprague	S-712	1778540	500012376501	70	0190
075	Sprague	S-713	1778875	500014141200	70	0190
075	Sprague	S-714	1778695	500003159400	70	0190
075	Sprague	S-715	1597761	500013184900	69	0190
075	Sprague	S-716	1597761	500013184900	69	0190
075	Sprague	S-717	1597839	500008160900	69	0190
075	Sprague	S-718	1597758	500012116200	69	0190
075	Sprague	S-719	1597734	500018458602	69	0190
075	Sprague	S-720	1778982	500016171400	70	0191
075	Sprague	S-721	1778939	500012300500	70	0190
075	Sprague	S-722	1597728	500010522005	69	0190
075	Sprague	S-723	1939821	500012118100	71	0191
075	Sprague	S-724	1778558	500018395600	70	0291
075	Sprague	S-725	1778609	500015332800	70	0291
075	Sprague	S-726	1778872	500008148500	70	0191
075	Sprague	S-727	1597636	500018554002	69	0190
075	Sprague	S-728	1597806	500014207900	69	0190
075	Sprague	S-729	1597737	500016145102	69	0190
075	Sprague	S-730	1597648	500016247200	69	0190
075	Sprague	S-731	1778663	500014075701	70	0190
075	Sprague	S-732	1597753	500014091200	69	0190
075	Sprague	S-733	1778598	500018529000	70	0190
075	Sprague	S-734	1778510	500010362000	70	0190
075	Sprague	S-735	1778759	500012397700	70	0290
075	Sprague	S-736	2089404	500003208800	72	0190
075	Sprague	S-737	1597784	500014168404	69	0190
075	Sprague	S-738	1597815	500017244000	69	0196
)75	Sprague	S-739	1597640	500017340500	69	0190
)75	Sprague	S-740	1597720	500013147001	69	0389
)75	Sprague	S-741	2202706	500014115301	73	0389
075	Sprague	S-742	1778527	500011062000	70	0389
)75	Sprague	S-743	2089383	500015236703	72	0396
)75	Sprague	S-744	1778927	500019413400	70	0389
)75	Sprague	S-745	2203168	500017246200	73	0196
)75	Sprague	S-746	2089421	500017242400	72	0389
)75	Sprague	S-747	1939527	500018469800	71	0296
)75	Sprague	S-748	1778773	500010202301	70	0296
)75	Sprague	S-749	1939988	500017285900	71	0396
)75	Sprague	S-750	1597765	500012286601	69	0396
)75	Sprague	S-750	1597716	500016256600	69	0296
)75	Sprague	S-751	1597610	500018557300	69	0296
)75	Sprague	S-753	1939836	500018558802	71	0296
)75	Sprague	S-753	1778539	500009147607	70	0389

075	Sprague	S-755	1597705	500018521702	69	0190
075	Sprague	S-756	1597816	500018023800	69	0190
075	Sprague	S-757	1597835	500016300400	69	0190
075	Sprague	S-758	1597650	500012128201	69	0190
075	Sprague	S-759	1597844	500013261300	69	0190
075	Sprague	S-760	1597634	500018472000	69	0389
075	Sprague	S-761	1778604	500020273405	70	0189
075	Sprague	S-762	1939928	500009269600	71	0191
075	Sprague	S-763	2202964	500009155408	73	0389
075	Sprague	S-764	1778769	500020321903	70	0389
075	Sprague	S-765	1778765	500009207900	70	0389
075	Sprague	S-766	1597690	500012134406	69	0389
075	Sprague	S-767	1597644	500014174905	69	0389
075	Sprague	S-768	1597849	500017246001	69	0389
075	Sprague	S-769	1778604	500020273406	70	0189
075	Sprague	S-770	1778667	500014181000	70	0291
075	Sprague	S-771	1778904	500005124100	70	0291
075	Sprague	S-772	1778834	500016153702	70	0191
075	Sprague	S-773	1778997	500014202300	70	0191
075	Sprague	S-774	2202927	500019476000	73	0191
075	Sprague	S-775	1778592	500008288700	70	0291
075	Sprague	S-776	1778628	500017215600	70	0191
075	Sprague	S-777	1778602	500016252102	70	0191
075	Sprague	S-778	1778621	500003204100	70	0191
075	Sprague	S-779	1778667	500014181000	70	0291
075	Sprague	S-780	1778848	500010408300	70	0191
075	Sprague	S-781	1778813	500018512107	70	0291
075	Sprague	S-782	2089612	500008133300	72	0191
075	Sprague	S-783	1778807	500003214700	70	0191
075	Sprague	S-784	1778670	500019418700	70	0291
075	Sprague	S-785	1778816	500017198500	70	0191
075	Sprague	S-786	1778867	500019417600	70	0291
075	Sprague	S-787	2089570	504016029650	72	0992
075	Sprague	S-788	1778589	500014199601	70	0191
075	Sprague	S-789	1939902	500014135202	71	0191
075	Sprague	S-790	1778714	500008263100	70	0191
075	Sprague	S-791	1939673	500012380900	71	0191
075	Sprague	S-792	1778834	500016153702	70	0191
075	Sprague	S-793	1778750	500010411600	70	0191
D75	Sprague	S-794	1939779	500008288300	71	0191
075	Sprague	S-795	1778756	500017220500	70	0191
075	Sprague	S-796	1778938	500014223702	70	0191
	Sprague	S-797	1778947	500013185400	70	0191
575 075	Sprague	S-798	1939849	500020263000	71	0291
075	Sprague	S-799	1778940	500016210500	70	0291
075	Sprague	S-800	1778771	500011063602	70	0191
075	Sprague	S-801	1778976	500010415600	70	0291
075	Sprague	S-802	1939882	500009298600	71	0191
075	Sprague	S-803	1939710	500013118700	71	0191

075	Sprague	S-804	1778506	500017205200	70	0191
075	Sprague	S-805	1778987	500011175800	70	0191
075	Sprague	S-806	1778827	500019428100	70	0191
075	Sprague	S-807	1939597	500013163700	71	0191
075	Sprague	S-808	1939535	500016304100	71	0191
075	Sprague	S-809	2202884	500015181904	73	0191
075	Sprague	S-810	1778646	500015273000	70	0191
075	Sprague	S-811	1778962	500008227300	70	0191
075	Sprague	S-812	1939739	500016174500	71	1191
075	Sprague	S-813	1778614	500014107800	70	0191
075	Sprague	S-814	1939812	500013247300	71	0191
075	Sprague	S-815	1778822	500012112100	70	0191
075	Sprague	S-816	1778777	500015261900	70	0191
075	Sprague	S-817	1939533	500009306600	71	0191
075	Sprague	S-818	1778825	500012289301	70	0191
075	Sprague	S-819	1778964	500008125201	70	0191
075	Sprague	S-820	1778891	500010367900	70	0191
075	Sprague	S-821	1778942	500003215800	70	0191
075	Sprague	S-822	1778874	500016209301	70	0191
075	Sprague	S-823	1778990	500020398000	70	0291
075	Sprague	S-824	1778828	500014191301	70	0191
075	Sprague	S-825	1778813	500018512106	70	0291
075	Sprague	S-826	1939626	500016183700	71	0291
075	Sprague	S-827	2203035	500013240000	73	0191
075	Sprague	S-828	2202909	500011017703	73	1191
075	Sprague	S-829	2089277	500009210700	72	0191
075	Sprague	S-830	1778790	500018485000	70	0291
075	Sprague	S-831	1939986	500020282401	71	0191
075	Sprague	S-832	1778937	500011053303	70	0791
075	Sprague	S-833	1778838	500015316300	70	0191
075	Sprague	S-834	1778687	500004152400	70	0191
075	Sprague	S-835	2089275	515006038201	72	0293
075	Sprague	S-836	2203105	515009001400	73	0293
)75	Sprague	S-837	2202707	515004032100	73	0393
075	Sprague	S-838	2202832	515001019500	73	0993
)75	Sprague	S-839	2202990	515006037501	73	0793
075	Sprague	S-840	2202947	515002026202	73	0293
)75	Sprague	S-841	2202761	515021023700	71	0293
)75	Sprague	S-842	2203172	515013015900	73	0393
)75	Sprague	S-843	2203107	515111008400	73	0793
)75	Sprague	S-844	2202898	515009077000	73	0393
)75	Sprague	S-845	2202877	515002013400	73	0793
)75	Sprague	S-846	2203178	515002002600	73	0993
075	Sprague	S-847	2202989	515111008100	73	0793
)75	Sprague	S-848	1597635	515002004802	69	0993
075	Sprague	S-849	1939604	515013034100	71	0292
075	Sprague	S-850	1778702	515001034600	70	0793
)75	Sprague	S-851	2202705	515009007400	73	0393
)75	Sprague	S-852	1597696	515002021002	69	0993

075	Sprague	S-853	2202798	515001018050	73	0993
075	Sprague	S-854	2202945	515001040400	73	0793
075	Sprague	S-855	2202766	515001033800	73	0293
075	Sprague	S-856	1597699	515006045100	69	0293
075	Sprague	S-857	2203075	515013027300	73	0793
075	Sprague	S-858	1939760	515013030900	71	0393
075	Sprague	S-859	2203088	515001029500	73	0993
075	Sprague	S-860	2202814	515008059312	73	0793
075	Sprague	S-861	2203112	515008057741	73	1093
075	Sprague	S-862	2202859	515002015000	73	0793
075	Sprague	S-863	2202737	515001013300	73	0993
075	Sprague	S-864	2203165	515002020200	73	0993
075	Sprague	S-865	2202850	515008066500	73	0393
075	Sprague	S-866	1939927	515001011902	71	1093
075	Sprague	S-867	2089422	515007005901	72	0892
075	Sprague	S-868	2202739	515001041400	73	0993
075	Sprague	S-869	2089454	515003010802	72	0892
075	Sprague	S-870	2089301	515001010001	72	0892
075	Sprague	S-871	1939662	515005040305	71	0892
075	Sprague	S-872	2089480	515001004200	72	0892
075	Sprague	S-873	2089366	515206002400	72	0892
075	Sprague	S-874	2089517	515013016950	72	0892
075	Sprague	S-875	1939733	515003029300	72	0292
075	Sprague	S-876	1939705	515013045405	71	0292
075	Sprague	S-877	2089285	515010010401	72	0292
075	Sprague	S-878	2089287	515010005101	72	0892
075	Sprague	S-879	1939780	515006050107	72	0292
075	Sprague	S-880	2089360	515005013001	72	0292
075	Sprague	S-881	2203300	501006046100	73	1293
075	Sprague	S-882	1939769	515111002000	73	0392
075	Sprague	S-883	2089237	515018040900	72	0392
075	Sprague	S-884	2203079	515009039105	72	0793
075	Sprague	S-885	2203079	515013028200	73	0793
075	O	0.000	0000001	54504000000		2000
075	Sprague	S-886 S-887	2202924	515013028200	73	0393 0393
075	Sprague		2202901 1939945	515006009600	73	
075	Sprague	S-888		515001888880	71	0793
)75)75	Sprague	S-889	2089397	515009031501	72	0892
	Sprague	S-890	2089237	515018040900	72	0892
)75)75	Sprague	S-891	2089319	515001025600	72	1093
)75)75	Sprague	S-892	2089414	515001037105	72	0892
)75)75	Sprague	S-893	2089376	515001003750	72	0892
)75)75	Sprague	S-894	2089414	515001037104	72	0892
)75)75	Sprague	S-895	2089345	515008008701	72	0892
)75)75	Sprague	S-896	2089425	515002030300	72	0892
)75	Sprague	S-897	2089584	515001004602	72	0892
)75	Sprague	S-898	2089240	515015014205	72	0892
075	Sprague	S-899	2203095	515003002756	73	0793
075	Sprague	S-900	2203051	515009034001	73	0393
)75	Sprague	S-901	2202828	515008059551	73	0793

075	Sprague	S-902	2202936	515004001302	73	0793
075	Sprague	S-903	2202999	515010043750	73	0793
075	Sprague	S-904	2202785	515004002600	73	0993
075	Sprague	S-905	1597688	515008061700	69	1194
075	Sprague	S-906	2203081	515001009903	73	0993
075	Sprague	S-907	1778676	515008062100	70	1194
075	Sprague	S-908	2089255	515001004807	72	0993
075	Sprague	S-909	2203124	515002022174	73	0793
075	Sprague	S-910	2203081	515001009902	73	0993
075	Sprague	S-911	2202724	515009077801	73	0793
075	Sprague	S-912	1939912	515007034911	71	0793
075	Sprague	S-913	1597751	550119008400	69	0190
075	Sprague	S-914	2202770	515008020202	73	0793
075	Sprague	S-915	2089547	515006045910	72	0795
075	Sprague	S-916	1597606	516012009100	69	0190
075	Sprague	S-917	2202865	515111004400	73	0795
075	Sprague	S-918	2203004	515006044261	73	0795
075	Sprague	S-919	1778908	515008017703	70	0795
075	Sprague	S-920	2089509	515014007402	72	0795
075	Sprague	S-921	1939735	515018007607	71	1194
075	Sprague	S-922	2089694	515015012200	72	0795
075	Sprague	S-923	2202800	515003022802	73	0393
075	Sprague	S-924	1597602	515111003100	69	0795
075	Sprague	S-925	2203171	515015025005	73	1194
075	Sprague	S-926	2203171	515015025004	73	1194
075	Sprague	S-927	2203012	515116008803	73	0794
075	Sprague	S-928	2202825	515001030807	73	0794
075	Sprague	S-929	2203167	515021006050	73	1194
075	Sprague	S-930	1939579	515009065902	71	0795
075	Sprague	S-931	2202973	515009020401	73	0193
075	Sprague	S-932	2203179	515001019401	73	0993
075	Sprague	S-933	2203096	515111008600	73	0793
075	Sprague	S-934	2202711	515001041900	73	0993
075	Sprague	S-935	2202974	515111008200	73	0793
075	Sprague	S-936	2203039	515009053906	73	0293
075	Sprague	S-937	2202943	515010011951	73	0293
075	Sprague	S-938	2203173	515111008301	73	0793
075	Sprague	S-939	2203083	515002000404	73	0793
075	Sprague	S-940	1778692	515008070500	70	0393
075	Sprague	S-941	1939795	515008066300	71	0293
075	Sprague	S-942	1939795	515008066300	71	0293
)75	Sprague	S-943	2089498	515001026901	72	0993
)75	Sprague	S-944	1939818	515001041700	71	0993
075	Sprague	S-945	2089481	515009068802	72	0892
075	Sprague	S-946	2202792	515008068591	73	0993
075	Sprague	S-947	2202958	515106001400	73	0793
075	Sprague	S-948	1597776	515005007603	69	0393
)75	Sprague	S-949	2202980	515002026400	73	0993
075	Sprague	S-950	2202980	515002026400	73	0993

075	Sprague	S-951	2089395	515008066200	72	0193
075	Sprague	S-952	2202979	515007034932	73	0793
075	Sprague	S-953	1939894	515111008501	71	0793
075	Sprague	S-954	2202794	515009015000	73	0393
075	Sprague	S-955	2203120	515006044462	73	0793
075	Sprague	S-956	2202710	515001041603	73	0993
075	Sprague	S-957	2202791	515013050602	73	1093
075	Sprague	S-958	1939907	515001035600	71	0993
075	Sprague	S-959	2202910	515106001450	73	0793
075	Sprague	S-960	2202871	515006009700	73	1093
075	Sprague	S-961	2202730	515013046501	73	0393
075	Sprague	S-962	1939670	550006018205	71	0191
075	Sprague	S-963	2202738	515010001401	73	0993
075	Sprague	S-964	1597764	515007037000	69	0190
075	Sprague	S-965	1939967	515003020600	71	0398
075	Sprague	S-966	1778696	515009067100	70	0190
075	Sprague	S-967	1597786	515010018400	69	0190
075	Sprague	S-968	1597786	515010018400	69	0190
075	Sprague	S-969	1597713	515020014000	69	0190
075	Sprague	S-970	1778513	515015047400	70	0190
075	Sprague	S-971	1597628	515008073403	69	0190
075	Sprague	S-972	2089293	515015008300	72	0190
075	Sprague	S-973	1597741	515004003600	69	0190
075	Sprague	S-974	1778565	515015035000	70	0289
075	Sprague	S-975	1597789	515001037000	69	0289
075	Sprague	S-976	2089575	515001023100	72	0289
075	Sprague	S-977	1939700	515001041001	71	0189
075	Sprague	S-978	2089347	515008012400	72	0892
075	Sprague	S-979	1597792	515018029900	69	0190
075	Sprague	S-980	1597619	515004032601	69	0190
075	Sprague	S-981	1597608	515001044700	69	0190
075	Sprague	S-982	1597802	515005042900	69	0190
075	Sprague	S-983	2203150	515009037901	73	0190
075	Sprague	S-984	2089293	515015008301	72	0190
075	Sprague	S-985	1778778	515008072400	70	0190
075	Sprague	S-986	1778568	515013038900	70	0190
075	Sprague	S-987	1597749	515018037201	69	0190
075	Sprague	S-988	1939967	515003020600	71	0398
075	Sprague	S-989	1597838	515021032200	69	0190
075	Sprague	S-990	1778640	515010007400	70	0190
075	Sprague	S-991	1597710	515010015304	69	0190
075	Sprague	S-992	1597651	515001049200	69	0190
075	Sprague	S-993	1778728	515013037601	70	0190
075	Sprague	S-994	1597846	515021040801	69	0190
075	Sprague	S-995	1778588	515008055600	70	0190
075	Sprague	S-996	1778633	506002079900	70	0191
075	Sprague	S-997	1778607	515015025900	70	0289
075	Sprague	S-998	2089389	506002034400	72	0892
075	Sprague	S-999	2089537	506002114800	72	0892

075	Sprague	S-1000	2089270	506003058200	72	0892
075	Sprague	S-1001	1778774	506002125800	70	0191
075	Sprague	S-1002	2089650	506002029800	72	0892
075	Sprague	S-1003	1778633	506002079900	70	0191
075	Sprague	S-1004	2089455	506002029001	72	0892
075	Sprague	S-1005	1778877	506002031000	70	0191
075	Sprague	S-1006	1778973	506003057400	70	0291
075	Sprague	S-1007	1778833	506002030503	70	0191
075	Sprague	S-1008	2202888	505011080400	73	0194
075	Sprague	S-1009	2202767	505011027700	73	0194
075	Sprague	S-1010	1939730	516011015100	71	0292
075	Sprague	S-1011	1778914	506002006301	70	0291
075	Sprague	S-1012	2089574	506002059002	72	0892
075	Sprague	S-1013	2203170	508016029500	73	1295
075	Sprague	S-1014	1939901	508016039702	71	0389
075	Sprague	S-1015	2202827	506002100700	73	1293
075	Sprague	S-1016	2089379	506002004000	72	0892
075	Sprague	S-1017	2089379	506002004000	72	0892
075	Sprague	S-1018	2089226	506002033701	72	0892
075	Sprague	S-1019	2089441	506002109704	72	0992
075	Sprague	S-1020	1597660	515003044000	69	0190
075	Sprague	S-1021	2089464	506002083901	72	0992
075	Sprague	S-1022	2089334	506002097700	72	0892
075	Sprague	S-1023	2089246	506002085600	72	0892
075	Sprague	S-1024	2089496	506002006852	72	0992
075	Sprague	S-1025	2203055	506002004400	73	0992
075	Sprague	S-1026	2203055	506002004400	73	0992
075	Sprague	S-1027	2089349	506002008450	72	0892
075	Sprague	S-1028	1939634	515008063006	71	0291
075	Sprague	S-1029	1597623	515015037900	69	0190
075	Sprague	S-1030	2089342	515018019651	72	1091
075	Sprague	S-1031	1939981	515013021302	71	0291
075	Sprague	S-1032	1939858	515010036602	71	1091
075	Sprague	S-1033	1939584	515102001200	71	0291
075	Sprague	S-1034	1939972	515001020353	71	0291
075	Sprague	S-1035	1939847	515008027351	71	0291
075	Sprague	S-1036	1939972	515001020353	71	0291
075	Sprague	S-1037	1939932	515013010400	71	0291
075	Sprague	S-1038	1939906	515002031301	71	0291
075	Sprague	S-1039	1778869	515010035502	70	0190
075	Sprague	S-1040	1597850	515009060705	69	0190
075	Sprague	S-1041	1778742	515018034000	70	0190
075	Sprague	S-1042	2203007	515005019902	73	0190
075	Sprague	S-1043	1939871	515006024752	71	1091
075	Sprague	S-1044	2089314	515008057401	62	0892
075	Sprague	S-1045	2089540	515014010301	72	0892
075	Sprague	S-1046	2089540	515014010301	72	0892
075	Sprague	S-1047	1939647	515020008500	71	0292
075	Sprague	S-1048	2089608	515013020200	72	0892

,

075	Sprague	S-1049	2089390	515018029200	72	0892
075	Sprague	S-1050	1939837	515112010350	71	1091
075	Sprague	S-1051	2089288	515015028503	72	0892
075	Sprague	S-1052	2203041	515020004204	73	0190
075	Sprague	S-1053	2089463	515010004300	72	0292
075	Sprague	S-1054	2089633	515006030400	72	0892
075	Sprague	S-1055	2089667	515206003500	72	0892
075	Sprague	S-1056	2089667	515206003500	72	0892
075	Sprague	S-1057	2089499	515009042600	72	0892
075	Sprague	S-1058	2089601	515004032300	62	0892
075	Sprague	S-1059	2089407	515006047303	72	0292
075	Sprague	S-1060	1939975	515009034101	71	0190
075	Sprague	S-1061	2203041	515020004203	73	0190
075	Sprague	S-1062	2089616	515020002901	72	0190
075	Sprague	S-1063	1939867	515001028703	71	0190
075	Sprague	S-1064	1778583	515018039901	70	0190
075	Sprague	S-1065	2089616	515020002900	72	0190
075	Sprague	S-1066	1597657	515014018400	69	0190
075	Sprague	S-1067	1939867	515001028702	71	0190
075	Sprague	S-1068	1778531	515018025500	70	0190
075	Sprague	S-1069	2202873	515005025200	73	0190
075	Sprague	S-1070	1597631	515002026701	69	0190
075	Sprague	S-1071	2202793	515007006800	73	0190
075	Sprague	S-1072	1597760	515015038100	69	0190
075	Sprague	S-1073	1778974	515003053400	70	0190
075	Sprague	S-1074	1778746	502020040004	70	0395
075	Sprague	S-1075	1597630	515013009600	69	0190
075	Sprague	S-1076	1597676	515016012500	69	0190
075	Sprague	S-1077	1597721	515006001600	69	0190
075	Sprague	S-1078	1939831	515010005900	71	1190
075	Sprague	S-1079	1597629	515015042903	69	0190
075	Sprague	S-1080	1597609	515003020100	69	0190
075	Sprague	S-1081	1597703	515010036107	69	0190
075	Sprague	S-1082	1939546	515013019300	71	0190
075	Sprague	S-1083	1597762	515020023601	69	0190
075	Sprague	S-1084	1597670	515014022600	69	0190
075	Sprague	S-1085	1778672	515116006900	70	0190
075	Sprague	S-1086	1939876	515015027400	71	0290
075	Sprague	S-1087	1597656	515010039304	69	0190
075	Sprague	S-1088	1597745	515002020003	69	0190
075	Sprague	S-1089	1597664	515010035600	69	0190
075	Sprague	S-1090	1597678	515021013200	69	0190
075	Sprague	S-1091	1597624	515015028004	69	0190
075	Sprague	S-1092	2089616	515020002902	72	0190
075	Sprague	S-1093	1597777	587020014900	69	0389
075	Sprague	S-1094	2089282	584021016900	72	0592
075	Sprague	S-1095	2089387	584021015103	72	0592
075	Sprague	S-1096	1778605	585020005200	70	1190
075	Sprague	S-1097	1939536	585020023904	71	1190

075	Sprague	S-1098	1778786	585018033700	71	0591
075	Sprague	S-1099	1778712	585019006900	70	0591
075	Sprague	S-1100	1939893	585020000300	71	0591
075	Sprague	S-1101	1939641	585020000100	71	0591
075	Sprague	S-1102	1939910	585019010400	71	0591
075	Sprague	S-1103	1939754	585019033600	71	0591
075	Sprague	S-1104	1939551	585018030900	71	0591
075	Sprague	S-1105	1939764	585018018800	71	0591
075	Sprague	S-1106	1939904	585018028603	71	0591
075	Sprague	S-1107	2202718	580003013000	73	0592
075	Sprague	S-1108	1778808	587002023400	70	0592
075	Sprague	S-1109	2202983	587002024600	73	0592
075	Sprague	S-1110	2203174	587021020700	73	0592
075	Sprague	S-1111	2089252	587002035400	72	0592
075	Sprague	S-1112	2089243	587002021500	72	0592
075	Sprague	S-1113	2089230	587021022400	72	0592
075	Sprague	S-1114	2089373	585019012800	72	0591
075	Sprague	S-1115	1778808	587002023400	70	0592
075	Sprague	S-1116	1597658	587002029900	69	0389
075	Sprague	S-1117	2089217	587021006101	72	0592
075	Sprague	S-1118	2089643	587002038100	72	0592
075	Sprague	S-1119	1939580	587021019900	71	0591
075	Sprague	S-1120	2089202	587021016301	72	0591
075	Sprague	S-1121	2089202	587021016301	72	0591
075	Sprague	S-1122	1939633	584021014600	71	0591
075	Sprague	S-1123	2089651	587021016001	72	0592
075	Sprague	S-1124	1778688	583011029400	70	1190
075	Sprague	S-1125	2089283	584021023101	72	0592
075	Sprague	S-1126	1939727	583011029100	71	1190
075	Sprague	S-1127	1778659	583013027400	70	1190
075	Sprague	S-1128	1597781	583012014204	69	1190
075	Sprague	S-1129	1778830	583014005706	70	1190
075	Sprague	S-1130	1939952	583013034700	71	0391
075	Sprague	S-1131	1939501	583012032500	71	1190
075	Sprague	S-1132	1939915	583013000802	71	0391
075	Sprague	S-1133	1939965	583011035300	71	1190
075	Sprague	S-1134	2089309	582016013156	72	0592
075	Sprague	S-1135	2089351	582015009803	72	0592
075	Sprague	S-1136	1939963	582015030600	71	0591
075	Sprague	S-1137	2089456	582017022803	72	1190
075 075	Sprague	S-1137	1778913	592015037703	70	1190
075	Sprague	S-1130	1778830	583014005705	70	1190
075	Sprague	S-1139 S-1140	2089268	584021032601	72	0591
075	Sprague	S-1140	2089200	587002033900	72	0592
075 075	Sprague	S-1141	1939738	584021029100	72	0592
075	Sprague	S-1142	1939596	584021029100	71	0591
075 075	Sprague	S-1143	1939589	584021024000	71	0591
075 075		S-1144 S-1145	1939589	584021014200	71	0591
075	Sprague Sprague	S-1145 S-1146	1939665	583011017600	71	0391

075	Sprague	S-1147	1939534	584021030300	50	0591
075	Sprague	S-1148	1939872	584021017906	71	0591
075	Sprague	S-1149	1939866	584021029200	71	0591
075	Sprague	S-1150	2202887	584021022200	73	0591
075	Sprague	S-1151	1939784	584021013201	71	0591
075	Sprague	S-1152	1939767	584021032300	50	0591
075	Sprague	S-1153	2202805	583011015406	73	0293
075	Sprague	S-1154	1939968	583013013206	71	0591
075	Sprague	S-1155	1778669	584021029900	71	0591
075	Sprague	S-1156	1778928	592014032300	70	0389
075	Sprague	S-1157	1597669	592006002400	69	0389
075	Sprague	S-1158	1778501	592005001400	70	1190
075	Sprague	S-1159	1939711	592106025300	71	1190
075	Sprague	S-1160	1939672	592018021601	71	1190
075	Sprague	S-1161	1597654	592019029700	69	0389
075	Sprague	S-1162	1778919	592014023000	70	1190
075	Sprague	S-1163	2202772	592010036800	73	0389
075	Sprague	S-1164	1778846	592015036500	70	1190
075	Sprague	S-1165	1778528	592206004600	70	0389
075	Sprague	S-1166	1597740	592006005900	69	0389
075	Sprague	S-1167	1939512	592018026400	71	0389
075	Sprague	S-1168	1778817	592010025700	70	0389
075	Sprague	S-1169	1939885	592011002500	71	0389
075	Sprague	S-1170	2202983	587002024600	73	0592
075	Sprague	S-1171	1778571	592005013300	70	0389
075	Sprague	S-1172	1778543	592016010400	70	1190
075	Sprague	S-1173	2089695	565014010500	72	0792
075	Sprague	S-1174	1778591	592018008702	70	1190
075	Sprague	S-1175	1597687	592014028801	69	1190
075	Sprague	S-1176	1778624	592005030200	70	1190
075	Sprague	S-1177	1597767	592004021900	69	1190
075	Sprague	S-1178	1778996	592014027200	70	1190
075	Sprague	S-1179	1939933	592004020900	71	1190
075	Sprague	S-1180	1597732	592019025700	69	0389
075	Sprague	S-1181	2089326	592015007900	72	1190
075	Sprague	S-1182	1939811	592016028600	71	1190
075	Sprague	S-1183	1939559	592013020101	71	1190
075	Sprague	S-1184	1778921	592013049400	70	1190
075	Sprague	S-1185	1778707	592018009200	70	1190
075	Sprague	S-1186	1778647	592014007700	70	1190
075	Sprague	S-1187	1778752	592011038000	70	1190
075	Sprague	S-1188	2089250	587021029004	72	0592
075	Sprague	S-1189	1778718	592006002600	70	0389
075	Sprague	S-1190	1597793	588014012600	69	0389
075	Sprague	S-1191	1778970	588014012000	70	0389
075	Sprague	S-1192	1597722	588014002200	69	0389
075	Sprague	S-1193	1778779	588014026600	70	0389
075	Sprague	S-1194	1597612	588014025000	69	0389
075	Sprague	S-1195	2089465	587002022303	62	0592

075	Sprague	S-1196	1778744	590020006300	70	1190
075	Sprague	S-1197	1939548	587002074691	71	0592
075	Sprague	S-1198	1939548	587002074691	71	0592
075	Sprague	S-1199	2089260	587021022301	72	0592
075	Sprague	S-1200	1778924	587002074681	70	0592
075	Sprague	S-1201	2089685	587002035900	72	0592
075	Sprague	S-1202	2089305	580006030500	72	0592
075	Sprague	S-1203	1778612	587004003400	70	1094
075	Sprague	S-1204	1939977	591001030956	50	0591
075	Sprague	S-1205	2089244	592010024300	72	0389
075	Sprague	S-1206	1597744	592018002101	69	0389
075	Sprague	S-1207	1597819	592016026601	69	0389
075	Sprague	S-1208	2089419	592012018200	72	1288
075	Sprague	S-1209	1597668	592012006400	69	1288
075	Sprague	S-1210	1597604	588014000900	69	0389
075	Sprague	S-1211	2203000	592016026100	73	0296
075	Sprague	S-1212	2089205	587021022800	72	0592
075	Sprague	S-1213	2089280	590009020507	72	0592
075	Sprague	S-1214	1939949	590008010200	71	0391
075	Sprague	S-1215	1939980	590017018703	71	0591
075	Sprague	S-1216	1778515	590017023201	70	0391
075	Sprague	S-1217	1939639	590017021501	71	0591
)75	Sprague	S-1218	1778800	590019017007	70	1190
075	Sprague	S-1219	1597787	592014025201	69	0296
075	Sprague	S-1220	2202806	567008005500	73	1093
)75	Sprague	S-1221	2203197	565003036108	73	1093
)75	Sprague	S-1222	2089619	565005012400	72	1093
075	Sprague	S-1223	2202996	565012004500	73	1093
075	Sprague	S-1224	2202742	565005020900	73	1093
075	Sprague	S-1225	1778649	565004053402	70	1093
075	Sprague	S-1226	2203169	565013037800	73	1093
)75	Sprague	S-1227	2203197	565003036109	73	1093
)75	Sprague	S-1228	2203077	565005002000	73	1093
)75	Sprague	S-1229	2202835	565013003800	73	1093
)75	Sprague	S-1230	2202937	565013032200	73	1093
)75	Sprague	S-1231	1939804	565013014602	71	1093
)75	Sprague	S-1232	2203009	565013033408	73	1093
)75	Sprague	S-1233	1597626	565013016300	69	0295
)75	Sprague	S-1234	2089374	580005029331	72	1295
)75	Sprague	S-1235	1778753	570011022101	70	0191
)75	Sprague	S-1236	2089210	570002036201	72	0692
)75	Sprague	S-1237	2089208	570002035151	72	0692
075	Sprague	S-1238	2089264	570003049300	72	0692
075	Sprague	S-1239	2089457	570008040650	72	0692
075	Sprague	S-1240	2089385	570003001303	72	0692
)75	Sprague	S-1241	1939888	566008009409	71	0598
)75	Sprague	S-1242	2089402	570004010500	72	0192
075	Sprague	S-1243	1778636	566008042395	70	1093
)75	Sprague	S-1244	1939630	570320004200	71	0191

)75	Sprague	S-1245	1939770	570011028200	71	0191
)75	Sprague	S-1246	1939629	570002031800	71	0890
075	Sprague	S-1247	2203148	567008001106	73	0295
075	Sprague	S-1248	2202713	567008004800	73	1093
)75	Sprague	S-1249	2203014	565004026700	73	1093
)75	Sprague	S-1250	2089453	570002036500	72	0692
075	Sprague	S-1251	1597834	550015024103	69	0190
075	Sprague	S-1252	2203192	565005024400	73	1093
075	Sprague	S-1253	2089384	565013002900	72	0792
075	Sprague	S-1254	2089533	565014005461	72	0792
075	Sprague	S-1255	2089339	565003002122	72	0792
075	Sprague	S-1256	2089303	565001005300	72	0792
075	Sprague	S-1257	1597808	565003005600	69	1093
075	Sprague	S-1258	2089384	565013002909	72	0792
075	Sprague	S-1259	2089526	565012036300	72	1093
075	Sprague	S-1260	2089271	565003002136	72	0792
075	Sprague	S-1261	2089271	565003002135	72	0792
075	Sprague	S-1262	2089338	565014017903	72	0792
075	Sprague	S-1262	1597684	565013011251	69	0792
075	Sprague	S-1266	2089546	565013006861	72	0792
075	Sprague	S-1265	2089320	565005030050	72	0792
075	Sprague	S-1266	1778812	550021067700	70	0191
075	Sprague	S-1267	2203044	565012002101	73	1093
075	Sprague	S-1268	2202903	570006016103	73	1193
075	Sprague	S-1269	2202993	565005007000	73	1093
*******		S-1200	1597827	565012026700	69	1093
075	Sprague	S-1270	2203129	565012001901	73	1093
075	Sprague	S-1272	2202966	565003019700	73	1093
075 075	Sprague Sprague	S-1272	2089563	565014005434	72	0792
075 075	Sprague	S-1273	2203072	565012006100	73	1093
075 075		S-1274	2202723	565014011100	73	1093
	Sprague Sprague	S-1276	2202734	565012000500	73	1093
075	*********	S-1270	2089699	565002012900	72	1093
075 075	Sprague	0 4070	2202715	565012011500	73	1093
075	Sprague	S-1278 S-1279	2202701	565004043200	73	1093
075	Sprague	S-1279	2203190	565002012200	73	1093
075	Sprague	S-1280	2202836	565012038700	73	1093
075	Sprague	S-1281	2202050	565003019801	73	1093
075	Sprague	S-1283	2089488	573012013501	72	0994
075	Sprague	S-1283	2009400	573012005500	73	1093
075	Sprague	S-1285	2202070	574018024607	73	0191
075	Sprague	S-1285 S-1286	1939530	574018013300	71	0191
075	Sprague		1778931	573012013301	70	0994
075	Sprague	S-1287	1778931	573012013301	70	0994
075	Sprague	S-1288		574018010100	70	0191
075	Sprague	S-1289	1778826	573012013204	69	0994
075	Sprague	S-1290	1597790	574018025100	73	1193
075	Sprague	S-1291	2202719 2202817	573012013800	73	0994
075	Sprague Sprague	S-1292 S-1293	1939549	573012013000	71	0994

075	Sprague	S-1294	2202732	573012014102	73	0994
075	Sprague	S-1295	1778596	573012013704	70	0994
075	Sprague	S-1296	2089322	573012013601	72	0994
075	Sprague	S-1297	2089238	570003019550	72	0692
075	Sprague	S-1298	2202889	573012013900	73	0994
075	Sprague	S-1299	1939809	580007012200	71	1190
075	Sprague	S-1300	1597797	580008016800	69	0592
075	Sprague	S-1301	2089318	580008017201	72	0592
075	Sprague	S-1302	2089335	580014004500	72	0592
075	Sprague	S-1303	2089311	580006034502	72	0592
075	Sprague	S-1304	1939848	580005032300	50	0591
075	Sprague	S-1305	2203056	574019015201	73	0191
075	Sprague	S-1306	1778518	580007033720	70	1190
075	Sprague	S-1307	2203140	573012005600	73	1193
075	Sprague	S-1308	1778585	580007018600	70	1190
075	Sprague	S-1309	1778801	580008020401	70	1190
075	Sprague	S-1310	1778994	580007061600	70	0598
075	Sprague	S-1311	1939835	577020003400	71	0191
075	Sprague	S-1312	1939939	577020002300	71	0191
075	Sprague	S-1313	1939926	577020027300	71	0191
075	Sprague	S-1314	1939517	580001014750	71	0591
075	Sprague	S-1315	2089388	571016007800	72	0191
075	Sprague	S-1316	2202764	573012012503	73	0994
075	Sprague	S-1317	2089219	571017017202	72	0692
075	Sprague	S-1318	2089265	571015017600	72	0692
075	Sprague	S-1319	1778911	571016007508	70	0191
075	Sprague	S-1320	1778980	571016022600	70	0191
075	Sprague	S-1321	2089357	573012005403	72	0191
075	Sprague	S-1322	1939640	571016023800	71	0191
075	Sprague	S-1323	1939940	573012006500	71	0191
075	Sprague	S-1324	1778795	571016022001	70	0191
075	Sprague	S-1325	1778803	571017014703	70	0191
075	Sprague	S-1326	1939761	571015015403	71	0191
075	Sprague	S-1327	1778845	571015010801	70	0191
075	Sprague	S-1328	1778757	571016027201	70	0191
)75	Sprague	S-1329	1778635	592012006601	70	1190
075	Sprague	S-1330	2203033	571016022500	73	0191
)75	Sprague	S-1331	1778920	573012029400	70	0191
)75	Sprague	S-1332	2202722	573012008500	73	1093
)75	Sprague	S-1333	1778842	573014018804	70	0191
075	Sprague	S-1334	1597829	573014011401	69	0191
)75	Sprague	S-1335	1939697	573013004601	71	0191
)75	Sprague	S-1336	1939832	573014011301	71	0191
)75	Sprague	S-1337	2089219	571017017201	72	0692
)75	Sprague	S-1338	1939861	573013023000	71	0191
)75	Sprague	S-1339	2089348	570011041482	72	0692
)75	Sprague	S-1340	1778840	573012021301	70	0191
)75	Sprague	S-1341	1778902	573013005901	70	0191
075	Sprague	S-1342	1778789	573012027000	70	0191

075	Sprague	S-1343	1778721	573012027201	70	0191
075	Sprague	S-1344	1939538	573012026700	71	0191
075	Sprague	S-1345	1778971	573012009900	70	0191
075	Sprague	S-1346	1939923	573013008408	71	0191
075	Sprague	S-1347	2089569	596007011800	72	1091
075	Sprague	S-1348	1939782	595011000106	71	0391
075	Sprague	S-1349	2202745	595010003500	74	0594
075	Sprague	S-1350	2202917	595018010000	73	0594
075	Sprague	S-1351	1778597	595019033201	70	0594
075	Sprague	S-1352	2202926	595018039501	73	0594
075	Sprague	S-1353	2203084	595018039702	73	0594
075	Sprague	S-1354	2202790	595017004551	73	0594
075	Sprague	S-1355	1778949	595018039652	70	0594
075	Sprague	S-1356	2202878	595018024350	73	0594
075	Sprague	S-1357	1597733	595018040156	69	0594
075	Sprague	S-1358	2202913	595019032800	73	0594
075	Sprague	S-1359	1778664	596001021700	70	1190
075	Sprague	S-1360	1778734	596106022902	70	1190
075	Sprague	S-1361	2089405	593007025900	72	1190
075	Sprague	S-1362	1939846	596009004100	71	1091
075	Sprague	S-1363	1939637	596009025701	71	0591
075	Sprague	S-1364	1939781	596004027200	71	1091
075	Sprague	S-1365	1939973	596007022300	71	0591
075	Sprague	S-1366	2089289	596009003900	72	0591
075	Sprague	S-1367	1939741	596003012700	71	1091
075	Sprague	S-1368	1778508	596106000200	70	1190
075	Sprague	S-1369	1939799	596106029650	71	1091
075	Sprague	S-1370	1778719	596106000100	70	1190
075	Sprague	S-1371	1939807	596002029302	71	1091
075	Sprague	S-1372	2203090	596106003500	73	1091
075	Sprague	S-1373	1939755	596007015500	71	0591
075	Sprague	S-1374	1939631	596007022101	50	0591
075	Sprague	S-1375	1939606	596009028200	71	0591
075	Sprague	S-1376	1778514	595012012900	70	1190
075	Sprague	S-1377	1939943	596009023602	71	0591
075	Sprague	S-1378	1778505	593007018903	70	1190
075	Sprague	S-1379	1778793	595011000001	70	0391
075	Sprague	S-1380	1939971	593007008800	71	0591
075	Sprague	S-1381	1597759	593009012300	69	0591
075	Sprague	S-1382	1939612	593009025600	71	0591
075	Sprague	S-1383	1939734	593007019700	71	0591
075	Sprague	S-1384	1939817	593007019600	71	0591
075	Sprague	S-1385	1778706	593008020808	70	1190
075	Sprague	S-1386	1939638	593008008900	71	0391
075	Sprague	S-1387	1778706	593008020807	70	1190
075	Sprague	S-1388	1778706	593008020807	70	1190
075	Sprague	S-1389	1778706	593008020806	70	1190
075	Sprague	S-1390	1778656	593008000708	70	1190
075	Sprague	S-1391	1778509	593007033300	70	1190

075	Sprague	S-1392	1778655	592019032607	70	1190
)75	Sprague	S-1393	1778561	593008023508	70	1190
075	Sprague	S-1394	1939645	595020014200	71	1190
075	Sprague	S-1395	1939825	596009022300	71	0591
075	Sprague	S-1396	1778882	595012014501	70	1190
075	Sprague	S-1397	1939802	595013028400	71	1190
075	Sprague	S-1398	1778901	595016007300	70	1190
075	Sprague	S-1399	1597755	595019033900	69	1190
075	Sprague	S-1400	2202809	593007010700	72	0591
075	Sprague	S-1401	1939519	595012000207	71	1190
075	Sprague	S-1402	1778526	595020019300	70	0391
075	Sprague	S-1403	1939987	595121006500	71	1190
075	Sprague	S-1404	1939573	593007010100	71	0693
075	Sprague	S-1405	1939903	593009021301	71	1292
075	Sprague	S-1406	2202940	593007031500	73	1192
075	Sprague	S-1407	1939621	593008000500	71	0591
075	Sprague	S-1408	1939919	593008023402	71	0591
075	Sprague	S-1409	1778900	595012002101	70	1190
075	Sprague	S-1403	1939690	596008006300	71	0591
075	Sprague	S-1410	1939879	596008006500	71	0591
075	Sprague	S-1412	1939955	596003020200	71	1091
075	Sprague	S-1412	1939868	596002036000	71	1091
075	Sprague	S-1413	1939944	596009011904	71	1091
075	Sprague	S-1414	1939959	596106003805	71	1091
*****		S-1415	1939635	596003000201	71	0591
075	Sprague	S-1410	1939651	596106003702	71	1091
075	Sprague	S-1417 S-1418	2089358	596003000003	72	0591
075	Sprague	S-1418 S-1419	1939997	596007022703	71	0591
075 075	Sprague	S-1419 S-1420	1939911	596001023500	71	0591
075 075	Sprague	S-1420	1939613	596106013401	71	1091
	Sprague	S-1421 S-1422	1939992	596008007003	71	0591
075	Sprague	S-1422	1939650	596106004000	71	1091
075	Sprague	S-1423	1939553	596009017500	71	1091
075	Sprague			596009007403	71	0591
075	Sprague	S-1425	1939785 1939587	596106004405	71	1091
075	Sprague	S-1426 S-1427	1939577	596106000651	71	1091
075	Sprague		2203189	596106004503	73	1001
075	Sprague	S-1428	1939771	596007027107	70	0391
075	Sprague	S-1429		596005030451	71	1091
075	Sprague	S-1430	1939701 1939516	596007008707	71	0591
075	Sprague	S-1431 S-1432	1939635	596003000201	71	0591
075	Sprague			596007027106	71	0391
075	Sprague	S-1433	1939771	596004032501	50	0591
075	Sprague	S-1434	2203160	596106022553	70	0591
075	Sprague	S-1435	1778972	596007017050	70	1091
075	Sprague	S-1436	2089700	596005028550	71	0591
075	Sprague	S-1437	1939934	596004031750	71	1091
075	Sprague	S-1438	1939899	596008007500	50	0591
075 075	Sprague Sprague	S-1439 S-1440	1939957 1939937	596007008100	71	0591

075	Sprague	S-1441	1939614	596004011351	71	1091
075	Sprague	S-1442	1939510	596008005500	71	1091
075	Sprague	S-1443	1939860	596007008000	71	0391
075	Sprague	S-1444	2089249	596106004600	72	1091
075	Sprague	S-1445	1939889	596008006002	71	1091
075	Sprague	S-1446	2202755	596002026901	73	1091
075	Sprague	S-1447	1939851	596004025400	71	1091
075	Sprague	S-1448	1939829	596003020906	71	1091
075	Sprague	S-1449	1939664	596007021301	50	0591
075	Sprague	S-1450	1939931	596007009701	50	0591
075	Sprague	S-1451	1939830	596007025500	71	0591
075	Sprague	S-1452	1939976	596004008000	71	0591
075	Sprague	S-1453	1939715	596008006901	71	0591
075	Sprague	S-1454	1939702	596008006700	71	0591
075	Sprague	S-1455	1939828	596008002001	71	0591
075	Sprague	S-1456	1778983	593009004500	70	1190
075	Sprague	S-1457	1939810	596008007300	71	0591
075	Sprague	S-1458	1939766	596008019601	71	1091
075	Sprague	S-1459	1939820	596008020400	71	1091
075	Sprague	S-1460	1939525	596106013806	71	1091
075	Sprague	S-1461	1939719	596008007400	71	0591
075	Sprague	S-1462	2089261	596002024300	72	1091
075	Sprague	S-1463	1778857	596009009000	70	0391
075	Sprague	S-1464	1939722	596008013300	71	0591
075	Sprague	S-1465	1939542	596001028602	71	1091
075	Sprague	S-1466	1778572	596004000200	70	0591
075	Sprague	S-1467	1939859	596008001600	71	0591
075	Sprague	S-1468	1939523	596007026500	50	0591
075	Sprague	S-1469	1939543	596004011251	71	1091
075	Sprague	S-1470	1939920	596007025000	71	0591
075	Sprague	S-1471	1778717	596106028600	70	1091
075	Sprague	S-1472	1939622	596009008800	71	0391
075	Sprague	S-1473	1939704	596008006601	71	0591
075	Sprague	S-1474	1939843	592005013800	50	0591
075	Sprague	S-1475	1778892	592018006208	70	1190
075	Sprague	S-1476	1778886	592016017906	70	1190
075	Sprague	S-1477	1779000	592013018400	70	0591
075	Sprague	S-1478	1939609	592106002400	71	0591
075	Sprague	S-1479	1939815	592012037500	71	0591
075	Sprague	S-1480	1939661	592010029100	71	0591
075	Sprague	S-1481	1939528	592012025100	71	0591
075	Sprague	S-1482	1939936	592018019703	71	0591
075	Sprague	S-1483	1939504	592013035000	71	0591
075	Sprague	S-1484	1939660	592005002204	71	0591
075	Sprague	S-1485	1939938	592013040600	71	0591
075	Sprague	S-1486	1939886	592106000000	71	0591
075	Sprague	S-1400 S-1487	1597825	592018019600	69	0391
075	Sprague	S-1487	1778961	593007022201	70	1190
075	Sprague	S-1489	2089647	592012024900	72	0591

075	Sprague	S-1490	1939522	592015042800	71	0591
075	Sprague	S-1491	1939643	592016016600	70	0591
075	Sprague	S-1492	1939643	592016016600	70	0591
075	Sprague	S-1493	1939875	592015043300	71	0591
075	Sprague	S-1494	1939703	592011012401	71	0591
075	Sprague	S-1495	1939839	592014026100	71	0591
075	Sprague	S-1496	1939620	592012036800	70	0591
075	Sprague	S-1497	1939891	592106005101	71	0591
075	Sprague	S-1498	1939826	592005020700	71	0591
075	Sprague	S-1499	1939557	592015009902	71	0591
075	Sprague	S-1500	1939798	592011035400	71	0591
075	Sprague	S-1501	1939989 ₀	592017008701	71	0591
075	Sprague	S-1502	1939556	592013035401	71	0591
075	Sprague	S-1503	1778893	592017026800	70	1190
075	Sprague	S-1504	1939674	592013011001	70	0591
075	Sprague	S-1505	1778788	592013004608	70	1190
075	Sprague	S-1506	1778536	592016020902	70	1190
075	Sprague	S-1507	1778584	592106022800	70	1190
075	Sprague	S-1508	1778863	592106016608	70	1190
075	Sprague	S-1509	1778851	592016021509	70	1190
075	Sprague	S-1510	1778586	592005003400	70	1190
075	Sprague	S-1511	1778858	592019010401	70	1190
075	Sprague	S-1512	2203053	592016022900	73	1190
075	Sprague	S-1513	1778981	592016018100	70	1190
075	Sprague	S-1514	1778685	592005004103	70	1190
075	Sprague	S-1515	1778799	592016007802	70	1190
075	Sprague	S-1516	1778986	592015012002	70	1190
075	Sprague	S-1517	1778689	592010012200	70	1190
075	Sprague	S-1518	1939933	592004020901	71	1190
075	Sprague	S-1519	1778995	592015021201	70	1190
075	Sprague	S-1520	2202997	592019034504	73	1190
075	Sprague	S-1521	1778595	592016020809	70	1190
075	Sprague	S-1522	1778898	592013002800	70	0391
075	Sprague	S-1523	2202932	592017021800	73	1190
075	Sprague	S-1524	1778763	592016022004	70	1190
075	Sprague	S-1525	1778570	592016018807	70	1190
075	Sprague	S-1526	1778544	592005003803	70	1190
075	Sprague	S-1527	1778639	592016016207	70	1190
075	Sprague	S-1528	1778566	592016018301	70	1190
075	Sprague	S-1529	1778524	592018005901	70	1190
075	Sprague	S-1530	1778654	592016016107	70	1190
075	Sprague	S-1531	1778613	592018018508	70	1190
075	Sprague	S-1532	1778566	592016018300	70	1190
075	Sprague	S-1533	1778963	592011004108	70	1190
075	Sprague	S-1534	1778665	592016021900	70	1190
075	Sprague	S-1535	1778519	592016018200	70	1190
075	Sprague	S-1536	1778544	592005003803	70	1190
075	Sprague	S-1537	2089502	592006002020	72	0193
075	Sprague	S-1538	2089328	592018018803	72	1292

075	Sprague	S-1539	2089248	592012026872	72	0193
075	Sprague	S-1540	2089581	592010015900	72	0193
075	Sprague	S-1541	2089460	592018025000	72	0193
075	Sprague	S-1542	2089548	592019004900	72	0193
075	Sprague	S-1543	1939884	592018029105	71	0193
075	Sprague	S-1544	2202744	592016025700	73	0193
075	Sprague	S-1545	2089333	592206004001	72	0193
075	Sprague	S-1546	2089682	592011003800	72	0193
075	Sprague	S-1547	2089446	592011021700	72	0193
075	Sprague	S-1548	1939898	592010015400	71	0193
075	Sprague	S-1549	1939898	592010015400	71	0193
075	Sprague	S-1550	1597723	592019018701	69	0193
075	Sprague	S-1551	2089235	592015021302	72	0591
075	Sprague	S-1552	2089577	592019007600	72	0193
075	Sprague	S-1553	2203187	593007003702	70	0389
075	Sprague	S-1554	1778538	593009022302	70	1190
075	Sprague	S-1555	1778950	593008016201	70	1190
075	Sprague	S-1556	1939653	593007044302	71	1190
075	Sprague	S-1557	1778627	593007015000	70	1190
075	Sprague	S-1558	1778866	593008018400	70	1190
075	Sprague	S-1559	2089687	592018022600	72	0193
075	Sprague	S-1560	2203187	593007003703	70	0389
075	Sprague	S-1561	2089331	592014018801	72	1292
075	Sprague	S-1562	1597746	593009005500	69	0389
075	Sprague	S-1563	2203152	593007027700	73	0389
075	Sprague	S-1564	2202891	593008013800	73	0389
075	Sprague	S-1565	2202728	593009022101	72	0296
075	Sprague	S-1566	2089669	592206004373	72	0193
075	Sprague	S-1567	1778690	592013025231	70	0193
075	Sprague	S-1568	1597743	593009021400	69	0389
075	Sprague	S-1569	1597800	592106022950	70	0591
075	Sprague	S-1570	1778934	592013046830	70	1292
075	Sprague	S-1571	1939627	592010033600	71	0591
075	Sprague	S-1572	1939819	592014035501	68	0591
075	Sprague	S-1573	1939578	592019026108	71	0591
075	Sprague	S-1574	1939707	592016016700	71	0591
075	Sprague	S-1575	2089673	592018016201	72	1292
075	Sprague	S-1576	2203111	592018005207	73	0591
075	Sprague	S-1577	2089306	592011009400	72	1292
075	Sprague	S-1578	1939601	592013029303	71	0591
075	Sprague	S-1579	1939995	592010003500	71	0591
075	Sprague	S-1580	1939970	592015016300	71	0391
075	Sprague	S-1581	1778781	592019023300	70	0391
075	Sprague	S-1582	1939852	592013043280	71	0591
075	Sprague	S-1583	2089292	565004012150	72	0792
075	Sprague	S-1584	1939946	592018018409	71	0391
075	Sprague	S-1585	2089558	592011018201	72	1292
075	Sprague	S-1586	2089396	592018026105	72	1292
075	Sprague	S-1587	2089203	592015033200	72	1292

075	Sprague	S-1588	2089508	592010034300	72	1292
075	Sprague	S-1589	2089257	592011039400	72	1292
075	Sprague	S-1590	1939636	592011006100	71	1292
075	Sprague	S-1591	2089273	592010029500	72	1292
075	Sprague	S-1592	2089437	592005017804	72	1292
075	Sprague	S-1593	1939623	592011005006	71	0591
075	Sprague	S-1594	2089539	592015043800	72	1292
075	Sprague	S-1595	2089523	592018022201	72	1192
075	Sprague	S-1596	1778796	592014015700	70	1292
075	Sprague	S-1597	2089321	592010033000	72	1292
075	Sprague	S-1598	2089359	592011021400	72	1292
075	Sprague	S-1599	2089391	592010011801	72	1292
075	Sprague	S-1600	2089473	592016026405	72	1292
075	Sprague	S-1601	2089580	555005013500	72	1092
075	Sprague	S-1602	1939772	560007028206	71	1091
075	Sprague	S-1603	1597842	555001002500	69	1192
075	Sprague	S-1604	2089649	555002016400	72	1092
075	Sprague	S-1605	2089531	555002027600	72	1092
075	Sprague	S-1606	2089623	555109002800	72	0592
075	Sprague	S-1607	2089267	555003003900	72	1092
075	Sprague	S-1608	2089369	555002022280	72	1192
075	Sprague	S-1609	2089640	555109005800	72	0592
075	Sprague	S-1610	2202885	555001004200	73	1192
075	Sprague	S-1611	1939646	555001034000	71	1192
075	Sprague	S-1612	2089554	555003001704	72	1092
075	Sprague	S-1613	2089486	555004010150	72	1092
075	Sprague	S-1614	2089263	555001003800	72	1192
075	Sprague	S-1615	2089231	555002027700	72	1192
075	Sprague	S-1616	2089220	555004005790	72	1192
075	Sprague	S-1617	2089620	555003007900	72	1192
075	Sprague	S-1618	2089212	555003013800	72	1192
075	Sprague	S-1619	2203181	555005006900	73	1192
075	Sprague	S-1620	1939605	555001012900	71	1092
075	Sprague	S-1621	2089254	555003013000	72	1192
075	Sprague	S-1622	2089469	555110006100	72	0592
075	Sprague	S-1623	2089215	555002001007	71	1192
075	Sprague	S-1624	2089300	555001001101	72	1092
075	Sprague	S-1625	2089449	555104007900	72	0592
075	Sprague	S-1626	1939850	555110006400	71	0592
075	Sprague	S-1627	2089332	555005019700	72	1192
075	Sprague	S-1628	2089392	555001010800	72	1192
075	Sprague	S-1629	2089423	555002011800	72	1192
075	Sprague	S-1630	2202756	555001031001	73	1192
075	Sprague	S-1631	1939774	555017001200	71	0891
075	Sprague	S-1632	1939790	555015037903	71	1190
075	Sprague	S-1633	1939951	555015031406	71	1190
075	Sprague	S-1634	1778770	555015032802	70	1190
075	Sprague	S-1635	1778985	555015037703	70	1190
075	Sprague	S-1636	1778658	555015033009	70	1190

075	Sprague	S-1637	1778859	555015035205	70	1190
075	Sprague	S-1638	1939682	555015031906	71	1190
075	Sprague	S-1639	1778574	555015032003	70	1190
075	Sprague	S-1640	1778541	555015032302	70	1190
075	Sprague	S-1641	2089501	555015032906	72	1190
075	Sprague	S-1642	1778650	555015037805	70	1190
075	Sprague	S-1643	1939696	555015038102	71	1190
075	Sprague	S-1644	2089589	555003014300	72	1192
075	Sprague	S-1645	1939823	555005016300	71	0791
075	Sprague	S-1646	2089436	555104012660	72	1092
075	Sprague	S-1647	2203125	555012016600	73	0791
075	Sprague	S-1648	1939857	555005003105	71	0191
075	Sprague	S-1649	1778611	555019000602	70	0891
075	Sprague	S-1650	1939857	555005003106	71	0191
075	Sprague	S-1651	1939618	555016019403	71	0791
075	Sprague	S-1652	2089447	555109004000	72	0592
075	Sprague	S-1653	2089341	555003012600	72	1192
075	Sprague	S-1654	2089648	555109002300	72	0592
075	Sprague	S-1655	2089660	555001007400	72	1092
075	Sprague	S-1656	2089679	555001019100	72	1092
075	Sprague	S-1657	2203063	555005013900	57	1192
075	Sprague	S-1658	2089256	555001010600	72	1192
075	Sprague	S-1659	2089228	555003007700	72	1092
075		S-1660	1939615	555104015052	71	0891
075	Sprague	S-1661	1939537	560010036902	71	1091
	Sprague		1778948	560018077401	70	1190
075	Sprague	S-1662			70	1190
075	Sprague	S-1663	1778953	560018077608	70	1190
075	Sprague	S-1664	1778926	560018063601	70	1190
075	Sprague	S-1665	1939717	560017035900	70	1190
075	Sprague	S-1666	1778682	560121071401	70 69	1091
075	Sprague	S-1667	1597643	560014020000		1091
075	Sprague	S-1668	1939942	560017057900	71	
075	Sprague	S-1669	1939801	560014022900	71	1091
075	Sprague	S-1670	2089294	560010056300	12	1091
075	Sprague	S-1671	1939916	560019046306	71	1091
075	Sprague	S-1672	2089281	565014005452	72	0792
075	Sprague	S-1673	1778957	560018082300	70	1091
075	Sprague	S-1674	2089442	555110006300	72	0592
075	Sprague	S-1675	1939656	560010047800	71	1091
075	Sprague	S-1676	1939993	560013064003	71	0190
075	Sprague	S-1677	1939513	560003093900	71	1091
075	Sprague	S-1678	1597617	560012055706	69	1091
075	Sprague	S-1679	1939833	560016036701	71	1091
075	Sprague	S-1680	1939991	560012066806	71	1091
075	Sprague	S-1681	1939862	560009022122	71	1091
075	Sprague	S-1682	1939865	560018084800	71	1091
075	Sprague	S-1683	1939776	560121050068	71	1091
075	Sprague	S-1684	1939762	560004027102	71	1091
075	Sprague	S-1685	1939713	560019009502	71	1091

075	Sprague	S-1686	1939726	560012021206	71	0291
075	Sprague	S-1687	1939758	560012063807	71	1091
075	Sprague	S-1688	2089307	560018101750	72	1091
075	Sprague	S-1689	1939877	560019041803	71	1091
075	Sprague	S-1690	2202740	564010001603	73	1093
075	Sprague	S-1691	1597832	560014074200	69	1289
075	Sprague	S-1692	1778657	555015031705	70	1190
075	Sprague	S-1693	2089629	555001008000	72	1092
075	Sprague	S-1694	2202942	555003007400	73	1192
075	Sprague	S-1695	2089491	555002010108	72	1192
075	Sprague	S-1696	2089424	555020007109	72	1092
075	Sprague	S-1697	2203188	556020014650	73	0596
075	Sprague	S-1698	1939773	556020011251	71	0791
075	Sprague	S-1699	2089259	557010013104	72	1190
075	Sprague	S-1700	1597771	557010006000	69	0190
075	Sprague	S-1701	2089507	557010004950	72	0592
075	Sprague	S-1702	1597823	560010096800	69	1188
075	Sprague	S-1703	1778805	560017054602	70	0489
075	Sprague	S-1704	1778975	560002032309	70	0489
075	Sprague	S-1705	9990423	560018077506	70	1190
075	Sprague	S-1706	1778831	560004040609	71	0489
)75	Sprague	S-1707	2089642	555013025600	72	1192
075	Sprague	S-1708	1778855	560016073407	70	1190
075	Sprague	S-1709	1778675	560003092200	70	1190
075	Sprague	S-1710	1939729	560001006600	71	0190
075	Sprague	S-1711	1939729	560001006600	71	0190
075	Sprague	S-1712	1939797	560003073100	71	1289
075	Sprague	S-1713	2089258	560003026009	79	1289
075	Sprague	S-1714	1939909	560010067701	71	0489
075	Sprague	S-1715	2089258	560003026008	79	1289
075	Sprague	S-1716	1597726	560019029902	69	1289
075	Sprague	S-1717	1778797	560002059900	70	0489
075	Sprague	S-1718	1778915	560007053600	70	0489
075	2	S-1719	2089361	560013004701	72	1289
075	Sprague Sprague	S-1720	1778894	560018030000	70	1190
075	Sprague	S-1721	1778638	560011049701	70	1190
075	Sprague	S-1721	1939561	550010080900	71	0191
075	Sprague	S-1722	1778780	550010027300	70	0191
075	Sprague	S-1724	1939659	550118008841	71	1091
075	Sprague	S-1724	1778637	550009064000	70	0191
)75	Sprague	S-1725	1939924	550005037600	70	0191
)75	Sprague	S-1720	1778806	550117016600	70	0191
)75)75	Sprague	S-1727	1939897	550118005500	70	0191
075 075	Sprague	S-1728 S-1729	1939668	550021019004	71	0191
075 075	*********			550009024100	71	0191
** *** *** *** *** *** *** ***	Sprague	S-1730	1939803	550021086004		
)75)75	Sprague Sprague	S-1731	1778743		70 71	0191
075	Sprague	S-1732	1939600	550003054307	71 72	1091 0396
075 075	Sprague	S-1733 S-1734	2089462 1939678	500010467600	72	0090

075	Sprague	S-1735	1778979	550008055500	70	0794
075	Sprague	S-1736	1778772	550009081100	70	0191
075	Sprague	S-1737	1778984	550115007700	70	0191
075	Sprague	S-1738	1939581	550020046609	71	0191
075	Sprague	S-1739	1778977	550011036000	70	0191
075	Sprague	S-1740	1778578	550009023000	70	0191
075	Sprague	S-1741	1939610	550021061200	71	0191
075	Sprague	S-1742	2202955	550011062006	73	0191
075	Sprague	S-1743	2089645	550118070650	72	0392
075	Sprague	S-1744	2089676	550118004800	72	0392
075	Sprague	S-1745	2089430	550020008001	72	0392
075	Sprague	S-1746	2089245	550006044100	72	0392
075	Sprague	S-1747	2089232	550005035200	72	0392
075	Sprague	S-1748	2089222	550011001600	72	0392
075	Sprague	S-1749	2089418	550012068600	72	0794
075	Sprague	S-1750	1778764	555015036004	70	1190
075	Sprague	S-1751	1939775	596106024051	71	0591
075	Sprague	S-1752	1778850	550003042500	70	0190
075	Sprague	S-1753	1939574	550010001901	71	1190
075	Sprague	S-1754	1597694	550012018501	69	0190
075	Sprague	S-1755	1939591	550116002400	71	1190
)75	Sprague	S-1756	1778549	550114024200	70	1190
075	Sprague	S-1757	1778978	550002043300	70	0190
)75	Sprague	S-1758	1778804	550007045002	70	1190
075	Sprague	S-1759	1778587	550012070900	70	1190
075	Sprague	S-1760	1778804	550007045003	70	1190
075	Sprague	S-1761	1778599	550115011506	70	0190
075	Sprague	S-1762	1597667	550021063100	69	0190
075	Sprague	S-1763	1597702	550119049005	69	0190
075	Sprague	S-1764	1939545	550009009401	71	0190
075	Sprague	S-1765	1939576	550009019700	71	1190
075	Sprague	S-1766	1778648	550008051900	70	0191
075	Sprague	S-1767	1778630	550005012700	70	0191
075	Sprague	S-1768	2089521	550008089500	72	0794
075	Sprague	S-1769	1778533	550009019400	70	0191
075	Sprague	S-1770	1939659	550118008840	71	1091
075	Sprague	S-1771	1939800	550107002700	71	0191
075	Sprague	S-1772	1778660	550115018800	70	0191
075	Sprague	S-1773	1939545	550009009402	71	0190
075	Sprague	S-1774	1778775	550009022100	70	0191
075	Sprague	S-1775	1778554	550017049150	70	1190
075	Sprague	S-1776	1778732	550020047300	70	0191
075	Sprague	S-1777	1778703	550001045702	70	0191
075	Sprague	S-1778	1778722	550009080401	70	0191
075	Sprague	S-1779	1778946	550010051200	70	0191
075	Sprague	S-1780	1778551	550003038050	70	1190
075	Sprague	S-1781	1939678	550003067400	71	0191
075	Sprague	S-1782	1597613	550008110300	69	0191
075	Sprague	S-1783	1778883	555015035404	70	1190

)75	Sprague	S-1784	1939514		71	1190
	Sprague	S-1785	1939687	555015030301	71	1190
75	Sprague	S-1786	1597804	555003014800	69	0190
75	Sprague	S-1787	1778906	555005010201	70	1190
75	Sprague	S-1788	1778916	555012011600	70	1190
75	Sprague	S-1789	1597673	555001025700	69	0190
75	Sprague	S-1790	1778923	555015037504	70	1190
75	Sprague	S-1791	1597768	555017025401	69	0190
)75	Sprague	S-1792	1778943	555015035103	70	1190
)75	Sprague	S-1793	1778724	555013007701	70	1190
)75	Sprague	S-1794	1778560	555015037400	70	1190
)75	Sprague	S-1795	1939746	555015037200	71	1190
)75	Sprague	S-1796	2089413	550008061900	72	0794
)75	Sprague	S-1797	1778880	555015038205	70	1190
)75	Sprague	S-1798	1778507	551020022353	70	0895
)75	Sprague	S-1799	1939718	555015031800	71	1190
)75	Sprague	S-1800	1778951	555015032400	70	1190
)75	Sprague	S-1801	2203067	555015031601	73	1190
)75	Sprague	S-1802	1778709	555015032604	70	1190
)75	Sprague	S-1803	1778582	555015037603	70	1190
)75	Sprague	S-1804	1778582	555015037604	70	1190
)75	Sprague	S-1805	2089221	555015032104	72	1190
)75	Sprague	S-1806	1939979	555015037107	71	1190
)75	Sprague	S-1807	1778917	555015031501	70	1190
)75	Sprague	S-1808	1778563	555015035306	70	1190
)75	Sprague	S-1809	1778691	555015037301	70	1190
075	Sprague	S-1810	1778681	555015032503	70	1190
075	Sprague	S-1811	2089618	560012028500	72	1091
075	Sprague	S-1812	1597638	555015038008	69	1190
075	Sprague	S-1813	1778642	550007054701	70	0995
075	Sprague	S-1814	2203018	550007012600	73	0794
075	Sprague	S-1815	2089678	550013036900	72	1294
075	Sprague	S-1816	2202852	550008083000	73	0794
075	Sprague	S-1817	2089578	550104009015	72	0794
075	Sprague	S-1818	2203147	550020062010	73	0794
075	Sprague	S-1819	1778616	550115014301	70	1294
075	Sprague	S-1820	1939948	550006056600	71	0794
075	Sprague	S-1821	1597661	550001041150	69	0794
075	Sprague	S-1822	2202931	550114036600	73	0995
075	Sprague	S-1823	1597757	550021016500	69	0195
075	Sprague	S-1824	2203175	550008001850	73	0195
075	Sprague	S-1825	2203047	550005014302	73	0195
075	Sprague	S-1826	1597711	550006065750	69	0295
075	Sprague	S-1827	1597799	555013009400	69	0889
075	Sprague	S-1828	2203149	550007053551	73	0895
075 075	Sprague	S-1829	1778686	555015036203	70	1190
075 075	Sprague	S-1830	2089652	551020022451	72	0895
075 075	Sprague	S-1831	2089308	551019018900	72	0392
075 075	Sprague	S-1832	2089368	550005025200	72	0995

75	Sprague	S-1833	1939566	3	71	0895
75	Sprague	S-1834	1940000	550021057001	71	0295
75	Sprague	S-1835	2203046	550119010960	73	0895
75 75	Sprague	S-1836	2089323	550115044951	72	0895
)75	Sprague	S-1837	2089564	550014026604	72	0895
)75	Sprague	S-1838	2202703	550114034605	73	0195
)75	Sprague	S-1839	1778809	550005025104	70	0995
)75	Sprague	S-1840	2089564	550014026603	72	0895
)75	Sprague	S-1841	1939983	550118041600	71	1295
)75	Sprague	S-1842	1939619	553006015550	71	1091
)75	Sprague	S-1843	2089659	550012011101	72	0295
)75	Sprague	S-1844	1939676	560006040903	71	0795
)75)75	Sprague	S-1845	2202716	560010035301	73	0294
075 075	Sprague	S-1846	1778768	560004022300	70	0795
075	Sprague	S-1847	1939978	560011029700	71	0795
075 075	Sprague	S-1848	2089557	560003035300	72	0795
075 075	Sprague	S-1849	2203176	560018041173	73	0795
075	Sprague	S-1850	1778730	560018089292	70	0795
075 075	Sprague	S-1851	2089560	560011034804	72	0795
	Sprague	S-1852	1597686	560405008601	69	0695
075	Sprague	S-1853	2089614	560018041251	72	0795
075 075	Sprague	S-1854	1778999	560018065714	70	0195
	Sprague	S-1855	2202890	560305067711	73	0795
075 075	Sprague	S-1856	2089415	560018089700	72	0795
075		S-1857	2203066	560305087161	73	0195
	Sprague Sprague	S-1858	1778725	560019085601	70	0795
075	Sprague Sprague	S-1859	2203108	560205003501	73	0695
075 075	Sprague	S-1860	2089403	560002018806	72	0795
075	Sprague	S-1861	1778930	560016075400	70	0795
075	Sprague	S-1862	2089452	560018041223	72	0795
*****	Sprague	S-1863	2089286	560018015804	72	0795
075 075	Sprague	S-1864	2089286	560018015804	72	0795
	Sprague	S-1865	1778617	560017051201	70	0795
075 075	Sprague	S-1866	2089556	560121082204	72	0195
075	Sprague	S-1867	1939917	560007013101	71	0795
075	Sprague	S-1868	2203127	560017015302	73	0795
075 075	Sprague	S-1869	2089403	560002018807	72	0795
075	Sprague	S-1870	2203177	560003058022	73	0795
075	Sprague	S-1871	2089458	560010035721	72	0195
075 075	Sprague	S-1871	1939900	560014053582	71	0195
075	Sprague	S-1873	2089524	560018065511	72	0195
Surrananananan	Sprague	S-1874	2202900	560014091990	73	0195
075 075	Sprague	S-1875	2203050	560002063900	73	0294
075	Sprague	S-1876	2202747	560010074700	73	0294
075 075	Sprague	S-1070 S-1877	2202717	560003058102	73	0294
075 075	Sprague	S-1878	2202861	560006055800	73	0294
·	Sprague	S-1879	3836986	560004069900	84	0294
075	Sprague	S-1880	2202882	560004065504	62	0294
075 075	Sprague	S-1881	2202892	560010071204	73	0294

075	Sprague	S-1882	2202863	560006016007	73	0294
075	Sprague	S-1883	1597682	560007025200	69	0294
075	Sprague	S-1884	2202808	560013015600	73	0294
075	Sprague	S-1885	2202762	560121000363	73	0194
075	Sprague	S-1886	2203037	560001073204	73	0294
075	Sprague	S-1887	2089372	560001047200	72	0795
075	Sprague	S-1888	1939508	560010033500	71	0795
075	Sprague	S-1889	1939950	560019024400	71	0695
075	Sprague	S-1890	2203106	560013056202	73	0795
075	Sprague	S-1891	2202951	560009021929	73	1091
075	Sprague	S-1892	2089544	560018094610	72	0195
075	Sprague	S-1893	1939511	560016089222	71	1091
075	Sprague	S-1894	1939593	560015010500	71	0795
075	Sprague	S-1895	2089512	560010086930	72	0195
075	Sprague	S-1896	2202886	560011014604	73	0795
075	Sprague	S-1897	2089403	560002018805	72	0795
075	Sprague	S-1898	1597641	560014087244	69	0795
075	Sprague	S-1899	2202933	560018016200	73	0795
075	Sprague	S-1900	1939996	560011029801	71	0795
075	Sprague	S-1901	1778606	560017012401	70	0795
075	Sprague	S-1902	1939669	560015067302	71	0795
075	Sprague	S-1903	1597693	560002028300	69	0795
075	Sprague	S-1904	1778603	562009015700	70	1288
075	Sprague	S-1905	2202894	560002018704	73	0795
075	Sprague	S-1906	2202894	560002018705	73	0795
075	Sprague	S-1907	2202779	560016045303	73	0795
075	Sprague	S-1908	2203114	560018043666	73	0195
075	Sprague	S-1909	2203142	560006034313	73	0195
075	Sprague	S-1910	2203029	560011021263	73	0195
075	Sprague	S-1911	2203029	560011021263	73	0195
075	Sprague	S-1912	2202982	562119002790	73	0296
075	Sprague	S-1913	1778748	562017027340	70	0296
075	Sprague	S-1914	1778794	562021017060	70	0296
075	Sprague	S-1915	1778631	562021014900	70	1288
075	Sprague	S-1916	1597659	562009020200	69	1288
075	Sprague	S-1917	1597836	560011063001	69	0795
075	Sprague	S-1918	2089420	562006009400	72	1288
075	Sprague	S-1919	1939507	560011021271	71	0195
075	Sprague	S-1920	1778783	562120002200	70	1288
075	Sprague	S-1921	1597708	562017034401	69	0389
075	Sprague	S-1922	1778529	562018011801	70	0191
075	Sprague	S-1923	1778955	562021017303	70	0191
075	Sprague	S-1924	1778567	562009024800	70	0191
075	Sprague	S-1925	1939974	562018016601	71	0191
075	Sprague	S-1926	1778733	562008001300	70	0191
075	Sprague	S-1927	1778733	562008001300	70	0191
075	Sprague	S-1928	1939880	562018037501	71	0191
075	Sprague	S-1929	2089576	564011008300	72	0598
075	Sprague	S-1930	2089371	564010000300	72	0191

)75	Sprague	S-1931	2089489	564010005200	72	0191
)75	Sprague	S-1932	2202740	564010001603	73	1093
)75	Sprague	S-1933	1778684	562021018700	70	1288
)75	Sprague	S-1934	1778550	560014024484	70	0195
)75	Sprague	S-1935	2089666	560002042604	72	0795
)75	Sprague	S-1936	1597833	560018041194	69	0795
)75	Sprague	S-1937	2089211	560018044637	72	0195
075	Sprague	S-1938	1597763	560007093900	69	0795
075	Sprague	S-1939	2203133	560014003091	73	0795
075	Sprague	S-1940	1778735	560121000381	70	0195
075	Sprague	S-1941	1778731	560010026201	70	0795
075	Sprague	S-1942	2089302	560018041248	72	0795
075	Sprague	S-1943	2089571	560017012259	72	0795
075	Sprague	S-1944	2202946	560018043655	73	0195
075	Sprague	S-1945	2202771	560018059077	73	0795
075	Sprague	S-1946	2202727	560121000393	73	0195
075	Sprague	S-1947	1778715	560018041674	70	0195
075	Sprague	S-1948	1939617	560012041075	71	0195
075	Sprague	S-1949	2202748	560121000373	73	0195
075	Sprague	S-1950	2202789	560018041216	73	0795
075	Sprague	S-1951	2202870	560011021251	73	0195
075	Sprague	S-1952	1778758	560004015804	70	0795
075	Sprague	S-1953	2089206	560018057305	72	0795
075	Sprague	S-1954	1778887	560003058095	70	0795
075	Sprague	S-1955	1778965	560003059558	70	0795
075	Sprague	S-1956	1597665	560006061601	69	0795
075	Sprague	S-1957	2202899	560018041187	73	0795
075	Sprague	S-1958	2202869	560018041662	73	0195
075	Sprague	S-1959	2089541	560012001906	72	0195
075 075	Sprague	S-1960	2203122	560018043996	73	0195
075	Sprague	S-1961	2203133	560014003092	73	0795
	Sprague	S-1962	2089693	560002028906	72	0795
075 075		S-1962	1939732	560018043834	71	0195
075	Sprague Sprague	0 4004	2202971	560018041694	73	0195
075 075	Sprague Sprague	S-1964 S-1965	2089549	560010024073	72	0792
075 075	Sprague	S-1966	2089543	560004028006	72	1092
075	Sprague	S-1967	2203164	560011000600	73	0792
075	Sprague	S-1968	2089530	560014087031	72	1092
075 075	Sprague	S-1969	2089565	560003019102	72	0792
075	Sprague	S-1905	2089310	560019073300	72	0492
075	Sprague	S-1971	2089290	560012083603	72	1092
075 075	Sprague	S-1971 S-1972	1778865	560016045910	70	0792
{		S-1972 S-1973	1939896	560012096704	71	1092
075	Sprague Sprague	S-1973	2089478	560009021332	72	0792
075	Sprague	S-1974 S-1975	2089514	560006006600	72	0792
075	Sprague	S-1975 S-1976	2089467	560009019423	72	0792
075	Sprague	S-1970 S-1977	2089407	560009120712	72	0792
075	Sprague	S-1977 S-1978	2089342	560012087506	72	1092
075 075	Sprague Sprague	S-1978 S-1979	2009290	560015042801	73	1092

75	Sprague	S-1980	2089654	560010090823	72	0792
75	Sprague	S-1981	1939698	560006000500	71	1091
75 75	Sprague	S-1982	2089519	560012087403	72	1092
75	Sprague	S-1983	1939744		71	1091
)75	Sprague	S-1984	2089519	560012087403	72	1092
)75	Sprague	S-1985	2089607	560006041204	72	1092
)75)75	Sprague	S-1986	2089224	560012016355	72	0692
)75	Sprague	S-1987	2089484	560012089007	72	1092
)75	Sprague	S-1988	2089401	560015033808	72	0792
)75	Sprague	S-1989	1939644	560019010003	71	1091
)75	Sprague	S-1990	2089590	560003026300	72	0792
	Sprague	S-1991	1939562	560014051351	71	0792
)75)75	Sprague	S-1992	2089603	560016088100	72	0792
		S-1993	2202864	560019079502	73	0492
)75)75	Sprague Sprague	S-1993	2089600	560006076806	72	0792
075	Sprague Sprague	S-1994 S-1995	2089551	560014043104	72	0792
075	Sprague	S-1995 S-1996	2089380	560012086606	72	1092
075 075	Sprague	S-1990 S-1997	2089233	560012087804	72	1092
075 075	Sprague	S-1997 S-1998	2089653	560012087108	72	1092
	Sprague	S-1999	2089353	560014027101	72	1092
075		S-2000	2089661	560012088805	72	1092
075 075	Sprague Sprague	S-2000	2089467	560009019423	72	0792
075	Sprague	S-2001	2089377	560012087303	72	1092
075		S-2002	2089529	560019071403	72	0492
	Sprague	S-2000	2089398	560121033300	72	1092
075	Sprague	S-2004	2089600	560006076807	72	0792
075	Sprague	S-2005	2089617	560006062201	72	0792
075	Sprague	S-2000	2089511	560018023503	62	1092
075	Sprague	S-2007	2089466	560009037373	72	0792
075	Sprague	S-2000	1778824	560016048603	70	0795
075	Sprague	S-2009	2089626	560010025011	72	1092
075	Sprague	S-2010	2089394	560011199813	72	0194
075	Sprague	S-2011	2089630	560019085803	72	0492
075	Sprague	S-2012 S-2013	2202813	560013051902	73	0792
075 075	Sprague Sprague	S-2010	2089639	560012087205	72	1092
	Sprague	S-2014 S-2015	2089325	560003026698	72	1092
075	Sprague	S-2016	2089356	560014024611	72	0492
075 075	Sprague	S-2017	2089450	560012089201	72	1092
075	Sprague	S-2018	1597813	560007064808	74	0292
075 075	Sprague	S-2010 S-2019	2089426	560016073890	72	0792
075	Sprague	S-2015 S-2020	2089538	560017010881	72	0792
075 075	Sprague	S-2020	2089438	560017010873	72	0792
}	Sprague	S-2021 S-2022	2089506	560017010776	72	1092
075	Sprague	S-2022 S-2023	2089312	560009044571	72	1092
075	Sprague	S-2023	2089528	560009037261	72	0792
075 075	Sprague Sprague	S-2024 S-2025	2009320	560009037151	62	0792
{	********	S-2025	2089562	560003026680	72	1092
075	Sprague Sprague	S-2020	2089406	560003026678	72	1092
075 075	Sprague Sprague	S-2027	2089492	560017010797	72	1092

)75	Sprague	S-2029	2089559	560015013302	72	1092
75 75	Sprague	S-2030	2089443		72	0992
75 75	Sprague	S-2031	2089269	560006062302	72	1092
75	Sprague	S-2032	2089587	560018089223	72	0792
75	Sprague	S-2032	2089470	560018083611	72	0792
		S-2034	2089606	560002044306	62	0992
)75 \75	Sprague	S-2034	2089409	560016091500	72	0792
)75	Sprague	S-2035	2203191	560010078400	73	1093
)75)75	Sprague Sprague	S-2030	2203002	560006033403	73	1093
)75)75	Sprague	S-2037	2202970	560018112110	73	1093
	Sprague	S-2030	2089691	560017010786	72	1092
075 075		S-2005	2089431	560018080952	72	1092
)75)75	Sprague Sprague	S-2040	1597729	560017010860	69	0792
		S-2041	2089572	560014007200	72	0792
075 075	Sprague Sprague	S-2042 S-2043	1778530	560017024500	70	1092
	Sprague Sprague	S-2043 S-2044	2089593	560019030605	72	0792
075	Sprague	S-2044 S-2045	2089291	560017010895	72	0792
075	Sprague Sprague	S-2045 S-2046	1939892	560007014107	71	1091
075	Sprague Sprague	S-2040 S-2047	2089296	560012087505	72	1092
075	Sprague	S-2047 S-2048	1778661	560016039204	70	1091
075	Sprague	S-2048 S-2049	1597813	560007064808	74	0292
075	Sprague	S-2049 S-2050	1778535	560014093002	70	0492
075	Sprague	S-2050 S-2051	1939842	560007074606	71	1092
075	Sprague	S-2051 S-2052	2089431	560018080952	72	1092
075	Sprague	S-2052 S-2053	2089461	560010091550	72	0792
075	Sprague	S-2053 S-2054	2009401	560017035950	73	0492
075	Sprague	S-2054 S-2055	2089675	560013046901	72	0792
075	Sprague		2089073	560016019350	72	1091
075	Sprague	S-2056 S-2057	2089611	560012086901	72	1092
075	Sprague	S-2057	2089475	560017070501	72	0792
075	Sprague	S-2058	2203045	560018080253	73	1092
075	Sprague	S-2059 S-2060	1939999	560007044302	71	1091
075	Sprague		1939892	560007014106	71	1091
075	Sprague	S-2061	2203119	560018062963	73	0891
075	Sprague	S-2062 S-2063	2089459	560016074037	72	0792
075	Sprague	S-2063 S-240	0065344	590008033403	69	1288
076	Sprague	S-240 S-241	2766384	550119018200	79	0692
076	Sprague	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1942745	521107001700	89	0798
076	Sprague	S-242	2766381	550006065851	79	0492
076	Sprague	S-243	2766385	550119014001	79	0692
076	Sprague	S-244	2766375	550012028502	79	0692
076	Sprague	S-245	0065745	584021011300	59	1288
076	Sprague	S-246	2766373	537005005006	79	0192
076	Sprague	S-247		537004039800	79	0192
076	Sprague	S-248	2766387	584021000007	59	1288
076	Sprague	S-249	0065537	564010025202	79	0789
076	Sprague	S-250	2766379	555013022100	59	1288
076	Sprague	S-251	0043545	555111001800	59 59	1288
076	Sprague	S-252 S-253	0065494 0065394	555003013901	59	1288

076	Sprague	S-254	5774130	585018022600	56	1288
076	Sprague	S-255	0065272	584021004102	59	1288
076	Sprague	S-256	5774031	585020016401	56	1288
076	Sprague	S-257	0065710	583011028302	59	1288
076	Sprague	S-258	0167217	583013032600	60	1288
076	Sprague	S-259	0166753	583012013708	60	1288
076	Sprague	S-260	5774327	583012010500	56	1288
076	Sprague	S-261	0065800	580007058800	59	1288
076	Sprague	S-262	5774217	580005063500	56	1288
076	Sprague	S-263	0043691	580009029603	59	1288
076	Sprague	S-264	0166718	584021025100	60	1288
076	Sprague	S-265	0065340	537002022803	59	1288
076	Sprague	S-266	2766399	550013071404	79	0692
076	Sprague	S-267	2766374	550007013502	79	0692
076	Sprague	S-268	2766376	550009061405	79	0692
076	Sprague	S-269	2766391	550005042300	79	0692
076	Sprague	S-270	2766392	550014041801	79	0492
076	Sprague	S-271	2766389	550021000403	79	0492
076	Sprague	S-272	2766372	550021081802	79	0492
076	Sprague	S-273	5774031	585020016401	56	1288
076	Sprague	S-274	2766383	550006042100	79	0492
076	Sprague	S-275	0043942	550114006851	59	1188
076	Sprague	S-276	0065340	537002022802	59	1288
076	Sprague	S-277	2766390	537010011200	79	0192
076	Sprague	S-278	0167002	537004053000	60	1288
076	Sprague	S-279	0166774	585019011908	60	1288
076	Sprague	S-280	5774410	585020009301	56	1288
076	Sprague	S-281	2766386	537019032302	79	0192
076	Sprague	S-282	2766395	550119020801	79	0692
076	Sprague	S-283	2766382	550020048207	79	0492
130	Sprague	S-1A	1890401	550008063200	78	1288
130	Sprague	S-1A	3183349	550004014101	78	1288
130	Sprague	S-1A	3644143	555008000605	49	1288
130	Sprague	S-1A	1582748	555014018600	61	1288
130	Sprague	S-1A	2659726	555017028400	56	1288
130	Sprague	S-1A	3441774	555008014102	48	1288
130	Sprague	S-1A	2516317	555007007600	52	1288
130	Sprague	S-1A	4212793	555014010600	55	1288
130	Sprague	S-1A	3441783	553007020906	58	1288
130	Sprague	S-1A	3347030	550021028600	48	1288
130	Sprague	S-1A	0812695	592018033900	81	0391
130	Sprague	S-1A	3986471	550003000600	53	1288
130	Sprague	S-1A	3345424	550008125200	67	1288
130	Sprague	S-1A	1486692	550021016100	54	1288
130	Sprague	S-1A	5008695	550118064100	67	1288
130	Sprague	S-1A	3467686	550008127400	48	1288
130	Sprague	S-1A	1877204	550118006500	57	1288
130	Sprague	S-1A	1890401	550008063200	78	1288
130	Sprague	S-1A	3243027	550004001300	63	1288

130	Sprague	S-1A	0872810	550001052700	70	1288
ł						

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KY. 40602 (502) 564-3940

April 2, 1999

To: All parties of record

RE: Case No. 99-059

We enclose one attested copy of the Commission's Order in the above case.

Sincerely,

Stephanie Bell Secretary of the Commission

SB/sa Enclosure Mr. William J. Senter Vice President, Rates & Regulatory Western Kentucky Gas Company 2401 New Harford Road Owensboro, KY 42303 1312

Honorable Mark R. Hutchinson Attorney at Law Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, KY 42303

Douglas Walther Atmos Energy Corporation P. O. Box 650250 Dallas, TX 75265

Honorable Jack N. Hughes Attorney at Law 124 West Todd Street Frankfort, KY 40601

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF WESTERN KENTUCKY)GAS COMPANY, A DIVISION OF ATMOS ENERGY)CORPORATION, FOR APPROVAL OF A)STATISTICAL SAMPLE METER TEST PLAN FOR)CASE NO. 99-059POSITIVE DISPLACEMENT METERS PURSUANT)TO 807 KAR 5:022, SECTION 8(5)(C))

<u>ORDER</u>

IT IS ORDERED that Western Kentucky Gas Company ("WKG") shall file the original and 10 copies of the following information with the Commission with a copy to all parties of record no later than 15 days from the date of this Order. WKG shall furnish with each response the name of the witness who will be available to respond to questions concerning each item of information should a public hearing be scheduled.

IT IS FURTHER ORDERED that an informal conference will be held on April 30, 1999 at 10:00 a.m. Eastern Time, in Hearing Room No. 2 of the Commission's offices at 677 Comanche Trail, Frankfort, Kentucky to discuss WKG's statistical sample gas meter test plan and the responses requested herein.

1. Explain how the statistical sampling test plan will improve WKG's meter guality and meter maintenance program.

2. Provide statistical records and bar graphs for meter testing for the past 20 years.

3. Refer to Attachment 1 of WKG's filing. Provide the following:

a. Why do the residential class meters become eligible for sample testing in year 10 and not the first year in service?

b. How does WKG define a random selection of a sample? Will the inclusion of meters removed from service for other reasons than sample testing contradict the random selection of a sample?

c. How is a group subjected to tightened inspection?

d. What are the obsolete meters? Provide number, type, years of service, and any data available for these meters.

e. Under what conditions would WKG propose to go back to periodic testing? Explain in detail.

4. Why was 40 years maximum life in service proposed by WKG's plan?

5. Refer to Attachment 2. What is the anticipated largest group size and its sample size for residential, commercial, and industrial meters?

6. Using WKG's current meter database, provide the following:

a. Number and size of control groups. Is there a limit for the size of the control groups?

b. Criteria for segregating the meters into homogeneous control groups. Will the year placed in service be considered one of the criteria?

c. Criteria for combing control groups.

d. Criteria for subdividing a control group.

7. Provide WKG's shipping procedure to assure that the meters tested by the manufacturer or WKG's meter shop conform to the limits set forth in the test facility.

-2-

How does WKG propose to improve the performance of a control group .8. which has a test record within the high limit of the specified acceptable standard?

What corrective action will be taken for a group under reduced inspection 9. when the group is rejected? Will it be removed or re-inspected under normal inspection?

Will WKG continue its safety inspections on customers' service lines as it 10. currently does if the sample testing plan is implemented? Explain.

How often will WKG test the customer's piping for leaks under the 11. proposed plan?

Document the frequency with which WKG's personnel find safety 12. problems when inspecting a customer's premises during meter changes.

Refer to 807 KAR 5:006, Section 25(5)(c). Will the proposed plan change 13. the interval for curb box and curb valve inspections?

Will the proposed plan change the test interval for individual residential 14. customer service regulators, vents, and relief valves?

In the proposed plan, how many times in a 5-year period would WKG 15. employees be on a customer's premises (excluding meter reading)?

Done at Frankfort, Kentucky, this 2nd day of April, 1999.

By the Commission

ATTES

Executive Director

COMMONWEALTH OF KENTUCKY **PUBLIC SERVICE COMMISSION** 730 SCHENKEL LANE POST OFFICE BOX 615 FRANKFORT, KY. 40602 (502) 564-3940

February 18, 1999

To: All parties of record

RE: Case No. 99-059 WESTERN KENTUCKY GAS COMPANY (Deviation) FROM 807 KAR 5:022 SECTION 8(A)(1-3)

This letter is to acknowledge receipt of initial application in the above case. The application was date-stamped received February 17, 1999 and has been assigned Case No. 99-059. In all future correspondence or filings in connection with this case, please reference the above case number.

If you need further assistance, please contact my staff at 502/564-3940.

Sincerely, ternal see

Stephanie Bell Secretary of the Commission

SB/jc

Conrad Grüber President Western Kentucky Gas Company 2401 New Harford Road Owensboro, KY. 42303 1312

Honorable Mark R. Hutchinson Attorney at Law Sheffer-Hutchinson-Kinney 115 East Second Street Owensboro, KY. 42303

Douglas Walther Atmos Energy Corporation P. O. Box 650250 Dallas, TX. 75265

Honorable Jack N. Hughes Attorney at Law 124 West Todd Street Frankfort, KY. 40601

RONALD G. SHEFFER MARK R. HUTCHINSON JEFFREY R. KINNEY GENEE BROOKS CHARLES B. WEST BURKE B. TERRELL CARL B. BOYD, JR.² REBECCA T. KASHA' PETER B. LEWIS' HOWARD E. FRASIER, JR. IAMES A. SIGLER JOHN A. SHEFFER EDWIN A. IONES MARC A, LOVELL C. TERRELL MILLER C. THOMAS MILLER DAWNS, KELSEY TINA R. McFARLAND A. J. MANION DONNA M. SAUER LIZBETH L. BAKER

·The Law Firm Of · shetter hutc nsoi

> 115 EAST SECOND STREET OWENSBORO, KENTUCKY 42303 (502) 684-3700 FAX (502) 684-3881 www.kylaw.com

BRIAN F. HAARA SCOTT A. HOOVER WILLIAM H. MAY KERRY SIGLER MORGAN CHRISTOPHER C. WISCHER ANNE G. DEDMAN ? MICHAEL L. MEYER? JULIE V. OVERSTREET IENNIFER CASTELLI TARA RODNEY BECKWITH JOHN S. HARRISON AMY JO HARWOOD

OF COUNSEL ROBERT A. MARSHALL

' ADMITTED TO IN BAR ² ADMITTED TO IN AND KY BAR ' ADMITTED TO IN AND OH BAR ADMITTED TO KY AND TN BAR ' ADMITTED TO IN, IL AND KY BAR ALL OTHERS ADMITTED IN KY ONLY

RECEIVED

FEB 1 7 1999

PUBLIC SERVICE

COMMINERION

February 16, 1999

Honorable Helen C. Helton **Executive Director** Kentucky Public Service Commission 730 Schenkel Drive Frankfort, Kentucky 40602

Case 99-059

Application of Western Kentucky Gas Company for Approval Subject: of a Statistical Sample Meter Test Plan for Positive Displacement Meters Correspondence Regarding Western Kentucky Gas Company

Dear Ms. Helton:

Enclosed is an Application by Western Kentucky Gas Company for approval of its Gas Meter Performance Control Program as a deviation from the Kentucky Public Service Commission's Rule 807 KAR 5:022 Section 8(5)(a)(1-3). This rule requires that all meters be changed out every 10 vears. WKG's proposed five-year pilot program exercises an option provided for under 807 KAR 5:02 Section 8(5)(a)(c). As designed, WKG's program is expected to achieve long-term productivity gains in meter management while assuring the highest levels of meter accuracy.

In addition to the application and attached program descriptions, and to assist the Staff in its review, enclosed also is a copy of the American National Standard ANSI/ASQC Z1.4-1993, Sampling Procedures and Tables for Inspection by Attributes, the industry standard statistical guide relied upon in the development of this program. This document replaced the Military Standard 105D previously submitted by LG&E and Columbia Gas in their programs.

February 16, 1999 Page 2

The Staff's assistance in ensuring a prompt review and approval of this application will be greatly appreciated. If you have any questions, please feel free to call me, or at WKG, Bill Senter at 502-685-8072 or John Willis at 502-685-8015.

Very truly yours,

SHEFFER-HUTCHINSON-KINNEY

Mark R. Hutchinson

MRH:bkk

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

)

)

)

)

)

In the Matter of :

The Application of Western Kentucky Gas Company, a division of Atmos Energy Corporation, for Approval of a Statistical Sample Meter Test Plan for Positive Displacement Meters Pursuant to 807 KAR 5:022, Section 8 (5)(c)

RECEIVED FEB 1 7 1999 Case No. 99 - 059 PUBLIC SERVICE

APPLICATION OF WESTERN KENTUCKY GAS COMPANY FOR APPROVAL OF A STATISTICAL SAMPLE METER TEST PLAN FOR POSITIVE DISPLACEMENT METERS

Western Kentucky Gas Company (WKG), by counsel, petitions the Commission for an order authorizing the use of statistical sampling for meter testing under a pilot program for a period of five years.

- (a) WKG is engaged in the business of furnishing natural gas service to the public at retail in certain counties in the Commonwealth of Kentucky, pursuant to authority granted by the Commission.
- (b) WKG's full name and address is:

Western Kentucky Gas Company 2401 New Hartford Road Owensboro, KY 42303

- (c) WKG's Articles of Incorporation have been previously filed with the Commission in Case No. 95-010 and are incorporated herein by reference.
- (d) The Commission's rules provide in 807 KAR 5:022, Section 8(5)(a)(1-3):
 - (5) Periodic tests.
 - (a) Periodic tests of all meters shall be made according to the following schedule based on rate capacities. Rated meter capacity is defined as the capacity of the meter at five tenths (0.5) of one (1) inch water column differential for diaphragm meters and as specified by the manufacturer for all other meters.

- 1. Positive-displacement meters, with rated capacity up to and including 500 cubic feet per hour, shall be tested at least once every ten (10) years.
- 2. Positive-displacement meters, with rated capacity above 500 cubic feet per hour up to and including 1500 cubic feet per hour shall be tested at least once every year.
- 3. Positive-displacement meters above 1500 cubic feet per hour shall be tested at least once every year.
- (e) The Commission rules further provide that the Commission may approve the adoption of a statistical sample meter plan in lieu of the tests prescribed in 807 KAR 5:022, Section 8(5)(a)(1-3). The applicable regulation - 807 KAR 5:022, Section 8(5)(c) provides:
 - (c) A utility desiring to adopt a scientific sample meter test plan for positive displacement meters in accordance with parameters established by the commission shall submit its application to the commission for approval. Upon approval, the sample testing plan may be followed in lieu of tests prescribed in subsections (3) and (5) of this section and 807 KAR 5:006, Section 13(1).
- (f) WKG is seeking Commission approval for implementation of a statistical sample meter test plan for all positive displacement meters pursuant to 807 KAR 5:022, Section 8 (5)(c). WKG's proposed plan (hereafter referred to as its "Gas Meter Performance Control Program") is detailed in Attachment 1.
- (g) Pursuant to 807 KAR 5:022, Section 8(5)(c) the foregoing explanation and Attachment 1, both of which detail WKG's proposal to adopt its Gas Meter Performance Control Program for positive displacement meters, demonstrate good cause which will justify deviation from 807 KAR 5:022, Section 8(a)(1-3).
- (h) The primary goal of WKG's Gas Meter Performance Control Program is the detection and early removal of any group of meters that does not meet prescribed performance standards. WKG's program will employ modern sampling techniques in the evaluation of gas meter performance and is specifically designed to provide a high level of accuracy in the measurement of gas to WKG's customers while controlling metering cost.

- (i) The primary benefits of the program are long-term metering accuracy and operational cost control. WKG estimates that the implementation of this program will reduce the number of meters it has to test on an annual basis by approximately nine thousand (9000). Attachment 2 provides the initial control groups and samples for the first year of the proposed program.
- (j) WKG anticipates overall average annual direct cost savings of \$319,730 given that the approximate average direct cost of periodic changing and testing each domestic size meter is \$35.53. See Attachment 3. These savings and related productivity gains are reflected in WKG's current and future fiscal years' operational, manpower and financial plans.
- (k) WKG proposes to introduce its Gas Meter Performance Control Program as a five-year pilot program. Upon conclusion of the pilot period, WKG will re-evaluate the program to ensure WKG and Commission objectives were being achieved. If appropriate, WKG will propose changes to the program based upon the results of the pilot.

For these reasons, WKG believes that its proposal to initiate its Gas Meter Performance Control Program is in the best interest of WKG and its customers and should be approved by the Commission.

WHEREFORE, WKG requests that the Public Service Commission of the Commonwealth of Kentucky issue an order authorizing WKG to implement its Gas Meter Performance Control Program for positive displacement meters as a pilot program for five years pursuant to 807 KAR 5:022, Section 8(5)(c), and grant WKG permission to deviate from 807 KAR 5:022, Section 8(a)(1-3).

mujbelle

Mark R. Hutchinson SHEFFER-HUTCHINSON-KINNEY 115 East Second Street Owensboro, Kentucky 42303 (502) 684-3700

Douglas Walther Atmos Energy Corporation P.O. Box 650250 Dallas, Texas 75265

Jack N. Hughes 124 W. Todd Street Frankfort, Kentucky 40601

Attorneys for Atmos Energy

WESTERN KENTUCKY GAS COMPANY

GAS METER PERFORMANCE CONTROL PROGRAM

Introduction

Western Kentucky Gas Company's Gas Meter Performance Control Program is a procedure designed to provide a continuous high level of quality in the measurement of gas delivered to our customers while controlling metering cost. A high level of accuracy will be achieved by applying modern sampling and statistical techniques in the evaluation of gas meter performance. The primary goal of the program is the detection and removal of groups of like meters not meeting prescribed performance standards as defined by the Kentucky Public Service Commission (KPSC). In accomplishing this goal, WKG expects to create an inservice environment that will produce a high level of metering accuracy while prolonging gas meter service life. To that end, WKG will achieve significant savings by reducing unnecessary testing of high quality, better performing meters. Specifically, WKG estimates that this program will result in approximately nine thousand (9,000) fewer meters being tested annually. WKG proposes that this sampling program, once initiated, run for a test period of five years and be re-evaluated to ensure WKG and KPSC objectives are achieved.

I. GENERAL DESCRIPTION OF PROGRAM

WKG's Gas Meter Performance Control Program is based on the American National Standard ANSI/ASQC Z1.4: Sampling Procedures and Tables for Inspection by Attributes, covering all classes of positive displacement diaphragm gas meters. Under Performance Control, WKG's gas meter populations will be classified into control groups representing populations of equivalent makes and sizes purchased or repaired within five consecutive years at a maximum. Once created, a control group would be subject to sample testing based on its rated capacity class as follows:

A. Residential class-rated capacity up to and including 500 cubic feet per hour

All new and remanufactured residential class meters will be tested under the current guidelines of the KPSC prior to installation. Meters will become eligible for sampling in a control group beginning in the 10^{th} year of service with an Acceptable Quality Level (AQL) of 6.5.

B. Commercial class—501 cubic feet per hour up to 1500 cubic feet per hour

Positive displacement meters will become eligible for sampling in a control group beginning in the 1st year of service with an AQL of 6.5.

C. Commercial class—above 1500 cubic feet per hour

Positive displacement meters will become eligible for sampling in a control group beginning in the 1st year of service with an AQL of 6.5.

II. CONTROL GROUP SAMPLING

The primary consideration in drawing a random sample is that each observance in the population must have an equal chance to be included in the sample. This ensures that the sample is representative of the population and the results of the sample are valid. Meters will be selected at random until there are enough meters in the sample to satisfy the sample size requirements.

A. As a part of this meter sampling plan, WKG will use the sample selection process as stated in ANSI Z1.4 Section 7.2 Sampling:

When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion. In so doing, the units from each part of the lot or batch shall be selected at random, as defined in ANSI/ASQC Standard A2-1987.

- B. Sample sizes for each control group will be determined using the "Sample Size Code Letters" table for General Inspection Level II from ANSI Z1.4, using 6.5 as the designated Acceptable Quality Level (AQL). All control groups eligible will be accepted or rejected as allowed by ANSI Z1.4 with its designated AQL for single sampling.
- C. Control groups will be switched between tightened, normal and reduced testing per ANSI Z1.4 Section 11.6. for accuracy, improvement or removal.

Single Sampling Plan (AQL = 6.5)										
Lot or Batch Size	Sample	ple Normal Inspection Tightened Inspection				Reduced Inspection				
	Size Code	Samples	Ac	Re	Samples	Ac	Re	Samples	Ac	Re
2 to 8	A	2	0	1	2	0	1	2	0	1
9 to 15	В	3	0	1	3	0	1	2	0	1
16 to 25	C	5	0	1	5	0	1	2	0	1
26 to 50	D	8	1	2	8	0	1	3	0	2
51 to 90	E	13	2	3	13	1	2	5	1	3
91 to 150	F	20	3	4	20	2	3	8	1	4
151 to 280	G	32	5	6	32	3	4	13	2	5
281 to 500	н	50	7	8	50	5	6	20	3	6
501 to 1200	J	80	10	11	80	8	9	32	5	8
1201 to 3200	ĸ	125	14	15	125	12	13	50	7	10
3201 to 10000	L	200	21	22	200	18	19	80	10	13
10001 to 35000	M	315	21	22	315	18	19	125	10	13

Accept--(AC) -- means accept the control group with no more than this quantity of defective meters.

Reject--(RE) --means reject the control group with equal or greater to this number of defective meters.

Control group sampling will, where possible, be accomplished through the testing of meters randomly selected for sample testing. Other routine meter changes and removals obtained during the calendar year may be included as part of the random sample for any control group if it can be properly documented that the integrity of ANSI Z1.4 Section 7.2 Sampling is maintained.

III. CREATION OF METER CONTROL GROUPS

Control groups of positive displacement gas meters will be created and maintained according to the following parameters:

- A. Gas meters will be segregated into groups with similarly identifiable characteristics based on two criteria:
 - 1. Control groups of all gas meters being placed into service shall be established according to purchase, field test or remanufacture year, type, grade, class, manufacturer and composition.
 - 2. Control Groups composed of like meters with different years of installation may be established. When this is done, the earliest installation year of all the combined like meters will become the controlling year of installation for the new control group.
- B. When created, each group will be assigned a descriptive title and control group number to facilitate identification.
- C. New control groups will be established and identified at the end of each year from those gas meters installed during the year between January 1 and December 31.

IV. INSPECTION PARAMETERS

All control groups will begin testing according to the ANSI/ASQC Z1.4 General Inspection Level II for Normal Sampling. All changes to the inspection parameters will be done according to Section 11.6.

Gas meters, shall be deemed as accurate after removal from service if the average of the Open Test (full capacity) and Check Test (20 percent capacity) is not more than plus or minus 2 percent error.

- A. A control group can become eligible for reduced sampling after ten years of sampling has been completed without failures. The reduced inspection level will be according to Reduced Sampling. At the first occurrence of unacceptable sampling the group will return to normal sampling.
- B. A control group will be subjected to tightened inspection parameters when two out of five years fail the normal sampling criteria. The tightened inspection level will be according to Tightened Sampling. A control group will return to Normal Inspection from Tightened Inspection when five years of sampling has been completed with an acceptable level.

V. ACCURACY IMPROVEMENT

When a control group is classified in a tightened status and a failure occurs, one of the following actions will occur:

- A. The control group of meters in any sampling inspection plan may be subdivided in an effort to identify the deviant subgroup. If, by the removal of a specific subgroup of meters, it can be demonstrated that the original control group of meters now meets the accuracy standard under General Inspection Level II for Normal Inspection, the remaining meters in the original control group shall remain in service.
- B. If a deviate sub-group of meters cannot be identified to improve the control group's accuracy, then every reasonable effort will be made to remove the entire control group of meters from the service within 18 months once it has failed the applicable governing standard for the control group under ANSI Z1.4.

Meters shall be excluded from the sampling criteria for the following reasons:

- 1. Damage not associated with normal operating conditions that may have altered how the meter was actually performing while in service.
- 2. Meters which WKG suspects have been tampered with or meters removed by theft and later recovered by WKG.

VI. PERFORMANCE CLASSIFICATION TIME PARAMETERS

Scheduled control group testing for each test year shall begin January 1 and be completed by December 31 of the test year. The finalized test results will be published for review and a copy submitted to the Public Service Commission. The annual published review of WKG's Gas Meter Performance Control Plan shall detail at minimum the following items for each control group:

- Control Group Identification Number
- Model
- Purchase or Repair Year
- Balance of Control Group on Jan 1 and Dec 31 of Each Test Year
- Number of Meters Removed Under Scheduled Sampling
- Number of Meters Removed for Other Reasons
 - Accept Level for Specified Test
 - Number of Meter Accepted
 - Reject Level For Specified Test
 - Number of Meters Rejected
 - Percentage of Rejected Meters Over 2 Percent Fast
 - Percentage of Rejected Meters Over 2 Percent Slow

VII. SAMPLING PLAN FOR METER OUT-TEST

All new meters purchased by WKG will be subject to 100 percent testing by the manufacturer before shipment to WKG. The manufacturer's test results for each meter must accompany the meter at the time it is received by WKG or before shipment The calibration standard for all new remanufactured, and repaired gas meters being placed into service shall comply with the KPSC rules.

VIII. FIRST YEAR REPLACEMENT OF OBSOLETE METER TYPES

WKG will exclude all obsolete meter types from the sampling program. These meters have been identified through an analysis of historical meter performance and testing data. Our intent is to remove these meters during the first year of the statistical sampling program in addition to the randomly sampled meters selected for first year testing.

IX. PERIODIC TEST OPTION

If WKG, at a later date, decides to switch its entire meter population from Sample Testing back to the KPSC's current Periodic Test Schedule, a time frame equal to half of the average in service age of WKG's installed positive displacement meter population at that time shall be allowed for WKG to bring the service life of its meters into compliance with the KPSC's Periodic Test Schedule. Control groups that may fail within that period will continue to be removed within 18 months of issue of the Removal Order.

X. MAXIMUM IN-SERVICE LIFE

No meter in this program will be in service more than 40 years. All meters still in service at 40 years will be removed from the system within 18 months.

XI. ANNUAL REPORT

WKG proposes to file an annual report with the KPSC which will include identification and test results of each control group, test results for the new meters including manufacturer's test records, evaluation and analysis of the data, and any corrective action taken. WKG will also address direct cost savings and the overall effectiveness of this program.

Western Kentucky Gas 1999 Program

Group	Group	Number	Sample	Number	Group	Group	Number	Sample	Number
Code	Model	in Group	Size Code	Samples	Code	Model	in Group	Size Code	Samples
030A	AC-250	3	A	2	037G	AL-1000	73	E	13
030B	AC-250	2	А	2	053B	R-415	539	J	80
030C	AC-250	10	В	3	053C	R-415	42	D	8
030D	AC-250	10	В	3	053D	R-415	11	В	3
030E	AC-250	4379	L	200	053E	R-415	10	В	3
030F	AC-250	13665	М	315	053F	R-415	79	E	13
030G	AC-250	27534	М	315	053G	R-415	1	А	1
031A	AL-175	5236	L	200	059A	R-200	1	А	1
031B	AL-175	8108	L	200	059B	R-200	10	B	3
031C	AL-175	6941	L	200	059C	R-200	1590	К	125
031E	AL-175	1979	к	125	059D	R-200	10210	М	315
031F	AL-175	18	С	5	059E	R-200	3985	L	200
031G	AL-175	8351	L	200	059F	R-200	8	А	2
032A	AL-225	7609	L	200	059G	R-200	690	J	80
032B	AL-225	502	J	80	060A	R-175	5491	L	200
032C	AL-225	32	D	8	060B	R-175	6613	Ł	200
032D	AL-225	23	С	5	060C	R-175	1865	К	125
032E	AL-225	8	А	2	060D	R-175	45	D	8
032F	AL-225	1	А	1	060E	R-175	17	С	5
034A	AL-425	3	А	2	060F	R-175	3	А	2
034B	AL-425	5	А	2	060G	R-175	85	E	13
034C	AL-425	213	G	32	061A	R-275	2	А	2
034D	AL-425	827	J	80	061B	R-275	3	А	2
034E	AL-425	291	н	50	061C	R-275	2	А	2
034F	AL-425	347	н	50	061D	R-275	3	А	2
034G	AL-425	943	J	80	061E	R-275	4660	L	200
036A	AL-800	2	А	2	061F	R-275	5122	L	200
036B	AL-800	30	D	8	061G	R-275	13790	М	315
036C	AL-800	26	D	8	062A	R-250	8049	L	200
036D	AL-800	227	G	32	026B	R-250	349	н	50
036E	AL-800	268	G	32	062C	R-250	92	F	20
036F	AL-800	164	G	32	062D	R-250	57	Е	13
036G	AL-800	21	С		062E	R-250	12	В	3
037B	AL-1000	34	D	3	062F	R-250	6	А	2
037C	AL-1000	22	С	5	138F	S-250	3041	К	125
037D	AL-1000	81	Е	13	210C	L-210	150	F	20
037E	AL-1000	85	Е	13	210G	L-210	3071	К	125
037F	AL-1000	38	D	8					
Tatal Mat	ers in Plan		157 815						

Total Meters in Plan	157,815
Obsoletes Added to First Year	2,351
First Year Periodic Changeouts	7,555

WESTERN KENTUCKY GAS COMPANY GAS METER PERFORMANCE CONTROL PROGRAM ANALYSIS OF EXPECTED DIRECT ANNUAL COST SAVINGS (Note 1)

Estimated average meters tested	9,000						
Based upon change from 10 year changeout to expected average life of 24 years and more than 157,815 meters in service							
Approximate average cost for periodic changing and testing each domestic size meter (Note 2):							
New meter	(4,000)	\$49.82					
Repaired meter	(5,000)	\$24.09					
Total			\$35.53				
Estimated average		\$319,730					

Note 1

The annual savings are a combination of reduced capital expenditures and reduced expenses. The annual savings reflect reductions in the growth of future operating costs not net reductions from current operating cost levels.

Note 2

Average quantity of meters either repaired, remanufactured, tested only, or retired per year is estimated at 5000 units with an average cost at \$24.09.

Average quantity of new meters installed per year is estimated at 4000.

AMERICAN NATIONAL STANDARD

Sampling Procedures and Tables for Inspection By Attributes

AMERICAN SOCIETY FOR QUALITY 611 EAST WISCONSIN AVENUE MILWAUKEE, WISCONSIN 53202

AMERICAN NATIONAL STANDARD

Sampling Procedures and Tables for Inspection by Attributes

> Prepared by American Society for Quality Standards Committee For AMERICAN NATIONAL STANDARDS COMMITTEE Z-1 ON QUALITY ASSURANCE

> > Sponsor and Secretariat AMERICAN SOCIETY FOR QUALITY

Abstract

Sampling Procedures and Tables for Inspection by Attributes is an acceptance sampling system to be used with switching rules on a continuing stream of lots for AQL specified. It provides tightened, normal, and reduced plans to be applied for attributes inspection for percent nonconforming or nonconformities per 100 units.

AMERICAN NATIONAL STANDARD: An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

© 1993 by the AMERICAN SOCIETY FOR QUALITY

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

10 9 8 7 Published by

Quality Press 611 East Wisconsin Avenue P.O. Box 3005 Milwaukee, Wisconsin 53201-3005

Foreword

(This foreword is not a part of American National Standard —Sampling Procedures and Tables for Inspection by Attributes, Z1.4-1993)

This standard is a revision of ANSI Z1.4-1971, "Sampling Procedures and Tables for Inspection by Attributes," which corresponds directly to MIL-STD-105E. The present revision ANSI/ASQC Z1.4-1993 was undertaken to modernize terminology and to emphasize the system aspect of the procedure through incorporation of the operating characteristic curves and other measures computed for scheme performance reflecting the basic strategy including the switching rules.

All tables, table numbers, and procedures used in MIL-STD-105E were retained. The tables are unchanged to make the tabular content completely compatible with MIL-STD-105E. Modifications from the MIL-STD-105E format beyond editorial refinements include:

1) Substitution of the word "nonconformity" for "defect" throughout, in conformance with ANSI/ASQC A2-1978. Substitution of the word "nonacceptance" for "rejection" when it refers to a result of following the procedure. Forms of the word "reject" are retained when they refer to actions the customer may take. The term "rejection number" is retained when it refers to the nomenclature on Tables II, III, IV and X to be consistent with tables of the same numbers in MIL-STD-105E.

2) Presentation of the switching rules to put them in conformance with ANSI Z1.9-1980, the ANSI version of MIL-STD-414. This includes an option for reduced inspection without use of limit numbers (as in ANSI Z1.9-1980). Use without the limit numbers improves the performance of a scheme by accepting more lots at the AQL, with no change in discrimination below the indifference quality level.

- 3) Introduction of the following tables:
 - Table XI Average Outgoing Quality Limit Factors for ANSI Z1.4 Scheme Performance (Single Sampling)
 - Table XII Limiting Quality for ANSI Z1.4 Scheme Performance for which $P_a = 10$ Percent (Single Sampling)
 - Table XIII Limiting Quality for ANSI Z1.4 Scheme Performance for which $P_a = 5$ Percent (Single Sampling)
 - Table XIVAverage Sample Size Tables for ANSIZ1.4 Scheme Performance (Single Sampling)
 - Table XV Scheme Performance with Switching Rules—for each Code Letter showing
 - 1) Operating Characteristic Curves for ANSI Z1.4 Scheme Performance
 - 2) Tabulated Values for Operating Characteristic Curves for ANSI Z1.4 Scheme Performance

4) The titles of Tables V-A and V-B have been changed to read, "Approximate values for average outgoing quality limits." These are different from the titles in MIL-STD-105E.

5) The tables contained in this Standard cover situations where the quality level is specified in percentages as low as 0.01%. It should be noted that 0.01% is equal to 100 parts per million (PPM). Sampling procedures for quality levels of fewer PPM are not included in this Standard.

6) Substitution of

Section 2 Definitions and Terminology for Section 2 Classification of Defects and Defectives

Reference is made to classification of nonconformities in Section 6.3.

7) Reference to the use of operating properties of the scheme and the meaning of scheme performance is made in Section 11.

8) Addition of Section 11.6 spelling out proper use of individual plans when extracted from the ANSI Z1.4 system as a whole.

9) Addition of Figure 1 showing the switching procedure to enhance understanding of the switching aspect of the system.

10) Addition of replotted OC curves.

Note: A compatible and interchangeable standard for variables inspection is ANSI Z1.9-1993.

Suggestions for improvement of this standard will be welcome. They should be sent to the sponsor, ASQC, 611 East Wisconsin Avenue, Milwaukee, WI 53202.

Committee members serving as writers and editors of this standard were:

Joseph M. Califano, Chairperson Michael Yargosz August Mundel Harrison Wadsworth Edward G. Schilling

Table of Contents

Paragraph

Page

1.	SCOPE	1
2.	DEFINITIONS AND TERMINOLOGY	1
3.	PERCENT NONCONFORMING AND NONCONFORMITIES PER HUNDRED UNITS	2
4.	ACCEPTABLE QUALITY LEVEL (AQL)	2
5.	SUBMISSION OF PRODUCT	3
6.	ACCEPTANCE AND NON-ACCEPTANCE	3
7.	DRAWING OF SAMPLES	4
8.	NORMAL, TIGHTENED, AND REDUCED INSPECTION	4
9.	SAMPLING PLANS	5
10.	DETERMINATION OF ACCEPTABILITY	6
	SUPPLEMENTARY INFORMATION	

Tables

Table I	Sample Size Code Letters.	11
Table II-A	Single Sampling Plans for Normal Inspection (Master Table)	12
Table II-B	Single Sampling Plans for Tightened Inspection (Master Table)	
Table II-C	Single Sampling Plans for Reduced Inspection (Master Table)	14
Table III-A	Doubling Sampling Plans for Normal Inspection (Master Table)	
Table III-B	Double Sampling Plans for Tightened Inspection (Master Table)	16
Table III-C	Double Sampling Plans for Reduced Inspection (Master Table)	17
Table IV-A	Multiple Sampling Plans for Normal Inspection (Master Table)	
Table IV-B	Multiple Sampling Plans for Tightened Inspection (Master Table)	20
Table IV-C	Multiple Sampling Plans for Reduced Inspection (Master Table)	22
Table V-A	Factors for Determining Approximate Values for Average Outgoing Quality Limits for Normal Inspection (Single Sampling)	
Table V-B	Factors for Determining Approximate Values for Average Outgoing Quality Limits for Tightened Inspection (Single Sampling)	
Table VI-A	Limiting Quality (in percent nonconforming) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)	
Table VI-B	Limiting Quality (in nonconformities per hundred units) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)	
Table VII-A	Limiting Quality (in percent nonconforming) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)	
Table VII-B	Limiting Quality (in nonconformities per hundred units) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)	
Table VIII	Limit Numbers for Reduced Inspection	30
Table IX	Average Sample Size Curves for Double and Multiple Sampling Plans	
	(normal and tightened inspection)	31
Table X-A	Sample Size Code Letter A—Individual Plans	32
Table X-B	Sample Size Code Letter BIndividual Plans	34
Table X-C	Sample Size Code Letter C—Individual Plans	

ANSI/ASQC Standard Z1.4-1993

Table X-D	Sample Size Code Letter D—Individual Plans	
Table X-E	Sample Size Code Letter E-Individual Plans	
Table X-F	Sample Size Code Letter F—Individual Plans	42
Table X-G	Sample Size Code Letter G—Individual Plans	
Table X-H	Sample Size Code Letter H-Individual Plans	
Table X-J	Sample Size Code Letter J-Individual Plans	48
Table X-K	Sample Size Code Letter KIndividual Plans	
Table X-L	Sample Size Code Letter L—Individual Plans	
Table X-M	Sample Size Code Letter M—Individual Plans	54
Table X-N	Sample Size Code Letter N-Individual Plans	56
Table X-P	Sample Size Code Letter P—Individual Plans	58
Table X-Q	Sample Size Code Letter Q-Individual Plans	60
Table X-R	Sample Size Code Letter R—Individual Plans	62
Table X-S	Sample Size Code Letter S—Individual Plans	64
Table XI	Average Outgoing Quality Limit Factors for ANSI-Z1.4 Scheme Performance	
	(Single Sampling)	65
Table XII	Limiting Quality for ANSI-Z1.4 Scheme Performance for Which	
	$P_a = 10$ Percent (Single Sampling)	66
Table XIII	Limiting Quality for ANSI-Z1.4 Scheme Performance for Which	
	$P_a = 5$ Percent (Single Sampling)	67
Table XIV	Average Sample Size Tables for ANSI-Z1.4 Scheme Performance (Single	
	Sampling)	
Table XV-A	Sample Size Code Letter A—Scheme Performance	
Table XV-B	Sample Size Code Letter B—Scheme Performance	
Table XV-C	Sample Size Code Letter C—Scheme Performance	
Table XV-D	Sample Size Code Letter D—Scheme Performance	
Table XV-E	Sample Size Code Letter E—Scheme Performance	
Table XV-F	Sample Size Code Letter F—Scheme Performance	
Table XV-G	Sample Size Code Letter G—Scheme Performance	
Table XV-H	Sample Size Code Letter H—Scheme Performance	
Table XV-J	Sample Size Code Letter J—Scheme Performance	
Table XV-K	Sample Size Code Letter K—Scheme Performance	
Table XV-L	Sample Size Code Letter L—Scheme Performance	
Table XV-M	Sample Size Code Letter MScheme Performance	
Table XV-N	Sample Size Code Letter N—Scheme Performance	
Table XV-P	Sample Size Code Letter P—Scheme Performance	
Table XV-Q	Sample Size Code Letter Q—Scheme Performance	
Table XV-R	Sample Size Code Letter R—Scheme Performance	87
NIDEV OF T		00
INDEX OF TH	RMS WITH SPECIAL MEANINGS	88

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. SCOPE

1.1 **PURPOSE.** This publication establishes sampling plans and procedures for inspection by attributes. When specified by the responsible authority, this publication shall be referenced in the specification, contract, inspection instructions, or other documents and the provisions set forth herein shall govern. The "responsible authority" shall be designated in one of the above documents, as agreed to by the purchaser and seller or producer and user.

1.2 APPLICATION. Sampling plans designated in this publication are applicable, but not limited, to inspection of the following:

- a. End items.
- b. Components and raw materials.
- c. Operations
- d. Materials in process.
- e. Supplies in storage.
- f. Maintenance operations.
- g. Data or records.
- h. Administrative procedures.

These plans are intended primarily to be used for a continuing series of lots or batches. The plans may also be used for the inspection of isolated lots or batches, but, in this latter case, the user is cautioned to consult the operating characteristic curves to find a plan which will yield the desired protection (see 11.6).

1.3 INSPECTION. Inspection is the process of measuring, examining, testing, or otherwise comparing the unit of product (see 1.5) with the requirements.

1.4 INSPECTION BY ATTRIBUTES. Inspection by attributes is inspection whereby either the unit of product is classified simply as conforming or nonconforming, or the

number of nonconformities in the unit of products is counted, with respect to a given requirement or set of requirements.

1.5 UNIT OF PRODUCT. The unit of product is the unit inspected in order to determine its classification as conforming or nonconforming or to count the number of nonconformities. It may be a single article, a pair, a set, a length, an area, an operation, a volume, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase, supply, production, or shipment.

2. DEFINITIONS AND TERMINOLOGY

The definitions and terminology employed in this standard are in accord with ANSI/ASQC Standard A2-1987 (Terms, Symbols, and Definitions for Acceptance Sampling). The following two definitions are particularly important in applying the standard.

- DEFECT: A departure of a quality characteristic from its intended level or state that occurs with a severity sufficient to cause an associated product or service not to satisfy intended normal, or foreseeable, usage requirements.
- NONCONFORMITY: A departure of a quality characteristic from its intended level or state that occurs with severity sufficient to cause an associated product or service not to meet a specification requirement.

These acceptance sampling plans for attributes are given in terms of the percent or proportion of product in a lot or batch that depart from some requirement. The general terminology used within the document will be given in terms of percent of nonconforming units or number of nonconformities, since these terms are likely to constitute the most widely used criteria for acceptance sampling.

In the use of this standard it is helpful to distinguish between:

a. an individual sampling plan—a specific plan that states the sample size or sizes to be used, and the associated acceptance criteria.

ANSI/ASQC Standard Z1.4-1993

- b. a sampling scheme—a combination of sampling plans with switching rules and possi bly a provision for discontinuance of inspection. In this standard the terms "sampling scheme" and "scheme performance" will be used in the restricted sense described in Sec. 11.1.
- c. a sampling system—a collection of sampling schemes. This standard is a sampling system indexed by lot-size ranges, inspection levels, and AQLs.

3. PERCENT NONCONFORMING AND NONCONFORMITIES PER HUNDRED UNITS

3.1 EXPRESSION OF NONCONFORMANCE. The extent of nonconformance of product shall be expressed either in terms of percent nonconforming or in terms of nonconformities per hundred units.

3.2 PERCENT NONCONFORMING. The percent nonconforming of any given quantity of units of product is one hundred times the number of nonconforming units divided by the total number of units of product, i.e.:

 $Percent nonconforming = \frac{Number nonconforming}{Number of units inspected} \times 100$

3.3 NONCONFORMITIES PER HUNDRED UNITS. The number of nonconformities per hundred units of any given quantity of units of product is one hundred times the number of nonconformities contained therein (one or more nonconformities being possible in any unit of product) divided by the total number of units of product, i.e.:

 $\frac{\text{Nonconformities per}}{\text{hundred units}} = \frac{\text{Number of nonconformities}}{\text{Number of units inspected}} \times 100$

It is assumed that nonconformities occur randomly and with statistical independence within and between units.

4. ACCEPTABLE QUALITY LEVEL (AQL)

4.1 USE. The AQL together with the Sample Size Code Letter, is used for indexing the sampling plans provided herein.

4.2 DEFINITION. The AQL is the maximum percent nonconforming (or the maximum number of nonconformities per hundred units) that, for purposes of sampling inspection, can be considered satisfactory as a process average (see 11.2). 4.3 NOTE ON THE MEANING OF AQL. When a consumer designates some specific value of AOL for a certain nonconformity or group of nonconformities, it indicates to the supplier that the consumer's acceptance sampling plan will accept the great majority of the lots or batches that the supplier submits, provided the process average level of percent nonconforming (or nonconformities per hundred units) in these lots or batches be no greater than the designated value of AOL. Thus, the AOL is a designated value of percent nonconforming (or nonconformities per hundred units) that the consumer indicates will be accepted most of the time by the acceptance sampling procedure to be used. The sampling plans provided herein are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size, being generally higher for large samples than for small ones, for a given AQL.

Note that AQL is a parameter of the sampling scheme and should not be confused with process average which describes the operating level of the manufacturing process. It is expected that the process average will be less than or equal to the AQL to avoid excessive rejections under this system.

It is necessary to refer to the operating characteristic curves of the scheme and its constituent plans, to determine what protection the consumer will have.

The AQL alone does not describe the protection to the consumer for individual lots or batches, but more directly relates to what might be expected from a series of lots or batches, provided the steps indicated in this publication are taken.

4.4 LIMITATION. The designation of an AQL shall not imply that the supplier has the right to knowingly supply any nonconforming unit of product.

4.5 SPECIFYING AQLs. The AQL to be used will be designated in the contract or by the responsible authority. Different AQLs may be designated for groups of nonconformities considered collectively, or for individual nonconformities. For example, Group A may include nonconformities of a type felt to be of the highest concern for the product or service and therefore be assigned a small AQL value; Group B may include nonconformities of the next highest degree of concern and therefore be assigned a larger AQL value than for Group A and smaller than that of Group C, etc. The classification into groups should be appropriate to the quality requirements of the specific situation. An AQL for a group of nonconformities may be designated in addition to AQLs for individual nonconformities,

or subgroups, within that group. AQL values of 10.0 or less may be expressed either in percent nonconforming or in nonconformities per hundred units; those over 10.0 shall be expressed in nonconformities per hundred units only.

4.6 PREFERRED AQLs. The values of AQLs given in these tables are known as preferred AQLs. If, for any product, an AQL be designated other than a preferred AQL, these tables are not applicable.

5. SUBMISSION OF PRODUCT

5.1 LOT OR BATCH. The term lot or batch shall mean "inspection lot" or "inspection batch," i.e., a collection of units of product from which a sample is to be drawn and inspected to determine conformance with the acceptability criteria, and may differ from a collection of units designated as a lot or batch for other purposes (e.g., production, shipment, etc).

5.2 FORMATION OF LOTS OR BATCHES. The product shall be assembled into identifiable lots, sublots, batches, or in such other manner as may be prescribed (see 5.4). Each lot or batch shall, as far as is practicable, consist of units of product of a single type, grade, class, size, and composition, manufactured under essentially the same conditions, and at essentially the same time.

5.3 LOT OR BATCH SIZE. The lot or batch size is the number of units of product in a lot or batch.

5.4 PRESENTATION OF LOTS OR BATCHES. The formation of the lots or batches, lot or batch size, and the manner in which each lot or batch is to be presented and identified by the supplier shall be designated or approved by the responsible authority. As necessary, the supplier shall provide adequate and suitable storage space for each lot or batch, equipment needed for proper identification and presentation, and personnel for all handling of product required for drawing of samples.

6. ACCEPTANCE AND NON-ACCEPTANCE

6.1 ACCEPTABILITY OF LOTS OR BATCHES. Acceptability of a lot or batch will be determined by the use of a sampling plan or plans associated with the designated AQL or AQLs.

In the use of this standard a statement that a lot is acceptable means simply that sample results satisfy the standard's acceptance criteria. The acceptance of a lot is not intended to provide information about lot quality. If a stream of lots

ANSI/ASQC Standard Z1.4-1993

from a given process is inspected under an acceptance sampling scheme such as provided in this standard, some lots will be accepted and others will not. If all incoming lots are assumed to be at the same process average and if the nonconforming items that are discovered and replaced by conforming items during sample inspection are ignored, it will be found that both the set of accepted lots and the set of non-accepted lots will have the same long run average quality as the original set of lots submitted for inspection. Inspection of incoming lots whose quality levels vary around a fixed long run average quality level will divide the lots into a set of accepted lots and a set of non-accepted lots, but it will be found that the long run average quality of the accepted lots is only slightly better than the long run average quality of the non-accepted lots. Replacement of the nonconforming items that are discovered during sample inspection does not alter this finding because the samples are a small fraction of the lots.

The purpose of this standard is, through the economic and psychological pressure of lot non-acceptance, to induce a supplier to maintain a process average at least as good as the specified AQL while at the same time providing an upper limit on the consideration of the consumer's risk of accepting occasional poor lots. The standard is not intended as a procedure for estimating lot quality or for segregating lots.

In acceptance sampling, when sample data do not meet the acceptance criteria, it is often stated that the lot is to be "rejected". In this connection, the words "to reject" generally are used. Rejection in an acceptance sampling sense means to decide that a batch, lot or quantity of product, material or service has not been shown to satisfy the acceptance criteria based on the information obtained from the sample(s).

In acceptance sampling, the words "to reject" generally are used to mean "to not accept" without direct implication of product usability. Lots which are "rejected" may be scrapped, sorted (with or without nonconforming units being replaced), reworked, re-evaluated against more specific usability criteria, held for additional information, etc. Since the common language usage of "reject" often results in an inference of unsafe or unusable product, it is recommended that "not accept" be understood rather than "reject" in the use of this standard.

The word "non-acceptance" is used here for "rejection" when it refers to the result of following the procedure. Forms of the word "reject" are retained when they refer to actions the customer may take, as in "rejection number".

ANSI/ASQC Standard Z1.4-1993

6.2 NONCONFORMING UNITS. The right is reserved to reject any unit of product found nonconforming during inspection whether that unit of product forms a part of a sample or not, and whether the lot or batch as a whole is accepted or rejected. Rejected units may be repaired or corrected and resubmitted for inspection with the approval of, and in the manner specified by, the responsible authority.

6.3 SPECIAL RESERVATION FOR DESIGNATED

NONCONFORMITIES. Since most acceptance sampling involves evaluation of more than one quality characteristic, and since these may differ in importance in terms of quality and/or economic effects, it is often desirable to classify the types of nonconformity according to agreed upon groupings. Specific assignment of types of nonconformities to each class is a function of agreement on specific sampling applications. In general, the function of such classification is to permit the use of a set of sampling plans having a common sample size, but different acceptance numbers for each class having a different AQL, such as in Tables II, III, and IV.

The supplier may be required at the discretion of the responsible authority to inspect every unit of the lot or batch for designated classes of nonconformities. The right is reserved to inspect every unit submitted by the supplier for specified nonconformities, and to reject the lot or batch immediately, when a nonconformity of this class is found. The right is reserved also to sample, for specified classes of nonconformities, lots or batches submitted by the supplier and to reject any lot or batch if a sample drawn therefrom is found to contain one or more of these nonconformities.

6.4 RESUBMITTED LOTS OR BATCHES. Lots or batches found unacceptable shall be resubmitted for reinspection only after all units are re-examined or re-tested and all nonconforming units are removed or nonconformities corrected. The responsible authority shall determine whether normal or tightened inspection shall be used on reinspection and whether reinspection shall include all types or classes of nonconformities or only the particular types or classes of nonconformities which caused initial rejection.

7. DRAWING OF SAMPLES

7.1 SAMPLE. A sample consists of one or more units of product drawn from a lot or batch, the units of the sample being selected at random without regard to their quality. The number of units of product in the sample is the sample size.

7.2 SAMPLING. When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or subbatches, or parts of the lot or batch, identified by some rational criterion. In so doing, the units from each part of the lot or batch shall be selected at random, as defined in ANSI/ASQC Standard A2-1987.

7.3 TIME OF SAMPLING. Samples may be drawn after all the units comprising the lot or batch have been produced, or samples may be drawn during production of the lot or batch.

7.4 DOUBLE OR MULTIPLE SAMPLING. When double or multiple sampling is to be used, each sample shall be selected over the entire lot or batch.

8. NORMAL, TIGHTENED AND REDUCED INSPECTION

8.1 INITIATION OF INSPECTION. Normal inspection will be used at the start of inspection unless otherwise directed by the responsible authority.

8.2 CONTINUATION OF INSPECTION. Normal, tightened or reduced inspection shall continue unchanged on successive lots or batches except where the switching procedures given below require change.

8.3 SWITCHING PROCEDURES.

8.3.1 NORMAL TO TIGHTENED. When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 5 consecutive lots or batches have been non-acceptable on original inspection (i.e., ignoring resubmitted lots or batches for this procedure).

8.3.2 TIGHTENED TO NORMAL. When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.

8.3.3 NORMAL TO REDUCED. When normal inspection is in effect, reduced inspection shall be instituted providing that all of the following conditions are satisfied:

a. The preceding 10 lots or batches (or more, as indicated by the note to Table VIII) have been on normal inspection and all have been accepted on original inspection; and

- b. The total number of nonconforming units (or nonconformities) in the samples from the preceding 10 lots or batches (or such other number as was used for condition "a" above) is equal to or less than the applicable number given in Table VIII. If double or multiple sampling is in use, all samples inspected should be included, not "first" samples only; and
- c. Production is at a steady rate; and
- d. Reduced inspection is considered desirable by the responsible authority.

8.3.4 REDUCED TO NORMAL. When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:

- a. A lot or batch is rejected; or
- b. A lot or batch is considered acceptable under the procedures for reduced inspection given in 10.1.4; or
- c. Production becomes irregular or delayed; or
- d. Other conditions warrant that normal inspection shall be instituted.

8.4 DISCONTINUATION OF INSPECTION. In the event that 10 consecutive lots or batches remain on tightened inspection (or such other number as may be designated by the responsible authority), inspection under the provisions of this document should be discontinued pending action to improve the quality of submitted material.

8.5 LIMIT NUMBERS FOR REDUCED INSPEC-TION. When agreed upon by responsible authority for both parties to the inspection, that is, the supplier and the end item customer, the requirements of 8.3.3b may be dropped. This action will have little effect on the operating properties of the scheme.

8.6 SWITCHING SEQUENCE. A schematic diagram describing the sequence of application of the switching rules is shown in Figure 1.

9. SAMPLING PLANS

9.1 SAMPLING PLAN. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers).

ANSI/ASQC Standard Z1.4-1993

9.2 INSPECTION LEVEL. The inspection level determines the relationship between the lot or batch size and the sample size. The inspection level to be used for any particular requirement will be prescribed by the responsible authority. Three inspection levels: I, II and III are given in Table I for general use. Unless otherwise specified, Inspection Level II will be used. However, Inspection Level I may be specified when less discrimination is needed, or Level III may be specified for greater discrimination. Four additional special levels: S-1, S-2, S-3, and S-4, are given in the same table and may be used where relatively small sample sizes are necessary and large sampling risks can or must be tolerated.

NOTE: In the designation of inspection levels S-1 to S-4, care must be exercised to avoid AQLs inconsistent with these inspection levels.

9.3 CODE LETTERS. Sample sizes are designated by code letters. Table I shall be used to find the applicable code letter for the particular lot or batch size and the prescribed inspection level.

9.4 OBTAINING SAMPLING PLAN. The AQL and the code letter shall be used to obtain the sampling plan from Tables II, III, or IV. When no sampling plan is available for a given combination of AQL and code letter, the tables direct the user to a different letter. The sample size to be used is given by the new code letter not by the original letter. If this procedure leads to different sample sizes for different classes of nonconformities, the code letter corresponding to the largest sample size derived may be used for all classes of nonconformities when designated or approved by the responsible authority. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available), may be used when designated or approved by the responsible authority.

9.5 TYPES OF SAMPLING PLANS. Three types of sampling plans: Single, Double and Multiple, are given in Tables II, III and IV, respectively. When several types of plans are available for a given AQL and code letter, any one may be used. A decision as to type of plan, either single, double, or multiple, when available for a given AQL and code letter, will usually be based upon the comparison between the administrative difficulty and the average sample sizes of the available plans. The average sample size of multiple plans is less than for double (except in the case corresponding to single acceptance number 1) and both of these are always less than a single sample size (see Table IX). Usually the administrative difficulty for single sam-

ANSI/ASQC Standard Z1.4-1993

pling and the cost per unit of the sample are less than for double or multiple.

10. DETERMINATION OF ACCEPTABILITY

10.1 PERCENT NONCONFORMING INSPECTION. To determine acceptability of a lot or batch under percent nonconforming inspection, the applicable sampling plan shall be used in accordance with 10.1.1, 10.1.2, 10.1.3 and 10.1.4.

10.1.1 SINGLE SAMPLING PLAN. The number of sample units inspected shall be equal to the sample size given by the plan. If the number of nonconforming units found in the sample is equal to or less than the acceptance number, the lot or batch shall be considered acceptable. If the number of nonconforming units is equal to or greater than the rejection number, the lot or batch shall be considered not acceptable.

10.1.2 DOUBLE SAMPLING PLAN. The number of sample units first inspected shall be equal to the first sample size given by the plan. If the number of nonconforming units found in the first sample is equal to or less than the first acceptance number, the lot or batch shall be considered acceptable. If the number of nonconforming units found in the first sample is equal to or greater than the first rejection number, the lot or batch shall be considered not acceptable. If the number of nonconforming units found in the first sample is between the first acceptance and rejection numbers, a second sample of the size given by the plan shall be inspected. The number of nonconforming units found in the first and second samples shall be accumulated. If the cumulative number of nonconforming units is equal to or less than the second acceptance number, the lot or batch shall be considered acceptable. If the cumulative number of nonconforming units is equal to or greater than the second rejection number, the lot or batch shall be considered not acceptable.

10.1.3 MULTIPLE SAMPLE PLAN. Under multiple sampling, the procedure shall be similar to that specified in 10.1.2, except that the number of successive samples required to reach a decision might be more than two.

10.1.4 SPECIAL PROCEDURE FOR REDUCED INSPECTION. Under reduced inspection, the sampling procedure may terminate without making a decision. In these circumstances, the lot or batch will be considered acceptable, but normal inspection will be reinstated starting with the next lot or batch (see 8.3.4(b)). **10.2 NONCONFORMITIES PER HUNDRED UNITS INSPECTION.** To determine the acceptability of a lot or batch under Nonconformities per Hundred Units inspection, the procedure specified for Percent Nonconforming inspection above shall be used, except that the word "nonconformities" shall be substituted for "nonconforming units".

11. SUPPLEMENTARY INFORMATION

11.1 OPERATING CHARACTERISTIC CURVES.

Operating characteristic curves and other measures of performance presented in this standard are of two types. Those for the individual plans that represent the elements of the schemes are presented in Tables V, VI, VII, IX, and X. Analogous curves and other measures of overall scheme performance when the switching rules are used are given in Tables XI, XII, XIII, XIV, and XV. Scheme performance is defined as the composite proportion of lots accepted at a stated percent nonconforming when the switching rules are applied. The term scheme performance is used here in a very restrictive sense. It refers to how the ANSI Z1.4 scheme of switching rules would operate at a given process level under the assumption that the process stays at that level even after switching to tightened inspection or discontinuation of inspection. This gives a conservative "worst case" description of the performance of the scheme for use as a base-line in the sense that if the psychological and economic pressures associated with the switching rules are considered, the protection of the scheme may be somewhat better than that shown.

Operating characteristic curves are given in Table X for individual sampling plans for normal and tightened inspection. The operating characteristic curve for unqualified acceptance under reduced inspection can be found by using the AQL index of the normal plan with the sample size(s) and acceptance number(s) of the reduced plan. The curves shown are for single sampling; curves for double and multiple sampling are matched as closely as practicable. The O.C. curves shown for AQLs greater than 10.0 are based on the Poisson distribution and apply for nonconformities per hundred units inspection; those for AQLs of 10.0 or less and sample sizes of 80 or less are based on the binomial distribution and apply for percent nonconforming inspection; those for AQLs of 10.0 or less and sample sizes larger than 80 are based on the Poisson distribution and apply either for nonconformities per hundred units inspection, or for percent nonconforming inspection (the Poisson distribution being an adequate approximation to the binomial distribution under these conditions). Tabulated values corresponding to selected values of probabilities of acceptance

(P_a in percent) are given for each of the curves shown, and, in addition, are indexed for tightened inspection, and also show values for nonconformities per hundred units for AQLs of 10.0 or less and sample sizes of 80 or less.

The operating characteristic curves for scheme performance shown in Table XV indicate the percentage of lots or batches which may be expected to be accepted under use of the switching rules with the various sampling plans for a given process quality subject to the restrictions stated above. The operating characteristic curves of scheme performance are based on the use of limit numbers in switching to reduced inspection and are approximately correct when the limit numbers for reduced inspection are not used under Option 8.5. The curves also assume a return to tightened inspection when inspection is resumed after discontinuation has been imposed. This is also true of average outgoing quality limit and average sample size for ANSI Z1.4 scheme performance.

Note that the operating characteristic curve for scheme performance is approximately that of the normal plan for low levels of percent nonconforming and that of the tightened plan for high levels of percent nonconforming. Use of the reduced plan increases scheme probability of acceptance only for extremely low levels of percent nonconforming.

11.2 PROCESS AVERAGE. The process average is the average percent nonconforming or average number of nonconformities per hundred units (whichever is applicable) of product submitted by the supplier for original inspection. Original inspection is the first inspection of a particular quantity of product as distinguished from the inspection of product which has been resubmitted after prior rejection. When double or multiple sampling is used, only first sample results shall be included in the process average calculation.

11.3 AVERAGE OUTGOING QUALITY (AOQ). The AOQ is the average quality of outgoing product including all accepted lots or batches, plus all lots or batches which are not accepted after such lots or batches have been effectively 100 percent inspected and all nonconforming units replaced by conforming units.

11.4 AVERAGE OUTGOING QUALITY LIMIT (**AOQL**). The AOQL is the maximum of the AOQs for all possible incoming qualities for a given acceptance sampling plan. AOQL values are given in Table V-A for each of the single sampling plans for normal inspection and in Table V-B for each of the single sampling plans for tightened inspection. AOQL values for ANSI Z1.4 scheme performance are given in Table XI subject to the restrictions of 11.1. They show the average outgoing quality limits for

ANSI/ASQC Standard Z1.4-1993

scheme performance when using single sampling. AOQL will be slightly higher when the limit numbers for reduced inspection are not used under Option 8.5.

11.5 AVERAGE SAMPLE SIZE CURVES. Average sample size curves for double and multiple sampling as compared to the single sampling plan for each acceptance number are in Table IX. These show the average sample sizes which may be expected to occur under the various sampling plans for a given process quality level. The curves assume no curtailment of inspection and are approximate to the extent that they are based upon the Poisson distribution, and that the sample sizes at each stage for double and multiple sampling are assumed to be 0.631n and 0.25n respectively, where n is the equivalent single sample size. Average sample size tables for ANSI Z1.4 scheme performance are given in Table XIV. They show the average sample size for scheme performance when using single sampling.

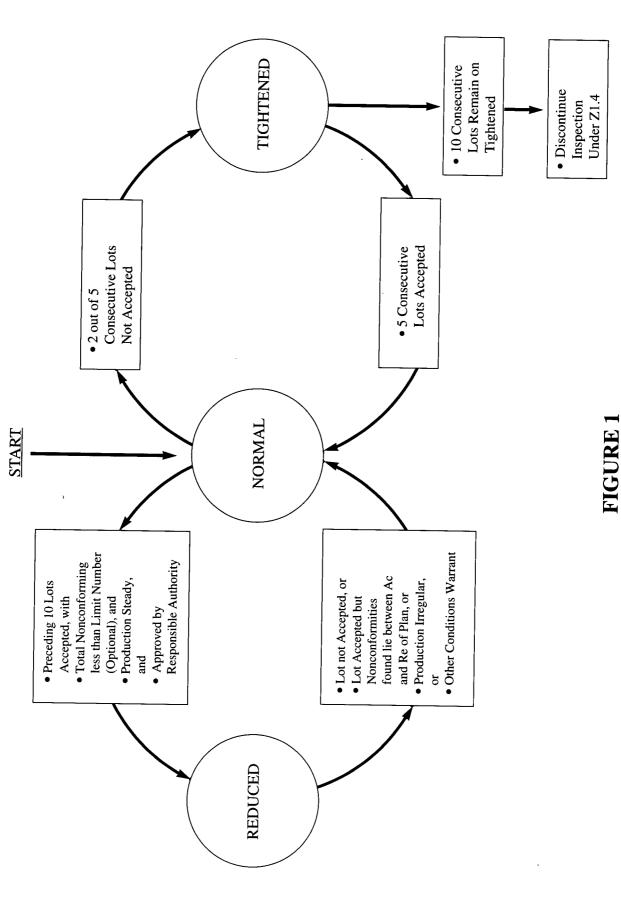
11.6 LIMITING QUALITY PROTECTION.

11.6.1 USE OF INDIVIDUAL PLANS. This standard is intended to be used as a system employing tightened, normal, and reduced inspection on a continuing series of lots to achieve consumer protection while assuring the producer that acceptance will occur most of the time if quality is better than the AQL.

11.6.2 IMPORTANCE OF SWITCHING RULES. Occasionally specific individual plans are selected from the standard and used without the switching rules. This is not the intended application of the ANSI Z1.4 system and its use in this way should not be referred to as inspection under ANSI Z1.4. When employed in this way, this document simply represents a repository for a collection of individual plans indexed by AQL. The operating characteristics and other measures of a plan so chosen must be assessed individually for that plan from the tables provided.

11.6.3 LIMITING QUALITY TABLES. If the lot or batch is of an isolated nature, it is desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that provide not less than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a Limiting Quality (LQ) and a consumer's risk to be associated with it. Limiting Quality is the percentage of nonconforming units (or nonconformities) in a batch or lot for which for purposes of acceptance sampling, the consumer wishes the probability of acceptance to be restricted to a specified low value.

ANSI/ASQC Standard Z1.4-1993


Tables VI and VII give process levels for which the probabilities of lot acceptance under various sampling plans are 10 percent and 5 percent respectively. If a different value of consumer's risk is required, the O.C. curves and their tabulated values may be used. For individual lots with percents nonconforming or nonconformities per 100 units equal to the specified Limiting Quality (LQ) values, the probabilities of lot acceptance are less than 10 percent in the case of plans listed in Table VI and less than 5 percent in the case of plans listed in Table VII. When there is reason for avoiding more than a limiting percentage of nonconforming units (or nonconformities) in a lot or batch, Tables VI and VII may be useful for fixing minimum sample sizes to be associated with the AQL and Inspection Level specified for the inspection of a series of lots or batches. For example, if an LQ of 5 percent is desired for individual lots with an associated P_a of 10 percent or less, then if an AQL of 1.5 percent is

designated for inspection of a series of lots or batches, Table VI indicates that the minimum sample size must be that given by Code Letter M.

Where there is interest in a limiting *process level*, Tables XII and XIII, which give LQ values and ANSI Z1.4 scheme performance, may be used in a similar way to fix minimum sample sizes.

In the case of an isolated lot, it is preferable for the customer to adapt a sampling plan with a small consumer's risk. The ideal method of calculating the sample size and risk is by use of the hypergeometric probability function. ANSI/ASQC Q3 contains sampling plans that have been calculated on this basis and therefore provide a more accurate set of tables for these situations.

SWITCHING RULES This page is intentionally left blank.

(See 9.2 and 9.3)

Ξ	шСШ	шцび	НГМ	JZZ	ч Q Ж
П	CBA	Ωнц	Э Н Г	ΣГЖ	ZAO
I	A A B	UUA	шцО	н-М	NML
S-4	A A B	υυΔ	шшц	ООH	J J
S-3	A A	м U U	ΩΩш	шцц	HCC
S-2	K K K	888	U U U		шшш
S-1	A A A	BBA	C B B	υυυ	
ze	8 15 25	50 90 150	280 500 1200	3200 10000 35000	150000 500000 over
or batch s	5 5 5	to to	to to	to to	to to and
Lot	2 9 16	26 51 91	151 281 501	1201 3201 10001	35001 150001 500001
	1 S-2 S-3 S-4 I II	Lot or batch size Lot or batch size to batch size to batch size S-1 S-2 S-3 S-4 I II to 8 A A A A A A A A A A A A A A A A A A	Lotorbatch sizeS-1S-2S-3S-4ILot or batch sizeS-1S-2S-3S-4Ito15AAAAAto15AAAAAto50ABBCCCto150BBCCCCto150BBCCC	Lotorbatch size S-1 S-2 S-3 S-4 I Lot or batch size S-1 S-3 S-4 I I S-1 S-3 S-4 S-3 S-4 I I S-1 S-3 A A A A A A I I I S-1 S-3 A A A A A A I I I S-1 S-3 A A A A A A A I	Lotor batch sizeS-1S-2S-3S-4II101015 3 3 3 4 1 1 1 1015 3 3 3 3 3 3 3 1 1 1015 3 3 3 3 3 3 3 3 1 1 1015 3

TABLE I—Sample size code letters

Table II-A—Single sampling plans for normal inspection (Master table)

(See 9.4 and 9.5)

			r—					
	1000	Ac Re	30 31 44 45					
	650	Ac Re	31 31 45	-				
		Ac Re A	15 21 22 30 31 44	45				
	400	te Ac	14 21 30	4				
	250	Ac Re	10 11 14 15 21 22	30 31 44 45				
	150	Ac Re	7 8 10 11 14 15	21 22 30 31				· · ·
	100	Ac Re	9∞ <u>∏</u>	15				
			4 5 6 7 8 10	22 21				
	65	Ac Re		10 11 14 15 21 22		······		
	40	Ac Re	5 4 3 6 4 3	7 8 10 11 14 15	→ ^{21 22}	·		
(25	Ac Re	3 2 1 4 3 2	6 8 11	14 15 21 22	· · · · · · · · · · · · · · · · · · ·		
ctio	2	Ac Re	99	4 5 6 7 8 10	12 12			
Ispe	15		5	~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10 21 21	22		
al ir	10	Ac Re		0 4 3 0 4 3	7 8 10 11 14 15	51		
Acceptable Quality Levels (normal inspection)	6.5	Ac Re	→	- 7 C F	5 6 7 8 10 11	14 15 21 22		
ls (n	4.0	Ac Re	▶ ूं ◄	2 ¹ 2	3 4 5 6 7 8 1	10 11 14 15 21 22		
eve	2.5	Ac Re		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 4 9 6 2 5 3	8 11 11 1- 15 2-	3	
ity L	6		•	~~ _	0 m 10	10 14	22	
Qual	1.5	Ac Re			3 3 2 4 2	5 6 7 8 10 11	21	
ole (1.0	Ac Re		► ¯. ◄	1 2 3 3 3	34 56 78	10 11 14 15 21 22	←
eptal	0.65	Ac Re		→ -	*	2 3 3 4 5 6	7 8 10 11 14 15	1 22
Acc	0.40	Ac Re			-	0 m 4	6 8 11	15 21
					0	3 2 1	t 5 5 7 3 10	1 14 15
	0.25	Ac Re			▶ ₀◆	5 - 4	3 4 5 6 7 8	10 11
	0.15	Ac Re			→ ¹ •		5 4 3 6 4 3	7 8
	0.10	Ac Re Ac Re				•1	1 2 3 4 4	56
	0.065	Ac Re				→ - ←	[⊸] [∽]	4
						1	2 2 2	3
	5 0.040	e Ac Re				→ °	**	5
	0.025	Ac Re Ac Re						1 2
	0.015	Ac Re		····			≁ ̄∢	
	0.010	Ac Re						
	<u> </u>		5 32	8 20	0 0 5	2 0 2	000	
	Sample size			2.2	32 50 80	125 200 315	500 800 1250	2000
	size	letter	CBA	ЕD	л Б Н	MLK	ZAØ	2
	8 ⁵⁵ 8	let	~ = •	II		4	~-~	i

= Use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100 percent inspection. = Use first sampling plan above arrow.
 Ac = Acceptance number.
 Re = Rejection number.

+

SINGLE NORMAL PLANS

Table II-B—Single sampling plans for tightened inspection (Master table)

(See 9.4 and 9.5)

	1000	Ac Re	27 28 41 42						
	650	Ac Re	18 19 27 28 41 42						
	400	Ac Re	13 19 28	42					
		se Ac	9 12 13 18 19 27	28 41 42					
	250	Ac Re	8 12 18	27 41					
	150	Ac Re	5 6 8 9 12 13	18 19 27 28					
	100	Ac Re	34 56 89	12 13 18 19				_	
	65	Ac Re	2 3 3 5 6	8 9 12 13 18 19					
	40	Ac Re	1 2 2 3 3 4	5 6 8 9 12 13	18 19				
(uc	25		↓ 1 2 2 3	34 56 891	12 13 1				
ectic	15	Ac Re Ac Re	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 4 9	9 13 19	-			
insp			-	2 2 4 5 3	6 8 9 12 13 18	19		. <u> </u>	
ned	10	e Ac Re		- 4 0	5 8 12 8	≈ •			
ghte	6.5	Ac Re Ac Re		→ ⁻ ⁻ ⁻	3 5 6 9 9 9	12 13			
ls (ti	4.0	Ac Re	→		23 34 56	8 9 12 13 18 19			
Acceptable Quality Levels (tightened inspection)	2.5	Ac Re		•	1 2 3 3 4	56 89 1213	18 19		
lity	1.5	Ac Re		→ ፲—	37	3 4 5 6 8 9 1	13		
Qua	1.0	Ac Re		1 0	2 2 2	6,4,0	9 12 13 18 19		
able				•		4 3 2 4 5 3	6 8 9 12 13 18	61	
cept	0.65	e Ac Re			•	357	5 8 12	18	
Ac	0.40	Ac Re			→	→ ³ ²	8 5 6 9 6 9 9 9	12 13	
	0.25	Ac Re			→ ⁻ 。		5 5 3 5 6	8 0	
	0.15	Ac Re				•	1 2 2 3 3 4	56	
	0.10	Ac Re Ac Re				→	→ ¹ ²	3 4	
	0.065	Ac Re				→ ⁻ ₀	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3	e
	0.040 0	Ac Re A						5	
	0.025 0.	Ac Re Ac					0	-	5
		te Ac					•		
	0.015	e Ac Re						~	
	0.010	Ac Re						1 0	-
	Sample size		0 m 5	8 13 20	32 50 80	125 200 315	500 800 1250	2000	3150
Sample	size code	letter	CBA	БП	С H С	MLK	N 4 Q	×	s

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.
 = Use first sampling plan above arrow.

Ac = Acceptance number.

Re = Rejection number.

SINGLE TIGHTENED PLANS

SINGLE REDUCED PLANS

Table II-C—Single sampling plans for reduced inspection (Master table)

9.5)
and
9.4
(See
_

	1000	Ac Re	30 31 30 31					
	650 1	Ac Re	22 24					
			15 21 15 21 17 21	24				
	400	Ac Re Ac Re	14 14 14	21				
	250	Ac Re	10 11 10 11 10 13	14 17 21 24				
	150	Ac Re	7 8 7 8 7 10	10 13 14 17			-	
	100	Ac Re	5 6 5 8 5 8	7 10 1 10 13 1				
	65	Ac Re	4 5 6	5 8 7 7 10 10 10 13	-			
	40	Ac Re	3 3 5 3 3	6 8 10	10 13			
)‡	25 4	-	2 3 4 2 4 2	5 6 8 7	7 10 10 10 13			
tion		te Ac		6 5 3 2				
pect	15	Ac F		3 2 1	5 7 10	+		
d ins	10	Ac Re Ac Re Ac Re	• 2 0	1 3 2 5 5	3 6 5 8 7 10	10 13		
duce	6.5	Ac Re	• •	0 2 1 3 1 4	25 36 58	7 10 10 13		
s (ree	4.0	Ac Re Ac Re	↓ _ ↓	↓ 0 2 1 3	1 4 2 5 3 6	5 8 7 10 10 13		
evel	2.5	Ac Re		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ω 4 Ω	6 8 10	10 13	
ty L			0	0	4 2 1	5 3 6 5 8 7		
uali	1.5	Ac Re Ac Re		~ ~	0	2 3 3	7 10 10 13	
le Q	1.0	Ac Re	· · · · ·	► ॄं◄	0 2 1 3	1 4 2 5 3 6	5 8 7 10 10 13	<
Acceptable Quality Levels (reduced inspection) [†]	0.65	Ac Re		→ -	•	1 3 1 4 2 5	3 6 5 8 7 10	10 13
Acce	0.40	Ac Re		>	~	0 2 1 3 1 4	2 5 3 6 5 8	7 10
	0.25	Ac Re			▶ ॄ ◄	↓ 0 2 1 3	1 4 2 5 3 6	5 8
	0.15					• ◆ ◆	ω 4 χ	6
		Ac Re Ac Re			- 0	-45	4	5 3
	5 0.10	e Ac				0	0	5
	0.065	AcR		1		▶ ॄ ◀		1 4
	0.040	Ac Re Ac Re Ac Re Ac Re						1 3
	0.025	Ac Re					- →	0 2
	0.015	Ac Re					-≻₀ ←	
	0.010	Re /		_				
<u> </u>		L,					0	
	Sample size	}	000	с, у 2 8	13 20 32	50 80 125	200 315 500	800
Samula	size	letter	C B A	Ошц	Эн¬	MLK	N d Q	2

★ = Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow.

Ac = Acceptance number.

Re = Rejection number. † = If the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection (see 10.1.4).

Table III-A—Double sampling plans for normal inspection (Master table)

			1 9			Т													
9.5		1000	Ac Re	*	25 31 56 57														
pur		650	c Re	*	17 22 37 38														
(See 9.4 and 9.5,			Ac Re Ac Re		11 16 1 26 27 3		31									<u> </u>			
ee (400	le Ac	*	11 11 19, 26	16 17 27 37													
S		250	Ac R	*	► 8		31 12	25 31 56 57	-										
		150	Ac Re	*	5 9 12 13	7 11 18 19	11 16 27 26 27	17 22 37 38	-										
		100		*	~ 0	0 [11 0	16 27						••		-			
		65 1	Ac Re Ac Re	*	5 7 8 3	- 0	6 E	<u>= 0</u>											
				*	5 4 5 2		7 5 9 12	6 8	1 0	11 16 26 27									
		5 40	ke Ac Re		6 4	-		7 5 9 12	9 7 13 18		16								
	tion)	25	Ac Re Ac Re Ac Re Ac Re	*	0 m	- 4	6 2	~ ~ ~	12	9 7 11 13 18 19			1						
	spec	15	AcR		0 2	0 7		25	37	5 1	L 8		-						
	al in	10	Ac Re		->	0 2	0 3 4 4	1 4 5 4	25 67	37 89	5 9 12 13	18	11 16 26 27						
	norm	6.5	Ac Re	*	-	-	0 2	0 m 4 m		2 5 6 7	3 7 8 9	5 9 12 13	7 11		-				
	els (I	4.0	Ac Re	-	*	-	+	0 2	3 0 3 7 0 3 7 0 4	4 1 5 4	2 5 6 7	3 7 8 9	5 9 12 13	7 11 18 19	11 16 26 27				_
	Lev	2.5				*	-	-	0 7	0 3 4 4	4 4 5 4	1	3 7 8 9	5 9 12 13	7 11	16	-		
	ality	1.5	Ac Re Ac Re Ac Re				*	-	-	0 0	(m 4	4 %	2 2	L 6	9 13	11 61	16 5 27	-	
	e Qu	1.0	c Re A			_		*	-	• •	2 3 3		4 2 5 6	5 7 8 8	7 5 9 12	5 9 7 12 13 18	11 11 19 26	11 16 26 27	
	otabl	0.65	Ac Re							-	0 -	2 2 3 3	6 4 - 4	4 2 5 6	5 3 7 8	7 5 9 12	9 7 13 18	9 11 19 26	
	Acceptable Quality Levels (normal inspection)							-	*	-	-	o –	3 0	4 - 4 4 - 4	5 4 6 2	53 78	7 5 9 12	9 5 13 18	11 11 16 19 26 27
	1	5 0.40	e Ac Re						-	*	-	-	0 -	0 m	- 4	0 17	m ∞	12 5	18 7
	-	0.25	e Ac Re								*	-	-	0 2 1 2	0 3 4 4	1 4 5 5	2567	3 7 8 9	5 9 12 13
		0.15	Ac Re Ac Re							10	-	*	-	-	0 2	0 3 4 4	1 4 5 4	25 67	37 89
		0.10		_								-	*	-	-	$\begin{array}{c} 0 & 2 \\ 1 & 2 \end{array}$	0 % 6 4	- 4 4 2	25 67
		0.065	Ac Re										+	*	+	+	0 2 1 2	03 4	1 4 4 5
		0.040	Ac Re											->	*	+	+	0 2 1 2	03 4
	ŀ	0.025													->	*	-	-	0 2 1 2
	F	0.015	Ac Re Ac Re												-10		*	-	0-
	-	0.010 0	Ac Re A						_										
-					4 7	6 3	5 0	8 16	13 26	6 S	64 23	<u>10</u> 20	160 80	125	200 400	315 630	500	* 1600	1250 2500
ŀ	5	le lative sample	siz		2	<u> </u>	55	20 20	13	20	32	20	80 1						
		Sample size												125	200 200	315 315	200	00 800 00 800	1250
		Sample			First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second
	Sample	size code	letter	×	В	c	D	Е	F	ß	Н	5	K	Г	W	z	Ь	δ	Я

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow.

= Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available). = Use first sampling plan
 Ac = Acceptance number.
 Re = Rejection number.
 * = Use corresponding sing

DOUBLE NORMAL PLANS

Table III-B—Double sampling plans for tightened inspection (Master table)

(See 9.4 and 9.5)

		2		53															
	1000	Ac Re	*	23 52	-														
	650	Ac Re	*	15 20 34 35	23 29 52 53	-													
	400		*	9 14 23 24	15 20 34 35	23 29 52 53	-												
	250	Ac Re Ac Re	*	6 10 15 16 3	9 14 23 24	15 20 3 34 35	23 29 52 53	-											
	150		*	12	10	14 24	35 20	-					-						
	100	Ac Re Ac Re	*	5 3 7 11	7 6 12 15	10 9 16 23	14 15 34 34												
		Ac Re Ac		5 4 6 2	5 3 7 11	7 6 12 15	10 9 16 23	24 14 24											
) 65	Re Ac	*	6 4 4 1	5 2 5 6 2	5 3 7 11	7 6 12 15	10 9 16 23	14 24										
	40	e Ac Re	*	3 0	6 4 – 4 –	5 4 6 2	5 3 7 11	7 6 12 15	10 9 16 23	14 24									
ction	25	Ac Re Ac Re		0 -	0 %	- 4	e 17	۳ <u>۲</u>	7 6 1 12 15 1	10 9 1 16 23 2	14 24	1							
uspe	15	è Ac R		->	0 2	3 4 3 4	1 4 4 5	25 67	<u>د ت</u>	6 15	33 9	4 4	••						
ned ii	10			i		0 2 1 2	0 3 4	1 4 5 5	25 67	3 7 11 12	6 10 2 15 16) <u>9</u> 14 5 23 24	+						
ghter	6.5	Ac Re Ac Re	-	*		-	0 2 1 2	0 4 8	1 4 5 4	25 67	3 7 11 12	6 10 15 16	9 14 23 24	-					
ls (ti	4.0			->	*		->	$\begin{array}{c} 0 & 2 \\ 1 & 2 \end{array}$	0 3 4 4	1 4 4 5	25 67	3 7 11 12	6 10 15 16	9 14 23 24	-				
Acceptable Quality Levels (tightened inspection)	2.5	Ac Re			-	*		->	0 2 1 2	3 0 6 4	4 4 5 4	25 67	37 1112	6 10 15 16	9 14 23 24	-			
ality	1.5	Ac Re				-	*			02	3 0 3 4 4	4 5 4 5	25 67	3 7 11 12	6 10 15 16	9 14 23 24	-		
s Qui	1.0	Ac Re						*			02	03 4	14 45	25 67	3 7 11 12	6 10 15 16	9 14 23 24	+	
otable	0.65	Ac Re	<u> </u>						*		->	7 7	ω4	4 v	2 5 5 6 7 1	3 7 (11 12 1	6 10 <u>5</u> 15 16 2	9 14 23 24	$\left - \right $
Acce	0.40	Ac Re A							└	*			2 2 3	8 1 8 1 7	4 v	5 1	12 7	10 16 2	
Ą	0.25 0	Ac Re Ac								∟∷ -►	*		• - •	3 3 3	ω 4 1 4	5 4 5 6	5 3 7 11	12 15 15	
	0.15 0.	-								-		*		o		6 4 4 1	4 2 5 6	5 3 7 11	
	<u> </u>	Ac Re Ac Re									-				0	2 2 3	4 - 4 - 4 -	4 2 5 6	$\left - \right $
	55 0.10											-	*		-	0 -	2 2 3	3 4	
	0 0.065	te Ac Re												*			0 -	3 0	
	5 0.040	e Ac Re													*			0 2 1 2	
	0.025	Ac Re Ac Re					-						_		-	*			0 2 1 2
	0.015															-	*	-	
	0.010	Ac Re															->	*	
	Cumu- lative sample	size		4 2	6.3	5 10	8 16	13 26	6 2	6 4 33	100 S0	160 80	125 250	200 400	315 630	500 1000	800 1600	1250 2500	2000 4000
	Sample			5 5	<i></i>	s s	× ×	13 13	20 20	32 33	5 S	88	125 125	200 200	315 315	200 200	00 00 00 00	1250 1250	2000 2000
	Sample Si			First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second	First Second
	sampte size Sa code	atter	۲	B Se Fi	C Se Fi	D Se Fi	T Se	F Se Fir	G	H Se Se	J Fr Se	K Se Fi	L Fi	M Fi	N Fit	P Fi	Q Se Se	R Fir Se	S Se
	e s o	2						Ĺ	Ĺ							L			

 Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow.

Ac = Acceptance number. Re = Rejection number. = Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

*

DOUBLE TIGHTENED PLANS Table III-C—Double sampling plans for reduced inspection (Master table)

(See 9.4 and 9.5)

Г 		12	1																				
	0001	Ac 1	*	*	-	-															_		
	650	Ac Re Ac Re	*	*	*															_			
	400	Ac Re	*	*	*	11 17	05 07	4				-		_								·	
	250	c Re	*	*	*	12	1 12	30		•										_			
	150	Ac Re Ac Re	-			5 10 7		22 26													-10-		
		te Ac	-	#	*		_	18															
	100	Ac Re	*	*	*	3	_	12 16		<							•						_
	65	Ac Re	*	*	*	2 7		8 12	5 10	12 16		-		_					-				
	40	Ac Re	*	*	*	15		69	38	8 12	5 10	12 10	-			_							_
n)†	25		*	*	*	4 v 4 v	1	4 7	2 7	69	ю о 2000	1	5 10 12 16		+			_					_
ectio	15	Ac Re Ac Re		*	*	4 4	4	<u>ء</u> و	S		~	ہ ر	2 x	10	16		•		-				
insp	10	c Re A		•	*	3 0	. 4		4	6 4	5 1	-	~ 0 ~ 8	, ∞	12 1	10	2	_					
ced		Ac Re Ac Re Ac Re	-			0 0 0 7 7	+	4	4	5 3	4 4	╉	0 2	7 3	9 8		12 12	10					
redu	6.5	e Ac I	* •	-		0 0	1	_ I	0		0,		- 4	~		ε		<u>s</u> 5	:	←			
els (i	4.0			* -	+	1	0 2		03		0 + •		9 v 9 v		4 7	2 7	6 9	3 8 1 8		12 16			
Lev	2.5	Ac Re	->	- 4	*	+	-		0 0 0		0 3 0 3		1 5 1	0 4	36	15	4	2 4			12 16		
ality	1.5	Ac Re	<u> </u>		-	*		-	->		0 0 0	- ł	0 4	0 4	15		0	1 5 4 7	2 7	6 ×	10	12 16	
e Qu	1.0	Ac Re Ac Re				+	*		-		-	•	0 2 4	0 3		4	- I	3 4 9 6	5	~ ~	<u> </u>	2 0 1	
Acceptable Quality Levels (reduced inspection)†	0.65	Ac Re					>	-	*		+		-	0 2 0	7	030	4	4 5	+		~ ~	ر ∞ 1	1 2 9
Acce	0.40	Ac Re							•	-	*		-	<u> </u>	•	~ ~	7	ς 4	4	v 4			2 12 12
	0.25	Ac Re						-			-		*		T	••		0 0 7 7	<i>.</i> .	4 4	v 4 ,	0 0 r 2 7 4 0 r	. ~ 6
	0.15				-					_						_	+	00	0 0			v 4 v v - z	
	┝──┥	Ac Re Ac Re										_				•			0 0			- 0 ~	
	0.10											_		-	-	*	•		-	0 0			3 6 4 9
	0.065	Ac Re														-		*	-	· ->	0 0		
	0.040	Ac Re																	*	-	- ->	0 2 0	
	0.025																		-	*	-		0 2 0
	0.015	Ac Re Ac Re																			* *	-	
	0.010 0	Ac Re						_												-		+	
 	(SIZE			Ţ	N 4	ر س		0	•	9 16	13	26	50	7	64 33	Ş	001	80 160	125	400 100	315	500
ć	Sample lat size sarr	s I				0 0	e e	-	n vn	-	• ••	13	13	30	3	32	4	2 S	80	125		315	500 10
	ple San si				_	q	q		- p		q				_		L			<u> </u>	_	-	
	Sample				i	First Second	First Second		Second	i	Second	First	Second	First	Jacon	First Second		Second	First Second	First	First Second	First Second	First Second
Some	size code	letter	۹ A	<u>າ</u> ບ		D	ш		ц		U	:	Ξ			х			N	z	4	0	~

= Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspection.
 = Use first sampling plan above arrow.
 Ac = Acceptance number.

Re = Rejection number.
= Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).
† = If, after the second sample, the acceptance number has been exceeded, but the rejection number has not been reached,

accept the lot, but reinstate normal inspection (see 10.1.4).

DOUBLE REDUCED PLANS

		Re	¥.	+						
	1000	Ac Re	*	‡ ◄	L					
	650	Ac Re	*	‡ ‡			<u> </u>	<u> </u>		
	400	Ac Re	*	‡ ‡	6 16 17 27 29 39 40 49 53 58 65 68 77 78	<				
	250	Ac Re	*	‡ ‡	4 12 11 19 27 34 36 40 53 54	6 16 6 16 17 27 29 39 53 58 65 68 77 78	~			
	50	Ac Re	*	‡ ‡	2 9 13 19 19 25 25 29 31 33 37 38	4 12 11 19 27 34 36 40 53 54 53 54	~			
	100	Ac Re	*	‡‡	23 20 11 20 2	33 33 52 52 4				
		Ac Re Ac			5 8 8 13 13 13 17 17	7 2 10 7 13 13 13 13 19 19 19 19 19 25 23 31 26 37	9 19 25 33 33 33 33 33 33 33 33 33 33 33 33 33			
	65			‡‡ ++	4 0 6 3 8 6 8 6 8 10 8 6 11 11 12 14 14 18 14 18	5 1 8 4 10 8 13 12 13 12 17 21 17 21 19 25	7 2 10 7 17 19 17 19 20 25 20 25 31 26 37	9 14 12 25 29 33 33 33		-
	4	e Ac Re		‡‡ 	0 3 10 13 13	0 ~ 0 ~ 1 4 8	5 1 8 8 4 10 8 4 13 12 13 12 17 21 19 25	7 2 10 7 11 13 13 13 13 13 13 13 23 31 25 33	333333	
	25	e Ac Re	*	‡‡	# - 7 8 7 6 9 7 8 7 6 7 10 9 7 8 7 10 9 7 8 7	0 4 1 6 5 10 7 11 10 12 13 14	0 6 3 11 18 12 12 13	1 8 17 17 21 25	2 13 19 31 37	
	15	Ac Re	-	‡‡	#0 6 4 2 6 4 9 7 6 6 4 9 7 6 6 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7	9 1 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 4 1 6 5 10 7 11 10 12 13 14 13 14	0 5 3 8 6 10 6 10 8 13 8 13 14 17 18 19	1 7 4 10 8 13 12 17 17 20 21 23 25 26	2 9 7 14 13 19 19 25 25 29
ection)	10	Ac Re	->	- ‡	#00-0 <i>m</i> 4 00-0 <i>m</i> 4 0004 400	# 0 - 1 % 4 9 % % 4 % 9 % %	# + + +	0 4 1 6 5 10 7 11 10 12 13 14	0 5 3 8 610 813 813 1115 1417 1417 1819	1 7 4 10 8 13 12 17 17 20
Acceptable Quality Levels (normal inspection)	6.5	Ac Re	* -	• •	**00***	#00-0%4 0%%44%%	#0-0	# + +	0 4 1 6 5 10 7 11 10 12 13 14	0 5 3 8 6 10 8 13 11 15
ls (norn	4.0	Ac Re	•	*4	>	00555 00555	#00~0%4 0%%44%%	#0-0649 664990	# 4 1 5 2 6 3 7 9 10 9 10	0 4 1 6 3 8 5 10 7 11
ty Leve	2.5	Ac Re	-	*		>	# # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#00-0%4 0%%44%%	# 0 0 0 7 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* - 1 + 4 8 - 1 6 5 8 - 1 6 7
e Quali	1.5	Ac Re		*	*		>	2	# 2 0 3 4 5 5 4 4 2 4 4 3 5 4 4 5 5 4 4 5 5 4 4 5 5 4 5 4 5	3 5 4 3 3 9 5 4 3 3
ceptabl	1.0	Ac Re			*				999966	00044
¥	0.65	Re				>			5 - - - 0 0 + +	00#00#
	0.40 0	Re Ac								# # 0 0 -
	<u> </u>	Re Ac								
	5 0.25	Ac							*	
	0.15	e Ac Re			· · · · · · · · · · · · · · · · · · ·				>	*
	0.10	Ac Re								······
	0.065	Ac Re								
	0.040	Ac Re						······		
	0.025	Ac Re								
)	0.015	Ac Re						-		
	0.010	Ac Re					·····		· · ·······	
	Cumu- lative 0 sample	_			4 2 8 0 2 4 2	21 15 21 21 21 21 21 21 21 21 21 21 21 21 21	3 30 2 2 0 2 1 5 2 3 3 3 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5	56 8 40 24 66 8	113 26 55 21 21 21 21 21 21 21 21 21 21 21 21 21	8 8 8 8 8
		s			2222222	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		∞∞∞∞∞∞∞∞∞ = α α α 4 4 4		
	ile Sample size								ф 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88888
	Sample				First Second Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Fourth Fifth Sixth Seventh	First Second Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Fourth Fifth
·	Sample size code	tter	۲a	<u>ں</u>	۵	ш	Ľ.	σ	Ξ	5

Table IV-A—Multiple sampling plans for normal inspection (Master table)

MULTIPLI NORMAL PLANS

+ + = Use corresponding double sampling plan (or alternatively, use multiple sampling plan below, where available). = Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

when necessary.) If sample size equals or exceeds lot or batch size, do 100 percent inspection.

= Use first sampling plan above arrow.

= Use first sampling plan below arrow (refer to continuation of table on following page,

= Acceptance not permitted at this sample size.

Ac = Acceptance number. Re = Rejection number.

$ \begin{array}{c} sampling plans for normal inspection (Master table) \\ (Continued) \\ \hline \\ (Continued) \\ \hline \\ \hline \\ Acceptable Quality Levels (normal inspection) \\ \hline \\ $	Use first sampling plan above arrow (refer to preceding page, when necessary). Use corresponding single sample plan (or alternatively, use multiple plan below, where available). Acceptance not permitted at this sample size.
25 ACRe AC	refer to preceding page, when necessary). (or alternatively, use multiple plan below, where available) le size.
150 25	refer to preceding page, when necessary). (or alternatively, use multiple plan below, where ava le size.
150 25	refer to preceding page, when necessary). (or alternatively, use multiple plan below, whe le size.
	refer to preceding page, when necessary (or alternatively, use multiple plan belov le size.
	refer to preceding page, when nec (or alternatively, use multiple plar le size.
Master table	refer to preceding page, whe (or alternatively, use multip le size.
Master t	refer to preceding pag (or alternatively, use le size.
Mast	refer to precedi (or alternative) le size.
	refer to p (or alterr le size.
	iref le s
Ction 15 15 16 15 15 15 16 15 15 16 15 15 15 15 15 15 15 15 15 15	w (Ian
LSPect malins malins malins 10 7 14 13 1	ve arro nple p this sa
l ins 2 2 9 25 26 6.5 112 17 14 1 13 33 33 23 25 26 6.5 13 33 33 33 33 33 33 33 33 33 33 33 33	n abov gle sar ted at
Tmal 4.0 5 4.0 5 4.0 5 1.1 7 4.0 5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	ng pla ng sin permit
nor nor v h v v v v v v v v	sampli spondi ce not j
<i>Plued</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i> <i>Plane</i>	e first s corres eptanc
ing plans for normal inspection (A Continued) Acceptable Quality Levels (normal inspection) Acceptable Quality Levels (normal inspection) 40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 2 2 0.55 1.0 1.5 2.5 4.0 6.5 10 15 2 2 0.55 1.0 1.5 2.5 4.0 6.5 10 15 2 2 0.55 1.0 1.5 2.5 4.0 6.5 10 15 2 3 1.5 0.6 0.0 1.0 1.5 2.5 3.8 4.0 5.7 3.8 4.0 5.7 3.8 4.0 5.5 3.3 3.3 3.5 5.7 3.8 4.0 7.2 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	
C Plan Ac Re Ac Re <t< td=""><td>■ ■ ■ ◆ * *</td></t<>	■ ■ ■ ◆ * *
Olin Ac Res 10, 200 0,	
Camp: 100 25 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	equals on.
Jle S 16 S	e size e spectic
ultip Ac Re 0 0.0 0.00 ★ ★ ★ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	sampl cent in
Table IV-A-Multiple 0.015 0.025 0.040 0.065 0.10 0.11 Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re $Ac Re$ Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re $Ac Re$ Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re $Ac Re$ Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re $Ac Re$ Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re $Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac R$	Use first sampling plan below arrow. If sample size eq or exceeds lot or batch size, do 100 percent inspection. Acceptance number. Rejection number.
Ac Re 4 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	low ar e, do 1
le l 2 3 3 3 2 2 2 1 − − − + + + + + + + + + + + + + + + +	lan be ch size
	pling p t or bai umber nber.
	st samj eds lot ance n on nur
A Cumulation	Use first sampling p or exceeds lot or bat Acceptance number. Rejection number.
Sample size Cu size Cu size 332 332 332 332 332 332 332 332 332 332 332 332 333 332 332 333 315 11 1255 200 11 200 200 11 315 1125 1125 315 1125 200 315 1125 200 315 1125 200 315 1125 200 315 1125 200 315 1125 200 315 1125 200 315 1125 200 315 11 200 315 11 200 315 200 200 315 200 200 315 200 200 200 200 200 200 200	II II II
	♦ Ac Re
e Sample Sample Sample Sample First Second Third Fourth First Second Third First Second Fourth First Second Third First Second Fourth First Second	MULTIPLE
Sample Sample code letter R R	NORMAL

19

Table IV-B—Multiple sampling plans for tightened inspection (Master table)

	1000	Ac Re	*	‡ -	◀					
					1					
	650	Ac Re	*	‡‡						
	400	Ac Re	*	‡‡	6 15 26 36 37 46 49 55 49 55 61 64 7		<u> </u>			
	250	Ac Re	*	‡ ‡	3 10 17 10 17 17 24 17 24 17 24 32 31 32 31 40 43 48 49	6 15 16 25 26 36 37 46 49 55 61 64 72 73	~			
	150	Ac Re	*	‡ ‡	1 8 6 12 11 17 16 22 22 25 22 29 32 33	3 10 10 17 17 24 24 31 40 43 48 49				
	100	Ac Re	*	‡ ‡	0 6 3 9 7 12 10 15 14 17 21 22 21 22			·····	<u> </u>	
	65	Ac Re	*	; ‡	0 4 2 7 6 11 9 12 12 14 15 15		1 8 6 12 11 17 16 22 27 29 33 33			
	40	Ac Re	*	‡ ‡	# - 2 8 7 6 4 2 8 7 6 5 4 0 9 8 7 6 5 4		0 6 3 9 7 12 7 12 14 17 18 20 21 22	1 8 6 12 6 12 11 17 16 22 22 25 27 29 32 33		
(uo	25	Ac Re	-	± ‡	#00# 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 4 0 4 4 9 6 11 12 12 12 14 15 15	22 20 22	1 8 6 12 6 12 11 17 16 22 22 25 22 25 33 33	
pecti	15	Ac Re		• ‡	#00-0.04 0.0.0.44.0.0	# 0 - 0 m 4 9 0 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# - 0 8 9 0 6 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	2875296	
Acceptable Quality Levels (tightened inspection)	10	Ac Re	<u> </u>	+	# # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		# 0 - 0 # 0 0 4 0 0 4 0 0 0 0 4 0 0 0	9 1 0 1 1 # 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 4 2 2 7 6 11 9 12 14 15 2 1	0 6 3 9 10 15 11 12 14 17 21 22 21 22 21 22
thtent	6.5	Ac Re		k	>	0 0 0 # #	#00-0w4 0ww4422	#0-12849 50545095	4	
s (tig	4.0	Ac Re		•*	<u> </u>		0 0 0 # #	#000.w4 9.w.w44.v.v	#0-0#49 6665400	# 4 1 5 2 6 3 7 5 8 7 9 1 9 10
[Leve]	2.5	Ac Re		-	*		└ >	# # 0 0 0	# 0 0 - 0 % 4 0 % % 4 % %	# 0 3 0 3 0 4 4 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6
ality	1.5	Ac Re			>	*		>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 0 0 0 # 0 5 5 5 4 4 3 3 2
e Qu	1.0	Ac Re				>	*			333355 3333555 541-00##
ptabl	0.65	Ac Re					·	*	· · · · · ·	>
Acce	0.40	Ac Re	 					>	*	>
	0.25	c Re							>	*
	0.15	Ac Re			·····					>
	0.10	Ac Re								>
	0.065	Ac Re								>
	0.040	Ac Re								>
	0.025 (Ac Re								>
	0.015	Ac Re								>
	0.010	Ac Re								>
 		size			0400044	3 9 6 3 3 21 8 12 9 6 3 21 8 12 9 6 3	3 3 2 2 2 2 2 3	56 56 56 56 56 56 56 56 56 56 56 56 56 5	13 26 52 91 78 52 78 52 91	14 <u>1</u> 18 8 8 4 2
	Sample				0000000	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	61 61 61 61 61 61 61 61 61 61 61 61 61 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Sample				First Second Third Fourth Fifth Sixth Sixth	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Fourth Fifth Sixth Seventh
					പ്രപ്പ്പ്ര്ഗ്	しゃ ふ に ざ に る みし	「にみらんにある」		1 6 3 6 7 7 3 3	

Acceptance not permit
Ac = Acceptance number.
Re = Rejection number.

★ = Use corresponding single sampling plan (or alternatively, use double sampling plan below, where available).

MULTIPLE TIGHTENE PLANS

	1000	Ac Re				<u> </u>	, <u></u>	. <u></u>			Ś.
	650	Ac Re				·····					n belot
	400	Ac Re									ng pla
	250	Ac Re			<u> </u>						sampli
	150	Ac Re									ltiple :
	100	Ac Re									nse mu
	65	Ac Re									tively,
	40	Ac Re									alterna
	25	Ac Re									an (or a
	15	Ac Re		· · · · · · · · · · · · · · · · · · ·	·····						Acceptance number. Rejection number. Use corresponding single sampling plan (or alternatively, use multiple sampling plan below, where available).
ction)	10	Ac Re	1 8 6 12 6 12 11 17 16 22 22 25 27 29 33 33		····						sampl
al inspe	6.5	Ac Re	0 6 7 12 10 15 18 20 21 22 21 22	1 8 6 12 6 12 11 17 16 22 22 25 22 25 33 33							er. ; single
ls (norm	4.0	Ac Re	0 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 1 1 1 1	21 220 15 20 6 21 220 15 20 6 21 220 15 20 6	1 8 12 12 12 12 12 12 12 12 12 12 12 12 12						numbe umber. onding ible).
Acceptable Quality Levels (normal inspection)	2.5	Ac Re	++ 4 2 2 6 9 10 1 1 1 1	4 1 9 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	220175296	1 8 6 12 11 17 16 22 22 25 23 33 33 33				·	Acceptance number. Rejection number. Use corresponding s where available).
de Quali	1.5	Ac Re	#0-0# 7665433	9 10 11 # 4 1 1 4 4 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	4 - 0 - 1 - 2 4 - 2	0 6 3 9 10 15 1 18 20 2 21 22 22 22					
cceptab	1.0	Ac Re	#00-0%4 0%%44222	#0-0# 4004 4004	400000	0 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22215596	1 8 6 12 6 12 11 17 16 22 27 29 32 33			Ac ⊨ ⊨ ⊨
¥	0.65	Ac Re	##000 000000	#00-0w4 0ww44vv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9-15-3-5 10-8-5 11-1 11-1 11-1	4002545	2845596	1 8 6 12 16 22 16 22 27 29 32 33	 	t the second sec
i 2	0.40	Ac Re		0000000	0004400	ww42000	# - 2 % % % % % % % % % % % % % % % % % %	0 4 9 4 9 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 15 20 20 20 20 20 20 20 20 20 20 20 20 20		aals or exceeds g page, when
	0.25	Ac Re		>		#00-9w4 9ww44ww			4 0 11 1 2 4 5 1		uals or g page,
	0.15	Ac Re	*		>	44000000000000000000000000000000000000	#00-9%4 9%%44%%	#0-0.640 0.64000 0.64000	9109 1012 1122 1026 1026 1026 1026 1026 1026		size eq
	0.10	Ac Re		*			##000	#00-9%4 9%%44%%	#0-0.040 0.040000 # - ((0.010)		ample n. r to pro
	0.065 (Ac Re		►	*		>	##000 0000000	#00-064 0664400		w. If s: spectio w (refe
	0.040 0	Ac Re			>	*					Use first sampling plan below arrow. If samp lot or batch size, do 100 percent inspection. Use first sampling plan above arrow (refer to necessary).
	0.025 0	Ac Re				>	*		>	##000 0000000	Use first sampling plan below arrow. If sample size equator of the size, do 100 percent inspection. Use first sampling plan above arrow (refer to preceding necessary).
	0.015 (Ac Re					· · · · · · · · · · · · · · · · · · ·	*			ling pla e, do 1 ling pla
	0.010	Ac Re						>	*		t sampl tch siz t sampl y).
	Cumu- lative 0 sample		22222 22222 22222	300 300 300 300 300 300 300 300 300 300	80 560 560 560 560 560 560 560 560 560 56	125 250 500 750 875 875	1200 000 000 000 000 000 000 000 000 000	315 630 945 1260 1890 1890 2205	500 1000 22000 3500 3500	5600 5600 5600 5600 5600 5600 5600 5600	Use first st lot or batch Use first st necessary)
-	Sample Is size sa		******	8888888	<u> </u>	<u> </u>		31553355		000000000000000000000000000000000000000	
	Sample Sa										
				First Second Third Fourth Fifth Sixth Seventh							
	Sample size code	lette	×	Г	X	z	<u>с</u>	Q	R	S	TIGHTEN

Table IV-B—Multiple sampling plans for tightened inspection (Master table)

21

(See 9.4 and 9.5)

		ı——	–								
	1000	Ac Re	* * 🗲			<u>_</u>					ę
	650	Ac Re	* * * •								•
	400	Ac Re	* * * ‡ -	<							-
	250	Ac Re	* * * ‡‡								-
	150	Ac Re	* * * ‡‡								-
	100	Ac Re	* * * ‡‡	~							Acceptance not permitted at this sample size.
	65	Ac Re	* * * ‡‡	0 6 5 12 6 12 8 15 11 17 18 22 18 22							Acceptance not permitted at this sample size.
	40	Ac Re	* * * ‡‡	0 5 1 7 3 9 5 12 5 12 7 13 10 15 13 17	0 6 3 9 6 12 8 15 11 17 14 20 18 22						this san
n)†	25	Ac Re	* * * ‡‡	9 2 5 3 2 8 6 4 1 2 3 2 8 6 4 1 2 1 1 0 8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 5 1 7 3 9 5 12 7 13 10 15 13 17	0 6 3 9 6 12 8 15 8 15 11 17 14 20 18 22	~				tted at 1
Acceptable Quality Levels (reduced inspection) [†]	15	Ac Re	► * * ‡‡	# 0 - 0 = 4 0 0 + 4 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 4 1 6 2 8 3 10 2 11 9 12 1 1 1 9 14	0 5 1 7 3 9 5 12 7 13 17 13 17	0 6 3 3 9 6 12 8 15 11 17 18 20 18 22		umber.	ıber.	ot permi
l insp	101	Ac Re	►* ‡‡	#00-0%4 %4%077%	# 0 - 0 0 4 9 4 0 0 0 4 9 1 0 0 0 0 0 4	9 - 5 - 3 - 2 - 4 9 - 1 - 1 - 6 1 - 1 - 1 - 1 9 - 1 - 1 1 -	0 5 0 3 9 6 5 12 3 7 13 1 10 15 1 10 15 1 13 17 1	0 6 3 9 6 12 8 15 11 17 18 20 18 22	Acceptance number	Rejection number	ance no
luced	6.5	Ac Re	*~> ‡‡	# # 0 0 0 # # 7 6 6 5 4 3 3	# 0 0 - 0 m 4 w 4 v 0 - 0 w 4	# 0 1 0 4 4 0 4 7 0 4 7 0 4 7 0 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + + + + + + + + + + + + + + + + + +	0 5 0 1 7 1 5 12 8 7 13 1 10 15 1 13 17 1	Accept	Rejecti	Accept
s (red	4.0	Ac Re	> * <> ‡	# # 0 0 0 3 3 2 1 1 5 4 4 2 1 2 5 4 4 5 1 2 5 4 4 5 1 2 5 4 5 1 2 5 4 5 1 2 5 5 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 - 1 6 6 4 3 3 2 4 5 6 4 3 3	# 0 0 - 0 m 4	#0-0640 400-800 #1000	# # 4 1 6 6 3 3 10 9 12 1 1 1 1 1 1 1 1 1 1	Ac =	Re =	∥ # • ∱•
[Jeve]	2.5	Ac Rel	->* ->		# # 0 0 0 0 ~ ~ 4 4 ~ ~	4 # # 0 0 # # 7 0 0 7 7 0 0 7	#00-0 %4 %4 % % % % % % % % % % % % %	* 0 0 4 7 0 4 4 7 0 4 7			,
ality	1.5	Ac Re				# # 0 0 0 7 7 0 0 0 7 7 0 0 0 7 7 0 0 0 7 7 0 0 0 7	# # 0 0 0 7 0 0 4 0 0	# 0 0 4 3 2 2 - 0 5 4 8 4 7 7 5 5 4 6 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	بر		
e Qu	1.0	Ac Re	*	<	>	# # 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0	# # 0 0 0 0 % % 4 % %	* # # 0 0 7 7 0 7 7 7 0 7 7 7 7 7 7 7 7 7	necessa		-
ptabl	0.65	Ac Re		*			# # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, when		-
Acce	0.40	Ac Re		>	*		>	# # 0 0 0 0	ng page		-
	0.25	Ac Re			>	*	~	>	followi	ction.	:
	0.15	Ac Re	 		· · · · · · · · · · · · · · · · · · ·	·	*		able on	nt inspe	-
	0.10	Ac Re A					>	*	ion of ta	0 perce	
	0.065	Ac Re						>	ntinuat	e, do 10	
	0.040 0	Ac Re		· · · · ·	· · · · · · · · · · · ·			>	er to co	atch siz	
	0.025 0	Ac Re						>	row (rel	lot or b	row.
	0.015 0	Ac Re A				· · · · · · · · · · · · · · · · · · ·		>	elow ar	xceeds	bove an
	0.010	Ac Re						>	g plan b	ials or e	g plan a
	Cumu- lative 0 sample			0 4 9 8 0 7 4	21 12 21 21 21 21 21 21 21 21 21 21 21 2	3 3 2 2 2 2 5 2 5	8 116 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91 28 23 39 91 28 52 39 91 28 52 39	ampling	size equ	ampling
	Sample I size se			0000000		~~~~~	× × × × × × ×	<u> </u>	Use first sampling plan below arrow (refer to continuation of table on following page, when necessary)	If sample size equals or exceeds lot or batch size, do 100 percent inspection.	Use first sampling plan above arrow.
	Sample Sa			First Ferst Third Fourth Fifth Sixth Seventh	First Second Fourth Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Sixth	= Us	If	= Us
		er							*		◆ *
	Sample size code	letter	H D C B A	Ľ.		н		ĸ			

++ = Use corresponding double sampling plan (or alternatively, use multiple sampling plan below, where available).

number has not been reached, accept the lot but reinstate normal inspection (see 10.1.4).

MULTIPLE REDUCED PLANS

Table IV-C—Multiple sampling plans for reduced inspection (Master table)

22

	1000	Ac Re						
	650	Ac Re						
	400			······································				
	250	Ac Re Ac Re						
	150	Ac Re						
	100	Ac Re						
	65	Ac Re						
	40	Ac Re			Conne			
n)†	25							
Acceptable Quality Levels (reduced inspection) [†]	15	Ac Re Ac Re						
l insp	10	Ac Re						
duce	6.5	Ac Re	0 6 3 9 6 12 8 15 8 15 11 17 14 20 18 22					
ls (re	4.0	Ac Re	0 5 1 7 3 9 5 12 5 12 7 13 7 13 10 15 13 17	0 6 3 9 6 12 8 15 11 17 14 20 18 22	۰			
Leve	2.5	Ac Re	# 4 1 6 3 10 3 10 7 12 12 14 12	0 5 1 7 3 9 5 12 5 12 7 13 10 15 13 17	0 6 3 9 6 12 8 15 8 15 11 17 14 20 18 22			
lality	1.5	Ac Re	# 0 - 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	# # 4 1 6 3 2 8 3 10 9 12 11 12 14 12	0 5 1 7 3 9 5 12 5 12 7 13 7 13 17 10 15 13 17	0 6 3 9 6 12 8 15 8 15 11 17 14 20 18 22		
le Qu	1.0	Ac Re	#000%4 %4%00%	# 0 0 4 4 0 4 4 6 1 0 4 9 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	# # 4 1 6 3 10 8 10 9 11 9 12 12 14 12 14	0 5 1 7 3 9 5 12 5 12 7 13 10 15 13 17	0 6 3 9 6 12 8 15 11 17 14 20 18 22	
eptab	0.65	Ac Re	# # 0 0 0 0 0 0 0 0 0 0 0	# 3 0 4 1 6 8 3 4 3 7 4 8 4 8 4	# 0 5 1 6 4 4 0 5 1 6 4 9 6 1 0 5 1	# 4 1 6 2 8 3 10 5 11 7 12 9 14	0 5 1 7 3 9 5 12 5 12 7 13 10 15 13 17	0 6 3 9 6 12 8 15 8 15 11 17 14 20 18 22
Acc	0.40	Ac Re	##000 0%%44%%	# # 0 4 3 3 4 4 7 4 4 7 4 7 4 7 7 7 7 7 7 7 7	# 0 0 7 0 # 0 0 4 3 0 4 3 0 4 8 4 7 4 0 0 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4	# 4 0 5 1 6 2 7 3 8 6 4 9 6 10	# 4 1 6 2 8 3 10 5 11 9 12 9 14	0 5 1 7 3 9 5 12 7 13 7 13 10 15 13 17
	0.25	Ac Re	# # 0 0 0 7 2 7 0 0 3 3 7 7 0 3 3 3 7 7 7	# # 0 0 0	# # 0 0 + 0 0 + 0 0 + 0 0 - 1 - 0 0 - 1 - 0 0 - 1 - 0 0 - 1 - 0 0 - 1 - 0 - 0	# 0 4 0 4 2 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	# 4 0 5 2 7 3 8 4 9 6 10	# 4 1 6 3 2 8 3 10 9 11 9 12 12 14 12
	0.15	Ac Re		3335555 0 0 0 0 # #	# # 0 0 - 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# # 0 0 4 3 1 6 5 7 6 7 6 7 6 7 6 7 7 7 6 7 7 7 7 7 7 7 7	# 3 0 4 1 6 2 7 8 3 4 8	# 4 0 5 2 7 4 9 6 10 6 10
	0.10	Ac Re		>	9 3 3 3 4 4 4 5 5 4 4 4 5 5 4 4 5 5 5 5 5	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# 3 0 4 0 5 1 6 2 7 2 7	# 0 4 2 1 6 8 1 7 8 1 7 9 1 7
	0.065	Ac Re	*			33355 33355 10000 4 #	# # 0 0 4 4 7 2 3 3 3 2 5 4 4 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	# # 0 0 7 7 6 6 7 # #
	0.040	Ac Re		*			a a a a a 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	# # 0 0 0
	0.025	Ac Re		>	*		>	+ + 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
	0.015	Ac Re			>	*		
	0.010	Ac Re					*	
	Cumu- lative sample	size	20 80 12 00 80 12 00 12 10 10 10 10 10 10 10 10 10 10 10 10 10	32 64 96 128 160 192 224	50 100 150 200 300 350	80 160 240 320 400 480 560	125 250 375 500 625 750 875	200 400 600 1000 1200 1400
	Sample		88888888	333333333	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88888888	125 125 125 125 125 125	200 200 200 200 200 200
	Sample		First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh	First Second Third Fourth Fifth Sixth Seventh
	Sample size code	etter		Σ	z	۵_	a	x

4 = Use first sampling plan above arrow (refer to preceding page when necessary).

Ac = Acceptance number.

Re = Rejection number.

= Acceptance not permitted at this sample size.
 f = If, after the final sample, the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection (see 10.1.4).

MULTIPLE REDUCED PLANS

AOQL NORMAL PLANS

Table V-A—Factors for Determining Approximate Values for Average Outgoing Quality Limits for Normal Inspection (Single Sampling)

(See 11.4)

	1						
	1000	1100					
	650	730 720 660					
	400	470 490 430	410				
	250	330 310 290	270 250				
	150	220 220 190	180 170				
	001	160 150 130	120 110				
	65	97 110 90	82 72 73				
	40	8 8 8	56 50 47	46			
	25	42 46 39	40 33 33	29 29			
	15	28	5 5 5	21 19 18			
'el	<u> </u>	17	17 15 16	14 13 12	12		
Acceptable Quality Level	6.5	8	11 11 9.7	9.9 9.0 8.2	7.5 7.3		
Qualit	4.0	12	6.5 6.9	6.1 6.3 5.6	5.2 4.7 4.7		
table (2.5	7.4	4.2	4.3 3.9 4.0	3.6 3.3 3.0	2.9	
Accep	1.5		4.6	2.6 2.7 2.4	2.5 2.2 2.1	1.9	
4	1.0			1.7	1.6 1.6 1.4	1.3 1.2 1.2	
	0.65		1.8	1.1	1.1 0.97 1.00	0.90 0.82 0.75	0.73
	0.40			1.2	0.67 0.69 0.62	0.63 0.56 0.52	0.47
	0.25			0.74	0.42	0.39 0.40 0.36	0.33
	0.15			0.46	0.27	0.27 0.24 0.25	0.22
	0.10				0.29	0.17 0.17 0.16	0.16
	0.065				0.18	0.11	0.069 0.097
	5 0.040				0.12	0.067	
ļ	5 0.025	· ······				0.074	0.042
	0.015					0.046	
	0.010					0.029	
Sample size		2 3 5	8 20	80 32	125 200 315	500 800 1250	2000
Code Letter		C B A	Ошц	9 н -	K L M	zαØ	~

(See 11.4) Note: For a more accurate AOQL, the above values must be multiplied by $\left(1 - \frac{\text{Sample size}}{\text{Lot or Batch size}}\right)$

 Table V-B—Factors for Determining Approximate Values for Average Outgoing

 Quality Limits for Tightened Inspection (Single Sampling)

(See 11.4)

	1000	970 1100						
	650	620 650 610						
	400	400 410 390	380					
	250	260 270 250	240 240					
	150	160 170 160	160 150					
	100	97 110 100	95 95					(4)
	65	69 63	64 61 62					(See 11.4)
	40	42 46 39	40 40	39				
	25	28 27	24 24 26	25 25				Sample size Lot or Batch size
	15	17	17 15 16	16 16 16				Sample size ot or Batch si
el	10		11 11 9.7	9.9 01 9.9	9.9			San Lot or
y Lev	6.5	12	6.9	6.1 6.3 6.4	6.4			
Acceptable Quality Level	4.0	7.4	4.2	4.3 3.9 4.0	4.1 4.0 3.9			py C
able (2.5		4.6	2.6 2.7 2.4	2.5 2.6 2.5	2.5		plied
vccept	1.5		2.8	1.7	1.6 1.6 1.6	1.6		multi
	1.0		1.8	11	1.1 0.97 1.0	1.0 0.99 0.99		ust be
	0.65			1.2	0.67 0.69 0.62	0.63 0.64 0.64	0.62	les mi
	0.40			0.74	0.42	0.39 0.40 0.41	0.40	e valı
	0.25			0.46	0.27	0.27 0.24 0.25	0.26	abov
	0.15				0.29	0.17 0.17 0.16	0.16	L, the
	0.10				0.18	0.11	0.097	AOQ
	0.065				0.12	0.067	0.069	curate
	0.040					0.074	0.042	re acc
	0.025					0.046	0.027	Note: For a more accurate AOQL, the above values must be multiplied by
	0.015					0.029		e: For
	0.010			1			0.018	Not
3	size	2 3 5	8 13 20	32 50 80	125 200 315	500 800 1250	2000 3150	
ł	Letter	CBA	Ошч	он ¬	M L K	ZAØ	<u>κ</u> ν	

AOQL TIGHTENED PLANS Table VI-A—Limiting Quality (in percent nonconforming) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)

(See 11.6)

	10		58	54	4 5	34	29 24	23				
	6.5	68		41	30 30	27	22	16	14			
	4.0		54		27 25	20	18 14	12	10 9.0			
	2.5		37		18	16	13	9.4	7.7 6.4	5.6		
	1.5			25		12	10 8.2	7.4	5.9 4.9	4 0	3.5	
el	1.0				16		7.6 6.5	5.4	4.6 3.7	3.1	2.5	1
Acceptable Quality Level	0.65				11		4.8	4.3	3.3	2.4	1.9	4.
Qualit	0.40	_				. 6.9		3.1	2.1	1.9	1.5	1.0
able (0.25						4.5		2.0	1.3	1.2	0.77
ccept	0.15					_	2.8		1.2	=	0.84	0.59
	0.10							1.8		0.78	0.67 0.53	0.46
	0.065	_			_				1.2		0.49 0.43	0.33
	0.040								0.73		0.31	0.27
	0.025			_	_					0.46		0.20
	0.015										0.29	
	0.010										0.18	
Sample size		5	το γ	8 5	20	32	0, 08	125	315	500	800	2000
Code letter		¥ I	ສູບ	0 ¹¹	י ה	9	u ŗ	K	ML	z	4 0	~~~~

LQ (Nonforming Units) 10% PLANS

Table VI-B—Limiting Quality (in nonconformities per hundred units) for Which $P_a = 10$ Percent (for Normal Inspection, Single Sampling)

(See 11.6)

	1000	1900					
	650	1400 1300 1100					
	400	1000 940 770	670				
	250	770 670 560	480 410				
	150	590 510 400	350 300	,			
	100	460 390 310	250 220				39
	65	330 310 240	190 160 140				
	40	270 220 190	150 120 100	88			
	25	200 180 130	120 91 77	63 56			
	15	130	84 71 59	48 40 35			
vel	10	78	67 51 46	37 31 25	23		
Acceptable Quality Level	6.5	120	49 41 33	29 24 19	16 14		
Qualit	4.0	17	30 27	21 19 15	12 10 9.0		
ble (2.5	46	20	17 13 12	9.4 7.7 6.4	5.6	
cepta	1.5		29	12 11 8.4	7.4 5.9 4.9	4.0 3.5	
Ac	1.0		18	7.8 6.7	5.4 4.6 3.7	3.1 2.5 2.3	
	0.65		12	4.9	4.3 3.3 2.9	2.4 1.9 1.6	1.4
	0.40			7.2	3.1 2.7 2.1	1.9 1.5 1.2	1.0
	0.25			4.6	2.0 1.7	1.3 1.2 0.94	0.77
	0.15			2.9	1.2	1.1 0.84 0.74	0.59
	0.10				1.8	0.78 0.67 0.53	0.46
	0.065				1.2	0.49 0.43	0.33
	0.040				0.73	0.31	0.27
	0.025					0.46	0.20
	0.015					0.29	
	0.010					0.18	
Sample		2 A Z	8 13 20	32 50 80	125 200 315	500 800 1250	2000
Code		C B A	Ошк	υ Π ¬	Z L Z	ZAO	2

LQ (Nonconformities) 10% PLANS Table VII-A—Limiting Quality (in percent nonconforming) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)

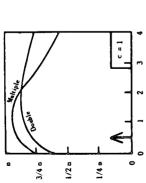
	2			66		99	50 46		37	5 6	- 56		č	7 †								
	6.5	ĉ	8/			47	41 34		30	200	50		10	12	<u>.</u>		-					
	4.0		S				32 28		23		16				9.6	Τ				·		
	2.5			45			22	1	18	15	13	-	:	11	7.0	1-	6.1					
	1.5					31			14	2	9.4		ő	t v	5.4		4.4	3.0				
el	1.0							• •		9 1	7.7	Ť	62	1 1 2	4.2	1	3.4	77	2.4			
y Lev	0.65						14				5.8		50	0.0	3.3		2.6	2.1	1.8			<u>.</u>
Acceptable Quality Level	0.40								8.9				3.8	3.2	2.5		2.1	1.6	1.4			3
table (0.25			_			_			5.8				2.4	2.0		1.6	1.3	1.1		0.85	200
vccept	0.15										3.7			-	1.5		1.3	0.97	0.84	1	0.66	
4	0.10												2.4		<u> </u>		0.95	0.79	0.62		0.53	
	0.065													1.5				0.59	0.50		0.39	
	0.040				-	-				_					0.95		·		0.38	+	0.32	_
	0.025														_		0.60				0.24 0	
	0.015																	0.38				
	0.010				_													_	0.24	\top		
Sample		2	б	5	∞	13	20		32	50	80		125	200	315		002	800	1250		2000	
Code		×	в	U	D	E	ш.		U	Н			Х	- -	×		z	Ч.	ð		R	

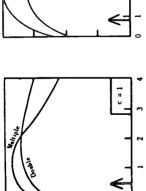
LQ (Nonforming Units) 5% PLANS Table VII-B—Limiting Quality (in nonconformities per hundred units) for Which $P_a = 5$ Percent (for Normal Inspection, Single Sampling)

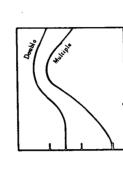
(See 11.6)

	1000	2000					
	650	1500 1400 1100					
	400	1100 1000 810	670				
ſ	250	850 730 610	510 440				
	150	660 570 440	380 310				
Ī	100	530 440 340	270 230				
	65	390 350 260	210 170 150				
	40	320 260 210	110 110	95			
	25	240 210 160	130 100 85				<u> </u>
	15	160	97 81 66	53 38 38			
el	10	95	79 60 53	41 34 27	24		
y Lev	6.5	150	59 48 39	33 26 21			
Duality	4.0	100	37	24 21 16	14 11 9.6		
able Ç	2.5	60	24	20 16 13	11 8.5 7.0	6.1	
Acceptable Quality Level	1.5		38	15 13 9.7	8.4 6.6 5.4	3.8	
Ā	1.0		23	9.5 7.9	6.2 5.3 4.2	3.4 2.7 2.4	
	0.65		15	5.9	5.0 3.9 3.3	2.6 2.1 1.8	1.5
	0.40			9.4	3.8 3.2 2.5	2.1 1.6 1.4	
	0.25			6.0	2.4 2.0	1.6 1.3 1.1	0.85
	0.15			3.8	1.5	1.3 0.97 0.84	0.66
	0.10				2.4	0.95 0.79 0.62	0.53
	0.065				1.5	0.59	0.39
	0.040				0.95	0.38	0.32
	0.025					0.60	0.24
	0.015					0.38	
	0100					0.24	
Sample		0	8 13 20	32 50 80	125 200 315	500 800 1250	2000
Code	letter	C B A	<u>О ш ч</u>	<u>о</u> н ¬	X J Z	z a o	~


LQ (Nonconformities) 5% PLANS Table VIII—Limit Numbers for Reduced Inspection


(See 4.7.3)


	1000	181 277	·				
	650	115 178 301				·	
	400	68 105 181	297 490				
	250	40 63 110	181 301 471				
	150	22 36 63	105 177 277				<u></u>
	100	14 22 40	68 115 181			<u> </u>	
	65	8 13 25	42 72 115	189			<u> </u>
	40	4 7 14	24 42 68	113		·····	
	25	1 3 5	14 25 40	68 110 181			
	15	3 - 0	7 13 22	39 63 105	169		<u></u>
el	10	700	4 L 4	24 68 68	110	<u> </u>	
Acceptable Quality Level	6.5	* 0 0	6 4 %	14 25 42	69 115 186		
Qualit	4.0	* * 0	0 4 4	24 24	40 68 111	181	
table (2.5	* * *	700	4 7 14	24 40 67	110	
Accept	1.5	* * *	* 0 0	1 3 1	13 22 38	63 105 169	
H	1.0	* * *	* * 0	4 5 0	7 14 24	40 68 110	181
	0.65	* * *	* * *	2 0 0	4 % 4	25 69	115 186
	0.40	* * *	* * *	* • •	0 4 %	40 40	89
	0.25	* * *	* * *	* * 0	0 7 4	24	40 67
	0.15	* * *	* * *	* * *	0 0 1	3 3 13	38
	0.10	* * *	* * *	* * *	* 0 0	7 4 2	14
	0.065	* * *	* * *	* * *	* * 0	0 (1 4	8 4
	5 0.040	* * *	* * *	* * *	* * *	<i>7</i> 0 0	4 ∞
	5 0.025	* * *	* * *	* * *	* * *	* 0 0	0.4
	0.015	* * *	* * *	* * *	* * *	* * 0	0 -
	0.010	* * *	* * *	* * *	* * *	* * *	0 0
sample units from last 10	lots or batches	20-29 30-49 50-79	80-129 130-199 200-319	320–499 500–799 800–1249	1250-1999 2000-3149 3150-4999	5000–7999 8000–12499 12500–19999	20000–31499 31500 & Over


used for the calculation, provided that the lots or batches used are the most recent ones in sequence, that they have all been on normal inspection, and that none has been rejected while * = Denotes that the number of sample units from the last ten lots or batches is not sufficient for reduced inspection for this AQL. Is this instance more than ten lots or batches may be

LIMIT NUMBERS Table IX—Average sample size curves for double and multiple sampling plans (normal and tightened inspection) (See 11.5)

Halfield

c = 7-

c = 5]]

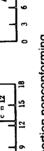
c = 3

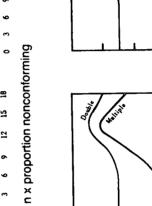
n x proportion nonconforming

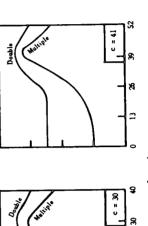
_ c c = 18

ន ŝ

9


18 21 c = 14


2 12


c = 10

اسبيسي

- Multiple

c = **44**

\$

7

9

n x proportion nonconforming

ສ

2

c = 27

ю

_

3/**4** n

1/2 0

1/4 e

c = Single sample acceptance number

A = Reference point, shows performance at AQL for normal inspection

1/4 .

l/2 e

3/4 o

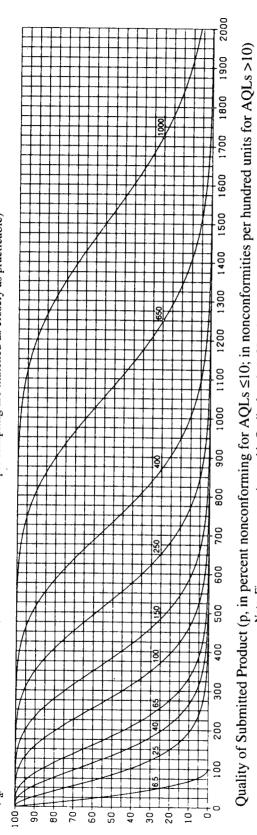

Average Sample Size

Table X-A-Tables for sample size code letter: A INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART A—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

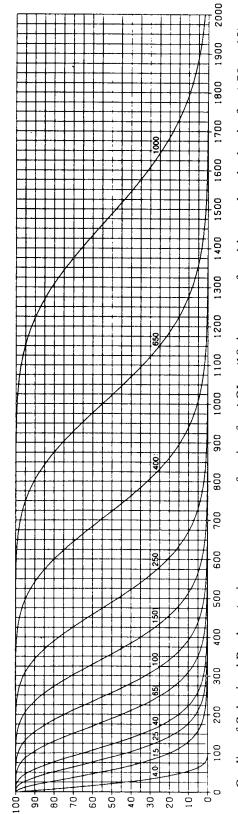
Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

					Acceptab	Acceptable Quality Levels (normal inspection)	Levels (n	ormal insp	vection)						
\mathbf{P}_{a}	6.5	6.5	25	40	65	001	150	×	250	×	400	×	625	×	1000
	p (in percent nonconforming)					p (i)	n noncon	p (in nonconformities per hundred units)	per hundr	ed units)					
0.66	0.501	0.503	7.43	21.8	41.2	89.3	145	175	239	305	374	517	629	859	977
95.0	2.53	2.56	17.8	40.9	68.3	131	199	235	308	384	462	622	745	995	1122
90.0	5.13	5.27	26.6	55.1	87.2	158	233	272	351	432	515	684	812	1073	1206
75.0	13.4	14.4	48.1	86.4	127	211	298	342	431	521	612	795	934	1214	1354
50.0	29.3	34.7	83.9	134	184	284	383	433	533	633	733	933	1083	1383	1533
25.0	50.0	69.3	135	196	255	371	484	540	651	761	870	1087	1248	1568	1728
10.0	68.4	115	194	266	334	464	589	650	770	889	1006	1238	1409	1748	1916
5.0	77.6	150	237	315	388	526	657	722	848	972	1094	1335	1512	1862	2035
1.0	90.0	230	332	420	502	655	800	870	1007	1141	1272	1529	1718	2088	2270
1		×	40	65	100	150	X	250	×	400	×	650	×	1000	×
1				'	Acceptable	Acceptable Quality Levels (tightened inspection)	evels (tig.	htened ins	pection)						

TABLE X-A-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

Table X-A-2—Sampling Plans for Sample Size Code Letter: A


	. e			l		1	
Cumu-	lative sample	size	5				
	1000	Ac Re	30 31	(*)	*	×	
	×		27 28		*	1000	
	650	Ac Re	21 22	(*)	*	×	
	×	Ac Re Ac Re Ac Re	18 19 21 22	(*)	*	650	
	400		14 15	(*)	*	×	
(i	×	Ac Re	12 13	(*) (*) (*)	*	400	(uc
Acceptable Quality Levels (normal inspection)	250	Ac Re	10 11	(*)	*	×	Acceptable Quality Levels (tightened inspection)
mal ins	×	Ac Re	89	*	*	250	ened ir
ls (nor	150	Ac Re	7 8	(*) (*)	×	×	s (tight
y Leve	100	Ac Re	56	(*)	×	150	Level
Qualit	65	Ac Re Ac Re	8 4	(*)	×	100	Quality
eptable	40		2	(*)	*	65	otable (
Acce	25	Ac Re	1 2	(*)	*	40	Accel
	15	Ac Re	:	Use Code Letter B		25	
	10	Ac Re	:	UseUseUseCodeCodeCodeLetterLetterLetterDCB		15	
	×	Ac Re	:	Use Code Letter D		10	
	6.5	Ac Re	0 1	*	*	×	
	Less than 6.5	Ac Re	Δ	Δ	Δ	Less than 10	
Cumu-		size	7				
E	I ype of sampling	hiai	Single	Double	Multiple		

- ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available. Ac = Acceptance number.
 Re = Rejection number.
 * = Use single sampling plan above (or alternatively use code letter D).
 (*) = Use single sampling (or alternatively use code letter B).

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

B PLANS

Table X-B—Tables for sample size code letter: B INDIVIDUAL PLANS CHART B—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

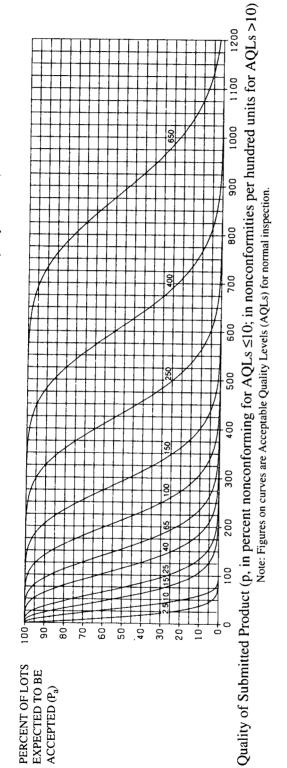
Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

					Acceptab	le Quality	Acceptable Quality Levels (normal inspection)	ormal insp	ection)								
\mathbf{P}_{a}	4.0	4.0	15	25	40	65	100	×	150	×	250	×	400	×	650	×	1000
	p (in percent nonconforming)						p(i	p(in nonconformities per hundred units)	formities	per hundr	ed units)						
99.0	0.33	0.335	4.95	14.5	27.4	59.5	96.9	117	159	203	249	345	419	572	651	947	1029
95.0	1.70	1.71	11.8	27.3	45.5	87.1	133	157	206	256	308	415	495	663	748	1065	1152
90.0	3.45	3.51	17.7	36.7	58.2	105	155	181	234	288	343	456	541	716	804	1131	1222
75.0	9.14	9.59	32.0	57.6	84.5	141	199	228	287	347	408	530	623	608	903	1249	1344
50.0	20.6	23.1	55.9	89.1	122	189	256	289	356	422	489	622	722	922	1022	1389	1489
25.0	37.0	46.2	89.8	131	170	247	323	360	434	507	580	724	832	1045	1152	1539	1644
10.0	53.6	76.8	130	177	223	309	392 -	433	514	593	671	825	939	1165	1277	1683	1793
5.0	63.2	9.99	158	210	258	350	438	481	565	648	730	890	1008	1241	1356	1773	1886
1.0	78.5	154	221	280	335	437	533	580	671	761	848	1019	1145	1392	1513	1951	2069
	6.5	6.5	25	40	65	100	×	150	Х	250	X	400	X	650	×	1000	×
						Acceptable	Acceptable Quality Levels (tightened inspection)	evels (tig	htened ins	pection)							

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

TABLE X-B-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

34


Table X-B-2—Sampling Plans for Sample Size Code Letter: B

			,	ſ]	
Cumu-	- <i>S</i>	size	ŝ	04		 	
	1000	Ac Re	44 45	25 31 56 57	+ +	\times	
	×	Ac Re	41 42	23 29 52 53	+++	1000	
	650	Ac Re	30 31 41 42	17 22 37 38	+ +	\times	
•	×	Ac Re	27 28	15 20 34 35	+++	650	
	400		21 22	11 16 15 20 17 22 23 29 26 27 34 35 37 38 52 53	+++	×	
	×	Ac Re Ac Re	18 19 2	9 14 23 24	+++	400	
	250	Ac Re	14 15	7 11 9 14 11 16 15 20 17 22 23 29 18 19 23 24 26 27 34 35 37 38 52 53	+ +	×	(u
•	\times	Ac Re	12 13	6 10 15 16	+ +	250	spectic
ection	150	Ac Re	10 11 1	5 9 12 13	+ +	\times	sned in
ıal insp	\times	Ac Re	8 9 1	3 7 11 12	+ +	150	(tighte
Acceptable Quality Levels (normal inspection)	100	Ac Re	7 8	37	+ +	X	Acceptable Quality Levels (tightened inspection)
Levels	65	Ac Re	5 6	2 5 6 7	+ +	100	Duality
Quality	40		8 4	1 4 5	++	65	table Ç
table (25	Ac Re Ac Re	2 3	3 4	+++	40	Accep
Accep	15		1 2	0 2 1 2	+++	25	
	10	Ac Re Ac Re Ac Re				15	
	×	Ac Re		Use Use Use Code Code Code Letter Letter Letter A D C		10	
	6.5	Ac Re		Use Code Letter		×	
	4.0	Ac Re	0 1	*	*	6.5	
	Less than 4.0	Ac Re A	Δ		۵	Less than 6.5	-
-iimii)		size	· w	4 2			
	. b0	plan	Single	Double	Multiple		

- = Use next subsequent sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and Ac = Acceptance number. Re = Rejection number. * = Use single sampling plan above (or alternatively use code letter E). + + = Use double sampling plan above (or alternatively use code letter D).

Table X-C—Tables for sample size code letter: C INDIVIDUAL PLANS

CHART C-OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

LE X-C-1— TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS	
TABLE X-(

)			.			_,			
	650	200	619	010	160	/33	806	893	006	002	10/0	1131	1241		<
	×	<	568	007	600	6/0	149	833	073	0101	0101	1064	1171	650	
	400		301	UV	6 1	407	542	613	109	1/0	00/	814	908	×	<
	×	<	343	306	000	474	480	553	627	007	460	(4)	835	400	
	250		150	208	275	120	5/4	433	490	227		60	687	×	
	×	nits)	207	240	272	210	010	373	435	105	64	+CC	612	250	
 	150	nundred u	150	185	206	245	2 + 3	293	348	403	001	+10	509	×	
inspectio	×	p (in nonconformities per hundred units)	122	154	173	306	5007	253	304	356	380	200	456	150	d inspectic
ls (norma)	100	nconform	95.4	123	140	170		213	260	308	330	100	403	×	(tightene
Acceptable Quality Levels (normal inspection)	×	p (in nc	70.1	93.9	109	137		173	216	.260	280		348	100	Acceptable Quality Levels (tightened inspection)
eptable Qu	65		58.1	79.6	93.1	119		153	194	235	263		320	\times	table Qua
Acc	40		37.5	52.3	63.0	84.4		<u></u>	148	185	210		262	65	Accep
	25		16.5	27.3	34.9	50.7		13.4	102	134	155		201	40	
	15		8.72	16.4	22.0	34.5	5.5	C.2C	78.4	106	126		168	25	
	10		2.97	7.11	10.6	19.2	200	0.00	53.9	77.8	94.9		133	15	
	2.5		0.201	1.03	2.11	5.75	13.0	6.01	27.7	46.1	59.9		92.1	4.0	
	10	ercent orming)	3.27	7.64	11.2	19.4	21.4	t. 10	45.4	58.4	65.7		77.8	×	
	2.5	p (in percent nonconforming)	0.201	1.02	2.09	5.59	17.0	14:2	24.2	36.9	45.1		60.2	4.0	
	\mathbf{P}_{a}		0.66	95.0	90.0	75.0	50.0		25.0	10.0	5.0	-	<u>.</u>		

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

C PLANS Table X-C-2—Sampling Plans for Sample Size Code Letter: C

Cumu-	lative sample	size	5	9			
	1000	Ac Re	:	Use Code Letter B		1000	
	650	Ac Re	44 45	25 31 56 57	+ +	×	
	×	Ac Re	41 42	23 29 52 53	++++	650	
	400	Ac Re	30 31 41	17 22 37 38	+ +	×	
	×	Ac Re Ac Re Ac Re	27 28	3 7 5 9 6 10 7 11 9 14 11 16 15 20 17 22 23 29 11 12 12 13 15 16 18 19 23 24 26 27 34 35 37 38 52 53	+ +	400	
	250	Ac Re	21 22	11 16 26 27	+ +	×	
	×		18 19	9 14 23 24	+ +	250	
	150	Ac Re Ac Re Ac Re	14 15	7 11 18 19	+ +	×	Acceptable Quality Levels (tightened inspection)
	×	Ac Re	12 13	6 10 15 16	+ +	150	ed insp
	100		10 11	5 9 12 13	+ +	×	ighten
	×	Ac Re	8 9	3 7 11 12	+ +	100	evels (t
	65	Ac Re	7 8	37 89	+ +	×	ality Lo
	40	Ac Re	56	2 5 6 7	+ +	65	ole Qua
	25	Ac Re	3 4	144545	++++	40	cceptal
	15	Ac Re Ac Re Ac Re	2 3	0 3 3 4	+ +	25	A
	10	Ac Re	1 2	0 2 1 2	+ +	15	
	6.5	Ac Re		Use Code Letter D		10	
	Х	Ac Re Ac Re		Use Use Use Code Code Code Letter Letter Letter B E D		6.5	
	4.0			Use Code Letter B		×	
	2.5	Ac Re	0 1	*	*	4.0	
	Less than 2.5	Ac Re	Δ	Δ	⊳	Less than 4.0	
Cumu-	lative sample	size	s	93			-
	Type of sampling	plan	Single	Double	Multiple		
					37	-	

 ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number.
Re = Rejection number.
* = Use single sampling plan above (or alternatively use code letter F).
++ = Use double sampling plan above (or alternatively use code letter D).

D BERCENT OF LOTS EXPECTED TO BE

Table X-D—Tables for sample size code letter: D INDIVIDUAL PLANS

CHART D—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

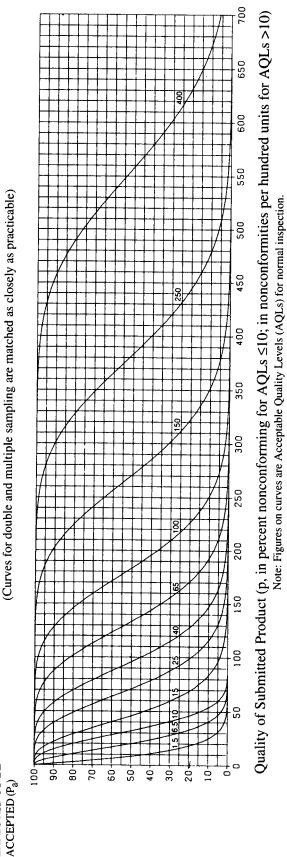


TABLE X-D-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

450		6			1							
	1	386	432	458	504	558	617	672	107	776	×	
×		355	399	424	468	521	577	631	665	732	400	2
250		244	281	301	339	383	432	479	509	568	×	
×		215	249	268	303	346	392	437	465	522	250	
150		157	186	203	234	271	312	352	378	429	×	
×		129	156	171	199	233	272	309	334	382	150	
100	ed units)	93.5	116	129	153	183	217	252	274	318	×	
×	p (in nonconformities per hundred units)	76.2	96.1	108	130	158	190	222	243	285	100	ection)
65	ormities 1	59.6	77.1	87.8	108	133	163	193	212	252	×	Acceptable Quality Levels (tightened inspection)
×	nonconf	43.8	58.7	67.9	85.5	108	135	162	180	218	65	evels (tigh
40	p (ii	36.3	49.8	58.2	74.5	95.9	121	147	<u>164</u>	200	×	Quality Le
25		22.3	32.7	39.4	52.7	70.9	92.8	116	131	164	40	ceptable
15		10.3	17.1	21.8	31.7	45.9	63.9	83.5	96.9	126	25	A
10		5.45	10.2	13.8	21.6	33.4	49.0	66.5	78.7	105	15	
6.5		1.86	4.44	6.65	12.0	21.0	33.7	48.6	59.3	83.0	10	
1.5		0.126	0.641	1.31	3.60	8.66	17.3	28.8	37.4	57.6	2.5	
10	()	6.08	1.11	14.7	22.1	32.1	43.3	53.8	60.0	70.7	×	
6.5	(in percent conforming	1.97	4.64	6.88	12.1	20.1	30.3	40.6	47.1	59.0	10	
1.5	duou	0.126	0.639	1.32	3.53	8.30	15.9	25.0	31.2	43.8	2.5	
· ·					+			10.0	5.0	1.0]
	6.5 10 1.5 6.5 10 15	6.5 10 1.5 6.5 10 15 p (in percent nonconforming) 0.5 10 15	6.5 10 1.5 6.5 10 15 p (in percent onconforming) 0.126 1.86 5.45 10.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 1.5 & 6.5 & 10 & 1.5 & 6.5 & 10 & 15 \\ \hline p \ (in \ percent \ nonconting) & & & & & \\ \hline p \ (in \ percent \ nonconting) & & & & & \\ \hline noncontonring) & & & & & & & \\ \hline noncont \ noncontonring) & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & \\ \hline noncont \ noncontonring) & & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & & & \\ \hline noncont \ noncont \ noncontonring) & & & & & & & & & & & & \\ \hline noncont \ noncont \ noncont \ noncontonring) & & & & & & & & & & & \\ \hline noncont \ noncont \ noncont \ noncontonring) & & & & & & & & & & & & \\ \hline noncont \ noncont \ noncont \ noncontonring) & & & & & & & & & & & & \\ \hline noncont \ noncont \ noncont \ noncont \ noncontonring) & & & & & & & & & & & & & & & & & & \\ \hline noncont \ n$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.5 10 1.5 6.5 10 15 p (in percent nonconforming) 1.5 6.5 10 15 26 1.97 6.08 0.126 1.86 5.45 10.3 29 4.64 11.1 0.641 4.44 10.2 17.1 2 6.88 14.7 1.31 6.65 13.8 21.8 3 12.1 22.1 3.60 12.0 21.6 31.7 3 12.1 22.1 3.60 12.0 33.4 45.9 3 30.3 43.3 17.3 33.7 49.0 63.9	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

Table X-D-2—Sampling Plans for Sample Size Code Letter: D

Cumu-	400 Higher lative 400 400 sample	Ac Re Ac Re SIZE	44 45 Δ 8 8	25 31 5	56 57 [10	6 16 Δ 2	17 26 4	29 39 6	40 49 8	53 58 10	65 68 12	77 78 14	X Higher than 400	
	×	e Ac Re	1 41 42	2 23 29	8 52 53	12 6 15	19 16 25	27 26 36	34 37 46	40 49 55	47 61 64	54 72 73	400	
•	250	Re Ac Re	28 30 31	20 17 22	35 37 38	10 4 1	17 11	24 19	31 27	37 36	43 45	49 53	²⁵⁰ X	
	150 X	Ac Re Ac Re	22 27	16 15	27 34	9	14 10	3 19 17	9 25 24	5 29 32	1 33 40	37 38 48	×	
	×	Ac Re	18 19 21	9 14 11	23 24 26	1 8 2	6 12 7	11 17 13	16 22 19	22 25 25	27 29 31	32 33 3	150	
	100	Ac Re	14 15	7 11	18 19	1 7	4 10	8 13	12 17	17 20	21 23	25 26	×	
ion)	×	ke Ac Re	1 12 13	9 6 10	13 15 16	5 0 6	8 3 9	10 7 12	13 10 15	15 14 17	17 18 20	19 21 22	100	
l inspect	X 65	Ac Re Ac Re	9 10 11	7 5	12 12	4	7 3	9 6	11 8 1	12 11	14 14	15 18	65 X	
Acceptable Quality Levels (normal inspection)	40	Ac Re A	7 8 8	3 7 3	8 9 11	0 4 0	1 6 2	3 8 4	5 10 6	7 11 9	10 12 12	13 14 14	×	
y Levels	25	Ac Re	5 6	2 5	67	#	1 5	2 6	3 7	5 8	6 2	9 10	40	
e Qualit	15	Re Ac Re	6	1 4	4 5	3 #	0 3	1 4	2 5	3 6	4 6	6 7	25	
cceptabl	5 10	Ac	2 2 3	2 0 3	2 3 4	2 # 2	2 0 3	2 0 3	3 1 4	3 2 4	3 3 5	3 4 5	10 15	
A	4.0 6.5	Ac Re Ac Re		Use Code 0		#	#	0	0	-		5	6.5	
	×	Ac Re A		Use 1 Code C	Letter Letter Letter C F E								4.0	
	2.5	Ac Re		Code	Letter C								×	
	n 1.5	Ac Re	0		*	*							an 2.5	
	Less than 1.5	Ac Re		-				<u> </u>					Less than 2.5	
Cimil	lative sample	size	∞	5	10	5	4	9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	12	14		
	Type of sampling	plan	Single		Double			Multiple	andminita					

= Use next preceding sample size code letter for which acceptance and rejection numbers are available.

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

- Ac = Acceptance number.
 Re = Rejection number.
 * = Use single sampling plan above (or alternatively use code letter G).
 # = Acceptance not permitted at this sample size.
 - Acceptance not permitted at this sample size.

PTA PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

Table X-E—Tables for sample size code letter: E INDIVIDUAL PLANS

CHART E-OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS

(Curves for double and multiple sampling are matched as closely as practicable)

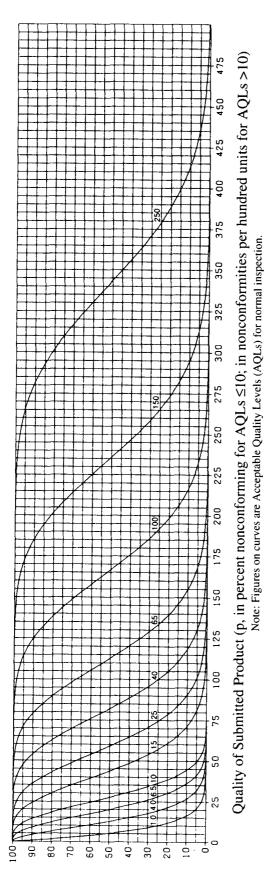


TABLE X-E-1---TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

40

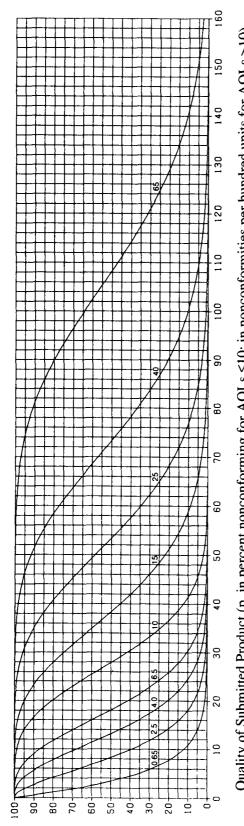
							Acc	Acceptable Q	Jality Levi	uality Levels (normal inspection)	l inspectic	(u								
\mathbf{P}_{a}	1.0	4.0	6.5	10	1:0	4.0	6.5	10	15	25	×	40	×	65	×	100	×	150	×	150
		p (in noncor	p (in percent nonconforming)			1				p (in nc	p (in nonconformities per hundred units)	uities per l	nundred u	nits)			-			ŀ
99.0	0.077	1.18	3.58	6.95	0.077	1.15	3.35	6.33	13.7	22.4	27.0	36.7	46.9	57.5	9.67	96.7	132	150	219	238
95.0	0.394	2.81	6.60	11.3	0.395	2.73	6.29	10.5	20.1	30.6	36.1	47.5	59.2	71.1	95.7	115	153	173	246	26
90.0	0.807	4.17	8.80	14.2	0.810	4.09	8.48	13.4	24.2	35.8	41.8	54.0	66.5	79.2	105	125	165	185	241	282
75.0	2.19	7.41	13.4	19.9	2.21	7.39	13.3	19.5	32.5	45.8	52.6	66.3	80.2	94.1	122	144	187	208	288	310
50.0	5.19	12.6	20.0	27.5	5.33	12.9	20.6	28.2	43.6	59.0	66.7	82.1	97.4	113	144	167	213	236	321	344
25.0	10.1	19.4	28.0	36.1	10.7	20.7	30.2	39.3	57.1	74.5	83.1	100	117	134	167	192	241	266	355	370
10.0	16.2	26.8	36.0	44.4	17.7	29.9	40.9	51.4	71.3	90.5	100	611	137	155	061	212	549	205	388	414
5.0	20.6	31.6	41.0	49.5	23.0	36.5	48.4	59.6	80.9	101	111	130	150	168	205	233	286	313	400	435
1:0	29.8	41.3	50.6	58.8	35.4	51.1	64.7	77.3	101	123	134	155	176	961	235	264	321	349	450	477
1	1.5	6.5	10	×	1.5	6.5	10	15	25	×	40	×	65	×	001	×	150	×	250	$ \times$
							4	Acceptable	Quality L	Quality Levels (tightened inspection)	ttened inst	section)								

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

Table X-E-2—Sampling Plans for Sample Size Code Letter: E

					<u> </u>								1	
Cumu-	lative sample	size	13	8	13	ю	9	6	12	15	18	21		
	Higher than 250	Ac Re	Δ			Þ							Higher than 250	
	250	Ac Re	44 45		56 57	6 16	17 27	29 39	40 49	53 58	65 68	77 78	\times	
	×	Ac Re	41 42	23 29	52 53	6 15	16 25	27 26 36	37 46	40 49 55	47 61 64	72 73	250	
	150	Ac Re	30 31	17 22	37 38	4 12	11 19	19	27 34	36	45	53 54	\times	
	×	Ac Re	27 28	15 20	34 35	3 10	10 17	17 24	24 31	32 37	40 43	48 49	150	
	100	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re	18 19	9 14	23 24	1 8	6 12	11 17	17 16 22	22 25	27 29	32 33	100	_
	65	Ac Re	14 15	7 11	18 19	1 7	4 10	8 13	12 17	17 20	21 23	25 26	\times	ection)
\overline{a}	×	Ac Re	12 13	6 10	15 16	0 6	39	7 12	10 15	14 17	18 20	21 22	65	d insp
pection	40	Ac Re	10 11	59	12 13	0 5	3	6 10	8 13	11 15	14 17 18	18 19	×	ightene
nal ins	×	Ac Re	8	3 7	11 12	0 4	2 7	4 9	6 11	9 12	12 14 14	14 15	40	vels (t
s (norr	25	Ac Re	7 8	3 7	8 9	0 4	1 6	3 8	5 10	7 11	10 12	13 14	X	ulity Le
' Level	15	Ac Re	56	25	67	# 4	15	2 6	3 7	5 8	6 7	9 10	25	ole Qua
Acceptable Quality Levels (normal inspection)	10	Ac Re	3 4	1 4	45	# 3	03	1 4	25	3 6	4 6	67	15	Acceptable Quality Levels (tightened inspection)
ptable	6.5	Ac Re	2 3	0 3	3 4	# 2	0 3	03	1 4	2 4	35	45	10	A
Accel	4.0	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	0 3	1 3	1 3	23	6.5	
	2.5	Ac Re		Use Code	Letter	L							4.0	
	×	Ac Re		Use Code	D G F								2.5	
	1.5	Ac Re		Use Code	D								×	
	1.0	Ac Re	- 0	*	÷	*			-				1.5	
	Less than 1.0	Ac Re			>								Less than 1.5	
		size	13	∞	13	e	9	6	12	15	18	21		
	f 1 20	plan	Single		Double			Multinle	ardnimu					

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.


- ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac = Acceptance number.
 Re = Rejection number.
 * = Use single sampling plan above (or alternatively use code letter H).
 # = Acceptance not permitted at this sample size.

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

F plans

Table X-F—Tables for sample size code letter: F INDIVIDUAL PLANS

CHART F—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

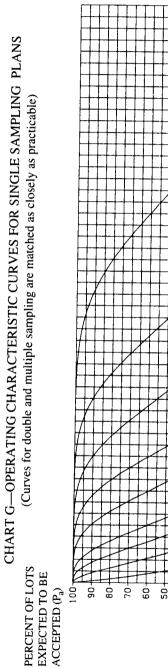
Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

							Acceptat	ole Quality	. Levels (n	Acceptable Quality Levels (normal inspection)	ection)						
Pa	0.65	2.5	4.0	6.5	10	0.65	2.5	4.0	6.5	10	15	×	25	×	40	×	65
_		p (in perc	ent nonco	p (in percent nonconforming)					d	p (in nonconformities per hundred units)	nformitie	s per hund	Ired units				
99.0	0.0502	0.759	2.27	4.36	9.75	0.0503	0.743	2.18	4.12	8.93	14.5	17.5	23.9	30.5	37.4	51.7	62.9
95.0	0.256	1.80	4.22	7.14	14.0	0.256	1.78	4.09	6.83	13.1	19.9	23.5	30.8	38.4	46.2	62.2	74.5
90.0	0.525	2.69	5.64	9.03	16.6	0.527	2.66	5.51	8.72	15.8	23.3	27.2	35.1	43.2	51.5	68.4	81.2
75.0	1.43	4.81	8.70	12.8	21.6	1.44	4.81	8.65	12.7	21.1	29.8	34.2	43.1	52.1	61.2	79.5	93.4
50.0	3.41	8.25	13.1	18.1	27.9	3.47	8.39	13.4	18.4	28.4	38.3	43.3	53.3	63.3	73.3	93.3	108
25.0	6.70	12.9	18.7	24.2	34.8	6.93	13.5	19.6	25.5	37.1	48.4	54.0	65.1	76.1	87.0	109	125
10.0	10.9	18.1	24.5	30.4	41.5	11.5	19.4	26.6	33.4	46.4	58.9	65.0	77.0	88.9	101	124	141
5.0	13.9	21.6	28.3	34.4	45.6	15.0	23.7	31.5	38.8	52.6	65.7	72.2	84.8	97.2	109	133	151
1.0	20.6	28.9	35.8	42.1	53.2	23.0	33.2	42.0	50.2	65.5	80.0	87.0	101	114	127	153	172
	1.0	4.0	6.5	10	×	1.0	4.0	6.5	10	15	×	25	×	40	×	65	×
						ł	Acceptabl	e Quality I	Levels (tig	Acceptable Quality Levels (tightened inspection)	pection)						

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

TABLE X-F-I---TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

42


Table X-F-2—Sampling Plans for Sample Size Code Letter: F

· · ·	Higher lative than sample	Ac Re	Δ 20	13	50	Δ	10	15	20	25	30	35	Higher than 65	
	65 ^{tl}	Ac Re	21 22	11 16	26 27	2 9	_	~			31 33	37 38	×	
	×	Ac Re	18 19	9 14	23 24	1 8	6 12			22	27 29	32 33	65	
	40	Ac Re	14 15	7 11	18 19	1		• •	- 2	17	21	25 26	×	
	×	Ac Re	12 13	6 10	15 16	0		, r	<u> </u>	1 1	18	21 22	40	
ction)	25	Ac Re	10 11	5 9	12 13	د م			0 0	• =	14	18 19	×	Acceptable Quality Levels (tightened inspection)
Acceptable Quality Levels (normal inspection)	×	Ac Re	8	3 7	11 12	0				0 0	12	14 15	25	led insp
norma	15	Ac Re	7 8	3 7	89	7 U					~	13 14	×	tighten
evels (10	Ac Re	5 6	2 5	6 7	V #				5 5 7 X		9 10	15	evels (
ality L	6.5	Ac Re	3 4	1 4	4 5	7 #				5 9 7 7		6 7	10	ality L
able Qu	4.0	Ac Re	2 3	0 3	3 4	۲ #				- c 4 4		4 5	6.5	ıble Qu
Accepts	2.5	Ac Re	1 2	0 2	1 2					0 -		2 3	4.0	Accepts
4	1.5	Ac Re		Code	GG								2.5	
	×	Ac Re		Use Code	- Letter H								1.5	
	1.0	Ac Re		Code	Letter E								×	-
	0.65	Ac Re	0	*			*						1:0	
	Less than 0.65	Ac Re					>						Less than	
,	Lumu- lative sample	size	20	13	26	, i	^	10	15	20	C7 08	35		
	Type of sampling	plan	Single		Double				Multiple					

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- - Ac = Acceptance number.
 - Re = Rejection number.
- = Use single sampling plan above (or alternatively use code letter J). = Acceptance not permitted at this sample size. * #
 - F plans

Table X-G---Tables for sample size code letter: G

INDIVIDUAL PLANS

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) 100 96 Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. 80 20

60

50

ç

90

20

17 0

Ц

10+

20+

40+ 30+

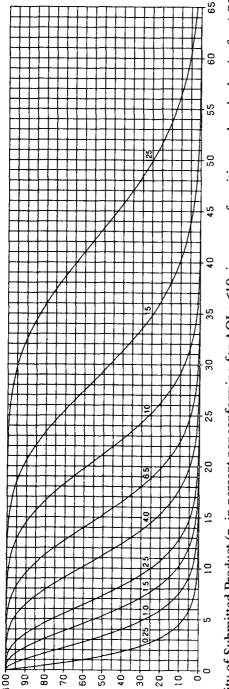
			64			39.3	76.5	10.0	50.8	58.4		0/	78.0	1 00	00.1	94.5	107	×		
			×		ŀ	32.3	38.0	+-	42.7	49.7	┢	+	67.9	1 1	+-	83.4	95.6	-	-	
			25		ł	23.4	28.0	- 0.07	52.2	38.2	0 24	40.0	54.4	62.0		08.4	79.5	×		
PLANS			\times			19.1	24.0	╀	0.17	32.6	30 4	╀	47.6	256	+	00.0	71.3		-	
UNC.				-		_	, ,	1 6	× -	<u></u>	36		4	ÿ		Ď	7	25		
SAMPI			15	unite)	(enum)	14.9	19.3		51.3	26.9	22.2		40.7	48.1	23.0	0.00	63.0	×		
INGLE			×	hundred		11.0	14.7	0.21	1/.0	21.4	1 26	1.1.2	33.8	40.6	151		54.4	15		
C LUK			10	nities ner		9.08	12.4	14.6		18.6	24.0	0.12	0.00	36.8	111		50.0	×		
LURVE	inspectior		6.5	D (in nonconformities per hundred units)		5.58	8.17	9.85	70.7	13.2	17.7		7.07	29.0	32.0	ì	41.0	10		pection)
	s (normal		4.0	D (in no		16.2	4.26	545	2	7.92	11.5	16.0	10.0	20.9	24.2	!	31.4	6.5		ntened insp
A STATE OF	Acceptable Quality Levels (normal inspection)		2.5		1 2 4	1.30	2.56	3.44		5.40	8.36	1 2	5.41	16.6	19.7		26.3	4.0		evels (tigł
	ptable Qui		1.5		0 464	0.404	1.11	1.66	000	3.00	5.24	841		12.2	14.8		20.7	2.5		Quality L
	Accel		0.40		0.0214	4100.0	0.160	0.329	0000	0.899	2.17	4.33		7.20	9.36		14.4	0.65		Acceptable Quality Levels (tightened inspection)
			10	_	0 73	C1.2	13.1	15.1	001	19.0	23.7	29.0		34.1	37.2	ſ	43.2	×		<
			6.5	ung)	5 88	00.0	8.50	10.2	12.4	t.01	17.5	22.3		27.1	30.1		36.0	10		
			4.0	p (in percent nonconforming)	2 67	5	4.38	5.56	7 08	02.1	11.4	15.4		19.7	22.5		28.1	6.5		
			2.5	percent n	1.40		2.60	3.49	5 47	1	8.27	11.9		15.8	18.4		23.8	4.0		
			1.5	p (in	0.471		1.12	1.67	3.01		5.19	8.19		11.6	14.0		19.0	2.5		
		0	0.40		0.0314		0.160	0.329	0.895		2.14	4.24		0.94	8.94		13.4	0.65		
		۵	L a		0.66	0 90	0.0%	90.0	75.0	003	0.00	25.0	10.0	0.01	5.0	01				

TABLE X-G-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Table X-G-2—Sampling Plans for Sample Size Code Letter: G

		T			<u> </u>					-	2		<u></u>	1		
Cumu- lative sample size			32	20	40	œ	14	01	24	32	40	48	56			
	Higher than 40	Ac Re	Δ	Δ		4								Higher than 40		
	40		21 22	11 16	26 27	2 9	-		13 19	19 25	25 29	31 33	37 38	×		
	×	Ac Re Ac Re	18 19 2	9 14	23 24 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, c		11 17	16 22	22 25	27 29	32 33	40		
	25	Ac Re	14 15	=	18 19 2	2	· · ·	2	8 13	12 17	17 20	21 23	25 26	×		
	×	Ac Re	13	10 7	16	9			7 12	10 15 1	14 17 1	18 20 2	21 22 2	25		
ction)	15	Ac Re	11 12	9 6	2 13 15	v	, o	0	10	8 13 1	15	14 17 1	18 19 2	×	tion)	
ıl inspe	×	Ac Re A	9 10	7 5	12 12	0 4 0	+ r		9 6 1	11	11 11	14	15	15	Acceptable Quality Levels (tightened inspection)	
norma	10	Ac Re A	∞ ∞	7 3	9 11	C T	r \	0	8	10 6	11 9	0 12 12	13 14 14	×		
evels (6.5	Ac Re	6 7	5 3	7 8		t .	- 0	6 3	7 5	8 7	9 10	10	10		
Acceptable Quality Levels (normal inspection)	4.0 6		4	4 2	5 6	+		<u>ب</u>	4 2	5 3	6 5	6 7	6 2	6.5	y Leve	
	2.5 4	Ac Re Ac Re	3 3	3	4	+		0 n	3 1	4	4 3	5 4	5 6	4.0	Qualit.	
	.5 2	Ac Re	2	2	2	* 	N (2	2 0	3 1	3 2	3-3-	4	2.5	ptable	
	1.0	Ac Re Ac	-	Use Code 0	Letter 1 H	4	÷ :	# 	0	0		1	2	1.5	Acce	
	- ×	Ac Re Ac		Use U Code C	J J									1.0		
	0.65				er									×		
		ke Ac Re	-		Lett		 *							0.65		
	n 0.40	Ac Re	0	*			~					425				
	Less than 0.40	Ac Re					>					<u> </u>		Less than 0.65		
Cimul-	lative sample	size	32	20	40		×	16	24	32	40	48	56			
	Type of sampling plan				Double				Multinle	ardumur						

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.


- Ac = Acceptance number. Re = Rejection number.
- * = Use single sampling plan above (or alternatively use code letter K).
 - Acceptance not permitted at this sample size. 11 #

H Plans

Table X-H—Tables for sample size code letter: H INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART H—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Acceptable Quality Levels (normal inspection)	25		25.1	29.8	32.5	37.4	43.3	49.9	56.4	60.5	68.7	×			
	×		20.7 1 2	+		\vdash	╉─			+		25			
	15		15.0	+	20.6	+	┼─	-	-			×			
		p (in nonconformities per hundred units)	-	-		-		-	+						
	×		12.2	15.4	17.3	20.8	25.3	30.4	35.6	38.9	45.6	15			
	10		9.54	12.3	14.0	17.2	21.3	26.0	30.8	33.9	40.3	×			
	×		7.01	9.39	10.9	13.7	17.3	21.6	26.0	28.9	34.8	10			
	6.5		5.81	7.96	9.31	9.11	15.3	19.4	23.5	26.3	32.0	×	×		
	4.0		3.57	5.23	6.30	8.44	11.3	14.8	18.5	21.0	26.2	6.5			
	2.5		1.65	2.73	3.49	5.07	7.34	10.2	13.4	15.5	20.1	4.0	ection)		
	1.5		0.872	1.64	2.20	3.45	5.35	7.84	10.6	12.6	16.8	2.5	Acceptable Quality Levels (tightened inspection)		
	1.0		0.297	0.711	1.06	1.92	3.36	5.39	7.78	9.49	13.3	1.5	evels (tigh		
	0.25		0.0201	0.103	0.210	0.575	1.39	2.77	4.61	5.99	9.21	0.40	Quality L		
	10		10.1	12.9	14.5	17.5	21.2	25.2	29.1	31.6	36.3	×	cceptable		
	×	p (in percent nonconforming)	7.36	9.72	11.2	13.8	17.2	21.0	24.7	27.0	31.7	10	A		
	6.5		6.07	8.22	9.54	12.0	15.2	18.8	22.4	24.7	29.2	×			
	4.0		3.69	5.36	6.43	8.51	11.3	14.5	17.8	19.9	24.2	6.5			
	2.5		1.68	2.78	3.53	5.10	7.29	10.0	12.9	14.8	18.7	4.0			
	1.5		0.886	1.66	2.22	3.46	5.31	7.69	10.3	12.1	15.8	2.5			
	1.0					0.300	0.715	1.07	1.92	33.3	5.29	7.56	9.14	12.6	1.5
	0.25		0.0201	0.103	0.211	0.574	1.38	2.73	4.50	5.82	8.80	0.40			
	\mathbf{P}_{a}		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0				

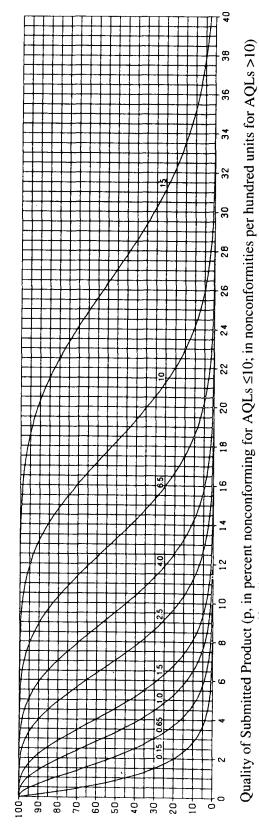
TABLE X-H-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

46

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

Table X-H-2—Sampling Plans for Sample Size Code Letter: H

	ple	,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	13	26	39	52	65	78	16]	
Cimi-			50	32	64		5	č.	Si	õ	7	6		
	Higher than 25	Ac Re	Δ	Ø		V							Higher than 25	
	25	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re Ac Re	18 19 2	9 14	23 24 3	1 8	6 12	11 17	22	25	27 29	32 33	25	
ſ	15	Ac Re	15	=	19	7	10	13	2 17 16	7 20 22	23	25 26 3	×	
		Ac Re A	13 14	10 7	16 18	6	9 4	12 8	15 12	17 17	20 21	22	15	
	×		12	و	15	0	ŝ	2	10	14	18	21		
tion)	10	Ac Re	10 11	5 9	12 13	05	3 8	6 10	8 13	11 15	14 17	18 19	×	sction
nspec	×	Ac Re	6 8	3 7	11 12	0 4	27	4 9	6 11	9 12	12 14	14 15	10	l inspe
rmal i	6.5	Ac Re	∞	7	6	0 4	9	3 8	10	11	10 12	13 14	×	htened
ou)			-	3	∞				7 5	8 7	6	10 1		(tigl
evels	4.0	Ac Re	5 6	2 5	6 7	#	1 5	5	ŝ	2	5	9 1	6.5	evels
ality L	2.5	Ac Re	3 4	1 4	45	#	03	1 4	25	36	4 6	67	4.0	lity L
le Qui	1.5	Ac Re Ac Re	2 3	0 3	3 4	# 2	0 3	03	1 4	2 4	3 5	45	2.5	le Qua
Acceptable Quality Levels (normal inspection)	1.0	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	0 3	1 3	1 3	2 3	1.5	Acceptable Quality Levels (tightened inspection)
Ac	0.65	Ac Re		Use Code		L							1.0	Ac
	×	Ac Re		Use Code	Letter Letter K J							-	0.65	
	0.40	Ac Re		Use Code	G G				-				×	
	0.25	Ac Re	1 0	*		*				-			0.40	
	Less than 0.25 C	Ac Re											Less than 0.40	
Cumu-			50	32	64	13	26	39	52	65	78	16		J
		plan	Single		Double			Multinle	aidnimw					


- Use next preceding sample size code letter for which acceptance and rejection numbers are available.
- Use next subsequent sample size code letter for which acceptance and rejection numbers are available. = = **⊲** ⊳
 - Acceptance number.
 - Ac Re == =
- Rejection number.
- Use single sampling plan above (or alternatively use code letter L).
 - Acceptance not permitted at this sample size.

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

J PLANS

Table X-J—Tables for sample size code letter: J INDIVIDUAL PLANS

CHART J—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

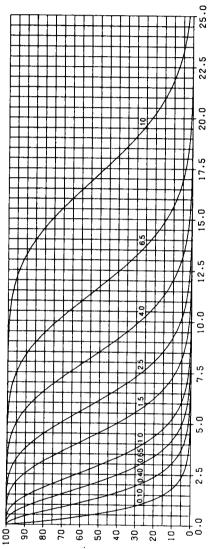
Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

TABLE X-J-I-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

<u> </u>	15		r.	18.6	<i>m</i>	4	-	5	2	∞	6		
			15.7	–	20.3	23.4	27.1		35.2	37.8	42.9	×	
	×		12.9	15.6	17.1	19.9	23.3	27.2	30.9	33.4	38.2	15	
	01		9.35	11.6	12.9	15.3	18.3	21.7	25.2	27.4	31.8	×	
	×	units)	7.62	9.61	10.8	13.0	15.8	19.0	22.2	24.3	28.5	10	
	6.5	p (in nonconformities per hundred units)	5.96	17.7	8.78	10.8	13.3	16.3	19.3	21.2	25.2	×	
	×	s per h	4.38	5.87	6.79	8.55	10.8	13.5	16.2	18.0	21.8	6.5	
	4.0	ormitie	3.63	4.98	5.82	7.45	9.59	12.1	14.7	16.4	20.0	×	
0	2.5	onconf	2.23	3.27	3.94	5.27	7.09	9.28	11.6	13.1	16.4	4.0	(u
pection	1.5	p (in n	1.03	1.71	2.18	3.17	4.59	6.39	8.35	69.6	12.6	2.5	spection
Acceptable Quality Levels (normal inspection)	1.0		0.545	1.02	1.38	2.16	3.34	4.90	6.65	7.87	10.5	1.5	Acceptable Quality Levels (tightened inspection)
els (no	0.65		0.186	0.444	0.665	1.20	2.10	3.37	4.86	5.93	8.30	1.0	els (tight
lity Lev	0.15		0.0126	0.064	0.132	0.360	0.866	1.73 -	2.88	3.74	5.76	0.25	ty Leve
ble Qua	10		9.76	11.9	13.2	15.5	18.3	21.3	24.2	26.0	29.5	×	le Quali
Accepta	×		7.93	9.89	11.0	13.2	15.8	18.6	21.4	23.2	26.6	10	ceptab
ł	6.5		6.17	16.7	8.95	10.9	13.3	16.0	18.6	20.3	23.6	×	Ϋ́
	×	forming)	4.51	6.00	6.90	8.61	10.8	13.3	15.7	17.3	20.5	6.5	
	4.0	nconfo	3.73	5.07	5.91	7.50	9.55	11.9	14.3	15.8	18.9	×	
	2.5	p (in percent nonconf	2.28	3.32	3.99	5.30	7.06	9.14	11.3	12.7	15.6	4.0	
	1.5	(in per	1.04	1.73	2.20	3.18	4.57	6.30	8.16	9.41	12.0	2.5	
	1.0	11	0.550	1.03	1.39	2.16	3.33	4.84	6.52	7.66	10.1	1.5	
	0.65		0.187	0.446	0.667	1.201	2.09	3.33	4.78	5.79	8.01	1.0	
	0.15		0.0126	0.0641	0.132	0.359	0.863	1.72	2.84	3.68	5.59	0.25	
*	Ъ		99.0	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1:0	1	
										[]		

Note: Binomial distribution used for percent nonconforming computations; Poisson for nonconformities per hundred units.

Table X-J-2—Sampling Plans for Sample Size Code Letter: J


	Cumu-					A	ccepta	ble Qu	ality Le	Acceptable Quality Levels (normal inspection)	lormal	inspec	tion)						Cumu-
Type of sampling	lative sample	Less than 0.15	0.15	0.25	×	0.40	0.65	1.0	1.5	2.5	4.0	×	6.5	×	10	×	15	Higher than 15	lative sample
pian	size	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re Ac Re	Ac Re	Ac Re	3126
Single	80	Δ	0 1				1 2	2 3	£	56	7 8	6 8	10 11	12 13	14 15	18 19	21 22	Δ	80
	50	⊳	*	- Use Code	Use Code	Use - Code	0 2	0 3	1 4	25	3 7	3 7	59	6 10	7 11	9 14	11 16	Þ	50
Double	100			Letter H	Letter L	Letter K	1 2	3 4	45	67	8 9	11 12	12 13	15 16	18 19	23 24	26 27		100
	20		*				# 2	# 2	# 3	# 4	0 4	0 4	0 5	0 6	1 7	1 8	2 9	\bigtriangledown	20
	40						# 2	0 3	0 3	15	16	27	3 8	3 9	4 10	6 12	7 14		40
Multinle	60						0 2	0 3	1 4	2 6	3 8	49	6 10	7 12	8 13	11 17	17 13 19		09
ardning	80						0 3	1 4	25	3 7	5 10	6 11	8 13	10 15	12 17	17 16 22	22 19 25		80
	100						1 3	2 4	3 6	5 8	7 11	9 12	11 15	14 17	17 20	22 25	25 29		100
	120						1 3	35	46	79	10 12	12 14	14 17	18 20	21 23	27 29	31 33		120
	140						2 3	4 5	67	9 10	13 14	14 15	18 19	21 22	25 26	32 33	37 38		140
		Less than 0.25	0.25	×	0.40	0.65	1.0	1.5	2.5	4.0	×	6.5	\times	10	×	15	×	Higher than 15	
						Ψ	cceptal	ole Quê	ulity Le	Acceptable Quality Levels (tightened inspection)	ightene	d inspe	ection)						
								İ											

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

 - - Ac = Acceptance number.
 Re = Rejection number.
 * = Use single sampling plan above (or alternatively use code letter M).
 - Acceptance not permitted at this sample size. 11 #

Table X-K—Tables for sample size code letter: K INDIVIDUAL PLANS CHART K—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a) 10

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

2		,	<u> </u>	T	r	1		T	1	т—	<u> </u>	-	1
		10		10.1	11.9	13.0	14.9	17.3	20.0	22.54	24.2	27.5	×
		×		8.28	9.95	10.9	12.7	14.9	17.4	19.8	21.4	24.5	10
		6.5	units)	5.98	7.40	8.24	9.79	11.7	13.9	16.1	17.5	20.4	×
	(uo	X	hundred ı	4.88	6.15	6.92	8.34	10.1	12.2	14.2	15.6	18.3	6.5
	al inspecti	4.0	nities per	3.82	4.94	5.62	6.90	8.53	10.4	12.3	13.6	16.1	×
	els (norm:	×	onconform	2.81	3.76	4.35	5.47	6.94	8.64	10.4	11.5	13.9	4.0
	Acceptable Quality Levels (normal inspection)	2.5	ning or no	2.32	3.18	3.72	4.76	6.14	7.75	9.42	10.5	12.8	×
	eptable Q	1.5	onconforr	1.43	2.09	2.52	3.38	4.54	5.94	7.42	8.41	10.5	2.5
	Acc	1.0	p (in percent nonconforming or nonconformities per hundred units)	0.659	1.09	1.40	2.03	2.94	4.09	5.34	6.20	8.04	1.5
		0.65	p (in	0.349	0.654	0.882	1.38	2.14	3.14	4.26	5.04	6.72	1.0
		0.40		0.119	0.284	0.425	0.769	1.34	2.15	3.11	3.80	5.31	0.65
		0.10		0.00804	0.0410	0.0843	0.230	0.555	1.11	1.84	2.40	3.68	0.15
		P_a		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0	

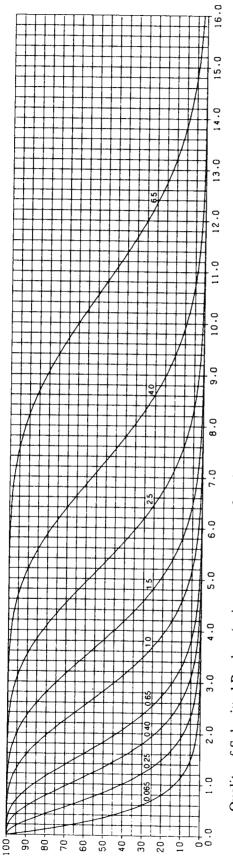
TABLE X-K-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Acceptable Quality Levels (tightened inspection)

Table X-K-2—Sampling Plans for Sample Size Code Letter: K

	e e	<u>,</u> [<u> </u>	80	0	32	64	96	80	0	5	4]	
Cumu-			125	8	160	Э	Ó	6	128	160	192	224	 	
	Higher than 10	Ac Re	\bigtriangledown			∇							Higher than 10	
	10	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
-	×	Ac Re	18 19	9 14	23 24	1 8	6 12	11 17	16 22 19	25	27 29	32 33	10	
-	6.5	Ac Re	14 15 1	11	18 19 2	1 7	4 10	8 13	12 17 16	17 20 22	21 23	25 26	×	
-	×	Ac Re	13	10 7	16	9	6	12	10 15 1	14 17 1	20	22	6.5	
(u	4.0	Ac Re A	10 11 12	9 6	13 15	5 0	8	10 7	13	15	17 18	3 19 21	×	ion)
Acceptable Quality Levels (normal inspection)	X	Ac Re Ac	9 10	7 5	12 12	4	7 3	9 6	11 8	12 11	12 14 14	14 15 18	4.0	Accentable Quality Levels (tightened inspection)
nal ins		Ac Re Ac	 	7 3	9 11	4 0	6 2	8	10 6	11 9	12	14	X	ened i
s (norn	2.5		6 7 8	5 3	7 8	4 0	5 1	6 3	7 5	8 7	9 10	10 13		(tioht
Levels	1.5	e Ac Re	2	5	9	#	3 1	4	5	6 5	6 7	7 9	2.5	PVPIS
uality	1.0	Ac Re	3 4	- 4	4 5	#	0	-	2	3	4	9	1.5	uality]
able Q	0.65	Ac Re	2 3	0 3	3 4	5 #	0 3	0 3	1 4	2	3 5	4 5	1.0	- O O eld
ccepts	0.40	Ac Re	1 2	0 2	1 2	# #	# 2	0 2	0 3	1 3	1 3	2 3	0.65	crenta
A	0.25	Ac Re		Use Code	Letter L								0.40	<
	×	Ac Re		Use Code	Letter M								0.25	
	0.15	Ac Re		Use Code	Letter Letter Letter J M L								×	
	0.10	Ac Re	0 1	*		*							0.15	
	Less than 0.10	Ac Re	Δ			⊳							Less than 0.15	
Cumu-		size	125	80	160	32	64	96	128	160	192	224		
	Type of sampling	pian	Single		Double			Multinle	ardnimtur					


- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
 - - Ac = Acceptance number. Re = Rejection number.
- * = Use single sampling plan above (or alternatively use code letter N).
 - Acceptance not permitted at this sample size. H #

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

L plans

Table X-L—Tables for sample size code letter: L INDIVIDUAL PLANS

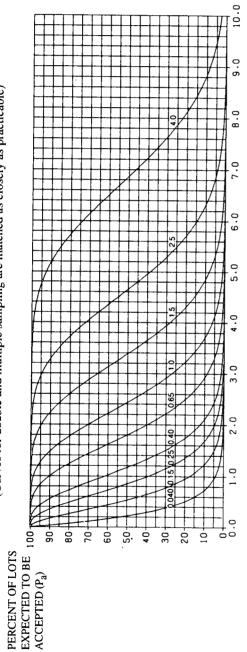
CHART L—OPERATING CHARACTERISTICS CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

		Acc	entable O	Accentable Quality Lavala (normal inconsise)	سادر (ممس	increase lo				
				uality Lev	els (norm	al inspecti	(uo			
	0.40	0.65	1.0	1.5	×	2.5	×	4.0	×	6.5
	p (in	percent ne	onconforr	ning or ne	nconfor	mities per	hundred	units)		
743	0.218	0.412	0.893	1.45	1.75	2.39	3.05	3.74	5.17	6.29
78	0.409	0.683	1.31	1.99	2.35	3.08	3.84	4.62	6.22	7.45
99	0.551	0.872	1.58	2.33	2.72	3.51	4.32	5.15	6.84	8 12
181	0.864	1.27	2.11	2.98	3.42	4.31	5.21	6.12	7.95	9 34
839	1.34	1.84	2.84	3.83	4.33	5.33	6.33	7.33	9.33	10.8
35	1.96	2.55	3.71	4.84	5.40	6.51	7.61	8.70	10.9	12.5
94	2.66	3.34	4.64	5.89	6.50	7.70	8.89	10.1	12.4	141
37	3.15	3.88	5.26	6.57	7.22	8.48	9.72	10.9	13.3	151
32	4.20	5.02	6.55	8.00	8.70	10.1	11.4	12.7	15.3	17.2
9	0.65	1.0	1.5	×	2.5	X	4.0	×	6.5	×
		Acce	ptable Qu	ality Leve	ls (tighten	ted inspect	tion)			
	0.25 0.0743 0.178 0.178 0.178 0.481 0.481 0.481 0.481 0.481 1.35 1.35 1.35 3.32 3.32 0.40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acceptable Quality Levels (normal inspection) P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in percent nonconforming or nonconformities per hundred unit P (in 0.864 1.27 2.18 2.33 4.33 5.21 5.21 5.21 P (in 0.864 1.27 2.14 2.84 5.33 6.53 6.53 6.53 6.53 6.53 P (in 0.864 1.27 2.18 5.20 6.53 5.21 5.21 7.61 P (in 0.864 1.96 2.55 3.71	Acceptable Quality Levels (normal inspection) I.0 I.5 X 2.5 X 4.0 P (in percent nonconforming or nonconformities per hundred units) P (in percent nonconforming or nonconformities per hundred units) A 0.400 0.663 I.45 I.75 2.39 3.74 5 0.409 0.683 I.45 I.75 2.39 3.74 5 0.551 0.893 I.45 I.75 2.39 3.74 5 I.34 I.35 3.74 4.65 I.34 I.35 3.74 6 I.34 I.35 3.73 7.33 7.33 7.33 7.33 7.33 7.33 7.66 6 I.34 4.64 5

TABLE X-L-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).


Table X-L-2—Sampling Plans for Sample Size Code Letter: L

	- <u>-</u>			[7	
	lative sample	2120	200	125	250	50	100	150	200	250	300	350		
	Higher than 6.5	Ac Re	V	Δ		∇							Higher than 6.5	
	6.5	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re	18 19	9 14	23 24	1 8	6 12	11 17	16 22 19	25	27 29	32 33	6.5	
	4.0	Ac Re	14 15	7 11	18 19	1 7	4 10	8 13	12 17 16	17 20 22	21 23	25 26	×	
	×	Ac Re	12 13	6 10	15 16	0 6	3 9	7 12	10 15	14 17	18 20	21 22	4.0	
ion)	2.5	Ac Re	10 11 1	5 9	12 13	0 5	3 8	6 10	8 13	11 15	14 17	18 19	×	ction)
inspect	×	Ac Re	8 9 1	3 7	11 12	0 4	2 7	4 9	6 11	9 12	12 14	14 15	2.5	l inspe
ormal	1.5	Ac Re	7 8	3 7	6 8	0 4	1 6	3 8	5 10	7 11	10 12	13 14	×	ghteneo
vels (n	1.0	Ac Re	56	2 5	67	# 4	15	2 6	3 7	58	6 2	9 10	1.5	vels (ti _l
ality Le	0.65	Ac Re	6 7	1 4	4 5	# 3	03	1 4	25	3 6	4 6	67	1.0	lity Le
ole Quá	0.40	Ac Re	2 3	03	3 4	# 2	03	03	1 4	2 4	35	45	0.65	le Qua
Acceptable Quality Levels (normal inspection)	0.25	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	03	1 3	1 3	2 3	0.40	Acceptable Quality Levels (tightened inspection)
Α	0.15	Ac Re		Use Code	Letter M	-							0.25	Ac
	×	Ac Re		Use Code	Letter N								0.15	
	0.10	Ac Re		Use Code	Letter K								\times	
-	0.065	Ac Re	0 1	*		*							0.10	
	Less than 0.065	Ac Re	Δ			Δ							Less than 0.10	
Cumu-	lative sample	size	200	125	250	50	100	150	200	250	300	350		
	بت بی م	plair	Single		Double			Multiple	4					

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac = Acceptance number. Re = Rejection number.
- * #
- Use single sampling plan above (or alternatively use code letter P). 11
 - Acceptance not permitted at this sample size. П

Table X-M—Tables for sample size code letter: M INDIVIDUAL PLANS

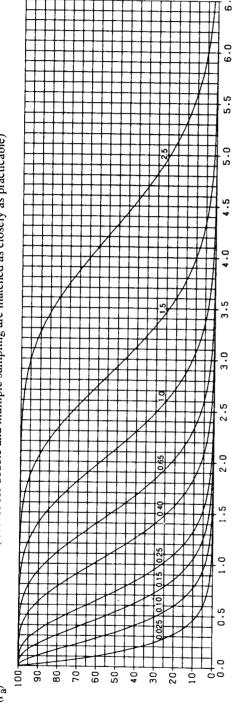
Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

				Acc	Acceptable Quality Levels (normal inspection)	uality Lev	els (norma	al inspecti	on)			
\mathbf{P}_{a}	0.040	0.15	0.25	0.40	0.65	1.0	×	1.5	×	2.5	×	4.0
			p (in	p (in percent nonconforming or nonconformities per hundred units)	onconforn	ning or nc	nconform	nities per	hundred t	units)		
0.66	0.0039	0.0472	0.138	0.261	0.567	0.923	1.11	1.51	1.94	2.37	3.28	3.99
95.0	0.0163	0.113	0.260	0.434	0.830	1.26	1.49	1.96	2.44	2.94	3.95	4.73
90.06	0.0335	0.169	0.350	0.554	1.00	1.48	1.72	2.23	2.74	3.27	4.34	5.16
75.0	0.0913	0.305	0.548	0.805	1.34	1.89	2.17	2.74	3.31	3.89	5.05	5.93
50.0	0.220	0.533	0.849	1.17	1.80	2.43	2.75	3.39	4.02	4.66	5.93	6.88
25.0	0.440	0.855	1.24	1.62	2.36	3.07	3.43	4.13	4.83	5.52	6.90	7.92
10.0	0.731	1.23	1.69	2.12	2.94	3.74	4.13	4.89	5.64	6.39	7.86	8.95
5.0	0.951	1.51	2.00	2.46	3.34	4.17	4.58	5.38	6.17	6.95	8.47	9.60
1.0	1.46	2.11	2.67	3.19	4.16	5.08	5.52	6.40	7.24	8.08	9.71	10.9
	0.065	0.25	0.40	0.65	1.0	×	1.5	×	2.5	×	4.0	×
				Acce	Acceptable Quality Levels (tightened inspection)	ality Level	s (tighten	ed inspect	tion)	E		
								•				

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

TABLE X-M-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Table X-M-2—Sampling Plans for Sample Size Code Letter: M


-		-		Acceptable Quality Levels (normal inspection)	ible Qu	ality L	evels (1	normal	inspec	tion)					Hioher	Cumu-
0.040 0.065 X 0.10	\times		⊇∣	0.15	0.25	0.40	0.65	1.0	×	1.5	×	2.5	×	4.0	than 4.0	lative sample size
Ac Re Ac Re Ac Re	Ac Re		((C	Ac Re	Ac Re Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re Ac Re	Ac Re	Ac Re	
				1 2	2 3	6 4	5 6	7 8	8	10 11	12 13	14 15	18 19	21 22	Δ	315
* Code Code Code	Use Code	-	O	0 2	0 3	1 4	25	3 7	3 7	59	6 10	7 11	9 14	11 16	Δ	200
Letter Letter Letter L P N	Letter P		_	1 2	3 4	45	67	89	11 12	12 13	15 16	18 19	19 23 24	26 27	5	400
*				# 2	# 2	#	#	0 4	0 4	05	0	1 7	1 8	2 9	Δ	80
				# 2	0 3	03	1 5	1 6	2 7	3 8	3 9	4 10	6 12	7 14		160
				0 2	03	1 4	2 6	3 8	49	6 10	7 12	8 13	11 17	13 19		240
				0 3	1 4	25	3 7	5 10	6 11	8 13	10 15	12 17	16 22	19 25		320
				1 3	2 4	3 6	5 8	7 11	9 12	11 15	14 17	17 20	22 25	25 29		400
				1 3	3 5	4 6	7 9	10 12	12 14	14 17	18 20	21 23	27 29	31 33		480
				2 3	4 5	6 7	9 10	13 14	14 14 15	18 19	21 22	25 26	32 33	37 38		560
0.065 X 0.10 0.15	0.10		1 10	0.25	0.40	0.65	1.0	×	1.5	\times	2.5	×	4.0	\times	Higher than 4.0	
			· ~	Acceptable Quality Levels (tightened inspection)	ble Ouí	ality Le	evels (t	ightene	od inspo	sction)						

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.
- Ac = Acceptance number. Re = Rejection number.
- Use single sampling plan above (or alternatively use code letter Q).
 # = Acceptance not permitted at this sample size. Acceptance not permitted at this sample size.
 - M plans

Table X-N—Tables for sample size code letter: N INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART N—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

56

				Acc	ceptable Q	Acceptable Quality Levels (normal inspection)	els (norm	al inspecti	(uo			
\mathbf{P}_{a}	0.025	0.10	0.15	0.25	0.40	0.65	×	1.0	×	1.5	×	2.5
			p (in	p (in percent nonconforming or nonconformities per hundred units)	onconforr	ning or no	nconform	nities per	hundred i	units)		
0.66	0.00201	0.0297	0.087	0.165	0.357	0.581	0.701	0.954	1.22	1.50	2.07	2.51
95.0	0.0103	0.0711	0.164	0.273	0.523	0.796	0.939	1.23	1.54	1.85	2.49	2.98
90.0	0.0211	0.106	0.220	0.349	0.630	0.931	1.09	1.40	1.73	2 06	2.12	3.75
75.0	0.0575	0.192	0.345	0.507	0.844	1.19	1.37	1.72	2.08	2 45	3 18	270
50.0	0.139	0.336	0.535	0.734	1.13	1.53	1.73	2.13	2.53	2.93	3.73	4 33
25.0	0.277	0.539	0.784	1.02	1.48	1.94	2.16	2.60	3.04	3.48	4 35	00 7
10.0	0.461	0.778	1.06	1.34	1.85	2.35	2.60	3.08	3.56	4.03	20 V	66.4
5.0	0.599	0.949	1.26	1.55	2.10	2.63	2.89	3.39	3.89	4 38	6 3 A	50.9
1.0	0.921	1.33	1.68	2.01	2.62	3.20	3.48	4.03	4.56	5.09	6.12	6.87
	0.040	0.15	0.25	0.40	0.65	×	1.0	×	1.5	×	2.5	\times
	<u>.</u>			Acce	ptable Qu:	Acceptable Quality Levels (tightened inspection)	s (tighten	ed inspect	ion)			
						`	2	· · · · · · · · · · · · · · · · · · ·	(

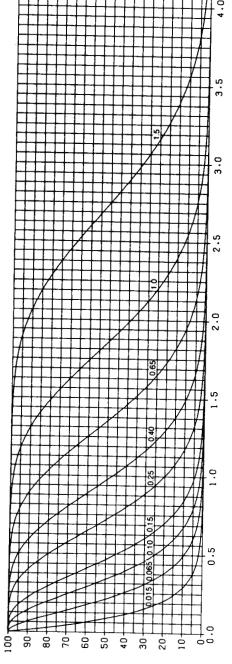
TABLE X-N-I-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-N-2—Sampling Plans for Sample Size Code Letter: N

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Cimil-					A	ccepta	ble Qui	Acceptable Quality Levels (normal inspection)	evels (r	normal	inspec	tion)						Cumu-
size Ac Re Ac Re <th< td=""><td>Type of sampling</td><td>lative sample</td><td></td><td>0.025</td><td>0.040</td><td></td><td>0.065</td><td>0.10</td><td></td><td>0.25</td><td>0.40</td><td>0.65</td><td>×</td><td>1.0</td><td>×</td><td>1.5</td><td>×</td><td>- 2</td><td></td><td>lative sample</td></th<>	Type of sampling	lative sample		0.025	0.040		0.065	0.10		0.25	0.40	0.65	×	1.0	×	1.5	×	- 2		lative sample
500 ∇ 0 1 Use Use <thuse< th=""> <thuse< th=""> <thuse< th=""></thuse<></thuse<></thuse<>	plan	size	Ac Re	Ac Re		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re		Ac Re	Ac Re		Ac Re	Ac Re			Ac Re	2710
315 ∇ use Use <td>Single</td> <td>500</td> <td>Δ</td> <td>0 1</td> <td></td> <td></td> <td></td> <td>1 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 11</td> <td></td> <td></td> <td>19</td> <td></td> <td>Δ</td> <td>500</td>	Single	500	Δ	0 1				1 2						10 11			19		Δ	500
630 Letter Letter <td></td> <td>315</td> <td>Δ</td> <td>*</td> <td>Use Code</td> <td>Use Code</td> <td>Use</td> <td>1</td> <td></td> <td>1 4</td> <td>1</td> <td></td> <td></td> <td>i</td> <td></td> <td></td> <td>14</td> <td></td> <td>♦</td> <td>315</td>		315	Δ	*	Use Code	Use Code	Use	1		1 4	1			i			14		♦	315
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Double	630			etter N	Letter R						1			15 16					630
250 27 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 4 2 5 3 7 5 10 7 12 8 13 11 17 13 19 500 500 1 4 2 5 3 7 5 10 6 11 13 19 12 11 12 14 17 16 2 2 2 2 1 2 1 <td< td=""><td></td><td>125</td><td></td><td>*</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 7</td><td></td><td></td><td>Ø</td><td>125</td></td<>		125		*					1							1 7			Ø	125
375375 0 0 0 1 4 2 6 3 8 4 9 6 10 7 12 8 11 17 13 19 500500 6 11 8 13 1 4 2 5 3 7 5 10 6 11 8 13 10 15 17 16 22 25 29 19 25 615 1 1 1 3 2 4 3 6 5 8 7 11 9 12 11 17 17 20 22 25 25 29 750 750 1 1 1 1 1 1 1 11 1 11 11 11 11 21 22 25 26 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 <td></td> <td>250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 6</td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td></td> <td></td> <td>250</td>		250										1 6					9			250
$ \begin{bmatrix} 500 \\ 615 \\ 750 \\ 750 \\ 750 \\ 750 \\ 875 \\ 875 \\ 10040 \\ 0.040 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 1 & 4 & 2 & 5 & 3 & 7 & 5 & 10 & 6 & 11 & 8 & 13 & 10 & 15 & 14 & 17 & 17 & 20 & 22 & 25 & 29 \\ 1 & 3 & 2 & 4 & 3 & 6 & 5 & 8 & 7 & 11 & 9 & 12 & 11 & 12 & 22 & 22 & 23 & 31 & 33 \\ 2 & 3 & 3 & 5 & 4 & 6 & 7 & 9 & 10 & 12 & 12 & 14 & 17 & 18 & 20 & 21 & 23 & 27 & 29 & 31 & 33 \\ 875 \\ Less than 0.040 \\ 0.040 \\ 0.040 \\ 0 \\ 0.05 \\ 0.10 \\ 0 \\ 0.15 \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.25 \\ 0.40 \\ 0.65 \\ 0.40 \\ 0.65 \\ 0.40 \\ 0.65 \\ X \\ 1.0 \\ X \\ 1.0 \\ X \\ 1.5 \\ X \\ 3.5 \\ X \\ 3.5 \\ X \\ 1.5 \\ 1.5 \\ X \\ 3.5 \\ X \\ 1.5 \\ $	Multinla	375													7		11	13		375
Less than 0.040 X 0.040 X 0.040 X 0.05 0.15 5 8 7 11 9 12 14 17 20 22 25 29 13 33 Less than 0.040 X 0.055 0.15 0.25 0.46 7 9 10 12 14 17 18 20 21 23 37 38 Less than 0.040 X 0.055 0.45 0.40 0.65 X 10 13 14 15 18 19 21 22 23 37 38 Less than 0.040 X 0.055 0.40 0.65 X 10 15 12 12 12 12 22 23 37 38 Acceptable Quality Levels (tightened inspection) A 1.0 X 1.5 X 3.5 X Highter Lish	aidminia	500													10	12	16	19		500
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		615						1 3						Ξ	14	17	22			625
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		750						1 3					12	14	18	21	27			750
0.040 X 0.065 0.15 0.25 0.40 0.65 X 1.0 X 3.5 X Acceptable Quality Levels (tightened inspection) Acceptable Quality Levels (tightened inspectin) Acceptable Quality Levels (tinspectin		875											14 15	18	21	25	32	37		875
			Less than 0.040		×	0.065	0.10	0.15	0.25	0.40	0.65	\times	1.0	\times	1.5	\times	3.5	×	Higher than 2.5	
							Ă	cceptal	sle Qué	ality Le	vels (ti	ightene	yd insp	ection	_					

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.


- Ac = Acceptance number. Re = Rejection number.
- Use single sampling plan above (or alternatively use code letter R).
 # = Acceptance not permitted at this sample size. Acceptance not permitted at this sample size.
 - N plans

P PLANS

Table X-P—Tables for sample size code letter: P INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART P—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs <10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

58

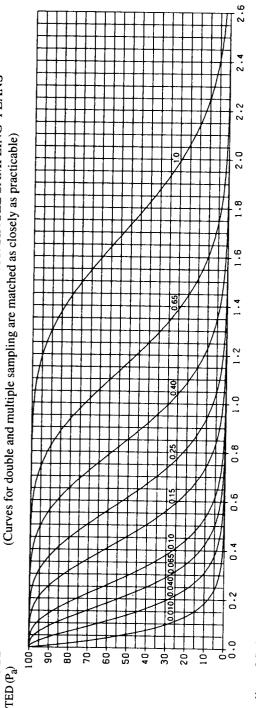
			(uo	Acceptable Quality Levels (tightened inspection)	ls (tighten	ality Level	ptable Qua	Acce				
×	1.5	×	1.0	×	0.65	×	0.40	0.25		0.15	0.10 0.15	
4.29	3.82	3.18	2.85	2.52	2.18	2.00	1.64	1.26		1.05	0.830 1.05	
3.78	3.34	2.74	2.43	2.12	1.80	1.64	1.31	0.969	\neg	0.787	0.593 0.787	
3.52	3.09	2.52	2.22	1.93	1.62	1.47	1.16	0.835		0.665	+	
3.12	7.12	71.7	NX-1	CO.1				0.015	1	0.665	-	
+-	62 C	217	1 90	1.63	1.35	1.21	0.928	0.639		0.490	0.337 0.490	
-	2.33	1.83	1.58	1.33	1.08	0.959	0.709	0.459		0.334	0.210 0.334	
	1.99	1.53	1.30	1.08	0.855	0.745	0.527	0.317		0.216	0.120 0.216	
2.03	1.71	1.29	1.08	0.878	0.679	0.582	0.394	0.218		0.138	0.0665 0.138	+
1.86	1.56	1.16	0.961	0.771	0.587	0.498	0.327	0.1/1		0.102	+-	
+	11	0000	5							0100	_	_
1 57	1.29	0.935	0.762	0.596	0.438	0.363	0.223	0.103		0.0545	0.0186 0.0	0.0
		inits)	hundred ı	p (in percent nonconforming or nonconformities per hundred units)	onconforr	ning or no	onconforr	bercent n	-	p (in p	p (in p	
1.5	×	1.0	X	0.65	×	0.40	0.25	0.15		0.10	0.065 0.10	_
			(uo	Acceptable Quality Levels (normal inspection)	els (norm	uality Lev	ceptable Q	Ac	- L			

TABLE X-P-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-P-2—Sampling Plans for Sample Size Code Letter: P

		·											1	
Cumu-	lative sample	3126	800	500	1000	200	400	600	800	1000	1200	1400		
	Higher than 1.5	Ac Re	Δ	∇		Δ							Higher than 1.5	
	1.5	Ac Re	21 22	11 16	26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
-	×	Ac Re Ac Re	18 19	9 14	23 24	1 8	6 12	11 17	17 16 22 19	22 25	27 29	32 33	1.5	
	1.0	Ac Re	14 15	7 11	18 19	1 7	4 10	8 13	12 17	17 20 22	21 23	25 26	\times	
-	×	Ac Re	12 13	6 10	15 16	0 6	3 9	7 12	10 15	14 17 17	18 20	21 22	1.0	
tion)	0.65	Ac Re	10 11	59	12 13	0 5	3 8	6 10	8 13	11 15	14 17	18 19	×	ction)
inspect	×	Ac Re	8 6	3 7	11 12	0 4	2 7	4 9	6 11	9 12	12 14	14 15	0.65	d inspe
ormal	0.40	Ac Re	7 8	3 7	8 9	0 4	1 6	3 8	5 10	7 11	10 12	13 14	×	ghtene
vels (n	0.25	Ac Re	5 6	25	67	# 4	15	26	3 7	5 8	6 2	9 10	0.40	vels (ti
ılity Le	0.15	Ac Re	6 7	1 4	45	# 3	03	1 4	25	3 6	4 6	67	0.25	lity Le
ole Quá	0.10	Ac Re Ac Re	2 3	0 3	3 4	# 2	0 3	0 3	1 4	2 4	3 5	45	0.15	le Qua
Acceptable Quality Levels (normal inspection)	0.065	Ac Re	1 2	0 2	1 2	# 2	# 2	0 2	03	1 3	1 3	2 3	0.10	Acceptable Quality Levels (tightened inspection)
A	0.040	Ac Re		Use - Code	Letter Q	ł							0.065	Ac
	×	Ac Re		Use Code	Letter Letter R Q								0.040	
	0.025	Ac Re		Use Code	Letter								×	
	0.015	Ac Re	0 1	*		*							0.025	
Ŧ	0.010	Ac Re	Δ										Less than 0.025	
Cumu-	lative sample	size	800	500	1000	200	400	009	800	1000	1200	1400		•
	ц В	plan	Single		Double			Multinle						


- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

- = Acceptance not permitted at this sample size. Ac = Acceptance number. Re = Rejection number. * = Use single sampling plan above. # = Acceptance not nermitted of the second

Table X-Q—Tables for sample size code letter: QINDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART Q—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

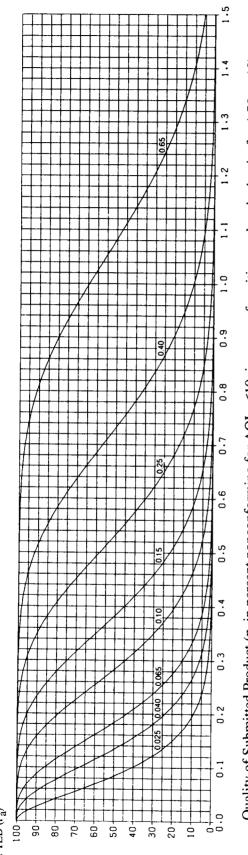
Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

Acceptable Quality Levels (normal inspection) 065 0.10 0.15 0.25 X 0.40	0.065 0.10	0.10
p (in percent noncon	p (in percent nonconforming or nonconformities per hundred units)	p (in percent noncon
349 0.0659 0.143	0.0	0.000804 0.0119 0.0349 0.0659 0.1
554 0.109 0.209	0.0654 0.109	0.109
882 0.140 0.252	0.0882 0.140	0.140
8 0.203 0.338	0.138 0.203	0.203
4 0.294 0.454	_	0.294
4 0.409 0.594		0.409
6 0.534 0.742	_	0.534
4 0.620 0.841		0.620
2 0.804 1.05		0.804
0.15 0.25		0.15
Acceptable Quality Levels (tightened inspection)	Acceptab	Acceptab

TABLE X-Q-1—TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-Q-2-Sampling Plans for Sample Size Code Letter: Q


	lative sample	SIZE	1250	800 1600	315	630	945	1260	1575	1890	2205]	
	Higher than 1.0	Ac Re	Δ	ν	V							Higher than 1.0	
	1.0	Ac Re	21 22	11 16 26 27	2 9	7 14	13 19	19 25	25 29	31 33	37 38	×	
	×	Ac Re Ac Re	18 19	9 14 23 24	1 8	6 12	11 17	16 22	22 25	27 29	32 33	1.0	
	0.65	Ac Re	14 15	7 11 7	1 7	4 10	8 13	12 17	17 20	21 23	25 26	×	
	×	Ac Re	12 13 1	6 10 7 15 16 1	0 6	3 9	7 12	10 15	14 17	18 20	21 22	0.65	
ion)	0.40	Ac Re	10 11 1	5 9 6 12 13 1	0 5	3 8	6 10	8 13	11 15	14 17	18 19	×	tion)
inspect	×	Ac Re	8 9 1	3 7 3	4	2 7	4 9	6 11	9 12 1	12 14 1	14 15	0.40	inspec
ormal i	0.25	Ac Re	7 8	3 7 8 9 1	4	1 6	3 8	5 10	7 11	10 12 1	13 14]	×	htened
vels (n	0.15	Ac Re	2 Q	25 67	+ 4	1 5	2 6	3 7	5 8	7 9 1	9 10	0.25	els (tig
lity Le	0.10		3 4	1 4 4 5	#	0 3	1 4	25	3 6	4 6	67	0.15	ity Lev
ole Qua	0.065	Ac Re Ac Re	3	0 3 3 4	# 2	0 3	0 3	1 4	2 4	35	4 5	0.10	e Qual
Acceptable Quality Levels (normal inspection)	0.040	Ac Re	1 2	0212	# 2	# 2	0 2	0 3	1 3	1 3	2 3	0.065	Acceptable Quality Levels (tightened inspection)
A	0.025	Ac Re	+	Use Code Letter R								0.040	Ac
	×	Ac Re		Use Code Letter S								0.025	
	0.015	Ac Re		Use Code Letter P								×	
	0.010	Ac Re	0 1	*	*							0.015	
	×	Ac Re	;	Use Code Letter R								0.010	
Cumu-	lative sample	size	1250	800	315	630	945	1260	1575	1890	2205		L
	Type of sampling	Imid	Single	Double			Multiple	4					

Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.
 * = Use single sampling plan above.
 # = Acceptance not permitted at this sample size.

Table X-R—Tables for sample size code letter: R INDIVIDUAL PLANS

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

CHART R—OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS (Curves for double and multiple sampling are matched as closely as practicable)

Quality of Submitted Product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

				•							
×	0.65	×	0.40	×	0.25	×	0.15	0.10	0.065	0.040	
1.72	1.53	1.27	1.14	1.01	0.870	0.800	0.655	0.502	0.420	0.332	1:0
1.51	1.33	1.09	0.972	0.848	0.722	0.657	0.526	0.388	0.315	0.237	5.0
1.41	1.24	1.01	0.889	0.770	0.650	0.589	0.464	0.334	0.266	0.194	10.0
1.25	1.09	0.870	0.761	0.651	0.540	0.484	0.371	0.255	0.196	0.135	25.0
1.08	0.933	0.733	0.633	0.533	0.433	0.383	0.284	0.184	0.134	0.0839	50.0
0.934	0.795	0.612	0.521	0.431	0.342	0.298	0.211	0.127	0.0864	0.0481	75.0
0.812	0.684	0.515	0.432	0.351	0.272	0.233	0.158	0.0872	0.0551	0.0266	90.0
0.745	0.622	0.462	0.384	0.308	0.235	0.199	0.131	0.0683	0.0409	0.0178	95.0
0.629	0.517	0.374	0.305	0.239	0.175	0.145	0.0893	0.0412	0.0218	0.00743	99.0
		red units)	per hund	Iformities	or noncor	nforming	p (in percent nonconforming or nonconformities per hundred units)	p (in perc			
0.65	×	0.40	×	0.25	×	0.15	0.10	0.065	0.040	0.025	\mathbf{P}_{a}
			pection)	normal ins	Acceptance Quality Levels (normal inspection)	nce Quality	Acceptar		ſ		

TABLE X-R-I-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Values given in the Table above are based on the Poisson distribution as an approximation to the binomial distribution (See 11.1 for details).

Table X-R-2—Sampling Plans for Sample Size Code Letter: R

Type of lative sampling sample plan size Single 2000	Ac Re																ţ
	Ac Re	0.010	0.015	×	0.025	0.040	0.065	0.10	0.15	×	0.25	×	0.40	×	0.65	Higher than 0.65	Lumu- lative sample
	0 1	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	size
			;	;	1 2	2 3	6 4	56	7 8	6 8	10 11	12 13	14 15	18 19	21 22	V	2000
Double 2500	*	Use Code Letter Q	Use Code Letter P	Use Code Letter S	0 2 1 2	0 3 3 4	1 4 5 5	2567	37 89	3 7 11 12	5 9 12 13	6 10 15 16	7 11 18 19	9 14 23 24	11 16 26 27	⊲	1250 2500
500	*				# 7	# 2	# ~	#	0 4	0 4	0 5	0 6	1 7	1 8	2 9	⊲	500
1000					# 2	0 3	03	1 5	1 6	2 7	3	3 9	4 10	6 12	7 14		1000
Multiple 1500					0 2	0 3	1 4	26	3	49	6 10	7 12	8 13	11 17	13 19		1500
2000					0 3	1 4	25	3 7	5 10	6 11	8 13	10 15 12	12 17	16 22	19 25		2000
2500					1 3	2 4	36	5 8	7 11	9 12	11 15	11 15 14 17 17 20 22	17 20	22 25	25 29		2500
3000					1 3	35	4 6	7 9	10 12	12 14	14 17	18	20 21 23	27 29	31 33		3000
3500					2 3	4 5	67	9 10	13 14	14 15	18 19	21 22	25 26	32 33	37 38		3500
	0.010	0.015	×	0.025	0.040	0.065	0.10	0.15	×	0.25	×	0.40	×	0.65	×	Higher than 0.65	
					Accep	table (Quality	Level	Acceptable Quality Levels (tightened inspection)	ened ir	aspecti	(uo					

- Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.
 Ac = Acceptance number.
 Re = Rejection number.
- Use single sampling plan above.
- Acceptance not permitted at this sample size. H * #

		Acceptable (normal i	Acceptable Quality Level (normal inspection)
Type of sampling	Cumu- lative		
	size	Ac	Re
Single	3150	I	2
- - 	2000	0	2
DOUDLE	4000	Π	2
	800	#	5
	1600	#	2
	2400	0	2
Multiple	3200	0	ŝ
	4000	1	£
	4800	1	ŝ
	5600	7	ŝ
		0.0	0.025
		Acceptable Quality Lev (tightened inspection)	Acceptable Quality Level (tightened inspection)

64

Ac = Acceptance number. Re = Rejection number. # = Acceptance not permitted at this sample size.

Table XI—Average Outgoing Quality Limit Factors for ANSI-ZI.4 Scheme Performance

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values for percent nonconforming shown in parentheses)

	1000	1100	1100													1	i
	650	710	710	660													
	400	450	480	430	410												
	250	310	300	290	270	260											
	150	200	210	180	180	170											
	100	130	130	130	120	110											
	65	78	84	78	76	69	71										
	40	48	52	51	49	47	45	45									
	25	30	32	31	32	30	31	28	29								
	15		19	20	20	20	20	18	18	18							
el	10			(12) 12	(13) 12	(13) 12	(14) 13	(13) 13	(13) 13	(12) 12	12						
Acceptable Quality Level	6.5	(11) 13			(0.0) 7.0	(7.5) 7.4	(7.9) 7.8	(8.7) 7.9	(8.0) 7.8	(7.7) 7.6	7.2	7.1					
uality	4.0		(6.8) 7.5			(4.5) 4.5	(4.9) 4.8	(4.9) 4.9	(5.1) 5.1	(5.0) 4.9	4.9	4.5	4.5				
ble Q	2.5			(4.4) 4.7			(2.9) 2.9	(3.0) 3.0	(3.2) 3.1	(3.2) 3.2	3.2	3.1	2.9	2.9			
cepta	1.5				(2.8) 2.9			(1.8) 1.8	(2.0) 2.0	(2.0 2.0	2.1	2.0	2.0	1.8	1.8		
Ac	1.0					(1.9)			(1.2) 1.2	(1.2) 1.2	1.3	1.3	1.3	1.3	1.2	1.2	
	0.65						(1.2) 1.2			(.72) .72	<i>.</i> 77	.78	.80	.78	.76	.72	1
	0.40							(.74) .75			.46	.48	.50	.51	.49	.49	Y
	0.25								(.47) .47			.29	.31	.31	.32	.32	31
	0.15									.30) .30			.18	.20	.20	.21	00
	0.10										.19			.12	.12	.13	13
												.12			.072	.077	078
	0.015 0.025 0.040 0.065												.075			.046	0.48
	0.025													.047			000
															.030		
	0.010															.019	
Code	•	A	в	υ	D	щ	F	G	Н	J	K	L	Μ	Z	Р	δ	R

1 - Normal Plan Sample Size Lot or Batch Size Note: For a better approximation to the AOQL, the above values must be multiplied by

LQ 10% SCHEME PERFORMANCE

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values for nonconforming shown in parentheses) Table XII–Limiting Quality for ANSI-Z1.4 Scheme Performance for Which $P_a = 10$ Percent

		1	T	<u> </u>	<u></u>	1		1	1		1	·	1			<u> </u>	
	1000	1750	1680							<u> </u>							
	650	1240	1170	1010													
	400	889	825	669	631												
	250	650	593	495	437	388											
	150	464	433	356	309	269								1	1	-	
	100	334	309	260	222	190											
	65	266	223	185	162	137	124						-				
	40	194	177	134	116	100	88.9	77.4									
	25	130	130	106	83.5	71.3	65.0	55.6	49.5								
	15		77.8	77.8	66.5	51.4	46.4	40.6	35.6	30.9							
el	10			(40.6) 48.6	(40.6) 48.6	(36.0) 40.9	(30.4) 33.4	(27.1) 29.0	(24.7) 26.0	(21.4) 22.2	19.8						
y Lev	6.5	(53.6) 76.7			(26.8) 29.9	(26.8) 29.9	(24.5) 26.6	(19.7) 20.9	(17.8) 18.5	(15.7) 16.2	14.2	12.4					
ualit	4.0		(36.9) 46.0			(18.1) 19.4	(18.1) 19.4	(15.8) 16.6	(12.9) 13.4	(11.3) 11.6	10.4	8.89	7.86				
Acceptable Quality Level	2.5			(25.0) 28.8			$\begin{array}{c} (11.6) \\ 12.2 \\ 12.2 \\ 19.4 \end{array}$	(11.6) 12.2	(10.3) 10.6	(8.16) 8.35	7.42	6.50	5.64	4.95			
cepta	1.5				(16.2) 17.7			(7.56) 7.78	(7.56) 7.78	(6.52) 6.65	5.34	4.64	4.13	3.56	3.09		
Ac	1.0					(10.9) 11.5			(4.77) 4.86	(4.77) 4.86	4.26	3.34	2.94	2.60	2.22	1.98	
	0.65						(6.94) 7.19			(3.08) 3.11	3.11	2.66	2.12	1.85	1.62	1.42	1.24
	0.40							(4.50) 4.60			1.94	1.94	1.69	1.34	1.16	1.04	889.
	0.25								(2.84) 2.88			1.23	1.23	1.06	.835	.742	.650
	0.15									(1.83) 1.84			.778	.778	.665	.534	.464
	0.10										1.15			.486	.486	.426	.334
	0.065											.731			.311	.311	.266
	0.040						-						.460			.194	.194
	0.015 0.025 0.040 0.065													.288			.123
															.184		
	0.010															.115	
Code	Letter	А	В	C	D	Щ	Щ	IJ	Н	ſ	K	L	М	Z	Р	δ	R

(In nonconformities per hundred units, also applicable to percent nonconforming for AQL less than 15 with specific values Table XIII—Limiting Quality for ANSI-Z1.4 Scheme Performance for Which $P_a = 5$ Percent for percent nonconforming shown in parentheses)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.40 0.65 0.80 0.65 0.894) 0.36 0.36 0.36 0.36 0.36		0.040 0.065 0.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.94) (8.94) (5.99) (3.74) (3.74) (3.70)	3.74	(2.37)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(5.81) 5.99 5.99 (3.74) 3.79	3.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.94) 9.36 5.99 (3.74) 3.79	3.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.94) (8	(3.68)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.94) 9.36 5.99 (3.74) 3.79	3.74	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(8.94) 9.36 5.99 5.99 (3.74) 3.79	3.74	
(9.14) (14.0) (18.4) (22.5) (30.1) 9.49 14.8 197 24.2 32.9 9.41 (12.1) (14.8) (19.9) (27.0) 9.49 12.6 15.5 21.0 23.9 (7.66) (9.41) (12.7) (17.3) (23.2) (7.66) 9.41 (1.5.7) (17.3) (23.2) 6.20 8.41 11.5 15.6 21.4 5.26 7.22 9.72 13.3 23.3 6.20 8.41 11.5 15.6 21.4 4.58 6.17 8.47 7 3.3 3.89 5.34 3.34 3.34 3.34	(5.81) 5.99 (3.74) 3.79 (3.74)	3.68)	
(9.14) (12.1) (14.8) (19.9) (27.0) 9.49 12.6 15.5 21.0 28.9 (7.66) (9.41) (12.7) (17.3) (23.2) 7.87 9.69 13.1 18.0 24.3 6.20 8.41 11.5 15.6 21.4 5.26 7.22 9.72 13.3 24.3 5.26 7.22 9.72 13.3 7 4.58 6.17 8.47 7 3 3.89 5.34 7 3 3 3.34 3.34 7 7 7	(3.74) 3.79	3.68) 3.74	
(7.66) (9.41) (12.7) (17.3) (23.2) 7.87 9.69 13.1 18.0 24.3 6.20 8.41 11.5 15.6 21.4 5.26 7.22 9.72 13.3 2 4.58 6.17 8.47 7 2 3.89 5.34 3.34 7 3	(3.74) 3.79		(2.37)
6.20 8.41 11.5 15.6 5.26 7.22 9.72 13.3 4.58 6.17 8.47 3.34 3.34 5.34 1 3.34			2.40
5.26 7.22 9.72 4.58 6.17 8.47 3.89 5.34 3.34	0.0 9.79 0.0		1.50
4.58 6.17 3.89 5.34 3.34	2.37 3.15	1.51	
3.89 3.34	2.00 2.46	1.51	.949
	1.55 2.10	1.26	.593 .949
	1.31 1.80	696.	.593 .787
2.14	1.15 1.56	.841	.504 .620
	1 22	55	.388 .526

				_	Ac	ceptable	Quality	Levels	(normal	inspecti	on)			
P _a	6.5	6.5	25	40	65	100	150	250	400	650	1000			
	*	20	20	2.0	20		1 noncor		<u> </u>		_			
99.0	2.0	$\frac{2.0}{2.0}$	2.0	2.0	2.0	2.0	2.0	2.0	$\frac{2.0}{2.0}$	2.0	2.0			
95.0	2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	$\frac{2.0}{2.0}$	2.0			
90.0	2.1	2.1	2.2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
50.0	2.9	2.9	2.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
25.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
10.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
5.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
1.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
Table X		Tabula	ted Val	ues for	Avera	re Sami	le Size	for AN	JSL-71	4 Schei	ne Per	forman		
								_						
		<u> </u>				<u> </u>	e Quality	_	·			1.000		
Pa	4.0	4.0	15	25	40	65	n nonco	150	250	400	650	1000		
	*		0.7		2.5				- <u>-</u>		<u> </u>		T	
99.0	$\frac{2.1}{2.6}$	2.1	2.7	2.6	2.5	2.7	2.4	2.7	2.5	2.7	2.4	2.7		
95.0	2.6	2.6	3.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
90.0	3.1	$\frac{3.1}{4.0}$	3.3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
75.0	4.0	4.0	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	 	╂───
50.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		┼──-
25.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
5.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
1.0	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	├	┼
Table X	IV_C	Tabula	ted Val	ues for	Averag	ge Samj	ple Size	for AN	VSI-Z1.	4 Sche	me Per	forman	ce	
					Ac	ceptable	Quality	Levels	(normal	inspecti	on)			
P _a	2.5	10	2.5	10	15	25	40	65	100	150	250	400	650	
	p (in pe noncon	rcent forming)					n noncor	nformitie	es per hu	ndred u	nits)	·	i	
99.0	2.4	3.7	2.4	3.6	3.5	4.0	4.2	4.1	4.1	4.2	4.3	4.0	3.4	
95.0	3.6	4.8	3.6	4.8	4.8	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
1 00 0	4.7	5.4	4.7	5.4	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
90.0	6.5	6.5	6.5	6.6	5.0	5.0	5.0	50	5.0	5.0	5.0	5.0	5.0	
75.0								5.0					1 50	
75.0 50.0	7.8	7.7	7.8	7.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
75.0 50.0 25.0	7.8 8.0	8.0	7.8 8.0	8.0	5.0	5.0	5.0 5.0	5.0 5.0	5.0	5.0	5.0	5.0	5.0	
75.0 50.0 25.0 10.0	7.8 8.0 8.0	8.0 8.0	7.8 8.0 8.0	8.0 8.0	5.0 5.0	5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	5.0 5.0	
75.0 50.0 25.0 10.0 5.0	7.8 8.0 8.0 8.0	8.0 8.0 8.0	7.8 8.0 8.0 8.0	8.0 8.0 8.0	5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0	5.0 5.0 5.0	
75.0 50.0 25.0 10.0 5.0 1.0	7.8 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	7.8 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	
75.0 50.0 25.0 10.0 5.0	7.8 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	7.8 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 Averag	5.0 5.0 5.0 5.0 ge Sam	5.0 5.0 5.0 5.0 5.0 ple Size	5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 NSI-Z1	5.0 5.0 5.0 5.0 4 Sche	5.0 5.0 5.0 5.0 me Per	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	
75.0 50.0 25.0 10.0 5.0 1.0 Table X	7.8 8.0 8.0 8.0 8.0 (IVD	8.0 8.0 8.0 8.0 Tabula	7.8 8.0 8.0 8.0 8.0 ted Val	8.0 8.0 8.0 8.0 8.0 ues for	5.0 5.0 5.0 5.0 Averag	5.0 5.0 5.0 5.0 ge Sam	5.0 5.0 5.0 5.0 5.0 9 ple Size	5.0 5.0 5.0 5.0 5.0 5.0 5.0 2 for Al	5.0 5.0 5.0 5.0 NSI-Z1.	5.0 5.0 5.0 5.0 4 Sche inspecti	5.0 5.0 5.0 5.0 me Per	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 ce	400
75.0 50.0 25.0 10.0 5.0 1.0	7.8 8.0 8.0 8.0 8.0 (IV-D 1.5	8.0 8.0 8.0 Tabula 6.5	7.8 8.0 8.0 8.0 8.0 ted Val	8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 Averag	5.0 5.0 5.0 5.0 ge Sam	5.0 5.0 5.0 5.0 5.0 ple Size	5.0 5.0 5.0 5.0 5.0 5.0 5.0 25	5.0 5.0 5.0 5.0 NSI-Z1 (normal 40	5.0 5.0 5.0 4 Sche inspecti 65	5.0 5.0 5.0 5.0 me Per on) 100	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	400
75.0 50.0 25.0 10.0 5.0 1.0 Table X	7.8 8.0 8.0 8.0 8.0 (IV-D 1.5	8.0 8.0 8.0 8.0 Tabula	7.8 8.0 8.0 8.0 8.0 ted Val	8.0 8.0 8.0 8.0 8.0 ues for	5.0 5.0 5.0 5.0 Averag	5.0 5.0 5.0 5.0 ge Sam	5.0 5.0 5.0 5.0 5.0 5.0 9 ple Size e Quality 15	5.0 5.0 5.0 5.0 5.0 5.0 5.0 25	5.0 5.0 5.0 5.0 NSI-Z1 (normal 40	5.0 5.0 5.0 5.0 4 Sche inspecti 65	5.0 5.0 5.0 5.0 me Per on) 100	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 ce	400
75.0 50.0 25.0 10.0 5.0 1.0 Table X	7.8 8.0 8.0 8.0 8.0 CIV-D	8.0 8.0 8.0 7 abula 6.5 p (in perce	7.8 8.0 8.0 8.0 8.0 ted Val	8.0 8.0 8.0 8.0 ues for 1.5	5.0 5.0 5.0 5.0 Average Ac 6.5	5.0 5.0 5.0 5.0 ge Sam icceptable 10 p (i	5.0 5.0 5.0 5.0 5.0 5.0 9 ple Size e Quality 15 n noncon	5.0 5.0 5.0 5.0 5.0 5.0 2 for Al 2 Levels 25	5.0 5.0 5.0 5.0 NSI-Z1 (normal 40 es per hu	5.0 5.0 5.0 4 Sche inspecti 65	5.0 5.0 5.0 5.0 me Per on) 100 nits)	5.0 5.0 5.0 5.0 forman	5.0 5.0 5.0 5.0 ce 250	
75.0 50.0 25.0 10.0 5.0 1.0 Table X P _a 99.0	7.8 8.0 8.0 8.0 8.0 6 7 7 8.0 6 7 7 8.0 7 8.0 7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 7 abula 6.5 p (in perce pinconform 5.8	7.8 8.0 8.0 8.0 ted Val 10 nt ng) 5.3	8.0 8.0 8.0 8.0 ues for 1.5 3.7	5.0 5.0 5.0 5.0 Averag Ac 6.5 5.7	5.0 5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1	5.0 5.0 5.0 5.0 5.0 9 ple Size e Quality 15 n noncor	5.0 5.0 5.0 5.0 5.0 5.0 c for AN Levels 25 nformitic 6.6	5.0 5.0 5.0 5.0 NSI-Z1. (normal 40 es per hu 6.6	5.0 5.0 5.0 5.0 4 Sche inspecti 65 undred u 5.9	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8	5.0 5.0 5.0 5.0 forman 150 7.0	5.0 5.0 5.0 5.0 ce 250 6.1	5.4
$\begin{array}{c} 75.0 \\ 50.0 \\ 25.0 \\ 10.0 \\ 5.0 \\ 1.0 \\ \end{array}$ Table X $\begin{array}{c} P_a \\ 99.0 \\ 95.0 \end{array}$	7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	8.0 8.0 8.0 7 abula 6.5 p (in perce p (in perce p conform 5.8 7.7	7.8 8.0 8.0 8.0 ted Val 10 nt ng) 5.3 7.4	8.0 8.0 8.0 8.0 ues for 1.5 3.7 5.7	5.0 5.0 5.0 5.0 Averag Ac 6.5 5.7 7.6	5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1 7.2	5.0 5.0 5.0 5.0 5.0 9 Quality 15 n noncoo 6.2 7.8	5.0 5.0 5.0 5.0 5.0 c for Al 25 for mitic 6.6 7.9	5.0 5.0 5.0 5.0 NSI-Z1. (normal 40 es per hu 6.6 8.0	5.0 5.0 5.0 5.0 4 Sche inspecti 65 undred u 5.9 7.9	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8 7.9	5.0 5.0 5.0 5.0 forman 150 7.0 8.0	5.0 5.0 5.0 5.0 5.0 ce 250 6.1 8.0	5.4 7.9
$\begin{array}{c} 75.0 \\ 50.0 \\ 25.0 \\ 10.0 \\ 5.0 \\ 1.0 \\ \end{array}$ Table X $\begin{array}{c} P_a \\ 99.0 \\ 95.0 \\ 90.0 \\ \end{array}$	7.8 8.0 8.0 8.0 8.0 (IVD 1.5 1.5 3.7 5.7 7.4	8.0 8.0 8.0 Tabula 6.5 p (in perce noconform 5.8 7.7 8.6	7.8 8.0 8.0 8.0 ted Val 10 nt ng) 5.3 7.4 7.9	8.0 8.0 8.0 8.0 1.5 3.7 5.7 7.4	5.0 5.0 5.0 5.0 Averag Ac 6.5 5.7 7.6 8.6	5.0 5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1 7.2 7.8	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 c for All r Levels 25 nformitic 6.6 7.9 8.0	5.0 5.0 5.0 5.0 NSI-Z1. (normal 40 es per hu 6.6 8.0 8.0	5.0 5.0 5.0 4 Sche inspecti 65 undred u 5.9 7.9 8.0	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8 7.9 8.0	5.0 5.0 5.0 5.0 forman 150 7.0 8.0 8.0	5.0 5.0 5.0 5.0 ce 250 6.1 8.0 8.0	5.4 7.9 8.0
75.0 50.0 25.0 10.0 5.0 1.0 Table X P _a 99.0 95.0 90.0 75.0	7.8 8.0 8.0 8.0 1.5 1.5 3.7 5.7 7.4	8.0 8.0 8.0 Tabula 6.5 p (in perce- meonform 5.8 7.7 8.6 11	7.8 8.0 8.0 8.0 10 10 10 10 10 7.4 7.9 8.0	8.0 8.0 8.0 1.5 3.7 5.7 7.4 11	5.0 5.0 5.0 5.0 Averag Ac 6.5 5.7 7.6 8.6 11	5.0 5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1 7.2 7.8 8.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 NSI-Z1. (normal 40 es per hu 6.6 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 4 Sche inspecti 65 andred u 5.9 7.9 8.0	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8 7.9 8.0 8.0	5.0 5.0 5.0 5.0 forman 150 7.0 8.0 8.0 8.0	5.0 6.1 8.0 8.0	5.4 7.9 8.0 8.0
$\begin{array}{c} 75.0\\ 50.0\\ 25.0\\ 10.0\\ 5.0\\ 1.0\\ \end{array}$ Table X $\begin{array}{c} P_a\\ 99.0\\ 95.0\\ 90.0\\ 75.0\\ 50.0\\ \end{array}$	7.8 8.0 8.0 8.0 1.5 1.5 1.5 3.7 5.7 7.4 11 13	8.0 8.0 8.0 Tabula 6.5 p (in perce pinconform 5.8 7.7 8.6 11 13	7.8 8.0 8.0 8.0 ted Val 10 nt ng) 5.3 7.4 7.9 8.0 8.0	8.0 8.0 8.0 1.5 3.7 5.7 7.4 11 13	5.0 5.0 5.0 5.0 4verag Ac 6.5 5.7 7.6 8.6 11 13	5.0 5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1 7.2 7.8 8.0 8.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 9 le Size e Quality 15 n nonco 6.2 7.8 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 NSI-Z1. (normal 40 es per hu 6.6 8.0 8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 4 Sche inspecti 65 undred u 5.9 7.9 8.0 8.0	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8 7.9 8.0 8.0 8.0	5.0 5.0 5.0 5.0 forman 150 7.0 8.0 8.0 8.0 8.0	5.0 6.1 8.0 8.0 8.0	5.4 7.9 8.0 8.0 8.0
$\begin{array}{c} 75.0\\ 50.0\\ 25.0\\ 10.0\\ 5.0\\ 1.0\\ \end{array}$ $Table \ X$ $\begin{array}{c} P_a\\ 99.0\\ 95.0\\ 90.0\\ 75.0\\ 50.0\\ 25.0\\ \end{array}$	7.8 8.0 8.0 8.0 1.5 1.5 3.7 5.7 7.4 11 13 13	8.0 8.0 8.0 Tabula 6.5 p (in perce piconform 5.8 7.7 8.6 11 13 13	7.8 8.0 8.0 8.0 ted Val 10 nt ng) 5.3 7.4 7.9 8.0 8.0 8.0	8.0 8.0 8.0 8.0 1.5 3.7 5.7 7.4 11 13 13	5.0 5.0 5.0 5.0 4verag Ac 6.5 5.7 7.6 8.6 11 13 13	5.0 5.0 5.0 5.0 ge Sam cceptable 10 p (i 5.1 7.2 7.8 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 9 Ple Size 2 Quality 15 n noncor 6.2 7.8 8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 5.0 4 Sche inspecti 65 indred u 5.9 7.9 8.0 8.0 8.0	5.0 5.0 5.0 5.0 me Per on) 100 nits) 5.8 7.9 8.0 8.0 8.0 8.0	5.0 5.0 5.0 5.0 forman 150 7.0 8.0 8.0 8.0 8.0 8.0 8.0	5.0 6.1 8.0 8.0 8.0	5.4 7.9 8.0 8.0 8.0 8.0 8.0

Table X	ίν—e	Tabula	ated Va	lues for	r Avera	ge Sam	ple Siz	e for Al	NSI-Z1	.4 Sche	eme Per	forman	ce		Code E
					Ac	ceptable	e Quality	/ Levels	(normal	inspect	ion)				
Pa	1.0	4.0	6.5	10	1.0	4.0	6.5	10	15	25	40	65	100	150	250
	p(in p	ercent no	onconfor	mities)				p (in no	onconfor	mities p	er hund	red units)		
99.0	6.0	9.4	8.6	11	6.0	9.3	8.4	10	11	10	9.8	8.9	10	11	8.6
95.0	9.2	12	12	13	9.2	12	12	13	13	13	13	13	13	13	13
90.0	12	14	13	13	12	14	13	13	13	13	13	13	13	13	13
75.0	17	17	13	13	17	17	13	13	13	13	13	13	13	13	13
50.0	19	19	13	13	19	19	13	13	13	13	13	13	13	13	13
25.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
10.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
5.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13
1.0	20	20	13	13	20	20	13	13	13	13	13	13	13	13	13

Table XIV—F Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Acceptable Quality Levels (normal inspection) Pa .65 2.5 4.0 6.5 10 .65 2.5 4.0 6.5 10 15 25 40 65 p (in nonconformities per hundred units) p (in perent nonconforming) 9.5 14.6 13.4 15.7 17.9 9.5 14.5 13.2 15.3 16.8 17.8 16.2 15.1 15.7 99.0 95.0 14.4 19.1 18.5 19.5 19.0 14.4 19.0 18.3 19.3 19.8 20.0 19.9 19.8 19.9 18.6 21.5 19.7 19.9 20.0 18.6 21.5 19.6 19.9 20.0 20.0 20.0 20.0 20.0 90.0 26.2 20.0 20.0 20.0 26.0 26.2 20.0 20.0 20.0 20.0 20.0 20.0 20.0 75.0 26.131.0 30.9 20.0 20.0 20.0 31.0 30.9 20.0 20.0 20.0 20.0 20.0 20.0 20.0 50.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0 20.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 10.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 5.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 32.0 32.0 1.0

Table XIV—G Tabulated Values for Average Sample Size for ANSI-Z1.4 Scheme Performance

Code G

SAMPLE

SIZE SCHEME

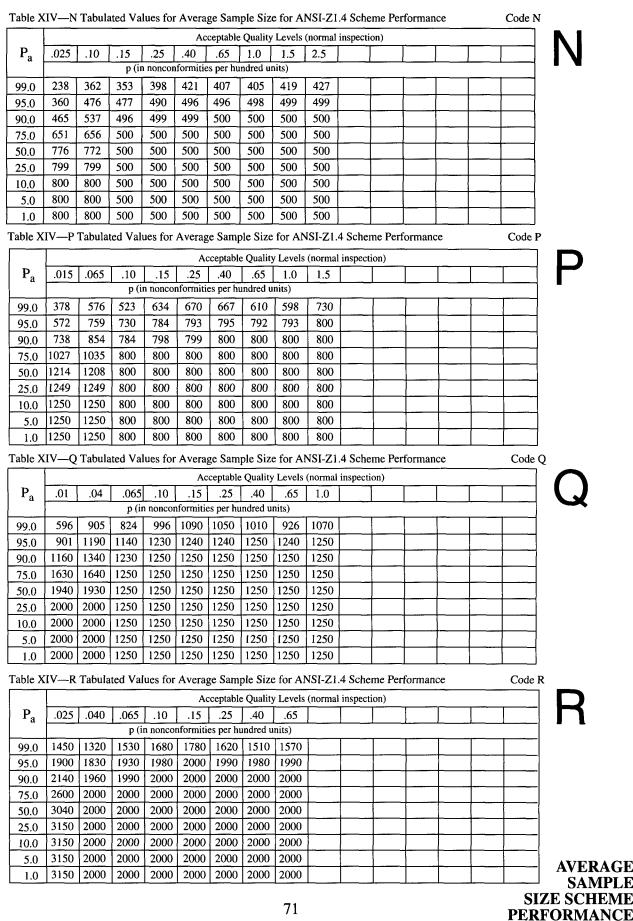
PERFORMANCE

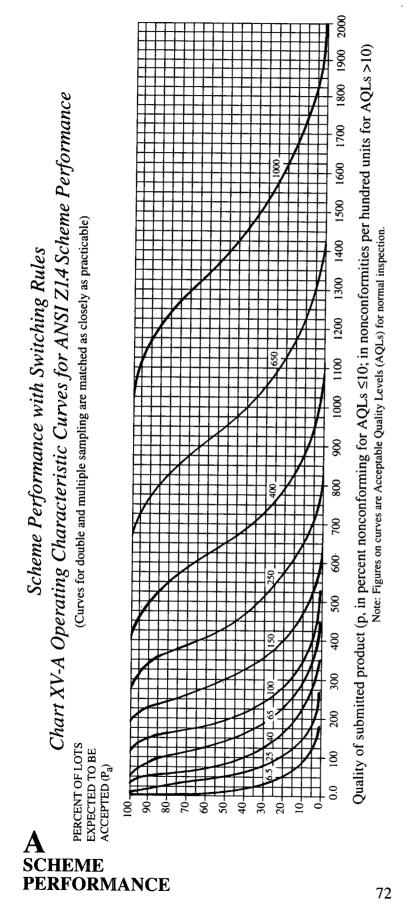
Code F

					Ac	ceptable	Quality	Levels	(normal	inspecti	on)				
P _a	.4	1.5	2.5	4.0	6.5	10	.4	1.5	2.5	4.0	6.5	10	15	25	40
		p (in j	percent i	nonconfe	orming)				p (in no	nconfor	mities p	er hundr	ed units)	
99.0	15.5	25.1	21.4	25.0	28.1	28.6	15.5	24.9	21.3	24.6	27.1	27.0	26.8	24.4	26.3
95.0	23.1	31.7	29.5	31.2	31.9	32.0	23.1	31.7	29.4	31.0	31.7	31.8	31.9	31.8	31.9
90.0	29.7	34.6	31.4	31.9	32.0	32.0	29.7	34.6	31.4	31.8	32.0	32.0	32.0	32.0	32.0
75.0	41.1	41.4	32.0	32.0	32.0	32.0	41.1	41.4	32.0	32.0	32.0	32.0	32.0	32.0	32.0
50.0	48.6	48.3	32.0	32.0	32.0	32.0	48.6	48.3	32.0	32.0	32.0	32.0	32.0	32.0	32.0
25.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
10.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
5.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
1.0	50.0	50.0	32.0	32.0	32.0	32.0	50.0	50.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0

Table XIV—H Tabulated Values for Average Sample Size for ANSI-Z1.4 Scher	me Performance
Table AIV—II Tabulated Values for Average Sample Size for AivSI-21.4 Sene	ne i chomanee

Code H Acceptable Quality Levels (normal inspection) P_a .25 1.0 1.5 2.5 4.0 2.5 4.0 10 15 25 6.5 10 .25 1.0 1.5 6.5 p (in percent nonconforming) p (in nonconformities per hundred units) 40.3 36.2 35.3 40.5 41.9 99.0 23.8 36.3 35.6 43.1 42.4 43.4 23.8 39.8 42.1 40.8 42.7 95.0 36.0 47.7 47.8 49.2 49.7 49.8 50.0 36.0 47.6 47.7 49.0 49.6 49.6 49.8 49.9 50.0 90.0 46.5 53.7 49.6 49.9 50.0 50.0 50.0 46.5 53.7 49.6 49.9 49.9 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 65.6 50.0 50.0 50.0 50.0 50.0 50.0 50.0 65.1 65.6 65.1 75.0 77.6 77.1 50.0 50.0 50.0 50.0 50.0 77.6 77.2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 79.9 79.9 50.0 50.0 50.0 50.0 50.0 79.9 79.9 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 50.0 10.0 80.0 80.0 50.0 50.0 50.0 50.0 50.0 80.0 80.0 50.0 50.0 50.0 50.0 50.0 50.0 5.0 80.0 80.0 50.0 50.0 50.0 50.0 50.0 80.0 80.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 AVERAGE 80.0 80.0 50.0 50.0 50.0 80.0 80.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 1.0


* p (in percent nonconforming)


Table	• XIV—J	Tabula	ted Valu	les for .	Averas	ge Samp	le Size	for AN	VSI-Z1.	4 Scher	ne Perf	forman	ce				C
									y Levels								
Pa	.15	.65	1.0	1.5	2.5	4.0	6.5	10	.15	.65	1.0	1.5	2.5	4.0	6.5	10	1:
			p (in pe	ercent no	onconfo	rming)					p (in n	onconfo	rmities	per hund	red units	s)	4
99.0	38.3	58.0	52.9	64.2	68.3	68.7	64.2	64.7	38.3	57.9	52.8	63.7	67.3	67.1	61.7	60.5	73
95.0	57.5	76.2	73.4	78.6	79.5	79.7	79.6	79.8	57.5	76.1	73.2	78.5	79.3	79.6	79.3	79.3	80
90.0	74.0	85.5	78.5	79.8	79.9	80.0	80.0	80.0	74.0	85.4	78.4	79.8	79.9	80.0	80.0	80.0	80
75.0		103	80.0	80.0	80.0	80.0	80.0	80.0		103	80.0	80.0	80.0	80.0	80.0	80.0	80
50.0		121	80.0	80.0	80.0	80.0	80.0	80.0		121	80.0	80.0	80.0	80.0	80.0	80.0	80
25.0		125	80.0	80.0	80.0	80.0	80.0	80.0		125	80.0	80.0	80.0	80.0	80.0	80.0	80
10.0		125	80.0	80.0	80.0	80.0	80.0	80.0		125	80.0	80.0	80.0	80.0	80.0	80.0	8
5.0		125	80.0	80.0	80.0	80.0	80.0	80.0		125	80.0	80.0	80.0	80.0	80.0	80.0	8
1.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	125	125	80.0	80.0	80.0	80.0	80.0	80.0	8
		Table X	KIV—K	Tabula	ated Va	alues for	r Avera	ge San	nple Siz	e for A	NSI-Z	1.4 Sch	eme Pe	rforma	nce		С
							A	cceptab	le Qualit	y Levels	s (norma	al inspec	tion)				
		P _a	.10	.40	.65	1.0	1.5	2.5	4.0	6.5	10					1	Τ
					p (in n	onconfo	rmities p	er hund	lred units	s)							
		99.0	59.6	90.5	82.4	4 99.6	109	105	101	92.6	107						
		95.0	90.1	119	114	123	124	124	124	124	125						
		90.0	116	134	123	125	125	125	125	125	125						
		75.0	163	164	125	125	125	125	125	125	125						
		50.0	194	193	125	125	125	125	125	125	125						
		25.0	200	200	125	125	125	125	125	125	125						
		10.0	200	200	125	125	125	125	125	125	125	_					
		5.0	200	200	125	125	125	125	125	125	125						
		1.0	200	200	125	125	125	125	125	125	125						
		Table 2	KIV—L	Tabula	ted Va	alues for	Avera	ge Sam	ple Siz	e for Al	NSI-ZI	.4 Sch	eme Pe	rformai	nce		С
							A	cceptabl	e Quality	y Levels	(norma	l inspec	tion)		-49 -		
		P _a	.065	.25	.40	.65	1.0	1.5	2.5	4.0	6.5				Τ		
					p (in nonco	nformiti	es per h	undred u	nits)			-	1		<u>. </u>	L,
		99.0	95.6	145	132	153	168	178	162	151	157						
		95.0	144	190	183	193	198	200	199	198	199						
		90.0	185	214	196	199	200	200	200	200	200		-				
		75.0	258	260	200	200	200	200	200	200	200						
		50.0	306	304	200	200	200	200	200	200	200						
		25.0	315	315	200	200	200	200	200	200	200						
		10.0	315	315	200	200	200	200	200	200	200						
		5.0	315	315	200	200	200	200	200	200	200						
		1.0	315	315	200	200	200	200	200	200	200						
		Table 3	KIV—M	l Tabula	ated V	alues fo	r Avera	ige San	nple Siz	e for A	NSI-Z	1.4 Sch	eme Pe	rforma	nce		С
		<u> </u>							le Qualit								
		P _a	.04	.15	.25	.40	.65	1.0	1.5	2.5	4.0			T	1	Τ	
					p (in n	onconfor	mities p	er hund	red units)				-			
		99.0	149	244	207	240	264	263	268	242	263						
		95.0	226	312	288	304	312	313	314	313	315						
		90.0	292	342	309	313	315	315	315	315	315						
		75.0	408	411	315	315	315	315	315	315	315						
		50.0	485	483	315	315	315	315	315	315	315						
		1 05 0	500	400	215	215	215	215	215	215	215	1		1	1	-	۰ T

AVERAGE SAMPLE SIZE **SCHEME** PERFORMANCE 25.0

10.0 5.0

1.0

JES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE
Z1.4
ANSI
FOR
RVES
ISTIC CURVES FOR ANSI
CTERISTI
CHARAC
NG CI
ES FOR OPERATING CI
COPE
S FOR
Ľ
-TABULATED VA
ILATE
TABU
/-/X
TABLE XV-A-1-
F

Acceptable Quality Levels (normal inspection)	400 650 1000	p (in nonconformities per hundred units)	374 628 977	734 1	783	855	948	1090			1140 1530 2090
ty Levels	250	conformi	239	302	333	380	443	540	650	722	871
ble Quali	150	p (in none	145	192	214	248	294	372	464	526	655
Accepta	100		89.1	123	138	162	195	256	334	388	502
	65		41.2	66.1	79.9	103	138	196	266	315	420
	40		21.8	38.7	47.9	63.7	88.5	135	194	237	332
	25		7.43	17.5	24.6	38.0	57.8	89.9	130	158	221
	6.5		0.502	2.53	4.96	11.4	23.8	46.3	76.7	99.8	154
	6.5	p (in percent nonconforming)	0.501	2.50	4.84	10.8	21.2	37.0	53.6	63.2	78.4
	\mathbf{P}_{a}		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-B Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

Curves for double and multiple sampling are matched as closely as practicable)

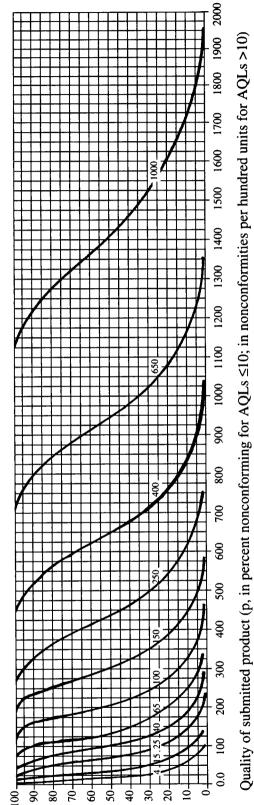
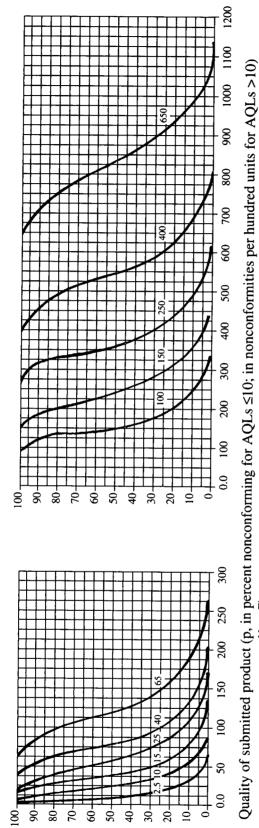


TABLE XV-B-1--TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.


	1000		1010	1150	1200	1290	1400	1540	1680	1770	1950
			637 10	742 11	785 12	850 12	931 14	1050 15	1170 16	1240 17	1390 19
	650	its)									
spection	400	idred uni	401	489	522	570	632	725	825	890	1020
normal in	250	er hun	244	304	332	373	428	507	593	648	761
Levels (1	150	onformitie	154	201	222	253	295	360	433	481	581
Acceptable Quality Levels (normal inspection)	100	p (in nonconformities per hundred units)	92.5	128	143	165	196	248	309	350	437
Acceptab	65	d	60.2	81.9	92.2	108	130	171	223	258	335
	40		31.4	44.4	53.3	68.8	92.0	131	177	210	280
	25		16.2	25.8	31.9	42.4	59.0	89.9	130	158	221
	15		5.46	11.6	15.9	23.8	35.1	53.9	77.8	94.9	133
	4.0		0.468	1.98	3.46	7.19	14.4	27.8	46.0	59.9	92.2
	4.0	p (in percent nonconforming)	0.467	1.96	3.40	6.94	13.4	24.2	36.9	45.1	60.2
	\mathbf{P}_{a}		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

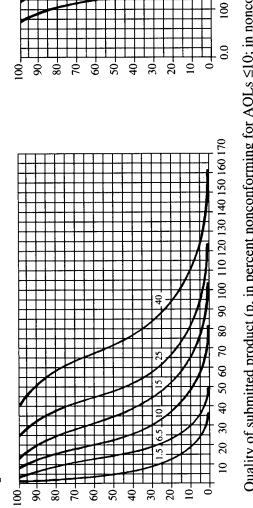
PERCENT OF LOTS C **SCHEME** PERFORMANCE

Chart XV-C Operating Characteristic Curves for ANSI ZI:4 Scheme Performance Scheme Performance with Switching Rules

(Curves for double and multiple sampling are matched as closely as practicable)

EXPECTED TO BE ACCEPTED (P_a)

E PERFORMANCE
5 FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE
ANSI ZI
RVES FOR A
CTERISTIC CUR
ACTERI
G CHARA
ERATING C
FOR OP
ALUES
TABULATED V
- TABUI
XV-C-1–
TABLE XV-C-


Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

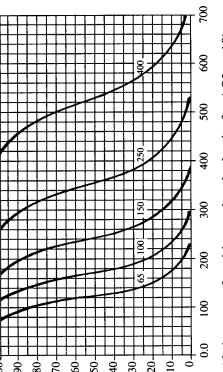

		T		Т		1	T	T	Т		Γ
	650		640	689	722	774	818	924	1010	1060	1170
	400		399	445	471	510	559	627	669	745	835
	250	inits)	256	294	313	342	379	435	495	534	612
pection)	150	hundred u	154	183	661	224	257	304	356	389	457
ormal ins	100	mities per	100	121	133	152	177	216	260	289	348
Acceptable Quality Levels (normal inspection)	65	p (in nonconformities per hundred units)	61.3	76.9	85.7	. 99.0	117	149	185	210	262
ole Quality	40	p (in 1	37.7	49.2	55.3	64.7	77.8	102	134	155	201
Acceptal	25		18.4	26.6	32.0	41.3	55.2	78.5	106	126	168
	15		10.8	15.7	19.2	25.5	35.4	53.9	77.8	94.9	133
	10		3.83	7.29	9.79	14.6	21.8	33.07	48.6	59.3	83.0
	2.5		0.416	1.43	2.29	4.46	8.98	17.3	28.8	37.4	57.6
	10	ercent orming)	4.16	7.73	10.2	14.7	20.9	30.3	40.6	47.1	58.9
	2.5	p (in percent nonconforming)	0.416	1.42	2.26	4.36	8.58	15.9	25.0	31.2	43.7
	P_{a}		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-D Operating Characteristic Curves for ANSI Z1.4 Scheme Performance Scheme Performance with Switching Rules

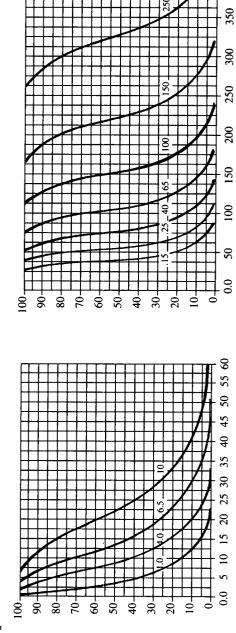
PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

	400		403	431	451	484	524	577	631	665	732
	250		252	278	294	319	349	392	437	465	522
	150		160	184	196	214	237	272	309	334	387
	100	red units)	99.7	114	124	140	161	190	222	243	785
ection)	65	p (in nonconformities per hundred units)	64.1	75.7	83.2	95.0	Ξ	135	162	180	218
Acceptable Quality Levels (normal inspection)	40	onformitie	38.3	48.0	53.5	61.9	73.4	92.9	116	131	164
Levels (n	25	(in nonce	23.7	30.8	34.6	40.4	48.6	64.0	83.5	96.9	901
le Quality	15	4	11.6	16.6	20.0	25.8	34.5	49.0	66.5	78.7	105
Acceptab	10		7.20	10.1	12.1	15.9	22.1	33.7	48.6	59.3	020
	6.5		2.43	4.57	6.10	9.07	13.5	20.7	29.9	36.5	511
	1.5		0.273	0.915	1.44	2.77	5.53	10.7	17.7	23.0	35 E
	01		7.86	10.7	12.7	16.2	21.3	30.3	40.6	47.1	20.0
	6.5	p (in percent nonconforming)	2.55	4.73	6.26	9.10	13.1	19.4	26.8	31.6	11.2
	1.5		0.272	0.911	1.43	2.73	5.38	10.1	16.2	20.6	0.00
	Pa	.	0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	0

TABLE XV-D-1--TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

SCHEME PERFORMANCE


E SCHEME PERFORMANCE

Scheme Performance with Switching Rules

Chart XV-E Operating Characteristic Curves for ANSI ZI:4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable)

EXPECTED TO BE ACCEPTED (P_a)

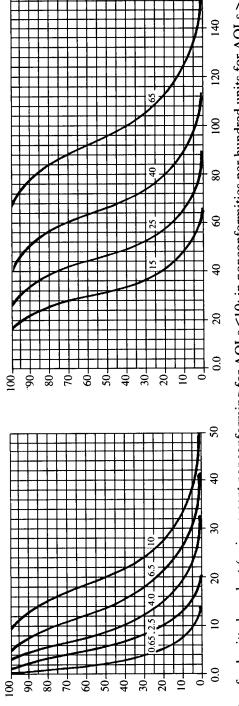
PERCENT OF LOTS

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

500

450

400


ES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE	
E UE	
TABLE XV-E-1—TABULATED VAI	

		1	Γ	<u> </u>			1		<u> </u>		<u>ر ا</u>
	250		248	265	278	298	322	355	388	409	450
	150		153	171	181	196	215	241	269	286	321
	001		100	113	120	132	146	167	190	205	235
	65		62.2	70.6	76.5	86.2	98.8	117	137	150	176
	40	red units)	39.3	46.6	51.2	58.4	68.1	83.1	100	111	134
section)	25	s per hund	23.7	29.6	32.9	38.1	45.2	57.2	71.3	80.9	101
Acceptable Quality Levels (normal inspection)	15	p (in nonconformities per hundred units)	14.4	18.9	21.3	24.9	29.9	39.4	51.4	59.6	77.3
Levels (n	10) (in nonco	7.13	10.2	12.3	-15.9	21.2	30.2	40.9	48.4	64.7
ole Quality	6.5	1	4.41	6.19	7.42	9.80	13.6	20.7	29.9	36.5	51.1
Acceptat	4.0		1.48	2.82	3.80	5.76	8.70	13.5	19.4	23.7	33.2
	1.0		0.165	0.560	0.893	1.75	3.58	6.94	11.5	15.0	23.1
	10		7.62	10.9	12.9	16.2	20.7	28.0	36.0	41.0	50.6
	6.5	(4.64	6.42	7.64	9.88	13.3	19.4	26.8	31.6	41.3
	4.0	p (in percent nonconforming)	1.53	2.88	3.86	5.77	8.55	12.9	18.1	21.6	28.9
	1.0		0.165	0.558	0.889	1.74	3.51	6.70	10.9	13.9	20.6
	\mathbf{P}_{a}		0.66	95.0	90.06	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-F Operating Characteristic Curves for ANSI ZI.4 Scheme Performance Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

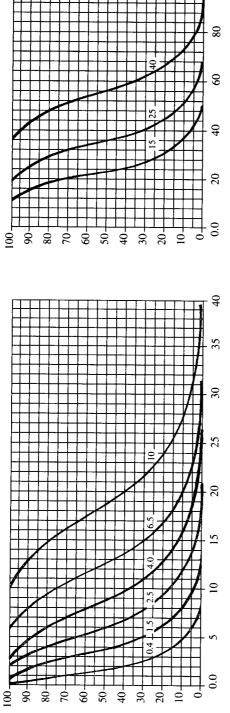
(Curves for double and multiple sampling are matched as closely as practicable)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

160

A comparison in the protection in the protectin the protection in the protection in the protection in																
65 2.5 4.0 6.5 10 6.5 10 6.5 10 15 25 40 p(in percent nonconformines 10.1 6.5 1.0 15.0 25.0 39.5 40 0.104 .978 2.94 4.93 10.1 0.104 .958 2.84 4.72 9.41 15.0 25.0 39.5 45.7 0.0571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 1.11 3.66 6.49 10.3 16.2 24.8 38.0 56.0 72.4 33.3 49.7							Acceptab	le Quality	. Levels (n	ormal insp	ection)					
p (in percent nonconformities) p (in percent nonconformities) 0.104 .978 2.94 4.93 10.1 0.104 .958 2.84 4.72 9.41 15.0 25.0 39.5 39.5 0.104 .978 2.94 4.93 10.1 0.104 .958 2.84 4.72 9.41 15.0 25.0 39.5 39.5 39.5 0.571 2.47 4.91 6.94 13.0 0.358 1.82 4.82 8.00 13.8 21.4 33.3 49.7 56.0 0.571 2.47 4.91 13.6 19.2 2.45 5.46 8.85 13.8 21.4 33.3 49.7 56.0 1.11 3.66 6.40 10.4 16.5 1.11 3.66 53.6 53.3 21.4 33.3 49.7 56.0 2.12 5.40 18.8 13.5 19.6 25.6 37.2 54.0 76.1 76.1 76.1 76.	\mathbf{P}_{a}	.65	2.5	4.0	6.5	10	.65	2.5	4.0	6.5	10	15	25	40	65	
0.104 .978 2.94 4.93 10.1 0.104 .978 2.94 4.93 10.1 0.104 .978 2.94 15.0 25.0 39.5				p (in percent onconformin,						o (in nonce	onformitie	s per hunc	Ired units)			
0.357 1.85 4.11 6.94 13.0 0.358 1.82 4.02 6.69 12.3 19.2 30.2 45.7 0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 1.11 3.66 6.40 10.4 16.5 1.11 3.66 6.37 10.3 16.2 24.8 38.0 56.0 2.22 5.40 8.71 13.6 19.2 24.3 8.85 13.8 19.5 24.3 64.2 16.1 16.0 25.6 37.2 54.0 76.1 1 <td>0.06</td> <td>0.104</td> <td>.978</td> <td>2.94</td> <td>4.93</td> <td>10.1</td> <td>0.104</td> <td>.958</td> <td>2.84</td> <td>4.72</td> <td>9.41</td> <td>15.0</td> <td>25.0</td> <td>39.5</td> <td>64.9</td> <td></td>	0.06	0.104	.978	2.94	4.93	10.1	0.104	.958	2.84	4.72	9.41	15.0	25.0	39.5	64.9	
0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 1.11 3.66 6.40 10.4 16.5 1.11 3.66 6.37 10.3 16.2 24.8 38.0 56.0	95.0	0.357		4.11	6.94	13.0	0.358		4.02	6.69	12.3	19.2	30.2	45.7	73.4	
1.11 3.66 6.40 10.4 16.5 1.11 3.66 6.37 10.3 16.2 24.8 38.0 56.0 2.22 5.40 8.71 13.6 19.2 2.24 5.46 8.85 13.8 19.5 29.4 44.3 64.2 1 4.24 8.21 12.9 18.7 24.3 4.34 8.43 13.5 19.6 25.6 37.2 54.0 76.1 1 6.94 11.6 18.1 24.3 4.34 8.43 13.5 19.6 25.6 37.2 54.0 76.1 1 6.94 11.6 18.1 24.5 30.4 71.9 12.2 19.4 26.6 33.4 46.4 65.0 76.1 1 8.94 14.0 21.6 28.3 31.5 31.5 38.8 52.6 72.2 97.2 1 1 1 1 14 1 14.8 23.7 31.5 38.8 52.6 <td< td=""><td>90.06</td><td>0.571</td><td>2.47</td><td>4.91</td><td>8.24</td><td>14.4</td><td>0.572</td><td>2.45</td><td>4.82</td><td>8.00</td><td>13.8</td><td>21.4</td><td>33.3</td><td>49.7</td><td>78.3</td><td></td></td<>	90.06	0.571	2.47	4.91	8.24	14.4	0.572	2.45	4.82	8.00	13.8	21.4	33.3	49.7	78.3	
2.22 5.40 8.71 13.6 19.2 2.24 5.46 8.85 13.8 19.5 29.4 44.3 64.2 64.2 4.24 8.21 12.9 18.7 24.3 4.34 8.43 13.5 19.6 25.6 37.2 54.0 76.1 1 6.94 11.6 18.1 24.5 30.4 7.19 12.2 19.4 26.6 37.2 54.0 76.1 1 6.94 11.6 18.1 24.5 30.4 7.19 12.2 19.4 26.6 33.4 46.4 65.0 88.9 1 1 8.94 14.0 21.6 28.3 34.4 9.36 14.8 23.7 31.5 38.8 52.6 72.2 97.2 1 1 13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.7 87.1 114 14 1	75.0	1.11	3.66	6.40	10.4	16.5	1.11	3.66	6.37	10.3	16.2	24.8	38.0	56.0	85.5	-
4.24 8.21 12.9 18.7 24.3 4.34 8.43 13.5 19.6 25.6 37.2 54.0 76.1 6.94 11.6 18.1 24.5 30.4 7.19 12.2 19.4 26.6 33.4 46.4 65.0 88.9 8.94 14.0 21.6 28.3 34.4 9.36 14.8 23.7 31.5 38.8 52.6 72.2 97.2 13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.5 87.1 114	50.0	2.22	5.40	8.71	13.6	19.2	2.24	5.46	8.85	13.8	19.5	29.4	44.3	64.2	94.8	
6.94 11.6 18.1 24.5 30.4 7.19 12.2 19.4 26.6 33.4 46.4 65.0 88.9 8.94 14.0 21.6 28.3 34.4 9.36 14.8 23.7 31.5 38.8 52.6 72.2 97.2 13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.5 87.1 114	25.0	4.24	8.21	12.9	18.7	24.3	4.34	8.43	13.5	19.6	25.6	37.2	54.0	76.1	109	
8.94 14.0 21.6 28.3 34.4 9.36 14.8 23.7 31.5 38.8 52.6 72.2 97.2 13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.5 87.1 114	10.0	6.94	11.6	18.1	24.5	30.4	7.19	12.2	19.4	26.6	33.4	46.4	65.0	88.9	124	
13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.5 87.1 114	5.0	8.94	14.0	21.6	28.3	34.4	9.36	14.8	23.7	31.5	38.8	52.6	72.2	97.2	133	
	1.0	13.4	19.0	28.9	35.8	42.1	14.4	20.7	33.2	42.0	50.2	65.5	87.1	114	153	

-TARUI ATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE TABLE XV-F-1-


F scheme performance

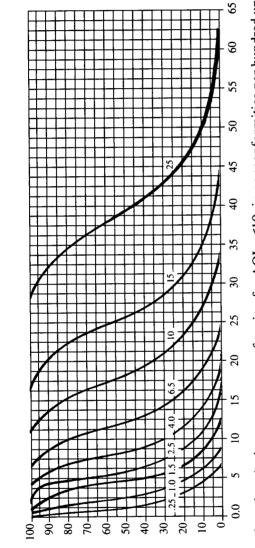
PERCENT OF LOTS G SCHEME PERFORMANCE

Scheme Performance with Switching Rules

Chart XV-G Operating Characteristic Curves for ANSI Z1.4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable)

EXPECTED TO BE ACCEPTED (P_a)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection)

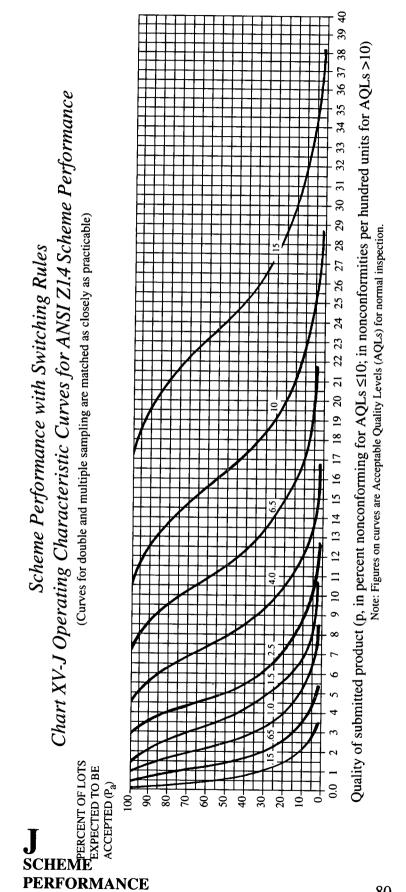

100

ES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE
1.4
212
Ž
R /
FO
/ES
JRV
IJ
IIC
TERISTIC
TEF
A C
AR,
CH
ğ
NI
RA
)PE
LUES FOR OPERATING CHARAC
Ю
ES
L U
٨
ËD
TA,
3UI
TAF
<u> </u>
Ŀ Ŀ
XV-
Ē
ABI
Τ

		-	<u> </u>	—		T	—			
40		40.3	45.9	48.9	53.4	59.2	67.9	77.4	83.4	95.6
25		24.6	28.6	31.1	35.0	40.1	47.6	55.6	60.8	71.4
15	mits)	15.5	18.9	20.8	23.7	27.7	33.8	40.6	45.1	54.4
10	hundred u	9.49	12.0	13.4	15.5	18.3	23.2	29.0	32.9	41.0
6.5	mities per	5.88	7.69	8.64	10.1	12.2	16.0	20.9	24.2	31.4
4.0	nonconfor	2.95	4.18	5.00	6.45	8.63	12.3	16.6	19.7	26.3
2.5	p (in 1	1.77	2.51	3.01	3.98	5.53	8.43	12.2	14.8	20.7
1.5		.564	1.11	1.52	2.32	3.48	5.39	7.78	9.49	13.3
4		0.0643	0.223	0.358	0.706	1.43	2.78	4.60	5.99	9.22
10		10.0	12.6	13.9	15.7	18.2	22.3	27.1	30.1	36.0
6.5		6.12	7.96	8.87	10.2	12.1	15.5	19.7	22.5	28.1
4.0	rrcent rrning)	3.02	4.28	5.09	6.49	8.54	11.9	15.8	18.4	23.8
2.5	p (in pe nonconfo	1.80	2.54	3.05	3.99	5.48	8.21	11.6	14.0	19.0
1.5		0.571	1.12	1.53	2.32	3.46	5.30	7.56	9.14	12.5
4		0.0643	0.223	0.357	0.703	1.42	2.74	4.50	5.81	8.80
Pa		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0
	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 p (in percent nonconforming) p (in nonconformities per hundred units) p (in nonconformities per hundred units)	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 nonconforming) nonconforming) nonconformities per hundred units) p (in nonconformities per hundred units) 24.6	.4 1.5 2.5 4.0 6.5 10 15 25 4.0 6.5 10 15 25 p (in percent nonconforming) p (in percent nonconforming) p (in nonconformities per hundred units) p (in nonconformities per hundred units) 24.6 0.0643 0.571 1.80 3.02 6.12 10.0 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6 0.223 1.12 2.54 4.28 7.96 12.6 0.223 1.11 2.51 4.18 7.69 15.0 18.9 28.6	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 p (in percent nonconforming) 0.0643 0.571 1.80 3.02 6.12 10.0 0.0643 5.54 1.77 2.95 5.88 9.49 15.5 24.6 0.0233 1.12 2.54 4.28 7.96 12.6 0.223 1.11 2.51 4.18 7.69 15.5 28.6 0.357 1.53 3.05 5.09 8.87 13.9 0.358 1.52 3.01 5.00 8.64 13.4 20.8 31.1	.4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 25 P (in percent nonconforming) 0.0643 0.571 1.80 3.02 6.12 10.0 0.0643 .564 1.77 2.95 5.88 9.49 15.5 24.6 0.0223 1.12 2.54 4.28 7.96 12.6 0.223 1.11 2.51 4.18 7.69 15.0 18.9 28.6 0.357 1.53 3.05 5.09 8.87 13.9 0.358 1.52 3.01 5.00 18.9 28.6 31.1 0.703 2.32 3.99 6.49 10.2 1.57 0.706 2.32 3.98 6.45 10.1 15.5 23.7 35.0				4 1.5 2.5 4.0 6.5 10 .4 1.5 2.5 4.0 6.5 10 15 25 25 p (in percent nonconforming) 0.0643 0.571 1.80 3.02 6.12 10.0 0.0643 564 1.77 2.95 5.88 9.49 15.5 24.6 0.0233 1.12 2.54 4.28 7.96 12.0 0.894 15.5 24.6 31.1 0.357 1.53 3.05 5.09 8.87 13.9 0.358 1.52 3.01 5.00 8.64 13.4 20.8 31.1 0.703 2.32 3.99 6.49 10.2 18.2 0.706 2.32 3.98 6.45 10.1 15.5 28.6 31.1 1.42 3.46 15.2 3.48 5.53 8.64 13.4 20.8 31.1 1.42 3.46 15.2 3.48 5.53 8.64

Chart XV-H Operating Characteristic Curves for ANSI Z1.4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

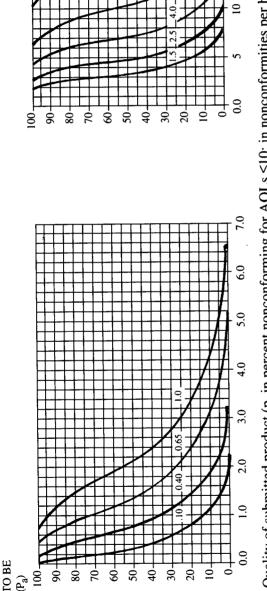


Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

					···· ,	,			···· •		
	25		25.6	29.4	31.3	34.2	37.9	43.5	49.5	53.4	61.2
	15		15.4	18.3	19.9	22.4	25.7	30.4	35.6	38.9	45.7
	10		10.0	12.1	13.3	15.2	17.7	21.6	26.0	28.9	34.8
	6.5	Ired units)	6.14	7.69	8.57	9.90	11.7	14.9	18.5	21.0	26.2
	4.0	s per hunc	3.77	4.92	5.53	6.47	7.78	10.2	13.4	15.5	20.1
(uc	2.5	onformitie	1.84	2.66	3.20	4.13	5.52	7.85	10.6	12.6	16.8
Acceptable Quality Levels (normal inspection)	1.5	p (in nonconformities per hundred units)	1.08	1.57	1.92	2.55	3.54	5.39	7.78	9.49	13.3
	1.0		0.383	0.729	0.979	1.46	2.18	3.37	4.86	5.93	8.30
uality Leve	.25		0.0416	0.143	0.229	0.446	0.898	1.73	2.88	3.74	5.76
eptable U	10		10.4	12.6	13.7	15.4	17.6	21.0	24.7	27.0	31.6
Acc	6.5		6.33	7.92	8.76	10.0	11.7	14.5	17.8	19.9	24.1
	4.0		3.86	5.03	5.62	6.52	7.74	10.0	12.9	14.8	18.7
	2.5	p (in percent nonconforming)	1.87	2.70	3.23	4.15	5.49	7.70	10.3	12.1	15.8
	1.5		1.09	1.59	1.93	2.55	3.52	5.30	7.56	9.14	12.5
	1.0		0.386	0.733	0.983	1.46	2.17	3.34	4.77	5.79	8.01
	.25		0.0416	0.143	0.229	0.445	0.893	1.72	2.84	3.68	5.59
	\mathbf{P}_{a}		0.66	95.0	90.06	75.0	50.0	25.0	10.0	5.0	1.0

TABLE XV-H-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

H scheme performance



UES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCF
IZ IS
ANS
[?] OR
ES F
CURV
IC C
UST
TER
RAC
PERATING CHARA(
UC
LATI
)PER
OR C
ES F
Э.
D V⊿
ATE
BUL,
<
<u>-</u> <u>-</u> <u>-</u>
XV-
TABLE XV-J-1T
TAI

	· · · · ·			_		-,				_
15	;	15.0	18.4	1.01	0.61	21.4	23.7	27.2	9.05 1 25	38.2
01	2	0 87	10.2		14.0	14.0	1.0	0.61	2.22	28.5
6.5	nits)	635	7.56	0 22	0.50	00.6	11.1	C.61	18.0	21.8
4.0	undred un	3.80	4 80	5 35	01.9	61.0	4C./	67.6	13.1	16.4
2.5	ities per h	2.35	3.08	346	201		4.00	0.40	0.60	12.6
1.5	nconform	1.15	1.66	00 0	2.58	2 45		0C't	C0.0	10.5
1.0	p (in no	0.710	1.00	1 20	1 59	100	3 37	4.86	5.93	8.30
.65		0.239	0.457	0.615	0.928	1 30	2 16	11 6	3.79	5.31
.15		0.0260	0.0897	0.144	0.282	0 573		1 84	2.40	3.69
10		10.2	11.8	12.7	14.2	16.0	18.6	21.4	23.2	+ - 1
6.5		6.49	7.74	8.48	9.58	0,11	13.3	15.7	17.3	20.5
4.0	ng)	3.88	4.89	5.43	6.23	7.31	9.15	11.3	12.7	15.6
2.5	conformi	2.39	3.12	3.49	4.06	4.85	6.32	8.16	9.41	12.0
1.5	ercent nor	1.16	1.68	2.01	2.59	3.44	4.85	6.52	7.66	10.1
1.0	p (in p	0.715	1.01	1.21	1.59	2.20	3.34	4.77	5.79	8.01
.65		0.240	0.458	0.617	0.928	1.39	2.14	3.08	3.74	5.19
.15		0.0260	0.0896	0.144	0.282	0.571	1.10	1.83	2.37	3.62
\mathbf{P}_{a}		0.06	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0
	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 2.5 4.0 6.5 10	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 p (in percent nonconforming) p (in percent nonconforming) .65 10 .15 .65	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 1.0 1.5 2.5 4.0 6.5 10 p (in percent nonconforming) .10 0.240 0.715 1.16 2.39 3.88 6.49 10.2 0.0260 0.239 0.710 1.15 7.35 3.80 6.35 0.87	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 1.0 1.5 2.5 4.0 6.5 10 .16 2.39 3.88 6.49 10.2 0.0260 0.239 0.710 1.15 2.35 3.80 6.35 9.87 0.0896 0.458 1.01 1.68 3.12 4.89 7.74 11.8 0.0897 0.457 1.00 1.66 3.08 4.80 7.56 11.4	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 1.0 1.5 2.5 4.0 6.5 10 P (in nonconformities per hundred units) 0.0260 0.240 0.715 1.16 2.39 3.88 6.49 10.2 0.0260 0.239 0.710 1.15 2.35 3.80 6.35 9.87 0.0896 0.458 1.01 1.68 3.12 4.89 7.74 11.8 0.0897 0.457 1.00 1.66 3.08 6.35 9.87 0.144 0.617 1.21 2.01 3.49 5.43 8.48 12.7 0.144 0.615 1.70 7.00 3.46 5.35 6.37 0.34	.15 .65 1.0 1.5 2.5 4.0 6.5 10 .15 .65 1.0 1.5 2.5 4.0 6.5 10 P (in percent nonconforming) p (in nonconformities per hundred units) p (in nonconformities per hundred units) p (in nonconformities per hundred units) 0.0260 0.240 0.715 1.16 2.39 3.88 6.49 10.2 0.0260 0.239 0.710 1.15 2.35 3.80 6.35 9.87 0.0896 0.458 1.01 1.68 3.12 4.89 7.74 11.8 0.0897 0.457 1.00 1.66 3.08 4.80 7.56 11.4 0.144 0.617 1.21 2.01 3.49 5.43 8.48 12.7 0.144 0.615 1.20 2.00 3.46 5.35 8.32 12.4 0.282 0.928 1.59 2.59 4.06 6.23 9.58 14.2 0.282 0.978 1.59 5.68 11.4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Chart XV-K Operating Characteristic Curves for ANSI ZI:4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

52

20

15

H
ž
M
OR
ERF
PE
E
Ē
E
21.4 S
ZI.
SI
AN
Ř
F
JES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE
R
S
IC
IST
ER
5
RA
IAI
Ū
Z
ATI
PER/
IdO
R.
FO
JES
TL
۸
ED
Ă
Б
TABUL
Γ
÷
XV-K
X
3LE
TAI
•

Acceptable Quality Levels (normal inspection)	65 1.0 1.5 2.5 4.0 6.5 10	p (in percent nonconforming or nonconformities per hundred units)	455 0.738 1.49 2.43 4.01 6.34 10.3	643 1.06 1.97 3.07 4.84 7.32 11.7	771 1.28 2.21 3.43 5.33 7.96 12.5	02 1.65 2.59 3.96 6.08 8.96 13.7	42 2.21 3.11 4.70 7.08 10.3 15.2 15.2	16 3.14 4.10 5.94 8.65 12.2 17.4	11 4.26 5.34 7.42 10.4 14.2 19.8	79 5.04 6.20 8.41 11.5 15.6 21.4	6 73 8 04 10 5
Acceptable Quali	2.5	p (in percent nonconformin	2.43	3.07	3.43	3.96	4.70	5.94	7.42	8.41	8.04 10.5 13.9
	.65 1.0	-	0.455 0.738	0.643 1.06	0.771 1.28	1.02 1.65	1.42 2.21	2.16 3.14	3.11 4.26	3.79 5.04	531 673
	.10 .40		0.0167 0.153	0.0573 0.292	0.0916 0.392	0.178 0.586		0.694 1.35	1.15 1.94	1.50 2.37	7 21 2 27
	Pa		0 0.66	95.0 0	0.06	75.0 0		25.0 0	10.0	5.0 1	0

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a) ACCEPTED (P_a) ACCEPTED (P_a)

(Curves for double and multiple sampling are matched as closely as practicable)

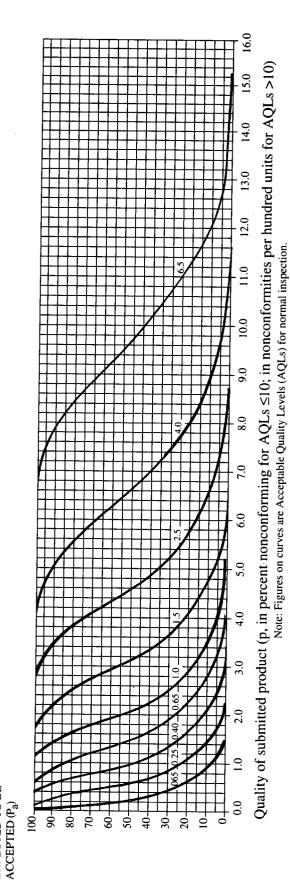
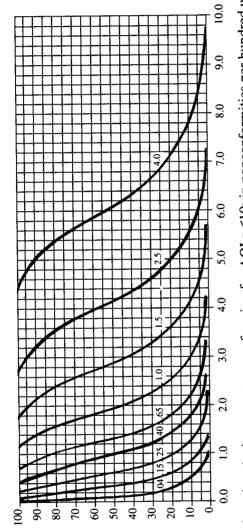



TABLE XV-L-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Acceptable Quality Levels (normal inspection)	6.5		6.49	7.34	7.83	8 55	9.48	10.9	12.4	13.3	15.3
, Levels (n	4.0	ed units)	3.95	4.57	4.97	5.60	6.42	7.61	8.89	9.72	11.4
ole Quality	2.5	per hundre	2.50	3.02	3.33	3.80	4.43	5.40	6.50	7.22	8.71
Acceptab	1.5	formities]	1.50	1.92	2.14	2.48	2.94	3.72	4.64	5.26	6.55
	1.0	or noncon	0.941	1.23	1.38	1.62	1.95	2.56	3.34	3.88	5.02
	.65	onforming or nonconformities per hundred units)	0.472	0.669	0.800	1.03	1.38	1.96	2.66	3.15	4.20
	.40	p (in percent nonco	0.284	0.402	0.482	0.637	0.885	1.35	1.94	2.37	3.32
	.25	p (in per	0.0957	0.183	0.246	0.369	0.554	0.856	1.23	1.51	2.11
	.065		0.0104	0.0358	0.0574	0.112	0.228	0.441	0.731	0.951	1.46
	\mathbf{P}_{a}		0.66	95.0	90.06	75.0	50.0	25.0	10.0	5.0	1.0

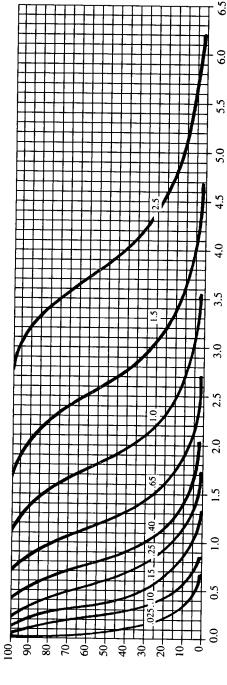
Chart XV-M Operating Characteristic Curves for ANSI ZI:4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P₃)

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

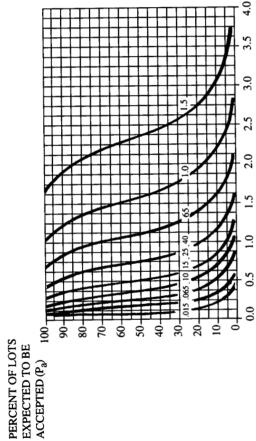
-											
ion)											
Acceptable Quality Levels (normal inspection)	4.0		4.08	4.66	4.97	5.43	6.02	6.90	7.86	8.47	9.71
v Levels (1	2.5	ed units)	2.50	2.90	3.16	3.56	4.08	4.83	5.64	6.17	7.25
ole Quality	1.5	per hundr	1.57	1.92	2.11	2.41	2.81	3.43	4.13	4.58	5.53
Acceptal	1.0	formities	0.967	1.22	1.36	1.57	1.86	2.36	2.94	3.34	4.16
	.65	or noncon	0.598	0.781	0.878	1.03	1.23	1.63	2.12	2.46	3.19
	.40	p (in percent nonconforming or nonconformities per hundred units)	0.300	0.425	0.508	0.655	0.876	1.25	1.69	2.00	2.67
	.25	cent nonco	0.181	0.255	0.306	0.404	0.562	0.856	1.23	1.51	2.11
	.15	p (in per	0.0574	0.113	0.154	0.233	0.349	0.539	0.778	0.949	1.33
	.04		0.00665	0.0228	0.0364	0.0711	0.143	0.278	0.460	0.599	0 922
	Ъ		0.66	95.0	90.06	75.0	50.0	25.0	10.0	5.0	1.0

TABLE XV-M-1---TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE


M scheme performance

N SCHEME PERFORMANCE

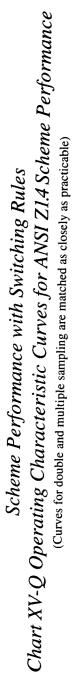
(Curves for double and multiple sampling are matched as closely as practicable)


PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

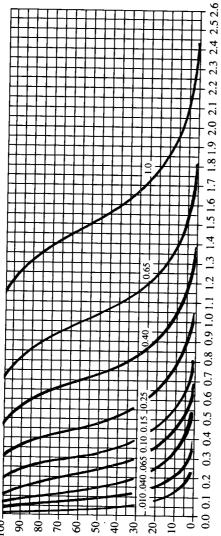
Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. TABLE XV-N-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Acceptable Quality Levels (normal inspection)	2.5		2.56	2.94	3.13	242	3.70	4.35	4 95	5.34	6.12
Levels (norn	1.5	l units)	1.54	1.83	1.99	2.24	-	╞		-	┼─┤
ole Quality]	1.0	nforming or nonconformities per hundred units)	1.00	1.21	1.33	1.52	1.77	2.16	2.60	2.89	3.48
Acceptab	.65	formities	0.613	0.769	0.857	066.0	1.17	1.49	1.85	2.10	2.62
	.40	or noncon	0.377	0.492	0.553	0.647	0.778	1.02	1.34	1.55	2.01
	.25	onforming	0.184	0.266	0.320	0.413	0.552	0.785	1.06	1.26	1.68
	.15	p (in percent noncon	0.108	0.157	0.192	0.255	0.354	0.539	0.778	0.949	1.33
	.10	p (in per	0.0383	0.0729	0.0979	0.146	0.218	0.337	0.486	0.593	0.830
	.025		0.00416	0.0143	0.0229	0.0446	0.0898	0.174	0.288	0.374	0.576
	\mathbf{P}_{a}		99.0	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-P Operating Characteristic Curves for ANSI ZI:4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules


Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection.

FOR OPERATING CHARACTERISTIC CURVES FOR ANSI ZI.4 SCHEME PERFORMANCE
IZI.
ANS
OR .
ES F
URV
C C
UST
RACTER
RAC
CHA
S FOR OPERATING CH
RAT
OPE
FOR
UES
VAL
ED
ILA
ABL
[_]
V-P-
LEX
TABI


Acceptable Quality Levels (normal inspection)	1.5		1.59	1.84	1.96	2.14	2.37	2.72	3.09	3.34	3.82
evels (norm	1.0	l units)	0.989 1	1.14 1	1.24 1	1.40 2	1.61 2	1.90 2	2.22 3	2.43 3	2.85
e Quality I	.65	informing or nonconformities per hundred units)	0.636	0.757	0.832	0.950	1.11	1.35	1.62	1.80	2.18
Acceptabl	.40	formities p	0.381	0.480	0.535	0.619	0.734	0.929	1.16	1.31	1.64
	.25	or noncon	0.236	0.308	0.346	0.404	0.486	0.640	0.835	0.969	1.26
	.15	nforming	0.116	0.166	0.200	0.258	0.345	0.490	0.665	0.787	1.05
	.10	p (in percent noncol	0.0713	0.101	0.121	0.159	0.221	0.337	0.486	0.593	0.830
	.065	p (in per	0.0240	0.0457	0.0616	0.0928	0.139	0.216	0.311	0.379	0.531
	.015		0.00263	0.0001	0.0144	0.0783	0.0573	0.111	0.184	0.240	0.369
	P.		0.66	95.0	0.06	75.0	50.0	25.0	10.0	5.0	1.0

P scheme performance

Quality of submitted product (p, in percent nonconforming for AQLs ≤10; in nonconformities per hundred units for AQLs >10) Note: Figures on curves are Acceptable Quality Levels (AQLs) for normal inspection. TABLE XV-Q-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

Acceptable Quality Levels (normal inspection)											
s (norma	1.0	s)	4 1.03	+	-		+	+	+	+	+
ity Level	65	dred unit	0.634		-	-				1 56	1.83
ible Qual	.40	ber hund	0.401	0.484	0.533			0.865	104	1.15	1.39
Accepta	.25	Iformities	0.243	0.307	0.343	0.396	0.470	0.594	0.742	0.841	1.05
	.15	forming or nonconformities per hundred units)	0.149	0.197	0.221	0.259	0.311	0.410	0.534	0.620	0.804
	.10	onforming	0.0738	0.106	0.128	0.165	0.221	0.314	0.426	0.504	0.673
	.065	p (in percent noncon	0.0455	0.0643	0.0771	0.102	0.142	0.216	0.311	0.379	0.531
	- <u>10</u>	p (in pe	0.0153	0.0292	0.0392	0.0586	0.0873	0.135	0.194	0.237	0.332
	.01		0.00167	0.00573	0.00915	0.0178	0.0358	0.0694	0.115	0.150	0.231
	Pa		0.66	95.0	90.0	75.0	50.0	25.0	10.0	5.0	1.0

Chart XV-R Operating Characteristic Curves for ANSI ZI.4 Scheme Performance (Curves for double and multiple sampling are matched as closely as practicable) Scheme Performance with Switching Rules

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_a)

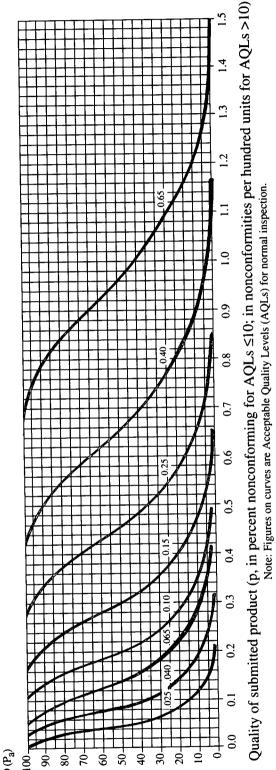


TABLE XV-R-1-TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR ANSI Z1.4 SCHEME PERFORMANCE

							Acceptab	le Quality	Acceptable Quality Levels (normal inspection)	inspection)	
p (in percent nonconforming or nonconformities per hundred units) 0.00957 0.0284 0.0473 0.0941 0.150 0.250 0.395 0.0183 0.0402 0.0669 0.123 0.192 0.302 0.457 0.0183 0.0402 0.0669 0.123 0.192 0.333 0.497 0.0246 0.0482 0.0800 0.138 0.214 0.333 0.497 0.0359 0.0637 0.103 0.162 0.248 0.380 0.560 0.0356 0.0885 0.195 0.294 0.443 0.642 0.0556 0.138 0.195 0.294 0.761 0.761 0.0556 0.135 0.195 0.294 0.743 0.642 0.1033 0.195 0.334 0.443 0.642 0.761 0.123 0.196 0.356 0.372 0.761 0.761 0.123 0.194 0.266 0.372 0.972 0.972 0.151 0.231 0.315	ď	.025	.040	.065	.10	.15	25	.40	.65		
0.00957 0.0284 0.0473 0.0941 0.150 0.250 0.395 0.0183 0.0402 0.0669 0.123 0.192 0.302 0.457 0.0183 0.0402 0.0669 0.123 0.192 0.302 0.457 0.0246 0.0482 0.0800 0.138 0.214 0.333 0.497 0.0369 0.0637 0.103 0.162 0.248 0.360 0.560 0.0356 0.0885 0.198 0.1955 0.294 0.443 0.642 0.0556 0.138 0.1955 0.294 0.443 0.642 0.0556 0.135 0.195 0.294 0.743 0.642 0.0556 0.334 0.366 0.372 0.761 0.761 0.123 0.194 0.266 0.334 0.650 0.789 0.151 0.2315 0.388 0.526 0.722 0.972 0.211 0.332 0.420 0.502 0.702 0.972 <td>3</td> <td>D (j)</td> <td>in percent</td> <td>nonconfor</td> <td>ming or no</td> <td>nconform</td> <td>ities per h</td> <td>undred uni</td> <td>ts)</td> <td></td> <td></td>	3	D (j)	in percent	nonconfor	ming or no	nconform	ities per h	undred uni	ts)		
0.0183 0.0402 0.0669 0.123 0.192 0.332 0.457 0.0246 0.0482 0.0800 0.138 0.214 0.333 0.497 0.0246 0.0482 0.0800 0.138 0.214 0.333 0.497 0.0369 0.0637 0.103 0.162 0.248 0.360 0.560 0.0354 0.0885 0.198 0.195 0.294 0.443 0.642 0.0554 0.0885 0.196 0.256 0.372 0.540 0.761 0.0554 0.196 0.256 0.372 0.540 0.761 0.123 0.196 0.256 0.372 0.540 0.761 0.123 0.194 0.266 0.334 0.464 0.650 0.899 0.151 0.237 0.315 0.388 0.526 0.972 0.972 0.151 0.231 0.502 0.502 0.670 0.972 0.972	0.66	0.00957		0.0473	0.0941	0.150	0.250	0.395	0.649		
0.0246 0.0482 0.0800 0.138 0.214 0.333 0.497 0.0369 0.0637 0.103 0.162 0.248 0.380 0.560 0.0354 0.0637 0.103 0.162 0.248 0.380 0.560 0.0354 0.0885 0.138 0.195 0.294 0.443 0.642 0.0554 0.0385 0.196 0.256 0.372 0.540 0.761 0.1035 0.196 0.256 0.372 0.540 0.761 0.123 0.196 0.256 0.372 0.540 0.761 0.123 0.194 0.266 0.334 0.464 0.650 0.899 0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.211 0.332 0.420 0.502 0.670 0.871 1.14	95.0	0.0183		0.0669	0.123	0.192	0.302	0.457	0.734		
0.0369 0.0637 0.103 0.162 0.248 0.380 0.560 0.0554 0.0885 0.138 0.195 0.294 0.443 0.642 0.0554 0.0885 0.196 0.256 0.372 0.540 0.761 0.0856 0.135 0.196 0.256 0.372 0.540 0.761 0.123 0.194 0.266 0.334 0.464 0.650 0.889 0.151 0.237 0.315 0.328 0.526 0.722 0.972 0.151 0.2332 0.320 0.502 0.670 0.772 0.972	90.06	0.0246	0.0482	0.0800	0.138	0.214	0.333	0.497	0.783		
0.0554 0.0885 0.138 0.195 0.294 0.443 0.642 0.0856 0.135 0.196 0.256 0.372 0.540 0.761 0.0123 0.194 0.266 0.334 0.444 0.650 0.389 0.123 0.194 0.266 0.334 0.464 0.650 0.899 0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.211 0.232 0.420 0.502 0.657 0.972 1.14	75.0	0.0369	0.0637	0.103	0.162	0.248	0.380	0.560	0.855		
0.0856 0.135 0.196 0.256 0.372 0.540 0.761 0.123 0.194 0.266 0.334 0.464 0.650 0.889 0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.211 0.332 0.420 0.502 0.656 0.871 1.14	50.0	0.0554	ļ	0.138	0.195	0.294	0.443	0.642	0.948		
0.123 0.194 0.266 0.334 0.464 0.650 0.889 0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.151 0.332 0.420 0.502 0.656 0.871 1.14	25.0	0.0856		0.196	0.256	0.372	0.540	0.761	1.09		
0.151 0.237 0.315 0.388 0.526 0.722 0.972 0.211 0.332 0.420 0.502 0.656 0.871 1.14	10.0	0.123	0.194	0.266	0.334	0.464	0.650	0.889	1.24		
0.211 0.332 0.420 0.502 0.656 0.871 1.14	5.0	0.151	0.237	0.315	0.388	0.526	0.722	0.972	1.33		
	1.0	0.211	0.332	0.420	0.502	0.656	0.871	1.14	1.53		

INDEX OF TERMS WITH SPECIAL MEANINGS

Term

Paragraph

Acceptable Quality Level (AQL)	4.2 and 11.1
Acceptance number	
Attributes	
Average Outgoing Quality (AOQ)	
Average Outgoing Quality Limit (AOQL)	
Average sample size	
Batch	
Code letters	
Defect	
Double sampling plan	
Inspection	
Inspection by attributes	
Inspection level	
Inspection lot or inspection batch	
Isolated lot	
Limit number	
Limiting Quality (LQ)	
Lot	
Lot or batch size	
Multiple sampling plan	
Nonconformity	
Nonconformities per hundred units	
Normal inspection	
Operating characteristic curve	
Original inspection	
Percent nonconforming	
Preferred AQLs	
Process average	
Reduced inspection	
Rejection number	
Responsible authority	
Resubmitted lots or batches	
Sample	
Sample size	
Sample size code letter	
Sampling plan	
Scheme Performance	
Single sampling plan	
Small-sample inspection	
Switching procedures	
Tightened inspection	
Unit of product	1.5
Fx. and	