COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

RECEIVED

In the Matter of:	· ·
in the Matter of.	NOV 2 1 2018
THE APPLICATION OF	1
NEW CINGULAR WIRELESS PCS, LLC,	PUBLIC SERVICE
A DELAWARE LIMITED LIABILITY COMPANY,	COMMISSION
D/B/A AT&T MOBILITY)
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2018-00385
CONVENIENCE AND NECESSITY TO CONSTRUCT)
A WIRELESS COMMUNICATIONS FACILITY)
IN THE COMMONWEALTH OF KENTUCKY	j
IN THE COUNTY OF MARTIN)
	•

SITE NAME: TOMAHAWK

APPLICATION FOR
CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY
FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility ("Applicant"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submits this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicant with wireless communications services.

In support of this Application, Applicant respectfully provides and states the following information:

- 1. The complete name and address of the Applicant: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility, having a local address of Meidinger Tower, 462 S. 4th Street, Suite 2400, Louisville, Kentucky 40202.
- 2. Applicant proposes construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicant submits this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 3. The Certificate of Authority filed with the Kentucky Secretary of State for the Applicant entity was attached to a prior application and is part of the case record for PSC case number 2011-00473 and is hereby incorporated by reference.
- 4. The Applicant operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the Applicant's FCC licenses to provide wireless services are attached to this Application or described as part of **Exhibit A**, and the facility will be constructed and operated in accordance with applicable FCC regulations.
- 5. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve the Applicant's services to an area currently not served or not adequately served by the Applicant by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in the Applicant's communications network that is designed to meet the increasing demands

for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in the Applicant's network design that must be in place to provide adequate coverage to the service area.

- 6. To address the above-described service needs, Applicant proposes to construct a WCF at 4784 Tomahawk Road, Tomahawk, Kentucky 41262 (37°52'16.65" North latitude, 82°36'48.39" West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Bruce Endicott Junior & Elizabeth Ashley Endicott pursuant to a Deed recorded at Deed Book 168, Page 390 in the office of the County Clerk. The proposed WCF will consist of a 305-foot tall tower, with an approximately 15-foot tall lightning arrestor attached at the top, for a total height of 320-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the Applicant's radio electronics equipment and appurtenant equipment. The Applicant's equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as Exhibit B and Exhibit C.
- 7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as **Exhibit D**.
- 8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas of the Applicant has also been included

as part of Exhibit B.

- 9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit C**.
- 10. Applicant has considered the likely effects of the installation of the proposed WCF on nearby land uses and values and has concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate Applicant's antennas on an existing structure. When suitable towers or structures exist, Applicant attempts to co-locate on existing structures such as communications towers or other structures capable of supporting Applicant's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site.
- 11. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as **Exhibit E**.
- 12. A copy of the Kentucky Airport Zoning Commission ("KAZC") Approval to construct the tower is attached as **Exhibit F**.
- 13. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as **Exhibit G**. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this

exhibit.

- 14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit H**. The name and telephone number of the preparer of **Exhibit H** are included as part of this exhibit.
- 15. Applicant, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreement or an abbreviated agreement recorded with the County Clerk is attached as **Exhibit I**.
- 16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit C** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.
- 17. The Construction Manager for the proposed facility is Don Murdock and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibits B & C**.
- 18. As noted on the Survey attached as part of **Exhibit B**, the surveyor has determined that the site is not within any flood hazard area.
- 19. **Exhibit B** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is

illustrated in Exhibit B.

- 20. Applicant has notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit J** and **Exhibit K**, respectively.
- 21. Applicant has notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit L**.
- 22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit M**. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached

as part of Exhibit M.

- 23. The general area where the proposed facility is to be located is rural, mountainous and heavily wooded. There are no residential structures within 500-feet of the proposed tower location.
- 24. The process that was used by the Applicant's radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. Applicant's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicant when searching for sites for its antennas that would provide the coverage deemed necessary by the Applicant. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as **Exhibit N**.
- 25. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area. In addition to expanding and improving voice and data service for AT&T mobile customers, this site will also provide wireless local loop ("WLL") broadband internet service in the subject area. As a participant in the FCC's Connect America Fund Phase II (CAF II)

program, AT&T is aggressively deploying WLL service infrastructure to bring expanded internet access to residential and business customers in rural and other underserved areas. WLL will support internet access at the high speeds required to use and enjoy the most current business, education and entertainment technologies. Broadband service via WLL will be delivered from the tower to a dedicated antenna located at the home or business receiving service and will support downloads at 10 Mbps and uploads at 1 Mbps.

- 26. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
- 27. All responses and requests associated with this Application may be directed to:

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369
Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400

Telefax:

(502) 543-4410

Email:

dpike@pikelegal.com

WHEREFORE, Applicant respectfully request that the PSC accept the foregoing Application for filing and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

David A. Pike

Pike Legal Group, PLLC

1578 Highway 44 East, Suite 6

Pavid a Pelse

P. O. Box 369

Shepherdsville, KY 40165-0369

Telephone: (502) 955-4400 Telefax: (502) 543-4410 Email: dpike@pikelegal.com

Attorney for New Cingular Wireless PCS, LLC

d/b/a AT&T Mobility

LIST OF EXHIBITS

Α **FCC License Documentation**

B Site Development Plan:

> 500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan

Vertical Tower Profile

C Tower and Foundation Design

D Competing Utilities, Corporations, or Persons List

E FAA

F Kentucky Airport Zoning Commission

G Geotechnical Report

Н Directions to WCF Site

Copy of Real Estate Agreement

J **Notification Listing**

K Copy of Property Owner Notification

Copy of County Judge/Executive Notice L

Copy of Posted Notices and Newspaper Notice Advertisement M

Copy of Radio Frequency Design Search Area N

EXHIBIT A FCC LICENSE DOCUMENTATION

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: LESLIE WILSON NEW CINGULAR WIRELESS PCS, LLC 208 S AKARD ST., RM 1016 DALLAS, TX 75202

Call Sign KNKN861	File Number
Radio	Service
CL - C	Cellular
Market Numer	Channel Block
CMA451	A
Sub-Market	Designator

FCC Registration Number (FRN): 0003291192

Market Na	ıme
Kentucky 9	- Elliott

- 20			Burn San		
	Grant Date 08-30-2011	Effective Date 08-31-2018	Expiration Date 10-01-2021	Five Yr Build-Out Date	Print Date

Site Information:

ngitude

Ground Elevation (meters)

Structure Hgt to Tip (meters)

Antenna Structure

5

38-03-04.7 N

082-38-07.3 W

292.6

61.0

Registration No.

Address: 16 Hylton Road (76319)

City: LOUISA County: LAWRENCE State: KY Construction Deadline:

				and the same				
Antenna: 1					911			
Maximum Transmitting ERP in Watts:	140.820					B.		
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	131.000	117.600	84.400	96.600	123.000	77.500	118.100	102,400
Transmitting ERP (watts) Antenna: 2	297.900	112.600	11.500	2.900	0.600	0.900	15.800	126.300
Maximum Transmitting ERP in Watts:	140 920				23.	Ale.		
Azimuth(from true north)	0.020	45	00	125	100	225	270	215
Antenna Height AAT (meters)	131.000	45	90	135	180	225	270	315
		117.600	84.400	96.600	123.000	77.500	118.100	102.400
Transmitting ERP (watts) Antenna: 3	1.700	37.700	190.100	260.900	55.500	5.900	2.100	0.800
Maximum Transmitting ERP in Watts:	140 820				7.42	123		
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	131.000	117.600	5.7		arrange and the second	Section 18 Control Control	5 T 10	
Transmitting ERP (watts)			84.400	96.600	123.000	77.500	118.100	102.400
Transmitting ERT (watts)	3.300	0.510	1.100	5.400	73.100	255.000	185.800	25.500

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: KNK	.N861	File Number:				Print Date:					
Location Latit	ude -15.0 N	Longitude 083-07-14.2 W	(m	round Elevers)	(Structure Hg (meters) 59.4	t to Tip	Antenna S Registratio			
. 50-05	CHRIST		30	3.0		39.4					
Address: 801 H	AND PERMIT	Office Control of the	O			•••					
City: SANDY H	IOOK Cour	nty: ELLIOTT	State: KY	Constru	ction De	adline:					
Antenna: 1											
Maximum Trans Azimuth(fr	om true north)	0	45	90	135	180	225	270	315		
Antenna Height A Transmitting ER Antenna: 2		83.100 69.400	91.400 21.700	84.000 3.700	75.400 0.900	72.200 2.400	40.200 8.100	52.600 37.600	53.100 61.600		
Maximum Trans Azimuth(fre Antenna Height A	om true north)	Watts: 140.820 0 83.100	45 91.400	90 84.000	135	180 72.200	225 40.200	270 52.600	315 53.100		
Transmitting ER Antenna: 3	P (watts)	69.700	206.800	185.400	75.400 206.800	1.75.7.75	33.900	0.413	12.600		
Maximum Transi	mitting ERP in om true north)		强温	00		100	225	250	21.5		
Antenna Height		0 83.100	45 91.400	90 84.000	135 75.400	180 72,200	225 40.200	270 52.600	315 53.100		
Transmitting ER		2.100	0.800	1.700	37.200	187.500	257.300	54.700	5.800		
Location Latit	ude	Longitude	TO THE RESERVE AND ADDRESS OF THE PARTY OF T	ound Eleveters)		Structure Hg (meters)	t to Tip	Antenna S			
8 37-56	-10.7 N	083-15-13.4 W	33	8.3		80.8		1043797			
Address: 1050 (Cedar Road (7	6318)		2000							
City: WEST LIE	RERTY Cor	unty: MORGAN	State: K	V Const	mustion I	Deadline:					
City. WEST LIE	DERTI CO	unty. MORGAN	Otate. It	1 Const	ruction i	Deaumie.					
City. WEST LIE	JERTT CO	anty. WORGAN	State. IX	Const	Tuetion i	Deadine.					
Antenna: 1			State. IX	Const	Tuerion .	Deadline.					
Antenna: 1 Maximum Trans	mitting ERP in	Watts: 140.820					225	270	215		
Antenna: 1 Maximum Transi Azimuth(fro	mitting ERP in	Watts: 140.820	45	90	135	180	225	270	315		
Antenna: 1 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 2	mitting ERP in om true north) AAT (meters) P (watts)	1 Watts: 140.820 0 108.900 73.300				180	225 137.300 16.000	270 142.000 56.900	117.600		
Antenna: 1 Maximum Transı Azimuth(fr Antenna Height A Transmitting ER Antenna: 2 Maximum Transı	mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in	1 Watts: 140.820 0 108.900 73.300 1 Watts: 140.820	45 121.700 121.600	90 96.900 45.200	135 142.700 32.000	180) 137.300 0.243	137.300 16.000	142.000 56.900	117.600 113.500		
Antenna: 1 Maximum Trans Azimuth(fr Antenna Height A Transmitting ER Antenna: 2 Maximum Transı Azimuth(fr	mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in om true north)	1 Watts: 140.820 0 108.900 73.300 1 Watts: 140.820 0	45 121.700 121.600	90 96.900 45.200	135 142.700 32.000	180 137.300 0.243	137.300 16.000	142.000 56.900 270	117.600 113.500		
Antenna: 1 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 2 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER	mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in om true north) AAT (meters) P (watts)	1 Watts: 140.820 0 108.900 73.300 1 Watts: 140.820 0 108.900 16.900	45 121.700 121.600	90 96.900 45.200	135 142.700 32.000	180 137.300 0.243 180 137.300	137.300 16.000	142.000 56.900	117.600 113.500		
Antenna: 1 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 2 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 3 Maximum Transı	mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in	Watts: 140.820 0 108.900 73.300 Watts: 140.820 0 108.900 16.900 1 Watts: 140.820	45 121.700 121.600 45 121.700 82.900	90 96.900 45.200 90 96.900 111.800	135 142.700 32.000 135 142.700 105.100	180 137.300 0.243 180 137.300 98.100	137.300 16.000 225 137.300 29.600	142.000 56.900 270 142.000 37.300	117.600 113.500 315 117.600 16.900		
Antenna: 1 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 2 Maximum Transı Azimuth(fro Antenna Height A Transmitting ER Antenna: 3 Maximum Transı	mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in om true north) AAT (meters) P (watts) mitting ERP in om true north)	1 Watts: 140.820 0 108.900 73.300 1 Watts: 140.820 0 108.900 16.900	45 121.700 121.600 45 121.700	90 96.900 45.200 90 96.900	135 142.700 32.000	180 137.300 0.243 180 137.300 98.100	137.300 16.000 225 137.300	142.000 56.900 270 142.000	117.600 113.500 315 117.600		

Call Sign: KNKN861	File	Number:			Print Date:					
Location Latitude	Longitude Ground Elevation Structure Hgt to (meters) (meters)		gt to Tip	o Tip Antenna Structure Registration No.						
14 37-18-52.9 N	082-30-11.9 W	62	26.1		126.2		1043792			
Address: 2701 Hwy 611 (76	6324)									
City: DORTON County:	PIKE State: KY	Constru	iction Dea	dline:						
	EL .3/15									
Antenna: 1	The state of									
Maximum Transmitting ERP								202		
Azimuth(from true north Antenna Height AAT (meters	LABOUR DUAL WINE	45	90	135	180	225	270	315		
Transmitting ERP (watts)	Uga Pa	319.300 79.900	339.000	220.6 2.100		228.900 0.600	306.500 11.200	351.000 89.600		
Antenna: 2	211.300	79.900	8.100	2.100	0.422	0.000	11.200	89.000		
Maximum Transmitting ERP										
Azimuth(from true north	X1002 A. VIANEX	45	90	135	180	225	270	315		
Antenna Height AAT (meters Transmitting ERP (watts)	755555 9	319.300	339.000	220.6		228.900	306.500	351.000		
Antenna: 3	1.200	26.800	134.900	185.1	00 39.400	4.200	1.500	0.500		
Maximum Transmitting ERP	in Watts: 140.820	175								
Azimuth(from true north	1) 0	45	90	135	180	225	270	315		
Antenna Height AAT (meters		319.300	339.000	220.6		228.900	306.500	351.000		
Transmitting ERP (watts)	2.300	0.400	0.800	3.800	51.900	180.900	131.800	18.100		
Location Latitude	Longitude	Ground Elevation (meters)		vation	Structure Hg (meters)	Antenna Structure Registration No.				
17 37-30-04.3 N	082-13-39.2 W	70	58.1		43.3		.			
Address: 9066 Phelps 632 I	Road (76329)	100	40007		1010					
City: Phelps County: PIk		onetruatio	n Deadlin	a. 06.00	2015					
City: Theips County: The	State. KI	onstruction	on Deaum	e. 00-0:	7-2013					
			11 (8)							
Antenna: 1	1. 11/ 1.40.020		為近							
Maximum Transmitting ERP Azimuth(from true north		45	90	125	180	225	270	315		
Antenna Height AAT (meters		462.300	396.500	135 295.1		360.200	360.500	415.600		
Transmitting ERP (watts)	89.500	148.600	55.200	39.10		19.600	69.500	138.700		
Antenna: 2			4	# %		.,				
Maximum Transmitting ERP		45	00	Star 1	100	225	270	215		
Azimuth(from true north Antenna Height AAT (meters		45 462,300	90	135	180	225	270 360,500	315		
Transmitting ERP (watts)	3.500	28.200	396.500 63.900	295.1 76.50		360.200 6.100	3.500	415.600 2.300		
Antenna: 3		20.200	03.700	, 0.50	10.000	0.100	5.500	2.500		
Maximum Transmitting ERP					The state of the s	100				
Azimuth(from true north Antenna Height AAT (meters		45	90	135	180	225	270	315		
Transmitting ERP (watts)	3.600	462.300 0.600	396.500 1.300	295.1 5.900		360.200 278.300	360.500 202.800	415.600 27.800		
anomitting Ditt ("atta)	3.000	0.000	1.300	3.900	79.800	2/8.300	202.800	27.800		

Call Sign: KNKN861	File	Number	r:		Print Date:					
Location Latitude	Longitude		Ground Eleva (meters)		Structure Hg (meters)	Antenna Structure Registration No.				
18 38-06-36.6 N	082-36-36.2 W		251.5		120.1		1052938			
Address: 380 Tower Hill Ro	ad (76331)									
City: LOUISA County: L	AWRENCE Stat	e: KY	Construction	n Dead	line: 06-09-20	15				
Antenna: 1	TO SERVE									
Maximum Transmitting ERP Azimuth(from true north)	-POSAGATAGNE, *0.*	45	00	125	100	225	270	215		
Antenna Height AAT (meters)) 0 152,400	45 85,400	90	135	180 00 110.900	225 106,400	270 109.900	315 114.000		
Transmitting ERP (watts)	0.900	3.200	83.000 49.200	117.70 188.30		24,800	2.800	0.700		
Antenna: 2		3.200	47.200	100.50	70 104.700	24.000	2.000	0.700		
Maximum Transmitting ERP										
Azimuth(from true north) Antenna Height AAT (meters)		45 85,400	90	135	180	225	270	315		
Transmitting ERP (watts)	2.800	0.700	83.000 0.900	117.70 3.200	00 110.900 49.200	106.400 188.300	109.900 164.700	114.000 24.800		
Antenna: 3	2.600	0.700	0.900	3.200	49.200	100.500	104.700	24.000		
Maximum Transmitting ERP		7447								
Azimuth(from true north) Antenna Height AAT (meters)		45	90	135	180	225	270	315		
Transmitting ERP (watts)	198.000	85.400 85.900	83.000 26.400	117.70 14.400		106.400 23.400	109.900 118.100	114.000 179.800		
	196.000	83,900	20,400	14.400	13.400	23.400	116.100	179.800		
Location Latitude	Longitude	6	Ground Elev	ation	Structure Hg	t to Tip	Antenna S	tructure		
		(meters) (meters) Regist				Registratio	ation No.		
19 37-29-09.9 N	082-47-54.0 W	1878	450.8		111.6		1065556			
Address: 892 KY ROUTE 6	80 WEST (76327)		22.00							
City: Eastern County: FL	` '	Constr	ruction Dead	iline: 06	5-09-2015					
- County 172	0.12 0		William James Const.	64) 612/61.						
Antenna: 1			200							
Maximum Transmitting ERP	in Watts: 140.820		T.A.							
Azimuth(from true north)	0	45	90	135	180	225	270	315		
Antenna Height AAT (meters)	260.800	269.800	233.600	173.20	209.000	238.200	196.700	229.200		
Transmitting ERP (watts) Antenna: 2	172.600	192.500	56.500	31.600	0.400	11.700	64.900	192.500		
Maximum Transmitting ERP	in Watts: 140,820				EP					
Azimuth(from true north)	0	45	90	135	180	225	270	315		
Antenna Height AAT (meters)	260.800	269.800	233.600	173.20	209.000	238.200	196.700	229.200		
Transmitting ERP (watts) Antenna: 3	1.500	34.600	174.600	239.60	00 50.900	5.400	1.900	0.700		
Maximum Transmitting ERP	in Watts: 140.820				43/6/	416				
Azimuth(from true north)	0	45	90	135	180	225	270	315		
Antenna Height AAT (meters)	260.800	269.800	233.600	173.20		238.200	196.700	229,200		
Transmitting ERP (watts)	30.000	11.600	233.000	34.200		203.900	230.100	89.000		

Call Sign: KNKN861	File	Number:		Print Date:					
Location Latitude	Longitude	1000	round Elev neters)		Structure Hg (meters)	t to Tip	Antenna St Registratio		
20 37-44-50.6 N	083-10-40.2 W	32	29.5		93.0		1245619		
Address: LAUREL BRANCH	I ROAD (76332)								
City: SALYERSVILLE Co	unty: MAGOFFIN	State:	KY Con	structio	n Deadline: 0	6-09-201	5		
	AT								
Antenna: 1	P MARINA								
Maximum Transmitting ERP in	Land to the same of the same o				400		•=0		
Azimuth(from true north) Antenna Height AAT (meters)	0 120.000	45 111.100	90 127.900	135 92,400	180 91.300	225 84.200	270 91.600	315 104,200	
Transmitting ERP (watts)	300.600	113.600	11.600	3.000	0.601	0.900	16.000	127.500	
Antenna: 2			11,000	0.000	,5.001	0,,00	10,000		
Maximum Transmitting ERP in Azimuth(from true north)	1 Watts: 140.820	45	90	135	180	225	270	315	
Antenna Height AAT (meters)	120.000	111.100	127.900	92,400		84.200	91.600	104.200	
Transmitting ERP (watts) Antenna: 3	1.700	38.100	191.900	263.30		6.000	2.100	0.800	
Maximum Transmitting ERP in		200							
Azimuth(from true north) Antenna Height AAT (meters)	0 120.000	45	90	135	180	225	270	315	
Transmitting ERP (watts)	3.300	111.100 0.514	127.900 1.200	92.400 5.400	91.300 73.800	84.200 257.300	91.600 187.500	104.200 25.700	
	3.300	VID-2017	1.200	3.400	73.800	237.300	107.500	23.700	
Location Latitude	Longitude	194	round Elevation Structure Hgt to Teters) (meters)			t to Tip	P Antenna Structure Registration No.		
21 37-42-32.6 N	082-57-19.9 W	39	9.0		104.8		1245637		
Address: 883 DRY BREAD F	ROAD (76333)	Sept.	200						
	unty: MAGOFFIN	State:	KY Con	structio	n Deadline: 0	6-09-201	5		
			A. A.					-	
Antenna: 1	Watter 140 920		530	199					
Maximum Transmitting ERP in Azimuth(from true north)	0	45	90	135	180	225	270	315	
Antenna Height AAT (meters)	182.700	243.900	204.300	203.60	D.	160.600	190.800	182.200	
Transmitting ERP (watts) Antenna: 2	162.900	68.400	5.600	0.700	0.325	0.400	10.700	82.100	
Maximum Transmitting ERP in	Watts: 140.820			A 16	8.77				
Azimuth(from true north)	0	45	90	135	180	225	270	315	
Antenna Height AAT (meters) Transmitting ERP (watts)	182.700	243.900	204.300	203.60		160.600	190.800	182.200	
Antenna: 3	2.200	22.700	121.500	152.30	0 32.100	2.900	0.400	0.500	
Maximum Transmitting ERP in					10.33	CALL.			
Azimuth(from true north) Antenna Height AAT (meters)	0	45	90	135	180	225	270	315	
Transmitting ERP (watts)	182.700 3.100	243.900 0.500	204.300 1.100	203.60 5.100	0 166.500 69.300	160.600 241.800	190.800 176.200	182.200 24.200	
8 ()	3.100	0.500	1.100	3.100	09.300	241.000	170.200	24.200	

Call Sign: KNKN861	File	File Number:				Print Date:				
Location Latitude 22 37-35-16.8 N	Longitude 082-22-44.7 W	(n	round Elev neters) 57.8	/ation	Structure Hg (meters) 89.9	t to Tip	Antenna Se Registratio 1041887			
Address: 13074 US Hwy 11	19 North (101423)									
City: BENT MOUNTAIN	County: PIKE S	State: KY	Constru	ction D	eadline: 06-09	-2015				
they the										
Antenna: 1	O Marie									
Maximum Transmitting ERP										
Azimuth(from true north Antenna Height AAT (meters		45 286.300	90	135	180	225	270	315		
Transmitting ERP (watts)	254.100	103.500	230.800 5.400	185.90 1.000	00 246.700 0.508	311.000 0.900	304.700 16.400	286.000 136.400		
Antenna: 2	234.100	103.500	3.400	1.000	0.508	0.700	10.400	130.400		
Maximum Transmitting ERP	The second secon									
Azimuth(from true north Antenna Height AAT (meters		45	90	135	180	225	270	315		
Transmitting ERP (watts)	100000000000000000000000000000000000000	286.300	230.800	185.90		311.000	304.700	286.000		
Antenna: 3	2.800	39.300	197.200	231.70	00 49.600	2.200	0.500	0.500		
Maximum Transmitting ERP		39.0								
Azimuth(from true north		45	90	135	180	225	270	315		
Antenna Height AAT (meters		286.300	230.800	185.90		311.000	304.700	286.000		
Transmitting ERP (watts)	1.400	0.500	0.500	6.700	80.300	242.600	175.700	18.400		
Location Latitude	Longitude	G	round Elev	ation	Structure Hg	t to Tip	Antenna Si	tructure		
		THE PERSON NAMED IN	eters)		(meters)	•	Registratio			
23 37-52-27.2 N	082-32-19.7 W		88.3		86.9		1041882			
Address: 1190 Main St. (10	-3	150	410		00.7		1011002			
		Camatana	Alon Dage	II: 06	00 2015					
City: INEZ County: MA	RTIN State: KY	Constru	ction Dead	line: 00	-09-2013					
Antenna: 1			57							
Maximum Transmitting ERP Azimuth(from true north	No.	45	O WATER	126	100	225	270	215		
Antenna Height AAT (meters		45 141.700	90 139.700	135	180 00 126,700	225 122.300	270 163.300	315 180.300		
Transmitting ERP (watts)	145.500	61.100	5.000	143.10 0.600	0.300	0.300	9.500	73.300		
Antenna: 2		01.100	3.000	0.000	0.500	0.500	7.500	75.500		
Maximum Transmitting ERP				olionas W						
Azimuth(from true north Antenna Height AAT (meters	1) 0 3) 184.200	45 141.700	90	135	180	225	270	315		
Transmitting ERP (watts)	2.000	20.300	139.700 108.500	143.10 136.10		122.300 2.600	163.300 0.400	180.300 0.500		
Antenna: 3	2.000	20.300	100.200	130.10	20.000	2.000	0.400	0.500		
Maximum Transmitting ERP	· O				5 100					
Azimuth(from true north Antenna Height AAT (meters		45	90	135	180	225	270	315		
Transmitting ERP (watts)	,	141.700	139.700	143.10		122.300	163.300	180.300		
	1.300	0.300	0.300	4.900	40.500	136.100	103.400	11.200		

Call Sign: KNKN861

File Number:

Print Date:

Location 25	Latitude	Longitude	(m	round Elev leters)	ation	Structure Hg (meters)	gt to Tip	Antenna Si Registratio	
	37-49-02.0 N	082-33-35.9 W	31	5.8		107.0		1002325	
Address:	1027 BLACKBERI	RY ROAD (76322)							
City: INE	Z County: MAR	TIN State: KY	Constru	ction Dead	lline: 06	-09-2015			
Azir Antenna H Transmitt Antenna:	Transmitting ERP i muth(from true north) leight AAT (meters) ing ERP (watts)	0 182.200 128.200	45 155.000 170.000	90 148.600 191.900	135 122.00 74.200		225 130.900 9.700	270 142.000 13.000	315 160.500 28.500
Aziı Antenna H	Transmitting ERP i nuth(from true north) leight AAT (meters) ing ERP (watts)		45 155.000 9.800	90 148.600 54.100	135 122.00 160.50		225 130.900 160.500	5.46 - 0.56 (5.54	315 160.500 26.300
Maximum Azir Antenna H	Transmitting ERP inuth(from true north) leight AAT (meters) ing ERP (watts)	n Watts: 140.820 0 182.200 114.300	45 155.000 32.800	90 148.600 24.200	135 122.00 9.000	180 00 112.300 13.100	225 130.900 87.200	270 142.000 175.000	315 160.500 182.200

Control Points:

Control Pt. No. 1

Address: 1650 Lyndon Farms Court

City: LOUISVILLE County: State: KY Telephone Number: (502)329-4700

Control Pt. No. 2

Address: 707 CONCORD ROAD

City: KNOXVILLE County: State: TN Telephone Number:

Waivers/Conditions:

License renewal granted on a conditional basis, subject to the outcome of FCC proceeding WT Docket No. 10-112 (see FCC 10-86, paras. 113 and 126).

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: NEW CINGULAR WIRELESS PCS, LLC

ATTN: LESLIE WILSON NEW CINGULAR WIRELESS PCS, LLC 208 S AKARD ST., RM 1016 DALLAS, TX 75202

Call Sign	File Number		
KNLF235	CARL STORY CO. STORY		
Radio	Service		
CW - PCS	S Broadband		
0	2.04404		

FCC Registration Number (FRN): 0003291192

Grant Date 07-01-2015	Effective Date 08-31-2018	Expiration Date 06-23-2025	Print Date
Market Number MTA018	Channe	el Block	Sub-Market Designator 19
	Market Cincinnati		
st Build-out Date 06-23-2000	2nd Build-out Date 06-23-2005	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

License renewal granted on a conditional basis, subject to the outcome of FCC proceeding WT Docket No. 10-112 (see FCC 10-86, paras. 113 and 126).

Spectrum Lease associated with this license. See Spectrum Leasing Arrangement Letter dated 04/22/2004 and File No. 0001696726.

Spectrum Lease associated with this license. See Spectrum Leasing Arrangement Letter dated 10/29/04 and File No.0001890883.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: KNLF235

File Number:

Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Spectrum Lease associated with this license. See Spectrum Leasing Arrangement Letter dated 3/11/2005 and File No. 0001932184

Spectrum Lease associated with this license. See Spectrum Leasing Arrangement Letter dated 03/12/2005 and File No. 0001932236.

Spectrum Leasing Arrangement associated with file number 0001932184 was extended to 04/30/2009. See file number 0002177927.

Commission approval of this application and the licenses contained therein are subject to the conditions set forth in the Memorandum Opinion and Order, adopted on December 29, 2006 and released on March 26, 2007, and revised in the Order on Reconsideration, adopted and released on March 26, 2007. See AT&T Inc. and BellSouth Corporation Application for Transfer of Control, WC Docket No. 06-74, Memorandum Opinion and Order, FCC 06-189 (rel. Mar. 26, 2007); AT&T Inc. and BellSouth Corporation, WC Docket No. 06-74, Order on Reconsideration, FCC 07-44 (rel. Mar. 26, 2007).

Call Sign: KNLF235

File Number:

Print Date:

700 MHz Relicensed Area Information:

Market

Market Name

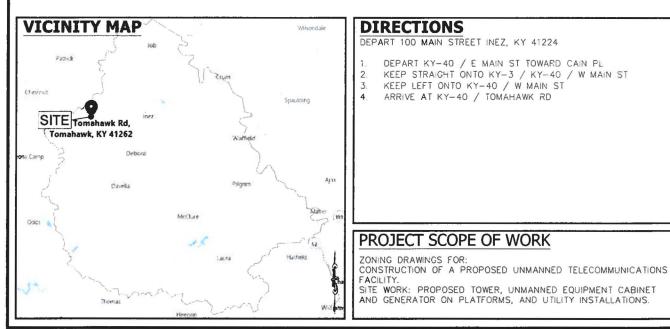
Buildout Deadline

Buildout Notification

Status

EXHIBIT B

SITE DEVELOPMENT PLAN:


500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION
SITE PLAN
VERTICAL TOWER PROFILE

SITE NAME:

TOMAHAWK

PROPOSED RAW LAND SITE WITH PROPOSED 305' SELF-SUPPORT **TOWER WITH A 15' LIGHTNING ARRESTOR AND INSTALLATION** OF A 80" x 80" WALK IN CABINET AND GENERATOR

DIRECTIONS

DEPART 100 MAIN STREET INEZ, KY 41224

- DEPART KY-40 / E MAIN ST TOWARD CAIN PL KEEP STRAIGHT ONTO KY-3 / KY-40 / W MAIN ST
- KEEP LEFT ONTO KY-40 / W MAIN ST
- ARRIVE AT KY-40 / TOMAHAWK RD

PROJECT INFORMATION

NEW CINGULAR WIRELESS PCS, LLC,

MEIDINGER TOWER

LOUISVILLE, KY 40202

LATITUDE:

-82' 36' 48.39"

DRAWING INDEX

- T-1 TITLE SHEET & PROJECT INFORMATION
- B-1 SITE SURVEY
- B-2 500' RADIUS & ABUTTER'S MAP
- C-1 OVERALL SITE LAYOUT
- C-2 ENLARGED COMPOUND LAYOUT

CONTACT INFORMATION

BUILDING CODES AND STANDARDS CONTRACTOR'S WORK SHALL COMPLY WITH ALL APPICABLE NATIONAL, STATE AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING

CONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE

TELECOMMUNICATIONS INDUSTRY ASSOCIATION TIA-222 * STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND SUPPORTING STRUCTURES TIA-601

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN.

CAUTION

FOR EMERGENCIES CALL: 911

AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL OF STEEL

COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR

INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS IEEE-81,

Know what's below.

Call before you dig.

ANSI T1.311, FOR TELECOM - DC POWER SYSTEMS - TELECOM,

FIRE DEPARTMENT:
INEZ VOLUNTEER FIRE DEPARTMENT

MARTIN COUNTY SHERIFF'S OFFICE

PHONE: 606-298-3211 POLICE DEPARTMENT:

PHONE: 606-298-2828

ELECTRIC COMPANY: BIG SANDY RECC

PHONE: 888-789-7322

ELEPHONE COMPANY:

HONE: 800-288-2020

JURISDICTION FOR THE LOCATION.

AMERICAN CONCRETE INSTITUTE 318

FOLLOWING STANDARDS:

IEEE 1100, IEEE C62.41

ENVIRONMENTAL PROTECTION

2014 KENTUCKY BUILDING CODE

C-3 TOWER ELEVATION

MERAL CONSTRUCTION JENGINEERING JERGLEST MANAGENE

ZONING DRAWINGS NOT FOR CONSTRUCTION

DRAWN SY HECKED BY:

Y39	DATE	DESCRIPTIO	N .
A	11/15/18	ISSUED FOR	REVIEW
0	11/20/18	ISSUED FOR	ZONING
		1	
		-	
		-	
		-	
		<u> </u>	

13800693

KYL06075

TOMAHAWK

4784 TOMAHAWK ROAD TOMAHAWK, KY 41262

TITLE SHEET & PROJECT INFORMATION

T-1

COUNTY:

MARTIN COUNTY

SITE ADDRESS:

4784 TOMAHAWK ROAD TOMAHAWK, KY 41262

APPLICANT:

A DELAWARE LIMITED LIABILITY COMPANY, D/B/A AT&T MOBILITY

462 S. 4TH ST. SUITE 2400

LONGITUDE:

37° 52' 16.65"

PROPOSED LEASE AREA

ALL THAT TRACT OR PARCEL OF LAND LYING IN THE COUNTY OF MARTIN STATE OF KENTUCKY ACT IN ACT OR PARCEL OF DIRICHING IN THE COUNTY OF MARKIN STATE OF REMIDED CONSISTING OF A 100 FEET BY 100 FEET LEASE AREA COMMENCING AT THE CORRECT OF THE UPPER END OF A CULVERT AT THE MOUTH OF JAMES RAY BRANCH. THAT IS 97 OFFET NORTH-MESTERLY OF THE INTERSECTION OF TOMAHAWK RODA (KY40) AND DANIEL RODA ONCE PARTICULARLY.

THENCE NORTH 10 DEGREES 29 MINUTES 53 SECONDS WEST A DISTANCE OF 1 991 44 FEET TO THE

POINT OF BEGINNING THENCE NORTH 34 DEGREES 24 MINUTES 09 SECONDS WEST A DISTANCE OF 100.00 FEET THENCE NORTH 55 DEGREES 35 MINUTES 51 SECONDS EAST A DISTANCE OF 100.00 FEET THENCE SOUTH 33 DEGREES 24 MINUTES 09 SECONDS EAST A DISTANCE OF 100.00 FEET THENCE SOUTH 55 DEGREES 35 MINUTES 51 SECONDS WEST A DISTANCE OF 100 00 FEET TO THE

10 000 SQUARE FEET OR 0.2295 ACRES MORE OR LESS

PROPOSED ACCESS & UTILITY EASEMENT

PHOPOSED ACCESS & UTILITY EASEMENT

ALL THAT TRACT OR PARCEL OF LAND LYING IN THE COUNTY OF MARTIN STATE OF KENTUCKY
CONSISTING OF A 25 FEET WIDE ACCESS AND UTILITY EASEMENT COMMENCING AT THE CORNER OF
THE UPPER END OF A CULVERT AT THE MOUTH OF JAMES RAY BRANCH THAT IS 970 FEET
NORTHWESTERLY OF THE INTERSECTION OF TOMAHAWK ROAD (KY40, ALID DANIEL ROAD MORE
PARTICULARLY DESCRIBED AS FOLLOWS

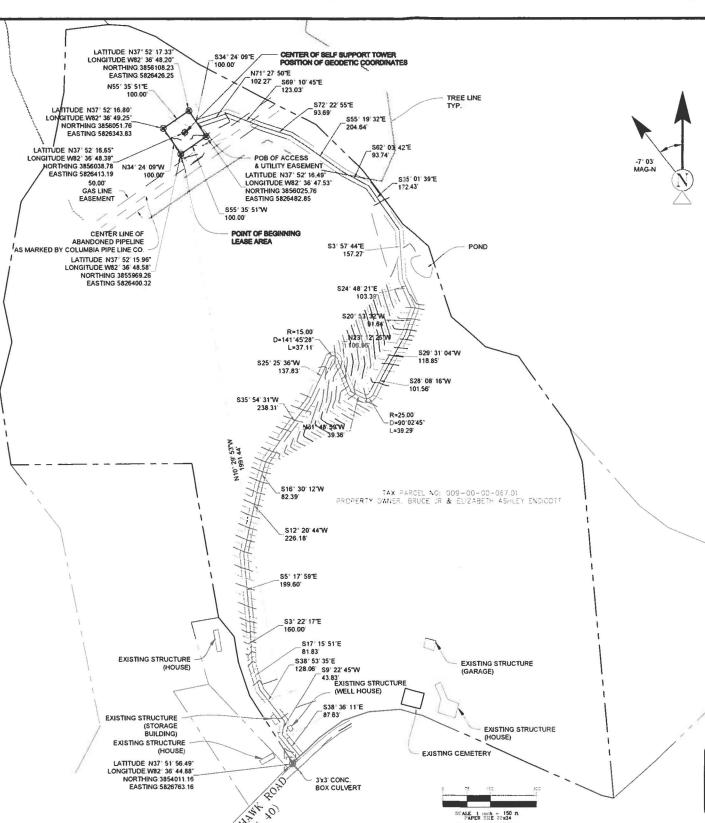
THENCE NORTH 09 DEGREES 44 MINUTES 02 SECONDS WEST A DISTANCE OF 1 991 44 FEET. THENCE NORTH 34 DEGREES 24 MINUTES 09 SECONDS WEST A DISTANCE OF 100 00 FEET THENCE NORTH 55 DEGREES 35 MINUTES 51 SECONDS EAST A DISTANCE OF 100 00 FEET THENCE SOUTH 34 DEGREES 24 MINUTES 09 SECONDS EAST A DISTANCE OF 50 00 FEET TO THE POINT OF BEGINNING OF A 25 FEET MDE ACCESS AND UTILITY EASEMENT LYING 12 50 FEET ON EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE

THENCE NORTH 71 DEGREES 27 MINUTES 58 SECONDS EAST A DISTANCE OF 102 27 FEET THENCE SOUTH 69 DEGREES 10 MINUTES 45 SECONDS EAST A DISTANCE OF 123 03 FEET THENCE SOUTH 52 DEGREES 12 MINUTES 35 SECONDS EAST A DISTANCE OF 23 03 FEET THENCE SOUTH 55 DEGREES 19 MINUTES 32 SECONDS EAST A DISTANCE OF 201 64 FEET THENCE SOUTH 62 DEGREES 03 MINUTES 32 SECONDS EAST A DISTANCE OF 93 74 FEET THENCE SOUTH 35 DEGREES 01 MINUTES 34 SECONDS EAST A DISTANCE OF 172 43 FEET THENCE SOUTH 30 DEGREES 57 MINUTES 34 SECONDS EAST A DISTANCE OF 172 7 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 31 SECONDS MEST A DISTANCE OF 103.39 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 32 SECONDS WEST A DISTANCE OF 104 FEET THENCE SOUTH 20 DEGREES 53 MINUTES 32 SECONDS WEST A DISTANCE OF 118 85 FEET THENCE SOUTH 20 DEGREES 53 MINUTES 32 SECONDS WEST A DISTANCE OF 118 55 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 12 SECONDS WEST A DISTANCE OF 118 55 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 18 SECONDS WEST A DISTANCE OF 118 55 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 18 SECONDS WEST A DISTANCE OF 118 55 FEET THENCE SOUTH 20 DEGREES 58 MINUTES 18 SECONDS WEST A DISTANCE OF 118 55 FEET DISTANCE THENCE SOUTH 28 DEGREES 31 MINUTES 04 SECONDS WEST A DISTANCE OF 118 85 FEET TO A POINT OF CURVE TO THE RIGHT HAVING A RADIUS OF 25 09 FEET AND A CENTRAL ANGLE OF 90 DEGREES 02 MINUTES 45 SECONDS THENCE WESTERLY ALONG THE ARC A DISTANCE OF 39 29 FEET THENCE NORTH 61 DEGREES 48 MINUTES 59 SECONDS WEST A DISTANCE OF 39 39 FEET THENCE NORTH 62 DEGREES 48 MINUTES 59 SECONDS WEST A DISTANCE OF 39 36 FEET THENCE NORTH 62 DEGREES 48 MINUTES 25 SECONDS WEST A DISTANCE OF 106,96 FEET THENCE NORTH 62 DEGREES 21 MINUTES 25 SECONDS WEST A DISTANCE OF 106,96 FEET THENCE NORTH 62 DEGREES 21 MINUTES 37 SECONDS WEST A DISTANCE OF 8 19 FEET TO A POINT OF CURVE TO THE LEFT HAVING A RADIUS OF 15,00 FEET AND A CENTRAL ANGLE OF 141 DEGREES 45 MINUTES 28 SECONDS THENCE WESTERLY ALONG THE ARC A DISTANCE OF 37 11 FEET THENCE SOLTH 18 DEGREES 52 MINUTES 55 SECONDS WEST A DISTANCE OF 37 11 FEET THENCE SOUTH 18 DEGREES 52 MINUTES 55 SECONDS WEST A DISTANCE OF 9.66 FEET THENCE SOUTH 25 DEGREES 25 MINUTES 36 SECONDS WEST A DISTANCE OF 137 83 FEET THENCE SOUTH 35 DEGREES 54 MINUTES 31 SECONDS WEST A DISTANCE OF 238 31 FEET THENCE SOUTH 16 DEGREES 30 MINUTES 12 SECONDS WEST A DISTANCE OF 82 39 FEET THENCE SOUTH 12 DEGREES 20 MINUTES 44 SECONDS WEST A DISTANCE OF 226 18 FEET THENCE SOUTH 12 DEGREES 20 MINUTES 44 SECONDS WEST A DISTANCE OF 226 18 FEET THENCE SOUTH 05 DEGREES 17 MINUTES 59 SECONDS EAST A DISTANCE OF 198 60 FEET THENCE SOUTH 03 DEGREES 12 MINUTES 17 SECONDS EAST A DISTANCE OF 180 00 FEET THENCE SOUTH 17 DEGREES 15 MINUTES 51 SECONDS EAST A DISTANCE OF 81 83 FEET THENCE SOUTH 38 DEGREES 35 MINUTES 35 SECONDS EAST A DISTANCE OF 128 00 FEET THENCE SOUTH 98 DEGREES 22 MINUTES 45 SECONDS WEST A DISTANCE OF 43 83 FEET THENCE SOUTH 38 DEGREES 26 MINUTES 11 SECONDS EAST A DISTANCE OF 87 63 FEET TO THE POINT OF TERMINUS

SITE INFO

AX PARCEL NO 009-00-00-057 01

PROPERTY OWNER: BRUCE OR & EUZABETH ASHLEY ENDICOTT


SOURCE OF TITLE: DB 168 PG 390

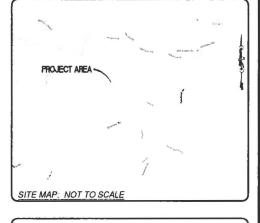
LAND SURVEYOR'S CERTIFICATE

A C AY ROBINSON HEREBY CERTIEY THAT I AM A LICENSED I, A. CLAY ROBINSON, HERERY CERTIFY THAT I AM A LICENSED PROFESSIONAL LAND SURVEYOR LICENSED IN COMPUNACE WITH THE LAWS OF THE COMMONWEALTH OF KENTUCKY, I FURTHER CERTIFY THAT THIS PLAT AND THE SURVEY ON THE GROUND WERE PERFORMED BY PERSONS UNDER MY DIRECT SUPERMISSION, AND THAT THE DIRECTIONAL AND LINEAR MEASUREVENTS BEING WITNESSED BY MONUMENTS SHOWN HEREON ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE THE "BURAL" SURVEY, AND THE PLAT ON WHICH IT IS BASED, MEETS ALL SPECIFICATION AS STATES IN KAR 201-18-150.

5.24.18

THE REPORT INFO

REFERENCE IS VADE TO THE TITLE REPORT ORDER #00300-02170'69, ISSUED BY STEWART TITLE INSURANCE COMPANY, DATED MAY 9, ALL EASEMENTS CONTAINED WITHIN SAID TITLE REPORT AFFECTING THE MMEDIATE AREA SURROUNDING THE LEASE HAVE BEEN PLOTTED (EXCEPT FOR ROOFTOPS)


7 NATURAL CAS PURELINE RICHT OF WAY FASEVENT AS SET FORTH IN DEED DATED BIT 1971. TO COLUMBIA GAS TRANSMISSION CORP. OF RECORD IN DEED BOOK 68 PAGE 349 IN THE OFFICE AFORESAID (PLOTTED AS SHOWN)

FAA COORDINATE POINT CENTER OF SELF SUPPORT TOWE LATITUDE 37' 52' 16.65" NORTH LONGITUDE 82' 36' 48 39" WEST

36' 48 39" WEST ELEVATION 1066.4 (NAVDES)

1-A ACCURACY CERTIFICATION

E HORIZONTAL ACCURACY OF THE LATITUD COORDINATES FALL WITHIN TWENTY (20) FEET THE ELEVATIONS (NAVD88) OF THE GROUND AND FIXTURES FALL WITHIN THREE (3) FEET

BENCHMARK

ELEVATION ESTABLISHED FROM GPS CBSERVATIONS CONSTRAINED TO OPLIS SOLUTIONS, APPLYING SEOID 12A SEPARATIONS NAVORR DATUM,

BASIS OF BEARINGS

BEARINGS SHOWED HEREON ARE BASED UPON U.S. STATE PLANE NADB3 COORDINATE SYSTEM **KENTUCKY SINGLE ZONE US FOOT**, DETERMINED BY GPS OBSERVATIONS. COVPLETED ON 4 27 18

UTILITY NOTES

UILITY NOTES
SURVEYOR DOES NOT GUARANTEE THAT ALL UTUILES
ARE SHOWN OR THEIR LOCATIONS IT IS THE
RESPONSIBILITY OF THE CONTRACTOR AND DEVELOPER TO
CONTACT LOCAL BY AND ANY OTHER INVOLVED AGENCES
TO LOCATE ALL UTUILES PRIOR TO CONSTRUCTION.
REMOVAL, RELOCATION AND/OR REPLACEMENT IS THE
RESPONSIBILITY OF THE CONTRACTOR.

SURVEYOR NOTES

NO SEARCH OF PUBLIC RECORDS HAS BEEN COMPLETED TO DEFERMINE ANY DEFECTS AND/OR AMBIGUITIES IN THE TITLE OF THE PARENT PARCEL

THIS SURVEY IS FOR THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS AND UTILITY EASEVENT ONLY, AND ONLY A PARTIAL BOUNDARY SURVEY OF THE PARENT TRACT HAS

THIS PROPERTY IS SUBJECT TO ANY RECORD EASEMENTS AND/OR RIGHT OF WAY SHOWN HEREON OR NOT

THIS SURVEY IS NOT INTENDED FOR LAND TRANSFER.

SURVEYOR HAS NOT PERFORMED A SEARCH OF PUBLIC RECORDS TO DETERMINE ANY DEFECT IN TITLE ISSUED. THE BOUNDARY SHOWN HEREON IS PLOTTED FROM RECORD INFORMATION AND DOES NOT CONSTITUTE A BOUNDARY SURVEY OF THE PROPERTY.

THIS SURVEY PLAN WAS PERFORMED UNDER THE AUTHORITY OF KENTUCKY REVISED STATUTES (2CT KAR 18, 150), AND IS NOT TO BE CONSIDERED A GENERAL PROPERTY BOWNDARY SURVEY AS DEFINED WITH KENTUCKY REVISED STATUES DIMENSIONS (IF SHOWN) ALONG THE PER WETER OF THE LANDOWNER'S PROPETTY ARE PROVIDED UNDER THIS SURVEYOR'S SCOPE OF SERVICES WITH ATWIT AND ARE TO BE CONSIDERED FOR REFERENCE ONLY. THE EXACT LOCATION OF THE LANDOWNER'S PROPETTY MAY DIFFER UPON THE PREPARATION OF A FULL BOUNDARY SURVEY IN ACCORDANCE WITH THE REQUIREMENTS ESTABLISHED BY THE STATE OF KENTUCKY

THIS SURVEY WAS PERFORMED WITH A CARLSON BRASE DUAL FREQUENCY, REAL THE KINEWATIC GLOBAL POSITIONING SYSTEM ROVER AND BASE STATION HUM BIB130147561135 & BIB130147501126 SERIAL NUMBERS, REDUNDANT AND REPORTING MEASUREMENTS WERE TAKENTO ASURE CORRECT

FLOOD INFORMATION

THE PROPOSED LEASE AREA SHOWN HEREON IS NOT LOCATED IN A 100-YEAR FLOCD PLAIN PER FLOOD HAZARD BOUNDARY MAP COMMUNITY-PANEL NO 21159C0101F, DATED 05 10 2015 THE PROPOSED LEASE AREA. IS LOCATED IN ZONE 'X'

OVERHEAD ELECTRIC PROPERTY LINE BARBED WIRE FENCE

LEGEND

POINT OF BEGINNING POINT OF TERMINUS PUBLIC UTILITY EASEMENT ROW RIGHT OF WAY

D.W. DRIVEWAY 57 SIDEWALK

SET ½"x24" IR CAPPED: #3219 OR FOUND AS NOTED •

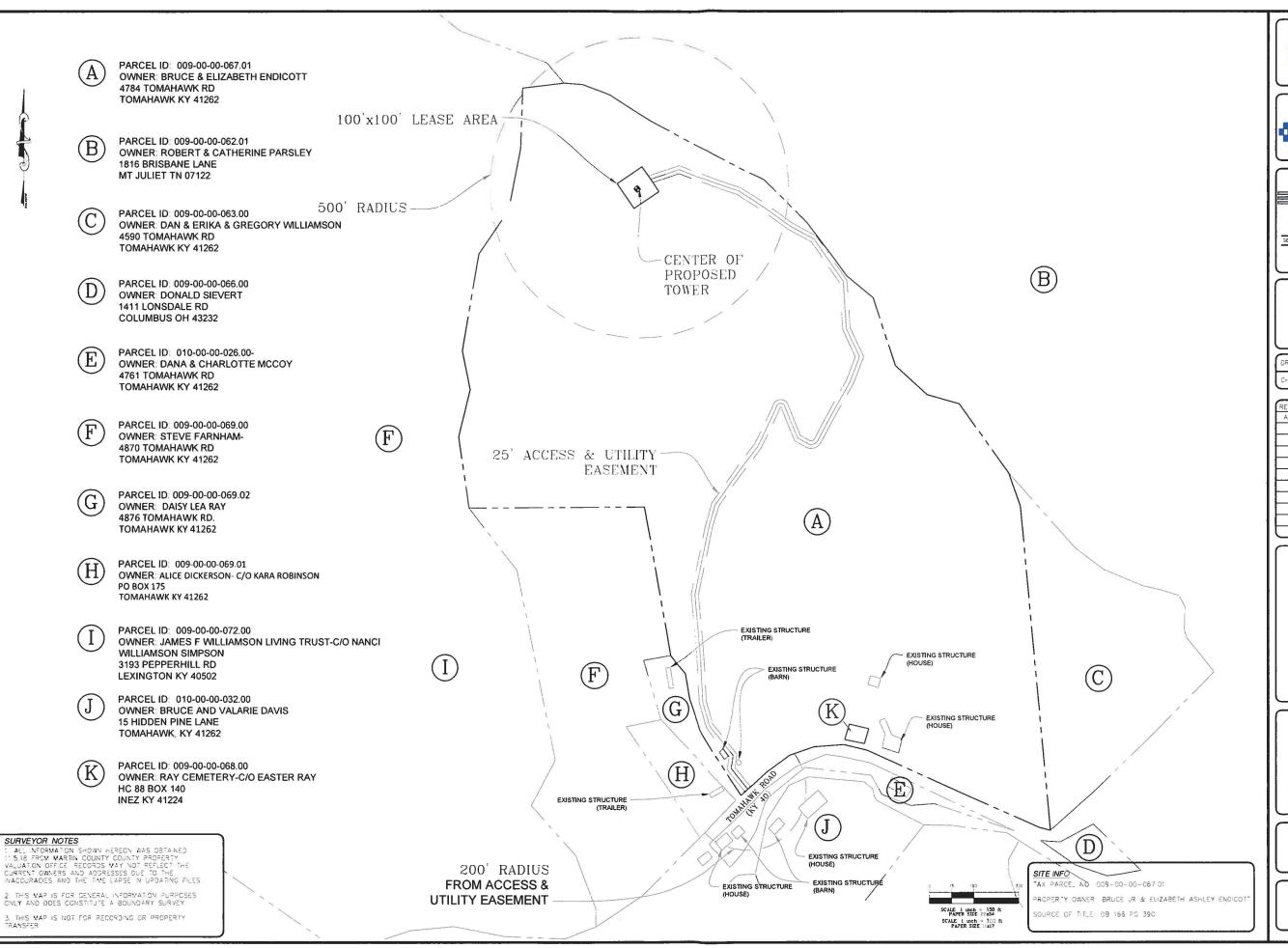
SPOT FLEVATION POSITION OF GEODETIC COORDINATES WATER CONTROL VALVE 77 FRE HYDRANT POWER POLE

ELECTRIC MANHOLE TELCO MANHOLE

GENERAL DONSTRUCTION ENGINEERING PROJECT VANAGEVENT 4503 Berruda Drive Sugar Land TX 77479 Voice (281) 796-2651 | Fax (866) 598-3136

DRAWN BY CHECKED BY JC/AGR

REV	DATE	DESCRIPTION	
A	4 30.18	REVIEW	
\dashv			
\rightarrow	-	-	
	10/42/01 19 10		



13800693 SITE# KYL06075 SITE NAME **TOMAHAWK** SITE ADDRESS 4784 TOMAHAWK RD TOMAHAWK, KY 41262 MARTIN COUNTY

> **TOPOGRAPHIC** SITE SURVEY

> > SHEET NUMBER

DRAWN BY! VD
CHECKED BY: JC/ACR

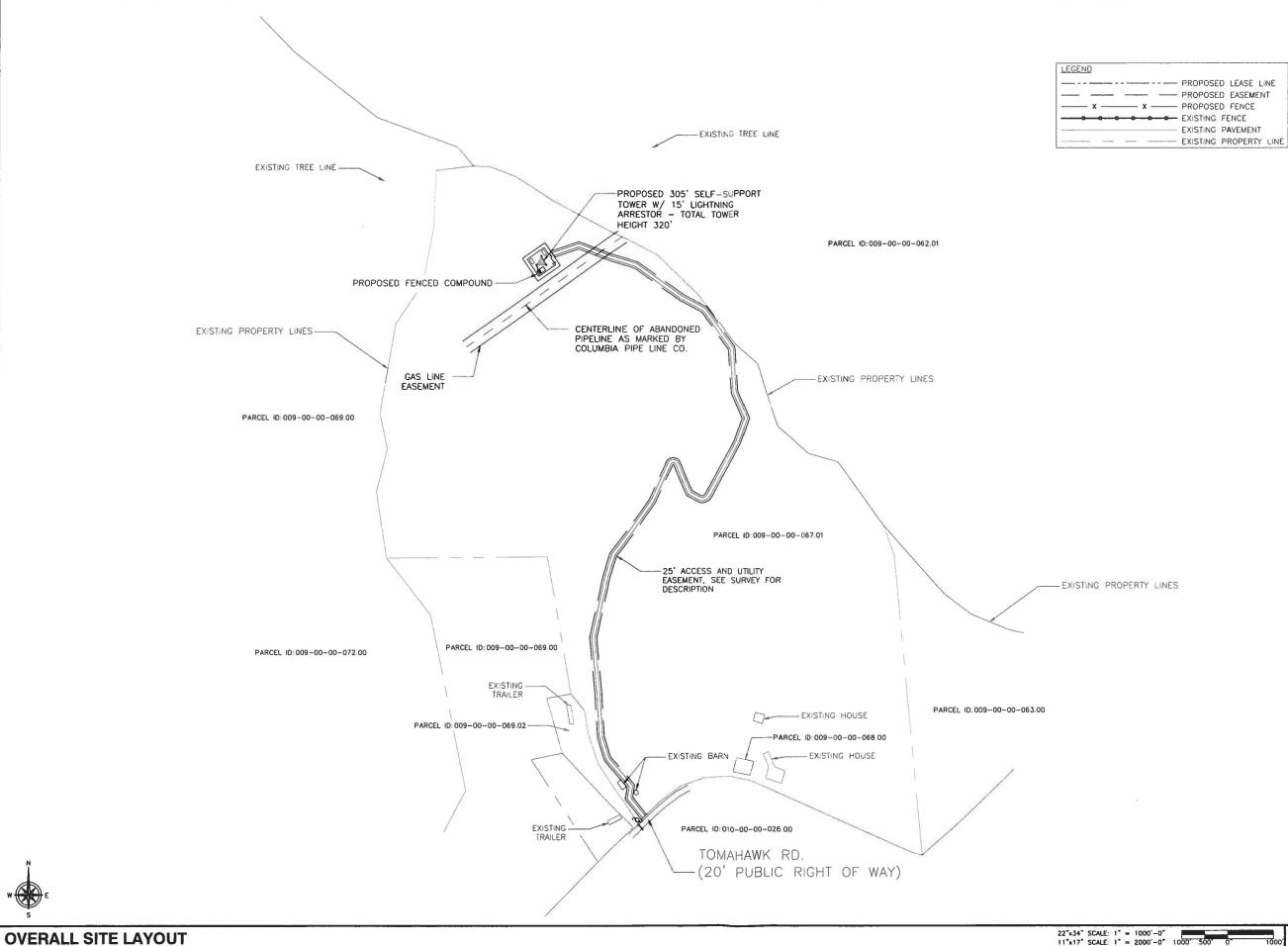
REV	DATE	DESCRIPTION	
A	11.5.18	REVIEW	
			_
		ļ	_
-			-
		-	-
\neg			

TA #

13800693
SITE#

KYL06075
SITE NAME:

TOMAHAWK
SITE ADDRESS4784 TOMAHAWK RD


TOMAHAWK, KY 41262

MARTIN COUNTY

500' RADIUS & ABUTTER'S MAP

SHEET NUMBER

B-2

ZONING DRAWINGS

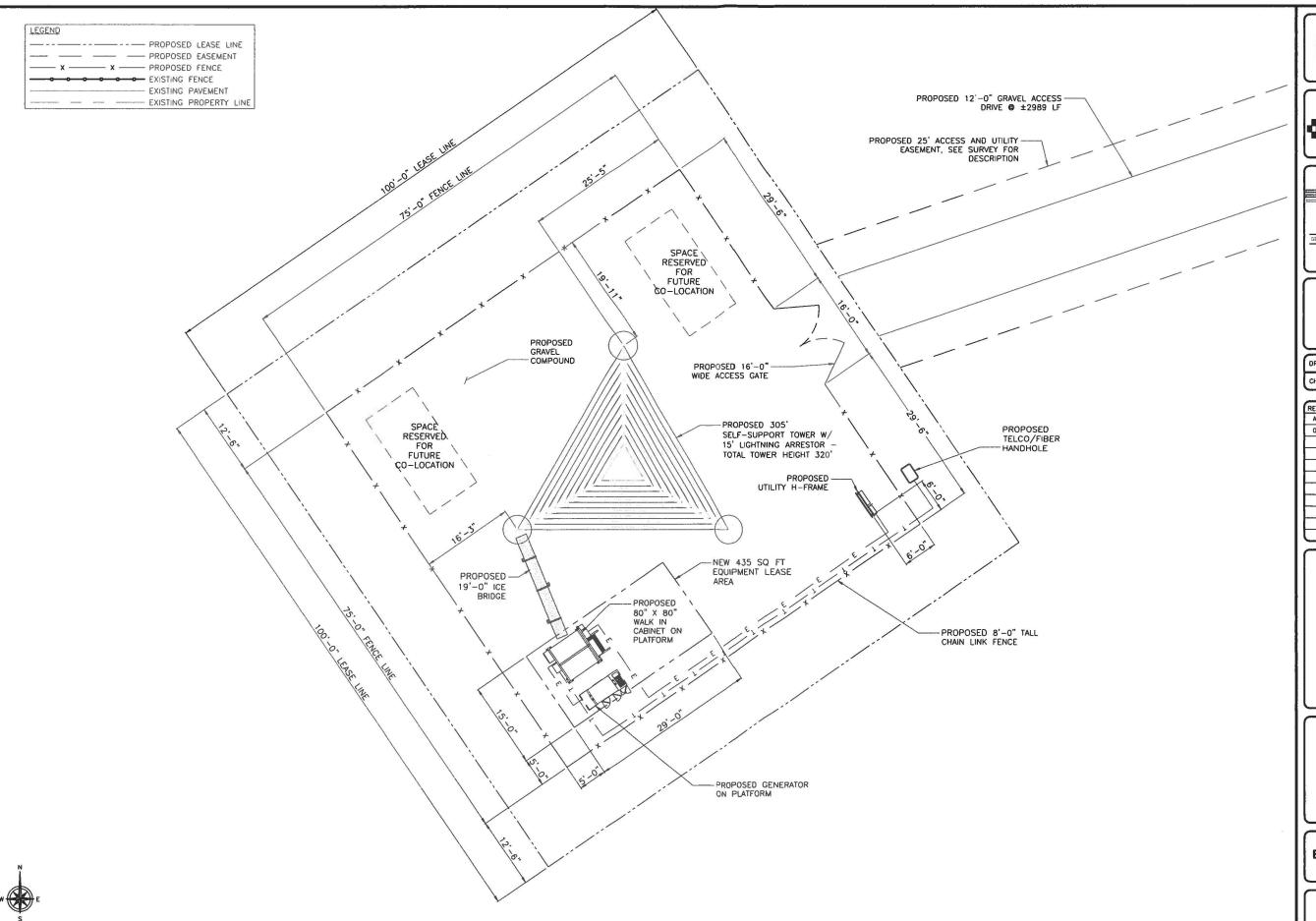
NOT FOR CONSTRUCTION

4503 Bermuda Drive, Sugar Land, TX 77479 Voice, (281) 796-2651 Fax. (866) 598-3136 Inshtower.com.

DRAWN BY: AMC CHECKED BY:

REV	DATE	DESCRIPTION
Α	11/15/18	ISSUED FOR REVIEW
0	11/20/18	ISSUED FOR ZONING
\dashv		
		ļ
		
\exists		
		İ

ENG. PERMIT # 4363


13800693 KYL06075 SITE NAME: TOMAHAWK SITE ADDRESS 4784 TOMAHAWK ROAD TOMAHAWK, KY 41262

SHEET TITLE

OVERALL SITE LAYOUT

SHEET NUMBER

22"x34" SCALE: 1" = 1000'-0" 11"x17" SCALE: 1" = 2000'-0" 1000' 500' 0

ENLARGED COMPOUND LAYOUT

MasTec

ENERAL CONSTRUCTION JENGINEERING JARQUEST WANGEWENT

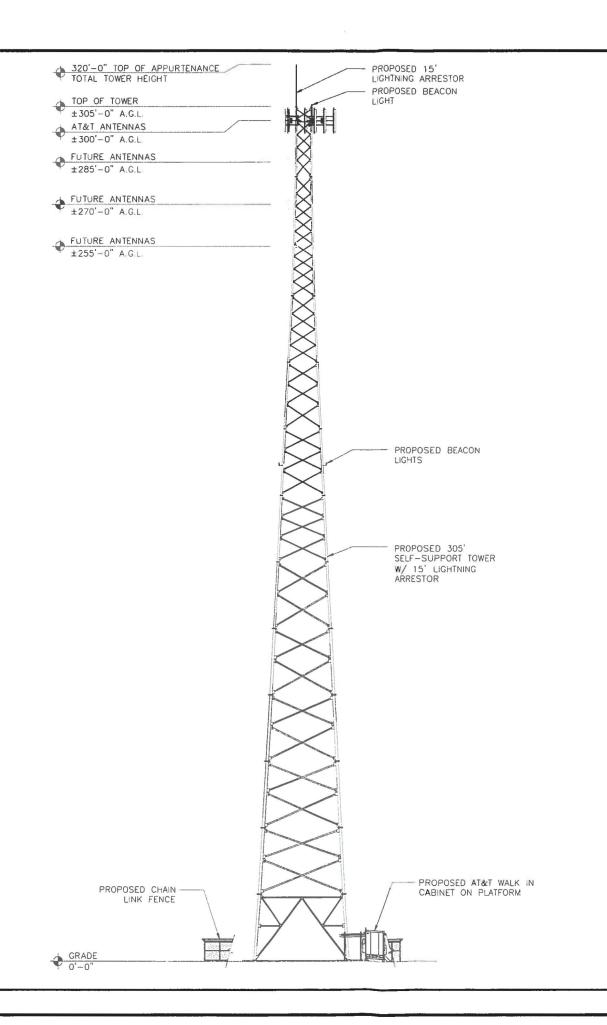
4693 Bermuda Drave Sugar Land TX 774*9 Voice |281| 796-2651 | Fax | 866| 598-3136 Inshlower.com

ZONING DRAWINGS NOT FOR CONSTRUCTION

	AMC
CHECKED BY:	JRG

REV	DATE	DESCRIPTION
Α	11/15/18	ISSUED FOR REVIEW
0	11/20/18	ISSUED FOR ZONING
		+
	-	W 4554900-400

ENG. PERMIT # 4363


FA # 13800693
SITE#
KYL06075
SITE NAME:
TOMAHAWK
SITE ADDRESS:
4784 TOMAHAWK ROAD
TOMAHAWK, KY 41262

SHEET TITLE

ENLARGED COMPOUND LAYOUT

SHEET NUMBER

22"x34" SCALE: 1/8" = 1'-0" 11"x17" SCALE: 1/16" = 1'-0" 8' 6' 4' 2' 0" C-2

SENERAL CONSTRUCTION JEVGINEEPING PROJECT VANAGEMENT 4603 Bermuda Drive Sugar Land TX 77479 Voice (281) 796-2651 Fax: (866) 598-3136 Inshtower.com.

ZONING DRAWINGS NOT FOR CONSTRUCTION

SRAAN SY	AMC
CHECKED BY	JRG

YEV	DATE	DESCRIPTION
A	11/.2/.3	ISSUED FOR REVIEW
0	11/20/18	ISSUED FOR ZONING
1		
1		
		1
		

13800693

KYL06075

TOMAHAWK

4784 TOMAHAWK ROAD TOMAHAWK, KY 41262

TOWER ELEVATION

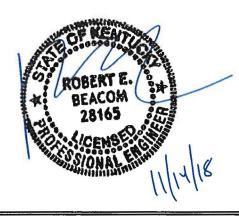
TOWER ELEVATION

22"x34" SCALE 1" = 300'-0" 11'x'7" SCALE 1" = 600'-0

C-3

EXHIBIT C TOWER AND FOUNDATION DESIGN

Structural Design Report


305' S3TL Series HD1 Self-Supporting Tower Site: Tomahawk, KY

Prepared for: AT&T by: Sabre Towers & Poles ™

Job Number: 422013

November 14, 2018

Tower Profile	1-2
Foundation Design Summary (Option 1)	3
Foundation Design Summary (Option 2)	4
Maximum Leg Loads	5
Maximum Diagonal Loads	6
Maximum Foundation Loads	7
Calculations	8-24

F G	0	NONE O P							1175 W	305°	
$oxed{oxed}$	4	S					ŝ		L	280'	
Е	L2X2X114							13 @ 5	1840	260	
0	z					(1) 5/8"	۲.		2227	260	
S	٤						'n		2979	240	
В	716						11.	9 @ 6.6667'	3083	220	
H	L3X3X3/16		3			_	-	9 6	\vdash	200	X
0	۲3		E E	NE NE	NE.		13.		4135	180	
8.625 OD X .500	٦	NONE	NONE	NONE	NONE		15.		4305		
80	¥	2				(1) 3/4"	17.		4830	160°	
x .500							.61	10.	8509	140'	
10.75 OD X .500	L4X4X1/4						21.	12 @ 10	6207	120	
4	,					<u>_</u>	23.		5877	100'	
	L4X4X5/16					(2) 5/8"	25.		7543	80'	
	14)							>	2	60'	
12.75 OD X .500	7	œ	-	F	⊢		27.	כ	8275	40'	\rightarrow
.75 OL	Ξ	ø	o	a	σ	4	>	>	6	40'	
12	7	_	۰	L	-	(2) 3/4"	29.	Э	8503	20'	$\nearrow \forall$
	=	ø	σ	σ	ø			>	4	20'	
	Ι	-	¥	۲	۰		31.	>	8684	0'	\nearrow
				slet	ontals		Niđth	nt/Height	eight		33' - 0" X

Designed Appurtenance Loading

Elev	Description	Tx-Line
310	(1) Extendible Lightning Rod	
300	(1) 278 sq. ft, EPA 6000# (no Ice)	(18) 1 5/8"
288	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"
276	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"
264	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"

Design Criteria - ANSI/TIA-222-G

Ultimate Wind Speed (No Ice)	115 mph
Wind Speed (Ice)	30 mph
Design Ice Thickness	0.75 in
Structure Class	II
Risk Category	li li
Exposure Category	С
Topographic Category	1

Base Reactions

Total Foundation		Individual Footing	
Shear (kips)	117.4	Shear (kips)	71.82
Axial (kips)	311.87	Compression (kips)	792
Moment (ft-kips)	21402	Uplift (kips)	689
Torsion (ft-kips)	49.2		

Notes

- 1) All legs are A500 (50 ksi Min. Yield).
- 2) All braces are A572 Grade 50.
- 3) All brace bolts are A325-X.
- 4) The tower model is S3TL Series HD1.
- Transmission lines are to be attached to standard 12 hole waveguide ladders with stackable hangers.
- 6) Azimuths are relative (not based on true north).
- 7) Foundation loads shown are maximums.
- 8) All unequal angles are oriented with the short leg vertical.
- 9) Weights shown are estimates. Final weights may vary.
- 10) This tower design and, if applicable, the foundation design(s) shown on the following page(s) also meet or exceed the requirements of the 2012 International Building Code.
- 11) Tower Rating: 99.32%

Sabre Industries

Sabre Communications Corporation 7101 Southbridge Drive P.O. Box 658 Sioux City, IA 51102-0658 Phone (712) 256-6600 Fee: (712) 276-0614

Information contained heren is the sole property of Sabre Communications Corporation constitutes trade secret as defined by flows Code Ch. 550 and shall not be reproduced copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Communications.

Material List

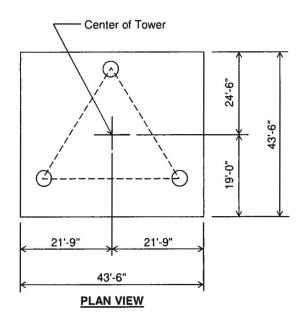
		mate
Display		Value
A	12.75 OD X .375	
В	8,625 OD X .322	
С	5,563 OD X .500	
D	5,563 OD X .375	
E	4.500 OD X .337	
F	2.875 OD X 276	
G	2.375 OD X .154	
Н	L 5 X 3 1/2 X 1/4 (SLV)	
I	L 4 X 4 X 5/16	
J	L 5 X 3 1/2 X 5/16 (SLV)	100
К	L 3 1/2 X 3 1/2 X 1/4	
L	L 3 1/2 X 3 X 1/4 (SLV)	

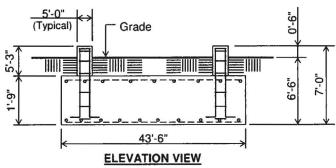
Display	Value	
М	L 2 1/2 X 2 1/2 X 1/4	
N	L 2 1/2 X 2 1/2 X 3/16	
0	L 2 X 2 X 3/16	
P	L 2 X 2 X 1/8	
Q	NONE	
R	L 4 X 3 1/2 X 5/16 (SLV)	
S	L 2 X 2 X 1/4	
T	L3X3X1/4	
U	1 @ 13.333	
٧	1 @ 6.667'	
W	249	

422013 Customer AT&T Site Name Tomahawk, KY Description

305' S3TL Date 11/14/2018

By REB




No.: 422013

Date: 11/14/18 By: REB

Customer: AT&T Site: Tomahawk, KY

305 ft. Model S3TL Series HD1 Self Supporting Tower

(134.1 cu. yds.) (1 REQD.; NOT TO SCALE)

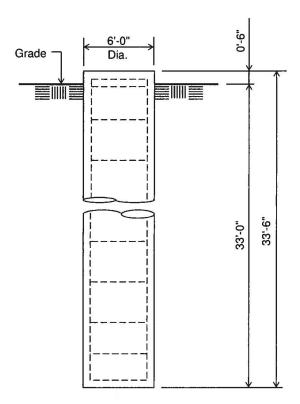
CAUTION: Center of tower is not in center of slab.

Notes

- Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-11.
- 2) Rebar to conform to ASTM specification A615 Grade 60.
- 3) All rebar to have a minimum of 3" concrete cover.
- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by ECS project no. 26:3125-S2, dated: 10/23/18
- See the geotechnical report for compaction requirements, if specified.
- 7) The foundation is based on the following factored loads: Factored download (kips) = 130.17 Factored overturn (kip-ft) = 21,401.88 Factored shear (kips) = 117.40
- 8) 4.75' of soil cover is required over the entire area of the foundation slab.
- 9) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.

	Rebar Schedule per Mat and per Pier	
Pier	(28) #7 vertical rebar w/ hooks at bottom w/ #4 rebar ties, two (2) within top 5" of pier then 12" C/C	
Mat	(74) #10 horizontal rebar evenly spaced each way top and bottom. (296 total)	
	Anchor Bolts per Leg	
(6) 1.75	5" dia. x 87" F1554-105 on a 18" B.C. w/ 10.5"	
2	max. projection above concrete.	

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.



No.: 422013

Date: 11/14/18 By: REB

Customer: AT&T Site: Tomahawk, KY

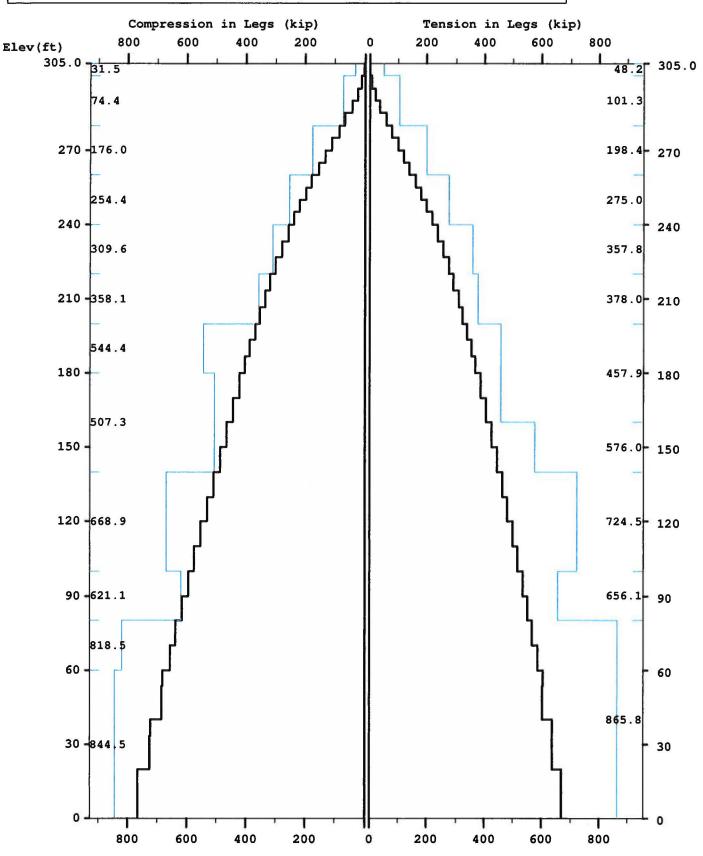
305 ft. Model S3TL Series HD1 Self Supporting Tower

ELEVATION VIEW

(35.1 cu. yds.) (3 REQUIRED; NOT TO SCALE)

Notes:

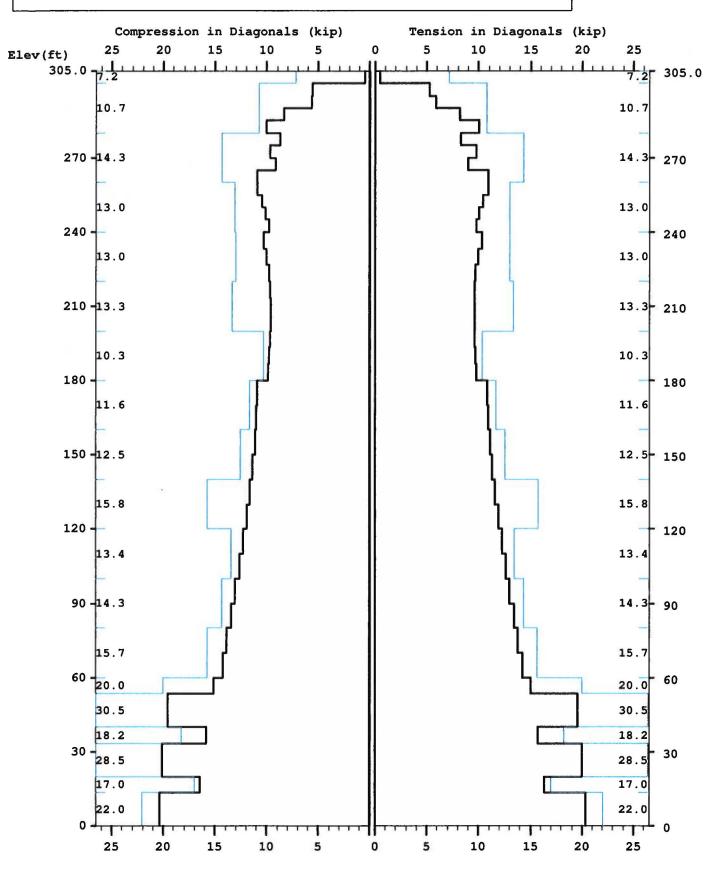
- Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-11.
- 2) Rebar to conform to ASTM specification A615 Grade 60.
- 3) All rebar to have a minimum of 3" concrete cover.
- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by ECS project no. 26:3125-S2, dated: 10/23/18
- See the geotechnical report for drilled pier installation requirements, if specified.
- 7) The foundation is based on the following factored loads: Factored uplift (kips) = 689.00 Factored download (kips) = 792.00 Factored shear (kips) = 72.00
- 8) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.


		Rebar Schedule per Pier
	Pier	(26) #8 vertical rebar w/ #4 rebar ties, two (2)
	rici	within top 5" of pier then 12" C/C
		Anchor Bolts per Leg
_	(6) 1.75" dia. x 87" F1554-105 on a 18" B.C. w/ 10.5"	
		max, projection above concrete.

DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453

14 nov 2018 7:11:33

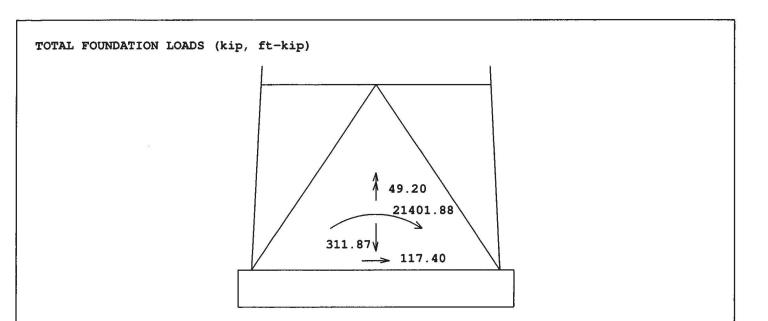
Licensed to: Sabre Towers and Poles

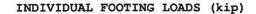

DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453

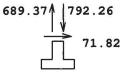
14 nov 2018

Licensed to: Sabre Towers and Poles

7:11:33




DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453 14 nov 2018


Licensed to: Sabre Towers and Poles

7:11:33

Maximum

422013

Latticed Tower Analysis (Unguyed) (Processed under license at:

(c)2015 Guymast Inc. 416-736-7453

Sabre Towers and Poles on: 14 nov 2018 at: 7:11:33

MAST GEOMETRY (ft)

PANEL TYPE	NO.OF LEGS	ELEV.AT BOTTOM	ELEV.AT TOP	F.WAT BOTTOM	F.WAT TOP	TYPICAL PANEL HEIGHT
x	3	300.00	305.00	5.00	5.00	5.00
X	3	295.00	300.00	5.00	5.00	5.00
x	3	280.00	295.00	5.00	5.00	5.00
X	3	275.00	280.00	5.50	5.00	5.00
X	3	260.00	275.00	7.00	5.50	5.00
X	3	240.00	260.00	9.00	7.00	5.00
X	3	220.00	240.00	11.00	9.00	6.67
X	3	200.00	220.00	13.00	11.00	6.67
X	3	180.00	200.00	15.00	13.00	6.67
×	3	160.00	180.00	17.00	15.00	10.00
X	3	140.00	160.00	19.00	17.00	10.00
X	3	120.00	140.00	21.00	19.00	10.00
×	3	100.00	120.00	23.00	21.00	10.00
×	3	80.00	100.00	25.00	23.00	10.00
×	3	60.00	80.00	27.00	25.00	10.00
V	3	53.33	60.00	27.67	27.00	6.67
Α	3	40.00	53.33	29.00	27.67	13.33
V	3	33.33	40.00	29.67	29.00	6.67
Α	3	20.00	33.33	31.00	29.67	13.33
V	~~~~~~~~~~~~~~~~~~~~~	13.33	20.00	31.67	31.00	6.67
Α	3	0.00	13.33	33.00	31.67	13.33

MEMBER PROPERTIES

MEMBER TYPE	BOTTOM ELEV ft	TOP ELEV ft	X-SECTN AREA in.sq	RADIUS OF GYRAT in		THERMAL EXPANSN /deg
LE LE LE LE DI DI DI DI DI DI DI DI DI DI DI DI DI	\$\frac{1}{5}\$\text{t}\$ \$300.00 280.00 260.00 240.00 200.00 140.00 100.00 300.00 260.00 240.00 220.00 180.00 160.00 140.00 80.00 33.33 40.00 33.33 0.00	5t 305.00 300.00 280.00 240.00 240.00 200.00 140.00 305.00 305.00 280.00 240.00 240.00 240.00 160.00 140.00 80.00 33.33 40.00 33.33 20.00 13.33	in.sq 1.075 2.254 4.407 6.111 7.952 8.399 12.763 16.101 14.579 19.242 0.484 0.715 0.902 1.188 1.090 1.562 1.688 1.938 2.402 2.559 2.402 2.559 2.402 2.559 2.402	in 0.787 0.787 0.787 0.787 0.787 0.787 0.787 0.787 0.787 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626	ksi 29000	/deg 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117 0000117
НО НО	300.00 295.00	305.00 300.00	0.484 0.715	0.626 0.626	29000. 0.0	0000117 0000117
HO HO	275.00 40.00	280.00 53.33	0.938 2.246	0.626 0.626		0000117 0000117
но	20.00	33.33	2.402	0.626	29000. 0.0	0000117
НО	0.00	13.33	2.402	0.626		0000117
BR BR	40.00 20.00	53.33 33.33	1.438 1.438	0.000		0000117 0000117

422013 0.000 29000. 0.0000117 0.00 13.33 1.688 BR

FACTORED MEMBER RESISTANCES

BOTTOM ELEV	TOP ELEV ft	COMP	EGS TENS kin	COMP	GONALS TENS kin	COMP	ONTALS TENS	COMP	BRACING TENS
ft 300.0 295.0 280.0 275.0 260.0 240.0 220.0 200.0 180.0 140.0	ft 305.0 300.0 295.0 280.0 275.0 260.0 240.0 220.0 200.0 180.0 160.0	817 31.48 74.39 74.39 175.98 175.98 254.38 309.64 358.08 544.40 507.33 507.33	kip 48.15 101.25 101.25 198.45 198.45 274.95 357.75 378.00 457.90 576.00	kip 7.16 10.74 10.74 14.32 13.03 13.00 13.34 10.34 11.62 12.53	kip 7.16 10.74 10.74 14.32 13.03 13.00 13.34 10.34 11.62 12.53	kip 5.82 8.46 0.00 10.95 0.00 0.00 0.00 0.00 0.00	5.82 8.46 0.00 10.95 0.00 0.00 0.00 0.00 0.00	kip 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	kip 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
120.0 100.0 80.0 60.0 53.3 40.0 33.3 20.0 13.3 0.0	140.0 120.0 100.0 80.0 60.0 53.3 40.0 33.3 20.0 13.3	668.86 668.86 621.06 818.52 844.46 844.46 844.46 844.46 844.46	724.50 724.50 656.10 865.80 865.80 865.80 865.80 865.80 865.80	15.77 13.43 14.31 15.70 20.02 30.51 18.24 28.50 16.98 22.03	15.77 13.43 14.31 15.70 20.02 30.51 18.24 28.50 16.98 22.03	0.00 0.00 0.00 0.00 0.00 16.12 0.00 17.32 0.00 15.58	0.00 0.00 0.00 0.00 0.00 16.12 0.00 17.32 0.00 15.58	0.00 0.00 0.00 0.00 7.41 0.00 6.59 0.00 9.00	0.00 0.00 0.00 0.00 7.41 0.00 6.59 0.00 9.00

^{*} Only 3 condition(s) shown in full
* Some wind loads may have been derived from full-scale wind tunnel testing

115 mph Ultimate wind with no ice. Wind Azimuth: 00

MAST LOADING

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	ADAT AZI	LOAD AZI	FORCE: HORIZ kip	S DOWN kip	MOME VERTICAL ft-kip	TORSNAL ft-kip
c c c c	310.0 300.0 288.0 276.0 264.0	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.29 10.39 7.71 7.64 7.57	0.15 7.20 4.80 4.80 4.80	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	305.0 300.0 290.0 290.0 285.0 285.0 285.0 275.0 265.0 265.0 240.0 240.0 220.0 200.0 200.0 180.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 180.0 42.0 42.0 63.7 63.7 76.5 76.5 80.8 99.1 101.2 58.7 330.0 329.1 329.9 329.9 329.9		0.07 0.07 0.15 0.14 0.16 0.17 0.17 0.19 0.21 0.22 0.22 0.24 0.25 0.24 0.25 0.27	0.04 0.09 0.08 0.10 0.11 0.11 0.16 0.17 0.18 0.20 0.22 0.23 0.25 0.26 0.27 0.32 0.33	0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.00 0.10 0.10 0.12 0.12 0.12 0.11 0.07 0.07 0.05 0.05 0.05 0.05 0.05

150.0 150.0 140.0 140.0 100.0 80.0 80.0 60.0 53.3 53.3 40.0 33.3 20.0 20.0 13.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	329.9 329.8 329.8 330.0 330.0 330.0 330.0 330.0 330.0 330.0 330.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.26 0.27 0.27 0.29 0.29 0.30 0.29 0.26 0.30 0.30 0.24 0.24 0.28 0.21	422013 0.34 0.35 0.41 0.42 0.41 0.50 0.51 0.48 0.57 0.57 0.57 0.48 0.48 0.59 0.59 0.49 0.59	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
13.3	0.00	330.0 330.0	0.0	0.25 0.25	0.59 0.59	0.01 0.01	0.03

115 mph Ultimate wind with no ice. Wind Azimuth: 00

MAST LOADING

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	ADAT AZI	LOAD AZI	FORCE HORIZ kip	S DOWN kip	MOME VERTICAL ft-kip	NTS TORSNAL ft-kip
C C C C	310.0 300.0 288.0 276.0 264.0	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.29 10.39 7.71 7.64 7.57	0.12 5.40 3.60 3.60 3.60	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	305.0 300.0 290.0 290.0 285.0 285.0 225.0 265.0 265.0 260.0 240.0 220.0 220.0 220.0 200.0 150.0 140.0 150.0 140.0 140.0 150.0 140.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	180.0 42.0 42.0 42.0 76.5 80.8 99.1 101.2 78.7 76.5 80.8 99.1 101.2 78.7 76.5 80.8 99.1 101.2 78.7 78	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.07 0.07 0.15 0.14 0.16 0.17 0.17 0.19 0.21 0.22 0.24 0.25 0.24 0.25 0.27 0.27 0.28 0.27 0.27 0.27 0.29 0.29 0.29 0.29 0.29	0.03 0.07 0.06 0.07 0.08 0.12 0.13 0.15 0.17 0.17 0.19 0.20 0.24 0.25 0.26 0.26 0.31 0.38 0.38 0.38 0.38	0.00 0.00 0.04 0.04 0.04 0.05 0.05 0.04 0.03 0.00 0.01	0.00 0.10 0.10 0.12 0.12 0.12 0.11 0.07 0.05 0.04

						422013		
D	33.3	0.00	330.0	0.0	0.28	0.44	0.01	0.04
D	20.0	0.00	330.0	0.0	0.28	0.44	0.01	0.04
D	20.0	0.00	330.0	0.0	0.21	0.37	0.01	0.03
D	13.3	0.00	330.0	0.0	0.21	0.37	0.01	0.03
D	13.3	0.00	330.0	0.0	0.25	0.44	0.01	0.03
D	0.0	0.00	330.0	0.0	0.25	0.44	0.01	0.03

30 mph wind with 0.75 ice. Wind Azimuth: 0♦

MAST LOADING

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	ADAT	LOAD AZI	FORC HORIZ kip	ES DOWN kip	MOME VERTICAL ft-kip	TORSNAL ft-kip
c c c c	310.0 300.0 288.0 276.0 264.0	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.05 1.29 1.57 1.55 1.53	0.30 18.42 12.25 12.22 12.19	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	305.0 300.0 300.0 295.0 295.0 295.0 285.0 285.0 285.0 285.0 260.0 260.0 240.0 220.0 220.0 240.0 220.0 180.0 150.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 333.3	0.00 0.00	180.0 180.0 180.0 42.0 68.8 86.2 42.3 68.8 86.2 86.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03	0.18 0.18 0.32 0.28 0.28 0.34 0.34 0.38 0.48 0.59 0.67 0.67 0.69 0.75 0.83 0.79 0.84 0.92 0.95 0.95 0.95 0.95 0.95	0.00 0.00 0.22 0.22 0.22 0.21 0.22 0.21 0.22 0.20 0.20	0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
D D D	20.0 20.0 13.3 13.3 0.0	0.00 0.00 0.00 0.00 0.00	330.0 330.0 330.0 330.0	0.0 0.0 0.0 0.0	0.03 0.02 0.02 0.02 0.02	1.24 0.99 0.99 1.32 1.32	0.02 0.02 0.02 0.03 0.03	0.00 0.00 0.00 0.00 0.00

______ MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft LEGS DIAG HORIZ BRACE

			42	2013
305.0			0.09 A	0.00 A
300.0	0.15 U		1.68 K	0.00 A
295.0	5.43 M	5.29 T	0.28 A	0.00 A
290.0	18.86 M		0.13 s	0.00 A
285.0	34.64 M	8.21 N	0.30 A	0.00 A
280.0	57.01 M	10.09 в	0.55 M	0.00 A
275.0	76.89 M	8.24 M	0.20 A	0.00 A
270.0	97.86 M	9.78 H	0.15 A	0.00 A
265.0	118.04 M	8.95 T	0.13 A	0.00 A
260.0	137.87 M	10.92 T	0.16 A	0.00 A
255.0	160.47 M	10.90 T	0.10 A	0.00 A
	180.63 M		0.10 A	0.00 A
250.0	199.90 M	10.04 T		0.00 A
245.0	217.16 M		0.09 A	
240.0	236.21 M		0.16 A	0.00 A
233.3	256.06 M	9.98 T	0.12 A	0.00 A
226.7	274.88 M	9.74 T	0.14 A	0.00 A
220.0	292.26 M	9.64 T	0.11 A	0.00 A
213.3	309.02 M	9.58 T	0.08 A	0.00 A
206.7	324.81 M	9.59 T	0.10 A	0.00 A
200.0	340.19 M	9.63 т	0.07 A	0.00 A
193.3	354.77 M	9.71 N	0.12 A	0.00 A
186.7	369.18 M	9.82 T	0.06 A	0.00 A
180.0	386.16 M	10.85 T	0.11 A	0.00 A
170.0	406.35 M		0.12 A	0.00 A
160.0	425.55 M	11.08 T	0.08 A	0.00 A
150.0	444.44 M	11.29 N	0.11 A	0.00 A
140.0	462.66 M	11.55 т	0.07 A	0.00 A
130.0	480.68 M	11.89 V	0.07 A	0.00 A
120.0	498.34 M	12.24 P	0.07 A	0.00 A
110.0	515.94 M	12.61 V	0.07 A	0.00 A
100.0	533.30 M	12.99 P	0.05 A	0.00 A
90.0	550.64 M	13.40 V	0.07 A	0.00 A
80.0	567.73 M	13.81 P	0.05 o	0.00 A
70.0	584.60 M	14.21 V	0.07 s	0.00 A
60.0	604.45 M	14.99 P	0.30 A	0.00 A
53.3	603.10 M	19.54 P	1.07 U	0.00 U
40.0	637.39 M	15.72 P	0.26 A	0.00 A
33.3	636.01 M	20.02 P	1.00 U	0.00 s
20.0	669.81 M	16.38 P	0.11 A	0.00 s
13.3			0.88 U	0.00 A

0.0 ------ 0.00 A 422013 0.0 ----- 0.00 A 0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG		HORIZ		BRACE	
305.0	-0.29 C	-0.50	c	-0.08	S	0.00	Α
300.0				-1.47	Q	0.00	A
295.0	-9.67 G	-5.56		-0.20	S	0.00	Α
290.0	-24.11 G	-5.67		-0.15	Α	0.00	A
285.0	-41.64 G	-8.34	В	-0.23	S	0.00	Α
280.0	-65.90 G	-10.07	В	-0.59	G	0.00	Α
275.0	-86.46 G	-8.70	G	-0.15	s	0.00	A
270.0	-111.10 G	-9.63	Т	-0.13	S	0.00	A
265.0	-131.63 G	-9.11	В	-0.10		0.00	
260.0	-154.69 G	-10.92	Т	-0.14		0.00	
	-178.63 G	-10.96	В				
255.0	-199.78 G	-10.44	Т	-0.08		0.00	
250.0	-219.91 G	-10.10	В	-0.16		0.00	
245.0	-238.18 G	-9.78	т	-0.08		0.00	
240.0	-258.32 G	-10.34	В	-0.14	S	0.00	Α
233.3	-279.65 G	-9.99	т	-0.10	S	0.00	Α
226.7	-299.86 G	-9.79		-0.12	S	0.00	Α
220.0	-318.75 G	-9.64		-0.09	S	0.00	Α
213.3	-336.97 G	-9.62		-0.07	S	0.00	Α
206.7				-0.09	S	0.00	Α
200.0	-354.30 G	-9.61		-0.06	S	0.00	Α
193.3	-371.32 G	-9.66		-0.11	S	0.00	Α
186.7	-387.69 G	-9.74	Н	-0.05	S	0.00	Α
180.0	-403.93 G	-9.84	В	-0.10	s	0.00	Α
170.0	-423.18 G	-10.91	Н	-0.11		0.00	
160.0	-446.23 G	-10.98	Н	-0.07		0.00	
150.0	-468.28 G	-11.13	Н	-0.09		0.00	
140.0	-490.12 G	-11.33	Н	-0.05		0.00	
	-511.48 G	-11.61	H				
130.0	-532.88 G	-11.94	D	-0.06		0.00	
120.0	-553.98 G	-12.29	J	-0.06		0.00	
110.0	-575.09 G	-12.65	D	-0.06	S	0.00	
100.0	-595.95 G	-13.04		-0.04	S	0.00	
90.0	-616.81 G	-13.45		-0.06	S	0.00	A
80.0	-637.74 G	-13.85		-0.05	I	0.00	A
	22	25.05	-				

				422013
70.0			-0.08 A	0.00 A
	-658.74 G	-14.26 D	0 22 -	
60.0	-682.36 G	-15.09 J	-0.27 s	0.00 A
53.3	-062.30 G	-13.03 3	-1.27 C	0.00 W
,,,,	-684.16 G	-19.61 J		0,100
40.0			-0.22 S	0.00 A
22.2	-724.07 G	-15.84 J	1 21 0	0 00 -
33.3	-725.92 G	-20.10 J	-1.21 C	0.00 P
20.0	-723.32 G	-20.10)	-0.09 s	0.00 P
	-765.55 G	-16.45 J		
13.3			-1.08 C	0.00 s
	-767.41 G	-20.41 J	0.00	0.00.4
0.0			0.00 A	0.00 A

FORCE/RESISTANCE RATIO IN LEGS

MAST	LE	G COMPRE	SSION - FORCE/		LEG TENS	ION FORCE/
ELEV	MAX COMP	COMP RESIST	RESIST RATIO	MAX TENS	TENS RESIST	RESIST RATIO
305.00	0.29	31.48	0.01	0.15	48.15	0.00
300.00	9.67	74.39	0.13	5.43	101.25	0.05
295.00	24.11	74.39	0.32	18.86	101.25	0.19
290.00	41.64	74.39	0.56	34.64	101.25	0.34
285.00	65.90	74.39	0.89	57.01	101.25	0.56
280.00	86.46	175.98	0.49	76.89	198.45	0.39
275.00	111.10	175.98	0.63	97.86	198.45	0.49
270.00	131.63	175.98	0.75	118.04	198.45	0.59
265.00	154.69	175.98	0.88	137.87	198.45	0.69
260.00	178.63	254.38	0.70	160.47	274.95	0.58
255.00	199.78	254.38	0.79	180.63	274.95	0.66
250.00	219.91	254.38	0.86	199.90	274.95	0.73
245.00	238.18	254.38	0.94	217.16	274.95	0.79
240.00	258.32	309.64	0.83	236.21	357.75	0.66
233.33	279.65	309.64	0.90	256.06	357.75	0.72
226.67	299.86	309.64	0.97	274.88	357.75	0.77
220.00	318.75	358.08	0.89	292.26	378.00	0.77
213.33	336.97	358.08	0.94	309.02	378.00	0.82
206.67	354.30	358.08	0.99	324.81	378.00	0.86
200.00	371.32	544.40	0.68	340.19	457.90	0.74
193.33	387.69	544.40	0.71	354.77	457.90	0.77
186.67	403.93	544.40	0.74	369.18	457.90	0.81
180.00	423.18	507.33	0.83	386.16	457.90	0.84
170.00	446.23	507.33	0.88	406.35	457.90	0.89
160.00	468.28	507.33	0.92	425.55	576.00	0.74
150.00	490.12	507.33	0.97	444.44	576.00	0.77
140.00	511.48	668.86	0.76	462.66	724.50	0.64
130.00						

120.00	532.88	668.86	0.80	480.68	724.50	422013 0.66
120.00	553.98	668.86	0.83	498.34	724.50	0.69
110.00	575.09	668.86	0.86	515.94	724.50	0.71
100.00	595.95	621.06	0.96	533.30	656.10	0.81
90.00	616.81	621.06	0.99	550.64	656.10	0.84
80.00	637.74	818.52	0.78	567.73	865.80	0.66
70.00	658.74	818.52	0.80	584.60	865.80	0.68
60.00	682.36	844.46	0.81	604.45	865.80	0.70
53.33	684.16	844.46	0.81	603.10	865.80	0.70
40.00	724.07	844.46	0.86	637.39	865.80	0.74
33.33	725.92	844.46	0.86	636.01	865.80	0.73
20.00	765.55	844.46	0.91	669.81	865.80	0.77
13.33	767.41	844.46	0.91	668.42	865.80	0.77
0.00						

FORCE/RESISTANCE RATIO IN DIAGONALS

MAST	- DIA	G COMPRE	SSION - FORCE/		DIAG TEN	SION FORCE/
ELEV	MAX COMP	COMP RESIST	RESIST RATIO	MAX TENS	TENS RESIST	RESIST RATIO
305.00						
300.00	0.50	7.16	0.07	0.46	7.16	0.06
295.00	5.56	10.74	0.52	5.29	10.74	0.49
290.00	5.67	10.74	0.53	5.83	10.74	0.54
	8.34	10.74	0.78	8.21	10.74	0.76
285.00	10.07	10.74	0.94	10.09	10.74	0.94
280.00	8.70	14.32	0.61	8.24	14.32	0.58
275.00	9.63	14.32	0.67	9.78	14.32	0.68
270.00	9.11	14.32	0.64	8.95	14.32	0.62
265.00	10.92	14.32	0.76	10.92	14.32	0.76
260.00	10.96	13.03	0.84	10.90	13.03	0.84
255.00	10.44	13.03	0.80	10.44	13.03	0.80
250.00	10.10	13.03	0.77	10.04	13.03	0.77
245.00						
240.00	9.78	13.03	0.75	9.78	13.03	0.75
233.33	10.34	13.00	0.80	10.29	13.00	0.79
226.67	9.99	13.00	0.77	9.98	13.00	0.77
220.00	9.79	13.00	0.75	9.74	13.00	0.75
	9.64	13.34	0.72	9.64	13.34	0.72
213.33	9.62	13.34	0.72	9.58	13.34	0.72
206.67	9.61	13.34	0.72	9.59	13.34	0.72
200.00	9.66	10.34	0.93	9.63	10.34	0.93
193.33	9.74	10.34	0.94	9.71	10.34	0.94
186.67	9.84	10.34	0.95	9.82	10.34	0.95
180.00						

	10.91	11.62	0.94	10.85	11.62	422013 0.93		
170.00	10.98	11.62	0.94	10.94	11.62	0.94		
160.00	11.13	12.53	0.89		12.53	0.88		
150.00	11.33	12.53	0.90	11.29	12.53	0.90		
140.00	11.61	15.77	0.74	11.55	15.77	0.73		
130.00	11.94	15.77	0.76	11.89	15.77	0.75		
120.00	12.29	13.43	0.92	12.24	13.43	0.91		
110.00	12.65	13.43	0.94	12.61	13.43	0.94		
100.00	13.04	14.31	0.91	12.99	14.31	0.91		
90.00	13.45	14.31	0.94	13.40	14.31	0.94		
80.00	13.85	15.70	0.88	13.81	15.70	0.88		
70.00	14.26	15.70	0.91	14.21	15.70	0.90		
60.00	15.09	20.02	0.75	14.99	20.02	0.75		
53.33	19.61	30.51	0.64	19.54	30.51	0.64		
40.00	15.84	18.24	0.87	15.72	18.24	0.86		
33.33	20.10	28.50	0.71	20.02	28.50	0.70		
20.00	16.45	16.98	0.97	16.38	16.98	0.96		
13.33	20.41	22.03	0.93	20.36	22.03	0.92		
0.00								
		JAL FOUND						
		LOAD	-COMPONE	NTS		-	TOTAL	
NOR	ТН	EAST	D	OWN	UPLIF	न -	SHEAR	
71.	82 G	61.81 K	792	.26 G	-689.3	87 M	71.82 G	
MAXIMUM	TOTAL LO	DADS ON FO	OUNDATIO	N : (ki	o & kip-	·ft)		
NORTH	-HORIZON- EAST	TOTAL	DOWN	NO.	ORTH	OVERTURN EAST	INGTOTAL	TORSION
		@ 0.0					@ 0.0	
117.4 S	-111.8 D	117.4 S	311.9 j	2140	01.9 G	-20511.6 D	21401.9 G	49.2 X
			,					
======	======			======				
******		:=======		=======	-=====	:======	========	=========
Lattice	d Tower A	Analysis (license a	(Unguyed at:)			ymast Inc. 41	
	owers and					on: 1	4 nov 2018 a	nt: 7:12:18

*****	******	******	20.41	*****	******	*****	***********	*****
							=========	

^{*} Only 1 condition(s) shown in full
* Some wind loads may have been derived from full-scale wind tunnel testing

60 mph wind with no ice. Wind Azimuth: 00

MAST LOADING

c 310.0 0.00 0.0 0.0 0.08 0.13 0.00	0.00 0.00 0.00 0.00
C 300.0 0.00 0.0 0.0 2.95 6.00 0.00 C 288.0 0.00 0.0 0.0 2.19 4.00 0.00 C 276.0 0.00 0.0 0.0 2.17 4.00 0.00 C 264.0 0.00 0.0 0.0 2.15 4.00 0.00	0.00
D 305.0 0.00 180.0 0.0 0.02 0.03 0.00 D 300.0 0.00 180.0 0.0 0.02 0.03 0.00 D 300.0 0.00 42.0 0.0 0.04 0.08 0.05 D 290.0 0.00 42.0 0.0 0.04 0.08 0.05 D 290.0 0.00 42.0 0.0 0.04 0.08 0.05 D 290.0 0.00 63.7 0.0 0.04 0.08 0.05 D 280.0 0.00 80.8 0.0 0.05 0.09 0.05 D 280.0 0.00 80.8 0.0 0.06 0.13 0.05 D 280.0 0.00 80.8 0.0 0.06 0.13 0.05 D 285.0 0.00 80.8 0.0 0.06 0.13 0.05 D 275.0 0.00 99.1 0.0 0.06 0.13 0.05 D 275.0 0.00 99.1 0.0 0.06 0.13 0.05 D 275.0 0.00 99.1 0.0 0.06 0.15 0.03 D 265.0 0.00 101.2 0.0 0.06 0.15 0.03 D 265.0 0.00 158.7 0.0 0.06 0.16 0.00 D 260.0 0.00 58.7 0.0 0.06 0.16 0.00 D 260.0 0.00 58.7 0.0 0.06 0.16 0.00 D 260.0 0.00 330.0 0.0 0.07 0.18 0.01 D 240.0 0.00 329.1 0.0 0.07 0.18 0.01 D 240.0 0.00 329.1 0.0 0.07 0.19 0.01 D 220.0 0.00 329.9 0.0 0.07 0.21 0.01 D 220.0 0.00 329.9 0.0 0.07 0.22 0.01 D 220.0 0.00 329.9 0.0 0.07 0.22 0.01 D 220.0 0.00 329.9 0.0 0.07 0.22 0.01 D 220.0 0.00 329.9 0.0 0.08 0.22 0.01 D 200.0 0.00 329.9 0.0 0.08 0.22 0.01 D 200.0 0.00 329.9 0.0 0.08 0.22 0.01 D 150.0 0.00 329.9 0.0 0.08 0.27 0.01 D 180.0 0.00 329.9 0.0 0.08 0.27 0.01 D 180.0 0.00 329.9 0.0 0.08 0.27 0.01 D 150.0 0.00 329.9 0.0 0.08 0.27 0.01 D 150.0 0.00 329.9 0.0 0.08 0.29 0.01 D 140.0 0.00 329.9 0.0 0.08 0.29 0.01 D 140.0 0.00 329.9 0.0 0.08 0.34 0.01 D 160.0 0.00 329.9 0.0 0.00 0.08 0.34 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 160.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 329.9 0.0 0.00 0.08 0.42 0.01 D 150.0 0.00 330.0 0.0 0.00 0.08 0.42 0.01 D 153.3 0.00 330.0 0.0 0.00 0.08 0.44 0.01 D 333.3 0.00 330.0 0.0 0.0 0.08 0.49 0.01 D 333.3 0.00 330.0 0.0 0.0 0.08 0.49 0.01 D 333.3 0.00 330.0 0.0 0.	0.00 0.00 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.01

MAXIMUM MAST DISPLACEMENTS:

ELEV ft	DEF	LECTIONS (f	t) DOWN	TILTS NORTH	(DEG) EAST	TWIST DEG
305.0 300.0 295.0 290.0 285.0 280.0 275.0	1.372 G 1.317 G 1.261 G 1.206 G 1.152 G 1.099 G 1.049 G	-1.320 D -1.267 D -1.213 D -1.161 D -1.108 D -1.058 D -1.009 D	0.018 G 0.018 G 0.017 G 0.017 G 0.016 G 0.016 G 0.015 G	0.631 G 0.631 G 0.628 G 0.619 G 0.602 G 0.575 G 0.559 G	-0.608 D -0.608 D -0.604 D -0.595 D -0.579 D -0.554 D -0.538 D	-0.038 F -0.038 F -0.037 F -0.036 F -0.034 F -0.033 F
270.0 265.0 260.0	1.000 G 0.953 G 0.908 G	-0.962 D -0.917 D -0.873 D	0.015 G 0.014 G 0.014 G	0.540 G 0.519 G 0.496 G	-0.520 D -0.500 D -0.478 D	-0.031 F -0.030 F -0.029 F

255.0 250.0 240.0 240.0 233.3 226.0 213.3 206.7 200.0 193.3 186.7 180.0 170.0 140.0 110.0 120.0 110.0 120.0 110.0 120.0	0.864 G 0.822 G 0.782 G 0.783 G 0.695 G 0.6685 G 0.563 G 0.524 G 0.487 G 0.452 G 0.418 G 0.386 G 0.341 G 0.362 G 0.227 G 0.167 G 0.167 G 0.167 G 0.056 G 0.074 G 0.074 G 0.075 G 0.075 G 0.076 G 0.076 G 0.076 G 0.076 G	-0.831 D -0.791 D -0.752 D -0.752 D -0.668 D -0.624 D -0.581 D -0.541 D -0.544 D -0.468 D -0.4484 D -0.402 D -0.371 D -0.328 D -0.288 D -0.252 D -0.218 D -0.188 D -0.252 D -0.180 D -0.190 D -0.011 D -0.089 D -0.071 D -0.054 D -0.018 D -0.019 D	0.013 G 0.013 G 0.013 G 0.012 G 0.012 G 0.012 G 0.011 G 0.011 G 0.010 G 0.010 G 0.009 G 0.009 G 0.009 G 0.008 G 0.007 G 0.006 G 0.006 G 0.005 G 0.005 G 0.004 G 0.003 G 0.004 G 0.004 G 0.005 G 0.005 G 0.005 G 0.006 G 0.007 G	422013 0.479 G 0.460 G 0.441 G 0.421 G 0.400 G 0.379 G 0.358 G 0.337 G 0.297 G 0.284 G 0.271 G 0.220 G 0.220 G 0.162 G 0.163 G 0.164 G 0.163 G 0.108 G 0.068 G 0.068 G 0.068 G 0.061 G 0.045 G 0.038 G 0.045 G 0.038 G 0.045 G 0.038 G 0.0015 G	-0.461 D -0.443 D -0.444 D -0.405 D -0.385 D -0.365 D -0.325 D -0.326 D -0.273 D -0.261 D -0.249 D -0.212 D -0.212 D 0.193 J 0.175 J 0.167 J 0.167 J 0.169 J 0.077 J -0.069 J 0.079 J -0.069 J 0.043 J 0.036 J -0.022 D	-0.027 F -0.025 F -0.024 F -0.023 F -0.021 F -0.020 F -0.018 F -0.017 F -0.015 F -0.014 F -0.012 F -0.011 F -0.010 F -0.010 F -0.000 F
13.3 0.0	0.000 G 0.003 G 0.000 A	-0.006 D -0.003 D 0.000 A	0.001 J 0.000 A	0.015 G 0.000 A	-0.022 D -0.014 D 0.000 A	

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
305.0			0.03 A	0.00 A
300.0	0.00 I	0.13 A	0.54 K	0.00 A
295.0	0.09 A	1.42 H	0.10 A	0.00 A
290.0	3.64 A	1.72 H	0.03 G	0.00 A
285.0	7.62 A	2.30 н	0.11 A	0.00 A
280.0	13.44 A	2.89 н	0.14 A	0.00 A
	18.97 A	2.22 A		0.00 A
275.0	23.73 A	2.83 н	0.08 A	
270.0	29.43 A	2.49 в	0.05 A	0.00 A
265.0	34.02 A	3.10 H	0.05 A	0.00 A
260.0	40.04 A	3.08 н	0.05 A	0.00 A
255.0	45.52 A	2.97 B	0.03 A	0.00 A
250.0	50.80 A	2.84 B	0.06 A	0.00 A
245.0			0.03 A	0.00 A
240.0	55.46 A	2.79 B	0.05 A	0.00 A
233.3	60.63 A	2.91 B	0.04 A	0.00 A
226.7	65.93 A	2.85 H	0.04 A	0.00 A
220.0	70.97 A	2.77 н	0.04 A	0.00 A
213.3	75.58 A	2.76 н	0.03 A	0.00 A
	80.03 A	2.73 н		0.00 A
206.7	84.19 A	2.75 н	0.03 A	
200.0	88.21 A	2.76 н	0.02 A	0.00 A
193.3			0.04 A	0.00 A

	01 05 .	2.70	42	2013
186.7	91.95 A		0.02 A	0.00 A
180.0	95.65 A	2.82 н	0.04 A	0.00 A
170.0	99.98 A	3.11 н	0.04 A	0.00 A
	105.11 A	3.15 н		
160.0	109.95 A	3.19 н	0.03 A	0.00 A
150.0	114.70 A	3.25 н	0.04 A	0.00 A
140.0	119.19 A	3.33 B	0.02 A	0.00 A
130.0	123.56 A	3,42 J	0.02 A	0.00 A
120.0	127.81 A		0.02 A	0.00 A
110.0			0.02 A	0.00 A
100.0	132.03 A	3.62)	0.02 A	0.00 A
90.0	136.18 A	3.73 D	0.02 A	0.00 A
80.0	140.34 A	3.84 J	0.01 c	0.00 A
	144.31 A	3.96 D		
70.0	148.12 A	4.07 J	0.01 G	0.00 A
60.0	152.99 A	4.27 D	0.10 A	0.00 A
53.3	151.50 A	5.59 D	0.27 I	0.00 I
40.0	160.22 A	4.47 J	0.09 A	0.00 A
33.3			0.25 I	0.00 L
20.0	158.68 A	5.72 J	0.04 A	0.00 L
13.3	167.22 A	4.67 D	0.22 I	0.00 L
0.0	165.67 A	5.82 D	0.00 A	0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
305.0	0.12.6	0.15.6	-0.02 G	0.00 A
300.0	-0.12 C	-0.15 G	-0.35 E	0.00 A
295.0	-4.07 G	-1.68 H	-0.03 G	0.00 A
	-8.47 G	-1.57 H		
290.0	-13.97 G	-2.42 B	-0.05 A	0.00 A
285.0	-21.42 G	-2.87 B	-0.04 G	0.00 A
280.0			-0.18 G	0.00 A
275.0	-27.42 G	-2.60 G	-0.03 G	0.00 A
270.0	-35.52 G	-2.69 в	-0.03 G	0.00 A
0.0000000000000000000000000000000000000	-41.40 G	-2.65 н	NO. 2004	
265.0	-48.90 G	-3.11 B	-0.02 G	0.00 A
260.0	-56.04 G	-3.14 B	-0.03 G	0.00 A
255.0			-0.01 G	0.00 A
250.0	-62.29 G	-2.97 B	-0.04 G	0.00 A
245.0	-68.20 G	-2.89 в	-0.02 G	0.00 A
	-73.64 G	-2.79 н		
240.0	-79.61 G	-2.97 H	-0.03 G	0.00 A

				422013
233.3	-86.04 G	 -2.86 н	-0.02 G	0.00 A
226.7			-0.03 G	0.00 A
220.0	-92.12 G	-2.82 н 	-0.02 G	0.00 A
213.3	-97.86 G	-2.77 H	-0.02 G	0.00 A
206.7	-103.39 G	-2.77 H	-0.02 G	0.00 A
	-108.69 G	-2.77 H		
200.0	-113.93 G	-2.79 H	-0.01 G	0.00 A
193.3	-119.04 G	-2.81 H	-0.02 G	0.00 A
186.7			-0.01 G	0.00 A
180.0	-124.10 G	-2.84 H	-0.02 G	0.00 A
170.0	-130.13 G	-3.16 н	-0.02 G	0.00 A
	-137.39 G	-3.18 н		
160.0	-144.38 G	-3.24 H	-0.02 G	0.00 A
150.0	-151.32 G	-3.29 н	-0.02 G	0.00 A
140.0			-0.01 G	0.00 A
130.0	-158.18 G	-3.38 H	-0.01 G	0.00 A
120.0	-165.11 G	-3.47 D	-0.01 G	0.00 A
	-171.95 G	-3.57 J		
110.0	-178.80 G	-3.67 D	-0.01 G	0.00 A
100.0	-185.56 G	-3.78 J	-0.01 G	0.00 A
90.0	-192.31 G	-3.89 D	-0.01 G	0.00 A
80.0			-0.02 I	0.00 A
70.0	-199.16 G	-4.00 J	-0.03 A	0.00 A
60.0	-206.11 G	-4.11 D	-0.06 G	0.00 A
	-213.63 G	-4.37 D		
53.3	-215.13 G	-5.65 D	-0.39 C	0.00 C
40.0	-227.56 G	-4.58 D	-0.05 G	0.00 A
33.3			-0.38 C	0.00 в
20.0	-229.09 G	-5.79 J	-0.02 G	0.00 в
13.3	-241.47 G	-4.74 J	-0.34 C	0.00 G
	-243.02 G	-5.87 J		
0.0			0.00 A	0.00 A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

	TOTAL			
NORTH	EAST	DOWN	UPLIFT	SHEAR
21.93 G	18.88 K	250.83 G	-170.89 A	21.93 G

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

	ORIZONTA	L	DOWN		OVERTURNING	;	TORSION
NORTH	EAST @	TOTAL 0.0		NORTH	EAST	TOTAL @ 0.0	
33.6 G	-32.1 D	33.6 G	108.5	6135.2 G	-5883.1 D	6135.2 G	-14.0 F

Page 20

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES

Overall Loads: Factored Moment (ft-kips)

Tower Description 305' S3TL Series HD1 Customer AT&T Project Number 422013 Date 11/14/2018 Engineer REB

21401.88

ractored moment (it rape)	21101.00		
Factored Axial (kips)	311.87		
Factored Shear (kips)	117.40		
Individual Leg Loads:		Tower eccentric from mat (ft)	= 2.75
Factored Uplift (kips)	689.00		
Factored Download (kips)	792.00		
Factored Shear (kips)	72.00		
Width of Tower (ft)	33	Allowable Bearing Pressure (ksf)	2.00
Ultimate Bearing Pressure	4.00	Safety Factor	2.00
Bearing Φs	0.75		
			None and the
Bearing Design Strength (ksf)	3	Max. Factored Net Bearing Pressure (ksf)	2.72
Water Table Below Grade (ft)	999		
Width of Mat (ft)	43.5	Minimum Mat Width (ft)	40.33
Thickness of Mat (ft)	1.75		
Depth to Bottom of Slab (ft)	6.5		
Bolt Circle Diameter (in)	18		
Top of Concrete to Top			
of Bottom Threads (in)	72.625		
Diameter of Pier (ft)	5	Minimum Pier Diameter (ft)	2.83
Ht. of Pier Above Ground (ft)	0.5	Equivalent Square b (ft)	4.43
Ht. of Pier Below Ground (ft)	4.75		
Quantity of Bars in Mat	74		

Width of Tower (ft)	33	Allowable Bearing Pressure (ksf)	2.00
Ultimate Bearing Pressure	4.00	Safety Factor	2.00
Bearing Фs	0.75		
Bearing Design Strength (ksf)	3	Max. Factored Net Bearing Pressure (ksf)	2.72
Water Table Below Grade (ft)	999		
Width of Mat (ft)	43.5	Minimum Mat Width (ft)	40.33
Thickness of Mat (ft)	1.75		
Depth to Bottom of Slab (ft)	6.5		
Bolt Circle Diameter (in)	18		
Top of Concrete to Top			
of Bottom Threads (in)	72.625		
Diameter of Pier (ft)	5	Minimum Pier Diameter (ft)	2.83
Ht. of Pier Above Ground (ft)	0.5	Equivalent Square b (ft)	4.43
Ht. of Pier Below Ground (ft)	4.75		
Quantity of Bars in Mat	74		
Bar Diameter in Mat (in)	1.27		
Area of Bars in Mat (in ²)	93.74		
Spacing of Bars in Mat (in)	7.05	Recommended Spacing (in)	6 to 12
Quantity of Bars Pier	28		
Bar Diameter in Pier (in)	0.875		
Tie Bar Diameter in Pier (in)	0.5		
Spacing of Ties (in)	12	900	
Area of Bars in Pier (in2)	16.84	Minimum Pier A _s (in ²)	14.14
Spacing of Bars in Pier (in)	5.84	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.11		
Unit Wt. of Concrete (kcf)	0.15		
Volume of Concrete (yd3)	134.10		

MAT FOUNDATION DESIGN BY S	ABRE TOWERS	& POLES (CONTINUED)	
Two-Way Shear:			
Average d (in)	16.73	<u>.</u>	
ϕv_{c} (ksi)	0.228	v _u (ksi)	0.210
$\phi V_c = \phi (2 + 4/\beta_c) f'_c^{1/2}$	0.342		
$\phi v_c = \phi(\alpha_s d/b_o + 2) f'_c^{1/2}$	0.272		
$\phi V_c = \phi 4f'_c^{1/2}$	0.228		
Shear perimeter, bo (in)	241.05		
$eta_{\mathbf{c}}$	1		
Stability:			
Overturning Design Strength (ft-k) One-Way Shear:	30932.0	Factored Overturning Moment (ft-k)	22223.7
φV _c (kips)	995.9	V _u (kips)	740.5
Pier Design:			
Design Tensile Strength (kips)	909.2	Tu (kips)	689.0
φV _n (kips)	168.4	V _u (kips)	72.0
$\phi V_c = \phi 2(1 + N_u/(500A_g))f'_c^{1/2}b_w d$	168.4		
V _s (kips)	0.0	*** $V_s max = 4 f'_c^{1/2} b_w d (kips)$	772.8
Maximum Spacing (in)	7.81	(Only if Shear Ties are Required)	
Actual Hook Development (in)	15.46	Req'd Hook Development I _{dh} (in)	9.89
		*** Ref. ACI 11.5.5 & 11.5.6.3	
Anchor Bolt Pull-Out:		n <u></u>	
$\phi P_c = \phi \lambda (2/3) f'_c^{1/2} (2.8 A_{SLOPE} + 4 A_{FLAT})$		P _u (kips)	689.0
Pier Rebar Development Length (in)	52.56	Required Length of Development (in)	29.65
Flexure in Slab:		1	
φM _n (ft-kips)	6463.1	M _u (ft-kips)	6389.9
a (in)	2.82		
Steel Ratio	0.01073		
β_1	0.825		
Maximum Steel Ratio (ρ _t)	0.0197		
Minimum Steel Ratio	0.0018		
Rebar Development in Pad (in)	137.27	Required Development in Pad (in)	18.09

Condition	1 is OK, 0 Fails
Minimum Mat Width	1
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Two-Way Shear	1
Overturning	1
Anchor Bolt Pull-Out	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1
Interaction Diagram Visual Check	. 1
One-Way Shear	1
Hook Development	1
Minimum Mat Depth	1

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS & POLES

Tower Description 305' S3TL Series HD1
Customer Name AT&T
Job Number 422013
Date 11/14/2018
Engineer REB

Factored Uplift (kips)	689		
Factored Download (kips)	792		
Factored Shear (kips)	72		
Ultimate Bearing Pressure	14		
Bearing Фs	0.75		
Bearing Design Strength (ksf)	10.5		
Water Table Below Grade (ft)	999		
Bolt Circle Diameter (in)	18		
Top of Concrete to Top			
of Bottom Threads (in)	72.625		
Pier Diameter (ft)	6	Minimum Pier Diameter (ft)	2.83
Ht. Above Ground (ft)	0.5		
Pier Length Below Ground (ft)	33		
Quantity of Bars	26		
Bar Diameter (in)			
Tie Bar Diameter (in)	0.5		
Spacing of Ties (in)	12		
Area of Bars (in ²)	20.42	Minimum Area of Steel (in ²)	20.36
Spacing of Bars (in)	7.73		<u> </u>
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Concrete (kcf)	0.15		
Download Friction Φs	0.75		
Uplift Friction Φs	0.75		
Volume of Concrete (yd3)	35.08		
Skin Friction Factor for Uplift		Length to Ignore Download (ft)	
ore Bottom Length in Download?		0	

ignore Bottom Length in Download?			const same
Depth at Bottom of Layer (ft)	Ult. Skin Friction (ksf)	(Ult. Skin Friction)*(Uplift Factor)	γ (kcf)
5	0.00	0.00	0.11
33	1.50	1.50	0.11
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
	0.00	0.00	0
0	0.00	0.00	0
Ō	0.00	0.00	0
0	0.00	0.00	0

Download:

Factored Net Weight of Concrete (kips)
Bearing Design Strength (kips)
Skin Friction Design Strength (kips)
Download Design Strength (kips)

47.3	
296.9	
593.8	
890.6	

Factored Net Download (kips)

839.3

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS & POLES (CONTINUED)

Uplift:		,	
Nominal Skin Friction (kips)	791.7		
Wc, Weight of Concrete (kips)	142.1		
W _R , Soil Resistance (kips)	2031.7		
ΦsWr+0.9Wc (kips)	1651.7		
Uplift Design Strength (kips)	721.6	Factored Uplift (kips)	689.0
Pier Design:			
Design Tensile Strength (kips)	1102.7	Tu (kips)	689.0
φV _n (kips)	312.9	V _u (kips)	72.0
$\phi V_c = \phi 2(1 + N_u/(500A_g)) f'_c^{1/2} b_w d \text{ (kips)}$	312.9		
V _s (kips)	0.0	*** V_s max = 4 $f'_c^{1/2}b_w d$ (kips)	1112.8
Maximum Spacing (in)	6.50	(Only if Shear Ties are Required)	
		*** Ref. ACI 11.5.5 & 11.5.6.3	
Anchor Bolt Pull-Out:			
$\phi P_c = \phi \lambda (2/3) f'_c^{1/2} (2.8 A_{SLOPE} + 4 A_{FLAT})$	613.2	P _u (kips)	689.0
Rebar Development Length (in)	46.63	Required Length of Development (in)	27.94

Condition	1 is OK, 0 Fails
Download	1
Uplift	1
Area of Steel	1
Shear	1
Anchor Bolt Pull-Out	1
Interaction Diagram Visual Check	1

#		
	EVUIDIT D	
	EXPIDIT D	
COMPETING LITH ITIES	EXHIBIT D	_
COMPETING UTILITIES,	CORPORATIONS, OR PERSONS LIST	-
COMPETING UTILITIES,		
COMPETING UTILITIES,		•
COMPETING UTILITIES,		
COMPETING UTILITIES,		
COMPETING UTILITIES,		Γ
COMPETING UTILITIES,		Ī
COMPETING UTILITIES,		Г
COMPETING UTILITIES,		
COMPETING UTILITIES,		-
COMPETING UTILITIES,		Γ
COMPETING UTILITIES,		Г
COMPETING UTILITIES,		Г
COMPETING UTILITIES,		Γ
COMPETING UTILITIES,		
COMPETING UTILITIES,		Г
COMPETING UTILITIES,		
COMPETING UTILITIES,	CORPORATIONS, OR PERSONS LIST	
COMPETING UTILITIES,	CORPORATIONS, OR PERSONS LIST	
COMPETING UTILITIES,	CORPORATIONS, OR PERSONS LIST	

Navigation

Reports

PSC Home

KY Public Service Commission

Master Utility Search

- Search for the utility of interest by using any single or combination of criteria.
- Enter Partial names to return the closest match for Utility Name and Address/City/Contact entries.

Utility ID Utility
Name

Address/City/Contact Utility Type

Status

▼ Active ▼

	Utility ID	Utility Name	Utility Type	Class	City	Sta
View	4107900	365 Wireless, LLC	Cellular	D	Atlanta	GA
View	4109300	Access Point, Inc.	Cellular	D	Cary	NC
View	4108300	Air Voice Wireless, LLC	Cellular	Α	Bloomfield Hill	MI
View		Alliant Technologies of KY, L.L.C.	Cellular	С	Morristown	NJ
View	44451184	Alltel Communications, LLC	Cellular	Α	Basking Ridge	NJ
View	4107800	American Broadband and Telecommunications Company	Cellular	С	Toledo	ОН
View	4108650	AmeriMex Communications Corp.	Cellular	D	Dunedin	FL
View	4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular	D	Virginia Beach	VA
View	4110700	Andrew David Balholm dba Norcell	Cellular	С	Clayton	WA
View	4107400	Bandwidth.com, Inc.	Cellular	Α	Raleigh	NC
View	4108600	BCN Telecom, Inc.	Cellular	D	Morristown	NJ
View	4110550	Blue Casa Mobile, LLC	Cellular	D	Santa Barbara	CA
View	4108750	Blue Jay Wireless, LLC	Cellular	С	Carrollton	ΤX
View	4202300	Bluegrass Wireless, LLC	Cellular	Α	Elizabethtown	KY
View	4107600	Boomerang Wireless, LLC	Cellular	В	Hiawatha	ΙA
View	4105500	BullsEye Telecom, Inc.	Cellular	D	Southfield	ΜI
View	4110050	CampusSims, Inc.	Cellular	D	Boston	MA

		Cully waster information Search				
View	4100700	Cellco Partnership dba Verizon Wireless	Cellular	Α	Basking Ridge	NJ
View	4106600	Cintex Wireless, LLC	Cellular	D	Rockville	MD
View	4101900	Consumer Cellular, Incorporated	Cellular	A	Portland	OR
View	4106400	Credo Mobile, Inc.	Cellular	Α	San Francisco	CA
View	4108850	Cricket Wireless, LLC	Cellular	Α	San Antonio	TX
View	4001900	CTC Communications Corp. d/b/a EarthLink Business I	Cellular	D	Grand Rapids	MI
View	10640	Cumberland Cellular Partnership	Cellular	A	Elizabethtown	KY
View	4101000	East Kentucky Network, LLC dba Appalachian Wireless	Cellular	A	Ivel	KY
View	4002300	Easy Telephone Service Company dba Easy Wireless	Cellular	D	Ocala	FL
View	4109500	Enhanced Communications Group, LLC	Cellular	D	Bartlesville	ок
View	4110450	Excellus Communications, LLC	Cellular	D	Chattanooga	TN
View	4105900	Flash Wireless, LLC	Cellular	С	Concord	NC
View	4104800	France Telecom Corporate Solutions L.L.C.	Cellular	D	Oak Hill	VA
View	4109350	Global Connection Inc. of America	Cellular	D	Norcross	GA
View	4102200	Globalstar USA, LLC	Cellular	В	Covington	LA
	4109600	Google North America Inc.	Cellular	В	Mountain View	CA
View	33350363	Granite Telecommunications, LLC	Cellular	D	Quincy	MA
View	4106000	GreatCall, Inc. d/b/a Jitterbug	Cellular	Α	San Diego	CA
View	10630	GTE Wireless of the Midwest dba Verizon Wireless	Cellular	Α	Basking Ridge	נא
View	4110600	Horizon River Technologies, LLC	Cellular	С	Atlanta	GA
View	4103100	i-Wireless, LLC	Cellular	Α	Newport	ΚY
View	4109800	IM Telecom, LLC d/b/a Infiniti Mobile	Cellular	D	Tulsa	ок
View	22215360	KDDI America, Inc.	Cellular	D	New York	NY
View	10872	Kentucky RSA #1 Partnership	Cellular	A	Basking Ridge	NJ
View	10680	Kentucky RSA #3 Cellular General	Cellular	Α	Elizabethtown	ΚY
View	10681	Kentucky RSA #4 Cellular General	Cellular	Α	Elizabethtown	KY
View	4109750	Konatel, Inc. dba telecom.mobi	Cellular	D	Johnstown	PA
View	4107300	Lycamobile USA, Inc.	Cellular	D	Newark	NJ
View	4108800	MetroPCS Michigan, LLC	Cellular	Α	Bellevue	WA
View	4109650	Mitel Cloud Services, Inc.	Cellular	D	Mesa	ΑZ
AIGAA		•				

Utility Master Information -- Search

View	10900	New Par dba Verizon Wireless	Cellular	Α	Basking Ridge	NJ
View	4000800	Nextel West Corporation	Cellular	D	Overland Park	
View	4001300	NPCR, Inc. dba Nextel Partners	Cellular	D	Overland	
View	4001800	OnStar, LLC	Cellular	Α	Detroit	MI
View	4110750	Onvoy Spectrum, LLC	Cellular	С	Plymouth	MN
View	4109050	Patriot Mobile LLC	Cellular	D	Southlake	TX
View	4110250	Plintron Technologies USA LLC	Cellular	D	Bellevue	WA
View	33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	ОН
View	4202100	Powertel/Memphis, Inc. dba T- Mobile	Cellular	ellular A Bellevue		WA
View	4107700	Puretalk Holdings, LLC	Cellular	Α	Covington	GA
View	4106700	Q Link Wireless, LLC	Cellular	Α	Dania	FL
View	4108700	Ready Wireless, LLC	Cellular	В	Hiawatha	IA
View	4110350	Regional Strategic Partners LLC	Cellular	D	Buford	GA
View	4110500	Republic Wireless, Inc.	Cellular	D	Raleigh	NC
View		Rural Cellular Corporation	Cellular		Basking Ridge	NJ
View	4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	D	Los Angeles	CA
View	411141311	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Freemont	NE
View	4106300	SI Wireless, LLC	Cellular A Carbonda		Carbondale	IL
View	411111711	Spectrotel, Inc. d/b/a Touch Base Communications	Cellular	D	Neptune	NJ
		Sprint Spectrum, L.P.	Cellular	Α	Atlanta	GA
View	4200500	SprintCom, Inc.	Cellular	Α	Atlanta	GA
View	4109550	Stream Communications, LLC	Cellular	D	Dallas	TX
View	4110200	T C Telephone LLC d/b/a Horizon Cellular	Cellular	D	Red Bluff	CA
View	4/11//1111	T-Mobile Central, LLC dba T- Mobile	Cellular	Α	Bellevue	WA
View		TAG Mobile, LLC	Cellular	D	Carrollton	TX
View	411197111	Telecom Management, Inc. dba Pioneer Telephone	Cellular	D	South Portland	ME
View	4107200	Telefonica USA, Inc.	Cellular	D	Miami	FL
View	4108900	Telrite Corporation dba Life Wireless	Cellular	D	Covington	GA
View	4108450	Tempo Telecom, LLC	Cellular	D	Kansas City	МО
View	4109950	The People's Operator USA, LLC	Cellular	D	New York	NY
View	4109000	Ting, Inc.	Celiular	Α	Toronto	ON
View	4110400	Torch Wireless Corp.	Cellular	D	Jacksonville	FL
View	4103300	Touchtone Communications, Inc.	Cellular	D	Whippany	NJ

Utility Master Information - Search

View	4104200	TracFone Wireless, Inc.	Cellular	D	Miami	FL
View	4002000	Truphone, Inc.	Cellular	D	Durham	NC
View	4110300	UVNV, Inc.	Cellular	D	Costa Mesa	CA
View	4105700	Virgin Mobile USA, L.P.	Cellular	Α	Atlanta	GA
View	4110800	Visible Service LLC	Cellular	С	Lone Tree	СО
View	4200600	West Virginia PCS Alliance, L.C.	Cellular	Α	Waynesboro	VA
View	4106500	WiMacTel, Inc.	Cellular	D	Palo Alto	CA
View	4110100	Windward Wireless LLC	Cellular	D	Suwanee	GA
View	4109900	Wireless Telecom Cooperative, Inc. dba theWirelessFreeway	Cellular	D	Louisville	ΚΥ

EXHIBIT E FAA

Mail Processing Center Federal Aviation Administration Southwest Regional Office Obstruction Evaluation Group 10101 Hillwood Parkway Fort Worth, TX 76177

Issued Date: 09/04/2018

Robert P Walters - Dana Irvin AT&T Mobility 208 S. Akard St., 1012.4 Dallas, TX 75202

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:

Antenna Tower Tomahawk

Location:

Tomahawk, KY

Latitude:

37-52-16.65N NAD 83

Longitude:

82-36-48.39W

Heights:

1067 feet site elevation (SE)

320 feet above ground level (AGL)

1387 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 L Change 1, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(M-Dual),&12.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

	At least 10 days prior to start of construction (7460-2, Part 1)	
X	Within 5 days after the construction reaches its greatest height (7460-2, Part 2	2)

This determination expires on 03/04/2020 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.

(c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination does not constitute authority to transmit on the frequency(ies) identified in this study. The proponent is required to obtain a formal frequency transmit license from the Federal Communications Commission (FCC) or National Telecommunications and Information Administration (NTIA), prior to on-air operations of these frequency(ies).

This determination of No Hazard is granted provided the following conditional statement is included in the proponent's construction permit or license to radiate:

Upon receipt of notification from the Federal Communications Commission that harmful interference is being caused by the licencee's (permittee's) transmitter, the licensee (permittee) shall either immediately reduce the power to the point of no interference, cease operation, or take such immediate corrective action as is necessary to eliminate the harmful interference. This condition expires after 1 year of interference-free operation.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (206) 231-2993, or lynnette.farrell@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2018-ASO-10085-OE.

Signature Control No: 365728607-384163778

Lynnette Farrell Technician

Attachment(s) Frequency Data Map(s)

cc: FCC

Page 3 of 5

(DNE)

Frequency Data for ASN 2018-ASO-10085-OE

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP	ERP UNIT
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

TOPO Map for ASN 2018-ASO-10085-OE

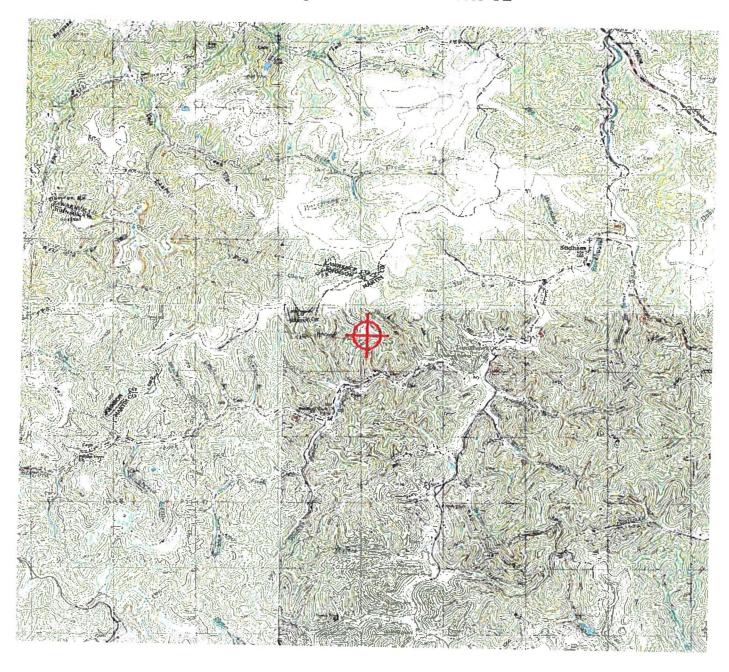


EXHIBIT F
KENTUCKY AIRPORT ZONING COMMISSION

KENTUCKY AIRPORT ZONING COMMISSION

MATTHEW BEVIN Governor

421 Buttermilk Pike Covington, KY 41017 www.transportation.ky.gov 859-341-2700

October 26, 2018

APPROVAL OF APPLICATION

APPLICANT: John Monday John Monday 3300 E. Renner Rd B3132 Richardson, TX 75082

SUBJECT: AS-036-SJS-2018-084

STRUCTURE:

Antenna Tower

LOCATION:

Prestonsburg, KY

COORDINATES: 37° 52' 16.65" N / 82° 36' 48.39" W

HEIGHT:

320' AGL/1387'AMSL

The Kentucky Airport Zoning Commission has approved your application for a permit to construct 320'AGL/ 1387'AMSL Antenna Tower near Prestonsburg, KY 37° 52' 16.65" N / 82° 36' 48.39" W.

This permit is valid for a period of 18 Month(s) from its date of issuance. If construction is not completed within said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit.

Medium Dual Obstruction Lighting is required in accordance with 602 KAR 50:100.

John Houlihan Administrator

An Equal Opportunity Employer M/F/D

EXHIBIT G
GEOTECHNICAL REPORT

"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

October 23, 2018

Mr. Jacob Goralski, P.E. Irish Tower, LLC 4603 Bermuda Drive, Sugar Land, TX 77479

ECS Project No. 26:3125-S2

Reference:

Report of Subsurface Exploration and Geotechnical Engineering Services

Tomahawk Tower 4784 Tomahawk Road Tomahawk, KY

Dear Mr. Goralski:

ECS Southeast, LLP (ECS) has completed the subsurface exploration for the proposed construction of a self-supporting tower located at 4784 Tomahawk Road, in Tomahawk, Kentucky, approximately 970 feet northwest of the intersection with Daniel Road. The purpose of these services was to explore the subsurface soil and groundwater conditions at the site, and to develop geotechnical recommendations pertaining to foundation support of the structures. This report explains our understanding of the project, documents our findings, and presents our conclusions and geotechnical engineering recommendations to serve as an aid during the design and construction of the project.

PROJECT INFORMATION AND PROPOSED CONSTRUCTION

The project will consist of the construction of a new 305+/-foot tall self-supporting tower with a 15-foot lightning arrestor and fenced equipment compound. The proposed tower site is located in a grassy area. See the attached Site Location Diagram (Figure 1) and Boring Location Diagram (Figure 2). We have received preliminary site plans showing the site boundaries and proposed tower location. No loading information was provided for the tower. Based on information provided from the client, the current ground surface elevation at the center of the tower is approximately 1078.9 feet MSL. To achieve the proposed grading at the tower site, we anticipate that no necessary cut and fill will be required. We do not anticipate that any significant stormwater management (SWM) facilities or site retaining walls will be required for this project.

EXPLORATION PROCEDURES

The site subsurface conditions were explored on October 17, 2018, completing three Standard Penetration Test (SPT) borings drilled 35 feet from the staked center of the tower location. The borings were drilled to depths of approximately 13 ½ to 33 feet (depth of auger refusal). The approximate boring locations are shown on the attached Boring Location diagram (Figure 2). The boring locations were based on a survey stake-out that was performed by others. Prior to drilling, underground utilities were cleared through the Kentucky 811system.

A CME 45 truck-mounted drill rig was utilized to complete the SPT boring. The drill rig utilized 3-1/4 inch hollow stem augers to advance the boreholes. Representative soil samples were secured by means of conventional split-barrel sampling procedures (ASTM D1586). In this procedure, a 2-inch O.D., split-barrel sampler is driven into the soil a distance of 18 inches by a 140-pound hammer falling 30 inches. The number of blows required to drive the sampler

Tomahawk Tower ECS Project No. 26:3125-S2 October 23, 2018 Page 2

through the final 12-inch interval, after initial setting of 6 inches, is termed the Standard Penetration Test (SPT) value or N-value, and is indicated for each sample on the attached boring logs.

The SPT values can be used as a qualitative indication of the in-place relative density of cohesionless soils, and as a relative indication of consistency in cohesive soils. This indication is qualitative, since many factors can affect the standard penetration resistance value and prevent a direct correlation between drill crews, drill rigs, drilling procedures, and hammer-rod-sampler assemblies. The drill rig utilized an automatic hammer to drive the sampler.

Field logs of the soils encountered at the boring locations were maintained by the drilling crew. After recovery, each soil sample was removed from the sampler and visually classified by the driller. Representative portions of each soil sample were then sealed in plastic bags and transported to our laboratory in Nashville (Franklin), Tennessee, for further visual observation and classification. Observations for groundwater were made during sampling and upon completion of the drilling operations. After completion of the drilling operations, the boreholes were backfilled with auger cuttings and excess soil was mounded at the surface.

CLASSIFICATION AND LABORATORY TESTING PROCEDURES

A geotechnical engineer classified each soil sample on the basis of texture and plasticity in accordance with the Unified Soil Classification System (ASTM D 2487). The group symbols for each soil type are indicated in parentheses following the soil descriptions on the boring logs. A brief explanation of the Unified Soil Classification System (USCS) is included with this report. The engineer grouped the various soil types into the major zones noted on the boring logs. The stratification lines designating the interfaces between materials on the exploration records are approximate; in situ, the transitions may be gradual.

The soil samples will be retained in our laboratory for a period of 60 days, after which, they will be discarded unless other instructions are received as to their disposition.

SITE GEOLOGY

The USGS Geologic Map of the Inez Quadrangle (1963) indicates this particular site is underlain by the Breathitt Formation. This formation is typically consists of large sequences of gray siltstone and shale and coal. The Breathitt Formation is as much as 3,700 ft thick in the Black Mountain area in southeastern Kentucky but is as thin as 550 ft in northeastern Kentucky

Figure 1 - USGS Geologic Map of the Inez Quadrangle (approximate site location highlighted)

SUBSURFACE CONDITIONS

The subsurface conditions discussed in the following paragraphs, and those shown on the boring logs, represent an estimate of the subsurface conditions based on interpretation of the exploration data using normally accepted geotechnical engineering judgments. It should be noted that the transition between different soil strata is often less distinct than what is shown on the exploration records.

In general, the exploration revealed an approximately 3- to 4-inch thick layer of topsoil underlain by lean clay and clayey sand extending to depths of approximately 13 ½ to 33 feet below the ground surface. SPT N-values for the clay materials varied from 4 to 15 blows per foot (bpf). SPT N-values for the clayey sand materials varied from 7 to 9 bpf. The encountered conditions are shown on the attached boring logs.

Groundwater was not encountered at the time of our exploration. It should be noted that groundwater can vary on a seasonal basis due to precipitation, evaporation, surface run-off, area stream levels and other factors not immediately apparent at the time of this exploration. It is also possible for groundwater to exist in a perched condition within the soil overburden or at the soil/rock interface.

ANALYSIS AND RECOMMENDATIONS

General

The following recommendations have been developed on the basis of the previously described project information and subsurface conditions identified during this study. If there are any changes to the project characteristics, or if differing subsurface conditions are encountered during construction, ECS should be consulted so that the recommendations of this report can be reviewed and revised, as necessary.

Tomahawk Tower ECS Project No. 26:3125-S2 October 23, 2018 Page 4

Subgrade Preparation

Vegetation, and all other soft, unsuitable, or deleterious material should be removed from the existing ground surface at the foundation areas. These operations should extend at least 5 feet beyond the edge of planned structures, where practical. After examining the exposed soils, loose and yielding areas should be identified by proofrolling with an approved piece of equipment, such as a loaded dump truck, having an axle weight of at least 10 tons. Unsuitable or unstable subgrade materials may require moisture conditioning, in-place densification, or removal and replacement with new engineered fill.

Engineered Fill

The first layer of fill should be placed in a relatively uniform horizontal lift and be adequately keyed into the stripped and scarified subgrade soils. Fill materials should be free of organics, wet/frozen materials, or other deleterious materials. Engineered fill materials should consist of low to moderately plastic clays and silts, or coarse grained material such as sand and gravel. Engineered fill should have a maximum Liquid Limit no greater than 50, and a maximum Plasticity Index no greater than 30. In general, we recommend material to be used as engineered fill have a Standard Proctor maximum dry density of at least 90 pcf. Engineered soil fill should be placed in maximum loose lifts of 8 inches and compacted to at least 95 percent of the Standard Proctor (ASTM D698) maximum dry density. Soil engineered fill should be compacted within 3 percentage points of the optimum moisture content determined by the Standard Proctor method. Soil fill should not contain rock material greater than 4 inches in diameter.

Fill operations should be observed on a full-time basis by an experienced engineering technician to check that the required degree of compaction is being achieved. We recommend a minimum of one compaction test per 2,500 square-foot area be performed for each lift of engineered fill for structural areas, and that at least one test per lift per 100 linear feet of utility trench backfill.

Equipment Shelter Foundations

Based upon our findings, the equipment shelter may be supported by a turned-down monolithic slab-on-grade with foundation elements bearing on the undisturbed natural residual soils or properly-compacted engineered fill. These foundations can be designed for a maximum net allowable soil bearing pressure of up to 2,000 psf.

For footings constructed in accordance with the requirements outlined in this report, maximum total settlement is expected to be less than 1 inch (plus any consolidation settlement from new fill loads). Maximum differential settlement is expected to be half the total settlement. Shallow foundations should be designed to bear at least 24 inches below the final exterior grades. The slab-on-grade may be designed using a modulus of subgrade reaction of 100 pounds per cubic inch (pci). A layer of free draining gravel may be used underlying the slab to serve as a leveling pad and provide a capillary break. All slab and foundation subgrades should be evaluated immediately prior to concrete placement by ECS to verify that the exposed subgrades are capable of satisfactorily supporting the design loads.

Self-support Tower Foundation

The proposed tower can be supported on drilled shaft (caisson) or a pad and pier foundation. Based on previous experience with tower structures, we anticipate that wind loading, associated uplift resistance, and lateral loading may control the sizing and depth of the tower foundation.

Tomahawk Tower ECS Project No. 26:3125-S2 October 23, 2018 Page 5

We have provided estimated soil parameters at various depths to aid in drilled shaft foundation design in the attached <u>Geotechnical Data Form</u>.

Uplift forces can be resisted by the factored weight of the shaft and the side shear along the circumference of the shaft (skin friction). The compression forces can be resisted by the side shear along the circumference of the shaft and the end bearing capacity. In determining the dimensions of the drilled shafts, we recommend that a minimum factor of safety of 1.25 with regard to the weight of the concrete should be used in conjunction with the presented allowable side shear values. For uplift and compression, we recommend no contribution to resisting loads be considered from side shear within 5 feet of the ground surface, soft clay or from potentially liquefiable zones.

Casing of the excavation is not expected, but may be required, depending on the condition of the soils and the ground water elevation at the time of construction. Once the bearing level is reached, all loose materials and any accumulated water seepage should be removed prior to placement of drilled shaft reinforcing cage and concrete. Up to 1 inch of water standing in the base of the shaft excavation is acceptable at the time concrete is placed, and an inflow rate of 1 inch per 5 minutes is also acceptable. Higher inflow rates, which could likely be encountered, may require additional control such as temporary casing or that drilled shaft concrete be placed by tremie method. The drilled shaft contractor should be prepared to handle such a condition and to ensure suitable end bearing conditions.

The drilled shaft concrete should be placed in intimate contact with undisturbed natural soil/rock. To reduce the potential for arching, we recommend the drilled shaft concrete mix be designed for a slump of 5 to 7 inches. Provided water seepage is minimal, our experience and current research in the field indicates that the drilled shafts can be constructed by "free fall" placement of concrete without affecting the strength and quality of concrete. The concrete should "free fall" without hitting the sides of the casing or reinforcing steel. The use of a hopper or other suitable device is recommended to control concrete placement and direct it toward the center of the shaft. The placement of concrete in the cased shaft should proceed until the concrete level is above the external fluid level and should be maintained above this level throughout casing removal, if required. However, if significant seepage is present within the excavation or if slurry is used, it will be necessary to place the concrete by tremie method, and we recommend a concrete slump of 7 to 9 inches for this method of concrete placement.

<u>Pad and Pier Recommendations:</u> A pad and pier foundation approach would also be reasonable. We recommend that the foundation can be designed for a net allowable bearing capacity in accordance to the information presented in our geotechnical data form, depending on the desired bearing depth. Base friction and passive earth pressures can be used to resist lateral loads. The friction coefficient between the foundation bottom and underlying rock can be assumed to be 0.45. Passive earth pressures along the edge of the foundation can be calculated using a fluid equivalent of 300 pcf. Passive resistant should only be used where the soils adjacent to the foundation will not be eroded or removed in the future.

The shaft design and construction procedures should be reviewed with the foundation contractor prior to the start of construction. If you desire, we would be pleased to review the plans and specifications for the project once they are completed so we may have the opportunity to comment on the impact of the soil/rock and groundwater conditions on the final design.

Tomahawk Tower ECS Project No. 26:3125-S2 October 23, 2018 Page 6

Seismic Site Classification

Based on our interpretation of the International Building Code (IBC) 2012, it is our opinion that a Seismic Site Class "D" is appropriate for this site. In accordance with IBC 2012 and United States Geological Survey's (USGS) Seismic Hazard Curves and Uniform Hazard Response Spectra program, the following parameters may be used in design:

- Latitude: 37.871292, Longitude: -82.613442
- $S_s = 0.170, S_t = 0.079$
- $S_{MS} = 0.272, S_{M1} = 0.190$
- $S_{DS} = 0.182, S_{D1} = 0.127$
 - *Spectral accelerations were determined from USGS National Seismic Hazard Maps

General Construction Considerations

Positive site drainage should be maintained during earthwork operations, which should help maintain the integrity of the soil. Placement of fill on the near surface soils which have become wet may be difficult. When wet, these soils will degrade quickly with disturbance from contractor operations and will be difficult to stabilize for fill placement.

The surficial soils are considered moderately erodible. All erosion and sedimentation shall be controlled in accordance with Best Management Practices and current County requirements. At the appropriate time, we would be pleased to provide a proposal for NPDES monitoring and construction materials testing related services.

Tomahawk Tower ECS Project No. 26:3125-S2 October 23, 2018 Page 7

CLOSING

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. ECS is not responsible for the conclusions, opinions, or recommendations made by others based on these data. No third party is given the right to rely on this report without express written permission.

The scope of services for this study does not include environmental assessment or investigation for the presence or absence of wetlands, hazardous or toxic materials in the soil or groundwater within or beyond the site studied. Any statements in this report regarding odors, staining of soils, or other unusual conditions observed are strictly for the information of our client.

We appreciate this opportunity to be of service to you during the design phase of this project. If you have any questions with regard to the information and recommendations presented in this report, please do not hesitate to contact us.

Respectfully,

ECS SOUTHEAST, LLP

Eric M. Gasiecki

Geotechnical Department Manager

Mark D. Luskin, P.E. Engineering Manager

Attachments: Figure 1: Site Location Map

Figure 2: Boring Location Diagrams

Geotechnical Data Form

SPT Boring Logs (B-1 through B-3) Reference Notes for Boring Logs

USGS Summary Report

IND3 - GeotechnicaND3 Projects\3100-3199\26-3125 Irish Tower\26-3125-S2 Tomahawk, KY\Report\26-3125-S2 Tomahawk, KYdocx

GEOTECHNICAL DATA FORM

Background Information

Client: Irish Tower, LLC

Project: Tomohawk

Location: 4784 Tomahawk Road, Tomahawk, KY

ECS Project No.: 26:3125-S2 Self-Support

Type: Height

305'+/-

Depth	Soil Behavior Type	Average N	Relative Density/Consistency	USCS Classificati
(feet)		(spt)	,	on
0 - 28	Lean Clay	8	Medium Stiff	CL
28 - 33	Clayey Sand	8	Loose	sc
33+	Siltstone Bedrock	50/0		

Estimated Soil Parameters for LPILE

Depth (feet)	LPILE Soil	γ	Su	φ'	K*	E ₅₀ *
	Туре	(pcf)	(psf)	(°)	(pci)	
0 - 28	Medium Stiff Clay	110	750	*	100	0.01
28 - 33	Loose Sand	115		26	100	
33+	Siltstone Bedrock	120	5000+	9	1000	0.001

γ= In-situ Soil Density

Su= Undrained Shear Strength

¢'= Effective Friction Angle

K= Horizontal Subgrade Reaction

Foundation Recommendations

For Drilled Shaft Foundations**

Depth (ft)	Allowable End Bearing (KSF)
0 - 28	2
28 - 33	2.5
33+	7

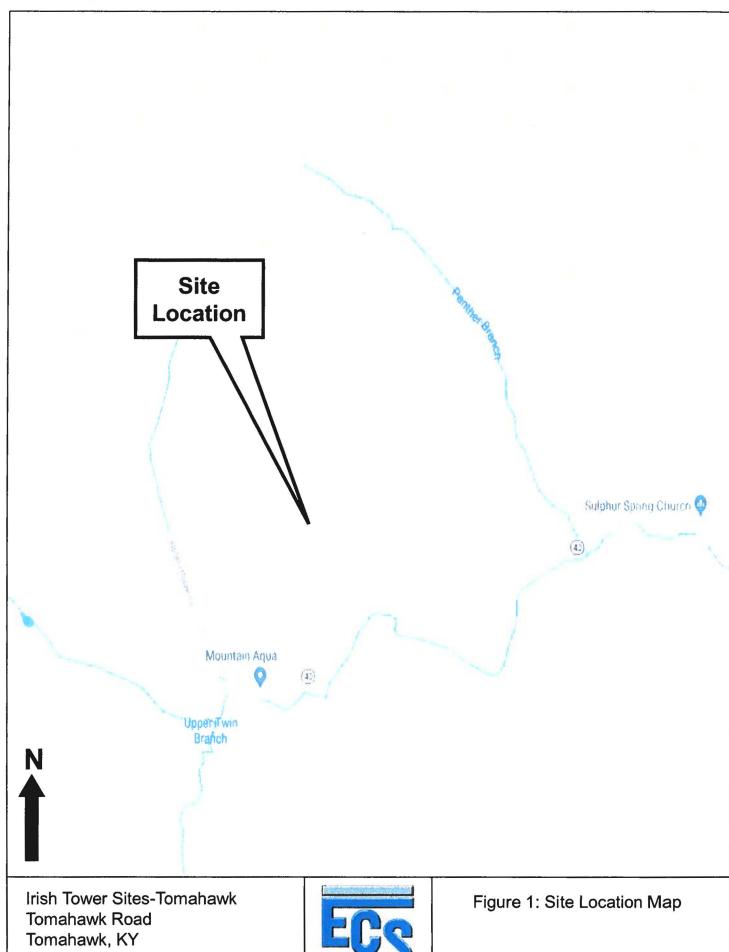
Depth Interval	Allowable Average Side Friction (PSF)
0 - 5	-
5 - 33	750
33+	1,500

^{**}Ignore in top 5 feet in design, minimum embedment depth of 10% tower height applies

Construction Criteria

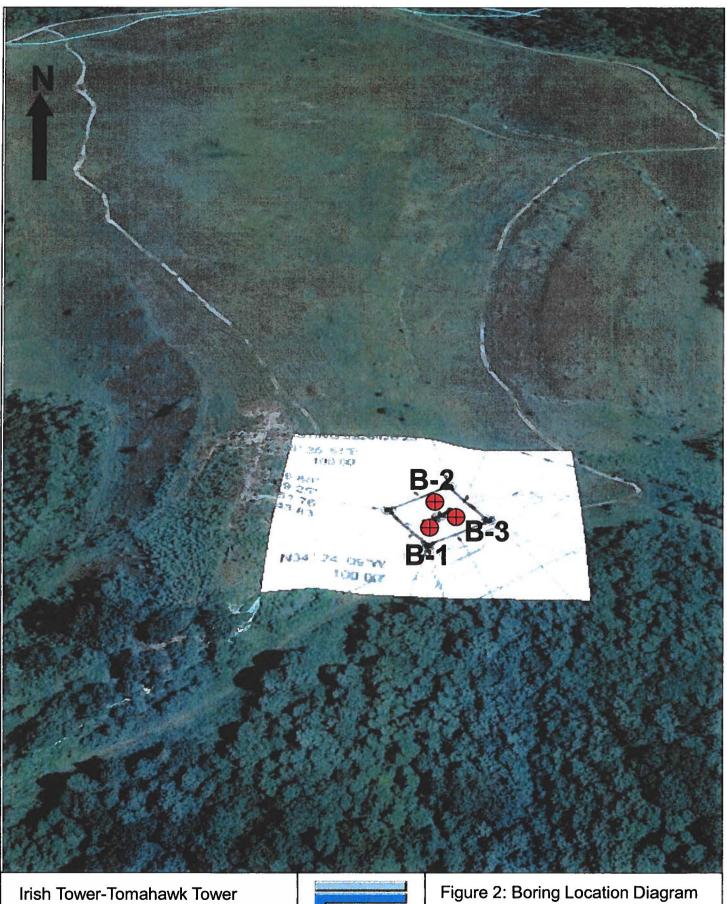
- 1) Proofroll site prior to construction to detect unsuitable soil near the surface.
- 1) Protoroil site prior to construction to detect unsurable son hear the surface.

 2) Compact building pads/roadway subgrade and each 8 inch lift of approved fill to 95% maximum dry density in accordance with ASTM D698 standard proctor.


 3) Approved fill materials are soils with less than 3% organics, less than 50 liquid limit and less than 30 plastic index.

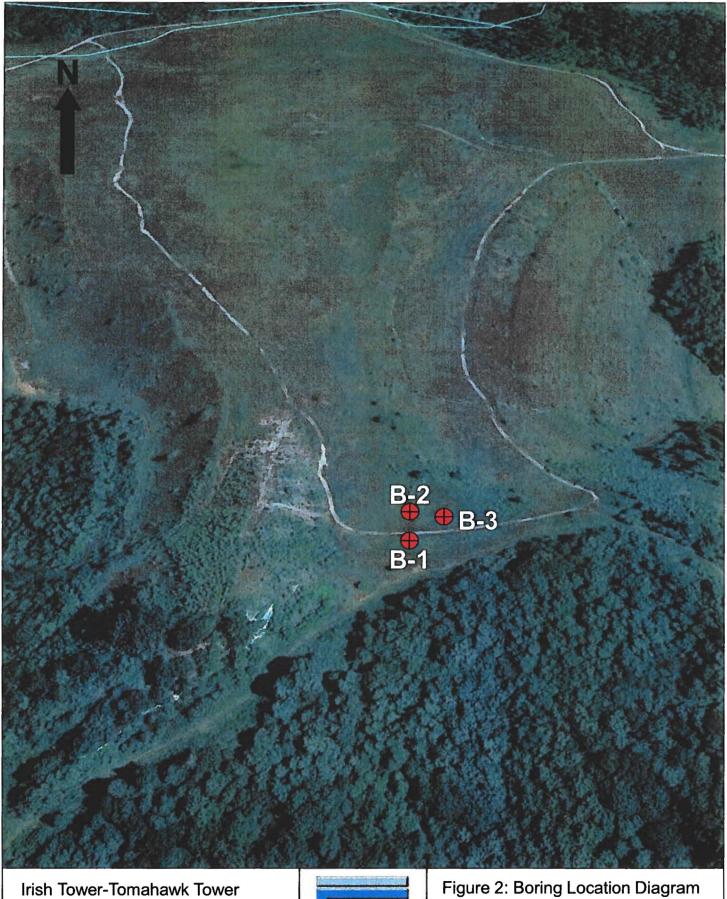
 4) Foundation construction should be observed by Geotechnical Engineer.

 5) Drilled shaft foundations should be installed in accordance with the requirements of the Deep Foundation Institute and monitored by the Geotechnical Engineer.


^{*}Parameters estimated from values suggested in LPILE user manual

^{*}Paramaters were increased with embedment depth due to anticipated increase in bedrock quality

ECS Project No. 26:3125-S2



Irish Tower-Tomahawk Tower 4784 Tomahawk Road Tomahawk, KY ECS Project No. 26:3125-S2

Approximate Boring Locations

Irish Tower-Tomahawk Tower 4784 Tomahawk Road Tomahawk, KY ECS Project No. 26:3125-S2

Approximate Boring Locations

REFERENCE NOTES FOR BORING LOGS

MATERIAL1	2						
	ASPH	ALT					
	CONC	RETE					
80 805	GRAVEL						
W.	TOPSOIL						
	VOID						
	BRICK	ζ.					
0 80 00 5	AGGR	EGATE BASE COURSE					
A STA	FILL ³	MAN-PLACED SOILS					
4	GW	WELL-GRADED GRAVEL gravel-sand mixtures, little or no fines					
	GP	POORLY-GRADED GRAVEL gravel-sand mixtures, little or no fines					
	GM SILTY GRAVEL gravel-sand-silt mixtures						
	GC	CLAYEY GRAVEL gravel-sand-clay mixtures					
	SW	WELL-GRADED SAND gravelly sand, little or no fines					
	SP	POORLY-GRADED SAND gravelly sand, little or no fines					
0 0 0 7 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SM	SILTY SAND sand-silt mixtures					
7.7.7.7.	SC	CLAYEY SAND sand-clay mixtures					
	ML	SILT non-plastic to medium plasticity					
ППП	МН	ELASTIC SILT high plasticity					
1111	CL	LEAN CLAY low to medium plasticity					
1/1	СН	FAT CLAY high plasticity					
ĪŢŢ,	OL	ORGANIC SILT or CLAY non-plastic to low plasticity					
* * * * * * * * * * * * * * * * * * *	ОН	ORGANIC SILT or CLAY high plasticity					
	PT	PEAT highly organic soils					

	DRILLING SAMPLING SYMBOLS & ABBREVIATIONS								
SS	Split Spoon Sampler	PM	Pressuremeter Test						
ST	Shelby Tube Sampler	RD	Rock Bit Drilling						
ws	Wash Sample	RC	Rock Core, NX, BX, AX						
BS	Bulk Sample of Cuttings	REC	Rock Sample Recovery %						
PA	Power Auger (no sample)	RQD	Rock Quality Designation %						
HSA	Hollow Stem Auger								

PARTICLE SIZE IDENTIFICATION							
DESIGNA	TION	PARTICLE SIZES					
Boulders	3	12 inches (300 mm) or larger					
Cobbles		3 inches to 12 inches (75 mm to 300 mm)					
Gravel: Coarse		3/4 inch to 3 inches (19 mm to 75 mm)					
	Fine	4.75 mm to 19 mm (No. 4 sieve to 3/4 inch)					
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)					
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)					
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)					
Silt & Cla	ay ("Fines")	<0.074 mm (smaller than a No. 200 sieve)					

COHESIV	COHESIVE SILTS & CLAYS								
UNCONFINED COMPRESSIVE STRENGTH, Qp4	SPT ⁵ (BPF)	CONSISTENCY ⁷ (COHESIVE)							
<0.25	<3	Very Soft							
0.25 - < 0.50	3 - 4	Soft							
0.50 - <1.00	5 - 8	Medium Stiff							
1.00 - <2.00	9 - 15	Stiff							
2.00 - <4.00	16 - 30	Very Stiff							
4.00 - 8.00	31 - 50	Hard							
>8.00	>50	Very Hard							

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	≤5	<u><</u> 5
Dual Symbol (ex: SW-SM)	10	10
With	15 - 20	15 - 25
Adjective (ex: "Silty")	<u>≥</u> 25	≥30

GRAVELS, SANDS & NON-COHESIVE SILTS						
SPT ⁵	DENSITY					
<5	Very Loose					
5 - 10	Loose					
11 - 30	Medium Dense					
31 - 50	Dense					
>50	Very Dense					

	WATER LEVELS ⁶								
¥	WL	Water Level (WS)(WD)							
-		(WS) While Sampling							
	(WD) While Drilling								
<u>Ā</u>	SHW	Seasonal High WT							
→	ACR	After Casing Removal							
v.	SWT	Stabilized Water Table							
	DCI	Dry Cave-In							
	WCI	Wet Cave-In							

¹Classifications and symbols per ASTM D 2488-09 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf).

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-09 Note 16.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-09.

CLIENT							Job#:	BORII	NG#		SHE	ĒΤ	lettication (
Irish T	owe	r, LI	LC				26:3125-S2		B-1		1 0	- 2	5	Pa
				-	_ L L		ARCHITECT-ENGINEE	к						<u> </u>
SITE LOC	ATION	r Sil	es-	Iom	ahawk						-O- CALIB	RATED P	ENETROME	TER TONS/FT ²
4784	Tom	aha	wk	Road	, Tomahawk	Kentucky					O			
NORTHIN	4784 Tomahawk Road, Tomahawk, Kentucky NORTHING EASTING STATION									ROCK QUALITY DESIGNATION & REC RQD% REC%				
			Ê	=	DESCRIPTION OF M	ATERIAL	ENGLISH	UNITS	S (PLASTIC LIMIT%		VATER	LIQUID LIMIT%
Ē.	Ŏ.	TYPE	DIST	RY (IN	BOTTOM OF CASING	G 🔀	LOSS OF CIRCULATION	ON ∑x;	LEVEL ION (F		×		•	
ОЕРТН (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	SURFACE ELEVATION	N			WATER LEVELS ELEVATION (FT)	BLOWS/6"	⊗:	STANDAR BL	D PENETRA	ATION
0_	S	σ	· O	Œ	Topsoil Thickn	ess [4"]		<i>Y////</i>	> w	-	*	1		•
1 3	S-1	ss	18	18	(CL) LEAN CL gray, moist, fin	AY, contains roc n to stiff	k fragments,			2 2	\$ ÷			
_		-								2	1			
_	S-2	ss	18	18						2 2 3	5-⊗			2
5 —										3		1		
lЭ	S-3	ss	18	18						6 3	6 🖇			
										3	\.			
	S-4	ss	18	18						3	11-0	0		
10 —										8	Į	2		
											/:			
											/ :			
-	S-5	ss	18	18						3	6-8	÷		
15										3	\ .	2		
1 3											1	2		
	S-6	ss	18	18						4	10-⊙	.		
20 —										6	:	2		
]														
-											1	į		
-	S-7	ss	18	18		2				2 4 4	8-\$	÷		
25 —												2		
												į		
_														
] =	S-8	ss	18	18	(SC) CLAYEY gray, moist, loc	SAND, trace gra	ivel, brown to			2 4 3	7-8			
30					west differ						:			
							375.6			CC	NTINUE	ED OI	N NEX.	T PAGE.
	THE	STRA	ATIFIC	ATION	LINES REPRESENT	THE APPROXIMATE	BOUNDARY LINES BE	TWEEN	SOIL TYP	ES. IN-	SITU THE TRAN	ISITION M	AY BE GRAD	UAL.
¥ wr				ws 🗆	WD	BORING STARTED	10/17/18			CAVE	IN DEPTH			
무 WL(SH	HW)		7	WL(AC	R)	BORING COMPLET	TED 10/17/18			HAM	MER TYPE Au	to		
₹ WL						RIG Truck	FOREMAN S	B		DRIL	LING METHOD	HSA/SF	PTT	

CLIENT		- /4					Job#;	BORIN	G#	SHEET					
Irish T	OWE	r, Ll	_C				26:3125-S2 ARCHITECT-ENGINEER		B-1		2 OF	2		20	
Irish T	owe	r Sit	es-	Tom	nahawk								<u> </u>		
														TONS/FT ²	
4784 NORTHIN	<u>Fom</u> G	<u>aha</u>	wk F	Road ASTIN	d, Tomahawk	, Kentucky STATION	,, .			_	ROCK QUAL RQD%	ITY DES		ON & RE	
			ĝ.	=	DESCRIPTION OF M	MATERIAL	ENGLISH		s c		PLASTIC LIMIT%		VATER		LIQUID
(£	ON.	TYPE	: DIST.	ERY (IN	BOTTOM OF CASIN	g 🔀	LOSS OF CIRCULATION	1 200	LEVEL		X		O		
ОЕРТН (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	SURFACE ELEVATI	OTTOM OF CASING LOSS OF CIRCULATION OF CASING LEVATION (F)			BLOWS/6"	⊗ s	TANDAR BL	D PENE OWS/FT	TRATIO	N	
					(SC) CLAYEY gray, moist, lo	SAND, trace gra	avel, brown to				1.				
					AUGER REFU	JSAL @ 32.5'		ZZZZ							
35 —															2
=							i						***		
											-	* * * * * * * * * * * * * * * * * * * *	* 4 * *		
		- 1									Ý		:		
40 —		- 1						İ			3				1
-												-			
- - - - - -		- 1						1							
		ļ												į	
_								İ			2		:	:	
45 —												1		÷	
=												7			
												*	*	1	
-														1	
-													1	i	
50 —		- 1									:	1		1	
ΙΞ													1	-	
														1	
55												ě		1	
I →												Ī		3	
												1		1	
=												-			
													i de		
60 —											1	-	1		
-		İ									1				
	THE	STRA	TIFIC	ATION	LINES REPRESENT	THE APPROXIMATE	BOUNDARY LINES BET	VEEN S	OIL TY	PES. IN-	SITU THE TRANS	SITION M	AY BE GF	RADUAL	
₩L				ws 🗆	WD⊠	BORING STARTED	100000000000000000000000000000000000000				IN DEPTH				
WL(SH	IW)		± 1	WL(AC	R)	BORING COMPLE	20000 00000000		_	 	MER TYPE Auto				
₩L						RIG Truck	FOREMAN SB DRILLING METHOD HSA/SPT				- 1				

CLIENT	Job #:	BORING #		SHEET	AT A STATE OF THE		
Irish Tower, LLC	26:3125-S2	B-2		1 OF 2	50		
PROJECT NAME	ARCHITECT-ENGINEER					5	
Irish Tower Sites-Tomahawk	ower Sites-Tomahawk						
4784 Tomahawk Road, Tomahawk, Kentuck	v			-()- CALIBRATED PI	ENETROMETER	TONS/FT ²	
4784 Tomahawk Road, Tomahawk, Kentuck	_		ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%				
DESCRIPTION OF MATERIAL							
W L (2)	ENGLISH (LIMIT% COI	VATER NTENT%	LIQUID LIMIT%	
E BOTTOM OF CASING	LOSS OF CIRCULATION	TION SEE	.9/9	X		<u> </u>	
DESCRIPTION OF MATERIAL DESCRIPTION OF MATERIAL BOTTOM OF CASING BOTTOM OF CASING SVAMPLE SAMPLE	WATER LEVELS ELEVATION (FT)	BLOWS/6"	STANDAR BL	D PENETRATIO OWS/FT	N		
0 _ Topsoil Thickness [3"]		777		: :	1 1	1	
S-1 SS 18 18 gray, moist, firm to stiff	ns rock tragments,		6	15-∕S			
			7	/			
S-2 SS 18 18			6 3 5	× :			
5			2	\			
S-3 SS 18 18			5	10 ⊗			
			4				
S-4 SS 18 18			4 4	8-2			
10 - 33 10 10			4				
-							
=							
			3				
S-5 SS 18 18 18 15 15 15 15 15 15 15 15 15 15 15 15 15			6	10-⊙			
				f 1			
-				/i i			
			ار				
S-6 SS 18 18			5 3 4	7-⊗			
20							
_						9	
S-7 SS 18 18			3 4	10-⊗			
25			6				
3						4	
				:			
S-8 SS 18 18 (SC) CLAYEY SAND, trac	e gravel, brown,		4 4	9-⊗	1 1		
30 S-8 SS 18 18 moist, loose			5		1 1	ŝ	
	E.	(NTINUED OI	N NEXT F	PAGE	
THE STRATIFICATION LINES REPRESENT THE APPROXI	MATE BOUNDARY LINES BET						
₩L WS WD BORING STA	***			DEPTH			
	MPLETED 10/17/18	н	IAMME	R TYPE Auto			
₹ WL RIG Truck FOREMAN SB				DRILLING METHOD HSA/SPT			

CLIENT							Job #:	BORING	G#		SHEÉT			- Spiritor	
Irish T	owe	r, Ll	_C				26:3125-S2		B-2		2 OF	2			
							ARCHITECT-ENGINEER								5
Irish T	OWE	r Sit	es-	Tom	nahawk								-	120	·
															TONS/FT ²
NORTHIN	l om G	<u>aha</u>	WK I	ASTI	d, Tomahawk	STATION					ROCK QUAL	ITY DES	SIGNATIC	N & RE	COVERY
											RQD%		REC	%	
			Ê		DESCRIPTION OF M	MATERIAL	ENGLISH		<i>"</i>	П	PLASTIC		VATER		LIQUID
٦	ġ.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	BOTTOM OF CASIN	ig 🔀	LOSS OF CIRCULATION	1 5000	WATER LEVELS ELEVATION (FT)		LIMIT%	CO	NTENT%		LIMIT%
ОЕРТН (FT)	SAMPLE NO.	PLE	PLE	OVE	SURFACE ELEVATI				ERLI	BLOWS/6"	⊗ s	TANDAR	D PENET	RATIO	N
DEP	SAM	SAM	SAM	REC					WAT	BLO			OWS/FT		
_					(SC) CLAYEY moist, loose	SAND, trace gra	avel, brown,				-			-	
_														1	
_					AUGER REFU	JSAL @ 33'								* * * *	
35												i			
											į			1	Ě
-												1	į	-	
												•	:	:	
_		İ								Н					
40 —														į	
-		ł										1			
															1
												:			
45 —															
_		ł									i i	:			
												į			
														-	
50 —												÷		*	
												Ì		:	
3												ŝ			4
55 —	ł													1	4
		Í									•	į		1	
												ě			1
															3
												1		:	
60 —												1		1	
-	ŀ				l		1	I		l					
	THE	STRA	TIFIC	ATION	LINES REPRESENT	THE APPROXIMATE	BOUNDARY LINES BET	WEEN S	OIL TYPI	EŞ. IN-	SITU THE TRANS	SITION M	AY BE GR	ADUAL.	
¥ wL			١	ws 🗆	WD 🖸	BORING STARTED	10/17/18			CAVE	IN DEPTH				
¥ WL(SH	łW)		▼ \	VL(AC	R)	BORING COMPLE	TED 10/17/18			HAM	MER TYPE Auto)			
₹ Mr	VL RIG Truck FOREMAN SB DRILLING METHOD HSA/SPT					ING METHOD									

CLIENT							Job#:	BORIN	IG#		SHEET		Manager State	
Irish To	ower	<u>, LL</u>	.C				26:3125-S2		B-3	1	1 OF 1	50	200	
				_			ARCHITECT-ENGINEER							
Irish To	OWER	Site	es-	Tom	iahawk		<u> </u>				0.000	100 PAGE BAR		
4784 T	Toma	hav	vk F	Road	d, Tomahawk	. Kentucky						ENETROMETE	R TONS/FT*	
NORTHING	3		E	ASTIN	NG	STATION				_	ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%			
			_		DESCRIPTION OF M	ATERIAL	ENGLISH.			_				
		H H	ST (IN	(IN)	Storman Storman Storman		ENGLISH		ELS (FT)		LIMIT% CO	NATER NTENT%	LIQUID LIMIT%	
(F)	LE NO	LE TY	LE DIS	VERY	BOTTOM OF CASIN	<u> </u>	LOSS OF CIRCULATION	A 5,000	R LEV	9/8	X			
DEPTH (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY	SURFACE ELEVATION	NO			WATER LEVELS ELEVATION (FT)	BLOWS/6"	⊗ STANDAF BL	RD PENETRAT .OWS/FT	ION	
0 _					Topsoil Thickn	ess [3"]		****		1		i i	1	
Ιd	S-1 S	ss	18	18	gray, moist, sti	AY, contains roo	ck fragments,			3 3 6	2			
-		\top								ľ	9			
	S-2 S	SS	2	2						50/2			50/2	
5														
ΙJ	S-3 S	ss	18	18						3 4	8			
_	+									4				
	S-4 S	ss	18	18						5 4	6			
10	_	+								7	11		į.	
IЗ			İ											
					AUGER REFU	SAL @ 13.5'						1 1	1	
15														
_														
20 —								ļ					1	
-]														
=								1						
_														
25								ŀ						
-													1	
30													1	
"	Į		ļ		l			I			1			
77	THE	STRA					E BOUNDARY LINES BET	WEEN S	SOIL TYP			AY BE GRADUA	L.	
₹ Mr				vs 🗌		BORING STARTED					IN DEPTH			
₩L(SH	W)		¥ 1	VL(AC	R)	BORING COMPLE					MER TYPE Auto			
₹ WL						RIG Truck	FOREMAN SE	3		DRILL	ING METHOD HSA/SP	DRILLING METHOD HSA/SPT		

USGS Design Maps Detailed Report

2012/2015 International Building Code (37.87129°N, 82.61344°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain $S_{\rm s}$) and 1.3 (to obtain $S_{\rm s}$). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From Figure 1613.3.1(1) [1]

 $S_5 = 0.170 g$

From Figure 1613.3.1(2)[2]

 $S_1 = 0.079 g$

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1 SITE CLASS DEFINITIONS

Site Class	- v _s	\overline{N} or \overline{N}_{ch}	- S _u
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1,000 psf

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \ge 40\%$, and
- Undrained shear strength \bar{s} < 500 psf

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1 \text{lb/ft}^2 = 0.0479 \text{ kN/m}^2$

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT F_s

Site Class	Mapped Spectral Response Acceleration at Short Period								
	S ₅ ≤ 0.25	S ₃ = 0.50	S _s = 0.75	S _s = 1.00	S _s ≥ 1.25				
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	0.9				
F		See Se	ction 11.4.7 of	ASCE 7					

Note: Use straight-line interpolation for intermediate values of S₌

For Site Class = D and $S_s = 0.170$ g, $F_s = 1.600$

TABLE 1613.3.3(2)
VALUES OF SITE COEFFICIENT F.

Site Class	Mapped Spectral Response Acceleration at 1–s Period						
	S₁ ≤ 0.10	$S_1 = 0.20$	$S_1 = 0.30$	S ₁ = 0.40	S ₁ ≥ 0.50		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
Е	3.5	3.2	2.8	2.4	2.4		
F		See Se	ction 11.4.7 of	ASCE 7			

Note: Use straight-line interpolation for intermediate values of S.

For Site Class = D and $S_1 = 0.079$ g, $F_v = 2.400$

Equation (16-37):

$$S_{MS} = F_a S_s = 1.600 \times 0.170 = 0.272 g$$

Equation (16-38):

$$S_{M_1} = F_{\nu}S_1 = 2.400 \times 0.079 = 0.190 g$$

Section 1613.3.4 — Design spectral response acceleration parameters

Equation (16-39):

$$S_{05} = \frac{2}{3} S_{35} = \frac{2}{3} \times 0.272 = 0.182 g$$

Equation (16-40):

$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.190 = 0.127 g$$

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1)

SEISMIC DESIGN CATEGORY BASED ON	CHORT DEDIOD (O 2 second)	DECDONICE ACCELEDATION
SEISMIC DESIGN CATEGORY BASED ON	SHUKT-PERIOD (U.Z Second)	RESPONSE ACCELERATION

VALUE OF S	RISK CATEGORY						
VALUE OF Sos	I or II	III	IV				
S _{os} < 0.167g	Α	Α	Α				
0.167g ≤ S _{os} < 0.33g	В	В	С				
$0.33g \le S_{os} < 0.50g$	С	С	D				
0.50g ≤ S _{os}	D	D	D				

For Risk Category = I and S_{os} = 0.182 g, Seismic Design Category = B

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF C	RISK CATEGORY						
VALUE OF S _D	I or II	III	IV				
S _{D1} < 0.067g	Α	А	А				
0.067g ≤ S _{D1} < 0.133g	В	В	С				
0.133g ≤ S ₀₁ < 0.20g	С	С	D				
0.20g ≤ S _{D1}	D	D	D				

For Risk Category = I and S_{01} = 0.127 g, Seismic Design Category = B

Note: When S_i is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category ≡ "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)'' = B

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 1613.3.1(1): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(1).pdf
- 2. Figure 1613.3.1(2): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(2).pdf

EXHIBIT H
DIRECTIONS TO WCF SITE

Driving Directions to Proposed Tower Site

- 1. Beginning at 100 W. Main Street, Inez, KY, head northwest on KY-40 W / W. Main Street (toward Penix Drive) and travel approximately 6.1 miles.
- 2. The site is on the right at 4784 Tomahawk Road in Tomahawk, Kentucky. The site coordinates are

a. North 37 deg 52 min 16.65 sec

Prepared by: Aaron Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT I
COPY OF REAL ESTATE AGREEMENT

Market: Lexington Cell Site Number: KYL06075 Cell Site Name: Tomphawk Fixed Asset Number: 138/0693

OPTION AND LEASE AGREEMENT

THIS OPTION AND LEASE AGREEMENT ("Agreement"), dated as of the latter of the signature dates below (the "Effective Date"), is entered into by Bruce Endicott, Jr. and Elizabeth Ashley Endicott, a married couple, having a mailing address of 4784 Tomahawk Road. Tomahawk, KY 41262 ("Landlord") and New Cingular Wireless PCS, LLC, a Delaware limited liability company, having a mailing address of 575 Morosgo Drive, Atlanta. GA 30324 ("Tenant").

BACKGROUND

Landlord owns or controls that certain plot, parcel or tract of land, as described on **Exhibit 1**, together with all rights and privileges arising in connection therewith, located at 4784 Tomahawk Road, in the County of Martin, State of Kentucky (collectively, the "**Property**"). Tenant desires to use a portion of the Property in connection with its federally licensed communications business. Landlord desires to grant to Tenant the right to use a portion of the Property in accordance with this Agreement.

The parties agree as follows:

1. OPTION TO LEASE.

- (a) Landlord grants to Tenant an option (the "Option") to lease a certain portion of the Property containing approximately 10,000 square feet including the air space above such ground space, as described on attached Exhibit 1 (the "Premises"), for the placement of Tenant's Communication Facility.
- (b) During the Option Term, and during the term of this Agreement, Tenant and its agents, engineers. surveyors and other representatives will have the right to enter upon the Property to inspect, examine, conduct soil borings, drainage testing, material sampling, radio frequency testing and other geological or engineering tests or studies of the Property (collectively, the "Tests"), to apply for and obtain licenses, permits, approvals, or other relief required of or deemed necessary or appropriate at Tenant's sole discretion for its use of the Premises and include, without limitation, applications for zoning variances, zoning ordinances, amendments, special use permits, and construction permits (collectively, the "Government Approvals"), initiate the ordering and/or scheduling of necessary utilities, and otherwise to do those things on or off the Property that, in the opinion of Tenant, are necessary in Tenant's sole discretion to determine the physical condition of the Property, the environmental history of the Property. Landlord's title to the Property and the feasibility or suitability of the Property for Tenant's Permitted Use, all at Tenant's expense. Tenant will not be liable to Landlord or any third party on account of any pre-existing defect or condition on or with respect to the Property, whether or not such defect or condition is disclosed by Tenant's inspection. Tenant will restore the Property to its condition as it existed at the commencement of the Option Term, reasonable wear and tear and loss by casualty or other causes beyond Tenant's control excepted.
- (c) In consideration of Landlord granting Tenant the Option, Tenant agrees to pay Landlord the sum of within forty five (45) business days of the Effective Date. The Option will be for an initial term of one (1) year commencing on the Effective Date (the "Initial Option Term") and may be renewed by Tenant for an additional one (1) year (the "Renewal Option Term") upon written notification to Landlord and the payment of an additional no later than five (5) days prior to the expiration date of the Initial Option Term. The Initial Option Term and any Renewal Option Term are collectively referred to as the "Option Term."
- (d) The Option may be sold, assigned or transferred at any time by Tenant to an Affiliate (as that term is hereinafter defined) of Tenant or to any third party agreeing to be subject to the terms hereof. Otherwise,

the Option may not be sold, assigned or transferred without the written consent of Landlord, such consent not to be unreasonably withheld, conditioned or delayed. From and after the date the Option has been sold, assigned or transferred by Tenant to an Affiliate or a third party agreeing to be subject to the terms hereof, Tenant shall immediately be released from any and all liability under this Agreement, including the payment of any rental or other sums due, without any further action.

- (e) During the Option Term, Tenant may exercise the Option by notifying Landlord in writing. If Tenant exercises the Option then Landlord leases the Premises to Tenant subject to the terms and conditions of this Agreement. If Tenant does not exercise the Option during the Initial Option Term or any extension thereof, this Agreement will terminate and the parties will have no further liability to each other.
- (f) If during the Option Term, or during the term of this Agreement the Option is exercised, Landlord decides to subdivide, sell, or change the status of the zoning of the Premises, Property or any of Landlord's contiguous, adjoining or surrounding property (the "Surrounding Property,") or in the event of foreclosure, Landlord shall immediately notify Tenant in writing. Landlord agrees that during the Option Term, or during the Term of this Agreement if the Option is exercised, Landlord shall not initiate or consent to any change in the zoning of the Premises, Property or Surrounding Property or impose or consent to any other use or restriction that would prevent or limit Tenant from using the Premises for the Permitted Use. Any and all terms and conditions of this Agreement that by their sense and context are intended to be applicable during the Option Term shall be so applicable.
- PERMITTED USE. Tenant may use the Premises for the transmission and reception of communications signals and the installation, construction, maintenance, operation, repair, replacement and upgrade of its communications fixtures and related equipment, cables, accessories and improvements, which may include a suitable support structure, associated antennas, equipment shelters or cabinets, gates and fencing and any other items necessary to the successful and secure use of the Premises (collectively, the "Communication Facility"), as well as the right to test, survey and review title on the Property; Tenant further has the right but not the obligation to add, modify and/or replace equipment in order to be in compliance with any current or future federal, state or local mandated application, including, but not limited to, emergency 911 communication services, at no additional cost to Tenant or Landlord (collectively, the "Permitted Use"). Landlord and Tenant agree that any portion of the Communication Facility that may be conceptually described on Exhibit 1 will not be deemed to limit Tenant's Permitted Use. If Exhibit 1 includes drawings of the initial installation of the Communication Facility, Landlord's execution of this Agreement will signify Landlord's approval of Exhibit 1. For a period of ninety (90) days following the start of construction, Landlord grants Tenant, its subtenants, licensees and sublicensees, the right to use such portions of Landlord's contiguous, adjoining or Surrounding Property as described on Exhibit 1 as may reasonably be required during construction and installation of the Communication Facility. Tenant has the right to install and operate transmission cables from the equipment shelter or eabinet to the antennas, electric lines from the main feed to the equipment shelter or cabinet and communication lines from the Property's main entry point to the equipment shelter or cabinet, and to make other improvements, alterations, upgrades or additions appropriate for Tenant's Permitted Use, including the right to construct a fence around the Premises and undertake any other appropriate means to secure the Premises at Tenant's expense. Tenant has the right to modify, supplement, replace, upgrade, expand the equipment, increase the number of antennas or relocate the Communication Facility within the Premises at any time during the term of this Agreement. Tenant will be allowed to make such alterations to the Property in order to ensure that Tenant's Communication Facility complies with all applicable federal, state or local laws, rules or regulations. Tenant, at its own expense, is obligated to construct a gate near the beginning of Tenant's access easement as noted in Exhibit 1. In the event Tenant desires to modify or upgrade the Communication Facility, in a manner that requires an additional portion of the Property (the "Additional Premises") for such modification or upgrade, Landlord agrees to lease to Tenant the Additional Premises, upon the same terms and conditions set forth herein, except that the Rent shall increase, in conjunction with the lease of the Additional Premises by the amount equivalent to the then-current per square foot rental rate charged by Landlord to Tenant times the square footage of the Additional Premises. Landlord agrees to take such actions and enter into and deliver to Tenant such documents as Tenant reasonably requests in order to effect and memorialize the lease of the Additional Premises to Tenant.

3. TERM.

- (a) The initial lease term will be five (5) years (the "Initial Term"), commencing on the effective date of written notification by Tenant to Landlord of Tenant's exercise of the Option (the "Term Commencement Date"). The Initial Term will terminate on the fifth (5th) anniversary of the Term Commencement Date.
- (b) This Agreement will automatically renew for four (4) additional five (5) year term(s) (each five (5) year term shall be defined as an "Extension Term"), upon the same terms and conditions unless Tenant notifies Landlord in writing of Tenant's intention not to renew this Agreement at least sixty (60) days prior to the expiration of the Initial Term or then-existing Extension Term.
- (c) Unless (i) Landlord or Tenant notifies the other in writing of its intention to terminate this Agreement at least six (6) months prior to the expiration of the final Extension Term, or (ii) the Agreement is terminated as otherwise permitted by this Agreement prior to the end of the final Extension Term, then upon the expiration of the final Extension Term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of one (1) year, and for annual terms thereafter ("Annual Term") until terminated by either party by giving to the other written notice of its intention to so terminate at least six (6) months prior to the end of any such Annual Term. Monthly rental during such Annual Terms shall be equal to the Rent paid for the last month of the final Extension Term. If Tenant remains in possession of the Premises after the termination of this Agreement, then Tenant will be deemed to be occupying the Premises on a month-to-month basis (the "Holdover Term"), subject to the terms and conditions of this Agreement.
- (d) The Initial Term, any Extension Terms, any Annual Terms and any Holdover Term are collectively referred to as the Term (the "Term").

4. RENT.

- (a) Commencing on the first day of the month following the date that Tenant commences construction (the "Rent Commencement Date"). Tenant will pay Landlord on or before the fifth (5th) day of each calendar month in advance (the "Rent"), at the address set forth above. In any partial month occurring after the Rent Commencement Date, Rent will be prorated. The initial Rent payment will be forwarded by Tenant to Landlord within forty-five (45) days after the Rent Commencement Date.
 - (b) In year one (1) of each Extension Term, the monthly Rent will increase by over the Rent paid during the previous five (5) year term.
- (e) All charges payable under this Agreement such as utilities and taxes shall be billed by Landlord within one (1) year from the end of the calendar year in which the charges were incurred; any charges beyond such period shall not be billed by Landlord, and shall not be payable by Tenant. The foregoing shall not apply to monthly Rent which is due and payable without a requirement that it be billed by Landlord. The provisions of this subsection shall survive the termination or expiration of this Agreement.

APPROVALS.

- (a) Landlord agrees that Tenant's ability to use the Premises is contingent upon the suitability of the Premises and Property for Tenant's Permitted Use and Tenant's ability to obtain and maintain all Government Approvals. Landlord authorizes Tenant to prepare, execute and file all required applications to obtain Government Approvals for Tenant's Permitted Use under this Agreement and agrees to reasonably assist Tenant with such applications and with obtaining and maintaining the Government Approvals.
- (b) Tenant has the right to obtain a title report or commitment for a leasehold title policy from a title insurance company of its choice and to have the Property surveyed by a surveyor of its choice.
- (c) Tenant may also perform and obtain, at Tenant's sole cost and expense, soil borings, percolation tests, engineering procedures, environmental investigation or other tests or reports on, over, and under the Property, necessary to determine if Tenant's use of the Premises will be compatible with Tenant's engineering specifications, system, design, operations or Government Approvals.

- **TERMINATION.** This Agreement may be terminated, without penalty or further liability, as follows: 6.
- by either party on thirty (30) days prior written notice, if the other party remains in default under Section 15 of this Agreement after the applicable cure periods;
- by Tenant upon written notice to Landlord, if Tenant is unable to obtain or maintain, any required approval(s) or the issuance of a license or permit by any agency, board, court or other governmental authority necessary for the construction or operation of the Communication Facility as now or hereafter intended by Tenant; or if Tenant determines, in its sole discretion that the cost of or delay in obtaining or retaining the same is commercially unreasonable;
- by Tenant, upon written notice to Landlord, if Tenant determines, in its sole discretion, due to (c) the title report results or survey results, that the condition of the Premises is unsatisfactory for its intended uses:
- by Tenant upon written notice to Landlord for any reason or no reason, at any time prior to commencement of construction by Tenant; or
- by Tenant upon sixty (60) days' prior written notice to Landlord for any reason or no reason, so long as Tenant pays Landlord a termination fee equal to three (3) months' Rent, at the then-current rate, provided, however, that no such termination fee will be payable on account of the termination of this Agreement by Tenant under any termination provision contained in any other Section of this Agreement, including the following: 5 Approvals, 6(a) Termination, 6(b) Termination, 6(c) Termination, 6(d) Termination, 11(d) Environmental, 18 Condemnation, or 19 Casualty.

7. INSURANCE.

insured coverage:

During the Term, Tenant will carry, at its own cost and expense, the following insurance: (i) workers' compensation insurance as required by law; and (ii) commercial general liability (CGL) insurance with respect to its activities on the Property, such insurance to afford protection of up to

based on Insurance Services Office (ISO) Form CG 00 01 or a substitute form providing substantially equivalent coverage. Tenant's CGL insurance shall contain a provision including Landlord as an additional insured. Such additional

- (i) shall be limited to bedily injury, property damage or personal and advertising injury caused, in whole or in part, by Tenant, its employees, agents or independent contractors:
- (ii) shall not extend to claims for punitive or exemplary damages arising out of the acts or emissions of Landlord, its employees, agents or independent contractors or where such coverage is prohibited by law or to claims arising out of the gross negligence of I andlord, its employees, agents or independent contractors; and
 - (iii) shall not exceed Tenant's indemnification obligation under this Agreement, if any
- Notwithstanding the foregoing. Tenant shall have the right to self-insure the coverages required in subsection (a). In the event Tenant elects to self-insure its obligation to include Landlord as an additional insured, the following provisions shall apply (in addition to those set forth in subsection (a)):
 - (i) Landlord shall promptly and no later than thirty (30) days after notice thereof provide Tenant with written notice of any claim, demand, lawsuit, or the like for which it seeks coverage pursuant to this Section and provide Tenant with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like.
 - (ii) Landlord shall not settle any such claim, demand, lawsuit, or the like without the prior writter, consent of Tenant; and
 - (iii) Landlord shall fully cooperate with Tenant in the defense of the claim, demand, lawsuit, or the like.

8. INTERFERENCE.

- (a) Prior to or concurrent with the execution of this Agreement, Landlord has provided or will provide Tenant with a list of radio frequency user(s) and frequencies used on the Property as of the Effective Date. Tenant warrants that its use of the Premises will not interfere with those existing radio frequency uses on the Property, as long as those existing radio frequency user(s) operate and continue to operate within their respective frequencies and in accordance with all applicable laws and regulations.
- (b) Landlord will not grant, after the date of this Agreement, a lease, license or any other right to any third party, if the exercise of such grant may in any way adversely affect or interfere with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will notify Tenant in writing prior to granting any third party the right to install and operate communications equipment on the Property.
- (e) Landlord will not, nor will Landlord permit its employees, tenants, licensees, invitees, agents or independent contractors to, interfere in any way with the Communication Facility, the operations of Tenant or the rights of Tenant under this Agreement. Landlord will cause such interference to cease within twenty-four (24) hours after receipt of notice of interference from Tenant. In the event any such interference does not cease within the aforementioned cure period, Landlord shall cease all operations which are suspected of causing interference (except for intermittent testing to determine the cause of such interference) until the interference has been corrected.
- (d) For the purposes of this Agreement, "interference" may include, but is not limited to, any use on the Property or Surrounding Property that causes electronic or physical obstruction with, or degradation of, the communications signals from the Communication Facility.

9. <u>INDEMNIFICATION.</u>

- (a) Tenant agrees to indemnify, defend and hold Landlord harmless from and against any and all injury, loss, damage or liability (or any claims in respect of the foregoing), costs or expenses (including reasonable attorneys' fees and court costs) arising directly from the installation, use, maintenance, repair or removal of the Communication Facility or Tenant's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Landlord, its employees, agents or independent contractors.
- (b) Landlord agrees to indemnify, defend and hold Tenant harmless from and against any and all injury, loss, damage or liability (or any claims in respect of the foregoing), costs or expenses (including reasonable attorneys' fees and court costs) arising directly from the actions or failure to act of Landlord, its employees or agents, or Landlord's breach of any provision of this Agreement, except to the extent attributable to the negligent or intentional act or omission of Tenant, its employees, agents or independent contractors.
- (c) The indemnified party: (i) shall promptly provide the indemnifying party with written notice of any claim, demand, lawsuit, or the like for which it seeks indemnification pursuant to this Section and provide the indemnifying party with copies of any demands, notices, summonses, or legal papers received in connection with such claim, demand, lawsuit, or the like; (ii) shall not settle any such claim, demand, lawsuit, or the like without the prior written consent of the indemnifying party; and (iii) shall fully cooperate with the indemnifying party in the defense of the claim, demand, lawsuit, or the like. A delay in notice shall not relieve the indemnifying party of its indemnity obligation, except (1) to the extent the indemnifying party can show it was prejudiced by the delay; and (2) the indemnifying party shall not be liable for any settlement or litigation expenses incurred before the time when notice is given.

10. WARRANTIES.

- (a) Tenant and Landlord each acknowledge and represent that it is duly organized, validly existing and in good standing and has the right, power and authority to enter into this Agreement and bind itself hereto through the party set forth as signatory for the party below.
- (b) Landlord represents, warrants and agrees that: (i) Landlord solely owns the Property as a legal lot in fee simple, or controls the Property by lease or license; (ii) the Property is not and will not be encumbered by any liens, restrictions, mortgages, covenants, conditions, easements, leases, or any other agreements of record or not of record, which would adversely affect Tenant's Permitted Use and enjoyment of the Premises under this

Agreement; (iii) as long as Tenant is not in default then Landlord grants to Tenant sole, actual, quiet and peaceful use, enjoyment and possession of the Premises without hindrance or ejection by any persons lawfully claiming under Landlord; (iv) Landlord's execution and performance of this Agreement will not violate any laws, ordinances, covenants or the provisions of any mortgage, lease or other agreement binding on Landlord; and (v) if the Property is or becomes encumbered by a deed to secure a debt, mortgage or other security interest. Landlord will provide promptly to Tenant a mutually agreeable subordination, non-disturbance and attornment agreement executed by Landlord and the holder of such security interest.

11. ENVIRONMENTAL.

- (a) Landlord represents and warrants that, except as may be identified in **Exhibit 11** attached to this Agreement, (i) the Property, as of the date of this Agreement, is free of hazardous substances, including asbestos-containing materials and lead paint, and (ii) the Property has never been subject to any contamination or hazardous conditions resulting in any environmental investigation, inquiry or remediation. Landlord and Tenant agree that each will be responsible for compliance with any and all applicable governmental laws, rules, statutes, regulations, codes, ordinances, or principles of common law regulating or imposing standards of liability or standards of conduct with regard to protection of the environment or worker health and safety, as may now or at any time hereafter be in effect, to the extent such apply to that party's activity conducted in or on the Property.
- (b) Landlord and Tenant agree to hold harmless and indemnify the other from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of the indemnifying party for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any action, notice, claim, order, summons, citation, directive, litigation, investigation or proceeding ("Claims"), to the extent arising from that party's breach of its obligations or representations under Section 11(a). Landlord agrees to hold harmless and indemnify Tenant from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Landlord for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from subsurface or other contamination of the Property with hazardous substances prior to the Effective Date of this Agreement or from such contamination caused by the acts or omissions of Landlord during the Term. Tenant agrees to hold harmless and indemnify Landlord from, and to assume all duties, responsibilities and liabilities at the sole cost and expense of Tenant for, payment of penalties, sanctions, forfeitures, losses, costs or damages, and for responding to any Claims, to the extent arising from hazardous substances brought onto the Property by Tenant.
- (c) The indemnifications of this Section 11 specifically include reasonable costs, expenses and fees incurred in connection with any investigation of Property conditions or any clean-up, remediation, removal or restoration work required by any governmental authority. The provisions of this Section 11 will survive the expiration or termination of this Agreement.
- (d) In the event Tenant becomes aware of any hazardous substances on the Property, or any environmental, health or safety condition or matter relating to the Property, that, in Tenant's sole determination, renders the condition of the Premises or Property unsuitable for Tenant's use, or if Tenant believes that the leasing or continued leasing of the Premises would expose Tenant to undue risks of liability to a government agency or other third party, Tenant will have the right, in addition to any other rights it may have at law or in equity, to terminate this Agreement upon written notice to Landlord.
- ACCESS. At all times throughout the Term of this Agreement, and at no additional charge to Tenant, Tenant and its employees, agents, and subcontractors, will have twenty-four (24) hour per day, seven (7) day per week pedestrian and vehicular access ("Access") to and over the Property, from an open and improved public road to the Premises, for the installation, maintenance and operation of the Communication Facility and any utilities serving the Premises. Tenant, at its own expense, must construct a gate near the beginning of the access easement as shown in Exhibit 1. As may be described more fully in Exhibit 1, Landlord grants to Tenant an easement for such Access and Landlord agrees to provide to Tenant such codes, keys and other instruments necessary for such Access at no additional cost to Tenant. Upon Tenant's request, Landlord will execute a separate recordable easement evidencing this right. Landlord shall execute a letter granting Tenant Access to the Property substantially in the form attached as Exhibit 12; upon Tenant's request, Landlord shall execute

additional letters during the Term. Landlord acknowledges that in the event Tenant cannot obtain Access to the Premises, Tenant shall incur significant damage. If Landlord fails to provide the Access granted by this Section 12, such failure shall be a default under this Agreement. In connection with such default, in addition to any other rights or remedies available to Tenant under this Agreement or at law or equity, Landlord shall pay Tenant, as liquidated damages and not as a penalty, in consideration of Tenant's damages until Landlord cures such default. Landlord and Tenant agree that Tenant's damages in the event of a denial of Access are difficult, if not impossible, to ascertain, and the liquidated damages set forth above are a reasonable approximation of such damages.

13. REMOVAL/RESTORATION. All portions of the Communication Facility brought onto the Property by Tenant will be and remain Tenant's personal property and, at Tenant's option, may be removed by Tenant at any time during or after the Term. I andlord covenants and agrees that no part of the Communication Facility constructed, erected or placed on the Premises by Tenant will become, or be considered as being affixed to or a part of, the Property, it being the specific intention of Landlord that all improvements of every kind and nature constructed, erected or placed by Tenant on the Premises will be and remain the property of Tenant and may be removed by Tenant at any time during or after the Term. Tenant will repair any damage to the Property resulting from Tenant's removal activities. Any portions of the Communication Facility that Tenant does not remove within one hundred twenty (120) days after the later of the end of the Term and cessation of Tenant's operations at the Premises shall be deemed abandoned and owned by Landlord. However, to the extent required by law, Tenant will remove the above-ground portions of the Communications Facility within such one hundred twenty (120) day period. Notwithstanding the foregoing. Tenant will not be responsible for the replacement of any trees, shrubs or other vegetation.

14. <u>MAINTENANCE/UTILITIES.</u>

- (a) Tenant will keep and maintain the Premises in good condition, reasonable wear and tear and damage from the elements excepted. Landlord will maintain and repair the Property and access thereto and all areas of the Premises where Tenant does not have exclusive control, in good and tenantable condition, subject to reasonable wear and tear and damage from the elements. Landlord will be responsible for maintenance of landscaping on the Property, including any landscaping installed by Tenant as a condition of this Agreement or any required permit.
- (b) Tenant will be responsible for paying on a monthly or quarterly basis all utilities charges for electricity, telephone service or any other utility used or consumed by Tenant on the Premises. In the event Tenant cannot secure its own metered electrical supply, Tenant will have the right, at its own cost and expense, to submeter from Landlord. When submetering is required under this Agreement, Landlord will read the meter and provide Tenant with an invoice and usage data on a monthly basis. Landlord agrees that it will not include a markup on the utility charges. Landlord further agrees to provide the usage data and invoice on forms provided by Tenant and to send such forms to such address and or agent designated by Tenant. Tenant will remit payment within forty-five (45) days of receipt of the usage data and required forms. As noted in Section 4(c) above, any utility fee recovery by Landlord is limited to a twelve (12) month period. If Tenant submeters electricity from Landlord. Landlord agrees to give Tenant at least twenty-four (24) hours advance notice of any planned interruptions of said electricity. Landlord acknowledges that Tenant provides a communication service which requires electrical power to operate and must operate twenty-four (24) hours per day, seven (7) days per week. If the interruption is for an extended period of time, in Tenant's reasonable determination, Landlord agrees to allow Tenant the right to bring in a temporary source of power for the duration of the interruption. Landlord will not be responsible for interference with, interruption of or failure, beyond the reasonable control of Landlord, of such services to be furnished or supplied by Landlord.
- (c) Landlord hereby grants to any company providing utility or similar services, including electric power and telecommunications, to Tenant an easement over the Property, from an open and improved public road to the Premises, and upon the Premises, for the purpose of constructing, operating and maintaining such lines, wires, circuits, and conduits, associated equipment cabinets and such appurtenances thereto, as such companies may from time to time require in order to provide such services to the Premises. Upon Tenant's or

the service company's request, Landlord will execute a separate recordable easement evidencing this grant, at no cost to Tenant or the service company.

15. **DEFAULT AND RIGHT TO CURE.**

- (a) The following will be deemed a default by Tenant and a breach of this Agreement: (i) non-payment of Rent if such Rent remains unpaid for more than thirty (30) days after written notice from Landlord of such failure to pay; or (ii) Tenant's failure to perform any other term or condition under this Agreement within forty-five (45) days after written notice from Landlord specifying the failure. No such failure, however, will be deemed to exist if Tenant has commenced to cure such default within such period and provided that such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Tenant. If Tenant remains in default beyond any applicable cure period, Landlord will have the right to exercise any and all rights and remedies available to it under law and equity.
- (b) The following will be deemed a default by Landlord and a breach of this Agreement: (i) Landlord's failure to provide Access to the Premises as required by Section 12 of this Agreement within twenty-four (24) hours after written notice of such failure; (ii) Landlord's failure to cure an interference problem as required by Section 8 of this Agreement within twenty-four (24) hours after written notice of such failure; or (iii) Landlord's failure to perform any term, condition or breach of any warranty or covenant under this Agreement within forty-five (45) days after written notice from Tenant specifying the failure. No such failure, however, will be deemed to exist if Landlord has commenced to cure the default within such period and provided such efforts are prosecuted to completion with reasonable diligence. Delay in curing a default will be excused if due to causes beyond the reasonable control of Landlord. If Landlord remains in default beyond any applicable cure period, Tenant will have: (i) the right to cure Landlord's default and to deduct the costs of such cure from any monies due to Landlord from Tenant, and (ii) any and all other rights available to it under law and equity.
- 16. <u>ASSIGNMENT/SUBLEASE.</u> Tenant will have the right to assign this Agreement or sublease the Premises and its rights herein, in whole or in part, without Landlord's consent. Upon notification to Landlord of such assignment, Tenant will be relieved of all future performance, liabilities and obligations under this Agreement to the extent of such assignment.
- 17. NOTICES. All notices, requests and demands hereunder will be given by first class certified or registered mail, return receipt requested, or by a nationally recognized overnight courier, postage prepaid, to be effective when properly sent and received, refused or returned undelivered. Notices will be addressed to the parties as follows:

If to Tenant:

New Cingular Wireless PCS, LLC

Attn: Network Real Estate Administration

Re: Cell Site #: KYL06075; Cell Site Name: Tomahawk (KY)

Fixed Asset No.: 13800693

575 Morosgo Drive Atlanta. GA 30324

With a copy to:

New Cingular Wireless PCS, LLC

Attn.: Legal Department

Re: Cell Site #: KYL06075; Cell Site Name: Tomahawk (KY)

Fixed Asset No.: 13800693

208 S. Akard Street Dallas, TX 75202-4206 The copy sent to the Legal Department is an administrative step which alone does not constitute legal notice.

If to Landlord:

Bruce Endicott, Jr. 4784 Tomahawk Road Tomahawk, KY 41262

Either party hereto may change the place for the giving of notice to it by thirty (30) days' prior written notice to the other as provided herein.

- 18. CONDEMNATION. In the event Landlord receives notification of any condemnation proceedings affecting the Property, Landlord will provide notice of the proceeding to Tenant within forty-eight (48) hours. If a condemning authority takes all of the Property, or a portion sufficient, in Tenant's sole determination, to render the Premises unsuitable for Tenant, this Agreement will terminate as of the date the title vests in the condemning authority. The parties will each be entitled to pursue their own separate awards in the condemnation proceeds, which for Tenant will include, where applicable, the value of its Communication Facility, moving expenses, prepaid Rent, and business dislocation expenses. Tenant will be entitled to reimbursement for any prepaid Rent on a prorata basis.
- 19. CASUALTY. Landlord will provide notice to Tenant of any casualty or other harm affecting the Property within forty-eight (48) hours of the casualty or other harm. If any part of the Communication Facility or Property is damaged by casualty or other harm as to render the Premises unsuitable, in Tenant's sole determination, then Tenant may terminate this Agreement by providing written notice to Landlord, which termination will be effective as of the date of such casualty or other harm. Upon such termination, Tenant will be entitled to collect all insurance proceeds payable to Tenant on account thereof and to be reimbursed for any prepaid Rent on a prorata basis. Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property, but only until such time as Tenant is able to activate a replacement transmission facility at another location; notwithstanding the termination of the Agreement, such temporary facilities will be governed by all of the terms and conditions of this Agreement, including Rent. If Landlord or Tenant undertakes to rebuild or restore the Premises and/or the Communication Facility, as applicable, Landlord agrees to permit Tenant to place temporary transmission and reception facilities on the Property at no additional Rent until the reconstruction of the Premises and/or the Communication Facility is completed. If Landlord determines not to rebuild or restore the Property, Landlord will notify Tenant of such determination within thirty (30) days after the casualty or other harm. If Landlord does not so notify Tenant, and Tenant decides not to terminate under this Section, then Landlord will promptly rebuild or restore any portion of the Property interfering with or required for Tenant's Permitted Use of the Premises to substantially the same condition as existed before the casualty or other harm. Landlord agrees that the Rent shall be abated until the Property and/or the Premises are rebuilt or restored, unless Tenant places temporary transmission and reception facilities on the Property.
- **WAIVER OF LANDLORD'S LIENS.** Landlord waives any and all lien rights it may have, statutory or otherwise, concerning the Communication Facility or any portion thereof. The Communication Facility shall be deemed personal property for purposes of this Agreement, regardless of whether any portion is deemed real or personal property under applicable law; Landlord consents to Tenant's right to remove all or any portion of the Communication Facility from time to time in Tenant's sole discretion and without Landlord's consent.

21. TAXES.

(a) Landlord shall be responsible for timely payment of all taxes and assessments levied upon the lands, improvements and other property of Landlord, including any such taxes that may be calculated by the taxing authority using any method, including the income method. Tenant shall be responsible for any taxes and assessments attributable to and levied upon Tenant's leasehold improvements on the Premises if and as set forth in this Section 21. Nothing herein shall require Tenant to pay any inheritance, franchise, income, payroll,

excise, privilege, rent, capital stock, stamp, documentary, estate or profit tax, or any tax of similar nature, that is or may be imposed upon Landlord.

- (b) In the event Landlord receives a notice of assessment with respect to which taxes or assessments are imposed on Tenant's leasehold improvements on the Premises, Landlord shall provide Tenant with copies of each such notice immediately upon receipt, but in no event later than thirty (30) days after the date of such notice of assessment. If Landlord does not provide such notice or notices to Tenant within such time period, Landlord shall be responsible for payment of the tax or assessment set forth in the notice, and Landlord shall not have the right to reimbursement of such amount from Tenant. If Landlord provides a notice of assessment to Tenant within such time period and requests reimbursement from Tenant as set forth below, then Tenant shall reimburse Landlord for the tax or assessments identified on the notice of assessment on Tenant's leasehold improvements, which has been paid by Landlord. If Landlord seeks reimbursement from Tenant, Landlord shall, no later than thirty (30) days after Landlord's payment of the taxes or assessments for the assessed tax year, provide Tenant with written notice including evidence that Landlord has timely paid same, and Landlord shall provide to Tenant any other documentation reasonably requested by Tenant to allow Tenant to evaluate the payment and to reimburse Landlord.
- (c) For any tax amount for which Tenant is responsible under this Agreement, Tenant shall have the right to contest, in good faith, the validity or the amount thereof using such administrative, appellate or other proceedings as may be appropriate in the jurisdiction, and may defer payment of such obligations, pay same under protest, or take such other steps as Tenant may deem appropriate. This right shall include the ability to institute any legal, regulatory or informal action in the name of Landlord, Tenant, or both, with respect to the valuation of the Premises. Landlord shall cooperate with respect to the commencement and prosecution of any such proceedings and will execute any documents required therefor. The expense of any such proceedings shall be borne by Tenant and any refunds or rebates secured as a result of Tenant's action shall belong to Tenant, to the extent the amounts were originally paid by Tenant. In the event Tenant notifies Landlord by the due date for assessment of Tenant's intent to contest the assessment, Landlord shall not pay the assessment pending conclusion of the contest, unless required by applicable law.
- (d) Landlord shall not split or cause the tax parcel on which the Premises are located to be split, bifurcated, separated or divided without the prior written consent of Tenant.
- (e) Tenant shall have the right but not the obligation to pay any taxes due by Landlord hereunder if Landlord fails to timely do so, in addition to any other rights or remedies of Tenant. In the event that Tenant exercises its rights under this Section 21(e) due to such Landlord default, Tenant shall have the right to deduct such tax amounts paid from any monies due to Landlord from Tenant as provided in Section 15(b), provided that Tenant may exercise such right without having provided to Landlord notice and the opportunity to cure per Section 15(b).
- (f) Any tax-related notices shall be sent to Tenant in the manner set forth in Section 17 and, in addition, of a copy of any such notices shall be sent to the following address. Promptly after the Effective Date of this Agreement, Landlord shall provide the following address to the taxing authority for the authority's use in the event the authority needs to communicate with Tenant. In the event that Tenant's tax addresses changes by notice to Landlord, Landlord shall be required to provide Tenant's new tax address to the taxing authority or authorities.

New Cingular Wireless PCS, LLC

Attn: Network Real Estate Administration -- Taxes

Re: Cell Site #: KYL06075; Cell Site Name: Tomahawk (KY)

Fixed Asset No: 13800693

575 Morosgo Drive Atlanta, GA 30324 (g) Notwithstanding anything to the contrary contained in this Section 21, Tenant shall have no obligation to reimburse any tax or assessment for which the Landlord is reimbursed or rebated by a third party.

22. SALE OF PROPERTY

- (a) Landlord shall not be prohibited from the selling, leasing or use of any of the Property or the Surrounding Property except as provided below.
- (b) If Landlord, at any time during the Term of this Agreement, decides to rezone or sell, subdivide or otherwise transfer all or any part of the Premises, or all or any part of the Property or Surrounding Property, to a purchaser other than Tenant, Landlord shall promptly notify Tenant in writing, and such rezoning, sale, subdivision or transfer shall be subject to this Agreement and Tenant's rights hereunder. In the event of a change in ownership, transfer or sale of the Property, within ten (10) days of such transfer, Landlord or its successor shall send the documents listed below in this subsection (b) to Tenant. Until Tenant receives all such documents, Tenant shall not be responsible for any failure to make payments under this Agreement and reserves the right to hold payments due under this Agreement.
 - i. Old deed to Property
 - ii. New deed to Property
 - iii. Bill of Sale or Transfer
 - iv. Copy of current Tax Bill
 - v. New IRS Form W-9
 - vi. Completed and Signed AT&T Payment Direction Form
 - vii. Full contact information for new Landlord including phone number(s)
- (c) Landlord agrees not to sell, lease or use any areas of the Property or Surrounding Property for the installation, operation or maintenance of other wireless communications facilities if such installation, operation or maintenance would interfere with Tenant's Permitted Use or communications equipment as determined by radio propagation tests performed by Tenant in its sole discretion. Landlord or Landlord's prospective purchaser shall reimburse Tenant for any costs and expenses of such testing. If the radio frequency propagation tests demonstrate levels of interference unacceptable to Tenant, Landlord shall be prohibited from selling, leasing or using any areas of the Property or the Surrounding Property for purposes of any installation, operation or maintenance of any other wireless communications facility or equipment.
- (d) The provisions of this Section shall in no way limit or impair the obligations of Landlord under this Agreement, including interference and access obligations.
- 23. RENTAL STREAM OFFER. If at any time after the date of this Agreement, Landlord receives a bona fide written offer from a third party seeking an assignment or transfer of Rent payments associated with this Agreement ("Rental Stream Offer"), Landlord shall immediately furnish Tenant with a copy of the Rental Stream Offer. Tenant shall have the right within twenty (20) days after it receives such copy to match the Rental Stream Offer and agree in writing to match the terms of the Rental Stream Offer. Such writing shall be in the form of a contract substantially similar to the Rental Stream Offer. If Tenant chooses not to exercise this right or fails to provide written notice to Landlord within the twenty (20) day period, Landlord may assign the right to receive Rent payments pursuant to the Rental Stream Offer, subject to the terms of this Agreement. If Landlord attempts to assign or transfer Rent payments without complying with this Section, the assignment or transfer shall be void. Tenant shall not be responsible for any failure to make payments under this Agreement and reserves the right to hold payments due under this Agreement until Landlord complies with this Section.

24. MISCELLANEOUS.

(a) Amendment/Waiver. This Agreement cannot be amended, modified or revised unless done in writing and signed by Landlord and Tenant. No provision may be waived except in a writing signed by both parties. The failure by a party to enforce any provision of this Agreement or to require performance by the other

party will not be construed to be a waiver, or in any way affect the right of either party to enforce such provision thereafter.

- (b) Memorandum/Short Form Lease. Contemporaneously with the execution of this Agreement, the parties will execute a recordable Memorandum or Short Form of Lease substantially in the form attached as Exhibit 24b. Either party may record this Memorandum or Short Form of Lease at any time during the Term, in its absolute discretion. Thereafter during the Term of this Agreement, either party will, at any time upon fifteen (15) business days' prior written notice from the other, execute, acknowledge and deliver to the other a recordable Memorandum or Short Form of Lease.
- (c) Limitation of Liability. Except for the indemnity obligations set forth in this Agreement, and otherwise notwithstanding anything to the contrary in this Agreement, Tenant and Landlord each waives any claims that each may have against the other with respect to consequential, incidental or special damages, however caused, based on any theory of liability.
- (d) Compliance with Law. Tenant agrees to comply with all federal, state and local laws, orders, rules and regulations ("Laws") applicable to Tenant's use of the Communication Facility on the Property. Landlord agrees to comply with all Laws relating to Landlord's ownership and use of the Property and any improvements on the Property.
- (e) Bind and Benefit. The terms and conditions contained in this Agreement will run with the Property and bind and inure to the benefit of the parties, their respective heirs, executors, administrators, successors and assigns.
- (f) Entire Agreement. This Agreement and the exhibits attached hereto, all being a part hereof, constitute the entire agreement of the parties hereto and will supersede all prior offers, negotiations and agreements with respect to the subject matter of this Agreement. Exhibits are numbered to correspond to the Section wherein they are first referenced. Except as otherwise stated in this Agreement, each party shall bear its own fees and expenses (including the fees and expenses of its agents, brokers, representatives, attorneys, and accountants) incurred in connection with the negotiation, drafting, execution and performance of this Agreement and the transactions it contemplates.
- (g) Governing Law. This Agreement will be governed by the laws of the state in which the Premises are located, without regard to conflicts of law.
- (h) Interpretation. Unless otherwise specified, the following rules of construction and interpretation apply: (i) captions are for convenience and reference only and in no way define or limit the construction of the terms and conditions hereof; (ii) use of the term "including" will be interpreted to mean "including but not limited to"; (iii) whenever a party's consent is required under this Agreement, except as otherwise stated in this Agreement or as same may be duplicative, such consent will not be unreasonably withheld, conditioned or delayed; (iv) exhibits are an integral part of this Agreement and are incorporated by reference into this Agreement; (v) use of the terms "termination" or "expiration" are interchangeable; (vi) reference to a default will take into consideration any applicable notice, grace and cure periods; (vii) to the extent there is any issue with respect to any alleged, perceived or actual ambiguity in this Agreement, the ambiguity shall not be resolved on the basis of who drafted the Agreement; (viii) the singular use of words includes the plural where appropriate and (ix) if any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions of this Agreement shall remain in full force if the overall purpose of the Agreement is not rendered impossible and the original purpose, intent or consideration is not materially impaired.
- (i) Affiliates. All references to "Tenant" shall be deemed to include any Affiliate of New Cingular Wireless PCS, LLC using the Premises for any Permitted Use or otherwise exercising the rights of Tenant pursuant to this Agreement. "Affiliate" means with respect to a party to this Agreement, any person or entity that (directly or indirectly) controls, is controlled by, or under common control with, that party. "Control" of a person or entity means the power (directly or indirectly) to direct the management or policies of that person or entity, whether through the ownership of voting securities, by contract, by agency or otherwise.
- (j) Survival. Any provisions of this Agreement relating to indemnification shall survive the termination or expiration hereof. In addition, any terms and conditions contained in this Agreement that by their sense and context are intended to survive the termination or expiration of this Agreement shall so survive.

- (k) W-9. As a condition precedent to payment, Landlord agrees to provide Tenant with a completed IRS Form W-9, or its equivalent, upon execution of this Agreement and at such other times as may be reasonably requested by Tenant, including, any change in Landlord's name or address.
- (l) Execution/No Option. The submission of this Agreement to any party for examination or consideration does not constitute an offer, reservation of or option for the Premises based on the terms set forth herein. This Agreement will become effective as a binding Agreement only upon the handwritten legal execution, acknowledgment and delivery hereof by Landlord and Tenant. This Agreement may be executed in two (2) or more counterparts, all of which shall be considered one and the same agreement and shall become effective when one or more counterparts have been signed by each of the parties. All parties need not sign the same counterpart.
- (m) Attorneys' Fees. In the event that any dispute between the parties related to this Agreement should result in litigation, the prevailing party in such litigation shall be entitled to recover from the other party all reasonable fees and expenses of enforcing any right of the prevailing party, including without limitation, reasonable attorneys' fees and expenses. Prevailing party means the party determined by the court to have most nearly prevailed even if such party did not prevail in all matters. This provision will not be construed to entitle any party other than Landlord, Tenant and their respective Affiliates to recover their fees and expenses.
- (n) WAIVER OF JURY TRIAL. EACH PARTY, TO THE EXTENT PERMITTED BY LAW, KNOWINGLY, VOLUNTARILY AND INTENTIONALLY WAIVES ITS RIGHT TO A TRIAL BY JURY IN ANY ACTION OR PROCEEDING UNDER ANY THEORY OF LIABILITY ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR THE TRANSACTIONS IT CONTEMPLATES.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the last date written below.

"LANDLORD"
Bruce Endicott, Jr.
By: Drive Endred
Print Name: Bruce Endicott, Jr.
Its: Owner
Date: 8-7-17
Elizabeth Ashley Endicott By: Elizabeth Ashley Endicott
Print Name! Elizabeth Ashley Endicott
Its: Owner (12.12
Detri Owner 9-7-17

LANDLORD ACKNOWLEDGMENT

STATE OF <u>Henfucky</u>)
COUNTY OF <u>Martin</u>) ss:

On the 2 day of August 2017 before me, personally appeared Bruce Endicott, Jr. and Elizabeth Ashley Endicott, who acknowledged under oath, that he/she/they is/are the person/officer named in the within instrument, and that he/she/they executed the same in his/her/their stated capacity as the voluntary act and deed of the Landlord for the purposes therein contained.

Notary Public: My Commission Expires: 2/

"TENANT"

New Cingular Wireless PCS, LLC, a Delaware limited liability company By: AT&T Mobility Corporation

Its: Manager

Print Name: Bryan Coleman Its: Area Manager.

TENANT ACKNOWLEDGMENT

STATE OF ALABAMA

) \$81

COUNTY OF JEFFERSON

On the 6th day of March . 2018, before me personally appeared Bryan Coleman, and acknowledged under oath that he is the Area Manager - TN/KY of AT&T Mobility Corporation, the Manager of New Cingular Wireless PCS, LLC, the Tenant named in the attached instrument, and as such was authorized to execute this instrument on behalf of the Tenant.

Notary Public: Lisa Henderson My Commission Expires: 7/9/2018

EXHIBIT 1

DESCRIPTION OF PREMISES

Page 1 of 3

to the Option and Lease Agreement dated Allowship (2), 2018, by and between Bruce Endicott, Jr. and Elizabeth Ashley Endicott, a married couple, as Landlord, and New Cingular Wireless PCS, LLC, a Delaware limited liability company, as Tenant.

The Property is legally described as follows: DB: 168, PG 390

TRACT L

BEGINNING at a 12" sycamore 575 feet up the Branch from end of culver at corner of Tract No. 5 (Nellie Ba'dridge); thence running East with said Tract #5 to an "X" on top of ridge and joining Everett Horn's line; thence Northwest with Everette Horn's line to Russell Williamson's line on top of Buzzard Rock; thence Southwest with Russell Williamson line to a 6" black oak corner of tract no. 4, this day deed to Fred L. Ray; thence East, down The hill with ten of tract No. 4 to the branch; thence Down the branch to the beginning at sycemore, Containing 20 acres more or less.

TRACT IL

BEGINNING at the upper end of a culvert at the Mouth of James Ruy branch and numing up the Branch with said branch 575 feet to a 12' sycamore. Tree, thence East a straight line to an "X" on rock of Top of point; thence South down the point to a pine. Tree on edge of State Highway right of way; thence 210 feet West with State Highway right of way to The culvert; thence beginning corner, containing 4 acres. More or less.

Being the same real estate conveyed unto Berry Ellenburg. And Kristi Ellenburg, his wife, from Sharon Harmon. by virtue Deed Book 166 at Page 49.

TRACT 1:

Beginning at a stake on creek bank, corner of Forest Ray's Line; 85 ft up the creek from lower end of drain pipe in Grave Yard Hollow and running month with Forest Ray's Line up the branch to a 61 popular; thence 205 feet to 151 sycamore; thence northeast with Forest Ray's line to Corner tree between Don Phillips and Everett Horn's line. Thence Northwest with Everett Horn's line to comer of Jimmie C. Ray's line; thence south, down the point to Corner of Tract #5 and 6 (Jimmie C. Ray and Nellie Baldridge: Thence with line of Tract #5 to a pine tree at edge of State Highway right of way, thence Northeast with State highway Right of way to Forest Ray's line, the beginning, and containing 20 acres more of licss.

IRACT IL

Beginning at a maple tree on rock on creek bank, corner tree Between Ray Heirs and Don Phillips line, and running North-West with Don Phillips lien to comer between Don Phillips and Everett Horn; thence Southwest on a straight line to a 15" Sycamore in the branch; thence South 205 feet to a 6" popular Thence to a stake on the creek bank 85 feet up the creek from Hershel Ray's line, thence with said line North to a crampipa; Thence to the upper end of drampine; thence east with State Highway right of way about 800 feet to the beginning at maple Tree comer of Don Phillips; line; containing 7 across more or less

There is hereby excepted and not conveyed hereby the Ray Family Cometery which has access from the Sharon and Hayes Harmon property line.

Being the same real estate conveyed unto Barry Ellenburg and Kristi Ellenburg, his wife, from Audrey (Ray) Hall and Reed Hall, her husband, by deed dated September 28, 2006, as recorded in the Martin County Clerk's Office in Doed Book 163, at Page 100.

The Premises are described and/or depicted as follows:

And Probability And Found A constitution of Andrew Constitution of the An 44 (107g-016) 18 March 14 A 46 (107g-016) 18 March 14 A

The property of the second of

Proceedings of the process of the second

PROPERTY AND THE PROPERTY OF A PA

The second of th

And the second s

851: AFC! TAY FARCE: NO. 0000-00-00-567.01

TROUBLE TORRE HELICATES & HE SUBME HERE THORRE SCOPEL OF SME BUILDE PO BYS

TAND SORVEY OR'S CERTIFICATE

LA CLAST ROBERTION, PORTOT PORTOTY THAT AND A LICENTED PROTOSCHALL QUARTED SHY TIPE CREASES IN COMPANIES WITH THE PROTOSCHALL QUARTED SHY TIPE CREASES IN COMPANIES WITH THE PROTOSCHALL CREASE CREASES AND THAT THE PROTOCOLOGY OF PROTOCOLOGY AND THAT THE PROTOCOLOGY AND THE PROTOCOL

SHALL

JATL

REFERENCE IT MADE TO THE TITLE AMONG CHEST BOOMS DESCRIPTION ISSUED BY STRAIN THE WAS AND COUNTY DATES MAD A TOTAL CALLEGEMENTS CONTAINED WHITE YALL THIS REPURS ARE COME OF HADRICAL AREA CONHECTION OF THE SEAS HAVE MEN IN COMED (CALUET FOR ADMITTED)

SONODUCE & ITMS

7. NATUMAL SAS PPELDE MONT OF MAY FASHINGM AS MY EVENTH IN DEED DATKE MY 1971. TO CO, MASH SAS TRANSMISSION CORP OF RECORD IN COLD BOOK OR PACE 549, NO THE CHART ARCHITAGE.

Parks sell sell "SA (COPHISTAL) FACT &
THER COST SUPPORT TOMER (HADIS)
ARTHOC NY SY TO 80" MORTH
LINGENCY NY NY TO 47 88" MORTH
LINGENCY NY NY TOMER (HADIS)
(MAYDES)
(MAYDES)

LA & Think, V. HITT CATELY THE HORZONIAL ACCURACY OF THE LATTICE AND LOWERING DE THE EDUCIC COMPRESSION THE ENDIT (25) FELT COMPRESSION THE COMPRESSION T

TIENATON ESTABLISHED FROM OFF, DOSENVATIONS CONSTRAINED TO ONTE DATE TIONS AFTER THE GESTE TEA.

HASIN & HEAVING PLANTIS SHORES HIRE HAS BASED UPDA US THE LARE MADES COMMANDE SYSTEM HT. AN A. DE YOUR COMMAND SYSTEM ORS EVANTAL.

CHARLES AND CONTRACTOR THAT ALL THO THEY ARE SHOWN OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF T

ACTIVE TYPING TO THE AMERICAN THE PROPERTY OF THE STREET TO THE STREET TO THE STREET THE

THE SHAPP THE PROPERTY LAW AND AND THE FEDERAL ACCIDENCE OF UP. IT SANGEN UP. T. AND CHES A PARTIE, RESPONDED WHEN THE THE PARTY THAT WAS RESPONDED.

STEPART CAL WIL CHAPPE FOR E THREE THE

SERVE WAS ASSET PERFORMED A STARTH OF PUBLIC ALDROUGH THE DEFORMAL AND REFLECT IN DIESE ESSUED THE PERFORMANCE AND PERFORMANCE

Special of the property of the

THE SUMPLY HAS PROPROBLED WITH A CARLEST BROOM DO A HELDERAL PLAN. THE HERMAND CLIMBLE PROFESSIONAL PAYSTER BOOKER AND BASES STATEMENT FOR PROFESSIONATION TO BEST THE WORLD WITH THE MANAGEMENT AND SERTET THE WORLD WITH THE MANAGEMENT COMMITTED PAYSTERS OF ALL CASE OFFICE A TRAFFACTOR OF TOOL CONTROL OF ALL CASE OFFICE A TRAFFACTOR OF TOOL CONTROL WORLD AND PROFESSIONAL TRAFFACTOR OF TOOL CONTROL WORLD AND PROFESSIONAL TRAFFACTOR OF TOOL CONTROL WORLD AND PROFESSIONAL TRAFFACTOR OF TOOL CONTROL WORLD AND ADMINISTRATION OF TOOL CONTROL WORLD AND PROFESSIONAL CONTROL OF TOOL CONTROL WORLD A

STORY PRACTO The second of th

LEGEND

POINT OF RECINIANT POINT OF TORMINOS PUBLIC UTLITY EASEMENT MITE RO-1 CH WAY

DA SEMAY 500 SSHAF SET B"124" IR CAPHED \$1219 OR FOUND AS ADTED

MOSITION OF SECURE SAFES 200 WATER CONTROL WALVE AND HORAST FOREM FORE SECTRE MANHOLE TICC MANHOLE

WILLIAM FOR THE BOY

EVENTAL ELECTRIC PROFILET LINE WARRED MARE FENCE

140.3 1 44.1 5

13500693 1.YL06075

TOMAHAVIK

4784 TOWAHAWK RD TOMAHAWK KY 41267 MAPTIN COUNTY

> TOPOGRAPHIC SITE SURVEY

> > B-1

EXHIBIT 11

ENVIRONMENTAL DISCLOSURE

Landlord represents and warrants that the Property, as of the date of this Agreement, is free of hazardous substances except as follows:

1. NONE.

[Landlord Letterhead]

DATE

Building Staff / Security Staff Landlord, Lessee, Licensee Street Address City, State, Zip

Re: Authorized Access granted to AT&T

Dear Building and Security Staff,

Please be advised that we have signed a lease with AT&T permitting AT&T to install, operate and maintain telecommunications equipment at the property. The terms of the lease grant AT&T and its representatives, employees, agents and subcontractors ("representatives") 24 hour per day, 7 day per week access to the leased area.

To avoid impact on telephone service during the day, AT&T representatives may be seeking access to the property outside of normal business hours. AT&T representatives have been instructed to keep noise levels at a minimum during their visit.

Please grant the bearer of a copy of this letter access to the property and to leased area. Thank you for your assistance.

Bure Endrate 1

Landlord Signature

Elizabeth Ahly Endet

Landlord Signature

Market: Lexington Cell Site Number: KYL06075 Cell Site Name: Fornahawk Fixed Asset Number: 13800693

FIRST AMENDMENT TO OPTION AND LEASE AGREEMENT

THIS FIRST AMENDMENT TO OPTION AND LEASE AGREEMENT ("First Amendment"), dated as of the latter of the signature dates below, is by and between Bruce Endicott, Jr. and Elizabeth Ashley Endicott, a married couple, having a mailing address of 4784 Tomahawk Road, Tomahawk, KY 41262 ("Landlord") and New Cingular Wireless PCS, LLC, a Delaware limited liability company, having a mailing address of 575 Morosgo Drive, Atlanta, GA 30324 ("Tenant").

WHEREAS, Landlord and Tenant entered into an Option and Lease Agreement dated March 6, 2018, whereby Landlord leased to Tenant certain Premises, therein described, that are a portion of the Property located at 4784 Tomahawk Road, Tomahawk, KY 41262 ("Agreement"); and

WHEREAS, Landlord and Tenant desire to replace Exhibit 1 in its entirety in conjunction with the modifications to the Agreement contained herein; and

WHEREAS, Landlord and Tenant, in their mutual interest, wish to amend the Agreement as set forth below accordingly.

NOW THEREFORE, in consideration of the foregoing and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, Landlord and Tenant agree as follows:

- 1. **Exhibit 1.** Exhibit 1 of the Agreement is hereby deleted in its entirety and replaced with Exhibit 1 in this First Amendment.
- 2. **Memorandum of Lease.** Either party will, at any time upon fifteen (15) days prior written notice from the other, execute, acknowledge and deliver to the other a recordable First Amendment to the Memorandum of Lease substantially in the form of the Attachment 1. Either party may record this memorandum at any time, in its absolute discretion.
- 3. Other Terms and Conditions Remain. In the event of any inconsistencies between the Agreement and this First Amendment, the terms of this First Amendment shall control. Except as expressly set forth in this First Amendment, the Agreement otherwise is unmodified and remains in full force and effect. Each reference in the Agreement to itself shall be deemed also to refer to this First Amendment.
- 4. Capitalized Terms. All capitalized terms used but not defined herein shall have the same meanings as defined in the Agreement.

IN WITNESS WHEREOF, the parties have caused their properly authorized representatives to execute and seal this First Amendment on the dates set forth below.

"LANDLORD"

Bruce Endicott, Jr. and Elizabeth Ashley Endicott, a married couple

By: Que Endoot, Jr. Date: 6-22-2018

Date: Coll-18

"TENANT"

New Cingular Wireless PCS, LLC a Delaware limited liability company By: AT&T Mobility Corporation Its: Manager

By: /asr-Cellday
Name: Jason Allday

Title: Area Manager – TN/KY Date: 7/1/13

TENANT ACKNOWLEDGEMENT

STATE OF ALABAMA)
COUNTY OF JEFFERSON)ss)
On the 11th day of y	JULY.

2018 before me personally appeared Jason Allday, and acknowledged under oath that he is the Area Manager - TN/KY of AT&T Mobility Corporation, the Manager of New Cingular Wireless PCS, LLC, the Tenant named in the attached instrument, and as such was authorized to execute this instrument on behalf of the Tenant.

Notar Public: Lisa Henderson
My Commission Expires: 6/29/2002

LANDLORD ACKNOWLEDGEMENT

STATE OF KENTUCKY)
10 1 .) ss:
COUNTY OF Marin)

BE IT REMEMBERED, that on this 22 day of May, 2018 before me, the subscriber, a person authorized to take oaths in the State of Kentucky, personally appeared Bruce Endicott, Jr. and Elizabeth Ashley Endicott who, being duly sworn on their oath, deposed and made proof to my satisfaction that they are the person(s) named in the within instrument; and I, having first made known to them the contents thereof, they did acknowledge that they signed, sealed and delivered the same as their voluntary act and deed for the purposes therein contained.

Notary Public: Res English My Commission Expires: 2/24/2019

527643

EXHIBIT 1

See attached exhibit comprised of 3 pages

TRACT I:

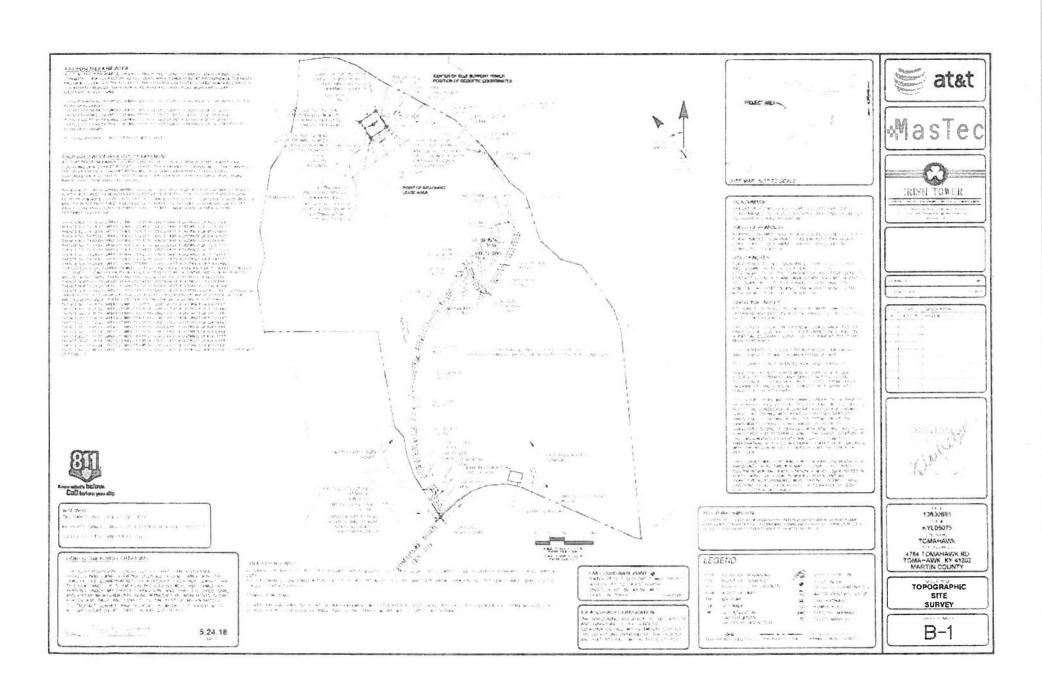
BEGINNING at a 12" sycamore 575 feet up the Branch from end of culver at corner of Tract No. 5 (Nellie Baidridge); thence running East with said Tract #5 to an "X" on top of ridge and Johning Everett Hom's line; thence Northwest with Everette Horn's line to Russell Williamson's line on top of Buzzard Rock; thence Southwes: with Russell Williamson line to a 6" black cak corner of tract no. 4, this day deed to Fred L. Ray; thence East, down The hill with tien of tract No. 4 to the branch; thence Down the branch to the beginning at sycamore, Containing 20 acres more or less.

TRACTIL:

BEGINNING at the upper end of a culvert at the Mouth of James Ray branch and running up the Branch with said branch 575 feet to a 12" sycamore Tree; thence East a straight line to an "X" or rock of Top of point; thence South down the point to a pine Tree on edge of State Highway right of way; thence 210 feet West with State Highway right of way to The culvert: thence beginning corner, containing 4 acres More or less.

Being the same real estate conveyed unto Barry Ellenburg And Kristl Ellenburg, his wife, from Sharon Harmon, by virtue Deed Book 166 at Page 49.

IRACI 1:


Baginning at a stake on creek bank, corner of Forest Ray's Line. 85 ft. up the creek from lower and of drain pipe in Grave Yard Hollow and running north with Forest Ray's Line up the branch to a 6" popular; thence 205 feet to 15" sycamore; thence northeast with Forest Ray's line to Corner tree between Don Phillips and Everett Horn's line; Thence Northwest with Everett Horn's line to corner of Jimmie C. Ray's line; thence south, down the point to Corner of Tract #5 and 6 (Jimmie C. Ray and Nellie Baldridge) Thence with line of Tract #5 to a pine tree at edge of State Highway right of way; thence Northeast with State Highway Right of way to Forest Ray's line; the beginning, and containing 20 acres more or less.

TRACT II:

Beginning at a maple free on rock on creek bank; corner tree Between Ray Heirs and Don Phillips line, and running North-West with Don Phillips lien to corner between Don Phillips and Everett Horn; thence Southwest on a straight line to a 15" Sycamore in the branch; thence South 205 'eet to a 6" popular Thence to a stake on the creek bank 85 'eet up the creek from Hersnel Ray's line; thence with said line North in a drainpipe; Thence to the upper end of drainpipe; thence east with State Highway right of way about 300 feet to the beginning at maple Tree corner of Don Phillips; line; containing 7 acres more or less.

There is hereby excepted and not conveyed hereby the Ray Family Cemotery which has access from the Sharon and Hayes Harmon property line.

Being the same real estate conveyed unto Barry Ellenburg and Kristi Ellenburg, his wife, from Audrey (Ray) Hall and Reed Hail, her husband, by deed dated September 28, 2006, as recorded in the Martin County Clerk's Office in Deed Book 163, at Page 100.

EXHIBIT J NOTIFICATION LISTING

NOTIFICATION LISTING SITE NAME: TOMAHAWK

BRUCE & ELIZABETH ENDICOTT 4784 TOMAHAWK RD TOMAHAWK KY 41262

ROBERT & CATHERINE PARSLEY 1816 BRISBANE LANE MT JULIET TN 07122

DAN & ERIKA & GREGORY WILLIAMSON 4590 TOMAHAWK RD TOMAHAWK KY 41262

DONALD SIEVERT 1411 LONSDALE RD COLUMBUS OH 43232

DANA & CHARLOTTE MCCOY 4761 TOMAHAWK RD TOMAHAWK KY 41262

STEVE FARNHAM-4870 TOMAHAWK RD TOMAHAWK KY 41262

DAISY LEA RAY 4876 TOMAHAWK RD. TOMAHAWK KY 41262

ALICE DICKERSON- C/O KARA ROBINSON PO BOX 175 TOMAHAWK KY 41262

JAMES F WILLIAMSON LIVING TRUST-C/O NANCI WILLIAMSON SIMPSON 3193 PEPPERHILL RD LEXINGTON KY 40502

BRUCE AND VALARIE DAVIS 15 HIDDEN PINE LANE TOMAHAWK, KY 41262 RAY CEMETERY-C/O EASTER RAY HC 88 BOX 140 INEZ KY 41224 EXHIBIT K
COPY OF PROPERTY OWNER NOTIFICATION

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

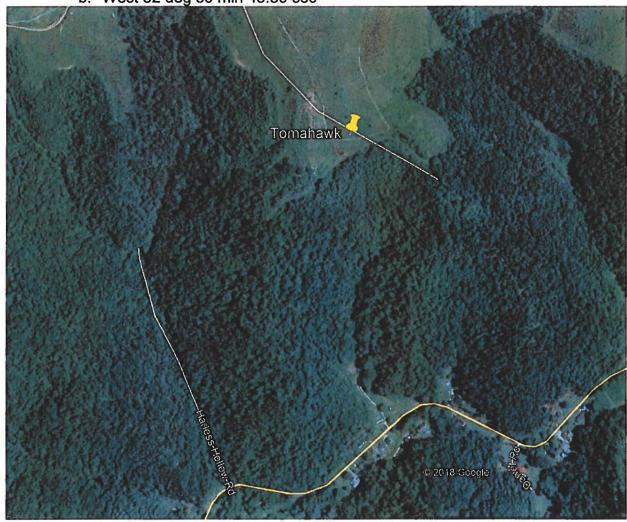
Notice of Proposed Construction of Wireless Communications Facility Site Name: Tomahawk

Dear Landowner:

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 4784 Tomahawk Road, Tomahawk, Kentucky 41262 (37°52′16.65" North latitude, 82°36′48.39" West longitude). The proposed facility will include a 305-foot tall antenna tower, plus a 15-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2018-00385 in any correspondence sent in connection with this matter.

In addition to expanding and improving voice and data service for AT&T mobile customers, this site will also provide wireless local loop ("WLL") broadband internet service to homes and businesses in the area. WLL will support internet access at the high speeds required to use and enjoy the most current business, education and entertainment technologies.


We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely, David A. Pike Attorney for Applicant

enclosure

Driving Directions to Proposed Tower Site

- 1. Beginning at 100 W. Main Street, Inez, KY, head northwest on KY-40 W / W. Main Street (toward Penix Drive) and travel approximately 6.1 miles.
- 2. The site is on the right at 4784 Tomahawk Road in Tomahawk, Kentucky. The site coordinates are
 - a. North 37 deg 52 min 16.65 sec
 - b. West 82 deg 36 min 48.39 sec

Prepared by: Aaron Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

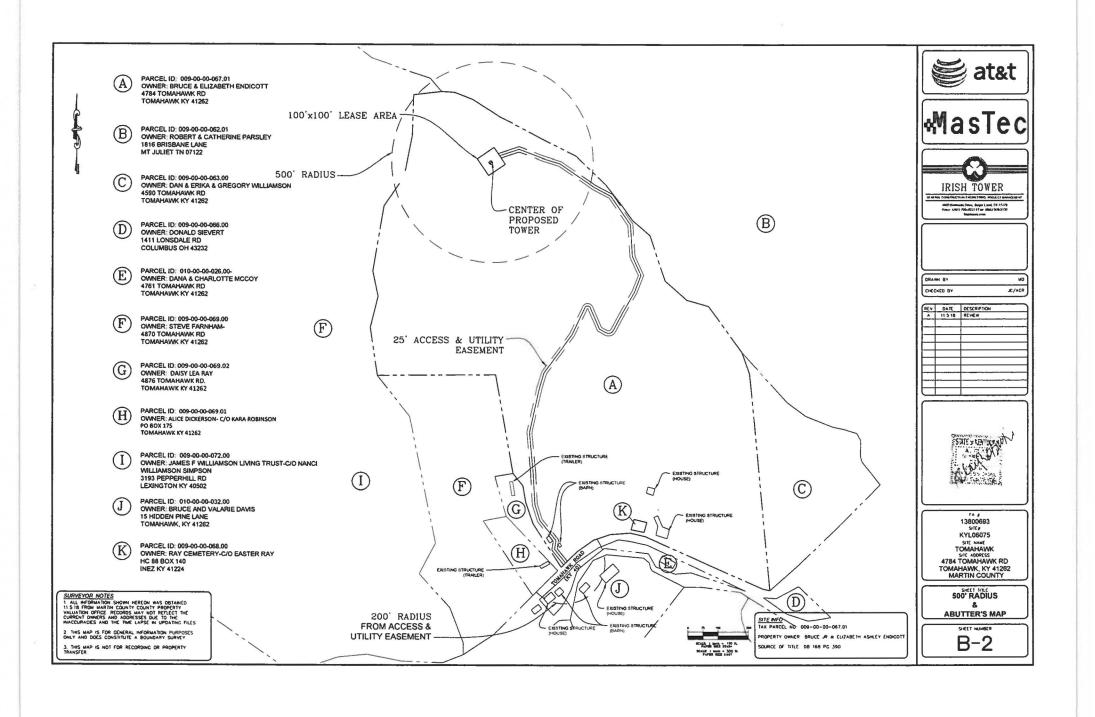


EXHIBIT L
COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA CERTIFIED MAIL

Hon. Kelly Callaham County Judge Executive P.O. Box 309 Inez, Kentucky 41224

RE:

Notice of Proposal to Construct Wireless Communications Facility

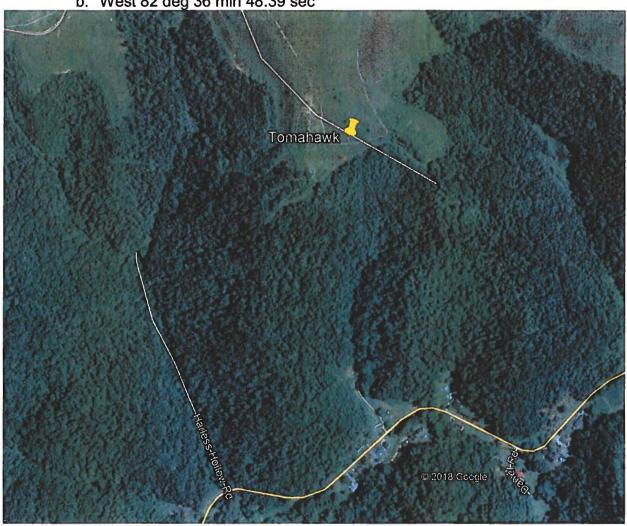
Kentucky Public Service Commission Docket No. 2018-00385

Site Name: Tomahawk

Dear Judge Callaham:

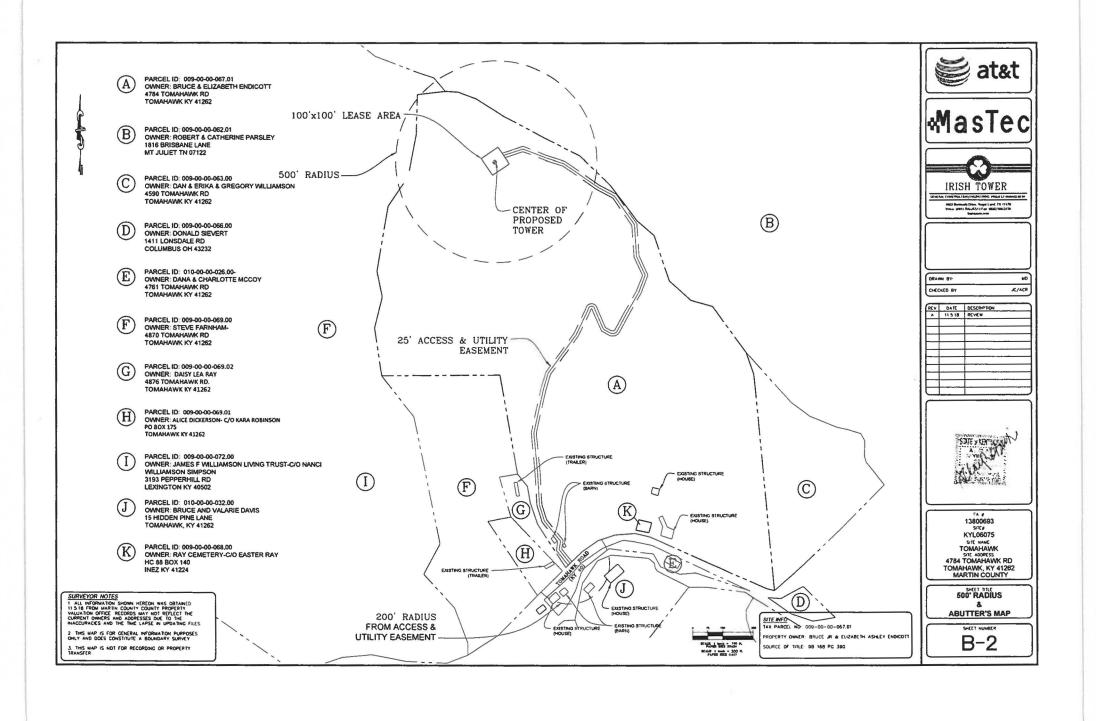
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 4784 Tomahawk Road, Tomahawk, Kentucky 41262 (37°52'16.65" North latitude, 82°36'48.39" West longitude). The proposed facility will include a 305-foot tall antenna tower, plus a 15-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2018-00385 in any correspondence sent in connection with this matter.


In addition to expanding and improving voice and data service for AT&T mobile customers, this site will also provide wireless local loop ("WLL") broadband internet service to homes and businesses in the area. WLL will support internet access at the high speeds required to use and enjoy the most current business, education and entertainment technologies.

We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely, David A. Pike Attorney for Applicant enclosures


Driving Directions to Proposed Tower Site

- 1. Beginning at 100 W. Main Street, Inez, KY, head northwest on KY-40 W / W. Main Street (toward Penix Drive) and travel approximately 6.1 miles.
- 2. The site is on the right at 4784 Tomahawk Road in Tomahawk, Kentucky. The site coordinates are
 - a. North 37 deg 52 min 16.65 sec
 - b. West 82 deg 36 min 48.39 sec

Prepared by: Aaron Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT M COPY OF POSTED NOTICES AND NEWSPAPER NOTICE ADVERTISEMENT

SITE NAME: TOMAHAWK NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2018-00385 in your correspondence.

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility proposes to construct a telecommunications **tower** near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165; telephone: (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2018-00385 in your correspondence.

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA TELEPHONE: 606-298-7570

Mountain Citizen P.O. Box 1029 Inez, Kentucky 41224

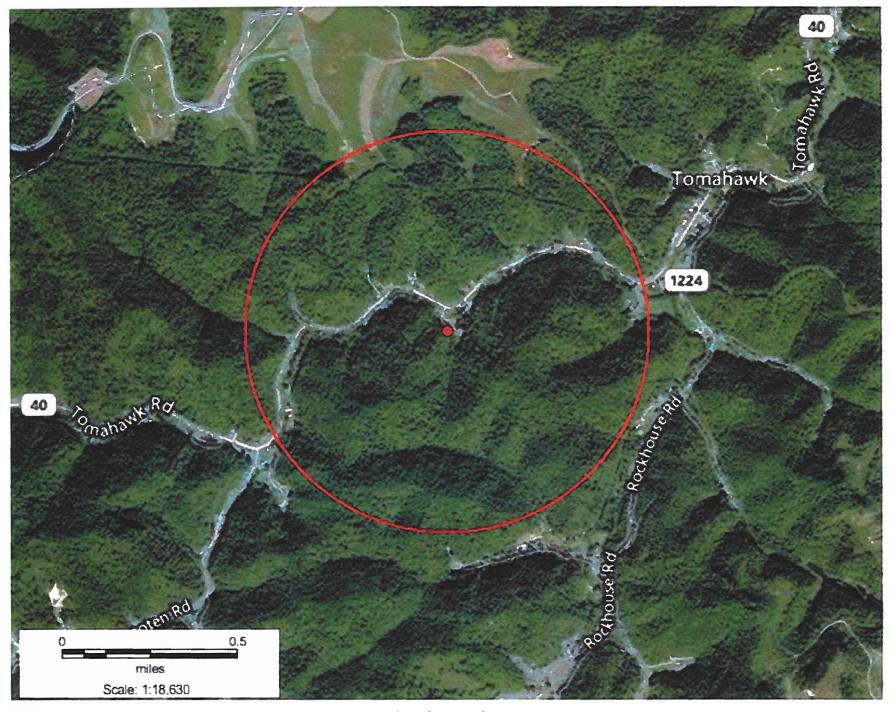
RE:

Legal Notice Advertisement

Site Name: Tomahawk

Dear Mountain Citizen:

Please publish the following legal notice advertisement in the next edition of *The Mountain Citizen:*


NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 4784 Tomahawk Road, Tomahawk, Kentucky 41262 (37°52'16.65" North latitude, 82°36'48.39" West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2018-00385 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely, Aaron L. Roof Pike Legal Group, PLLC

EXHIBIT N COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

Lat: 37.86433 Lon: -82.609191

Radius: .57 miles

Tomahawk Search Area