RECEIVED

COMMONWEALTH OF KENTUCKY

AUG 1 3 2018

BEFORE THE PUBLIC SERVICE COMMISSION

PUBLIC SERVICE COMMISSION

In the matter of:

THE APPLICATION OF EAST KENTUCKY NETWORK,
LLC FOR THE ISSUANCE OF A CERTIFICATE OF
PUBLIC CONVENIENCE AND NECESSITY TO
CONSTRUCT A TOWER IN HARLAN COUNTY,
KENTUCKY)

East Kentucky Network, LLC d/b/a Appalachian Wireless, was granted authorization to provide cellular service in the KY-11 Cellular Market Area (CMA453) by the Federal Communications Commission (FCC). The FCC license is included as Exhibit 1. East Kentucky Network, LLC merger documents were filed with the Commission on February 2, 2001 in Case No. 2001-022. East Kentucky Network, LLC is a Kentucky limited liability company that was organized on June 16, 1998. East Kentucky Network, LLC is in good standing with the state of Kentucky.

In an effort to improve service in Harlan County, pursuant to KRS 278.020 Subsection 1 and 807 KAR 5:001, East Kentucky Network, LLC is seeking the Commission's approval to construct a 180-foot self-supporting tower on a tract of land located at 543 Adventure Way, Putney, Harlan County, Kentucky (36°54'36.42"N 83°11'50.37"W). A map and detailed directions to the site can be found in Exhibit 7.

Exhibit 2 is a list of all Property owners or residents according to the Property Valuation Administrator's record who own property within 500 feet of the proposed Tower and all property owners that own property contiguous to the property upon which construction is proposed in accordance with the Property Valuation Administrator's record.

1

Pursuant to 807 KAR 5:063 Section 1(1)(1), Section 1(m) and Section 2, all affected property owners according to the Property Valuation Administrator's records who own property within 500 feet of the proposed Tower or who own property contiguous to the property upon which construction is proposed were notified by certified mail return receipt requested of East Kentucky Network, LLC's proposed construction and informed of their right to intervene. They were given the docket number under which this application is filed. Enclosed in Exhibit 2 is a copy of that notification.

Harlan County has no formal local planning unit. In absence of this unit, the Harlan County Judge Executive's office was notified by certified mail, return receipt requested of East Kentucky Network, LLC's proposal and informed of their right to intervene. The Harlan County Judge Executive's Office was also given the docket number under which this application is filed. Enclosed in Exhibit 3 is a copy of that notification.

Notice of the location of the proposed construction was published in the Harlan Daily Enterprise, August 10, 2018 edition. Enclosed is a copy of that notice in Exhibit 3. The Harlan Daily Enterprise is the newspaper with the largest circulation in Harlan County.

A geologist was employed to determine soil and rock types and to ascertain the distance to solid bedrock. The geotechnical report is enclosed as Exhibit 4.

A copy of the tower design information is enclosed as Exhibit 5. The proposed tower has been designed by engineers at Rohn Products, LLC and will be constructed under their supervision. Their qualifications are evidenced in Exhibit 5 by the seal and signature of the registered professional engineer responsible for this project.

The tower will be erected by S & S Tower Services of St. Albans, West Virginia. S & S Tower Services has vast experience in the erection of communications towers.

FAA and Kentucky Airport Zoning Commission applications are included as Exhibit 6.

No Federal Communications Commission approval is required prior to construction of this facility. Once service is established from this tower we must immediately notify the Federal Communications Commission of its operation. Prior approval is needed only if the proposed facility increases the size of the cellular geographic service area. This cell site will not expand the cellular geographic service area.

East Kentucky Network, LLC will finance the subject Construction with earned surplus in its General Fund.

Estimated Cost of Construction	\$ 350,000.00
Annual Operation Expense of Tower	\$ 12,500.00

Two notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2), measuring at least two (2) feet in height and four (4) feet in width and containing all required language in letters of required height, have been posted, one at a visible location on the proposed site and one on the nearest public road. The two signs were posted on July 31, 2018, and will remain posted for at least two weeks after filing of this application as specified.

Enclosed in Exhibit 8 is a copy of East Kentucky Network, LLC's Memorandum of Lease for the site location along with a lot description.

The proposed construction site is on a mountaintop some feet from the nearest structure. Prior to construction, the site had been disturbed by logging.

Due to the steep hillside surrounding the proposed site, the property in close proximity is unsuitable for any type of development. East Kentucky Network, LLC's operation will not affect the use of nearby land nor its value. No more suitable site exists in the area. A copy of the search area map is enclosed in Exhibit 7. No other tower capable of supporting East Kentucky Network, LLC's load exists in the general area; therefore there is no opportunity for co-location of our facilities with anyone else. Enclosed, and filed as Exhibit 9 is a survey of the proposed tower site signed by a Kentucky registered professional engineer.

Exhibit 10 is a map in one (1) inch equals 200 feet scale identifying every structure and every owner of real estate within 500 feet of the proposed tower and all property owners who own contiguous property to the property upon which construction is proposed

Exhibit 11 contains a vertical sketch of the tower supplied by James W. Caudill, Kentucky registered professional engineer.

Enclosed as Exhibit 12 is a list of utilities, corporations, or persons with whom the tower is likely to compete.

[THE REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK.]

WHEREFORE, Applicant, having met the requirements of KRS 278.020(1), 278.650, 278.665, and all applicable rules and regulations of the PSC, respectfully requests that the PSC accept the foregoing Application for filing and grant a Certificate of Public Convenience and Necessity to construct and operate the proposed tower.

The foregoing document was prepared by Krystal Branham, Regulatory Compliance Attorney for East Kentucky Network, LLC d/b/a Appalachian Wireless. All related questions or correspondence concerning this filing should be mailed to East Kentucky Network, LLC d/b/a/ Appalachian Wireless, Attn: Regulatory Compliance Department, 101 Technology Trail, Ivel, KY 41642

SUBMITTED BY: Lyn Hanget _____ DATE: <u>8/9/20</u>18

Lynn Haney, Regulatory Compliance Director

APPROVED BY:

WA Sillum DATE: 8/9/2018

W.A. Gillum, General Manager

ATTORNEY:

Istal Branham DATE: 8/9/18

Hon. Krystal Branham, Attorney

CONTACT INFORMATION:

W.A. Gillum, General Manager Phone: (606) 477-2355, Ext. 111 Email: wagillum@ekn.com

Lynn Haney, Regulatory Compliance Director Phone: (606) 477-2355, Ext. 1007 Email: lhaney@ekn.com

Krystal Branham, Attorney Phone: (606) 477-2355, Ext. 1009 Email: kbranham@ekn.com

Mailing Address:

East Kentucky Network, LLC d/b/a Appalachian Wireless Attn: Regulatory Compliance Department 101 Technology Trail Ivel, KY 41642

1	FCC License
	Copies of Cell Site Notices to Land Owners
З	Notification of County Judge Executive and Newspaper Advertisement
4	Universal Soil Bearing Analysis
5	Tower Design
6	FAA and KAZC Applications
7	Driving Directions from County Court House and Map to Suitable Scale
8	Memorandum of Lease for Proposed Site with Legal Description
9	Survey of Site Signed/Sealed by Professional Engineer Registered in State of Kentucky
10	Site Survey Map with Property Owners Identified in Accordance with PVA of County
11	Vertical Profile Sketch of Proposed Tower
12	List of Competitors

ULS License 700 MHz Lower Band (Blocks C, D) License - WPWV284 - East Kentucky Network, LLC d/b/a Appalachian Wireless

Call Sign	WPWV284	Radio Service	WZ - 700 MHz Lower Band (Blocks C, D)
Status	Active	Auth Type	Regular
Rural Service	Provider Bidding Credit		
Is the Applicant (RSP) bidding cr	seeking a Rural Service Provider edit?		
Reserved Spe	ctrum		
Reserved Spectr	um		
Market			
Market	CMA453 - Kentucky 11 - Clay	Channel Block	С
Submarket	0	Associated Frequencies (MHz)	000710.0000000-000716.0000000 000740.0000000-000746.0000000
Dates			
Grant	01/24/2003	Expiration	06/13/2019
Effective	11/02/2013	Cancellation	
Buildout Deadlines			
1st	06/13/2019	2nd	
Notification D	ates		
1st		2nd	
Licensee			
FRN	0001786607	Туре	Limited Liability Company
Licensee			
East Kentucky Network, LLC d/b/a Appalachian P:(606)477-2355 Wireless 101 Technology Trail Ivel, KY 41642 ATTN W.A. Gillum, General Manager/CEO			
Contact			
Contact			
Pamela L Gist E 8300 Greensbo McLean, VA 22	isq ro Drive 102	P:(703)584-8665 F:(703)584-8695 E:pgist@fcclaw.com	

Ownership and Qualifications

 Radio Service Type
 Fixed, Mobile, Radio Location

 Regulatory Status
 Common Carrier, Interconnected Yes Non-Common Carrier

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

This license did not have tribal land bidding credits.

Demographics

Race Ethnicity

Gender

EXHIBIT 2 – LIST OF PROPERTY OWNERS

Statement Pursuant to Section 1 (1) (I) 807 KAR 5:063

Section 1 (1)(I) 1. The following is a list of every property owner who according to property valuation administrator's records, owns property within 500 feet of the proposed tower and each have been: notified by certified mail, return receipt requested, of the proposed construction,

Section 1 (1)(I) 2. Every person listed below who, according to the property valuation administrator's records, owns property within 500 feet of the proposed tower has been: Given the Commission docket number under which the application will be processed: and

Section 1 (1)(I) 3. Every person listed below who, according to property valuation administrator's records owns property within 500 feet of the proposed tower has been: Informed of his right to request intervention.

<u>Section 2.</u> If the construction is proposed for an area outside the incorporated boundaries of a city, the application shall state that public notices required by Section 1(1)(L) have been sent to every person who, according to the property valuation administrator, owns property contiguous to the property upon which the construction is proposed

LIST OF PROPERTY OWNERS

Harlan County Fiscal Court P.O. Box 956 Harlan, KY 40831

Mrs. Lloyd Hensley C/O Nawanna Pratt 4820 Waterside Drive Lexington, KY 40513

William R. Foster 8512 Highway 522 Totz, KY 40870

Mountain View Church of Christ 8333 US Hwy 11 Putney, KY 40865

William and Connie Lewis 7930 Highway 522 Totz, KY 40870

PUBLIC NOTICE

August 10, 2018

Harlan County Fiscal Court P.O. Box 956 Harlan, KY 40831

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180'-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you may own property within a 500' radius of the proposed tower or own property contiguous to the property upon which construction is proposed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

Lynn Haney, CPA Regulatory Compliance Director Enclosure 1

PUBLIC NOTICE

August 10, 2018

Mrs. Lloyd Hensley C/O Nawanna Pratt 4820 Waterside Drive Lexington, KY 40513

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180'-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you may own property within a 500' radius of the proposed tower or own property contiguous to the property upon which construction is proposed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

All

Lynn Haney, CPA Regulatory Compliance Director Enclosure 1

PUBLIC NOTICE

August 10, 2018

William R. Foster 8512 Highway 522 Totz, KY 40870

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180'-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you may own property within a 500' radius of the proposed tower or own property contiguous to the property upon which construction is proposed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

Lynn Haney, CPA Regulatory Compliance Director Enclosure 1

PUBLIC NOTICE

August 10, 2018

Mountain View Church of Christ 8333 US Hwy 11 Putney, KY 40865

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180'-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you may own property within a 500' radius of the proposed tower or own property contiguous to the property upon which construction is proposed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

ME

Lynn Haney, CPA Regulatory Compliance Director Enclosure 1

PUBLIC NOTICE

August 10, 2018

William and Connie Lewis 7930 Highway 522 Totz, KY 40870

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180'-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you may own property within a 500' radius of the proposed tower or own property contiguous to the property upon which construction is proposed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

Lynn Haney, CPA Regulatory Compliance Director Enclosure 1

August 10, 2018

Dan Mosley, Judge Executive P.O. Box 956 Harlan, KY 40831

RE: Public Notice-Public Service Commission of Kentucky (Case No. 2018-00255)

East Kentucky Network, LLC d/b/a Appalachian Wireless has applied to the Public Service Commission of Kentucky for a Certificate of Public Convenience and Necessity to construct and operate a new facility to provide cellular telecommunications service in Harlan County. The facility will include a 180-foot self-supporting tower with attached antennas extending upwards, and an equipment shelter located on a tract of land at 543 Adventure Way, Putney, Harlan County, Kentucky. A map showing the location of the proposed new facility is enclosed. This notice is being sent to you because you are the County Judge Executive of Harlan County.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter. The Commission must receive your initial communication within 20 days of the date of this letter as shown above.

Your comments and request for intervention should be addressed to: Executive Director's Office, Public Service Commission of Kentucky, P.O. Box 615, Frankfort, KY 40602. Please refer to Case No. 2018-00255 in your correspondence.

If you have any questions for East Kentucky Network, LLC, please direct them to my attention at the following address: East Kentucky Network, LLC, 101 Technology Trail, Ivel, KY 41642 or call me at 606-477-2355, Ext. 1007.

Sincerely,

Lynn Haney

Lynn Haney Regulatory Compliance Director Enclosure

101 Technology Trail • Ivel, KY 41642

dba Appalachian Wireless 101 Technology Trail Ivel, KY 41642 Phone: 606-477-2355 Fax: 606-791-2225

To:	The Harlan Daily Enterprise	From:	Raina Helton
	Attn: Classifieds		Regulatory Compliance Assistant
Email:	Melissa.johnson@harlandaily.com	Date:	August 7, 2018
Re:	PUBLIC NOTICE ADVERTISEMENT	Pages:	1

Please place the following Public Notice Advertisement in The Harlan Daily Enterprise to be ran on August 10, 2018.

PUBLIC NOTICE:

RE: Public Service Commission of Kentucky (CASE NO. 2018-00255)

Public Notice is hereby given that East Kentucky Network, LLC, dba Appalachian Wireless has applied to the Kentucky Public Service Commission to construct a cellular telecommunications tower on a tract of land located at 543 Adventure Way, Putney, Harlan County, Kentucky. The proposed tower will be a 180 foot self-supporting tower with attached antennas. If you would like to respond to this notice, please contact the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to Case No. 2018-00255.

If you have any questions about the placement of the above mentioned notice, please call me at 606-477-2375, ext. 1005.

Thank you,

Raina Helton Regulatory Compliance Assistant

The message above and the information contained in the documents transmitted are confidential and intended only for the person(s) named above. Dissemination, distribution or copying of this communication by anyone other than the person(s) named above is prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original message to us at the address listed above via regular mail. Thank you.

Next Generation Communications

EAST KENTUCKY ENGINEERING, LLC.

APPALACHIAN WIRELESS Geotechnical Investigation on the Dillon Site Harlan County, Kentucky EKYENG Project No. 165-000-0071

PREPARED FOR: Appalachian Wireless. 101 Technology Trail Ivel, Kentucky 41642

PREPARED BY: Richard Dirk Smith PE, PLS President East Kentucky Engineering 230 Swartz Drive Hazard, Kentucky 41701

EXECUTIVE SUMMARY

1.0 INTRODUCTION

2.0 PROJECT DESCRIPTION

3.0 SITE DESCRIPTION

- 3.1 GENERAL INFORMATION
- 3.2 SURFACE MINING
- 3.3 UNDERGROUND MINING

4.0 FIELD EXPLORATION

- **4.1 SITE INFORMATION**
- 4.2 TRENCHING AND TEST HOLE DATA
- 4.3 GROUNDWATER

4.4 SEISMIC SITE CLASSIFICATION

5.0 DISCUSSION AND RECOMMENDATIONS

5.1 GENERAL

5.2 FOUNDATIONS

- 5.3 SHALLOW FOUNDATIONS
- 5.4 BURIED UTILITIES

6.0 WARRANTY

- 6.1 SUBSURFACE EXPLORATION
- 6.2 LABORATORY AND FIELD TESTS
- 6.3 ANALYSIS AND RECOMMENDATIONS
- 6.4 CONSTRUCTION MONITORING
- 6.5 GENERAL

SPECIFICATIONS

I – GENERAL

II – ENGINEERED FILL BENEATH STRUCTURES

- **III GUIDELINES FOR EXCAVATIONS AND TRENCHING**
- **IV GENERAL CONCRETE SPECIFICATIONS**

APPENDIX A – SEISMIC DATA APPENDIX B – PHOTOGRAPHS APPENDIX C – MAPS EAST KENTUCKY ENGINEERING, LLC.

EXECUTIVE SUMMARY

A geotechnical investigation has been performed on the Dillon Tower Site, located in Harlan County, Kentucky. This site is not readily accessible. A location map is shown in Figure 1 of this report. Trenching was conducted with the assistance of Wendell Gay Construction. The following geotechnical considerations were identified:

- Trenching utilized for this study encountered soils and sandstone.
- The recommended maximum base elevation of tower mat foundation is 1559 ft.
- This site is on an undisturbed forest area.
- The allowable bearing capacities of the underlying rock estimated at 6 TSF.
- The 2015 International Building Code seismic site classification for this site is "A".
- If during the foundation design it becomes necessary to change the base of the footer, alternate design recommendations can be provided.
- No underground or surface mining was found during our research that would impact this tower site.
- Close monitoring of the construction operations discussed herein will be critical in achieving the design subgrade support. We, therefore, recommend that EKYENG is retained to monitor this portion of the work.

This executive summary is included to provide a general overview of the project and should not be relied upon except for the purpose it was prepared. Please rely on the complete report for the information on the findings, recommendations, and all other concerns.

1. INTRODUCTION

East Kentucky Engineering (EKYENG) was retained by Mr. Marty Thacker of Appalachian Wireless to prepare a geotechnical engineering report for the proposed tower site located on the Dillon Property, in Harlan County, Kentucky. A site location map is shown in Figure No. 1.

Trenching was conducted with the assistance from Wendall Gay Construction. The purpose of these services is to provide information and geotechnical engineering recommendations about subsurface conditions, earthwork, seismic considerations, groundwater conditions and foundation design.

2.0 PROJECT DESCRIPTION

The proposed communication facility will consist of a self-supporting tower of undetermined height and ancillary support areas. The footing area is estimated to be approximately 43.5 x 43.5 with an estimated base of the tower footer elevation at 1559 ft Based upon information provided; we estimate the structural loads will be similar to the following conditions;

CONDITION	LOAD	
Total Shear	40 Kips	
Axial Load	50 Kips	

We anticipate that overturning will govern the structural design. If the loading is significantly different than these expected values, EKYENG should be notified to re-evaluate the recommendations provided in this report.

3.0 SITE DESCRIPTION

3.1 GENERAL INFORMATION

The site location is on a forested point. EKYENG reviewed available historical mine maps from the Kentucky Division of Mine Safety, Kentucky Mine Mapping Information System ("KMMIS"). Based on available data, no historical mining has occurred at or near this site.

3.2 SURFACE MINING

This site in on an undisturbed forest area. No other nearby surface mining activities were found on our site investigation and during our research that would impact this site.

3.3 UNDERGROUND MINING

Our research found no underground mining that would impact this site. All underground mining activities found during our research are outside the area of influence for subsidence to be a concern.

4.0 FIELD EXPLORATION

4.1 SITE INFORMATION

A boundary survey was conducted on the Dillon property and provided to EKYENG. The proposed tower location was established and tied to the existing boundary. An estimated footer location was determined, and trenching was conducted through the slope at the proposed tower site.

4.2 TRENCHING & TEST HOLE DATA

This investigation was conducted with trenching with an excavator. The combinations of trenching and visual inspections were used to evaluate the site

		EO
		1281 Course and Coord
255	FORD CON	5°54'35.4228" 3°11'50.3744"
. *	,	· .
Drawn: RDS Date: 07/9/18 Job:165-067 Scale: 1"=1000'	Appalachian Wireless Geologic Quadrangle Location Map Dillon Tower Site Figure No. 2	East Kentucky Engineering, LLC. 230 Swartz Drive Hazard, KY 41701 (606) 551-1050

lithology and type of materials immediately below the proposed tower site. The following soils and rock properties were found.

TABLE NO. 2

Depth (Ft.)	Base Elevation (Ft.)	Strata
0.0 - 4.0	1565	Top Soils / Clays
4.0 – 19.0	1550	Sandstone

A cross-section of this information is in Appendix C of this report

4.3 GROUNDWATER

Groundwater in Eastern Kentucky is characterized by water flowing through a system of internal fractures that lead to an alluvial aquifer near the bottom of valley floors. Large, defined aquifers other than the alluvium are not common, especially in higher elevations such as where this tower site is proposed. Therefore, groundwater should not be a concern in this area. During the site investigation, no groundwater resources were observed.

4.4 SEISMIC SITE CLASSIFICATION

Based on the encountered soil conditions at the project site, the site classification was determined to be "Site Class A" per the 2015 Kentucky Building Code. In addition, an S_{DS} coefficient of 0.139 g was calculated, and an S_{D1} coefficient of 0.053 g was also calculated for design based on the aforementioned building code.

5.0 DISCUSSION AND RECOMMENDATIONS

5.1 GENERAL

The structure will be a self-supporting freestanding tri-pole tower. Due to wind loading, lattice tower foundations can experience both vertical loads and horizontal loads. The vertical loads act in both an upward and downward direction as the tower attempts to overturn and can act in any directions.

5.2 FOUNDATIONS

This report demonstrates the different expected bearing capacities based upon the type of material encountered from the trenching and visible observations at the site. The approximate elevation of the surface of the site is 1559 ft with an expected base of the footer at 1569 ft in elevation.

5.3 SHALLOW FOUNDATIONS

Based upon the laboratory and field testing, visual inspection of the materials, and practical experience we have estimated that the **allowable bearing capacity of the sandstone to be a minimum of 6 tsf**, between the elevations of 1559 ft to 1553 ft. The upper limit is determined by the topography of the site to ensure that the entire footer is on the sandstone strata.

It is furthermore recommended that the slabs-on-grade be supported on 4 to 6inch layer of relatively clean granular material such as sand and gravel or crushed stone. This is to help distribute concentrated loads and equalize moisture conditions beneath the slab. Proper drainage must be incorporated into this granular layer to preclude future wet areas in the finished slab-on-grade. However, all topsoil and/or other deleterious materials encountered during site preparation must be removed and replaced with 4000 psi concrete below the foundation base. Provided that a minimum of 4 inches of granular material is placed below the new slab-on-grade, a modulus of subgrade reaction (k30) of 100 lbs./cu. in. can be used for design of the slabs.

Support structure for this tower can be placed as needed. It is recommended that test pits are examined to ensure that any of these structures are on the competent materials. If pockets of soft, loose, or otherwise unsuitable material are encountered in the footing excavations and it is inconvenient to lower the footings, the proposed footing elevations may be re-established by backfilling

ENG

EAST KENTUCKY ENGINEERING, LLC.

after the undesirable material has been removed. The undercut excavation beneath each footing should extend to suitable bearing soils and the dimensions of the excavation base should be determined by imaginary planes extending outward and down on a 1 (vertical) to 1 (horizontal) slope from the base perimeter of the footing. The entire excavation should then be refilled with a wellcompacted engineered fill, or lean concrete (Please note that the width of the lean concrete zone should be equal or wider than the width of the overlying footing element). Special care should be exercised to remove any sloughed, lose or soft materials near the base of the excavation slopes. In addition, special care should be taken to "tie-in" the compacted fill with the excavation slopes, with benches as necessary, to ensure that no pockets of loose or soft materials will be left in place along the excavation slopes below the foundation bearing level. All Federal, State, and Local regulations should be strictly adhered to relative to excavation side-slope geometry.

5.4 BURIED UTILITIES

Excavations for buried utility pipelines should follow the guidelines set forth in this report. Depending on the pipeline material, a minimum thickness of at least 0.5 feet of select fine-grained granular bedding material should be used beneath all below-grade pipes, with a minimum cover thickness of at least 3 feet to afford an "arching" effect and reduce stresses on the pipe. The cover thickness may be reduced if the external loading condition on the pipe is relatively light or if the pipe is designed to withstand the external loading condition. It is not recommended that "pea-gravel" or other "open-work" aggregates be used for trench backfill since these materials are nearly impossible to compact and tend to pond water within their interstices.

6.0 WARRANTY

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical

engineering principles and practices. No other warranty, express or implied, is made.

While the services of EKYENG are a valuable and integral part of the design and construction teams, we do not warrant, guarantee, or insure the quality or completeness of services provided by other members of those teams, the quality, completeness, or satisfactory performance of construction plans and specifications which we have not prepared, nor the ultimate performance of building site materials.

6.1 SUBSURFACE EXPLORATION

Subsurface exploration is normally accomplished by test borings, although test pits are sometimes employed. The method of determining the boring location and the surface elevation at the boring is noted in the report and is presented on the Boring Location Plan or on the boring log. The location and elevation of the boring should be considered accurate only to the degree inherent with the method used.

The boring log includes sampling information, description of the materials recovered, approximate depth of boundaries between soil and rock strata and groundwater data. The boring log represents conditions specifically at the location and time the boring was made. The boundaries between different soil strata are indicated at specific depths; however, these depths are in fact approximate and are somewhat dependent upon the frequency of sampling (The transition between soil strata is often gradual). Free groundwater level readings are made at the times and under conditions stated on the boring logs (Groundwater levels change with time and season). The borehole does not always remain open sufficiently long enough for the measured water level to coincide with the groundwater table.

6.2 LABORATORY AND FIELD TESTS

Laboratory and field tests are performed by specific ASTM standards unless otherwise indicated. All determinations included in each ASTM standard are not always required and performed. Each test report indicates the measurements and determinations made.

6.3 ANALYSIS AND RECOMMENDATIONS

The geotechnical report is prepared primarily to aid in the engineering design of site work and structural foundations. Although the information in the report is expected to be sufficient for these purposes, it is not intended to determine the cost of construction or to stand alone as a construction specification.

Our engineering report recommendations are based primarily on data from test borings made at the locations shown in a boring location drawing included. Soil variations may exist between borings, and these variations may not become evident until construction. If significant variations are then noted, the geotechnical engineer should be contacted so that field conditions can be examined and recommendations revised if necessary.

The geotechnical engineering report states our understanding as to the location, dimensions and structural features proposed for the site. Any significant changes in the nature, design, or location of the site improvements MUST be communicated to the geotechnical engineer such that the geotechnical analysis, conclusions, and recommendations can be appropriately adjusted. The geotechnical engineer should be given the opportunity to review all drawings that have been prepared based on their recommendations.

6.4 CONSTRUCTION MONITORING

Construction monitoring is a vital element of complete geotechnical services. The field engineer/inspector is the owner's "representative" observing the work of the contractor, performing tests as required in the specifications, and reporting data developed from such tests and observations. The field engineer or inspector does not direct the contractor's construction means, methods,

EAST KENTUCKY ENGINEERING, LLC.

operations or personnel. The field inspector/engineer does not interfere with the relationship between the owner and the contractor and, except as an observer, does not become a substitute owner on site. The field inspector/engineer is responsible for his own safety but has no responsibility for the safety of other personnel at the site. The field inspector/engineer is an important member of a team whose responsibility is to watch and test the work being done and report to the owner whether that work is being carried out in general conformance with the plans and specifications.

6.5 GENERAL

The scope of our services did not include an environmental assessment for the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater or air, on, within or beyond the site studied. Any statements in the report or on the boring logs regarding odors, staining of soils or other unusual items or conditions observed are strictly for the information of our client.

To evaluate the site for possible environmental liabilities, we recommend an environmental assessment, consisting of a detailed site reconnaissance, a record review, and report of findings. Additional subsurface drilling and samplings, including groundwater sampling, may be required.

This report has been prepared for the exclusive use of Appalachian Wireless, for specific application to the proposed cellular tower located on the Dillon Property located in Harlan County, Kentucky. Specific design and construction recommendations have been provided in the various sections of the report. The report shall, therefore, be used in its entirety. This report is not a bidding document and shall not be used for that purpose. Anyone reviewing this report must interpret and draw their conclusions regarding specific construction techniques and methods that were chosen. EKYENG is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploratory and laboratory test data presented in this report.

SPECIFICATIONS

I – GENERAL

1.0 STANDARDS AND DEFINITIONS

- 1.1 STANDARDS All standards refer to latest edition unless otherwise noted.
 - 1.1.1 ASTM D-698-70 (Method C) "Standard Test Methods for Moisture. Density Relations of Soils and Soil Aggregate Mixtures Using 5.5-lb (2.5 kg.) Rammer and 12-inch (305mm) Drop".
 - 1.1.2 ASTM D-2922 "Standard Test Method for Density of Soil and Soil Aggregate in Place by Nuclear methods (Shallow Depth)".
 - **1.1.3** ASTM D-1556 "Standard Test Method for Density of Soil in place by the Sand-Cone Method".

1.2 DEFINITIONS

- **1.2.1** Owner In these specifications the word "Owner" shall mean Appalachian Wireless.
- **1.2.2** Engineer In these specifications the word "Engineer" shall mean the Owner designated engineer.
- 1.2.3 Design Engineer In these specifications the words "Design Engineer" shall mean the Owner designated design engineer.
- **1.2.4** Contractor In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any work under the terms of these specifications.
- **1.2.5** Approved In these specifications the word "approved" shall refer to the approval of the Engineer or his designated representative.

EAST KENTUCKY ENGINEERING, LLC.

1.2.6 As Directed - In these specifications the words "as directed" shall refer to the directions to the Contractor from the Owner or his designated representative.

2.0 GENERAL CONDITIONS

2.1 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by the Owner, necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction, grading as shown on the plans and as described therein.

This work shall consist of all mobilization clearing and grading, grubbing, stripping, removal of existing material unless otherwise stated, preparation of the land to be filled, filling of the land, spreading and compaction of the fill, and all subsidiary work necessary to complete the grading of the cut and fill areas to conform with the lines, grades, slopes, and specifications.

This work is to be accomplished under the observation of the Owner or his designated representative.

2.2 Prior to bidding the work, the Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including, without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site; and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work.

If conditions other than those indicated are discovered by the Contractor, the Owner should be notified immediately. The material which the Contractor believes to be a changed condition should not be disturbed so that the owner can investigate the condition.

2.3 The construction shall be performed under the direction of an experienced engineer who is familiar with the design plan.

II - ENGINEERED FILL BENEATH STRUCTURES CLEARING AND GRADING SPECIFICATIONS

1.0 GENERAL CONDITIONS

The Contractor shall furnish all labor, materials, and equipment, and perform all work and services necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction and grading as shown on the plans and as described therein.

This work shall consist of all clearing and grading, removal of existing structures unless otherwise stated, preparation of the land to be filled, filling of the land, spreading and compaction of the fill, and all subsidiary work necessary to complete the grading of the cut and fill areas to conform with the lines, grades, slopes, and specifications.

This work is to be accomplished under the constant and continuous supervision of the Owner or his designated representative.

In these specifications, the terms "approved" and "as directed" shall refer to directions to the Contractor from the Owner or his designated representative.

2.0 SUBSURFACE CONDITIONS

Prior to bidding the work, the Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site; and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work. Borings and/or soil investigations shall have been made. Results of these borings and studies will be made available by the Owner to the Contractor upon his request, but the Owner is not responsible for any interpretations or conclusions with respect thereto made by the Contractor based on such

information, and the Owner further has no responsibility for the accuracy of the borings and the soil investigations.

If conditions other than those indicated are discovered by the Contractor, the Owner should be notified immediately. The material which the Contractor believes to be a changed condition should not be disturbed so that the Owner can investigate the condition.

3.0 SITE PREPARATION

Within the specified areas, all trees, brush, stumps, logs, tree roots, and structures scheduled for demolition shall be removed and disposed of.

All cut and fill areas shall be properly stripped. Topsoil will be removed to its full depth and stockpiled for use in finish grading. Any rubbish, organic and other objectionable soils, and other deleterious material shall be disposed of off the site, or as directed by the Owner or his designated representative if on site disposal is provided. In no case shall such objectionable material be allowed in or under the fill unless specifically authorized in writing.

Prior to the addition of fill, the original ground shall be compacted to job specifications as outlined below. Special notice shall be given to the proposed fill area now. If wet spots, spongy conditions, or groundwater seepage is found, corrective measures must be taken before the placement of fill.

4.0 FORMATION OF FILL AREAS

Fills shall be formed of satisfactory materials placed in successive horizontal layers of not more than eight (8) inches in loose depth for the full width of the cross-section. The depth of lift may be increased if the Contractor can demonstrate the ability to compact a larger lift. If compaction is accomplished using hand-tamping equipment, lifts will be limited to 4-inch loose lifts. Engineered fill placed below the structure bearing elevation shall be compacted to at least 95% of the maximum dry unit weight with a moisture content within 2% of the optimum moisture content as determined by the modified Proctor test. The top size of the material placed shall not exceed 4 inches.

All material entering the fill shall be free of organic matter such as leaves, grass, roots, and other objectionable material.

The operations on earth work shall be suspended at any time when satisfactory results cannot be obtained because of rain, freezing weather, or other unsatisfactory conditions. The Contractor shall keep the work areas graded to provide the drainage always.

The fill material shall be of the proper moisture content before compaction efforts are started. Wetting or drying of the material and manipulation to secure a uniform moisture content throughout the layer shall be required. Should the material be too wet to permit proper compaction or rolling, all work thus affected shall be delayed until the material has dried to the required moisture content. The moisture content of the fill material should be no more than two (2) percentage points higher or lower than optimum unless otherwise authorized. Sprinkling shall be done with equipment that will satisfactorily distribute the water over the disced area. Any areas inaccessible to a roller shall be operated in such a manner that hardpan, cemented gravel, clay or other chunky soil material will be broken up into small particles and become incorporated with the other material in the layer.

In the construction of filled areas, starting layers shall be placed in the deepest portion of the fill, and as placement progresses, additional layers shall be constructed in horizontal planes. Original slopes shall be continuously, vertically benched to provide horizontal fill planes. The size of the benches shall be formed so that the base of the bench is horizontal, and the back of the bench is vertical. As many benches as are necessary to bring the site to final grade shall be constructed. Filling operations shall begin on the lowest bench, with the fill being placed in horizontal eight (8) inch thick loose lifts unless otherwise authorized. The filling shall progress in this manner until the entire first bench has been filled, before any fill is placed on the succeeding benches. Proper drainage shall be maintained always during benching and filling of the benches, to ensure that all water is drained away from the fill area.

Frozen material shall not be placed in the fill nor shall the fill be placed upon frozen material.

The Contractor shall be responsible for the stability of all fills made under the contract, and shall replace any portion, which in the opinion of the Owner or his designated representative, has become displaced due to carelessness or negligence on the part of the Contractor. Fill damaged by inclement weather shall be repaired at the Contractor's expense.

5.0 SLOPE RATIO AND STORM WATER RUN-OFF

Slopes shall not be greater than 2 (horizontal) to 1 (vertical) in both cut and fill, or as illustrated on the construction drawings. Excavations shall be constructed in accordance with all Federal, State and local codes relative to slope geometry.

6.0 GRADING

The Contractor shall furnish, operate, and maintain such equipment as is necessary to construct uniform layers, and control smoothness of grade for maximum compaction and drainage.

7.0 COMPACTING

The compaction equipment shall be approved equipment of such design, weight, and quantity to obtain the required density in accordance with these specifications.

8.0 TESTING AND INSPECTION SERVICES

Testing and inspection services will be provided by the Owner.

III GUIDELINES FOR EXCAVATIONS AND TRENCHES

The following represents some general guidelines relative to the design and construction of excavations and trenches. It must be emphasized that these guidelines are not intended to represent a "safety plan," but rather are presented herein to provide general guidance regarding the design characteristics and safety measures for excavations and trenches.

- 1. Check with the following utilities prior to breaking ground:
 - Sewer
 - Telephone
 - Fuel
 - Electric
 - Water
 - Gas
 - Cable

When utility companies or owners do not respond to your request within 48 hours, the contractor may only then proceed provided the contractor does so with caution by using detection equipment or other acceptable means to locate utility installations.

Once the excavation is open, the contractor should protect and support the exposed underground utilities or remove installations to safeguard workers and prevent damage to exposed utilities.

- Access and egress ramps must be designed by a "competent person" and structural ramps used for equipment must be designed by a "competent person" with qualified knowledge in structural design. In addition:
 - · Ramps must be secured to prevent displacement;
 - Ramps used in lieu of steps must have cleats to prevent slipping; and

- Trenching excavations four feet or greater in depth must have a stairway, ladder, ramps or other safe means to egress with lateral travel no more than 25 feet.
- **3.** Workers must be provided with reflector garments, such as warning orange or red vests, when exposed to vehicular traffic.
- Contractors must not allow workers to work under or near equipment when there is danger of falling debris, spillage or equipment-related injuries.
- 5. Mobile equipment, operating adjacent to an open excavation or approaching the edge of an excavation, must have one of the following when the operator's view is obstructed:
 - Warning System
 - Mechanical Signals
 - Barricades
 - Stop Logs
 - Hand Signals
- 6. The contractor must check the atmosphere for hazardous gases and oxygen deficiencies when excavating four feet or greater around landfills, or when hazardous substances are stored nearby, and when the contractor expects there could be any exposure to the workers.
- 7. When hazardous atmospheric conditions exist, or when conditions could change, the contractor must make emergency rescue equipment readily available including breathing apparatus, safety harnesses with life lines and a basket stretcher.
- 8. When workers enter bell-bottom pier holes or other deep and confined excavations, the worker must wear (always while performing work in the confined space) a separate life line attached to a harness. The line must

be attended by someone above while work is being performed. The worker must check for hazardous atmospheric conditions prior to entry.

- 9. The contractor must ensure that water does not accumulate in open excavations and must inspect the excavation prior to allowing workers to re-enter after heavy rains.
- Adjacent structures (buildings, walls, etc.) must be supported or secured to prevent worker exposure to unsafe conditions and damage to existing structures.
- 11. A registered professional engineer must approve operations when a contractor underpins existing structures to ensure worker safety and prevent damage to existing structures.
- 12. Workers must not be exposed to lose soil and rock or materials in and around excavations. Materials, such as removed soil and rock, must not be stored closer than two feet from the edge of the excavation.
- 13. Daily inspections of the excavation, the adjacent areas and protective systems must be made by a "competent person" for evidence of possible cave-ins, indications of failure of protective systems, hazardous atmospheres or other hazardous conditions. The "competent person" must stop work immediately and remove workers from the excavation when conditions change and pose a threat to their safety workers must not be exposed to fall hazards associated with excavations.
- 14.
- 15. Protective walkways or bridges with standard guardrails must be provided.All wells, pits, shafts, etc. must be barricaded or covered. After completion of work, all wells, pits, shafts, etc. must be backfilled.

IV - GENERAL CONCRETE SPECIFICATIONS

1.0 GENERAL

It is the intent of this specification to secure, for every part of the work, concrete of homogenous structure which, when hardened, will have the required strength and resistance to weathering. To this end, the limiting values of concrete and the requirements hereinafter specified must be met. Standard tests of the cement, aggregates, concrete and reinforcement will be made by the Owner as it sees fit. The Contractor shall furnish the material for all required samples plus such labor as required to obtain samples. The Contractor shall provide to authorized representatives of the Owner, convenient access to all parts of the work of all concreting operations for the purpose of sampling and inspection.

2.0 <u>SCOPE</u>

Contractor shall furnish all materials, labor, services, transportation, tools, equipment, and related items required to complete work indicated on the drawings and/or specified.

Unless otherwise noted or as modified by more stringent requirements specified herein, all plain and reinforced concrete work shall be performed in full compliance with applicable requirements of the Building Code Requirements for Reinforced Concrete ACI 318.

Contractor shall obtain Owner's approval of all subgrades, footing bottoms, forms, and reinforcement just prior to placing concrete.

Contractor shall coordinate the work specified in this section with that specified in other sections so that all anchors, pipes and other embedded items are properly installed before concrete is placed.

Contractor shall clean all exposed concrete surfaces and obtain approval of Owner for method of cleaning.

3.0 MATERIALS

All materials shall be of the respective quality specified herein, delivered, stored, and handled as to prevent inclusion of foreign matter and damage by dampness or breakage. Packaged material shall be stored in original container until ready for use. Materials showing evidence of dampness or other damage may be rejected.

- A. <u>Fine and Coarse Aggregates:</u> Coarse and fine aggregates shall conform to ASTM Specification C33. The maximum size of aggregate shall not be larger than one-fifth (1/5) of the narrowest dimensions between forms, or larger than three fourths (3/4) of the minimum clear spacing between reinforcement.
 - Fine Aggregate: Sand shall be composed essentially of clean, hard, strong, durable grains free of structurally weak grains, organic matter, loam, clay, silt, salt, mica or other fine materials that may affect bonding of the cement paste.
 - 2. <u>Coarse Aggregate:</u> Cement concrete shall consist of crushed rock or screened gravel and shall be composed essentially of clean, hard, strong and impermeable particles, resistant to wear and frost and free from deleterious amounts of organic matter, loam, clay, salts, mica, and soft, thin, elongated, laminated or disintegrated stone, and shall be inert to water and cement.
- B. <u>Portland Cement:</u> Portland cement shall conform to ASTM Specification C150. Type I or Type II Portland Cement shall be used provided that they are not intermixed during any one batch. Type II Portland Cement shall <u>not</u> be used unless indicated on the plans.
- C. <u>Water:</u> Water for mixing and curing shall be clean, fresh, and free from deleterious materials.

- D. <u>Metal Reinforcement:</u> Rebar shall be Grade 60 and with deformations conforming to ASTH Specification A305. Welded wire mesh shall conform to W4 x W4 size and be of Grade 60 steel.
- E. <u>Admixtures:</u> Except as herein noted, admixtures shall not be used.
 - Under adverse weather conditions only retarding or accelerating agents containing no chloride may be used.
 - Air-Entraining Agent shall be used for all concrete will give an entrained air range of not less than 4 percent but no greater than 8 percent in the finished product. Under no circumstances shall the air-entraining be interground with cement.
 - 3. Approval in writing shall be required from Owner prior to the use of any admixture.

4.0 <u>FORM</u>

Forms shall be constructed with proper shoring and cross-bracing, safeguarding the total structure and specifically lateral stability and sufficiently strong to stand vibrations of concrete and to carry, without appreciable deflection or displacement, all dead and live loads to which they may be subjected.

5.0 INSERTS, ETC.

Anchors, bolts, dowels, conduit, water stops, vent pipes and other similar built-in or concreted-in items shall be properly located, accurately positioned and secured. The Contractor shall cooperate in placing of such items with other contractors who require a fastening device for their work and he shall maintain them in proper location during the progress of his work.

6.0 REINFORCEMENT

Reinforcement at the time concrete is placed shall be free from rust, scale or other coatings that will destroy or reduce the bond.

Reinforcement shall be accurately placed and securely tied at intersections and shall be securely held in position during the placing of concrete by pacers, chairs, or other approved supports.

The reinforcement of foundations, footings and other principal structural members in which the concrete is deposited against the ground shall not have less than three (3) inches of concrete between it and the ground contact surface. If concrete surfaces after removal of the forms are to be exposed to the weather or to be in contact with the ground or rock, reinforcement shall be protected with not less than two (2) inches of concrete.

7.0 CONCRETE

Concrete for the various parts of the work shall be of 4000 pounds per square inch compressive strength with a minimum 28-day cure. Contractor is responsible to provide a mix of not less than 6 bags of cement per yard of concrete and not more than 7 gallons of water per bag of cement, producing a minimum slump of 2-1/2 inches and a maximum slump of 4-1/2 inches. Concrete that exceeds the above range of maximum or minimum slump requirements may be rejected by the Owner. All concrete shall be air-entrained. Contractors are required to furnish the name or names of the company(s) that will be providing the mix. The Owner reserves the right to disapprove any concrete supplier that has been known to supply an undesirable material to the Owner on previous occasions.

8.0 DEPOSITING CONCRETE

- 4.1. <u>Preparation for Placing Concrete:</u> Before depositing concrete, the Contractor shall:
- Remove from space to be occupied by concrete all debris, including snow, ice, and water unless otherwise permitted by Owner.

- Provide diversion, satisfactory to Owner, of any flow of water to an excavation to avoid washing the freshly deposited concrete.
- Coal the forms prior to placing of reinforcing steel as required in formwork.
- Secure firmly in correct position, all reinforcement and other items to be encased and remove therefrom all coating including ice and frost.
- B. <u>Transportation of Concrete from Batch Plant</u>: The concrete shall be delivered to the site of the work and discharge shall be completed within 90 minutes after addition of the cement and water to the aggregates. Each batch of concrete delivered at the job site shall be accompanied by a time slip issued at the batching plant, bearing the time of charging of the mixer drum with the cement and aggregates.
- C. <u>Transporting of Concrete from Mixer to Place of Final Deposit:</u> Transportation shall be done as rapidly as practical by means which shall prevent the separation or loss of the ingredients. If chutes are used, they shall be at a slope not flatter than one vertical to two horizontal. Buggies or carts shall be equipped with pneumatic rubber tires or surfaces of runways shall be sufficiently smooth or both so as not to cause separation or segregation of concrete ingredients. Concrete shall not be allowed to drop freely more than 4 feet. Where greater drops are required, canvas "elephant trunks" or galvanized iron chutes equipped with suitable hopper heads shall be employed and a sufficient number placed to ensure that the concrete may be effectively compacted into

horizontal layers not exceeding 12 inches in thickness with minimum lateral movements.

- D. <u>Depositing of Concrete:</u> Depositing of concrete shall:
 - Proceed continuously after once starting until reaching the end of a section of construction joint location shown on the drawings, or as approved by the Owner. The operations shall be conducted so that no concrete is deposited on concrete sufficiently hardened to cause formation of seams, and planes of weakness.
 - 2. Be as near as practical to its final position in the forms.
 - 3. Proceed to maintain constantly a top surface which is approximately level.
 - Be placed before initial set has occurred, and in no event after it has contained its water content for more than 90 minutes.
 - 5. Be thoroughly worked and compacted by means of suitable tools to provide impermeability, durability and strength and shall be thoroughly worked around reinforcements and embedded items and into corners of forms and to be free from voids, pockets or honeycombing. Care shall be taken to provide impermeability.
- E. <u>Vibration Equipment:</u> Vibration equipment shall be of the appropriate type and shall, always, be adequate in number of units and power of each unit to properly consolidate all concrete.

F. <u>Monolithic Pours:</u> Proper delivery of concrete shall be the Contractor's responsibility to make a mono-lithic pour without delays and changes of cold joints.

9.0 CURING

All concrete work shall be protected from injurious action by the sun, rain, flowing water, frost and other injury and shall be covered with plastic after application of curing compound for three (3) days on pours located above ground.

Contractor shall not remove any formwork for a minimum period of 24 hours after a concrete pour without the written approval of the Owner.

10.0 CONCRETE FINISHES

Finishes of all exposed concrete shall be free of defects which impair its durability or adversely affect is appearance. All such surfaces when stripped, shall be uniform in appearance and any surfaces displaying any deviations from adjacent uniform surfaces shall be rejected and subject to removal.

Finished work shall be level and plumb, true to lines, and dimensions. Finished plane surfaces shall be smooth, and as nearly perfect as practical; however, deviations from a true plane shall not exceed 1/8 inch when measured from a 6-foot straight edge placed against the surface to any point on the surface and under the straight edge.

All exposed surfaces shall have defects corrects, protrusions removed, and holes filled.

APPENDIX A SEISMIC DATA

SUSGS Design Maps Summary Report

User-Specified Input

Report Title	Dillon Tower Site
	Sun July 15, 2018 15:39:34 UTC
Building Code Reference Document	2012/2015 International Building Code
	(which utilizes USGS hazard data available in 2008)
Site Coordinates	36.91012°N, 83.19733°W
Site Soil Classification	Site Class A – "Hard Rock"
Risk Category	IV (e.g. essential facilities)

SGS-Provided Output

S _s =	0.261 g	S _{MS} =	0.209 g	S _{DS} =	0.139 g
S ₁ =	0.099 g	S _{M1} =	0.079 g	S _{D1} =	0.053 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

hough this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the suracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

APPENDIX B PHOTOGRAPHS

Sandstone Bottom of Trench

Sandstone Bottom of Trench

Sandstone Bottom of Trench

Tower Center Pin

APPENDIX C MAPS

SECTION 1" = 30'

Soring IIC

60'

1 Fairholm Avenue Peoria, IL 61603 USA Phone 309-566-3000 FAX 309-566-3079

July 20, 2018

Appalachian Wireless Attn: Marty Thacker 101 Technology Trail Lvel, KY. 41642

Reference: Dillon, Harlan County, KY. 180' RT Tower

File Number: 226628

Enclosed, please find the following for your use:

Copies	Drawing Number	Description
1	226628-01-d1	Design Drawing Sealed for the State of Kentucky
1	226628-01-F1	Foundation
Contact Phon	e Number: 606	634 9505
Email Only:	m.thacker@tgtel.com	1
Sincerely,		
Danny Otten		

JD Long

crp

Products for a Growing World of Technology®

1 Fairholm Avenue Peoria, IL 61603 USA Phone: (309)-566-3000 Fax: (309)-566-3079

DATE: JULY 20, 2018

PURCHASER: APPALACHIAN WIRELESS

PROJECT: 180 FT RT SELF SUPPORT TOWER DILLON, KENTUCKY

FILE NUMBER: 226628

DRAWINGS: 226628-01-D1, 226628-01-F1

I CERTIFY THAT THE REFERENCED DRAWINGS WERE PREPARED UNDER MY SUPERVISION IN ACCORDANCE WITH THE DESIGN AND LOADING CRITERIA SPECIFIED BY THE PURCHASER AND THAT I AM A REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF KENTUCKY.

	1/1	OF KEN
CERTIFIED BY:	That	HABIS JIRJI
DATE:	7 /20/18	A2OURI 20322
		IONAL E

Products for a Growing World of Technology®

	TOWER DESIGN LOADING	arean haabalaana ee
DESIGN WIND LDAD P ASCE 7-15 WIND SPEI BASIC WIND SPEED () DESIGN ICE THICKNE STRUCTURE CLASS = EXPOSURE CATEGORY TOPOGRAPHIC CATEG EARTHQUAKE SPECTR THIS TOWER IS DESIG	ER ANSI/TIA-222-G; ED (NO ICE) = 105 MPH (EC) = 30 MPH SS = 0.5 IN, II /* C IORY = 1 AL RESPONSE ACCELERATION: SS / NED TO SUPPORT THE FOLLOWING	= 0.32 3 LCADS:
ELEVATION (FT)	ANTENNA TYPE	LINE SIZE (NOM)
TOP	BEACON & LIGHTNING ROD	(1) 3/4* CONDUIT
175	(12) NN-65A-M & (12) RRUS-12 ON (3) SECTOR FRAMES	(4) 7/8* HYBRID, (6) 1-5/8*
165	(12) NN-65A-M & (12) RRUS-12 ON (3) SECTOR FRAMES	(4) 7/8" HYBRID, (6) 1-5/8"
155	(12) NN-65A-M & (12) RRUS-12 ON (3) SECTOR FRAMES	(6) 1-5/8*
145	(2) 8 FT HP DISHES [A2. 0 & 180 DEG] [6 GH2]	(2) EW63
135	(12) NN-65A-M & (12) ARUS-12 ON (3) SECTOR FRAMES	(6) 1-5/8*
125	(12) NN-65A-M & (12) RRUS-12 ON (3) SECTOR FRAMES	(6) 1-5/8*
105	(12) NN-65A-M & (12) RRUS-12 ON (3) SECTOR PRAMES	(6) 1-5/8*

A ROHM PRODUCTS, LLC TOWER DESIGNS CONFORM TO ANSUTTA-222-G UNLESS OTHERWISE SPECIFIED UNDER TOWER DESIGN LOADING. THE DESIGN LOADING. THE DESIGN LOADING TOWER DESIGN LOADING. ANTENNAS AND LUARS LISTED IN TOWER DESIGN LOADING TABLE ARE PROVIDED TO ROHM. THE DESIGN LOADING CONFIRMATERA INFOLUED HAS BEEN PROVIDED TO ROHM. THE DESIGN LOADING CONFIRMATION. ANTENNAS AND LUNGS LISTED IN TOWER DESIGN LOADING TABLE ARE PROVIDED BY OTHERS FUNCTIVE. STEP BOLTS ARE PROVIDED AS A CUMBING FACILITY FOR THE INSTALLATION. ANTENNAS AND LUNGS LISTED IN TOWER DESIGN LOADING TABLE ARE PROVIDED BY OTHERS FUNCTIVE. STEP BOLTS ARE PROVIDED AS A CUMBING FACILITY FOR THE INSTALLATION OF THE STRUCTURE. TOWER MMERE DESIGN DOES NOT INSCLUE TO ENCITION SINCE ENECTION COUNTERS AND ANTEMA SUPPORTING STRUCTURES. TOWER MMERE DESIGN ODES NOT INSCLUE TO ENCITION SINCE ENECTION CONDITIONS ARE UNKNOWN. DESIGN ASSUMES COMPETENT AND QUALIFIED PRESONNEL MILL BECHT THE TOWER. WORK SMALL BE IN ACCORDANCE WITH ANSITTA-322 G, STRUCTURAL STANDARDS FOR STEEL ANTENNA SUPPORTING STRUCTURES. THE HINNUM YIELD STRUCTURA BED TO BE FOR STANL BE FOR FORM TO BE AND LOWER. STRUCTURAL BOLTS SHALL COMPORM TO GRADE AZ35 PER ASTM F3125, EXCEPT WHERE NOTED. THE MINENUM YIELD STRUCTURE BOLTS. THE HINNUM YIELD STRUCTURE BOLTS. THE HINNUM BE OTTER AND LEFTING STALL BE HOT-DUPPED GALVANIZED AFTER MORDATION IN ACCOMBANCE WITH ANSITTA-322 G. ALL HICH STRUCTURE AND LEFTING STALL BE HOT-DUPPED GALVANIZED AFTER MORDATION IN ACCOMBANCE WITH ANSITTA-322 G. ALL HICH STRUCTURE AND LEFTING AND LEFTING AND LEFTING THE ENSIGN OR TOR STRUCTURE AND LIST AND LEFTING. THE DESIGN FOR THE ENSIGN OR TO RESTRUCTURES THE INSTAIL OF ROS STRUCTURES AND LIGHTING. THE ENSIGN OR TOR STRUCTURE AND LIGHTING. THE ENSIGN OR TOR STRUCTURE AND LIGHTING IS IN COMMING WITH LOCAL, STATE, AND THE ENSIGN OR TOR STRUCTURE AND LIGHTING IS NO. THE MORDANE WITH ANSITA 322 G. DESIG		A State Line Line	1155				22662	8
SPECIFIC UNDER TOWER DESIGN LOADS COME SPECIFIC UNDER TO SUPPORT DESIGN LOADING THE DESIGN LOADING CRITERIA INDICATED ANS BEEN PROVIDED TO ROHM. THE DESIGN LOADING CRITEMA HAS BEEN ASJUNDT TO BE ASSUED ON SITE SPECIFIC DATA IN ACCORDANCE WITH ANSITIA-22-G AND MAST BE VERIFICD BY OTHERS PRIOR TO INSTALLATION. ANTENNA SAD LINES LISTED IN TOWER BESIGN LOADING TABLE ARE PROVIDED BY OTHERS UNLESS OTHERNISE SPECIFIC. THE ONSTALLATION ARE UNROWNIN. DESIGN ASSUES TO REPORT AND ON THE STRUCTURE. TOWER MEMBER DESIGN DOSIS MATTINAS SUPPORT INCLUES STRUCTURAL STANLARTON OF THE STRUCTURE. TOWER MEMBER DESIGN DOSIS ACLIMBUNG FACILITY FOR THE INSTALLATION OF THE STRUCTURE. TOWER MEMBER DESIGN DOSIS MOT INCLUES STRUCTURAL STANLARDOS FOR STREEL ANTENNA SOLONDED AS A CLIMBUNG FACILITY FOR THE INSTALLATION OF THE STRUCTURE. TOWER MEMBER DESIGN DOSIS MATTINAS SUPPORTING STRUCTURES: TOWER MEMBER DESIGN DOSIS MATTINAS SUPPORTING STRUCTURES: THE VINIMMIN YELD STREAMENTH ANSITTA-222-G, STRUCTURAL STANLARDOS FOR STREEL ANTENNA SUPPORTING STRUCTURAL STRUCTURES. THE VINIMMIN YELD STREAMENT HORIZON AND AS AND ANTENNA SUPPORTING STRUCTURES. THE VINIMMIN YELD STREAMENT HAS STRUCTURAL STANLARDAS FOR STREEL ANTENNA SUPPORTING STRUCTURAL DEVELOR SHALL BE SO KSI. FIED CONNECTION ON CONNECTION ON CONNECTION ON CONCENTION AS DEFINED IN THE RESC STRUCTURAL DONNEE WITH ANSITTA-222-G. ALL HIGH STREAMENT HORIZON AND AND THE ASTIN F3125, EXCEPT WHERE NOTED. PAL NUTS ARE PROVIDED FOR ALL TOWER SATEL BE HATCONDITION AS DEFINED IN THE EXCENT DURCT THE REALLATION SIGNA HAD LIGHTING. TOLENALE DATION TO ACCOMENT TO THE STRUCTURAL DIATING SHOLES TO MODINEE WITH LOCAL, STATE, AND PEOFAL REQUIREMENTS FOR ODSTRUCTURAL WITH STRUCE ARE RECORDITION WILL BE PERFORMED OVER THE LIFE OUT TO WEILES ARE RECORDITIONS SHOLES AND REGINES AND AND THE STRUCTURAL WITH YELD RESCAULE ON TOWERS SHOLE AND ANDRONG AND LIGHTING. TOLENALE THAN SOLEMENDAL AND ANDRONG AND L	¥		PARTS ILC TOWER DESI	INC MULLION TO ANOLITIA	C UNI SEC ATHEOMICE		REVESIONS	
 THE DESIGN LOADING CRITERIA INDICATED HAS BEEN PROVIDED TO ROHM. THE DESIGN LOADING CRITERIA HAS BEEN ASSUMED TO BE LASED ON SITE SECIFIC DATA IN A ROOMDANCE WITH ANSI/TIA-222-G AND MIST BE VERIFED BY OTHERS PRIOR TO INSTALLATION. ANTENNAS AND LINES LISTED IN TOWER DESIGN LOADING TABLE ARE PROVIDED BY OTHERS UNLESS OTHERWISE SPECIFIED. TOWER MEMER DESIGN LODES NOT INCLUDE STRESSES DUE TO DERICTION SINCE ERECTION EQUIPMENT AND CONDITIONS ARE UNKNOWN. DESIGN ASSUMES COMPETENT AND QUALIFIED PERSONNEL WILL BENCT THE TOWER. WORK SHALL BE IN ACCORDANCE WITH ANSI/TIA-222-G, STRUCTURE, STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES. THE HINMUM YELD STRENGTH OF STRUCTURES. THE HINMUM YELD STRENGTH OF STRUCTURES SHALL BE SINKL BE SINKL BE STRUCTURE. FIELD CONNECTIONS SHALL BE DI ACCORDANCE WITH ANSI/TIA-222-G, STRUCTURE, STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES. FIELD CONNECTIONS SHALL BE DI ACCORDANCE WITH ANSI/TIA-22-G. FIELD CONNECTIONS SHALL BE DI ACCORDANCE WITH ANSI/TIA-22-G. STRUCTURAL STEEL AND CONNECTION READ STS. SHALL BE SINKL BE SINKL BE STRUCTURE. FIELD CONNECTION PARABLE STANDARDS FOR STEEL ANTENNA TOWERS SHALL BE DISCOMPETED TO AND AND UNDER MIRING ACCORDANCE WITH ANSI/TIA-22-G. ALL HIGH STREMETH BOLTS ARE TO BE TIGHTENED TO A SHART TIGHT" CONDITION AS DEFINED IN THE RESC? SHELL STREMET THE INSTALLATION IS IN GORDARY STREMETH BOLTS', NO OTHER MIRING AND CAT TRENSION OR TORIQUE VALUES ARE REQURARD. UNDER SHALL VERIFY THE INSTALLATION IS IN GORDARY WITH HOULD, STATE, AND PEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPICTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE MACCORDANCE WITH HOUSE THE CONDITIONS EXISTING AT THE SITE. DESIGN ASSUMES LAVEL GARDE AT TOWER STEE. DESIGN ASSUMES THAT, AS A MOMI		SPECIFIED	UNDER TOWER DESIGN I	OADING.	o oncess o mentione	REVI	DESCRIPTION	Inval che i v
 Controller Massime Assumed to the Unstance of the Price of the Price of the Instance of the Price of	2.	THE DESIG	IN LOADING CRITERIA IN	DICATED HAS BEEN PROVIDED T	D ROHN. THE DESIGN LOADING	1		
 ANTENNAS AND LINES LISTED IN TOWER DESIGN LOADING TABLE ARE PROVIDED BY OTHERS UNLESS OTHERWISS SPECIFICS STEP BOLTS ARE PROVIDED AS A CLINEING FACULTY FOR THE INSTALLATION OF THE STRUCTURE. TOWER MEMBER DESIGN DOES NOT INCLIDE STRESSES QUE TO ERECTION SINCE ERECTION EQUIPHENT AND CONDITIONS ARE UNRICOWN. DESIGN ASSUMES COMPETENT AND QUALIFIED PERSONNEL WILL ERECT THE TOWER. WORK SHALL BE IN ACCORDANCE WITH ANSI/TIA 322-G, "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURAL COMPETENT AND QUALIFIED FRANCISCING STRUCTURAL CONFORM TO GADE ASS FOR ASTH F3125, EXCEPT WHERE NOTED. THE HINGST STRUCTURAL STEEL REMERS SHALL BE TO ATEN PARACATTON IN ACCORDANCE WITH ANSI/TIA-222-G. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE MOT-DIPPED GALVANIZED AFTER PARACATTON IN ACCORDANCE WITH ANSI/TIA-222-G. ALL HIGH STRENGTH BOLTS ARE TO BE TIGHTERED TO A "SNUK TIGHT" CONDITION AS DEFINED IN THE RECS, "SPECIFICATION FOR STRUCTURAL, QUINTS USING HIGH-TERNISTING NOT TOTS." NO OTHER MINNUM BOLT TENSION OR TORQUE VALUES ARE REQURRED. PRICHASER SHALL VERUT FILE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDCERAL REQURRENTS FOR DESTRUCTION MARING AND LIDENTING. PRICHASER SHALL VERUT RA ACCORDANCE WITH MISI/TIA-222-G. DESIGN ASSUMES THAT, AS A MUMIMIN, MAINTERIANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH MISI/TIA-222-G. DESIGN ASSUMES LIVEL GADE AT TOWER STEE. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITC.<td></td><td>ANSI/TIA-</td><td>122-G AND MUST BE VERH</td><td>FIED BY OTHERS PRIOR TO INST</td><td>ALLATION.</td><td>1</td><td></td><td></td>		ANSI/TIA-	122-G AND MUST BE VERH	FIED BY OTHERS PRIOR TO INST	ALLATION.	1		
 UTHERWISE SHCUEPED. STEP BOLTS ARE PROVIDED AS A CLINEING FACILITY FOR THE INSTALLATION OF THE STRUCTURE. TOWER MEMBER DESIGN DOES NOT INCLIDE STRESSES DUE TO ERECTION SINCE ERECTION EQUIPMENT AND CONDITIONS ARE UNKNOWN. DESIGN ASSIMES COMPETENT AND QUALIFIED PERSONNEL WILL ERECT THE TOWER. WORK SHULL BE IN ACCORDANCE WITH ANSITTA 323 G, "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURE. FIED CONNECTIONS SHALL BE DOLTED. NO FIELD WELDS SHALL BE ALLOWED. STRUCTURAL STREMENT HO STRUCTORAL STEEL REMERES SINL I BE SO KSI. FIED CONNECTIONS SHALL BE DOLTED. NO FIELD WELDS SHALL BE ALLOWED. DALA NUTS ARE PROVIDED FOR ALL TOWER BOLTS. AL RURA REPROVIDED FOR ALL TOWER BOLTS. AL RURA REPROVIDED FOR ALL TOWER BOLTS. AL RURA REPROVIDED FOR ALL TOWER BOLTS. AL NUTS STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANIZED AFTER FAREICATION IN ACCORDANCE WITH ANSI/TLAZIES. AL HIGH STRENGTH BOLTS ARE TO BE TIGHTERED TO A "SNNX TIGHT" CONDITION AS DEFINED IN THE RUSS "SPECIFICATION FOR STRUCTURAL, DINTS USING HIGH-TRENGTH BOLTS". NO OTHER MINNUM BOLT TENSION OR TORQUE VALUES ARE REQURRED. ALL HIGH STRENGTH BOLTS ARE NOT MARKING AND LIGHTING. J. PURCHASES SHALL WEIGHT THE RUSS COMPORANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR DESTRUCTION WARKING AND LIGHTING. J. DESIGN ASSUMES THAL, AS A MINIMUM, MAINTERMACE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH HANSITTI-222-G. DESIGN ASSUMES THAL, AS A MINIMUM, MAINTERMACE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE MARKING AND LIGHTING. DESIGN ASSUMES THAL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF MPRICARE. DESIGN ASSUMES THAL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE. 	3.	ANTENNAS	AND LINES LISTED IN TO	IWER DESIGN LOADING TABLE A	RE PROVIDED BY OTHERS UNLESS	1		
 TOWER MEMBER DESIGN DOES NOT INCLUDE STRESSES QUE TO ERECTION SINCE ERECTION EQUIPMENT AND COMDITIONS ARE UNKNOWN. DESIGN ASSUMES COMPETENT AND QUALIFIED PERSONNEL WILL ERECT THE TOWER ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURAL STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURAL STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURAL STRUCTURAL STRUCTURAL STRUCTURAL BOLTS SHALL OF STRUCTURAL STEEL REPRESES SHALL BE SD KSI. FIED CONNECTIONS SHALL BE DOLTED. NO FIED WEEDS SHALL BE ALLOWED. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ANSI/TLA122-G. ALL RICH STRENGTH BOLTS AFABLE TO BE TIGHTENED TO A "SINKE TIGHT" CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS". NO OTHER MINIMUM BOLT TENSION OR TORQUE VALUES ARE REQUIRED. ALL RICH STRENGTH BOLTS AND TO BE TIGHTENED TO A "SINKE TIGHT" CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS". NO OTHER MINIMUM BOLT TENSION OR TORQUE VALUES ARE REQUIRED. ALL RICH ON TO RESTRUCTION MARKING AND LIGHTING. RUBCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH UCCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. TOLERANCE ON TOWER STEEL NEISTALLATION IS EQUAL IO PUSITING AN REAL FORMANCE ON TOWERS STEEL NEISTALLATION AND KINACE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOUNDANCE WITH ANSITINA-222-G. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOUNDANCE WITH ANSITINA-222-G. DESIGN ASSUMES THAT, AS AND MONTED STIME TRICALLY TO MINIMIZE TORQUE, IF APPLICABLE IS FOUNDATION SHALL RE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE. 	4.	STEP BOLT	S ARE PROVIDED AS A CL	IMBING FACILITY FOR THE INST	ALLATION OF THE STRUCTURE	1		
EQUIPMENT AND CONDITIONS ARE UNKNOWN. DESIGN ASSUMES COMPETENT AND QUALIFIED PERSONNE. WILL BERT THE TOWER. 6. WORK SHALL BE IN ACCURDANCE WITH ANSITTA-322-G, "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING TRUCTURAL STEEL MEMBERS SHALL BE ALLOWED. 9. STRUCTURAL BOXTS SHALL BE DOLTED. NO FIELD WEDRS SHALL BE ALLOWED. 9. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANZED AFTER FABRICATION IN ACCORDANCE WITH ANSITTA-322-G. 10. PAL MUTS ARE PROVIDED FOR ALL TOWER BOLTS. 11. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANZED AFTER FABRICATION IN ACCORDANCE WITH ANSITTA-322-G. 12. ALL HICH STRUCTURAL DOTING THE TOHERBOLT O A "SINKI TIGHT" CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS". NO OTHER MININUM BOLT TENSION OR TORQUE VALUES ARE HER DATED. 13. PURCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. 14. DURANCE ON TOWER STEEL HEEDINT IS EQUAL TO PLUS THE OR IMMUSS 1/2%. 15. DESIGN ASSUMES THAT, AS A MININEM, MINITENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOMMCE WITH HASSITA-22-G. 16. DESIGN ASSUMES THAT, AS A MININEM, MINITENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOMMCE WITH HASSITA-22-G. 16. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE. 18. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	5.	TOWER M	MBER DESIGN DOES NOT	INCLUDE STRESSES DUE TO ER	ECTION SINCE ERECTION	1		
 WORK SHULL BE IN ACCORDANCE WITH ANSIJITIA 222 G, "STRUCTURAL STANDARDS FOR STEEL, MATENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES". THE MINIOMI YELD STRUCTURAL STRUCTURAL STRUCTURES". THE MINIOMI YELD STRUCTURAL STEEL ARE BOLTED. NO FIELD WEDDS SHALL BE 4DLOWED. FELD CONNECTIONS SHALL BE DOLTED. NO FIELD WEDDS SHALL BE ALLOWED. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANIZED AFTER FABOLATION IN ACCONDANCE WITH ANSIJITIA 222-G. ALL INGH STRENGTH BOLTS AND ROLTS SHALL BE HOT-DIPPED GALVANIZED AFTER FABOLATION IN ACCONDANCE WITH ANSIJITIA 222-G. ALL HIGH STRENGTH BOLTS AND ROLTS SHALL BE HOT-DIPPED GALVANIZED AFTER FABOLATION IN ACCONDANCE WITH ANSIJITIA 222-G. ALL HIGH STRENGTH BOLTS AND FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS". NO OTHER MININUM BOLT TENSION OR TORQUE VALUES ARE REQURED. PURCHASE SHALL VERTY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTURAL ADITS USING HIGH-STRENGTH BOLTS". NO OTHER MININUM BOLT TENSION OR TORQUE VALUES ARE REQURED. PURCHASE SHALL VERTY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. TOESRING STHELH EIGHT IS EQUAL TO PULS 31% G MININE 31/2%. DESIGN ASSUMES THAT, AS A MININUM, MINITENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOMMONE WITH HANS/TA-222-G. DESIGN ASSUMES LEVEL GADE AT TOWER STTE. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED STIMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABE, FOUNDATIONS SIVAL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE. 		EQUIPMEN	T AND CONDITIONS ARE	UNKNOWN. DESIGN ASSUMES CO	MPETENT AND QUALIFIED	1		
ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES?. THE HINDRUM YELD STRUCTURAL STRUCTURAL STRUCTURAL SEES, HALL BE SO KSL. FIELD CONNECTIONS SHALL BE DOLTED. NO FIELD WEEDS SHALL BE ALLOWED. STRUCTURAL BOLTS SHALL CONFORM TO GRADE A25 PER ASTM F3125, EXCEPT WHERE NOTED. DAL NUTS ARE PROVIDED FOR ALL TOWER BOLTS. IL STRUCTURAL STEEL AND CONDANCE WITH MOSLITURAL 22-G FARBICATION IN ACCORDANCE WITH MASI/TURAL22-G ALL NICH STRENGTH BOLTS ARE TO BE TIGHTENED TO A "SUNKI TIGHT" CONDITION AS DEFINED IN THE RCSC" SPECIFICATION FOR STRUCTURAL MONITOR WITH ADDITS'. NO OTHER MINIMUM BOLT TENSION OR TORQUE VALUES ARE REQURRED. 13. PURCHASER SHALL VERTY THE INSTALLATION IS IN CONFORMANCE WITH INCCAL, STATE, AND FEDERAL REQURREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. 14. TOLERANCE ON TOWER STELE, HEIGHT IS EQUAL TO PLUS THE OR MINUS 1/276. 15. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TUR-222-G. 16. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TUR-222-G. 16. DESIGN ASSUMES KALL ANTENNAS ARE MOUNTED STIMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE, 17. DESIGN ASSUMES KALL ANTENNAS ARE MOUNTED STIMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE, 18. FOUNDATIONS SINCLI BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	6.	WORK SHA	LL BE IN ACCORDANCE W	TH ANSI/TIA-222-G, "STRUCTUS	AL STANDARDS FOR STEEL	1		
 The Prince of the Pri		ANTENNA	TOWERS AND ANTENNA S	UPPORTING STRUCTURES".		1		
 STRUCTURAL BOLITS SHALL CONFORM TO GRADE AS25 PER ASTM F3125, EXCEPT WHERE NOTED. PAL MUTS ARE PROVIDED FOR ALL TOWER BOLTS. STRUCTURAL STEEL, AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANIZED AFTER PREDCATION IN ACCORDANCE WITH ANSI/TUA-222-G. ALL NICH STRENGTH BOLTS ARE TO BE TIGHTENED TO A 'SMIKE TIGHT' CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STRUCTURAL, JOINTS USING HIGH-STRENGTH BOLTS", NO OTHER MINNUM BOLT TENSION OR TORQUE VALUES ARE REQURARD. PURCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MAKING AND LIGHTING. PURCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MAKING AND LIGHTING. PURCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MAKING AND LIGHTING. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSITIA-322-6. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF ANDICABLE. ODISIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF ANDICABLE. FOUNDATIONS SHULL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE. 	в.	FIELD CON	NECTIONS SHALL BE BOL	TED. NO FIELD WELDS SHALL BE	ALLOWED.	1		
10. PAL MUTS ARE REVOLDED FOR ALL TOWER BOLTS. 11. STRUCTURAL STEEL AND CONNECTION BOLTS SHALL BE HOT-DIPPED GALVANIZED AFTER PARTICATION IN ACCORDANCE WITH ANSULTA-22-G. 21. ALL HIGH STRENGTH BOLTS ARE TO BE TIGHTERNED TO A "SINKI TIGHT" CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STRUCTURAL DUNTS USING HIGH-STRENGTH BOLTS", NO OTHER MINIMUM BOLT TENSION OR TORQUE VALUES ARE REQUIRED. 12. PURCHASER SHALL VERIFY THE INSTALATION IS IN CONFORMANCE WITH LOCAL, STATE, AND PEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. 13. TOLERNACE ON TOWER STELL HEGINT IS EQUAL TO PULS THE OR MINUS 1/2%. 15. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCOUNANCE WITH ANSITIA-222-G. 16. DESIGN ASSUMES LEVEL GRADE AT TOWER STEEL. 17. OPENICA ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE. 18. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	9.	STRUCTUR	AL BOLTS SHALL CONFOR	M TO GRADE A325 PER ASTM F3	125, EXCEPT WHERE NOTED.	1		
ADDITION IN ACCORDANCE WITH ANSI/TU-222-G. ARRICATION IN ACCORDANCE WITH ANSI/TU-222-G. ALL NICH STREMTH BOLTS ARE TO BE TIGHTENED TO A "SMUKI TGHT" CONDITION AS DEFINED IN THE RCSC "SPECIFICATION FOR STREATH BOLTS ARE REQURRED. AND AND A DETENSION OR TORQUE VALUES ARE REQURRED. AND AND A DETENSION OR TORQUE VALUES ARE REQURRED. AND AND A DETENSION OR TORQUE VALUES ARE REQURRED. AND A DETENSION OF TORQUE VALUES ARE REQURRED. AND A DETENSION OF TORQUE VALUES ARE REQURRED. AND A DETENSION OF TORQUE VALUES ARE REQURRED. AND A DETENDED AND A DETENDING A DETENDING AND A DETENDING AND A DETEN	10.	PAL MUTS	ARE FROVIDED FOR ALL T	OWER BOLTS.	CALUASO PER ACTED	1		
 ALL HIGH STRENGTH BOLTS ARE TO BE TIGHTENED TO A "SMAX TIGHT" CONDITION AS DEFINED IN THE RCSC" SPECIFICATION FOR STRENCTURAL DURING USUNG HIGH-STRENGTH BOLTS", NO OTHER MINIMUM BOLT TENSION OR TORQUE VALUES ARE REQUIRED. PURCHASER SHALL VERIFY THE INSTALLATION #S IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR DESTINCTION MARKING AND LIGHTING. TOLBERNICE ON TOWER STEEL HEIGHT IS EQUAL TO PLUS THE OR MINLS 1/2%. DESIGN ASSUMES TALL, AS A MINIMUM, MAINTERNANCE AND INSPECTION WILL BE PERFORMED OVER THE LIPE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TIA-222-G. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED STIMMETRICALLY TO MUNIMIZE TORQUE, IF APPLICABLE, IS FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE. 		FABRICATI	ON IN ACCORDANCE WITH	HANSI/TIA-222-G.	CONCERNIZED AF 101	1		
IN REAL SPELIPERATION FOR STRUCTIONE ADDR SOLVER REQURED. IN PRICE STATE AND THE SOLVER STRUCTOR STRUCTOR AND REQURE WITH LOCAL, STATE, AND FEORAL REQUREMENTS FOR DESTRUCTION MARKING AND LIGHTING. IS DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TM-222-G. IS DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TM-222-G. IS DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSI/TM-222-G. IS DESIGN ASSUMES ALL ATTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE, IS OFICIAL BL DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	12.	ALL HIGH	STRENGTH BOLTS ARE TO	BE TIGHTENED TO A "SNUG TIG	HT" CONDITION AS DEFINED IN	1		
13. PURCHASER SHALL VERIFY THE INSTALLATION IS IN CONFORMANCE WITH LOCAL, STATE, AND FEDERAL REQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. 14. TOLERANCE ON TOWER STEEL HEIGHT IS EQUAL TO PLUS 1% OR MINUS 1/2%. 15. DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSITI-222-G. 16. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE. 18. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.		MINIMUM	BOLT TENSION OR TORIN	ie values are required.	REAGIN BOLIS", NO DIHER	1		
HOURAN ERQUIREMENTS FOR OBSTRUCTION MARKING AND LIGHTING. TOLERNICE ON TOWER STELL HEIGHT IS EQUAL TO PLUS THE OR MINUS 1/2%. SOSIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE, WITH AMSI/TLA-222-G. SOSIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE. SOUNDATIONS SINGLE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	13.	PURCHASE	R SHALL VERIFY THE INST	FALLATION IS IN CONFORMANCE	WITH LOCAL, STATE, AND	1		
DESIGN ASSUMES THAT, AS A MINIMUM, MAINTENANCE AND INSPECTION WILL BE PERFORMED OVER THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSITTA-222-6. IS OESIGN ASSUMES LEVEL GARDE AT TOWER SITE. IS DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE, IS FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	14	FEDERAL A	Equirements for obst F on tower steel heig	RUCTION MARKING AND LIGHTE HT IS FOUND TO PLUS 1% OR M	NG.	1		
THE LIFE OF THE STRUCTURE IN ACCORDANCE WITH ANSUTTA-222-G. IS. DESIGN ASSUMES LEVEL GADE AT TOWER STRE. 17. DESIGN ASSUMES ALL ANTENNAS ARE MOUNTED SYMMETRICALLY TO MINIMIZE TORQUE, IF APPLICABLE, IS. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	15.	DESIGN AS	SUMES THAT, AS A MININ	UM, MAINTENANCE AND INSPEC	TION WILL BE PERFORMED OVER			
10: DESIGN ASSUMES ALL ADVICE AT TOWER STREE TO DESIGN ASSUMES ALL ADVITTEMAS AND MOUNTED SYNMETRICALLY TO MUNIMIZE TORQUE, IF APPLICABLE, 18: FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	10	THE LIFE C	F THE STRUCTURE IN AC	CORDANCE WITH ANSI/TIA-222-	î.	1.00		
APPLICABLE. 18. FOUNDATIONS SHALL BE DESIGNED TO SUPPORT THE REACTIONS SHOWN FOR THE CONDITIONS EXISTING AT THE SITE.	17.	DESIGN AS	SUMES ALL ANTENNAS AR	E MOUNTED SYMMETRICALLY TO	MINIMIZE TORQUE, IF	1		
1			ST TIM GET C.			1		
			SECTIO	ON MAIN MEMBER SCHEDULE			RQH	N ⁶
SECTION LEG DIAGONAL HORIZONTALS PO ROX 5987	5	ECTION	SECTIO	DN MAIN MEMBER SCHEDULE DIAGONAL	HORIZONTALS		Roh	N [®] Struc
SECTION LEB DIAGONAL HORIZONTALS PO 80X 5999 RT504 PIPE 2.875x0.203 L1 J/4x1 3/4x1/8 (4) L1 1/2x1 1/2x3/16 (1) TOLL FREE 806-227-802444	5	ECTION RTS04	SECTI LES 9(PE 2,875x0,203	DN MAIN MEMBER SCHEDULE DIAGONAL L1 3/4x13/4x1/8 (4)	HORIZONTALS LI 1/2x1 1/2x1/16 (1)		Ron issue	N ⁶ Xeisuc 17-5999 17-5999
SECTION LEB DIAGONAL HORIZONTALS PORD 5999 RTS04 PIPE 2,875x0.203 L1 3/4x1 3/4x1/8 (4) L1 1/2x1 1/2x3/16 (1) TOL 14/2X 00-227 ADHN RTT06 PIPE 3,500x0.216 L1 3/4x1 3/4x3/16 (4) L1 1/2x1 1/2x3/16 (1) Impostments in a model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of most 10 model to model of the sector of model 10 model to model of the sector of model 10 model to model of the sector of model 10 model to mode	5	ECTION 87504 87706	SECTI LES PIPE 2,875x0,203 PIPE 3,500x0,216	DN MAIN MEMBER SCHEDULE DIAGONAL L1 3/4x1 3/4x178 (4) L1 3/4x1 3/4x3/16 (4)	HORIZONTALS LI 1/2x1 1/2x1/16 (1) LI 1/2x1 1/2x3/16 (1)	1095 CAR	Ron Street	N ⁶ K15LLC 97 17-599 77-80-11 Name Lot May and Third Real Cot May and Third
SECTION LEB DIAGONAL HORIZONTALS PO 80X 5999 RT504 91PE 2,875x0.203 L1 3/4x1 3/4x1/8 (4) L1 1/2x1 1/2x3/16 (1) TOL 14/2x 00-222-80244 RT706 PIPE 3,500x0.216 L1 3/4x1 3/4x0/16 (4) L1 1/2x1 1/2x3/16 (1) Problements to a second row with a	5	ECTION 87504 81706 81706	SECTI LES PIPE 2,875x0,203 PIPE 3,500x0,216 PIPE 4x0,318	DN MAIN MEMBER SCHEDULE DIAGONAL L1 3/4x1 3/4x178 (4) L1 3/4x1 3/4x3/16 (4) L2 1/2x2 1/2x3/16 (4)	HORIZONTALS LI 1/2x1 1/2x1/16 (1) LI 1/2x1 1/2x3/16 (1) N/A	1145 Date 1145 Date	Reph Pickas Issian Dick 1487 806-72 North Issian State Dick 1487 806-72 North Issian State Dick 1487 806-72 North Issian State Dick Actuation State Dick Act	N ⁶ KTSLIC 99 IT-599 House I do Hand Wine Water Ca Wand Wine Water Ca Wand Wine
SECTION LEB DIAGONAL HORIZONTALS PORD 5990 PCRIA, IL SIG0-5990 TGL 14/5 (3) RT504 PIPE 2,875x0.203 L1 3/4x1 3/4x1/8 (4) L1 1/2x1 1/2x3/16 (1) PEORIA, IL SIG0-5990 TGL 14/5 500-22-804K RTT06 PIPE 3,500x0.216 L1 3/4x1 3/4x0/16 (4) L1 1/2x1 1/2x3/16 (1) PEORIA, IL SIG0-5990 TGL 14/5 500-22-804K RTT08 PIPE 4x0.318 L2 1/2x2 1/2x3/16 (4) N/A APPALACHIAN WIRELESS DESIGN PROFile RTT10 PIPE 4x0.337 L2 1/2x2 1/2x3/16 (3) N/A DESIGN PROFile	5	ECTION RT504 RT705 RT708 RT708	SECTI LES 9(PF 2,875x0,203 P(FE 3,500x0,216 P(FE 4x0,318 P(FE 4,500x0,337	DN MAIN MEMBER SCHEDULE DIAGONAL L1 3/4x1 3/4x198 (4) L1 3/4x1 3/4x3/16 (4) L2 1/2x2 1/2x3/16 (4) L2 1/2x2 1/2x3/16 (3)	HORIZONTALS LI 1/2x1 1/2x1/16 (1) LI 1/2x1 1/2x3/16 (1) N/A N/A	1145 Date 1145 Date	Reph Picka Is site Picka Is site Tota Har side 2 control of a money of order details of a settle control of a settle control of a settle control of a settle control of a settle control of a settle control of a settle control o	No. 11-5999 27-80-94 Market Call Wand With Market Call Wand With Market Call Wand With Market Call

	SECTION MAIN MEMBER SCHEDULE					TR	us	
SECTION	LEG	DIAGONAL	HORIZONTALS	1	PC g	0x 5999		
RTS04	PIPE 2.875x0.203	L1 3/4x1 3/4x1/8 (4)	LI 1/2x1 1/2x3/16(1)	π	in there is	60-727-R	RCHEN Alaa	
RTTOS	PIPE 3.500x0.216	(1 3/4x1 3/4x3/16 (4)	L1 1/2x1 1/2x3/16 (1)	DHS DAGATNG T	-	INTERNAL	IN IT HER	ANT THE THE
RTTOS	PIPE 4x0.318	12 1/2x2 1/2x3/16 (4)	N/A		CAR WRIT	INF COMPANY	£	
RIT10	PIPE 4.500x0.337	1,2 1/2x2 1/2x3/16 (3)	N/A	APPALACHIAN WIRELESS DESIGN PROFILE 180 FT RT TOWER				
RTT12	PEPE 5.563x0.375	L3x3x3/36 (3)	N/A					
RTT14	PIPE 6.625x0.340	L3x3x3/16 (3)	N/A	1	DILU	ON, KY		
RTT16	PIPE 6.625x0.340	L3x3x1/4 (3)	N/A	OWIN: AS	CHICO:	HA	DATE:	18/2018
ATTIE	PIPE 6.625x0.432	L3x3x1/4 (3)	L3x3x3/16 (3)	ENOR: A	4	SHET	F:	
ATT20	PIPE 6.625x0.432	L3 1/2x3 1/2x1/4 (3)	L3x3x3/16 (3)	PRJ. ENGR:		PRIL M	MIGR:	
NOTE: SECTION TO THE STRESS THE NUMBERS	I MUMBERS ARE FOR REFE ANALYSIS. SHOWN IN PARENTHESES	RENCE ONLY, FOR NOMINAL FAC INDICATE THE NUMBER OF BAY	E WIDTH DIMENSIONS, REFER	AS DRAWING NO: 226	628-0	1-01		REV:

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

DESIGN SPECIFICATION

Design Standard: ANSI/TIA-222-G-2005 Add.2 Ultimate Design Wind Speed (No Ice) = 105.0 (mph) Nominal Design Wind Speed (No Ice) = 81.3 (mph) Basic Wind Speed (With Ice) = 30.0 (mph) Design Ice Thickness = 0.50 (in) Structure Class = II Exposure Category = C Topographic Category = 1

Sct	Length (ft)	Top W. (in)	Bot Width (in)
1	20.00	228.24	252.24
2	20.00	204.24	228.24
3	20.00	180.24	204.24
4	20.00	156.24	180.24
5	20.00	131.32	156.24
6	20.00	106.40	131.32
7	20.00	81.96	106.40
8	20.00	57.53	81.96
q	20.00	56 99	57 53

ROHN

Licensed to: ROBN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

(24) TOTAL

MAXIMUM BASE REACTIONS

Download (Kips)	341.2
Uplift (Kips)	292.7
Shear (Kips)	32.0
O.T.M. (Ft-Kips)	5,845.5

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Section A: PROJECT DATA

Project Title:	180 FT RT TOWER	
Customer Name:	APPALACHIAN WIRELESS	
Site:	DILLON- KY	
Contract No.:	226628	
Revision:	0	
Engineer:	AS	
Date:	Jul 18 2018	
Time:	10:48:52 AM	
Design Standard:	ANSI/TIA-222-G-2005 Addendum	2

Design Standard:

GENERAL DESIGN CONDITIONS

Start wind direction:0.00End wind direction:330.Increment wind direction:30.0Elevation above ground:0.00Gust Response Factor Gh:0.85Structure class:IIExposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00WIND AND ICE CONDITIONS:1.20WIND AND ICE CONDITIONS:36.0WIND AND ICE CONDITIONS:36.0Wind Load Factor:1.20Dead Load Factor for Uplift:0.85Mind Load Factor Kd:0.85WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness Importance Factor Ii:1.00Ice Density:56.1		
End wind direction:330.Increment wind direction:30.0Elevation above ground:0.00Gust Response Factor Gh:0.85Structure class:IIExposure category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):1.30Directionality Factor Kd:0.85Importance Factor I:1.00WIND AND ICE CONDITIONS:1.20WIND AND ICE CONDITIONS:36.0Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Mind Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Conditionality Factor Kd:0.50Core Thickness Importance Factor II:1.00Ice Thickness:0.50	(Deg)	
Increment wind direction:30.0Elevation above ground:0.00Gust Response Factor Gh:0.85Structure class:IIExposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:0.100Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00WIND AND ICE CONDITIONS:1.20Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Directionality Factor Kd:0.85Wind Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness Importance Factor Ii:1.00Ice Thickness:0.50	.00 (Dec	()
Elevation above ground:0.00Gust Response Factor Gh:0.85Structure class:IIExposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00Dead Load Factor:1.60Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Wind Load Factor Kd:0.85Mind Load Factor Kd:0.85Mind And Importance Factor IV:1.00Directionality Factor Kd:0.85Wind Load Factor for Uplift:0.50Directionality Factor Kd:0.85Constance Factor IV:1.00Directionality Factor Kd:0.50Directionality Factor Kd:0.50Directionality Factor Kd:0.50Directionality Factor Kd:0.55Ice Density:55.1	00 (Dea)	
Gust Response Factor Gh:0.85Structure class:IIExposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00WIND AND ICE CONDITIONS:1.20Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Wind Load Importance Factor IV:1.00Ice Thickness Importance Factor II:1.00Ice Thickness:0.50	Offel	
Structure class:IIExposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.60Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Directionality Factor Kd:0.85Wind Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness Importance Factor Ii:1.00Ice Density:55.1	5	
Exposure category:CTopographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Importance Factor I:1.00Ce Thickness Importance Factor I:1.00Ice Density:56.1		
Topographic category:1Material Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):Nominal Design Wind Speed (No Ice):105.Mind Load Factor Kd:008Mind Load Factor:1.20Dead Load Factor for Uplift:0.30WIND AND ICE CONDITIONS:Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.30Unce Thickness Importance Factor I:1.00Ice Thickness:0.501ce Density:5611ce Density:1ce Density: <td></td> <td></td>		
Anterial Density:490.Young's Modulus:2900Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):Ultimate Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.60Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:Basic Wind Speed (With Ice):36.0Directionality Factor Kd:0.90WIND AND ICE CONDITIONS:Basic Wind Speed (With Ice):0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness Importance Factor Ii:1.00Ice Density:56.1	are	
Young's Modulus: 2900 Poisson Ratio: 0.30 Weight Multiplier: 1.25 Minimum Bracing Resistance as per 4.4.1 WIND ONLY CONDITIONS: Ultimate Design Wind Speed (No Ice): 105. Nominal Design Wind Speed (No Ice): 81.3 Directionality Factor Kd: 0.85 Importance Factor I: 1.00 Wind Load Factor: 1.60 Dead Load Factor: 1.60 Dead Load Factor: 1.60 Dead Load Factor: 1.60 Directionality Factor Kd: 0.90 WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor II: 1.00 Ice Density: 55.1	1/1be/f	+ ^3
Poisson Ratio:200Poisson Ratio:0.30Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):105.Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00Wind Load Factor:1.20Dead Load Factor:1.20Dead Load Factor for Uplift:0.90WIND AND ICE CONDITIONS:36.0Directionality Factor Kd:0.85Wind Speed (With Ice):36.0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness:0.50	no olkei	1 -
Weight Multiplier:1.25Minimum Bracing Resistance as per 4.4.1WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):101 Sinctionality Factor Kd:102 Sinctionality Factor Kd:102 Sinctionality Factor:103 Dead Load Factor:104 Dead Load Factor for Uplift:105 Wind Speed (With Ice):105 Mind Speed (With Ice):105 Dead Load Factor Kd:105 Dead Load Factor for Uplift:105 Directionality Factor Kd:105 Directionality Factor Kd:106 Directionality Factor Kd:107 Dead Load Importance Factor Iw:108 Directionality Factor States109 Directionality Factor States100 Directionality States<	00.011.02	· .
Minimum Bracing Resistance as per 4.4.1 Minimum Bracing Resistance as per 4.4.1 WIND ONLY CONDITIONS: Ultimate Design Wind Speed (No Ice): 105. Nominal Design Wind Speed (No Ice): 105. Nominal Design Wind Speed (No Ice): 105. Mind Design Wind Speed (No Ice): 106. Mind Load Factor I: 100 Wind Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.00 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness: 0.50 Ice Density:	a.	
WIND ONLY CONDITIONS: Ultimate Design Wind Speed (No Ice): 105. Nominal Design Wind Speed (No Ice): 81.3 Directionality Factor Kd: 0.85 Importance Factor I: 1.00 WIND AND ICE CONDITIONS: 1.20 Dead Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: 36.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor II: 1.00 Ice Density: 55.1		
WIND ONLY CONDITIONS:Ultimate Design Wind Speed (No Ice):Nominal Design Wind Speed (No Ice):Birectionality Factor Kd:Omore Factor I:Mind Load Factor:Dead Load Factor:Dead Load Factor for Uplift:Object Load Factor I:WIND AND ICE CONDITIONS:Basic Wind Speed (With Ice):Object Load Importance Factor Iw:Office Thickness Importance Factor II:1.00Ice Thickness:0.50Ce Density:55.1		
Ultimate Design Wind Speed (No Ice): 105. Nominal Design Wind Speed (No Ice): 81.3 Directionality Factor Kd: 0.85 Importance Factor I: 1.00 Wind Load Factor: 1.60 Dead Load Factor: 1.20 Dead Load Factor: 0.90 WIND AND ICE CONDITIONS: 30.00 Basic Wind Speed (With Ice): 30.00 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 0.50		
Nominal Design Wind Speed (No Ice):81.3Directionality Factor Kd:0.85Importance Factor I:1.00Wind Load Factor:1.60Dead Load Factor:1.20Dead Load Factor:1.20Dead Load Factor:0.90WIND AND ICE CONDITIONS:Basic Wind Speed (With Ice):30.0Directionality Factor Kd:0.85Wind Load Importance Factor IW:1.00Ice Thickness Importance Factor II:1.00Ice Density:55.1	.00 (mph)	1
Directionality Factor Kd: 0.85 Importance Factor I: 1.00 Wind Load Factor: 1.60 Dead Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.00 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor I: 1.00 Ice Thickness: 0.50 Ice Density: 55.1	33 (mmb)	
Importance Factor I: 1.00 Wind Load Factor: 1.00 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Dead Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: 30.00 Basic Wind Speed (With Ice): 30.00 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 0.50 Ice Density: 55.1	S	
Wind Load Factor: 1.60 Dead Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 1.00 Ice Thickness: 0.50	0	
Dead Load Factor: 1.20 Dead Load Factor: 1.20 Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: 36.0 Basic Wind Speed (With Ice): 36.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 1.00 Ice Density: 56.1	0	
Dead Load Factor for Uplift: 0.90 WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 1.00 Ice Thickness: 0.50 Ice Density: 55.1	0	
WIND AND ICE CONDITIONS: 30.0 Basic Wind Speed (With Ice): 30.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor Ii: 1.00 Ice Thickness: 0.50 Jce Density: 56.1	in	
WIND AND ICE CONDITIONS: Basic Wind Speed (With Ice): 30.0 Directionality Factor Kd: 0.85 Wind Load Importance Factor IW: 1.00 Ice Thickness Importance Factor II: 1.00 Ice Density: 55.1	U I	
Basic Wind Speed (With Ice):30.0Directionality Factor Kd:0.85Wind Load Importance Factor Iw:1.00Ice Thickness Importance Factor Ii:1.00Ice Thickness:0.50Ice Density:56.1		
Directionality Factor Kd: 0.85 Wind Load Importance Factor IW: 1.00 Ice Thickness Importance Factor II: 1.00 Ice Thickness: 0.50 Ice Density: 55.1	(dqm) 00	
Wind Load Importance Factor Iw: 1.00 Ice Thickness Importance Factor II: 1.00 Ice Thickness: 0.50 Ice Density: 55.1	5	
Ice Thickness Importance Factor Ii: 1.00 Ice Thickness: 0.50 Ice Density: 55.1	0	
Ice Thickness: 0.50 Ice Density: 56.1	0	
Ice Density: 56.1	Olini	*
	19/1bs/f	1-3
Wind Load Factor: 1.00	0	
Dead Load Factor: 1.20	0	
Tce Load Factor: 1.00	0	
Wind Load Factor: 1.00 Dead Load Factor: 1.20	00(mph) 5 0 0(in) 19(lbs/f 0	/ /

WIND ONLY SERVICEABILITY CONDITIONS: Serviceability Wind Speed: Directionality Factor Kd: Importance Factor I: Wind Load Factor: Dead Load Factor:

EARTHQUAKE CONDITIONS: Site class definition: Site class definition: Spectral response acceleration Ss: Spectral response acceleration S1: Accelaration-based site coefficient Fa: Velocity-based site coefficient Fv: Design spectral response acceleration Sds: Design spectral response acceleration Sd1: Seismic analysis method: Fundamental frequency of structure f1: Total seismic shear Vs (Kips) : A 0.320 0.096 0.800 0.800 0.171 0.051 1 0.844 0.75

Page A 1

60.00(mph) 0.85

1

1

1

1.00

1.00

1

Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

Licensed to: ROHN Products LLC Peoria, IL

File: W:\Jobs\2018\226528\226528.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

> Revision: 0 Site: DILLON- KY Engineer: AS

Section B: STRUCTURE GEOMETRY

TOWER GEOMETRY

Cross-Section	Height	Tot Height	# of Section	Bot Width	Top Width
Triangular	180.00	180.00	9	252.24	56.99

SECTION GEOMETRY

Sec	Sec. Na	me		Elevat	ion	Widt	hs				Masses			Brcg.
				Bottom	TOD	Bottom	Top	Legs	Brce	. Sec	.Brc Int	.Brc Sect.	Database	Clear.
4				(ft)	(ft)	(1n)	(10)	(lbs)) (lb:	3) (1	bs) (1	bs) (lbs) (lbs)	(in)
9	RTS04			160.00	180.00	58	57	434	329	0	0	763	0	0.787
8	RTT06			140.00	160.00	82	58	570	518	0	0	1088	0	0.787
7	RTT08			120.00	140.00	106	82	941	856	0	0	1797	0	0.787
6	RTTIO			100.00	120.00	131	106	1127	824	0	0	1951	0	0.787
5	RTT12			80.00	100.00	156	131	1562	114	5 0	0	2707	0	0.787
4	RTT14			60.00	80.00	180	156	1714	129	6 0	ō	3010	0	0.787
3	RTTIG			40.00	60.00	204	180	1714	191	3 0	0	3627	0	0.787
2	RTT18*		1.1.1	20.00	40.00	228	204	2150	198	9 0	305	4443	0	0.787
1	RTT20*		(0.00	20.00	252	228	2150	239	6 0	411	4957	0	0.787
Tota.	Mass:			요양한 관리				1236	2 112	65 0	716	24342	õ	
PANE	L GEOME	TRY												
Sec#	Pn1# 1	Type		SecBr	cg Mid.	Horiz	Horiz	Height	Bottom	Top	Plan	Hip	Gusset 0	usset
					Cont	invous			Width	Width	Bracing	Bracing	Plate P Area W	late
1.56								(ft)	(in)	(in)			(ft^2)	(lbs)

3	4	X	(None)	Yes	5.0	57.1	57.0	(None)	(None)	0.300	0.00	
9	3	X	(None)	None	5.0	57.3	57.1	(None)	(None)	0.300	0.00	
9	2	X	(None)	None	5.0	57.4	57.3	(None)	(None)	0.300	0.00	
9	1	X	(None)	None	5.0	57.5	57.4	(None)	(None)	0.300	0.00	
8	4	X	(None)	Yes	5.0	63.6	\$7.5	(None)	(None)	0.300	0.00	
8	3	X	(None)	None	5.0	69.7	63.6	(None)	(None)	0.300	0.00	
8	2	X	(None)	None	5.0	75.9	69.7	(None)	(None)	0.300	0.00	
8	1	X	(None)	None	5.0	82.0	75.9	(None)	(None)	0.300	0.00	
7	4	X	(None)	None	5.0	88.1	82.0	(None)	(None)	0.300	0.00	
7	3	X	(None)	None	5.0	94.2	88.1	(None)	(None)	0.300	0.00	
7	2	X	(None)	None	5.0	100.3	94.2	(None)	(None)	0.300	0.00	
7	1	X	(None)	None	5.0	106.4	100.3	(None)	(None)	0.300	0.00	
6	3	X	(None)	None	6.7	114.7	106.4	(None)	(None)	0.300	0.00	
6	2	X	(None)	None	6.7	123.0	114.7	(None)	(None)	0.300	0.00	
6	1	X	(None)	None	6.7	131.3	123.0	(None)	(None)	0.300	0.00	
5	3	X	(None)	None	6.7	139.6	131.3	(None)	(None)	0.300	0.00	
5	2	X	(None)	None	6.7	147.9	139.6	(None)	(None)	0.300	0.00	
3	1	X	(None)	None	6.7	156.2	147.9	(None)	(None)	0.300	0.00	
4	3	x	(None)	None	6.7	164.2	156.2	(None)	(None)	0.300	0.00	
4	2	X	(None)	None	6.7	172.2	164.2	(None)	(None)	0.300	0.00	
4	1	X	(None)	None	6.7	180.2	172.2	(None)	(None)	0.300	0.00	
3	3	X	(None)	None	6.7	188.2	180.2	(None)	(None)	0.300	0.00	
3	2	X	(None)	None	6.7	196.2	188.2	(None)	(None)	0.300	0.00	
3	1	X	(None)	None	6.7	204.2	196.2	(None)	(None)	0.300	0.00	
2	3	K	(None)	Yes	6.7	212.2	204.2	2-Subdiv.	(None)	0.300	0.00	
2	2	R	(None)	Yes	6.7	220.2	212.2	2-Subdiv.	(None)	0.300	0.00	
2	1	K	(None)	Yes	6.7	228.2	220.2	2-Subdiv.	(None)	0.300	0.00	
1	3	K	(None)	Yea	6.7	236.2	228.2	2-Subdiv.	(None)	0.300	0.00	
1	2	X	(None)	Yes	6.7	264.2	236.2	2-Subdiv.	(None)	0.300	0.00	
1	1	K	(None)	Yes	6.7	252.2	244.2	2-Subdiv.	(None)	0.300	0.00	
MEMBE	R PROP	PERTIES										
sec/	Type	Description	Steel	Conn.	Bolt	Bol	t End	Edge	Gusset	Gusset	Bolt Db.	10

Sec/ Type Member

Page B 1

Decidences Licensed to: ROHN Products LLC Peoria, IL

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

	Pol Spaci	ng		Grade	а Туре	∮-Size	Grade	Dist.	Dist.	Thack.	Grade	Space	
	Stite	h											Mem.
	Bolt		,			lint		1	12-5	Hat			
	(ft) 9/4 9/4	Leg	PIPE 2.875x0.203	A500	gr.CSTension	4-0.750	A325X	(10)	(1n) 0 870	(III) 0.250	5470	(1n) ar 50	(1n)
1	9/4	Horiz	L1 1/2x1 1/2x3/16	\$529	gr.50Bolted	1-0.500	A325X	1.250	0.690	0.250	A572	2.000 gr.50	
	9/3 9/3	Leg Diag	PIPE 2.875x0.203 11 3/4x1 3/4x1/8	A500 A529	gr.CSTension gr.SOBolted	4-0.750 1-0.500	A325X A325X	1.250	0.870	0.250	A572	2.000 gr.50	
	9/2 9/2	Leg Diag	PIPE 2.875x0.203	A500 A529	gr.CSTension gr.50Bolted	4-0.750 1-0.500	A325X A325X	1.250	0.870	0.250	A572	2.000 gr.50	
	9/1 9/1	Leg Diag	PIPE 2.875×0.203 L1 3/4×1 3/4×1/8	A500 A529	gr.CSTension gr.50Bolted	4-0.750 1-0.500	A325X A325X	1.250	0.870	0.250	A572	2.000 gr.50 2.000	
1	8/4 8/4	Leg Diag	PIPE 3.500x0.216 L1 3/4x1 3/4x3/16	A500 A529	or.CSTension gr.50Bolted	4-0.875 1-0.500	A325X A325X	1.250	0.870	0.250	A572	gr.50	
	8/4	Noriz	LI 1/2x1 1/2x3/16	A529	gr.50Bolted	1-0.500	A325X	1.250	0,590	0.250	A572	gr.50 2 000	
	8/3 8/3	Leg Diag	PIPE 3.500x0.216 L1 3/4x1 3/4x3/16	A500 A529	gr.CSTension gr.50Bclted	4-0.875 1-0.500	A325X A325X	1.250	0.870	0.250	A572	gr.50 2.000	
	8/2 8/2	Leg Diag	PIPE 3.300×0.216 L1 3/4×1 3/4×3/16	A500 A529	gr.CSTension gr.SOBolted	4-0.875 1-0.500	A325X A325X	1.250	0.870	0.250	A572	gr.50 2.000	,
	8/1 8/1	Leg Diag	PIFE 3.500x0.216 L1 3/4x1 3/4x3/16	A500 A529	gr.CSTension gr.SOBolted	4-0.875 1-0.500	A325X A325X	1.250	0.870	0.250	A572	gr.50 2.000	,
1	7/4 7/4	Log Diag	PIPE 4x0.318 L2 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.50Bolted	5-0.875 1-0.500	A325X A325X	1.250	1.250	0.250	A572	gr.50	
	7/3 7/3	Leg Diag	PIPE 4x0.318 12 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.50Bolted	5-0.875 1-0.500	A 325X A 325X	1.250	1,250	0.250	A572	gr.50	
	7/2 7/2	Leg Diag	PIPE 4x6.318 12 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.50Bolted	5-0.875 1-0.500	A325X A325X	1.250	1.250	0.250	A572	gr.50	
	7/1 7/1	Leg Diag	PIPE 4x0.318 L2 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.SOBolted	5-0.875 1-0.500	A325X A325X	1.250	1.250	0.250	A 572	gr.50 2.000	, ,
	6/3 6/3	Leg Diag	PIPE 4.500x0.337 L2 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.50Bolted	5-1.000 1-0.500	A325X A325X	1.250	1,230	0.250	A572	gr.50	
	6/2 6/2	Leg Diag	PIPE 4.500x0.337 L2 1/2x2 1/2x3/16	A500 A529	gr.CSTension gr.S0Bolted	5-1.000 1-0.500	A325X A325X	1.250	1.250	0.250	A572	gr.50	
	6/1 6/1	Leg Diag	PIPE 4.500×0.337 L2 1/2×2 1/2×3/16	A500 A529	gr.CSTension gr.50Bolted	5-1.000 1-0.500	A325X A325X	1.250	1.250	0.250	A572	gr.50 2.000	, ,
	5≢3 5≢3	Leg Diag	PIPE 5.563x0.375 L3x3x3/16	A500 A529	gr.CSTension gr.SCBolted	6-1.000 1-0.625	A325X A325X	1,500	1.620	0.250	A572	gr.50	
	5/2 5/2	Leg Diag	PIPE 5.563x0.375 L3x3x3/16	A500 A529	gr.CSTension gr.50Bolted	6~1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50	
	\$/1	1.00	PTPE 5 563x0 375	A500	or estension	6-1,000	A325X					2.000	

Page B 2

-

1

TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

Disaduante Licensed to: ROHN Products LLC Peoris, IL

File Cont: Proje Date	W:\Jobs ract: 226 act: 180 and Time	\2018\226628\226628. 628 FT RT TOWER :: 7/15/2018 10:51:27	out AM				R S E	evision: ite: DIL ngineer:	0 Lon- Ky As		
5/1	Diag	L3x3x3/16	A529	gr.50Bolted	1-0.625	A325X	1,500	1.520	0,250	A572	gr.90 2.000
4/3 4/3	Leg Diag	PIPE 6.625×0.340 L3x3x3/16	A500 A529	gr.CSTension gr.S0Bolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50
4/2 4/2	Leg Diag	PIPE 6.625×0.340 L3x3×3/16	A500 A529	gr.CSTension gr.SOBolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50
4/1 4/1	Leg Diag	PIPE 6.625x0.340 L3x3x3/16	A500 A529	gr.CSTension gr.50Bolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0,250	a572	gr.50 2.000
3/3 3/3	Leg Diag	PIPE 6.625x0.340 L3x3x1/4	A500 A529	gr.CSTension gr.50Bolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50
3/2 3/2	Leg Diag	PIPE 6.625x0.340 L3x3x1/4	A500 A529	gr.CSTension gr.50Bolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50
3/1 3/1	Leg Diag	PIPE 6.625x0.340 L3x3x1/4	A500 A529	gr.CSTension gr.SOBolted	6-1.000 1-0.625	A325X A325X	1.500	1.620	0.250	A572	gr.50 2.000
2/3 2/3	Leg Diag	FIPE 6.625×0.432 13×3×1/4	A500 A529	gr.CSTension gr.SOBolted	6-1.000 2-0.625	A325X A325X	1,500	1.620	0.375	A572	gr.50
2/3	Horiz	13x3x3/16	A529	gr.50Bolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50
2/3	PlanH1	L2 1/2x2 1/2x3/16	A529	gr.50Bolted	1-0.625	A325X	1.500	1.250	0.250	A572	gr.50
2/2 2/2	Leg Diag	PIPE 6.625x0.432 53x3x1/4	A500 A529	gr.CSTension gr.50Bolted	6-1.000 2-0.625	A325X A325X	1.500	1.620	0.375	A572	gr.50
2/2	Horiz	L3x3x3/16	A529	gr.50Bolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50
2/2	PlanHl	L2 1/2x2 1/2x3/16	A529	gr.SOBolted	1-0.625	A325X	1.500	1.250	0.250	A572	gr.50
2/1 2/1	Leg Diag	PIPE 6.625×0.432 L3x3x1/4	A500 A529	gr.CSTension gr.SOBolted	6 1,000 2-0,625	A325X A325X	1.500	1.620	0.375	A572	gr.50
2/1	Horiz	L3x3x3/16	A529	gr.SCBolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50
2/1	PlanHl	L2 1/2x2 1/2x3/16	A529	gr.50Bolted	1-0.625	A325X	1.500	1.250	0.250	A572	gr.50 2.000
1/3 1/3	Leg Diag	PIPE 6.625×0.432 L3 1/2×3 1/2×1/4	A300 A529	gr.CSTension gr.50Bolted	8-1,000 2-0,625	A325X A325X	1.500	2.000	0.375	A572	gr.50
1/3	Horiz	L3x3x3/16	A529	gr.50Bolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50
1/3	PlanH1	L3x3x3/16 /	A529	gr.SOBolted	1-0,625	A32SX	1.500	1.620	0.375	A572	gr.50
1/2 1/2	Leg Diag	PIPE 6.625x0.432 L3 1/2x3 1/2x1/4	А500 Л529	gr.CSTension gr.SOBolted	8-1.000 2-0.625	A325X A325X	1,500	2.000	0.375	A572	gr.50
1/2	Horiz	L3x3x3/16	A529	gr.SOBolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50 2.000
1/2	PlanHl	L3x3x3/16	A52.9	gr.SOBolted	1-0.625	A325X	1.500	1.620	0.375	A572	gr.50 2.000
1/1 1/1	Leg Diag	PIPE 6.625×0.432 L3 1/2×3 1/2×1/4	A500 A529	gr.CSTension gr.508olted	8-1,000 2-0,625	A325X A325X	1.500	2.000	0.375	A572	gr.50
1/1	Horiz	L3x3x3/16	A529	gr.50Bolted	2-0.625	A325X	1.500	1.620	0.375	A572	gr.50
1/1	PlanHl	L3x3x3/16	A529	gr.50Bolled	1-0.625	A325X	1.500	1.620	0.375	A572	gr.50 2.000

Page B 3

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

1

Section C: ANTENNA DATA

Structure Azimuth from North: 0

1

ANTENNAS

	Ant No.	Elev. (ft)	Antenna (#) Type (1) HPA	Ant. Azin	Mount. Radius (ft) 4.00	. Mount T	ype	Mount To Azim. (#)	k Line Type	Mount Size (in)	ting Pipc Length (ft) Full Shield	Ka) ded 1.00
/			Vert. Offse	(0.00 (ft)				•				2.00
	2	145.00	(1) HP8	180	4.00			120				1.00
			vert. Offse	e 0.00 (fe)								
	ANTE	ENNA AND	MOUNT WIND	AREAS AND WELC	HTS							
	Ant	Antenna.	/Mount	Frontal Lat	eral E	rontal	Lateral	Weight	Weight	Frequency	Allowable (Sh Mount
	NO.			Bare Area Ban	e Area	ced Area	Iced Area	Bare (lbs)	()ba)	CH+	Signal	Ка
1	1	HP8		69.63 4.8	5 6	59.63	4.85	447.53	1674.43	6.00	10 0	.85
1	2	HP8		69.63 4.8	5 6	59.63	4.85	447.53	1674.43	6.00	10 0	.85

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Denduals Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

Section D: TRANSMISSION LINE DATA

Transmission Lines Position

۹0.	Bot El (ft)	Top El (Ét)	Desc.	Radius (ft)	A2.	Orient.	No.	No. of Rows	Vert.	Antenna	User Ka
1	0.00	180.00	3/8" CABLE	13.00	0.00	0.00	1	1	No		
2	0.00	180.00	RC0.75-Cnd	10.58	60.00	5.00	1	1	No		
3	0.00	175.00	IX Ladder	7.01	60.00	30.00	1	1	No		
1 1 Note	0.00	175.00	LDF5P-50A	7.92	60.00	20.00	4	1	No		
5	155.00	175.00	LOF7P-50A	1.77	60.00	30.00	6	1	No		
5	0.00	165.00	TX Ladder	7.01	180.00	150.00	1	1	No		
7	0.00	165.00	LDF5P-SOA	7.92	180.00	140.00	4	1	No		
3	135.00	165.00	LDF7P-50A	2.45	180.00	150.00	6	1	No		
3	125.00	155.00	LOF7P 50A	2.79	60.00	30.00	12	2	No		
10	0.00	145.00	EW63	6.46	180.00	160.00	2	1 i	No		
11	105.00	135.00	LDF7P-50A	3.47	180.00	150.00	12	2	No		
12	0.00	125.00	LDF7P-SOA	7.01	60.00	30.00	18	2	No		
13	0.00	105.00	LOF TP -50A	7.01	180.00	150.00	18	2	No		
11 12 13	105.00 0.00 0.00	135.00 125.00 105.00	LDF7P-50A LDF7P-50A LDF7P-50A	3.47 7.01 7.01	180.00 60.00 180.00	150.00 30.00 150.00	12 18 18	2 2 2 2	No No No		

Transmission Lines Details

No.	Desc.	Width (in)	Depth (in)	Unit Mass (lb/ft)	Line Spacing (in)	Row Spacing (in)	
1	3/8" CABLE	0.38	0.38	1,00	2,750	2,750	
2	RC0.75-Cnd	1.05	3.05	1.09	2,750	2.750	
3	TX Ladder /	4.70	1.50	4.00	2,750	2.750	
4	LOF5P-50A	1.10	1.10	0.33	2.250	2.750	
5	LOF7P-SOA	2.01	2.01	0.92	2.250	2,750	
6	TX Ladder /	4.70	1.50	4.00	2.750	2.750	
7	LDF5P-50A	1.10	1.10	0.33	2.250	2.750	
8	LDF7P-50A	2.01	2.01	0.92	2,250	2.750	
9	LDF7P-50A	2.01	2.01	0,92	2.250	2,750	
10	EW63	1.16	2,01	0.51	2.250	2.750	
11	LDE7P-50A	2.01	2.01	0,92	2.250	2.750	
12	LDF7P-50A	2.01	2.01	0.92	2.250	2.750	
13	LDE7P-50A	2.01	2.01	0.92	2,250	2.750	

1

Dendunts Licensed to: ROHN Products LLC Peoria, IL

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

Section F: POINT LOAD DATA

Structure Azimuth from North:0.00

POINT	LOADS

No.	Description		Elev.	Radius	Azim.	Orient.	Vertical Offset	Τx	Line	Comments
			(ft)	(ft)	(Deg)	(Deg)	(ft)			
1	BEACON & LR	1	180.00	1.00	0.0	0.0	0.00			
2	CARRIER		175.00	1.00	0.0	0.0	0.00			
3	CARRIER		165.00	1.00	0.0	0.0	0.00			
4	CARRIER	1	155.00	1.00	0.0	0.0	0.00			
5	CARRIER		135.00	1.00	0.0	0.0	0.00			
6	CARRIER	1	125.00	1.00	0.0	0.0	0.00			
7	CARRIER	10, 10, 14	105.00	1.00	0.0	0.0	0.00			
-		NND 1451.00								

No.	Description	Frontal Bare Area (ft^2)	Lateral Bare Area	Frontal Iced Area	Lateral Iced Area	Weight Bare (Kins)	Weight Iced (Kins)	Gh
1	BEACON & LR	5.00	5.00	10.00	10.00	0.25	0.50	0.85
2	CARRIER	128.00	128.00	248.00	248.00	3.25	7.10	0.85
3	CARRIER	128.00	128.00	248.00	248.00	3.25	7.10	0.85
4	CARRIER	128.00	128.00	248.00	248.00	3.25	7.10	0.85
5	CARRIER	128.00	128.00	248.00	248.00	3.25	7.10	0.85
6	CARRIER	128.00	128.00	248.00	248.00	3.25	7.10	0.85
7	CARRIER	128.00	128.00	249.00	248.00	3.25	7.10	0.85

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

1

Section	H:	STRUCTURE	DISPLACEMEN	T DA	TI	
Load Comb	oina	tion	Wind	Only	-	Serviceability

Wind	Directi	on	M	taximum disp	lacements	0.0393	
Node	Elev.	N-S Disp	W-E Disp	Vert.Disp	N-S Rot	W-E Rot	Twist
	(It)	(1n)	(in)	(10)	(Deg)	(Deg)	(Deg)
1441	1	1					
111	180.0	9.2	5.5	~0.1	0.48	0.43	-0.15
108	1/3.0	8.7	1.8	-0.1	0,49	0.49	-0.15
105	170.0	6.4	1.3	-0.1	0.48	0.43	-0.13
102	165.0	1.1	6.9	-0.1	0.48	0.43	-0.19
99	160.0	1.2	6.4	-0.1	0.45	0.41	-0.12
30	155.0	6.7	6.0	-0.1	0.45	0.41	-0.12
93	150.0	6.2	5.6	-0.1	0.41	0.37	-0.09
90	195.0	5.8	5.4	-0.1	0.42	0.38	-0.11
87	140.0	5.3	9.8	-0.1	0.37	0.33	0.07
04	135.0	4.9	4.5	~0,1	0.39	0.35	-0.09
51	130.0	4.5	1.0	-0.1	0.33	0.30	0.06
18	125.0	4.2	3.8	-9.4	0.35	0.32	-0.08
13	120.0	3.0	3.3	-0.1	0.10	0.27	0.05
12	113.3	2.9	3.1	-G.1	0.30	0.27	-0.06
03	100.7	3.0	2.1	-0+1	0.20	0.24	0.04
00	100.0	2.0	5.9	0.1	0.20	0.23	0.03
60	33.3	2.2	2.0	0.1	0.22	0.20	0.03
60	00.7	2.0	1.0	0.1	0.20	0.13	-0.03
51	72.2	1.1	1.0	-0.4	0.19	0.17	0.02
51	66 7	1,4	1.5	-0.1	0.10	0.10	0.02
22	60.7	0.0	1.0	0.0	0.10	0.19	0.02
40	60.0	0.7	0.0	0.0	0,19	0.12	-0.02
12	46 7	0.6	0.5	0.0	0.10	0.09	0.01
30	10.7	0.0	0.3	0.0	0.10	0.08	-0.01
20	23.2	0.3	0.3	0.0	0 07	0.06	-0.01
26	26 7	0.2	0.2	0.0	0.05	0.05	-0.01
20	20.0	0.1		0.0	0.00	0.04	-0.01
14	17 7	0.1	-0.1	0.0	0 03	-0.03	0 00
8	67	0.0	0.0	0.0	0.02	-0.07	0.00
3	0.0	0.0	0 0	0.0	0.00	0.00	0.00

Desduate Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

Load Combination

TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Section J: ANTENNA DISPLACEMENT DATA Wind Only - Serviceability

Wind Di	rection		Maximum displacements							
Ant.	Elev.	N-S Disp	W-E Disp	Vort.Disp	N-S Rot	W-E Rot	Twist Tot	Allow.		
	(ft)	(in)	(in)	(1n)	(Deg)	(Deg)	(Deg)	(Deg)		
1	145.00	5.8	\$.2	-0.1	0.42	0.38	-0.11	1.11		
2	145.00	5.8	5.2	-0.1	0.42	0.38	-0.11	1.11		

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Licensed to: ROHN Products Peoria, IL

Revision: 0 Site: DILLON- XY Engineer: AS

Section L: STRENGTH ASSESSMENT SORTED DATA

Load Combination Max Envelope Wind Direction Maximum

Sec	Pnl	Elev.	мтуре	nesc.	Len	kl/r	Gov. comp. cap.	Gov. tens. cap.	Max Compr.	Max Tens.	Asses. Ratio	
		(ft)			(ft)		(Kips)	(Kips)	(Kips)	(Kips)		
9	\$	175.00	Leg	PIPE 2.875x0.203	5.00	63.4	\$7.1	76.5	0.9	0.3	0.02	
9	3	170.00	Leg	PIPE 2.875x0.203	5.00	63.4	57.1	76.5	5.3	2.1	0.09	
9	2	165.00	Leq	PIPE 2.875×0.203	5.00	63.4	57.1	76.5	11.1	7.3	0.19	
9	1	160.00	Lea	FIPE 2.875x0.203	5.00	53.4	57.1	76.5	20.2	13.9	0.35	
8	4	155.00	Lea	FIPE 3.500x0.216	5.01	51.8	82.5	100.4	28.6	22.4	0.35	
8	3	150.00	Lec	FIPE 3.500x0.216	5.01	51.8	82.5	100.4	42.7	32.8	0.52	
8	2	145.00	Leg	PIPE 3.500x0.216	5.01	51.8	82.5	100.4	51.2	41.7	0.62	
8	1	140.00	Leg	PIFE 3,500×0,216	5.01	51.8	82.5	100.4	63.1	52.1	0.77	
7	4	135.00	Lea	PIPE 4x0.318	5.01	45.9	142.0	165.6	74.0	61.7	0.52	С., а
7	3	130.00	Leo	PIPE 4×0.318	5.01	45.9	142.0	165.6	86.9	71.0	0 61	1
7	2	125.00	Lea	FIPE 4x0.318	5.01	45.9	142.0	165.6	99.5	82.3	0.70	
7	1	120.00	Lea	PTPE 4x0 318	5.01	45.9	142.0	165.6	112 3	91.6	0 79	
6	9	113 33	Lec	PTPE 4 500×0 332	6 68	54 2	160 1	198 4	177 9	105 8	0 80	
6	2	106 67	1.00	PTPE 4 500×0 332	6 68	54 2	160 1	198 4	131 3	119 2	0.88	
6	1	100 00	Len	PTPE & SAGAD 337	5 68	54 2	160 1	198 4	158 2	121 9	0.00	1
ň,	3	63 33	1.00	DINE 5 56760 375	6 68	13 6	234 1	275 0	172 7	144 8	0 72	
5	5	86 67	1.00	BIDE 5 56500 775	6 68	43 6	239 3	275 0	197 6	158 7	0 78	
10	1	80 00	Lan	DIDE 5 65300 375	6 68	13 6	230 1	275 0	207.0	170 6	0.00	
1	7	73 33	Lon	DIDT 6 62550 300	6 68	36 0	274 8	302 1	216 1	183 0	0.04	
4	2	66 67	fine	DTOP 6 62540 340	6 68	36.0	274 8	302 1	226 2	104 1	0.93	
3	1	60.00	log	otor 2 23540 140	6 69	35 0	274 9	302 1	220.0	205 6	0.02	
3	2	52 33	log	0100 6 605-0 3A0	6 69	36 0	274 0	302.1	200.0	205.0	0.07	
2	2	A6 67	Lang	DTDP 6 63500 340	6 62	36.0	274.0	302.1	252 4	223.0	0.21	
2	1	40.00	log	DTDC 6 675-0 340	6 68	36 0	274 9	302.1	272 3	225 0	0.90	1
2	4	30.00	Log	DIDD 6 CORUN APP	6 60	36 4	242 5	330 3	270 5	240 7	0.93	S. 1.
3	5	26.67	and a second	0705 6 60400 A20	6 68	36.4	202 4	330.3	290 4	250.0	0.01	
2	4	20.00	13534	0100 C C16-0 400	6.00	26 4	242.5	220.2	290.4	250.0	0.00	
4	4	20.00	Lety.	118 D.	0.00	26 4	343.3	330.3	202.2	237.1	0.00	
4	3	23.33	neg	0100 C 62540 125	6.00	26 4	242.2	379 5	222 0	201.3	0.91	1
4	*	0.07	5000	54564 G. C.C.C.M. 1926 NYERE & C.C.C.M. 1926	0.00	36 4	242 5	270.5	222.0	200.9	0.74	1
4	*	0.00	thed	FIFE 0.08380.432	0,00	30.4	232240	310.3	336,6	204.1	V.31	
9	4	175.00	Diag	L1 3/9×1 3/4×1/8	6.90	107.2	8.1	6.8	0.9	1.0	0.16	
9	3	170.00	Diag	LI 3/4x1 3/4x1/8	6.91	107.3	8.1	6.8	2.5	2.4	0.35	
9	h	165.00	Diag	61 3/4×1 3/4×1/8	6.92	107.5	8.1	6.8	2.5	2.1	0.39	
2		160.00	Diag	11 3/4x1 3/4x1/8	6.92	107.6	8.1	6.8	5.4	5.2	0.78	
8	4	155.00	Diag	1.1 3/4×1 3/4×3/16	7.11	115.6	9.7	9.1	5.0	9.5	0,51	
8	3	150.00	Diag	LI 3/4x1 3/4x3/16	7.48	121.2	9.5	9.7	5.6	5.7	0.59	
8	2	145.00	Diag	L1 3/4x1 3/4x3/16	7,85	128.4	8.5	9.7	5.4	5.2	0.63	
8	1	140.00	Diag	L1 3/4x1 3/4x3/16	8.28	135.8	1.6	9.7	6.7	6.5	0.89	1
7	4	135.00	Diag	L2 1/2x2 1/2x3/16	8.67	10317	9.7	9.7	6.2	6.3	0.65	
7	3	130.00	Diag	L2 1/2x2 1/2x3/16	9.09	107.7	9.7	9.7	7.5	7.3	0.77	
7	- 2	125.00	Diag	L2 1/2x2 1/2x3/16	9.52	111.8	9.7	9.7	6.9	7.2	0.74	
2.	1	120.00	Diag	LZ 1/2x2 1/2x3/16	9.96	115.9	9.7	9.7	8.3	8.1	0.85	
6	3	113.33	Diaq	L2 1/2x2 1/2x3/16	11.37	131.9	9.7	9.7	8.2	8.5	C.88	
6	2	106.67	Diag	L2 1/2x2 1/2x3/16	11.94	139.1	9.7	9.7	8.1	7.9	0.83	
6	1	100.00	Diag	LZ 1/2x2 1/2x3/16	12.52	145.4	9.5	9.7	8.6	8.7	0.90	1
E.	3	93.33	Diag	L3x3x3/16	13.11	126.0	15.2	14.7	8.7	8.6	0.58	
5	2	86.67	Diag	L3x3x3/16	13.71	132.2	14.1	14.7	8.4	8.5	0,59	
5	1	80.00	Diag	L3×3×3/16	14.32	138.5	12.8	14.7	8.3	8.2	0.65	
4	3	73.33	Diag	L3×3×3/16	14.93	143.6	11.9	14.7	8.3	8.4	0.70	
4	2	66.67	Diag	13x3x3/16	15.53	149.8	11.0	14.7	8.3	8.3	0.76	
4	1	60.00	Diag	L3x3x3/16	16.13	156.1	10.1	14.7	8.3	8.3	0.82	1
3	3	53.33	Diag	1.3x3x1/4	15.74	162.4	12.3	15.2	8.3	8.3	0.67	
3	2	46.67	Diag	L3x3x1/4	17,35	168.7	11.4	15.2	8.3	8.3	0.73	
3.	1.1.1	46.00	01 00	1.17 121/4	17 97	175.0	10.6	15.7	8 4	8.4	0.79	1

Page L 1

Bundings Licensed to: ROHN Products LLC Peoria, IL

TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

~~~~	m 2 m 2 m 2 m	33.33 26.67 20.00 13.33 6.67 0.00	Diag Diag Diag Diag Diag Diag	L3x3x1/4 L3x3x1/4 L3x3x1/4 L3 1/2x3 1/2x1/4 L3 1/2x3 1/2x1/4 L3 1/2x3 1/2x1/4	11.08 11.34 11.62 11.89 12.17 12.45	167.0 11.7 170.3 11.2 173.6 10.8 157.1 15.5 160.0 14.9 162.3 14.4	30.4 30.4 30.4 30.4 30.4 30.4 30.4	10.0 10.0 10.0 9.9 9.9 9.9 9.9	10.0 10.0 10.0 9.9 9.9 9.9	0.86 0.89 0.92 0.64 0.67 0.69	/
•	A	175 00	Harin	11 1/201 1/202/16	A 75	172 6 4 0	<b>6</b> 5	0.6	0.6	0.16	
8		155 00	Hariz	11 1/201 1/202/16	\$ 70	172 2 6 0	8 4	21	2 1	0.51	
4	2	23 22	Unvia	130303/16	9 51	145 8 11 6	24 3	20	9.0	0 69	
3	2	26 67	Unrig	139393/16	8 94	149 9 10 9	20 3	8.1	8.0	0.74	
5	1	20.00	Horiz	1.3v3v3/16	9 18	150 1 10 0	24 3	8.2	8 1	0.79	
1	3	13 32	Horiz	1.32243/16	9 51	158 3 9 B	24 3	8 3	8.2	0.94	
1	2	6 67	Horiz	1.3x3x3/16	9.84	162.4 9.3	24.3	8.3	A.3	0.89	
î	1	0.00	Horiz	L3x3x3/16	10.18	166.6 8.9	24.3	8.4	8.4	0.95	1
2	3	33.33	FlanHl	L2 1/2x2 1/2x3/16	8.51	208.4 4.7	14.1	0.1	0.1	0.01	
2	2	26.67	PlanH1	1.2 1/2x2 1/2x3/16	8.84	216.6 4.3	14.1	0.1	0.1	0.01	
2	1	20.00	PlanH1	L2 1/2x2 1/2x3/16	9.18	224.7 4.0	14.1	0.1	0.1	0.01	
1	3	13.33	FlanHl	L3x3x3/16	9.51	193.4 6.6	14.7	0.1	0.1	0.01	
1	2	6.67	PlanHl	L3x3x3/16	9.84	200.2 6.1	14.7	0.1	0.1	0.01	
1	1	0.00	PlanH1	1.3x3x3/16	10,18	207.0 5.7	14.7	0.1	0.1	0.01	

Page L 2




Bendunts Licensed to: ROHN Products LLC Peoria, IL

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

#### Section M: SECTION PROPERTIES DATA

Sec	Pan	Memb. Type	Steel Grade	Conn. Type	Boits Boits (	144 U 51295 1933	Bolt Grade	End Dist. (in)	Gusset Thick. (in)	kl/r	Comp Cap. (Kips)	Tens Cap. (Kips)	Bolt Cap. (Kips)	Bear. Cap. (Kips)	Block Shear (Kips
000000000	444332211	Leg Diag Horiz Leg Diag Leg Diag Diag	A500 gr.CS A529 gr.50 A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Folted Tension Bolted Tension Bolted Bolted	5 4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4	0.750 0.500 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.500	A 32 5X A 32 5X	$\begin{array}{c} 1.125\\ 1.250\\ 1.250\\ 1.125\\ 1.250\\ 1.125\\ 1.250\\ 1.125\\ 1.250\\ 1.125\\ 1.250\end{array}$	N/A 0.250 0.250 N/A 0.250 N/A 0.250 N/A 0.250	63.4 107.2 172.6 63.4 107.3 63.4 107.5 63.4 107.6	57.1 8.1 4.0 57.1 8.1 57.1 8.1 57.1 8.1 8.1	76.5 12.4 15.0 76.5 12.4 76.5 12.4 76.5 12.4	121.7T 9.7S 9.7S 121.7T 9.7S 121.7T 9.7S 121.7T 9.7S	N/A 7.8 11.7 N/A 7.8 N/A 7.8 N/A 7.8	N/A 6.8 8.5 N/A 6.8 N/A 6.8 N/A 6.8
888888888	4 4 3 3 2 2 1 1	Leg Diag Horiz Leg Diag Leg Diag Leg Diag	A500 gr.CS A529 gr.50 A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Bolted Tension Bolted Tension Bolted Tension Bolted	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0.875\\ 0.500\\ 0.500\\ 0.875\\ 0.500\\ 0.875\\ 0.500\\ 0.875\\ 0.500\\ 0.875\\ 0.500\end{array}$	A325X A325X A325X A325X A325X A325X A325X A325X A325X A325X	1.313 1.250 1.250 1.313 1.250 1.313 1.250 1.313 1.250	N/A 0.250 0.250 N/A 0.250 N/A 0.250 N/A 0.250	51.8 115.6 172.3 51.8 121.2 51.8 128.4 51.8 135.8	82.5 10.5 4.0 82.5 9.5 82.5 8.5 82.5 7.6	100.4 18.3 15.0 100.4 18.3 100.4 18.3 100.4 18.3	167.9T 9.7S 9.7S 167.9T 9.7S 167.9T 9.7S 167.9T 9.7S	N/A 11.7 11.7 N/A 11.7 N/A 11.7 N/A 11.7	N/A 10.2 8.5 N/A 10.2 N/A 10.2 N/A 10.2
77777777		Leg Diag Diag Leg Diag Leg Diag	A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Tension Bolted Tension Bolted Tension Bolted	51515101	0.875 0.500 0.875 0.500 0.875 0.500 0.875 0.500	A325X A325X A325X A325X A325X A325X A325X A325X	1.313 1.250 1.313 1.250 1.313 1.250 1.313 1.250	N/A 0.250 N/A 0.250 N/A 0.250 N/A 0.250	45.9 103.7 45.9 107.7 45.9 111.8 45.9 115.9	142.0 18.5 142.0 17.4 142.0 16.3 142.0 15.1	165.6 28.5 165.6 28.5 165.6 28.5 165.6 28.5	209.9T 9.7S 209.9T 9.7S 209.9T 9.7S 209.9T 9.7S	N/A 11.7 N/A 11.7 N/A 11.7 N/A 11.7	N/A 13.6 N/A 13.6 N/A 13.6 N/A 13.6
000000	1	Leg Diag Leg Diag Diag Diag	A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Tension Bolted Tension Bolted	1 5 1 1 5 1 5 1 5	1.006 0.900 1.000 0.500 1.000 0.500	A325X A325X A325X A325X A325X A325X A325X	1.500 1.250 1.500 1.250 1.500 1.250	N/A 0.250 N/A 0.250 N/A 0.250	54.2 131.9 54.2 139.1 54.2 146.4	160.1 11.7 160.1 10.5 160.1 9.5	198.4 28.5 198.4 28.5 198.4 28.5	275.3T 9.75 275.3T 9.7S 275.3T 9.7S	N/A 11.7 N/A 11.7 N/A 11.7	N/A 13.6 N/A 13.6 N/A 13.6
ອດດອດອ	3 3 2 2 1 1	Leg Diag Leg Diag Diag	A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Tension Bolted Tension Bolted	n 6 1 1 5 1 1 1	1.000 0.625 1.000 0.625 1.000 0.625	A325X A325X A325X A325X A325X A325X A325X	1.500 1.500 1.500 1.500 1.500 1.500	N/A 0.250 N/A 0.250 N/A 0.250	43.6 126.0 43.6 132.2 43.6 138.5	239.3 15.5 239.3 14.1 239.3 12.8	275.0 34.6 275.0 34.6 275.0 34.6	330.3T 15.2S 330.3T 15.2S 330,3T 15.2S	N/A 14.7 N/A 14.7 N/A 14.7	N/A 17.5 N/A 17.5 N/A 17.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 2 1 1	Leg Diag Leg Diag Leg Diag	A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50 A500 gr.CS A529 gr.50	Tension Bolted Tension Bolted Tension Bolted		1.000 0.625 1.000 0.625 1.000 0.625	A325X A325X A325X A325X A325X A325X A325X	1.500 1.500 1.500 1.500 1.500 1.500	N/A 0.250 N/A 0.250 N/A 0.250	36.0 143.6 36.0 149.8 36.0 156.1	274.8 11.9 274.8 11.0 274.8 10.1	302.1 34.6 302.1 34.6 302.1 34.6	330.3T 15.2S 330.3T 15.2S 330.3T 15.2S	N/A 14.7 N/A 14.7 N/A 14.7	N/A 17.5 N/A 17.5 N/A 17.5
and we we will say that	2 C C C C	Leg Diag Leg Diag Leg Diag	A500 gr.C5 A529 gr.50 A500 gr.C5 A529 gr.50 A500 gr.C5 A529 gr.50	Tension Bolted Tension Bolted Bolted	n 6 1 6 1 6 1	1.000 0.625 1.000 0.625 1.000 0.625	A325X A325X A325X A325X A325X A325X A325X	1.500 1.500 1.500 1.500 1.500 1.500	N/A 0.250 N/A 0.250 N/A 0.250	36.0 162.4 36.0 168.7 36.0 175.0	274.8 12.3 274.8 11.4 274.8 10.6	302.1 45.6 302.1 45.6 302.1 45.6	330.3T 15.2S 330.3T 15.2S 330.3T 15.2S	N/A 19.5 N/A 19.5 N/A 19.5	N/A 23.2 N/A 23.2 N/A 23.2
2	3	Leg	A500 gr.CS	Tension	n 6	1.000	A325X	1.500	N/A	36.4	343.5	378.5	330.3T	N/A	N/A

Page M 1





File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM



Dradients Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

2	3	Diag	A529	ar. 50	Solted	2	0.625	A325X	1.500	0.375	167.0 11.7	45.6	30.45 39.0	32.3
2	3	Horiz	A529	gr. 50	Bolted	2	0.625	A325X	1.500	0.375	145.8 11.6	34.6	30.45 29.4	24.3
2	Ε	PlanH1	A529	gr.50	Bolted	1	0.625	A325X	1.500	0.250	208.4 4.7	27.7	15.28 14.7	14.1
2	2	Leg	A500	gr.CS	Tension	6	1.000	A325X	1.500	N/A	36.4 343.5	378.5	330.3T N/A	N/A
2	2	Diag	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	170.3 11.2	45.6	30.45 39.0	32.3
2	2	Horiz	A529	ar.50	Bolted	2	0.625	A325X	1.500	0.375	149.9 10.9	34.6	30.45 29.4	24.3
2	2	PlanH1	A529	gr. 50	Bolted	1	0.625	A325X	1.500	0.250	216.6 4.3	27.7	15.25 14.7	14.1
2	1.1	Log	A500	gr.CS	Tension	5	1,000	A325X	1.500	N/A	36.4 343.5	378.5	330.3T N/A	N/A
2	1	Diag	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	173.6 10.8	45.6	30.45 39.0	32.3
2	1	Horiz	A529	gr.50	Bolted	2	0.625	A32SX	1.500	0.375	154.1 10.4	34.6	30.45 29.4	24.3
2	1	PlanHl	A529	gr.50	Bolted	1	0.625	A325X	1.500	0.250	224.7 4.0	27.7	15.25 14.7	14.1
1	3	Leg	A500	gr.CS	Tension	8	1.000	A325X	1.500	N/A	36.4 343.5	378.5	440.4T N/A	N/A
1	3	Diag	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	157.1 15.5	54.8	30.45 39.0	36.9
1	3	Horiz	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	158.3 9.8	34.6	30.45 29.4	24.3
1	3	PlanH1	A529	gr.50	Bolted	1	0.625	A325X	1.500	0.375	193.4 6.6	34.6	15.23 14.7	17.5
1	2	Leg	A500	gr.CS	Tension	8	1.000	A325X	1.500	N/A	36.4 343.5	378.5	440.4T N/A	N/A
1	2	Diag	A529	gr. 50	Bolted	2	0.625	A325X	1.500	0.375	160.0 14.9	54.8	30.45 39.0	36.9
1	2	Horiz	A529	gr. 50	Bolted	2	0.625	A325X	1.500	0.375	162.4 9.3	34.6	30.48 29.4	24.3
1	2	PlanHl	A529	gr.50	Bolted	1	0.625	A325X	1.500	0.375	200.2 6.1	34.6	15.25 14.7	17.5
1	1	Leg	A500	gr.CS	Tension	3	1.000	A325X	1.500	N/A	36.4 343.5	378.5	440.4T N/A	N/A
1	1	Diag	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	162.9 14.4	54.8	30.45 39.0	36.9
1	1	Horiz	A529	gr.50	Bolted	2	0.625	A325X	1.500	0.375	166.6 8.9	34.6	30.45 29.4	24.3
1	1	PlanHl	A529	gr.50	Bolted	1	0.625	A325X	1.500	0.375	207.0 5.7	34.6	15.25 14.7	17.5

Page M 2



TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM



Bundante Licensed to: ROHN Products LLC Peoria, IL

Revision: 0 Site: DILLON- KY Engineer: AS

Secti Load Wind	on N: LEG R Combination Direction	EACTION	DATA Max En Maximum		
	Force-Y	Force-V	Shear-X	Shear-Z	Max Shear
	(Kips)	(Kips)	(Kips)	(Kips)	(Kips)
	341.18	292.68			31.97

Page N 1





Dendunte Licensed to: ROHN Products LLC Peoria, IL

TSTower - v 5.6.0 Tower Analysis Program (c) 1997-2015 TowerSoft www.TSTower.com

File: W:\Jobs\2018\226628\226628.out Contract: 226628 Project: 180 FT RT TOWER Date and Time: 7/18/2018 10:51:27 AM

Revision: 0 Site: DILLON- KY Engineer: AS

# Section C: TOWER<br/>Load Combination<br/>Wind DirectionFOUNDATION DATA<br/>Max Envelope<br/>MaximumAxial<br/>Load<br/>Load-X<br/>(Kips)Shear<br/>Load-Z<br/>(Kips)Total<br/>Moment-X<br/>(Kips)Moment-Y<br/>(Kipsft)Moment-Z<br/>(Kipsft)Total Moment<br/>(Kipsft)62.50<br/>46.87-45.93<br/>-52.52-25.28<br/>0.0052.43<br/>52.52-2779.18<br/>-3.731.65<br/>-10.935142.57<br/>5825.185845.50<br/>5825.18

Page 0 1

Customer: APPALACHIAN WIRELESS Project: 180 FT RT TOWER Site: DILLON- KY Engr, File: 226628 Build Code: ANSI/TIA-222-G-2005



### **Mat Foundation**

vcr.2.2.9

#### **Design Parameters**

e andre state and the second second second	Load Case								
Description	1	2	3	4	5	Service			
Total Moment, ft-kips	5,845.50	5,839.33	887.38	126.64	120.26	2,017.34			
Total Shear, kips	52.43	52.43	7.19	.74	.74	18.11			
Total Tower Wt, kips	62.50	46.87	132.90	62.50	46.87	52.08			
Max, Uplift, kips	287.12	292.68	2.39	.00	.00	87.90			
Shear, kips	28.29	28.59	1.61	9.09	9.09	9.09			
Max Download, kips	341.18	335.62	92.72	27.78	22.23	127.94			
Shear	31.97	31.67	6.80	1.65	1.35	11.62			
Soil L.F.	1.20	0.90	1.20	1.20	0.90	1.00			
Concrete L.F.	1.20 /	0.90	1.20	1.20	0.90	1.00			

Foundation	
Ht. AGL, ft	0.50
Depth, ft.	6.00
Tower	
Face Width, ft	21.02
Offset, in	<b>42.00</b>
Soil	N/A
Blow Count	N/A
Inplace Unit Wt, pcf	110.00
Submerged Unit Wt, pcf	60.00
Friction Angle, ¢, deg.	30.00
Cohesion, ksf	N/A
Uplift Angle, dcg.	30.00
Water Depth, fi	None
Ult Rearing Capacity ksf	/ 24.00

Mat	and the second second second second
Thickness, ft	1.75
Width, ft	27.00
EA, in	15.00
Batter, in/ft	0.00

Anchor Bolts	ananan in 1991 b
Diameter, in	- 1.0000
No.	<b>→</b> 8
Length, in	70.00
Bolt Circle, in	13.75
Projection, in	6.00
Concrete	
28 Day Strength, ksi	- 4.50
Dry Unit Wt, pcf	150.00
Wet Unit Wt, pcf	88.00

Pier	Second Sugar States
Height, ft	4.75
Diameter, ft	3.00
No. Piers	3
Shape	Round

Pocket	
Diameter, in	N/A
Thickness, ft	N/A

T	None	28 Day Strength, ksi	- 4.50	Vertical, ksi	60.00
T		Dry Unit Wt, pcf	150.00	Circular, ksi	60.00
F	24.00	Wet Unit Wt, pcf	88.00	Horizontal, ksi	60.00

#### Results

φ M _N - Parallel Axis	6,905.48	ft-kips	
φ M _N – Diagonal Axis	7,598.91	ft-kips	
Moment - Interaction Ratio	0.921		1
♦ V _N - Lateral Load	139.26	kips	
Lateral Load - Interaction Ratio	0.377		-

Final Mat Dimension : 27.00 x 27.00 x 1.75 ft. thick w/ (3) 3.00 ft. Dia. Piers

Final Pocket Dimension : Pockets not required

Total Volume of Concrete : 51.0 yd³

Designed By: AS Date: 18 Jul, 18 @ 11:21 AM Checked By:

Date: Page i

Customer: APPALACHIAN WIRELESS Project: 180 FT RT TOWER Site: DILLON- KY Engr. File: 226628 Build Code: ANSI/TIA-222-G-2005



## **Mat Foundation**

ver.2.2.9

#### **OTM Capacity**

Controlling Load Case: 2 [Wind w/Min. Dead Load] Foundation Width = 27.00 ft  $M_{11} = 6,362.4$  ft-kips

	φM _N , ft-kips	x, ft	N	σ _w
Parallel	6,905.5	2.700	0.100	10.15
Diagonal	7,598.9	8.538	0.224	10.15
φM _N = 6,90	5.48 ft-kips	IRatio = (	).921 🖍	
$\phi V_N = 139.$	26 kips	IRatio = (	).377	

#### Mat Design

 $\gamma_e = 121.67$  pcf

an al an brailean an a	n i Anna hann a		e Alexandra and a second	Moment, ft	-kips/ft	Shear, kips/ft			
Exterior Slab	x, ft	N	σ _R , ksf	P, kips	P _{su} kips	DownLoad Side	Uplift Side	Download Side	Uplift Side
Parallel	4.500	0.167	4.55	24.33	0.00	22.04	7.92	13.10	3.83
Diagonal	11.763	0.308	4.00	24.33	0.00	74.84	27.77	19.64	7.28

1	Moment, ft-	kips/ft	Shear, kips/ft				
Interior Slab	DownLoad Side	Uplift Side	Download Side	Uplift Side	Soil Pressure Termination		
	16.07	62.19	4.05	7.83	5.80		

Punching					Uplift	Described		
	Shear	Interior	Edge	Corner	Interior	Edge	Corner	Description
	b _o , ft	15.97	13.96	10.91	13.31	12.63	10.25	
	Vsu, psi	127.74	154.96	209.32	131.19	145.23	190.98	0.11/- 01
	¢Vc, psi	228.08	228.08	228.08	228.08	228.08	228.08	2-way Snear
	IR	0.56	0.68	0.92	0.58	0.64	0.84	www.astacticstation.com
	Mut, ft-kips	Testip.	91.1			81.5		
	B _c , ft		7.1		1	6.7		Moment transfer to
	M _e , ft-kips/ft		12.8			12.1		SiaD
		E	dge Distance	s: $a = 4.86$ ft.	b = 2.99 f	i. $c = 3.9$	93 ft.	

Summary	Max. Value Utilization		Mat Reinforcement		
Slab Moment, ft-kips/ft	74.84	0.962	Min. Steel Area (Strength)	.891 in ² /ft.	
Slab Shear, kips/ft	19.64	0.897	Min. Steel Area (Temperature)	,227 in ² /ft.	
Punching Shear, psi	209.32	0.918	Steel Strain Actual	0.013	
Soil Bearing Required, our, ksf	6.07	0.253	Minimum Steel Strain Required	0.005	

32 - #8 Horizontal bars equally spaced @10.26 in., each way, top and bottom, total of 128,  $A_s = 0.931 \text{ in}^2/\text{ft}$ 

Designed By: AS Date: 18 Jul, 18 @ 11:21 AM

Checked By: Date:

7/20/18 Page ii

1

APPALACHIAN WIRELESS Customer: Project: 180 FT RT TOWER Site: DILLON- KY Engr. File: 226628 ANSI/TIA-222-G-2005 Build Code:



ver.2.2.9

## **Mat Foundation**

#### **Pier Design**

Controlling Load Case: 2 [Wind w/Min. Dead Load]

C = 335.62  kips		Vc = 31.67 kips		Mc = 150.43 ft-k	ips
T = 292.68  kips		Vt = 28.59 kips		Mt = 135.80 ft-ki	ps
Fy = 60.00  ksi		Fyt = 60.00 ksi		L.F. = 1.00	
H = 36.00 in.	1	Ds = 27.00  in.	P	F'c = 4.50  ksi	
U = 1.00		Irs = Round			-
		*** NOTE: Pier cross sect	ion is Rou	nd ***	

#### SUMMARY OF ANALYSIS

Minimum area of steel required	$= 10.159 \text{ in}^2$	(Rhomin = 0.0100)
Area of steel provided.	$= 11.992 \text{ in}^2$	(Rhoactual = 0.0118)
Maximum steel area limit	$= 81.430 \text{ in}^2$	(Rhomax = 0.0800)

(12) #9 Vertical Bars equally spaced w/ #4 Circular Ties @ 6" on center.

#### CIRCULAR TIE DATA

Size	Spacing
3	7.3
4	12.0
5	12.0
6	12.0

Use spacing shown or maximum tie spacing specified in ACI 318, Section 7.10.5 for compression reinforcement, whichever is less.

#### DEVELOPMENT LENGTH MODIFIERS FOR BAR DEVELOPMENT

Modifier for tension development = 1.000Modifier for compression development = 0.151 REQUIRED Ld = MODIFIER * BASIC Ld * ACI 318 MODIFIERS, (12 in. min.)

Designed By: AS Date: 18 Jul, 18 @ 11:21 AM

Checked By:	4
Date:	7/20

Page iii



« OE/AAA

#### Notice of Proposed Construction or Alteration - Off Airport

Add a new Case Off Airport - Desk Reference Guide V_2017.4.0

Add a New Case Off Airport for Wind Turbines - Met Towers - Desk Reference Guide V_2017.4.0

Project Name: EAST -000482138-18

Sponsor: East Kentucky Network, LLC

Details for Case : Dillon (Revised)

Show Project Summary

ASN:   2018-ASO-16434-OE   Date Accepted:   08/07/2018     Status:   Accepted   Date Determined:   Letters:   None     Public Comments:   None   None   Documents:   None     Public Comments:   None   Project Documents:   None     Construction / Alteration   Structure Summary:   Project Documents:   None     Notice Of:   Construction   Structure Summary:   Tower     Duration:   Permanent   Structure Name:   Dilon (Revised)     if Temporary:   Months:   Days:   POC NOTAM:     Work Schedule - Statt:   09/25/2018   NOTAM Number:	51					
Status: Accepted Date Determined:   Public Comments: None   Public Comments: None   Public Comments: None   Public Comments: None   Project Documents: None   Portation: Construction   If Temporary: Months:   Portation: 09/25/2018   Work Schedule E Fort: 09/20/2018	51					
Public Comments:   None     Public Comments:   None     Public Comments:   None     Project Documents:   Project Documents:     None   Structure Summary:     Notice Of:   Construction     Duration:   Permanent     if Temporary:   Months:     Days:   FDC NOTAM:     Work Schedule - Start:   09/25/2018     Work Schedule - Start:   09/23/(2018)	5:					
Public Comments: None   Public Comments: None   Project Documents: Project Document:   None None   Construction / Alteration Structure Summary   Notice Of: Construction   Duration: Permanent   if Temporary: Months:   Days: Poc NoTAM:   Work Schedule - Start: 09/25/2018   Work Schedule - Start: 09/25/2018	5:					
Public Comments: None   Public Comments: None   Project Document: None   Construction / Alteration Information Structure Summary   Notice Of: Construction   Duration: Permanent   if Temporary: Months:   Days: FDC NOTAM:   Work Schedule - Start: 09/25/2018   Work Schedule - End: 09/20/2018	5:					
Construction / Alteration Information Structure Summary   Notice Of: Construction   Duration: Permanent   if Temporary: Months:   Days: Point Content   Work Schedule - Start: 09/25/2018   Work Schedule - Start: 09/23/2018	S:					
Construction / Alteration Information Structure Summarrie   Notice Of: Construction Structure Type: Tower   Duration: Permanent Structure Name: Dillon (Revised)   if Temporary: Months: Days: FDC NOTAM:   Work Schedule - Start: 09/25/2018 NOTAM Number:						
Notice Of:     Construction     Structure Type:     Tower       Duration:     Permanent     Structure Name:     Dillon (Revised)       if Temporary:     Months:     Days:     FDC NOTAM:       Work Schedule - Start:     09/25/2018     NOTAM Number:						
Duration:     Permanent     Structure Name:     Dillon (Revised)       if Temporary:     Months:     Days:     FDC NOTAM:       Work Schedule - Start:     09/25/2018     NOTAM Number:						
if Temporary:     Months:     Days:     FDC NOTAM:       Work Schedule - Start:     09/25/2018     NOTAM Number:       Work Schedule - End:     09/20/2018     ECC Number:						
Work Schedule - Start: 09/25/2018 NOTAM Number:						
run bureaue Lina. 05/50/2010						
*For temporary cranes-Does the permanent structure require separate notice to the FAA? Prior ASN:						
To find out, use the Notice Criteria Tool. If separate notice is required, please ensure it is filed. If it is not filed, please state the reason in the Description of Proposal.						
State Filing: Filed with State						
Structure Details Proposed Frequency Bands						
Latitude: 36° 54' 36.42" N Select any combination of the applicable	Select any combination of the applicable frequencies/po					
Longitude: 83° 11' 50.37" W identified in the Colo Void Clause Coalities affect	Identified in the Colo Void Clause Coalition, Antenna System Location, Voluntary Best Practices, effective 21 Nov 2007, to evaluated by the FAA with your filing. If not within one of the					
Horizontal Datum: NAD83 evaluated by the FAA with your filing. If n						
Site Elevation (SE): 1561 (nearest foot) PASSED frequency bands listed below, manually in	nput y	your pro	posed			
Structure Height (AGL): 190 (nearest foot) frequency(ies) and power using the Add	frequency(les) and power using the Add Specific Frequency link.					
Current Height (AGL): (nearest foot) Low Freq High Freq Freq	a High Freq Freq Unit EPP Et					
* For notice of alteration or existing provide the current 6 7	GHz	55	dBW			
The leads in the Description of Proposal 10 11.7	GHz	55	dBW			
10 11.7 17.7 19.7	GHz	42	dBW			
Minimum Operating Height (AGL): (nearest foot) 17.7 19.7	GHz	42	dBW			
* For aeronautical study of a crane or construction equipment 21.2 23.6 21.2 23.6	GHz	55	dBW			
the maximum neight should be isted above as the 614 698	MHz	1000	W			
operating height to avoid delays if impacts are identified that 698	MHZ	2000	w.			
require negotiation to a reduced height. If the Structure Height 806 901	MHz	500	W			
and minimum operating height are the same enter the same 806 824 824 849	MHz MHz	500	W			
Value in both fields. 851 866	MHz	500	w			
869 894 966 901	MHZ	500	w			
Requested marking/Lighting: None 901 902	MHz	7	W			
Other: 929 932	MHz MHz	3500	W			
Recommended Marking/Lighting: 931 932	MHz	3500	w			
Current Marking/Lighting:     N/A Proposed Structure     932 932.5     932.9       93     940     935     940	MHz MHz	17 1000	dBW			
940 941 940 941	MHZ	3500	W			
10/0 10/3	MHz	500	w W			
Nearest City: Dillon 1710 1755	MHZ	1640 1640	W N			
Nearest City:     Dillon     1710     1755       Nearest State:     Kentucky     1850     1910	MHz	1640	W			
Nearest City:     Dillon     1710     1755       Nearest State:     Kentucky     1850     1990       Description of Location:     Approx 0.0 million     1930     1990	1-11TLZ	500				
Nearest City:     Dillon     1710     1755       Nearest State:     Dillon     1850     1910       Description of Location:     Approx. 0.9 mi E of Dillon     1930     1990       On the Project Summary page upload any certified survey.     (Harkan), KY     2110     2200	MHz	200				
Nearest City:     Dillon     1710     1755       Nearest State:     Billon     1850     1910       Description of Location:     Approx. 0.9 mi E of Dillon     1930     1990       On the Project Summary page upload any certified survey.     (Harlan), KY     2110     2200       Description of Proposal:     A new 180' tower with top-     2305     2310	MHz MHz MHz	2000	Ň			
Nearest City:     Dillon     1710     1755       Nearest State:     Kentucky     1850     1990       Description of Location:     Approx. 0.9 mi E of Dillon     1990     2025       On the Project Summary page upload any certified survey.     (Harlan), KY     2110     2200       Description of Proposal:     A new 180' tower with top- mounted antennas (overall     2305     2310	MHz MHz MHz MHz	2000 2000 2000	vi vi			

← Previous Back to Search Result

to ch Next



#### KENTUCKY TRANSPORTATION CABINET

TC 56-50 Rev. 07/2010 Page 2 of 2

#### KENTUCKY AIRPORT ZONING COMMISSION

#### APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

APPLICANT (name)		PHONE	FAX	KY AERONAUTICAL	STUDY #	
East Kentucky Network,	LLC c/o LLGS	703-584-8667	703-584-8692			
ADDRESS (street)		CITY		STATE	ZIP	
8300 Greensboro Dr, #1	200	Tysons		VA	22102	
APPLICANT'S REPRESEN	TATIVE (name)	PHONE	FAX			
Ali Kuzehkanani		703-584-8667	703-584-8692			
ADDRESS (street)		CITY		STATE	ZIP	
8300 Greensboro Dr, #1	200	Tysons		VA	22102	
APPLICATION FOR	New Construct	tion Alteration	Existing	WORK SCHEDULE		
DURATION Perma	anent 🗌 Tem	porary (months	days )	Start 09/25/18 End	09/30/18	
TYPE Crane	Building	MARKING/PAINTIN	G/LIGHTING PREFER	RRED		
Antenna Tower		Red Lights & Pai	nt White- medi	ium intensity 🗌 V	Vhite- high intensity	
Power Line 🗌 Wa	ater Tank	Dual- red & med	dium intensity white	Dual- red & hi	gh intensity white	
Landfill Ot	her	Other None				
LATITUDE		LONGITUDE		DATUM NAD	83 🗌 NAD27	
36°54'36.42″		83°11'50.37"		Other		
NEAREST KENTUCKY		NEAREST KENTUCK	Y PUBLIC USE OR M	ILITARY AIRPORT		
City Dillon County Harla	n	Tucker-Guthrie Mer	morial Airport			
SITE ELEVATION (AMSL,	feet)	TOTAL STRUCTURE	HEIGHT (AGL, feet)	CURRENT (FAA aer	onautical study #)	
1561		190				
<b>OVERALL HEIGHT</b> (site e	levation plus to	tal structure height,	feet)	PREVIOUS (FAA aeronautical study #)		
1751						
DISTANCE (from neares	t Kentucky public	c use or Military airp	ort to structure)	PREVIOUS (KY aero	onautical study #)	
9.6 mi					· · ·	
DIRECTION (from neare	st Kentucky publ	lic use or Military air	port to structure)			
ENE						
DESCRIPTION OF LOCAT	ION (Attach US	GS 7.5 minute quadr	angle map or an airp	oort layout drawing	with the precise site	
marked and any certifie	d survey.)					
Approximately 0.9 miles	E of Dillon (Har	lan), KY				
DESCRIPTION OF PROPO	OSAL					
A new 300' tower with t	op-mounted an	tennas (overall heigh	nt of 310' AGL)			
FAA Form 7460-1 (Has t	the "Notice of Co	onstruction or Altera	tion" been filed with	the Federal Aviation	Administration?)	
No Yes, when?	08/07/18					
<b>CERTIFICATION</b> (I hereb	y certify that all	the above entries, m	ade by me, are true,	complete, and corr	ect to the best of	
my knowledge and belie	ef.)					
<b>PENALITIES</b> (Persons fai	ling to comply w	ith KRS 183.861 to 1	83.990 and 602 KAR	050 are liable for fi	nes and/or	
imprisonment as set for	th in KRS 183.99	0(3). Noncompliance	e with FAA regulation	ns may result in furth	her penalties.)	
NAME	TITLE	SIGNATURE		DATE		
Ali Kuzehkanani	Dir of Engineeri	ng		08/07/18		
COMMAISSION ACTION		Chairperson	, KAZC			
CONTRACTION		Administrat	or, KAZC			
Approved	SIGNATURE			DATE		
Disapproved	2004-00-00-00-00-00-00-00-00-00-00-00-00-			ನಾ ಜನಗಳ ಗ್ರಹಿಸಿದರೆ.		

#### **Driving Directions for Dillon**

Beginning at East Central Street beside the Harlan County Courthouse drive approximately 750ft to the intersection of 421 & West Central Street. Turn right onto 421 and drive 9.1 miles to the intersection of 421 & Adventure way. Turn right onto the lot. You will have to check in at the office to the right (a sign will be posted). After leaving the office drive to the end of the blacktop road at the top of the hill and turn to your left. Drive approximately .2 miles and you will have arrived (signs will be posted).

Prepared by: Daryl Bartley CELL SITE COMPLIANCE AGENT East Kentucky Network, LLC D/b/a Appalachian Wireless (606) 791-0310 (cell) dbartley@ekn.com



#### MEMORANDUM OF LEASE

se,

PAGE 482 (6)

воок 53

506846

THIS MEMORANDUM OF LEASE is made and entered into on this <u>1</u> <u>b</u> day of <u>2000</u>, 2018, with a commencement date of <u>2000</u>, 2018 (the "Commencement Date"), by and between WILLIAM R. FOSTER and THERESIA FOSTER, a married couple, with a mailing address of 8331 Highway 119 North, Putney, Kentucky 40865; and STEPHEN M. FOSTER and JENNY FOSTER, a married couple, with a mailing address of 8512 Highway 522, Totz, Kentucky 40870, hereinafter referred to as "Lessors", and EAST KENTUCKY NETWORK, LLC D/B/A APPALACHIAN WIRELESS, a Kentucky limited liability company, with a mailing address of 101 Technology Trail, Ivel, Kentucky, 41642, hereinafter referred to as "Lessee."

#### WITNESSETH

1. Demised Premises. For good and valuable consideration, Lessors leased to Lessee, and Lessee has leased from Lessors that certain tract of real estate located in Harlan County, Kentucky, which is more particularly described in the description attached hereto and made a part hereof as Exhibit A and the plat attached hereto and made a part hereof as Exhibit B, prepared by James W. Caudill, Licensed Professional Land Surveyor (hereinafter referred to as the "Premises"). Lessor Stephen M. Foster acquired his interest in the Premises by Deed dated January 26, 2011, and recorded on February 22, 2011, in Deed Book 434, Page 518, in the Harlan County Clerk's Office; and Lessor William R. Foster acquired his interest in the Premises by Deed dated May 12, 2011, in Deed Book 436, Page 18, in the Harlan County Clerk's Office. The Lessors have also granted unto Lessee full and complete rights of ingress, egress and regress to and from the Premises over any property owned by Lessors and other associated rights for installation of utilities, maintenance, and other purposes.

2. Term. The initial term of the Lease is for a period of five (5) years from the Commencement Date set forth above.

đ.

3. Renewals. The Lease shall automatically renew for an additional seven (7) terms of five (5) years each, unless Lessee provides sixty (60) days written notice prior to the end of the current term that it does not wish to renew.

4. Binding Effect. All of the terms, conditions, and covenants hereof shall be binding and inure to the benefit of the parties and their respective heirs, representatives, successors, and assigns.

5. Purpose. This Memorandum of Lease is prepared solely for the purpose of recordation, and is not intended to, nor shall it be deemed to, modify any of the terms and conditions set forth in the Lease, nor to construe any of the rights, duties or responsibilities of Lessors and Lessee. In the event of any conflict between the terms and conditions of this Memorandum and the terms and conditions of the Lease, the terms and conditions of the Lease shall supersede and control.

#### [THE REMAINDER OF THIS PAGE INTENTIONALLY LEFT BLANK.]

IN WITNESS WHEREOF, Lessors and Lessee have caused their names to be signed hereto, as of the date(s) indicated below.

**LESSORS:** WILLIAM R. FOSTER THERESIA FOSTER

WILLIAM IN THE MENT

COMMONWEALTH OF KENTUCKY COUNTY OF Harlan

The foregoing instrument was acknowledged before me on this 7th day of Sun_, 2018, by WILLIAM R. FOSTER and THERESIA FOSTER, Lessors Notary Public My Commission Expires 100 6,20 COMMONWEALTH OF KENTUCKY SE, KY. COUNTY OF Harlan The foregoing instrument was acknowledged before me on this  $14^{2}$ day of , 2018, by STEPHEN M. FOSTER and JENNY FOSTER, Lessors. My Commission Expires Flb 4, 2020

#### LESSEE:

#### EAST KENTUCKY NETWORK, LLC D/B/A **APPALACHIAN WIRELESS**

llum

By: W.A. Gillum Its: CEO/ General Manager

#### COMMONWEALTH OF KENTUCKY COUNTY OF Floyd

The foregoing instrument was acknowledged before me on this  $13^{+-}$  day of _____, 2018, by W.A. Gillum, CEO/General Manager of East Kentucky Network, in LLC d/b/a Appalachian Wireless, Lessee.

Notary Public

My Commission Expires Feb (e, 2020



This instrument was prepared by:

Krystal Branham, Attorney 101 Technology Trail Ivel, Kentucky 41642 (606) 477-2355

#### LOT DESCRIPTION Property of William R. Foster 8512 Highway 522 Totz, KY 40870 Off State Highway 119 Near Dillon in Bell County, KY. May 23, 2018

A certain tract or parcel of land lying and being on the waters of the Poorfork River, on the Cumberland River, in Harlan County, Kentucky and being a portion of the property conveyed to William R. Foster by deed dated May 12, 2011, from William K. Foster and wife, Nicole Foster, of record in Deed Book 436 at page 18 of the Harlan County Clerk's Office, Harlan, Kentucky, and being more particularly described as follows:

#### Lot 1A

Beginning on a set iron pin with cap marked LS#2259 with NAD83 KY Single Zone coordinates of N:3500902.33 and E:5667414.86 and on the side of a ridge near an existing access road; thence around the side of the ridge and severing the property of William R. Foster North 18 deg 44 min 38 sec East, a distance of 252.83 feet to a set iron pin with cap marked LS#2259 on the side of the ridge; thence crossing the ridge South 72 deg 44 min 53 sec East, a distance of 98.17 feet to a set iron pin with cap marked LS#2259 on the opposite side of the ridge; thence around the side of the hill South 06 deg 37 min 00 sec West, a distance of 264.59 feet to a set iron pin with cap on side of the hill; thence crossing back across the ridge North 70 deg 01 sec 38 min West, a distance of 153.76 feet to a set iron pin with cap marked LS#2259, being the point of beginning.

Also to be included is an access road from the public road to Lot 1A.

Also to be included is a right to install fiber and utility lines in or along said access road and/or such other location to be agreed upon by the parties.

Unless stated otherwise, any monument referred to herein as "set iron pin with cap" is a set ¹/₂" diameter rebar, at least eighteen (18") in length, with a plastic cap stamped "LS-2259". All bearings stated herein are referred to NAD83, KY single zone of the Kentucky state plane system.

This survey was performed on May 23, 2018 by James W. Caudill, a Kentucky Licensed Professional Land Surveyor No. 2259.

amer W. Caudill SALES ANT ALL PROPERTY AND ALL PROPERTY STATE OF KENTUCKY JAMES W. James W. Caudill, PLS #2259 CAUDILL 5-23-18 LS 2259 LICENSED PROFESSIONAL LAND SURVEYOR



APPALACHIAN WIRELESS 1580 EXISTING MAP 132 PARCEL 4.01 101 TECHNOLOGY TRAIL GRADE WILLIAM R FOSTER 1570 8512 HIGHWAY 522 WEL, KY. 41642 15.40 1535 TOTZ, KY 40870 N:3501141.76 153 E:5667496.11 DB 436 PG 018 8.2 PROPOSED /TOWER SITE EL:1534.47 1560 1 FINAL DILLON IN HARLAN COUNTY GRADE 1555 550 0+00 0+201525 611 N:3501112.64 E 5667589.86 EL:1551.48 "I certify that the latitude 36° 54' 36.42"N and longitude 83°  $11^4$  50.37"W are within +/- 50 feet horizontally; and the site elevation 1561.0 ft. MSL, is within +/-20 feet vertically. With a structure height of 180 ft AGL, the overall height is <u>1741</u> ft, AMSL. The horizontal datum (coordinates) is in terms of the North Americation Datum Of 1983 (NAD 83). The vertical PROFIL Datum heights are in terms of the North American Vertical Datum of 1988, and are determined to the nearest foot." James Mr. Caudel PE12305 1.57259 Ko-8+18 SIGNED: PRINTED: JAMES W. CAUDILL PE #12305 & LS #2259 THE PROPOSED TOWER HAS BEEN LOCATED USING DUAL FREQUENCY GPS UNIT PROCESSED BY "OPUS" -STATE PLANE COORDINATES NAD 83 KY SINGLE ZONE N:3501064.67', E5667531.37', EL 1561' top of foundation TOP OF PROPOSED TOWER ELEV. 1741' PROPOSED TOWER CENTER CROSS SECTION LAT:36'54'36.42" LON:8311'50.37' -THIS SURVEY MEETS OBSTACLE ACCURACY CODE 2C. 1535 N:3501064.67 -PROPERTY LINE INFORMATION TAKEN FROM DEEDS E:5667531.37 EL1/561 Top of Foundation EOFKEN 4 STATE of KENTUERY JANIF W 1560 AMES W. 44.38 CAUDILL CAUDILL LS 2259 2305 252 CENSE? LICENSED 1540 30 PROFESSIONAL MONAL ENG 2 LAND SURVEYOR BUILDIN PAD BUILDING FINALIZED. STANCE MAP 132 PARCEL 4.01 5 11°51'48" EX 108.61 WILLIAM R FOSTER <u>13°42'29"</u> 15°27'48" 99.18 F 115.5 8512 HIGHWAY 522 16:23'30 85 04 14 TOTZ, KY 40870 ROAD 20.26'46 DB 436 PG 18 121.2 ACCESS 1550 24°34'47"/E 84.77 26°55'54" E 103.2 3 27'53'49" 95.7 PROPOSED 29.36'52" E 74.87 110 06.37'00' 264.59' 72.44'53" E 98.17 LII 1555 LOT 1A 57'37'54" W 67.20 L12-32197.9 Sq. Feet 53°02'54" W 87.29 L13 50°38'33" W 75.65 0.739 Acres 14 46°15'16" W 97,24 550 44:33'03" W 86.05 L16 5 0 41°25'58" W 74.00 17 5 ŝ L18 S 36.44'17" W 78.55 535 19 5 30°32'48" W 97.3



# PROFILE WITH TOWER



0+00	0+20	0+40 0+60	0+80	1+00	
				06/	′08/18
				SCALE	1" = 20'
			0'	20'	40' 60'
			BBOBOSSD		ID STRUCTURE LOCATION
NOTE OF FOUNDATION DRAWINGS FOR DETAILS			DILLON	TOWER APP	ALACHIAN WIRELESS
NOTE: SEE FOUNDATION DRAWINGS FOR DETAILS		WINTE OF KEWA	DRAWN	DATE	FOSTER TRACT
THIS IS A VERTICAL PROFILE SKETCH OF THE TOWER		SO JANF W S	JWC	06/08/18	OFF OF HWY 119 NEAR CUMBERLAND RIVER
CRITERIA WAS CONSIDERED IN THE PREPARATION OF	THIS DRAWING.	CAUDILL 2305	APPROVED	DATE	NEAR PUTNEY IN HARLAN COUNTY, KY
Q = h/C = h/h		AND DONAL F.N.G. HE HE	SCALE	SHEET	PROJECT NO.
JAMES W. CAUDILL PE #.	06/08/18 DATE	- WARDAN POP -	1" = 20'	3 OF 3	DILLON/DILLON2_PRO20

# Filing CONTAINS LARGE OR OVERSIZED DRAWINGS

Case No. 2018-00255

RECEIVED ON: 08/13/2018

Utility ID	Utility Name	Utility Type	Class	City	State
4107900	365 Wireless, LLC	Cellular	D	Atlanta	GA
4109300	Access Point, Inc.	Cellular	D	Cary	NC
4108300	Air Voice Wireless, LLC	Cellular	Α	<b>Bloomfield Hill</b>	MI
4110650	Alliant Technologies of KY, L.L.C.	Cellular	С	Morristown	IJ
44451184	Alltel Communications, LLC	Cellular	A	Basking Ridge	NJ
4110850	AltaWorx, LLC	Cellular	С	Fairhope	AL
4107800	American Broadband and Telecommunications Company	Cellular	С	Toledo	ОН
4108650	AmeriMex Communications Corp.	Cellular	D	Dunedin	FL
4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular	D	Virginia Beach	VA
4110700	Andrew David Balholm dba Norcell	Cellular	С	Clayton	WA
4108600	BCN Telecom, Inc.	Cellular	D	Morristown	IJ
4110550	Blue Casa Mobile, LLC	Cellular	D	Santa Barbara	CA
4108750	Blue Jay Wireless, LLC	Cellular	С	Carrollton	ТХ
4111050	BlueBird Communications, LLC	Cellular	C	New York	NY
4202300	Bluegrass Wireless, LLC	Cellular	A	Elizabethtown	KY
4107600	Boomerang Wireless, LLC	Cellular	В	Hiawatha	IA
4105500	BullsEve Telecom, Inc.	Cellular	D	Southfield	MI
4110050	CampusSims, Inc.	Cellular	D	Boston	MA
4100700	Cellco Partnership dha Verizon Wireless	Cellular	Δ	Basking Ridge	NI
4106600	Cintex Wireless, LIC	Cellular	D	Rockville	MD
4111000	ComAnn Technologies LLC	Cellular	C	Melrose	MA
4101900	Consumer Cellular, Incorporated	Cellular	Δ	Portland	OR
4106400	Credo Mobile Inc	Cellular	Δ	San Francisco	CA
4108850	Cricket Wireless 11C	Cellular	Δ	San Antonio	TY
4001900	CTC Communications Corn. d/h/a Earthlink Business I	Cellular	<u> </u>	Grand Ranids	MI
10640	Cumberland Cellular Partnershin	Cellular	Δ	Elizabethtown	KV
4101000	East Kentuchy Network 11C dba Annalachian Wireless	Cellular	^	lugi	IVV
4101000	East Relicucy Network, LLC upa Appalacitian Wheless	Cellular	A	Ocala	EI
4002500	Easy relephone Service Company dba Easy Wheless	Cellular	0	Bactionalla	OK
4109500	Excellus Communications LLC	Cellular	0	Chattanooga	TN
4105000	Elash Wireless 11C	Cellular	C	Concord	NC
4103900	France Telecom Corporate Solutions L.L.C	Cellular	0	Concord	INC.
4109350	Global Connection Inc. of America	Cellular	0		GA
4102200	Globalstar USA UC	Cellular	D	Covington	UA IA
4102200	Google North America Inc	Cellular		Mountain View	
33350363	Google North America Inc.	Cellular	A	Quincultant view	
4106000	GreatCall Inc. d/h/a litterbug	Cellular		San Diago	CA
10630	GTE Wireless of the Midwest dba Verizon Wireless	Cellular	A	San Diego	NI
4110600	Horizon River Technologies 11C	Cellular	A C	Atlanta	
4103100	i-Wireless IIC	Cellular		Alidilla	GA IVV
4109900	IM Telecom LIC d/h/a Infiniti Mahila	Cellular	A	Tulco	NI
22215260		Cellular	0	Tuisa New York	NIV
10072	Kobi America, mc.	Cellular	D	New York	NT
10672	Kentucky RSA #1 Partnership	Cellular	A	Basking Kloge	
10601	Kentucky RSA #5 Cellular General	Cellular	A	Elizabethtown	KT
4100750	Kenatel Inc. dha telecom mohi	Cellular	A	Labortown	DA
4110900		Cellular	C	Dotroit	PA NAI
4107200	Ivramobile USA Inc	Cellular	0	Nowark	NI
4109900	MetroPCS Michigan 110	Collular	A	Rollouic	
4109650	Mitel Cloud Senires Inc	Collular	0	Moso	A7
4203050	New Cingular Wireless DC 11C dba AT&T Mobility DC	Collular	A	San Antonio	TY
10900	New Par dha Verizon Wireless	Cellular	A	Backing Bidge	NI
4000800	Nextel West Corporation	Cellular	0	Overland Dark	KC
4001200	NPCR Inc. dba Nextel Partners	Cellular	0	Overland Park	KC
	IN ON THE UDA NEALEI FAILIEIS	Cenular	U	Overland Park	

4001800	OnStar, LLC	Cellular	A	Detroit	MI
4110750	Onvoy Spectrum, LLC	Cellular	С	Plymouth	MN
4109050	Patriot Mobile LLC	Cellular	D	Southlake	TX
4110250	Plintron Technologies USA LLC	Cellular	D	Bellevue	WA
33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	OH
4202100	Powertel/Memphis, Inc. dba T-Mobile	Cellular	A	Bellevue	WA
4107700	Puretalk Holdings, LLC	Cellular	A	Covington	GA
4106700	Q Link Wireless, LLC	Cellular	Α	Dania	FL
4108700	Ready Wireless, LLC	Cellular	В	Hiawatha	IA
4110500	Republic Wireless, Inc.	Cellular	D	Raleigh	NC
4111100	ROK Mobile, Inc.	Cellular	С	Culver City	CA
4106200	Rural Cellular Corporation	Cellular	A	<b>Basking Ridge</b>	IJ
4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	D	Los Angeles	CA
4109150	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Freemont	NE
4106300	SI Wireless, LLC	Cellular	A	Carbondale	IL
4110150	Spectrotel, Inc. d/b/a Touch Base Communications	Cellular	D	Neptune	NJ
4200100	Sprint Spectrum, L.P.	Cellular	A	Atlanta	GA
4200500	SprintCom, Inc.	Cellular	A	Atlanta	GA
4109550	Stream Communications, LLC	Cellular	D	Dallas	TX
4110200	T C Telephone LLC d/b/a Horizon Cellular	Cellular	D	Red Bluff	CA
4202200	T-Mobile Central, LLC dba T-Mobile	Cellular	A	Bellevue	WA
4002500	TAG Mobile, LLC	Cellular	D	Carroliton	TX
4109700	Telecom Management, Inc. dba Pioneer Telephone	Cellular	D	South Portland	ME
4107200	Telefonica USA, Inc.	Cellular	D	Miami	FL
4108900	Telrite Corporation dba Life Wireless	Cellular	D	Covington	GA
4108450	Tempo Telecom, LLC	Cellular	D	Kansas City	MO
4109950	The People's Operator USA, LLC	Cellular	D	New York	NY
4109000	Ting, Inc.	Cellular	Α	Toronto	ON
4110400	Torch Wireless Corp.	Cellular	D	Jacksonville	FL
4103300	Touchtone Communications, Inc.	Cellular	D	Whippany	NJ
4104200	TracFone Wireless, Inc.	Cellular	D	Miami	FL
4002000	Truphone, Inc.	Cellular	D	Durham	NC
4110300	UVNV, Inc.	Cellular	D	Costa Mesa	CA
4105700	Virgin Mobile USA, L.P.	Cellular	A	Atlanta	GA
4110800	Visible Service LLC	Cellular	С	Lone Tree	co
4106500	WiMacTel, Inc.	Cellular	D	Palo Alto	CA
4110950	Wing Tel Inc.	Cellular	С	New York	NY
4109900	Wireless Telecom Cooperative, Inc. dba the Wireless Freeway	Cellular	D	Louisville	KY

è