

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

NOV 1 5 2013

PUBLIC SERVICE

COMMISSION

In the Matter of:

THE APPLICATION OF)
NEW CINGULAR WIRELESS PCS, LLC)
AND AMERICAN TOWERS LLC)
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2013-00386
CONVENIENCE AND NECESSITY TO CONSTRUCT)
A WIRELESS COMMUNICATIONS FACILITY)
IN THE COMMONWEALTH OF KENTUCKY)
IN THE COUNTY OF OHIO)

SITE NAME: MCHENRY

APPLICATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility ("AT&T Mobility"), and American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC ("Applicants"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submit this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of AT&T Mobility with wireless communications services.

In support of this Application, Applicants respectfully provide and state the following information:

- 1. The complete name and address of the Applicants: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility, having a local address of 601 West Chestnut Street, Louisville, Kentucky 40203; American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC, having a mailing address of 116 Huntington Avenue, Boston, MA 02116.
- 2. Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 3. The Certificate of Authority filed with the Kentucky Secretary of State for AT&T Mobility was attached to a prior application and is part of the case record for PSC case number 2011-00473 and is hereby incorporated by reference. A certificate of formation for American Towers LLC is attached as part of **Exhibit A**.
- 4. AT&T Mobility operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the AT&T Mobility's FCC license to provide wireless services is attached to this Application or described as part of **Exhibit A**, and the facility will be constructed and operated in accordance with applicable FCC regulations. American Towers LLC will build, own and manage the tower and tower compound where AT&T Mobility will place its equipment building, antennas, radio electronics equipment and appurtenances.
 - 5. The public convenience and necessity require the construction of the

proposed WCF. The construction of the WCF will bring or improve AT&T Mobility's services to an area currently not served or not adequately served by increasing coverage and/or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in the AT&T Mobility communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in AT&T Mobility's network design that must be in place to provide adequate coverage to the service area.

6. To address the above-described service needs, Applicants propose to construct a WCF at 93 Pearl Lane, Beaver Dam, KY 42320 (37°23'01.78" North latitude, 86°55'03.72" West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Charles and Mary Brumley pursuant to a Deed recorded at Deed Book 299, Page 241 in the office of the Ohio County Clerk. The proposed WCF will consist of a 255-foot tall tower, with an approximately 10-foot tall lightning arrestor attached at the top, for a total height of 265-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the AT&T Mobility's radio electronics equipment and appurtenant equipment. The WCF equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as **Exhibit B** and **Exhibit C**.

- 7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as **Exhibit D**, along with a map of suitable scale showing the location of the proposed new construction as well as the location of any like facilities located anywhere within the map area, along with a map key showing the owner of such other facilities.
- 8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas has also been included as part of **Exhibit B**.
- 9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit C**.
- 10. Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and have concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate the necessary antennas on an existing structure. When suitable towers or structures exist, AT&T Mobility attempts to co-locate on existing structures such as communications towers or other structures capable of supporting its facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site. A report detailing the site selection process for the subject site (including documentation as to why co-location is not possible for this site) is attached as **Exhibit E**.

- 11. A copy of the Application for Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as **Exhibit F**.
- 12. A copy of the Application for Kentucky Airport Zoning Commission ("KAZC")

 Approval to construct the tower is attached as **Exhibit G**.
- 13. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as **Exhibit H**. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.
- 14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit I**. The name and telephone number of the preparer of **Exhibit I** are included as part of this exhibit.
- 15. Applicants, pursuant to a written agreement, have acquired the right to use the WCF site and associated property rights. A copy of the agreement or an abbreviated agreement recorded with the County Clerk is attached as **Exhibit J**.
- 16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit C** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.

- 17. The Construction Manager for the proposed facility is Ron Rohr, and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained **Exhibits B & C**.
- 18. As noted on the Survey attached as part of **Exhibit B**, the surveyor has determined that the site is not within any flood hazard area.
- 19. **Exhibit B** includes a map drawn to a scale of no less than 1 inch equals 200 feet that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in **Exhibit B**.
- 20. Applicants have notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the telephone number and address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit K** and **Exhibit L**, respectively.
- 21. Applicants have notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County

Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit M**.

- 22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit N**. Notice of the location of the proposed facility has also been published in a newspaper of general circulation in the county in which the WCF is proposed to be located.
- 23. The general area where the proposed facility is to be located is not zoned and sparsely populated.
- 24. The process that was used by the AT&T Mobility radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. AT&T Mobility's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered when searching for sites for antennas that would provide the coverage deemed necessary by AT&T Mobility. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the

necessary search area within which the site should be located pursuant to radio frequency requirements is attached as **Exhibit O**.

- 25. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
- 26. All responses and requests associated with this Application may be directed to:

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369
Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400
Telefax: (502) 543-4410
Email: pikelegal@aol.com

Patrick W. Turner
General Attorney-Kentucky
AT&T Kentucky
1600 Williams Street
Suite 5200
Columbia, South Carolina 29201
Telephone: (803) 401-2900
Telefax: (803) 254-1731
Email: pt1285@att.com

Matthew Russell Attorney American Towers LLC 116 Huntington Avenue Boston, MA 01226

Telephone: 781.926.7154

Email: matthew.russell@americantower.com

WHEREFORE, Applicants respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

David A. Pike

Pike Legal Group, PLLC

1578 Highway 44 East, Suite 6

P. O. Box 369

Shepherdsville, KY 40165-0369 Telephone: (502) 955-4400

Telefax: (502) 543-4410 Email: pikelegal@aol.com

Attorney for New Cingular Wireless PCS, LLC

d/b/a AT&T Mobility

and

Matthew Russell 116 Huntington Avenue Boston, MA 01226

Telephone: 781.926.7154

Email: <u>matthew.russell@americantower.com</u>
Attorney for American Towers LLC d/b/a Delaware

American Towers LLC

LIST OF EXHIBITS

Α **FCC License Documentation** В Site Development Plan: 500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan Vertical Tower Profile Tower and Foundation Design С D Competing Utilities, Corporations, or Persons List and Map of Like Facilities in Vicinity Co-location Report Ε F FAA G Kentucky Airport Zoning Commission Н Geotechnical Report Directions to WCF Site J Copy of Real Estate Agreement Κ **Notification Listing** Copy of Property Owner Notification L Μ Copy of County Judge/Executive Notice Ν Copy of Posted Notices 0 Copy of Radio Frequency Design Search Area

EXHIBIT A FCC LICENSE DOCUMENTATION

FCC Home | Search | Updates | E-Filing | Initiatives | For Consumers | Find People

Universal Licensing System

FCC > WTB > ULS > Online Systems > License Search

FCC Site Map

ULS License

PCS Broadband License - WQNE326 - New Cingular Wireless PCS, LLC

7 HELP

New Search Refine Search Return to Results Printable Page Reference Copy Amap License

MARKET

Call Sign Status

MAIN

WQNE326

Active

ADMIN

Radio Service

LOCATIONS

CW - PCS Broadband

Auth Type Regular

Market

Market

MTA026 - Louisville-Lexington- Channel Block Evansvill

Submarket

Associated Frequencies (MHz)

001870.00000000-001885.00000000 001950.00000000-

001965.00000000

Dates

Grant

12/21/2010 11/24/2012 Expiration Cancellation 06/23/2015

Effective

Buildout Deadlines

1st

2nd

Notification Dates

1st

2nd

Licensee

FRN

0003291192

(View Ownership Filing)

Type Limited Liability Company

Licensee

New Cingular Wireless PCS, LLC 2200 N. Greenville Ave, 1W Richardson, TX 75082

ATTN Reginald Youngblood

P:(972)234-7003 F:(972)301-6893

E:FCCMW@att.com

Contact

AT&T Mobility LLC Michael P Goggin 1120 20th Street, NW - Suite 1000

Washington, DC 20036 ATTN Michael P. Goggin P:(202)457-2055 F:(202)457-3073

E:michael.p.goggin@att.com

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

This license did not have tribal land bidding credits.

Demographics

Race

Ethnicity Gender

ULS Help <u>ULS Glossary</u> - <u>FAQ</u> - <u>Online Help</u> - <u>Technical Support</u> - <u>Licensing Support</u>

<u>CORES</u> - <u>ULS Online Filing</u> - <u>License Search</u> - <u>Application Search</u> - <u>Archive License Search</u> **ULS Online Systems**

About ULS Privacy Statement - About ULS - ULS Home

SEARCH **Basic Search** By Call Sign

FCC | Wireless | ULS | CORES

Help | Tech Support Phone: 1-877-480-3201

Federal Communications Commission 445 12th Street SW Washington, DC 20554

TTY: 1-717-338-2824

Submit Help Request

ULS License

PCS Broadband License - WPTJ404 - NEW CINGULAR WIRELESS PCS, LLC

Call Sign WPTJ404 Radio Service CW - PCS Broadband

Status Active Auth Type Regular

Market

Market BTA338 - Owensboro, KY Channel Block C

Submarket 7 Associated 001895.000000000-Frequencies 001910.00000000

(MHz) 001910.00000000-001990.00000000

Dates

Grant 10/29/2009 Expiration 09/29/2019

Effective 11/24/2012 Cancellation

Buildout Deadlines

1st 09/29/2004 2nd 09/29/2009

Notification Dates

1st 10/22/2001 2nd 10/22/2001

Licensee

FRN 0003291192 Type Limited Liability Company

Licensee

NEW CINGULAR WIRELESS PCS, LLC P:(972)234-7003 2200 N. Greenville Ave, 1W F:(972)301-6893 Richardson, TX 75082 E:FCCMW@att.com

ATTN Reginald Youngblood

Contact

AT&T MOBILITY LLC P:(202)457-2055 Michael P Goggin F:(202)457-3073

1120 20th Street, NW - Suite 1000 E:michael.p.goggin@att.com

Washington, DC 20036 ATTN Michael P. Goggin

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

This license did not have tribal land bidding credits.

500-						
De	m	oq	ra	pi	1	CS

Race

Ethnicity Gender **ULS License**

PCS Broadband License - WPOI255 - NEW CINGULAR WIRELESS PCS, LLC

Call Sign WPOI255 Radio Service CW - PCS Broadband

Status Active Auth Type Regular

Market

Market MTA026 - Louisville-Lexington- Channel Block A

Evansvill

Submarket 19 Associated 001850.00000000-

Frequencies 001865.00000000 (MHz) 001930.00000000-

001945.00000000

Dates

Grant 07/07/2005 Expiration 06/23/2015

Effective 11/24/2012 Cancellation

Buildout Deadlines

1st 06/23/2000 2nd 06/23/2005

Notification Dates

1st 07/07/2000 2nd 02/17/2005

Licensee

FRN 0003291192 Type Limited Liability Company

Licensee

NEW CINGULAR WIRELESS PCS, LLC P:(972)234-7003 2200 N. Greenville Ave, 1W F:(972)301-6893 E:FCCMW@att.com

ATTN Reginald Youngblood

Contact

AT&T MOBILITY LLC P:(202)457-2055 Michael P Goggin F:(202)457-3073

1120 20th Street, NW - Suite 1000 E:michael.p.goggin@att.com

Washington, DC 20036 ATTN Michael P. Goggin

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

LULS License - PCS Broadband License - WPOI255 - NEW CINGULAR WIRELESS PC... Page 2 of 2

11115	ncense	ulu II	ot nav	e tribai	ianu	Didding	credits.	

Demographics

Race

Ethnicity Gender **ULS License**

PCS Broadband License - KNLH652 - New Cingular Wireless PCS, LLC

This license has pending applications: 0005924646

Call Sign KNLH652 Radio Service CW - PCS Broadband

Status Active Auth Type Regular

Market

Market BTA338 - Owensboro, KY Channel Block F

Submarket 0 Associated 001890.00000000-

Frequencies 001895.00000000 (MHz) 001970.00000000-

001975.00000000

Dates

Grant 03/19/2009 Expiration 04/28/2017

Effective 11/24/2012 Cancellation

Buildout Deadlines

1st 04/28/2002 2nd

Notification Dates

1st 04/26/2002 2nd

Licensee

FRN 0003291192 Type Limited Liability Company

Licensee

New Cingular Wireless PCS, LLC P:(972)234-7003 2200 N. Greenville Ave, 1W F:(972)301-6893 Richardson, TX 75082 E:FCCMW@att.com

ATTN Reginald Youngblood

Contact

AT&T Mobility LLC P:(202)457-2055
Michael P Goggin F:(202)457-3073

1120 20th Street, NW - Suite 1000 E:michael.p.goggin@att.com

Washington, DC 20036 ATTN Michael P. Goggin

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal La	nd	Bidding	Credits
-----------	----	---------	---------

This license did not have tribal land bidding credits.

Demographics

Race

Ethnicity

Gender

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE DO HEREBY CERTIFY THAT THE ATTACHED IS A TRUE AND

CORRECT COPY OF THE CERTIFICATE OF CONVERSION OF A DELAWARE

CORPORATION UNDER THE NAME OF "AMERICAN TOWERS, INC." TO A

DELAWARE LIMITED LIABILITY COMPANY, CHANGING ITS NAME FROM

"AMERICAN TOWERS, INC." TO "AMERICAN TOWERS LLC", FILED IN THIS

OFFICE ON THE THIRTIETH DAY OF JUNE, A.D. 2011, AT 11:54 O'CLOCK

A.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF

THE AFORESAID CERTIFICATE OF CONVERSION IS THE THIRTIETH DAY OF

JUNE, A.D. 2011, AT 11:59 O'CLOCK P.M.

2525871 8100V

110780451

Jeffrey W. Bullock, Secretary of State

AUTHENT\(CATION: 8874959 \)

DATE: 06-30-11

You may verify this certificate online at corp.delaware.gov/authver.shtml

State of Delaware Secretary of State Division of Corporations Delivered 11:54 AM 06/30/2011 FILED 11:54 AM 06/30/2011 SRV 110780451 - 2525871 FILE

STATE OF DELAWARE CERTIFICATE OF CONVERSION FROM A CORPORATION TO A LIMITED LIABILITY COMPANY PURSUANT TO SECTION 18-214 OF THE LIMITED LIABILITY ACT

1.) The jurisdiction where the Corporation first formed is <u>Delaware</u> .
2.) The jurisdiction immediately prior to filing this Certificate is <u>Delaware</u> .
3.) The date the corporation first formed is <u>July 19, 1995</u> .
4.) The name of the Corporation immediately prior to filing this Certificate is American Towers, Inc.
5.) The name of the Limited Liability Company as set forth in the Certificate of Formation is American Towers LLC.
6.) The effective date of this Certificate of Conversion is the 30 th of June, 2011 at 11:59 p.m.
IN WITNESS WHEREOF, the undersigned have executed this Certificate on the 2 day of June, 2011 A.D.

Name: Michael John McCormack
Print or Type

uthorized Person

Delaware

PAGE 2

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE DO HEREBY CERTIFY THAT THE ATTACHED IS A TRUE AND

CORRECT COPY OF CERTIFICATE OF FORMATION OF "AMERICAN TOWERS

LLC" FILED IN THIS OFFICE ON THE THIRTIETH DAY OF JUNE, A.D.

2011, AT 11:54 O'CLOCK A.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF THE AFORESAID CERTIFICATE OF FORMATION IS THE THIRTIETH DAY OF JUNE, A.D. 2011, AT 11:59 O'CLOCK P.M.

2525871 8100V

110780451

AUTHENTY CATION: 8874959

DATE: 06-30-11

Jeffrey W. Bullock, Secretary of State

You may verify this certificate online at corp.delaware.gov/authver.shtml

State of Delaware Secretary of State Division of Corporations Delivered 11:54 AM 06/30/2011 FILED 11:54 AM 06/30/2011 SRV 110780451 - 2525871 FILE

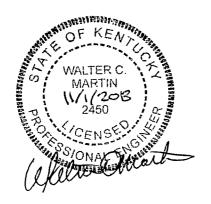
CERTIFICATE OF FORMATION

OF

AMERICAN TOWERS LLC

- 1. The name of the limited liability company is American Towers LLC.
- 2. The address of its registered office in the State of Delaware is Corporation Trust Center, 1209 Orange Street, in the City of Wilmington, Delaware 19801. The name of its registered agent at such address is The Corporation Trust Company.
- 3. The effective date of this Certificate of Formation is June 30, 2011 at 11:59 p.m.

IN WITNESS WHEREOF, the undersigned have executed this Certificate of Formation of American Towers LLC this 29 day of June, 2011.

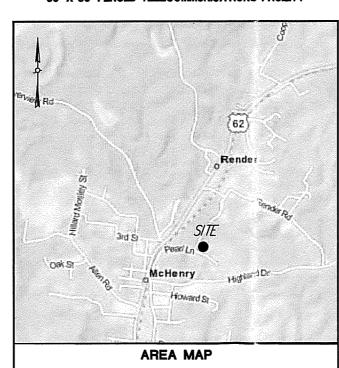

Anthorized Berson

Michael John McCormack

EXHIBIT B

SITE DEVELOPMENT PLAN:

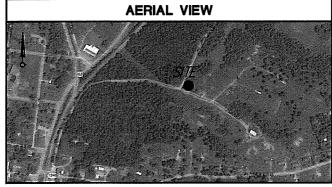
500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION
SITE PLAN
VERTICAL TOWER PROFILE


MERICAN

CORPORATION

McHenry

ATC #281331/ AT&T #143428


NEW 255' SELF SUPPORT TOWER W/ 10' LIGHTING ARRESTOR INSTALLED WITHIN NEW 80' X 80' FENCED TELECOMMUNICATIONS FACILITY

DIRECTIONS

START OUT GOING SOUTHEAST ON S. MAIN ST/US-231 FROM THE OHIO COUNTY COURTHOUSE IN HARTFORD, KY TOWARD W WASHINGTON ST. CONTINUE TO FOLLOW S MAIN ST. TURN RIGHT ONTO US-62. TURN LEFT ONTO RENDER ROAD. TURN RIGHT ONTO PEARL LANE. 93 PEARL LANE IS ON YOUR RIGHT.

	SHEET INDEX
DRAWING SHEET	DRAWING TITLE
T-1	TITLE SHEET
S-1	500' ADJOINERS AND ABUTTERS
S-2	SITE SURVEY
C-1	COMPOUND PLAN
C1-1	DIM. TO PROPERTY LINES
C-2	TOWER ELEVATION

AMERICAN TOWER REVIEW

THE FOLLOWING PARITES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS

ATC R.F.:	DATE:
ATC ZONING:	DATE:
ATC S.A.:	DATE:
ATC P & T:	DATE:
ATC CONST.:	DATE:
ATC A&E MGR.:	DATE:
PROPERTY OWNER:	DATE:

REVISIONS	07-01-13 REMSED LI	08—26—13 REVISED DRA						
D	ATE	CO	MPI	LED	08	-28	13	_
			} L				DATE:	06-20-13
McHENRY			i i				CHECKED BY:	= 83
SITE NAME:							DRAWN BY:	SMF
FSTA	N F	RO		T N 8572	O.:			

Land Surveyors and Consulting Engineer 436 E Wanook Street Louisville, KY 40217 Phone: (802) 635-8886 (802) 635-5111

CHARLES & MARY BRUMLEY

93 PEARL LANE BEAVER DAM, KY 42320

93 PEARL LANE BEAVER DAM, KY 42320

ATC #281331/ AT&T #143428

PROPERTY OWNER:

SITE ADDRESS:

SITE NUMBER:

SITE INFORMATION

SITE NAME: SITE NUMBER: SITE ADDRESS MCHENRY 143428

93 PEARL LANE

BEAVER DAM, KENTUCKY 42320

JURISDICTION: TAX ACCOUNT ID: OHIO COUNTY

MAP/PARCEL: 118-112 & 113 & 115

PARCEL SIZE/COMPOUND SIZE 100' X 100'

37" 23" 01.78" 86" 55" 03.72"

GROUND ELEVATION:

SITE COORDINATES:

+/- 436 SELF SUPPORT TOWER STRUCTURE TYPE:

STRUCTURE HEIGHT: GROUND LANDLORD ADDRESS:

255' SELF SUPPORT TOWER CHARLES & MARY BRUMLEY 93 PEARL LANE

BEAVER DAM, KY 42320

LANDLORD NAME:

CHARLES & MARY BRUMLEY 93 PEARL LANE

LANDLORD ADDRESS: APPLICANT:

APPLICANT PHONE:

BEAVER DAM, KY 42320 AMERICAN TOWER CORPORATION

116 HUNTINGTON AVE.

BOSTON, MA 02116 (617) 375--7500

CODE ANALYSIS

BUILDING CODE:

IBC 2010 KY BLDG Code 2007

ELECTRICAL CODE:

NEC 2005

FIRE SAFETY CODE:

NFPA 101 U (UTILITY)

USE GROUP:

CONSTRUCTION TYPE:


PROJECT DESCRIPTION

1. NEW 100' X 100' LEASED / 80' x 80' FENCED TELECOMMUNICATIONS FACILITY TO BE INSTALLED.

2. NEW 255' SELF SUPPORT TOWER TO BE INSTALLED WITHIN FENCED TELECOMMUNICATIONS FACILITY.

3. NEW ELECTRICAL SERVICE TO BE INSTALLED.

4. NEW TELEPHONE SERVICE TO BE INSTALLED.

A. 118-112 & 113 & 115 BRUMLEY CHARLES & MARY BEAVER DAM, KY 42320

- PHARIS JIMMY & ROBIN BEAVER DAM KY 42320
- BEAVER DAM KY 42320
- REBECCA (LIFE ESTATE) 2416 HIGHLAND DR. ZONING: NO ZONING
 - MCHENERY, KY 42354 ZONING: NO ZONING

Land Surveyors and Consulting Engineer 428 E Warnock Street Louisville, KY 40217

Phone: (502) 835-5886 (502) 636-5111 Fax: (502) 836-5263

SITE NUMBER: ATC \$281331/ AT&T \$143428

SITE NAME:

MCHENRY

SITE ADDRESS: 93 PEARL LANE BEAVER DAM, KY 42320

LEASE AREA: 10,000 SQ.FT.

PROPERTY OWNER: BRUMLEY, CHARLES & MARY 93 PEARL LANE BEAVER DAM, KY 42320

MAP NUMBER:

118

PARCEL NUMBER: 112, 113 & 115

SOURCE OF TITLE:

DEED 299, PAGE 241

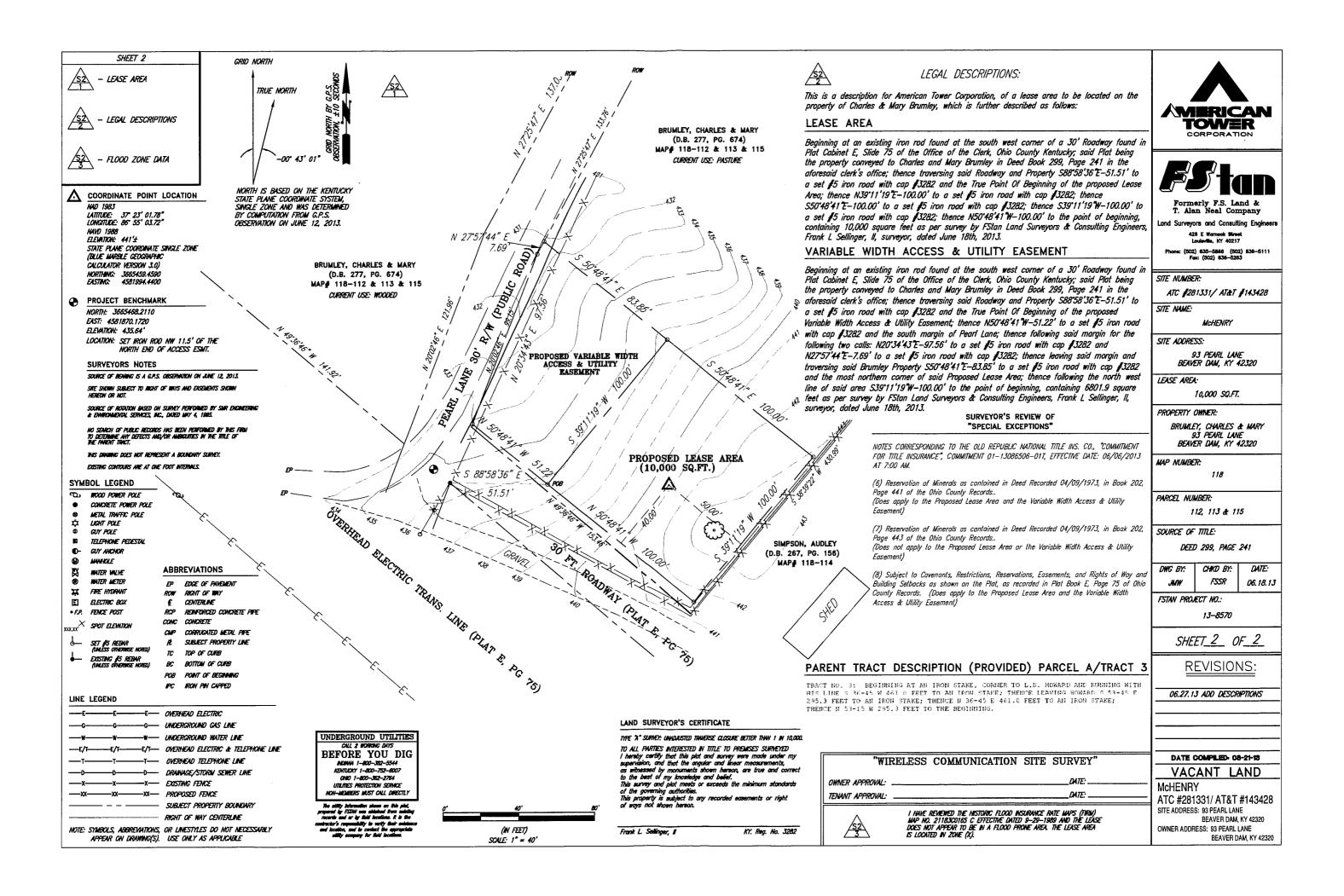
DATE:

06.20.13

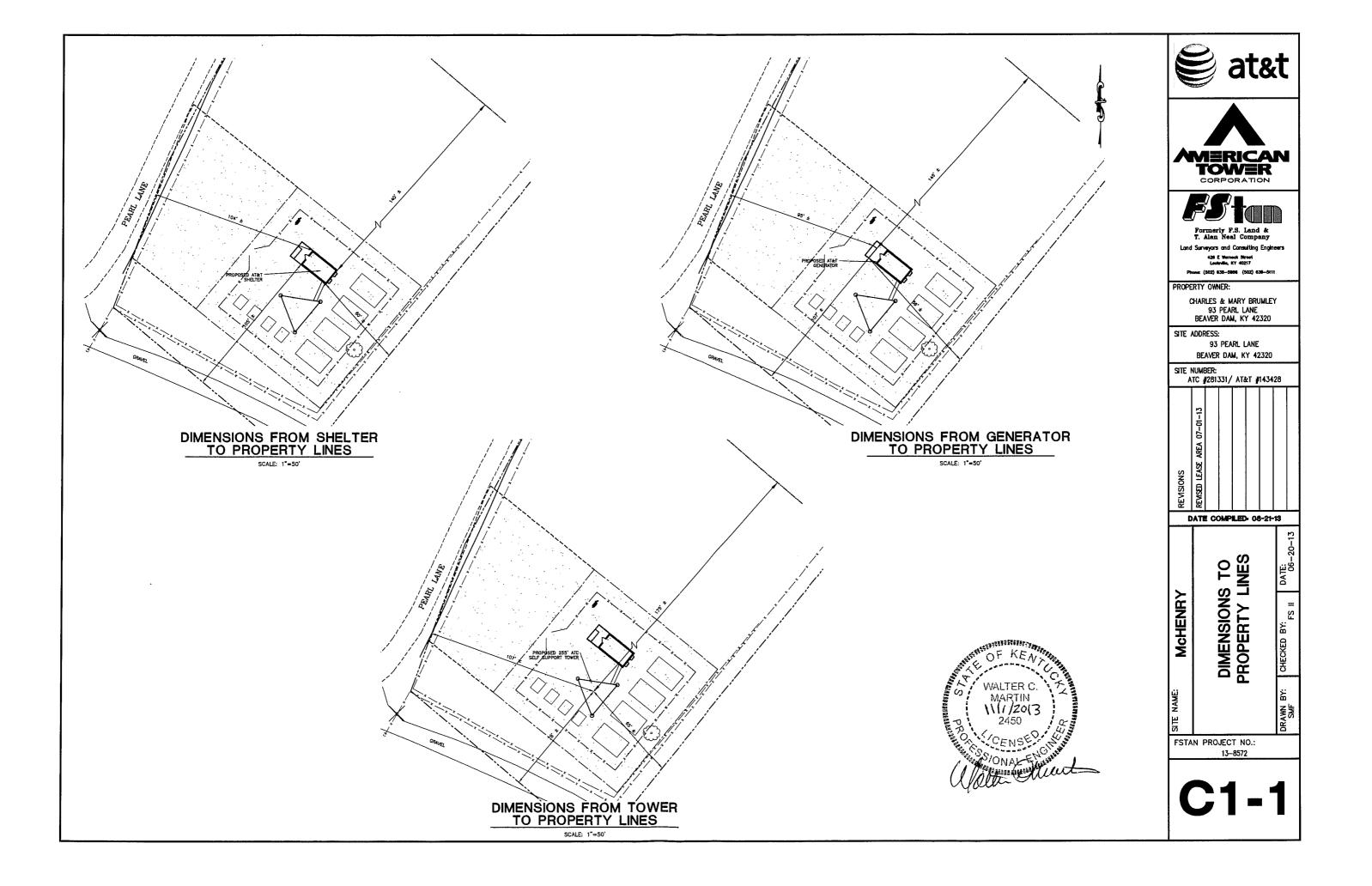
DWG BY: CHKD BY: F5# SMF FSTAN PROJECT NO.:

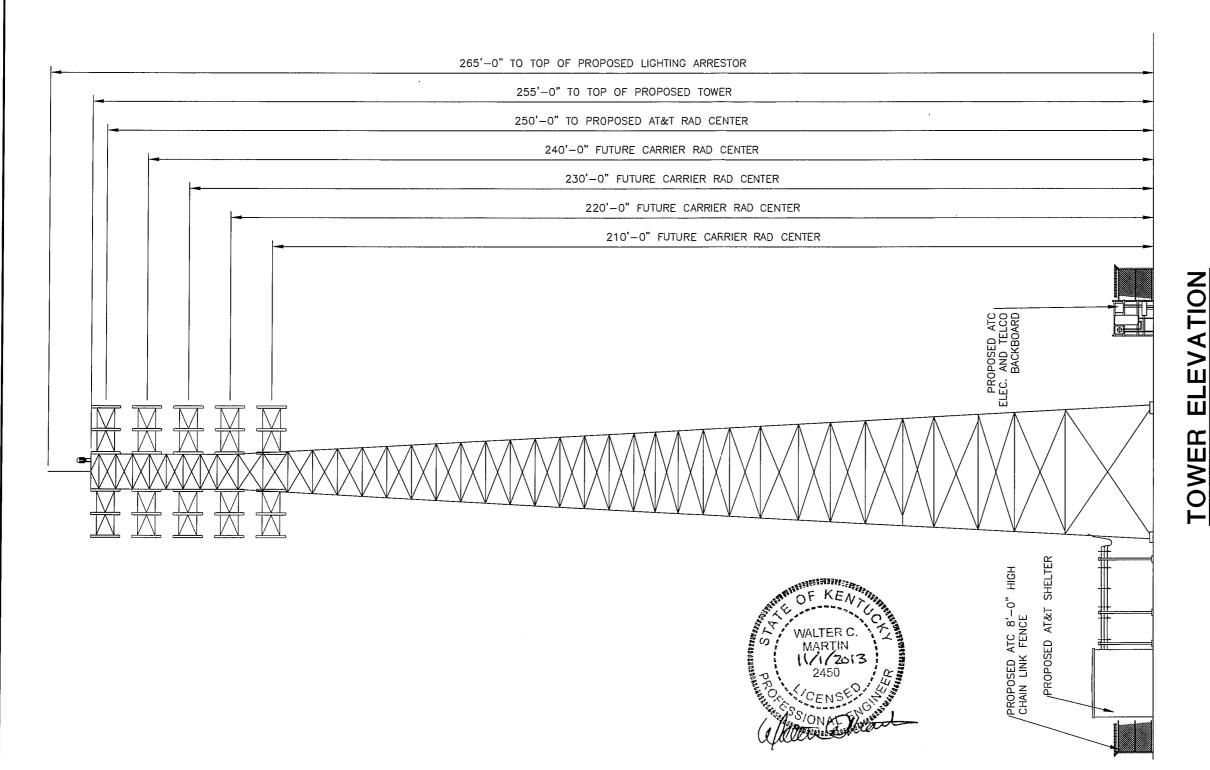
13-8570

SHEET_1_ OF_2

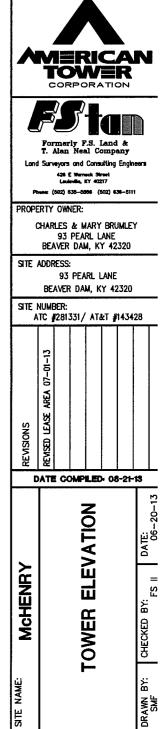

REVISIONS:

REVISED LEASE AREA 07-01-13


DATE COMPILED: 08-21-18


McHENRY ATC #281331/ AT&T #143428 SITE ADDRESS: 93 PEARL LANE BEAVER DAM, KY 42320 OWNER ADDRESS: 93 PEARL LANE

BEAVER DAM, KY 42320



NOTE: THE ELEVATIONS SHOWN ON THIS SHEET ARE FOR PICTORIAL PURPOSES ONLY. THIS DESIGN WAS PROVIDED BY OTHERS. REFER TO TOWER PLANS FOR TOWER DESIGN.

TO SCALE

C-2

13-8572

FSTAN PROJECT NO.:

EXHIBIT C TOWER AND FOUNDATION DESIGN

October 29, 2013

Mr. Tony Lucas American Tower Corp.

Reference: Valmont #227145 V-27.0 x 255' Self-Supporting Tower Site Name: #281331 McHenry Site – Beaver Dam, KY - Ohio County

Dear Mr. Lucas:

Thank you for your inquiry concerning tower design codes and practices as they relate to your tower design in Beaver Dam, KY.

Valmont has been designing and building guyed, self-supporting towers and monopoles since the early 1950's. During this time, we have sold thousands of structures ranging in height from as little as 50' high to in excess of 1400'. These structures were individually engineered to accommodate the loading requirements imparted by the design wind speed, ice considerations, antenna loading, and other factors dictated by the national code requirements existing at the time the tower was built.

The ANSI/TIA-222-G Standard represents the latest refinement of specific minimum requirements for tower engineers and manufacturers to follow to help assure that the tower structure and its foundations are designed to meet the most realistic conditions for local weather while assuring that the tower is designed to stringent factors of safety. This tower is designed to 90 MPH (no ice) and 30 MPH (3/4" ice) per ANSI/TIA-222-G with Class II, Topographical category 1 and Exposure C criteria.

The "G" version of the code incorporates an escalating wind factor based on tower height. Thus 90 mph is the basic design wind speed at the 10 meter height. This speed is then increased in stages up the tower. "Meeting the code" implies that the design quoted has all of the code requirements for safety factors intact at the wind speed specified. Thus, the ultimate survival speed would be considerably higher. Again, adding ice to the design loading also adds a further safety factor, in effect, to the final tower strength.

While failure is extremely rare in any kind of tower, it is especially so for monopoles and self-supporting towers. In fact, only if a self-supporting tower were subjected to a direct hit from a tornado or the severest of hurricanes would failure be predicted. We are aware of very few instances of self-supporting tower failure. The most common mode of failure would be in the middle region of the tower, with the upper portion of the tower remaining connected and "bowing over" against the base of the tower. The fact that the wind is normally greater on the upper portion of the structure contributes to the likelihood of this type of failure. Thus, if a failure condition is reached, it should be reached in the upper middle region of the tower first. This tower has a theoretical failure point to bow over or fall within a 130' point radius or 50% of the total tower height, using the total given loading & the design wind speed.

As Senior Project Engineer of the company and a registered P.E. in 18 states, I oversee all engineering and applications of our towers. Valmont Structures is an AISC approved shop. All Valmont Structures welders are AWS qualified. Mathematical and physical tests are performed routinely on tower sections and designs as required. Our total design, engineer and build process has been quality audited by our customers including public utilities, telephone companies, government agencies and of course AISC.

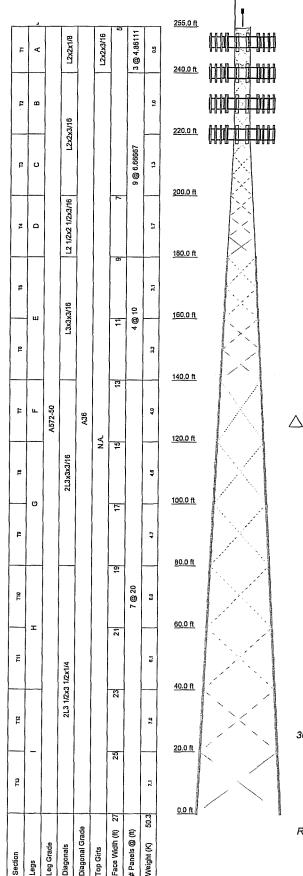
We trust the above and the attached will be helpful to you. If you should need anything else, please let us know at your convenience.

Sincerely,

Nitesh Ahuja Senior Project Engineer Extension #5257

OCT 2 9 2013

255'	——— → 11 1 ← 5' ——		
255	v – 5.0		
240'	SECTION → C 5'		
	v – 5. o		
220'	SECTION () ————— → () ← 5'		V-SERIES
220	v - 7.0		SINGLE ANGLE SECTIONS SEE PAGE 2
	SECTION		
200'———	→ ♦ ← 7'		
	V - 9.0 SECTION	İ	
180' ————	——— → / ← 9′ —		
	U - 11.0 SECTION		
160'———	→		12" BREAKDÓWN LEG SECTIONS
	U - 13.0		SEE PAGE 2
	SECTION ← 13' —		
140'	U - 15. 0 ← 13' —		
	SECTION		
120'———	——— → 【) ← 15'		
	U - 17.0 SECTION	*	
100'	→ → ← 17'		
	U - 19.0		
00'	SECTION ← 19'	•	
80'————	U - 21, 0 ← 19'		12" BREAKDOWN LEG
	SECTION		DOUBLE ANGLE SECTIONS SEE PAGES 3 AND 4
60'	—— →		
	U - 23.0 SECTION		
40'———	→ ← 23'		
	U - 25. 0		
00'	SECTION ← 25'		
20'	U - 27. 0	Ì	
	SECTION		
0'	→		
	0-0		


Nitesh Abuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. 281331 MCHENRY, KY V-27.0 X 255'

	KENTUCKY C. O. A.	15	42			- =	\/E
	APPROVED/ENG.	MVC	7/31/2013	valmo	n	t٦	V
	APPROVED/FOUND.	N/A		1-577-467-4763 Plymouth IN		RUCTI	•
	COPYRIGHT 2013			1-855-880-9191 Salem, OR	ااد	KUCI	JKES
	DRAWN BY	KWD		DRAWING NO.			
-	ENG. FILE NO. A	-22	27145-	249472			
)5	ARCHIVE F	-10	015421	PAGE	1_	0F	7_

VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, INC. ENGINEERING PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRIES, INC.

From: F1D15421.DFT - 07/31/2013 14:15 From: F1U15421.UFT - U7/31/2013 14: 15 ENG. FILE NO. A-227145-Printed from: 249472_0188.DWG - 07/31/2013 14: 17 9 07/31/2013 15: 05 ARCHIVE F-1015421

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Beacon	255	ATC Loading	240
Beacon Extender (4') 803062	255	ATC Loading	230
5/8" x 10' lightning rod	255	ATC Loading	220
ATC Loading	250		

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	P- 2.50" - 0.75" conn15' -C-(Pirod 226169)	F	#12ZG -2.00" - 0.875" connHBD-Trans (Pirod
В	P- 4.00"- 0.75" conn20' -C-Trans-6B-4B-(Pirod	1	208332)
	226184)	G	#12ZG -2.25" - 0.875" conn. (Pirod 208334)
С	P- 5.00"- 0.75" connTrans-20' -C-(Pirod	Н	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)
	226200)	1	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)
D	P- 6.00"- 0.75" connHBD-Trans-20' -C-(Pirod		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

Tower is located in Ohio County, Kentucky.
 Tower designed for Exposure C to the TIA-222-G Standard.

- Tower designed for a 90 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 30 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- 6. Tower Structure Class II.
- Topographic Category 1 with Crest Height of 0.00 ft TOWER RATING: 99.8%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 626 K UPLIFT: -557 K SHEAR: 62 K

AXIAL 288 K

SHEAR MOMENT 10 K | 1629 kip-ft

TORQUE 0 kip-ft 30 mph WIND - 0.7500 in ICE

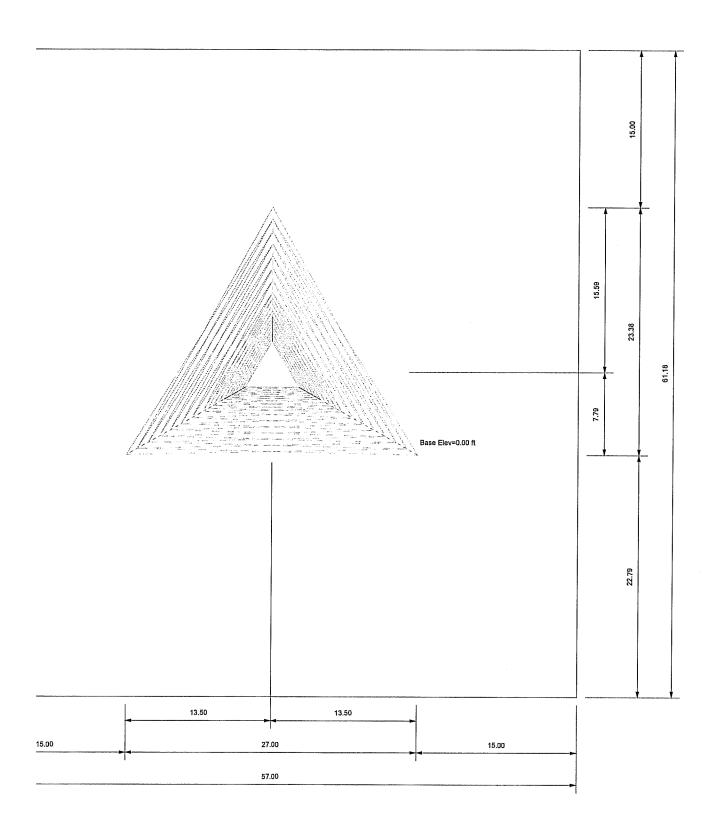
AXIAL 94 K

SHEAR MOMENT 95 K 13907 kip-ft

TORQUE 12 kip-ft REACTIONS - 90 mph WIND

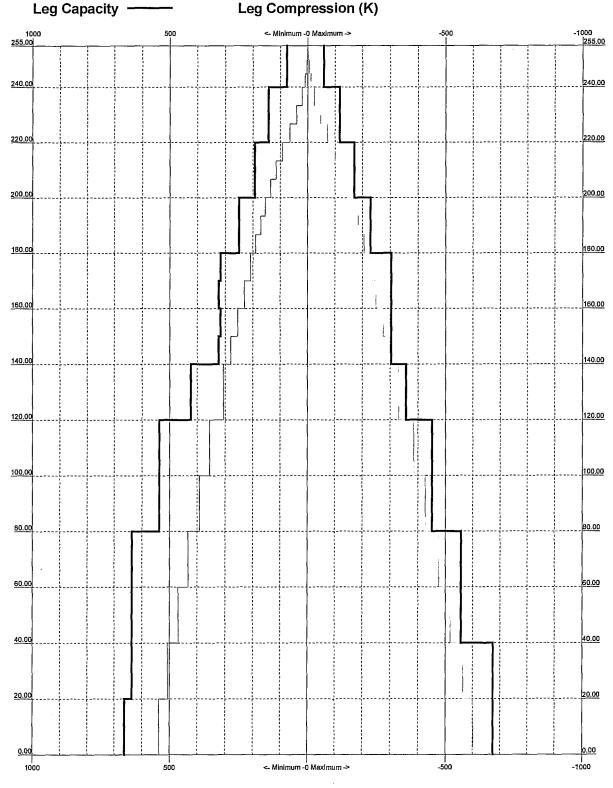
OCT 2 9 2013

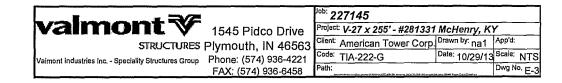
valmont∛

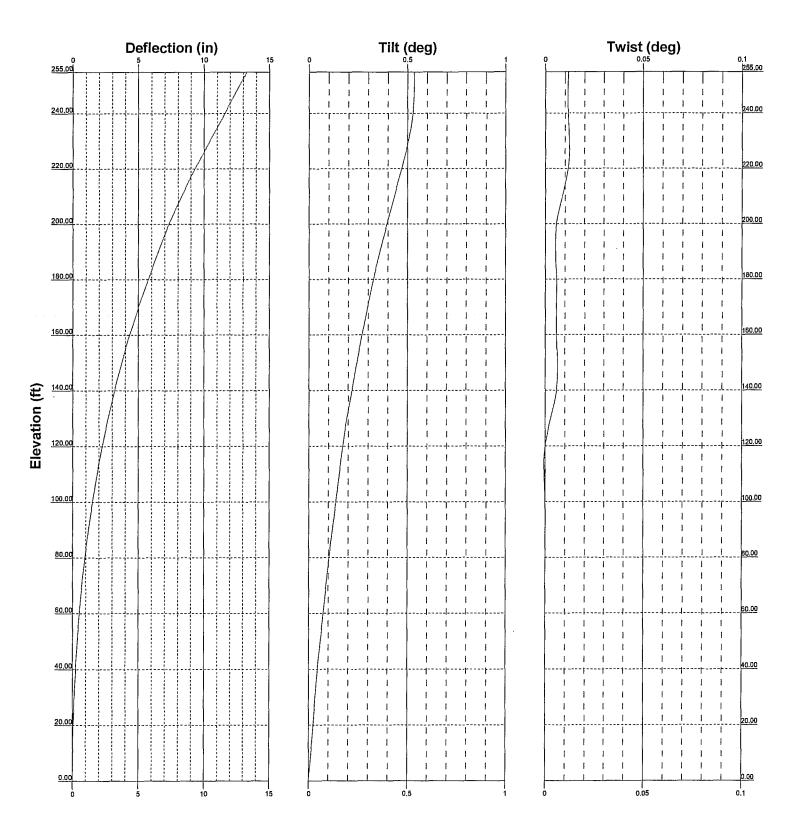

1545 Pidco Drive STRUCTURES Plymouth, IN 46563

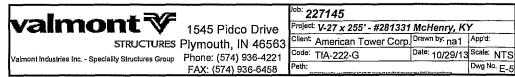
Valmont Industries Inc. - Speciality Structures Group Phone: (574) 936-4221 FAX: (574) 936-6458

ob: 227145 Project: V-27 x 255' - #281331 McHenry, KY Client: American Tower Corp. Drawn by: na1 App'd: Scale: NTS Code: TIA-222-G Date: 10/29/13 Dwg No. E-1 Path:

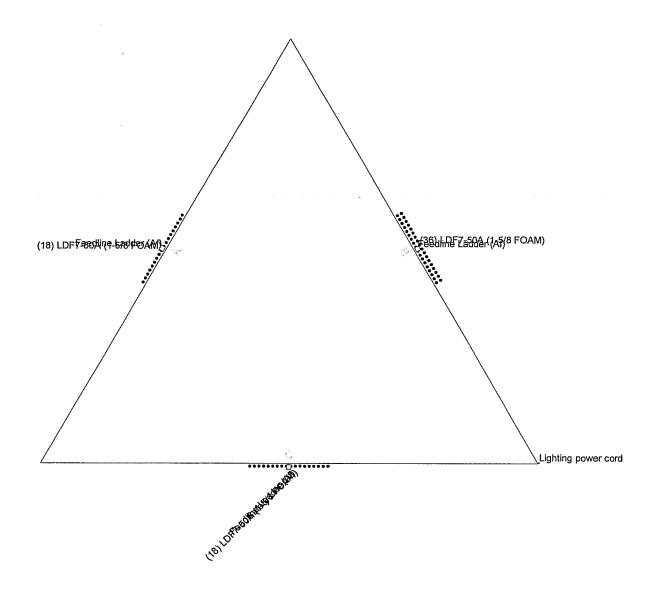



Plot Plan Total Area - 0.08 Acres




value ant RE		^{Job:} 227145			
valmont ∜	1545 Pidco Drive	Project: V-27 x 255' - #281331 McHenry, KY			
STRUCTURES	Plymouth, IN 46563	Client: American Tower Corp.	Drawn by: na1	App'd:	
Valmont Industries Inc Speciality Structures Group	Phone: (574) 936-4221	Code: TIA-222-G	Date: 10/29/13	Scale: NTS	
	FAX: (574) 936-6458	Path:	Dwg No. E-2		

TIA-222-G - 90 mph/30 mph 0.7500 in Ice Exposure C



recuille Flatt

___ App In Face ____ Truss-Leg

valr	no	nt	¥	
				_

1545 Pidco Drive STRUCTURES Plymouth, IN 46563

	^{Job:} 227145			
	Project: V-27 x 255' - #281331	McHenry, K	Y	
3	Client: American Tower Corp.	Drawn by: na1	App'd:	
	Coda: TIA-222-G	Date: 10/29/13	Scale:	NT
	Dath		Dan M	

i countre biotribution offart

0' - 255'

Round _____ Flat _____ App In Face _____ App Out Face _____ Truss Leg

255.00		Face A	1	······	7				Face B			.			Fac	e C		
					250.00				<u>§</u> †		J	250,00						
240.00		-			240.00				7/8 FO.			240.00					~~~~~~	
Ì							Ì		(18) LDF7;50A (1.5/8 FOAM									
-				***	230.00				DF7.5			230.00					1	
220.00	~~~~~				220.00	<u></u>	ļ		<u> </u>		ļ	220,00						
							l							Į				
										:								
200.00					-	ļ					l							
								i						5 				
180,00											ļ							
							İ							ļ				
160,00				**********	-						ļ							
							[<u> </u>		
140.00																		
140,00	······			~~~~	-	P 05				8			g					
	(18) LDF7-50A (1-5/8 FOAM)		(A)			Lighting power cord				Feedine Ladder (Af)			safety Line 3/8		AM)			
120.00	(1-5/		adder			hting		DAM)		lne La			Şafety	f 	5/8 FO		<u> </u>	
	F7-50/		Feedline Ladder (Af)			Ĭ		1-5/8 F		Feed					1) YO		e Lado	
	18) LD		Fer					(36) LDF7-50A (1-5/8 FDAM)						}	(18) LDF7-50A (1-5/8 FOAM)		Feedline Ladder (Al)	
100.00) upr							(18)	~~~~~~~		
								(36										
90.00																		
80.00	*******	†			-													· - -
60.00			·															
									!									
40.00																		
20.00																		
20.00																	[
			ĺ							,								
		1					ĺ				ŀ							

			27145		-	
valmont ∛	1545 Pidco Drive	Project:	V-27 x 255' - #281331	McHenry, K	Y	
STRUCTURES	Plymouth, IN 46563	Client:	American Tower Corp	Drawn by: na1	App'd:	
Valmont Industries Inc Speciality Structures Group	Phone: (574) 936-4221	Code:	TIA-222-G	Date: 10/29/13	Scale:	NTS
ranner industries into openiant, successor ere-p	EAY: (574) 036-6458	Path:			Dwg N	0. F_7

tnxTower	J₀b 227145	Page 1 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 FAY: (574) 936-6458	Client American Tower Corp.	Designed by na1

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 255.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 27,00 ft at the base.

This tower is designed using the TLA-222-G standard.

The following design criteria apply:

Tower is located in Ohio County, Kentucky.

Basie wind speed of 90 mph.

Structure Class II.

Exposure Category C.

Topographic Category I.

Creet Height 0.00 ft.

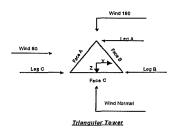
Nominal ise thickness is considered to fine considered to the first of the

Options

- Consider Moments Legs
 Consider Moments Horizontals
 Consider Moments Disposals
 Use Moment Magnif Seation
 Use Moment Magnif Seation
 Use Sold State Ration
 Use Special Wand Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Individual Bracet List
 Secondary Individual Bracet List
 Add IBG . 5D+W Combination
 Add IBG . 5D+W Combination

- Distribute Leg Loads As Uniform Assume Legs Finned Assume Right Index Plate Use Clear Spans For KUr Use Clear Spans For KUr Retension Guys To Initial Tension Bysass Mart Stability Checks Use Admirch Dish Coefficients Val

- Treat Feedline Bundlet As Cylinder
 Use ASCE 10 X-Breet Ly Rulet
 Colculate Rendomed Bracing Forres
 Ignore Redundant Menting Forres
 Ignore Redundant Menting Forres
 Ignore Redundant All Ley Bundlet
 All Ley Punds Have Same Allowable
 Offinet Gird A Foundation
 All Ley Punds Have Same Allowable
 Offinet Gird A Foundation
 Include Angle Black Shew Check
 Include Shew-Torsion Internetion
 Alvays Use Sub-Critical Tlow
 Use Top Mounted Socket;


tnxTower	Job 227145	Page 3 of 59
1545 Pideo Drive	Preject V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phore: (374) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Tower Section	Tower Elevation	Diagonal Spacing	Brazing Type	Haz K Brace End	Has Horizontals	Top Girt Offset	Battam Giri Office
		ft		Panels		ín	ter
73	220.00-200,00	6.67	X Brace	No	No	0,0000	0.0000
T4	200.00-180.00	6.67	X Brace	No	No	0.0000	0.0000
T5	180,00-160,00	10.00	X Brace	No	No	0,0000	0,0000
T6	160,00-140,00	10.00	X Brace	No	No	0.0000	0.0000
T7	140.00-120.00	20.00	X Brace	No	No	0.0000	0.0000
T8	120.00-100.00	20.00	X Brace	No	No	0.0000	0.0000
79	100.00-80.00	20.00	X Brace	No	No	0.0000	0.0000
T10	80.00-60.00	20,00	X Brace	No	No	0.0000	0.0000
T11	60.00-40.00	20.00	X Brace	No	No	0.0000	0.0000
T12	40.00-20.00	20.00	X Brace	No	No	0.0000	0.0000
T13	20.00-0.00	20.00	X Brace	No	No	8,0000	0.0000

		Tower Se	ction (Seometry	(cont'd)	
Tower	Leg	Leg	Leg	Dioponol	Diogonal	Dioganol
Elevation ft	Type	Size	Grade	Type	Size	Grade
TI 255.00-240.00	Pipe	P- 2.50" - 0.75" conn15" -C-(Pirod 226169)	A572-50 (50 ksi)	Equal Angle	L2x2x1/\$	A36 (36 ksi)
T2 240.00-220.00	Pipc	P- 4.00"- 0.75" conn20" -C-Trans-6B-4B-(Pirod 226184)	A572-50 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T3 220.00-200.00	Pipe	P- 5.00"- 0.75" connTrans-20' -C-(Pirod 226200)	A572-50 (50 kai)	Equal Angle	L2x2x3/16	A36 (36 kai)
T-1 200.00-180.00	Pipe	P-6.00*-8.75* connHBD-Trans-20' -C-(Pirod 229377)	A572-50 (50 lai)	Equal Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)
T5 180,00-160.00	Trus Leg	#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	A572-50 (50 ksi)	Equal Angle	L3x3x3/16	A36 (36 ksi)
T6 160.00-140.00	Trus Leg	#12ZG -1.75" - 1.00" zonnHBD-Trans (Pirod 229588)	A572-50 (50 ksi)	Equal Anglo	L3x3x3/16	A36 (36 kai)
F7 140.00-120.00	Truss Leg	#12ZG-2.00* - 0,875* connHBD-Trans (Pirod 208332)	A572-58 (50 ksi)	Double Equal Angle	2L3x3x3/16	A36 (36 kai)
T8 120.08-100.00	Trus Leg	#12ZG -2.25* - 0.875* conn. (Pirod 208334)	A572-50 (58 ksi)	Double Equal Angle	2L3x3x3/16	A36 (36 kai)
00.08-08.001 PT	Truss Leg	#12ZG -2.25" - 0.875" conn. (Pirod 2083 34)	A572-50 (50 kel)	Double Equal	2L3x3x3/16	A36 (36 ksi)
T18 80.00-60.00	Trust Leg	#12ZG - 2.50* - 0.875* conn. (Pirod 208335)	A572-50 (50 kai)	Double Equal	2L3 1/2x3 1/2x1/4	A36 (36 kai)
T11 60.00-40.00	Trus Leg	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	A572-50 (50 ksi)	Double Equal Angle	2L3 1/2x3 1/2x1/4	A36 (36 ksi)
T12 40.00-20.00	Trus Leg	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)	A572-50 (50 ksi)	Double Equal	2L3 1/2x3 1/2x1/4	A36 (36 kai)
T13 20,00-0,00	Truss Leg	#12ZG - 2.75* - 0.875* conn. (Pirod 208337)	A572-50 (50 kai)	Double Equal Angle	2L3 1/2x3 1/2x1/4	A36 (36 ksl)

Tower	Section	Geometry	(cont'd)

tnxTower	dot	227145	Page 2 of 59
1545 Pideo Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 FAX: (574) 936-6438	Client	American Tower Corp.	Designed by na1

Tower Section Geometry								
Tower Section	Tower Elevation	Assembly Database	Description	Section With	Number of Sections	Section Length		
	ft	_	_	ft		ft		
Ti	255,00-240.00		V-Series Leg	5.00	1	15.00		
72	240.00-220.00		V-Series Leg	5.00	1	20.00		
T3	220.00-200.00		V-Series Leg	5.00	t	20.08		
T4	200.00-180.00		V-Series Leg	7.00	1	20,00		
T5	180,00-160,00		PiRod 128D Trust Leg	9.00	t	20.00		
T6	160.00-140.00		PiRed 12BD Truss Leg	11.00	t	20.00		
17	140.00-120.00		PiRod t2BDH Truss Leg	13.00	1	20,00		
TS	120,00-100.00		PiRod 12BDH Trues Log	15.00	1	20.00		
T9	100.00-\$0.00		PiRed 12BDH Trust Leg	17.00	1	20.00		
Tto	80.00-60.00		PiRod 12BDH Truss Leg	19.00	1	20.00		
T11	60.00-40.00		PiRod 12BDH Truss Leg	21.00	1	20,00		
T12	40,00-20.00		PiRod 12BDH Trust Leg	23.00	i i	20.00		
T13	20.00-0.00		PiRod 12BDH Truss Log	25.08	1	20.00		

Tower Section Geometry (cont'd)										
Tower	Tower	Diogonal	Bracing	Has	Has	Top Girt	Bottom Girt			
Section	Elevation	Spacing	Type	K Brace End	Harizontals	Office	Offset			
	A .	A		Panels		ín	ln			
71	255.00-240.00	4.86	X Brace	No	No	5,0000	0.0000			
T2	240.00-220.00	6.67	X Brace	No	No	0.0000	8,0000			

tnxTower	Job	Page
mx i ower	227145	4 of 59
	Preject	Date
1345 Pideo Drive	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/13
Plymouth, IN 46363	Cilent	Designed by
Phone: (374) 936-4221 FAX: (374) 936-6458	American Tower Corp.	nB1

Tower Elevation fl	Top Giri Type	Top Girt Size	Top Girt Grade	Bottoni Girt Type	Batton: Girl Sizs	Battam Girl Grade
T1 255.00-240.00	Equal Angla	L2x2x3/16	A36	Solid Round		A36
			(36 kai)			(36 ksi)

			Tower	Section	Geom	etry (cor.	ıt'd)	
Tower Elevation	Gusset Area (per face) ft ²	Gusset Thickness In	Gusset Grode	Adjust. Factor Ay	Adjust. Factor A	Weight Mult.	Double Angle Stitch Balt Spacing Diogonals in	Double Angle Sitch Balt Spacing Horizontals in
11	0.00	0.2500	A36	1	1	1.05	36.0000	36,0000
255.00-240.00			(36 ksi)	•	•	.,,,	2072400	20.0040
TZ 240.00-220.00	0.00	0.2500	A36 (36 kai)	1	1	1.05	36.0000	36,0000
T3	0.00	0.3750	A36	1	1	1.05	36,0000	36,0000
228.00-200.00			(36 kri)					
T4	0,00	0.3750	A36	1	1	1.05	36.0000	36.0000
200.00-180.00			(36 ksi)					
T5	0.00	0.5000	A36	1	1	1.05	36,0000	36,0000
180.00-160.00			(36 kai)					
T6	0.00	0.5000	A36	1	1	1.05	36.0000	36,0008
160.00-140.00			(36 kai)					
17	0.00	8.6250	A36	1	1	1.05	36.0000	36,0008
140.00-120.00			(36 kai)					
TS	0,00	0.6250	A36	t	1	1.05	36,0080	36.0000
120.00-100.00			(36 ksi)					
T9	0,00	8.6250	A36	1	1	1.05	36.0000	36.0000
100.00-88.88			(36 kai)					
T18	0,00	0.6250	A36	1	1	1.05	36.0000	36,0000
80.00-60.00		0.6258	(36 kai)		_			
T11 60.00-40.00	0.00	0.6258	A36	1	1	1.05	36,0008	36.0000
60.08-40.00 T12	0.00	0.6250	(36 kai) A36	1	1	1.05	36.0000	
40.00-20.00	0.00	0.0250		1		1.03	30,000	36.0008
13 20.00-0.00	0.00	8.6258	(36 ksi) A36	1			36,0000	36 0000
1.3 20.00-0.00	0.00	8.0238	(36 ksi)			1.05	30,0000	36.0000

						K Fa	ctors'			
Tower Elevation	Calc K Single Angles	Cale K Solid Rounds	Legt	X Brace Diags	K Brace Diogs	Single Diogs Y	Girts	Horiz. Y	Sec. Horit. X	Inner Brace
ft		1100000		Ÿ	Ŷ	r	Ŷ	Ÿ	Ŷ	r
T1 255,00-240.80	Yes	Yes	1	1 1	[]	1 1	1	1 1	i 1	1
T2 40.00-220.80	Yes	Yes	1	1	1	i I	i i	1	1	1
T3 20,00-208.80	Yes	Yes	1	1	1	1	1	1	1	1
T4	Yes	Yes	1	i	1	1	i	i	i	1

tnxTower	Job 227145	Page 5 of 59
1545 Pideo Driva	Project V-27 x 255' - #281331 McHenry, KY	Date 10:25:19 10/29/13
Plymouth, IN 46363 Phone: (374) 936-4221 FAY: (374) 936-6238	Cilent American Tower Corp.	Designed by

						K Fa	ctors			
Tower Elevation	Cala K Single Angles	Cale K Salid Rounds	Legs	X Brace Diags X	K Brace Diogs X	Single Diogs X	Ginti X Y	Hariz. X	Sec. Hartz, X	Inner Broce X
200.00-180.00										-
T5 180.00-160.00	Yes	Yes	1	į	į	į	į	į	į	į
T6 168.80-140.00	Yes	Yes	1	į	į	į	į	i	į	i
T7 148.00-120.00	Yes	Yes	1	į	į	į	į	į	į	į
T# 128.00-100.00	Yes	Yes	1	ŧ	i	i	į	į	į	į
T9 100.08-80.00	Yes	Yes	1	i	į	į	i	i	•	i
T10 80.80-60.06	Yes	Yes	1	í	i	į	i		į	i
T11 60.00-40.80	Yes	Yes	1	•	į	1	į	i	i	i
T12 48.00-20.08	Yes	Yas	1	i	į	į	į	į	į	į
T13 20.80-0.00	Yes	Yes	1	į	į	į	1	i	į	į

Tower	Secti	on Geo	metry /	(cont'd)

			Trian-Leg	K Factors		
	Tnu	s-Legs Used As Leg Me	mbers	Tnu	·Legs Used As James M	enibers
Tower Elevation fl	Leg Panels	X Brace Diagonals	Z Brace Diagonale	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T5 150.08-160.00	1	0,5	8,7	1	0.5	0.7
T6 160.00-140.00	1	0,5	0.7	1	0.5	0.7
T7 140.00-120.00	1	0,5	0.7	1	8.5	0.7
T8 120,00-100.00	ı	0.5	0,7	1	8.5	0.7
T9 100.00-80.00		0.5	0.7	1	0.5	0.7
T10 80,00-60,08	1	0.5	0.7	1	8.5	a.7
TI1 60.00-40.00	1	0.5	0.7	1	0.5	0.7
T12 40.08-20.00	1	0.5	0.7	1	8.5	0.7
T13 20,00-0.80	1	0.5	0.7	1	0.5	0.7

Tower	Section	Geome	etry (con	ťd)

tnxTower	Job	227145	Page 7 of 59
1545 Pideo Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phona: (574) 936-4351 FAX: (574) 936-6458	Client	American Tower Corp.	Designed by na1

Tower	Connection Offsets												
Elevation		Dia	ronal		K-Brocing								
	Vert. Top	Hartz. Top	Vert. Bot.	Hort. Bot.	Vert. Top	Hartz. Top	j'ert. Bat.	Hortz, Bot.					
ft	in	in	in	in	in	in	in	in					
T9 100.00-80.00	5.0000	11.5000	5.0000	11.5000	0.0000	0.8000	0.0000	8.0008					
T18 80.00-60.00	5.0000	11.5000	5.0080	11.5000	0.0000	0,8000	0.0000	0.0000					
T11 68.00-40.00	5.0000	11,5000	5.0000	11.5000	0.0000	8.0000	0.0800	0.0000					
T12 40.80-20.00	5.8000	11.5000	5.0000	11.5800	0.0000	0.0000	0.0000	0.0000					
13 28.00-0.00	5.0000	11.5008	5.0000	11,5000	0.0000	0.8008	0.0000	0.0000					

			_						_						
Tower Elevation ft	Leg Connection Type			Diago		ΤωρΟ	/H	Battom	Girt _	Mid G	irt	Long Hart	contal	Short Hor	izanta
		Bolt Size in	Na.	Bolt Size	No.	Bolt Site in	Na	Bolt Size	Na.	Bolt Size	Ma.	Bolt Stre	Na.	Bolt Size	No.
T1 255.00-240.00	Flange	0.7500 A325N	4	0.7500 A325N	1	8.7500 A325N	1	1.0000 A325N	0	1.0000 A325N	0	1.8000 A325N	o	1.0008 A325N	0
T2 240.00-220.00	Flange	0.7500 A325N	6	0.7500 A325N	1	8.0000 A325N	8	1.0000 A325N	0	1.0000 A325N	0	1.0080 A325N	0	1.0000 A325N	0
T3 220.00-208.00	Flange	0.7500 A325N		0.7500 A325N	1	0.0008 A325N	0	1.0000 A325N	8	1.0000 A325N	В	1.0000 A325N	0	1.0000 A325N	o
T4 200.00-180.00	Flange	1.0000 A325N	6	0.7500 A325N	1	0.8880 A325N	0	1.0800 A325N	٥	I.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0
T5 180.00-160.00	Flange	1.0000 A325N	6	1.0000 A325N	i	0,0000 A325N	0	1,0000 A325N	0	1.0000 A325N	0	1.0000 A325N	a	1,0008 A325N	0
T6 160.00-140.00	Flange	1.0000 A325N	6	1.0000 A325N	ı	0.0808 A325N	0	1,0008 A325N	0	1.0000 A325N	0	1.0080 A325N	0	1.0000 A325N	0
T7 140.00-120.00	Flange	1.0000 A325N	12	0.8750 A325N	1	0,0000 A325N	0	1.0008 A325N	0	1.0800 A325N	0	1.0000 A325N	0	1.0000 A325N	0
T8 120,00-100.00	Flange	1.0000 A325N	12	0.8750 A325N	1	0.0000 A325N	Đ	1.0008 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0
T9 100,00-80.00	Flange	1.0000 A325N	12	0.8750 A325N	ŧ	0.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0
T10 80,00-68,00	Flange	1.0000 A325N	12	0.8750 A325N	1	0.0000 A325N	۰	1.0000 A325N	٥	1.0000 A325N	0	1.0000 A325N	٥	1,0000 A325N	0
T1 () 60,00-40,00	Flange	1.0000 A325N	12	0.8750 A325N	1	0,0000 A325N	0	1.0000 A325N	٥	1.0000 A325N	0	1.0000 A325N	٥	1,0000 A325N	0
T1 2 40.00-20.00	Fiange	1.0000 A325N	12	0.8750 A325N	1	0.0000 A325N	8	1.0000 A325N	۰	1.0000 A325N	a	1.0000 A321N	0	1.0000 A325N	0
T13 20.00-0.08	Flange	1.0000 F1554-105	12	0.8750 A325N	1	0.0000 A325N	0	1.8000 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1.000B A325N	0

Feed Line/Li	near Appurtenan	ces - Entered	As Round Or Flat

tnxTower	Job	227145	Page 6 of 59*
1545 Pidea Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (374) 936-4251 FAX: (574) 936-6458	Cilent	American Tower Corp.	Designed by na1

Tawer Elevation ft	Leg		Diago	nal	Top C	irt	Bottos	n Girt	Mid	Girt	Long Ho	rizontal	Short Hi	orizontai
	Net Width Dechet In	U	Nes Width Deduct in	U	Net Width Deduct in	U	Net Blath Deduct in	U	Nes Blath Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U
T1 255.00-240.08	0.0000	1	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0008	0.75	0.0000	0.75
T2 240,80-220.88	0.0008	ı	0.0800	0.75	8,0080	0.75	0.0000	8.75	0.8000	0.75	0,0000	0.75	0.0000	8.75
T3 220,80-200.00	0.8000	1	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0800	0.75	0,0000	0.75	0.0080	0.75
T4 200.00-180.00	0.0000	1	0.0000	0.75	0.0000	0.75	E,EEGO	0.75	0.0000	0.75	0.8000	0.75	0.0000	0.75
T5 80,00-160,00	0.0000	1	0.0800	0.75	0,0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 60.00-140.00	0.0000	1	0.0000	0.75	0.080.0	0.75	0.0000	0.75	0.0000	0.75	0,000,0	0.75	0.0000	0.75
T7 40.80-120.00	0.0000	1	0.0000	0.75	9000.0	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
TE 20,80-120,00	0.0000	1	8.0000	a.75	0.0000	0.75	0.0000	8.75	0.0800	8.75	0.0000	0.75	0.0000	0.75
T9 100,80-80,00	0.0000.0	1	0.0000	0.75	0.000.0	0.75	8.0000	0.75	0.080.0	0.75	0,0000	0.75	0.0000	0.75
T10 88.00-60.00	8.0880	ı	0.8000	0.75	0.0000	0.75	8.0000	0.75	0.0000	0,75	0.0000	0.75	0.0000	0.75
T11 68.00-40.00	0.0000	1	0.8000	0.75	0.8000	0.75	0.0020	0.75	8,0000	0.75	0.000.0	0.75	0.0000	0,75
T12 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0,080,0	0.75	0.0000	0.75
13 20.00-0.00	8.8000	1	0.0000	0.75	0.0000	0.75	0.8000	0.75	0.0000	0.75	0.8000	0.75	8,0000	0.75

Tower Sect	tion Geome	try (cont'd)

	Tower				Cannect	an Offsets			
.1	Elevation		Dla	ronal			K-B	acing	
.7		Vert	Horts.	Vert	Hortz.	Vart	Hortz.	Vert.	Hartz.
7		Тар	Top	Bot.	Bot.	Top	Top	Bot.	Bot
	ft	in	in	in	in	in	in	in	in
7	T1 255.88-240.00	5.0000	5.0000	5.0000	5.8000	0.0000	8.0800	8.0000	0.0000
7	T2 240.00-220.00	5.0000	5,0000	5,0000	5,8000	0.0000	0.0000	0.0000	0.0000
	T3 220.00-200.00	5.0000	6.2500	5.0000	6.2500	0.0000	0.0800	0,0000	0,8088
	T4 200,00-180,80	5.8000	6.2500	5.0000	6.2500	0.0000	0.0000	0.0000	E.0080
	T5 180.80-160.80	5.0000	10,7508	5,6000	10.7500	0.0000.0	0.0000	0.000	0.0800
	T6 160.00-140.00	5.0000	t0.7500	5.0000	10.7500	0.8000	0.0000	0.0000	0.0800
	T7 148.00-120.00	5.0000	11.5000	5.0000	11.5000	0,0000	0.0000	0.0000	0.8000
	TS 120.00-100.00	5.0000	11.5000	5.0008	11.5000	00000.0	0.8000	0.0000	0.0800

tnxTower	Job 227145	Page 8 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phore: (574) 936-4211 FAX: (574) 936-6418	Client American Tower Corp.	Dosigned by na1

Description	Face or Leg	Allow Shleid	Companent Type	Placement	Face Office In	Lateral Officet (Frac FIV)	*	# Per Row	Clear Spacing In	Width or Diameter in	Parimeter In	Waight
Safety Line 3/8	C	No	Ar (CaAn)	255.00 - 0.00	3,0008	0	1	1	8.3750	0.3750		<i>plf</i> 0.22
Lighting power cord	В	No	Ar (CaAn)	255.00 - 0.00	0.5000	0.5	ı	1	0.2008 8.0000	0.8700		0.15
LDF7-50A 1-5/1 FOAND	C	No	Ar (CaAs)	230,00 - 0,80	1.0000	0	18	18	1.0200	1.9800		0.82
LDF7-50A 1-5/E FOAND	B	No	Ar (CaAn)	220,00 - 0,00	1.0000	0	36	18	1.0200	1.9800		0.82
LDF7-50 A I-5/II FOAND	B	No	Ar (CaAa)	250.00 - 220.00	1.0000	0	11	12	1.0200	1.9800		0.82
LDF7-50A 1-5/8 FOAND	٨	No	Ar (CxAs)	240.00 - 0.00	1.0000	0	18	12	1.0200	1.9800		0.82
Feedline Ladder (AI)	В	No	Af (CaAn)	250.00 - 0.80	1.0008	0	1	ı	3.00g0	3,0000		8.48
Feedline Ladder (AD)	A	No	Af (CaAn)	240.00 - 0.00	1.0000	0	1	1	3.0000	3,0000		8.40
Feedline Ladder (AI)	C	No	Af (CaAs)	230.00 + 0,60	1.0000	0	1	1	3.0080	3,0000		8.40

		ces Section	

Taner	Tower	Face	14	Ar	CM	Cali	Weight
Section	Eisvation				In Face	Gut Face	
	<u>f</u>				ft ²	142	K
Ti	255.00-240.00	A	0.080	0.000	0.008	O.DOE	0.00
		В	0.080	0.000	41.945	0.000	0.23
		C	0.008	0.000	E.563	0.000	0.80
T2	240.00-220.00	A B C	800.9	0.000	81.280	0.800	0.46
		B	0.000	0.000	83.020	0.000	0.47
		C	0.008	0.000	41.390	0.800	0.24
73	220.00-208.00	A B	0.000	0.000	#1.280	0.000	0.46
		В	0,000	0.000	154.380	0.020	0.76
		C	0.000	0.000	82.038	0.000	0.47
T4	200.00-120.00	Α.	0.880	0.000	81.280	0.000	0.46
		В	0.000	0.000	154.300	0.008	0.76
		C	8.008	8,000	82.838	0.000	0.47
T5	180.00-160.00	A	0.000	0.000	81.280	0.000	0.46
		B	0.000	0.000	154,300	0.200	0.76
		С	0.0E0	0.000	\$2.030	8,000	0.47
T6	160.00-140.E0	٨	0.000	0.000	#1.280	0.000	0.46
		а	0.000	E.000	154,308	0.000	0.76
		C	0.000	0,000	82.030	8.008	0.47
T7	140.00-120.80	A	0.000	0.000	81.280	0.008	0.46
		В	8,000	0.000	154,308	0.000	0.76
		c	0.000	0.000	82,030	8.000	0.47
T8	120.80-100.00	A	0.800	0.000	81.288	0.008	0.46
		В	8,800	0.000	154,300	0.000	0.76
		Ĉ	0.000	0.000	\$2.030	0.000	0.47
T9	100.00-80.00	Ā	0.088	0.000	61.288	0.008	0.46
	******	В	0.000	0.000	154,300	0.000	0.76
		č	0.080	0.000	82.030	0.008	0.47
TtO	80,00-60,00	Ã	0.000	8.000	81.288	0.000	0.46
		B	0.000	0.000	154,308	0.800	0.76
		č	0.008	8,000	82.030	0.000	0.47
TH	60.00-40.00	Ä	0.000	0.008	81,288	0.000	0.47
	00.00-10.00	B	0.000	0.000	154,300	0.008	0.76
		č	0.008	0.000			
		-	0.008	4,000	12,038	8.000	0.47

tnxTower	Јоb 227145	Page 9 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Tower Section	Tower Elevation	Face	Az	Ar	C _M A In Face	C _A A _A Out Face	Weigh
	ft		ft ²	ft²	ft ²	fi	K
T12	40.00-28.88	A	0.800	0.008	81.280	0.080	8.46
		В	0.000	0.000	154,300	0.000	0.76
		C	0.000	0.000	82.030	0.000	0.47
T13	28,00-0.00	A	0.000	0.000	81.280	0.800	0.46
		В	8,000	0.000	154.300	0.000	0.76
		c	8.000	0.000	82 030	0.000	0.47

Tower Section	Tower Elevation	Face	Ica Thickness	An	A	CAA. In Face	CAAA Out Face	R'eighi
	A	Leg	in	n ²	ft ²	ft.	fi ²	K
TI	255,00-240.00	A	1.835	0,000	0.000	0.000	0.000	0.00
		В		0.000	0.000	86.643	0,000	1.45
		C		0.000	0.000	6,067	0.880	8.08
T2	240.88-220.00	A	1.821	0.000	0.000	159.539	0.000	2.72
		В		0.000	0.000	168,565	0.000	2.85
		С		0,000	0.000	87.885	0.000	1.46
T3	220,00-280.00	A	1,805	0.000	0.800	159,383	0.800	2.70
		в		0.000	0.000	169.267	0.000	4.00
		C A		0.000	0.000	167-353	0,800	2.81
T4	200,00-180,00	A	1.787	0.000	0.000	159.213	0.800	2.68
		В		0.000	0.000	169.021	0.000	3.98
		C A		0.000	0.000	167.111	0,000	2.78
T5	180,00-160,00	A	1.767	0.000	0.000	159.026	0.000	2.66
		B		0.000	0.000	168,751	0,000	3.95
		С		0.000	0.000	166.845	0.000	2.76
T6	160,00-140.08	A	1.745	0.000	0.000	158,618	0.800	2.64
		В		000,0	0.000	168.450	0,000	3.92
		C		0.000	0.000	166,549	0.000	2.73
T7	140.00-120.00	A	1.720	0,000	0.000	158,583	0.000	2.61
		В		0.000	0.000	168,110	0.000	3.89
		С		0.000	0.880	166.215	0.000	2,70
TS	120.00-100.80	A	1.692	0.000	0.000	158,314	0.000	2,58
		В		0.000	0.000	167,721	0.000	3.86
		C		0.000	0.000	165.832	0.000	2.67
T9	100.00-80.00	A	1.658	0.000	0.000	157,996	0.000	2.54
		B C		0.000	0.000	167.261	0.800	3.81
		С		0.000	0.000	165,379	0.000	2.63
T10	80.00-60.00	A	1.617	0.000	0.000	157,608	0.000	2.49
		В		0.000	0.000	166.698	0.000	3.76
		С		0.000	0.000	164,826	0.000	2.56
T11	60.00-40.00	A	1.564	0.000	0.000	157,103	0,000	2.44
		B		0.000	0.000	165.967	0.000	3.70
		C		0.000	0.000	164,107	0,000	2.51
T12	40,00-20.00	A	1.486	0.000	0.000	156,369	0,000	2.35
		В		0.000	0.800	164,903	0.000	3.60
		С		0.000	0.000	163.062	0.800	2.42
T13	20,00-0.00	A	1.331	0.000	0.000	154.914	0,080	2.18
		В		0.000	0.000	162,795	0.000	3.41
		С		0.000, 0	0.000	160.989	0.000	2.24

tnxTower	Job 227145	Page 11 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:25:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Feed Line Center of Pressure

	1.0000 0.6000 0.6000 0.6000 8.6000
T3	0.6000 0.6000 0.6000 8.6000
T4 2 Lighting power cord 180,00 - 0,6000 200,00	0.6000 0.6000 8.6000
T4 2 Lighting power cord 18.0.0 - 0.6000	0,6000 8.6000
T4	8.6000
T4 4 LDF7-SA (1-5/F FOAM) 1810.00 - 0.6000 T3 6 LDF7-50 A(1-5/F FOAM) 20.00 T4 7 7 Feedline Ladder (A) 20.00 T5 9 Feedline Ladder (A) 20.00 T6 18 0.00 T7 19 Feedline Ladder (A) 20.00 T6 18 0.00 T7 2 Lighting power cerd 16.00 - 0.6000 T8 2 Lighting power cerd 16.00 - 0.6000 T8 3 LDF7-50 A(1-5/F FOAM) 160.00 - 0.6000 T8 4 LDF7-50 A(1-5/FOAM) 160.00 - 0.6000 T8 5 6 LDF7-50 A(1-5/FOAM) 160.00 - 0.6000 T8 7 7 Feedline Ladder (A) 160.00 - 0.6000 T8 18 0.00 T9 18 0	
T4 6 LDF7-90A (1 st FDAAM) 185 00 - 0.6900 T4 7 Feedline Ladder (AI) 200.00 T4 8 Feedline Ladder (AI) 200.00 T5 1 Safety Line 38 10.00 T5 2 Lighting power cert 185 00 - 0.6900 T5 2 Lighting power cert 185 00 - 0.6900 T5 4 LDF7-90A (1 -5t FDAAM) 160.00 - 0.6900 T5 5 6 LDF7-50A (1 -5t FDAAM) 160.00 - 0.6000 T5 75 6 LDF7-50A (1 -5t FDAAM) 160.00 - 0.6000 T5 75 7 Feedline Ladder (AI) 160.00 - 0.6000 T5 8 Feedline Ladder (AI) 160.00 - 1.6000 T5 9 Feedline Ladder (AI) 160.00 - 1.6000	0.4000
T4	0.6000
T4 S Feedline Lolder (A) 18:0.0 - 1.0000 20:0.00	1.0000
T4 9 Feedline Ledder (A) 18:0.0 - 20.00 1.00 s0 20.00 1.00 s0 20.00 1.00 s0 20.00 1.00 s0 20.00 1.00 s0 1.00	1,0000
T3	1.0000
T3 2 Lighting power cerd 16,0,00-1 18,00 1	0,5885
T3 3 LDFT-90A (1-5/8 FOAM) 150,00- 0,6000 150,00 150,00 - 150,00 - 160,00 -	0,5885
15	0.5885
T5 6 LDF7-50 A (1-ys FOAM) 160.00 - 180.00 180.00 175 7 Feedline Ladder (An) 160.00 - 1.8000 180.00	0.5885
TS 7 Feedline Ladder (Af) 160.00 - 1.8000 180.00 180.00 160.00 - 1.0008 160.00 - 1.0008 188.00	0.5885
T5 B Feedline Ladder (Af) 160.00 - 1,0008	1.0000
	1.0000
T5 9 Feedline Ladder (AI) 160.08 - 1.8000	1.0000
T6 1 Safety Line 3/8 140.00 - 8.6000	0.6000
T6 2 Lighting power cord 1 40.80 - 0.6000	0.6000
T6 3 LDF7-50A (1-5/8 FOAM) 140,08 - 0.6000 160,00	0.6000
T6 4 LDF7-50A (1-5/8 FOAM) 140.80 - 8.6000	0,6000
T6 6 LDF7-50A (1-5/8 FOAM) 1-0.00 - 0.6800 160.00	0.6000
T6 7 Feedline Ludder (Af) 140.00 - 1,0008	1.0008
T6 8 Feedline Ludder (Af) 140.00 - 1.0000	1.8000
T6 9 Feedline Ladder (AI) 148.08 - 1.0000	1.0000
T7 1 Safety Line 3/8 128,00 - 0,6800	0.6000
77 2 Lighting power cord 120.00 - 0.6000 140.00	0.6000
T7 3 LDF7-30A (1-5/8 FOAM) 120,00- 0,6808	0,6008
T7 4 LDF7-50A (1-5/8 FOAM) 120,00 - 0,6000 140,80	0.6000
T7 6 LDF7-50A (1-5/8 FOAM) 120,00 - 0.6000	0.6000
T7 7 Feedline Ladder (Af) 120.00 - 1.0008	

tnxTower	Job	227145	Page 10 of 59
1545 Pideo Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6438	Cilent	American Tower Corp.	Designed by na1

Section	Elevation	CPr	CP ₂	CPx lce	CP e	
		in	in	in	ín	
TI	255,00-248.80	3.8894	-1.5587	2,6602	-0.9106	
T2	240,00-220,80	0.0536	-0.8085	0.1374	-0.5968	
T3	220,80-200.80	1.0027	-0.5163	0.2184	0.1162	
T4	200.00-180.00	1.2415	-0.6358	0.2501	0.1605	
T5	180,00-160.00	1.4829	-0.7569	0.2730	0.1921	
T6	160.00-140.00	1.7342	-0.8830	0.3126	0.2339	
T7	140,00-120.00	1,9991	-1.0160	0.3541	0.2768	
TS	128,00-100.00	2.2423	-1.1380	0,3903	0.3151	
T9	100.80-80.00	2.4944	-1,2646	0.4252	8.3517	
T10	80,00-60,00	2.7111	-1.3732	0.4551	0.3832	
T11	60.00-40.00	2.9562	-1.4962	0.4839	0.4125	
T12	40,08-20,80	3,1735	-1.6052	0,5057	0,4334	
T13	20.80-0.00	3.4132	-1.7255	8.5106	0.4331	

			Shieldi	ng Fac	tor K
eed L		Description	Feed Line Segment Elev.	K. No Ice	K.
 	1	Safety Line 3/8	240.00 -	0.6000	0.578
	2	Lighting power cord	255.00 240,00 -	0.6000	0.578
	5	LDF7-50A (1-5/8 FOAM)	255.00 240.00 -	0,6000	0.578
			250.00		
	7	Feedline Ladder (Af)	248,80 ~ 250,00	1.0000	1.000
	1	Safety Line 3/8	220.80 ~	0,6000	0.582
	2	Lighting power cord		0.6080	0.582
	3	LDF7-50A (1-5/8 FOAM)	240.00 220.00 -	0.6000	0.582
	,	LDF7-50 A (1-5/8 FOAM)	230.00 220.80 -	0.6000	
	-1	,	240.00		0.582
	6	LDF7-50A (1-5/8 FOAM)	220.08 ÷ 240.00	0.6000	0.582
	7	Feedline Ladder (Af)	220.00 -	1.0000	1,000
	8	Feedline Ladder (Af)	240.00 220.00 -	1,0000	1.000
	۰	Feedline Ladder (Af)	210.00 220.88	1.0000	1.000
	"		230.00		
	1	Safety Line 3/8	200.00 -	0.6000	0.6000
	2	Lighting power cord	200.00 -	0,6000	0.6000
	3	LDF7-50A (1-5/8 FOAM)	200,00 -	0.6000	0,6000
	4	LDF7-50A (1-5/8 FOAM)	220.00 200.00 -	0.6000	0.6000
	6	LDF7-50A (1-5/8 FOAM)	220.00 200.00 -	0 6000	0.6008
]	,	220.00		
	7	Feedline Ladder (AI)	200.00 - 220.00	1.0000	1.0000
	8	Feedline Ladder (Af)	200.00 -	1,0000	1.0000

tnxTower	Јо Б 227145	Page 12 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Dale 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by

Tower	FeedLine	Description	Feed Line	κ,	K,
Section	Record Na		Segment Elev.	No Ice	Ice
			140.00		
17	8	Feedline Ludder (Af)	120.00 -	0000.1	1.0000
- 1			140.00		2.0000
17	9	Feedline Ladder (Af)	128.80 -	1,8000	1,8000
- 1	1		140.00		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T8	1	Safety Line 3/8	100.00 -	0.6008	0,6000
	7	, 2	120.00	0.5050	0.0000
TB	2	Lighting power cord		0,6800	0,6000
7	- 1	ggaa	120.00	4.0000	4.0000
T8	3	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
• • •	-1	2011-011(1-0101010)	120.00	0.0000	0.0000
TB	4	LDF7-58 A (1-5/8 FDAM)	100.00 -	0,6000	0.6000
. "	"	LLE (-Ser (1-Ser Linux)	120.80	0.0000	0.0000
TB	6	LDF7-50A (1-5/8 FOAM)	100,00 -	0.6000	0.6000
101	익	LDF 1-30A (1-3/8 FOANI)		U,DUUU	0.6000
	_	n w	120,00		
T8	7	Feedline Ladder (Af)	100.00 -	1.0000	1.0000
		-	120.08		
TS	8	Feedline Ladder (Af)	100.00 -	1.0000	1.0000
	- 1		120.00	- 1	
TS	9	Feedline Ladder (Af)	100.00 -	1.0800	1.000D
- 1			120.00	- 1	
T9	1	Safety Line 3/8	88.00 - 108.80	0.6000	0.6000
19)	2 3	Lighting power cord	100.00 - 100.00	0.6000	0.6000
T9	3	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0,6000	0.6000
T9.	4	LDF7-50A (1-5/8 FOAM)		0,6000	0,6000
79	6	LDF7-50A (1-5/8 FOALD		0.6000	0.6000
19	7		80.00 - 108.00	1.0880	1.0008
19	8		80.00 - 100.00	1.0000	1.0000
T9	9	Feedline Ladder (Af)		1,8080	1,0000
TIO	1	Safety Line 3/8	60.00 - 80.80	0.6000	8003.0
Tio		Lighting power cord	60.00 - 80.00	0.6000	0.6008
T10	2	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6008
T10	4	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
Tio	6	LDF7-58A (1-5/8 FOAM)	60.00 - 80.00		
T10	7			0,6000	0.6000
TID	s	Feedline Lodder (Af)	60.08 - 80.00	1.0808	1.0000
	9	Feedline Ladder (Af)	60.08 - 80.08	1.0800	1.0000
T10		Feedline Ladder (Af)	60.00 - 80.0D	1.0800	1,0000
T11	1	Safety Line 3/8	40.08 ~ 60.00	0,6000	0.6000
Tii	2 3	Lighting power cord	40.00 - 68.00	0.6000	0.6000
T11	3	LDF7-50A (1-5/8 FOAM)	40.00 - 68.80	0.6000	0.6008
T11	4	LDF7-50A (1-5/8 FOAM)	40.80 - 60.00	0,6008	0,6000
T11	6	LDF7-50A (1-5/8 FOANI)	40.00 - 60.00	0.6000	0.6000
T11	7	Feedline Ladder (Af)	40.00 - 60.80	1.8000	1,0000
T11	8	Feedline Ladder (Af)	40.00 - 60.00	1.8800	1.0000
T11	9	Feedline Ladder (Af)	40.00 - 60.00	1.0008	1.0000
T12	1	Safety Line 3/8	20.00 - 40.00	0,6000	0.6008
T12		Lighting power cord	20.80 - 40.88	0.6000	0.6000
T12	2	LDF7-58A (1-5/8 FOAM)	20.00 - 40.80	0.6000	0.6000
T12	4	LDF7-50A (1-5/8 FOAND)	20.00 - 40.00	0.6000	0,6000
T12	6	LDF7-50A (1-5/8 FOAM)	20.80 - 40.00	0,6000	0.6000
T12	7	Feedline Ladder (Af)	20.00 - 40.00	1.0000	1.0008
T12	8	Feedline Ladder (Af)	20.08 - 40.88		1,0000
T12	وُ	Feedling Ladder (Af)	20.08 - 40.08	1.0000	1,0000
T13					
	1	Safety Line 3/8	0.08 - 20.00	0,6088	0.6000
T13	2	Lighting power cord	0.00 - 20.00	0.6000	0.6000
T13	3	LDF7-50A (1-5/8 FOAM)	8.80 - 20.00	0.6000	8003,0
T13	4	LDF7-50A (1-5/8 FOAM)	0.00 ~ 20.08	0.6800	0,6000
T13	6	LDF7-50A (1-5/8 FOAM)	8.80 - 20.00	0.6088	0.6000
	7	Feedline Ladder (Af)	0.00 - 20.08	1.0000	1.0008
T13					
T13	ś	Feedline Ladder (Af)	0.08 - 20.80	1.0800	1,0000

tnxTower	Jab	Page
THAT OWER	227145	13 of 59
	Preject	Date
1545 Pideo Drive	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/13
Plymouth, IN 46563	Cliant	Designed by
Phone: (374) 936-4225 FAX: (374) 936-6438	American Tower Corp,	na1

Description	Face or Leg	Offiet Type	Officis; Horz Lateral Vart	Azimuth Adjutment	Placement		C _A A _A Front	C _A A _A Side	Weight
			st st	•	ft		rs,	'n	K
Beacon	A	From Leg	8,08	0.0008	255.00	No Ice	2.40	2.40	0.07
			8.88			I/2* Ice	2.67	2.67	0.18
_			439			I" lcs	2.96	2.96	0.12
acon Extender (4') 803062		From Leg	8.08	0.0088	255,00	No Ice	1.11	1.11	0.03
			0.80			1/2" Ice	1.32	1.32	0.04
			2.21			1" Ice	1.54	1.53	D, O5
5/8" x 18' lightning rod	C	From Leg	0.00	8,0000	255.80	No Ice	0.63	0.63	D. G2
			0,00			1/2" Ice	1.63	1.63	0.03
			4.00			t" Ice	2.63	2.63	0.04
ATC Leading	C	None		0.0000	250.88	No Ice	115.08	115.00	2.00
						1/2" Ice	135.00	135.00	3.00
						l" les	155.80	155.00	4.00
ATC Loading	C	None		0,0000	240.00	No Ice	115.00	115.00	2.00
						1/2" Ice	135.00	135.00	3.00
						l" Ice	155.00	155.00	4.00
ATC Leading	C	None		0.0000	238.00	No Ice	115.00	115.00	2.00
						1/2" les	135.00	135.00	3.00
						1" Ice	155.00	155.00	4.00
ATC Loading	С	None		0.0080	220.00	No Ice	115.00	115.00	2.00
						1/2" Ice	135.08	135.00	3.00
						I" Ice	155.08	155.00	4.00

	Truss-Leg Properties									
Section Designation	Area	Area Ice	Self We tght	Ice Weight	Equiv. Diameter	Equiv. Diameter Ice	Leg Area			
	ln ²	frt ³	κ	ĸ	In	/m	ter2			
#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	2200.6087	5808.4093	0.84	2.27	7.6-118	20.1681	7.2158			
#12ZG -I.75" - I.08" connHBD-Trans (Pirod 229588)	2200_6087	5796.0560	8.84	2.26	7.6418	20.1252	7.2152			
#12ZG -2.00* - 8.875* comHBD-Trens (Pirod 288332)	2321.4820	5854.1205	0,99	2.29	8,0607	20.326 s	9.4242			
#12ZG -2.25" - 0.875" const. (Pired 208334)	2417,8620	5910.1026	1.17	2.31	5.5315	28.5217	11.9282			
#12ZG -2.25* -	2457.0620	5891.2118	1.17	2.38	8.5315	20.4556	11.9282			

tnxTower	Jab 227145	Page 15 of 59
1545 Pidco Drive	Prajact V-27 x 255' -#281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, DV 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Cilent American Tower Corp.	Dasigned by na1

Section Elevation		Ke	qı	Aa .	F	Ar	At	Aire	Leg %	C _A A ₄ In	C _A A _A Out
Λ	A		psf	נות		נאַ	_{ft} 2	ρı		Face ft ²	Face ft ¹
T12	30.00	0.982	17	504.614	A	17.068	32,655	32.655	65.68	81.280	0.800
48.00-28.88					В	17.860	32,655		65.68	1.54,300	0.000
!!!					c	17,060	32,655		65.68	82,038	0.000
T13 20,00-0.80	18.00	0,25	15	544,614	A	17,952	32,655	32.655	64.52	81.288	8,000
	. i				В	17.958	32,655		64.52	154,308	0.008
				i	C	17,958	32,655		64,52	82,830	0.000

Tower Pressure - With Ice

						•	$G_H = 0.850$					
Section Elevation		K ₂	q,	İz	Ao.	F	As	14	Aire	Leg %	C _e A _a In	C _A A _A Out
	a	ĺ	par l	۸	l _{fr}	ء ا	ا بہا	أبر	et.	1 1	Foce	Face
<u>" 11</u>	247.50	1.532	P17 3	fn 1,8348		1	6,389	28,451	16.362	46.70	14	ft.
255.88-240.00	247.30	1.334	1 1	1,0.340	=3,101	l 🔓	6,589	28,451	10.302	46.70	0,000 86,643	0.000
133.00.00				i	ı	6	6,589	28,451		46.70	6.067	0.000
12	238.00	1,508	3	1.8214	113.576	١×	7,169	40.280	27,143	57.30	159,539	8.000
240.00-220.00			. 1			l â	7,169	48,200	2,143	57.30	168,565	8.000
1						Ιĉ	7,169	40.208		57.30	87,805	0.000
T3	218,00	1,48	3	1.8049	135,307		7,669	44,478	30,627	58.74	159.343	8.000
220.88-200.88	- 1					В	7.669	44,470		58.74	169,267	0,000
i 1	- 1	- 1				l c	7,669	44,470		58.74	167,353	0,000
T-1	190,02	1.449	3	1,7870	177.019	l A	11.361	50.294	34,053	55.23	159.213	0.000
200,00-180.00	- 1	- 1				В	11.361	50.294		55.23	169.821	0.000
		- 1				C	11.361	50.294		55.23	167.111	0,000
T5	170.00	1.415	3	1.7672	228.843		12,313	81.846	67.339	71.52	159,026	8,000
180.00-160.00		- 1	- 1		1	В	12.313	81.846		71.52	168.751	0.000
		1	1			C	12.313	81.846	- 1	71.52	166.845	8,000
T6	150.00	1.378	3	1.7452	268,770		13.727	83,167	67.196	69.35	158,818	0,000
160.00-140.00	1	- 1	- 1			8	13,727	83,167		69.35	168,450	8,000
i([C	13.727	83,167		69.35	166,549	8.000
17	130,08	1.337	3	1.7204	309.104		11.332	88.866	67.869	73.61	158.583	0.000
140,08-120,08	1	ĺ	- 1	- 1		В	11.332	80,866)	73.61	168.110	8.000
TR	118,88		_			C	11.332	80.866	i	73.61	166,215	8.000
120.00-100.00	110.00	1.291	3	I.6919	349.426		11.896	81.935	68.518	73.02	158.314	8.800
120.00-100.00	- 1	- 1	í	- 1	١ ١	В	11.896	81.935	ì	73,02	167.721	8,800
T9 100.00-80.00	98.00			1.6503		C	11.896	81,935		73,02	165,032	0,000
19 100,00-80,00	98.00	1.238	2	ן נטכם. ז	389.314		12.514	82,133	68.299	72.16	157,996	8.000
l f	Į.	- 1	- 1	- 1	- 1	B	12.514	82,133	- 1	72.16	167,261	0.000
T18 80.00-60.08	70.00	1.174		1,6171	429,594		12.514	82.133		72.16	165.379	0.000
118 80.00-00.00	70,00	1.174	2	1.01 11	429.394	AB	15.375	83.073	68,065	69.95	157.688	0,000
	- 1	- 1	- 1	- 1	- (ë l	15,375	83.073	- 1	69.95	166,698	0.000
88,04-08,06 11T	50.80	1.094	2	1,5636	469.416		16,198	83,073		69.95	164.826	0,000
***************************************	30.40	1.094	-1	1,3030	405.415	â	16,198	82,989 82,989	68.517	69.08	157.103	8.000
1	- 1	ı	- 1	- 1	- 1	čΙ	16,198			69.08	165.967	0.000
T12 40.80-20.00	38.80	8.982	2	1.4858	509,573	Ä	17.068	82.989	(2.01)	69,08	164,107	8.000
112 10,000,000	30.00	4.902	-1	1.4030	203.373	â	17.060	83.329 83.329	68.8 ∔ 4	68.58	156.369	8.800
	- 1		- 1	- 1	- 1	2	17,068	83.329	,	68.58	164,903	8,000
T13 20.00-0.08	10.00	0.85	2	1.3312	549.057		17.068			68.58	163,862	0.000
243 20,00-0,02	10.00	V.83	2	1.3312	342,037	A	17,958	81.497	67.037	68.21	154.914	8.800
- 1	- 1	- 1	- 1	- f		B		81.497	í	68.21	162.795	8.000
						ن	17.958	81,497		68.21	160,989	0.000

tnxTower	Job 227145	Page
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (5741 936-6458	American Tower Corp.	Designed by na1

Section Designation	Area	Area Ice	Self Weight	Jos Weight	Equiv. Diameter	Equiv. Diameter Ica	Leg Area
	in ³	is ²	ĸ	ĸ	in	in	بر
0.875* conn. (Pirod 208334)							
#12ZG - 2.50° - 8.875° cons. (Pired 208335)	2597.2622	5940.0120	1.37	2.31	9.0183	28.6253	14,7262
#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	2597.2622	5918.8109	1.37	2.28	9.8183	20.5209	14.7262
#12ZG - 2.75" - 8,875" conn. (Pirod 208337)	2816.7341	5938.2486	1.63	2.28	9.7883	20.6189	17.8187
#12ZG - 2.75" - 0,875" conn. (Pirod 208357)	2816.7341	5851.3735	1.63	2.19	9.7223	20.3173	17.5187

Tower Pressures - No ice

 $G_H = 0.850$

Section		Kz	91	Aq	F	Ar	A	Aire	Leg	Cala	CAL
Elevation		ι		ı.	1 4				96	In	Out
		l			1 -					Face	Foce
			psf		•	<u>بر</u>	, ri	ft1		ft ²	^2
Ti	247.50	1.532	27	78.594	Α.	6.589	7.188	7.188	52.17	0,008	0.000
255.00-240.00			i .	l	B	6.389	7.188		52.17	41,945	0.020
- 1				1	C	6.589	7.188		52.17	0.563	8.000
T2	230,00	1.502	27	107,500		7.169	15.008	15.000	67.66	81.280	0,000
240.00-220.08				1	a	7.169	15.800		67,66	83,020	0.008
		i i		1	C	7.169	15.008	- 1	67.66	41.390	0.000
T3	218.80	1.48	26	129,283	A	7.669	18.574	18.574	70,78	\$1,230	0.008
220.00-200.80					l B	7.669	18,574	į	70.75	154,308	0.000
1					l c i	7.669	18.574	ı	70,78	82,038	0.000
T4	190.00	1.449	26	171,055	i a l	11.361	22,120	22.t20	66,07	\$1.288	0.080
208.00-180.80					В	11.361	22.120		66.07	154,388	8.008
					c	11.361	22.120		66.07	82.030	8.000
T5	170.00	1.415	25	222.915	l A I	12.313	25.512	25.512	67,45	81.288	0.000
180,80-160.00			1		В	12.313	25,512		67,45	154.380	0.000
					c	12.313	25.512		67,45	82,030	0,800
T6 .	150,80	1.378	24	262,945	A	13,727	25.512	25.512	65.02	81,28p	0.008
160.80-140.88					í B I	13.727	25.512		65.02	154.308	0.000
- 1					lci	13.727	25.512	į į	65.02	82,030	8.000
17	130.88	1.337	24	303.362	i∧i	11.332	26,914	26.914	70.37	\$1,288	0.800
140.08-120.00		,			B	11.332	26.914		70.37	154,300	0.000
- 1			- 1		l c l	11.332	26.914	- 1	70.37	82.038	0.800
TE	00,011	1,291	23	343,780	A	11.896	28.486	28,486	78.54	81.280	0.000
120.00-100.00	- 1	ì	- 1		В	11.896	28,486		70.54	154,300	0.000
1	1	1	1		cl	11.896	28.486	1	70,54	82,030	0.008
19	90.00	1.238	22	383.788	AI	12.514	28,486	28,486	69.48	81.280	0.880
100.80-80.00	- 1	- 1	- 1		ві	12.514	28,486		69,48	154,300	0.800
- 1	,	- 1	- 1		ēΙ	12.514	28,486	- 1	69,48	82.030	8,800
TIO	70.00	1.174	21	424.197	Ā	15,375	38.111	30.111	66,20	\$1,280	0.880
80.00-60.80	1)	- 1		BÌ	15.375	30.111		66.20	154,300	0.008
- 1	ſ	ŀ	- 1		ēΙ	15,375	111.00	- 1	66.20	\$2,030	8,000
TIL	10.00	1.894	19	464.197	Ā	16.198	30.111	30.111	65.02	81.280	0.000
60,00-40,88					В	16.198	38,111		65.82	154,380	8.008
	I	- 1	- 1	1	č	16,198	30.111	- 1	65.02	82.030	0,088

tnxTower	Job	227145	Page 16 of 59
15 45 Pideo Drive	Praject	/-27 x 255' - #281331 McHenry, KY	Data 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4225 FAY: /574) 936-6458	Client	American Tower Corp.	Designed by

Tower Pressure - Service

 $G_H = 0.850$

Section Elevation	1	Kr	91	Ao	F	Ar	Az	Aug	Leg %	C.M.	C _A A _A
	ł				1 -		ŀ	i	1 ~	Face	Face
fi	ft		pf	Jr ²	1.	<i>f</i> t ²	<i>در</i>	Jr,		יון	יק
TI	247.50	1.532	12	78.594	Ā	6.589	7.188	7.188	52.17	0.000	0.088
255.00-248.00			ĺ	1	B	6.589	7.188	l	52.17	41,945	8.000
			l		c	6.589	7.188	1	52.17	0.563	8.000
T2	230.00	1,508	12	187,500		7.169	15.000	15,000	67.66	81.288	0,000
248.00-228.88				İ	a	7.169	15.008	1 :	67.66	83.020	0.000
					c	7.169	15.080		67,66	41.390	0.088
13	210.88	1,48	12	129,283	A	7.669	18.574	18.574	70.78	E1.258	0.000
220.00-208.08				l	a	7.669	16.574	1	70.78	154.308	0.880
		1			ļc	7,669	18.574		70,78	82,038	800.0
T-1	190,00	1,449	11	171.055	A	11.361	22.120	22,120	66.07	81.280	0.000
200.80-180.00					В	11.361	22.120		66.87	154.388	880.0
_				·	C	11.361	22,128		66.07	82.030	0.800
T3 180.08-168.08	170,00	1,415	11	222.945	Α.	12313	25.512	25.512	67.45	81,288	0.888
180,08-108,68			l		a	12313	25.512	!	67.45	154,388	0.000
Т6	150,80				C	12.313	25.512		67.45	82.038	0.088
160'80-1-10'00	130.80	1.378	11	262.945	I A	13.727	25.512	25.512	65.02	81.280	0.000
100'00-1-10'00					B	13.727	25.512		65.82	154,380	8,008
[130.80				ļ c	13.727	25.512		65.02	82,030	0.800
140.00-120.00	130.80	1.337	10	303.362	A	11.332	26.914	26.914	78.37	\$1.280	0.080
140.00-120.00		i			В	11.332	26.914		70.37	154.388	0.000
T8	110.00	1		343,780	Ç	11.332	26.914		70.37	82,838	8.000
120.08-100.80	110.00	1.291	10	343.780	A	11.896	28,486	28.486	70.54	81,288	0.000
120,08-100.80	ł	- 1	i		В	11,896	28.486		70.54	154,380	0.000
79	90.80	1.238		383.788	C	11.896	28,486		70.54	E2.038	0.000
108.00-80.80	90.80	1.23	18	383.788	A	12.514	28,486	28.486	69.48	81.288	0.880
1 00.00-00.00	- 1	- 1	- 1		В	12.514	28.486		69,48	154,300	0.080
T10	70.00	1.174	9	424.197	C	12.514	28,486		69.48	82.038	0.000
80.08-60.80	70.00	1.174	اد	424.197	^	15,375	30,111	30.111	66,20	81,280	0.000
20,02-60,40	,		- 1		B	15.375	111,00		66.28	154,300	0.808
Til	58.09	1.094	9	464,197		15.375	111,00	1	66.20	82.030	0,088
60.08-10.80	38.08	1,094	۱,	404.197	AB	16.198	30.111	30.111	65,02	81.280	0,000
00,04-10,00	i	- 1	- 1			16.198	30.111	- 1	65.02	154,300	0,000
T12	30.00		!	504.614	c	16.198	38,111		65,62	82,038	0.880
40.88+20.88	30.00	0.982	8	204,614	Δ.	17.060	32,655	32,655	65,68	81.280	0.080
40.84+20.88		i			В	17.060	32.655	í	65.68	154,300	0.080
T13 20.00-0.08	10.80	}	_}		c	17.060	32,655		65.68	\$2.030	800,0
113 20,00-0,08	10.80	0.85	7	241'611	<u>^</u>	17.958	32,655	32.655	64.52	81,280	0.080
	1	- 1	- 1	- 1	В	17.958	32,655		64.52	154,300	0.000
					C	17.958	32.655		64.52	82.030	8.000

Tower	Forces	- No lo	e - Wind	Normal	To Face

Section Elevation	Add Weight	Seif Weight	F a c	•	C,	q, psf	Dş	Dž	Ae	F	pif	Cirl. Face
71 255,00-248,08	0.24	8.49	A	0,175	2.681 2.681	27	1	1	10.690	1.26	84.88	В
12	1.17	1.01	C	0.175 0.206	2.681 2.575	27	1	1	10.690 15.243	3.06	152.98	В

tnxTower	Job 227145	Page 17 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Sectian Elevatian	Add Weight	Self Weight	F	•	C,	q,	D,	D_k	Az	F	w	Ctrl. Bace
Literulas,	ii eigia	" eigin	١ -	Į	1	ا ما	l		l	l	ł	Pace
ft	K	κ	:	İ	1	pg			יח	K	plf	1
240,00-220,00			В	0.206	2,575		1	1	15.243			
			Ιĉ	0.206	2,575		l i	Ιi	15.243	[ı
T3	1.69	1.28	l Ä	0.203	2.586	26	i	Ιi	16.962	4.25	212.27	В
220.80-200,00			ĺВ	0.203	2.586		1	l i	16,962	1,000		Ι "
- 1	- 1		١ē	0.203	2,586		1	Ιi	16.962			
T4	1.69	1.73	A	0.196	2.51	26	1	l i	21.545	4.43	221.27	В
200.08-180.00	- 1		B	0,196	261		i	l i	21.545			"
i			lс	0.196	2.61		1	l i	21.545			ı
T5	1.69	3.09	A	0.17	2.7	25	1	l i	21.257	4,46	223.11	R
180.00-160.00	- 1		В	0.17	2.7		1	i	23.257			
l l			c	0.17	2.7		1	. 1	23.257			
T6	1.69	3.15	٨.	0.149	2,774	24	1	1	24,399	4.45	222.35	В
160.00-140.00	i		В	0.149	2.774		1	1	24.399			
1			C	0.149	2,774	1	1	i	24,399			i
17	1.69	4.03	A	0.126	2.861	24	1	1	22,284	4,24	211.82	В
148.80-120.00	i		В	0.126	2.861		1	1	22.284			_
l	Į.		(c	0.126	2.861	[1	1	22.284			
T8	1.69	4.62	Α.	8.117	2.895	23	1	1	23.373	4.17	208.27	В
120,00-100.00	J		В	0.117	2.895	ĺ	1	1	23.373			
			C	0.117	2.895		1 /	1	23.373			
T9	1.69	4.68	٨	0.107	2.937	22	1	1	23.853	4.04	201.87	В
180.80-80.00			В	0,107	2,937	- 1	1	1	23.853			
l			C	0,107	2.937		1.	1	23.853			
T10	1.69	6.01	A	0.107	2.935	21	1 1	1	27.367	4.81	200.58	В
80.08-60.00			В	0.107	2.935	- 1	1]	1	27.367			
	- 1		C	0.107	2.935	- 1	1	1	27.367			
TII	1.69	6.11	A	0.1	2,965	19	1	1	28.890	3.78	189.22	В
60.80-40.00			В	8.1	2.965		1	ī	28.090		- 1	
1	- 1	1	c	8.1	2.965	- 1	1 [1	28.090	ł	- 1	
Tt2	1.69	7.02	Α]	0.099	2.97	17	1]	1	29.941	3.48	174.87	В
40.08-20.00			В	0.099	2.97	- 1	1,	1	29.941	ı	1	
		_	C [0,099	2.97	- 1	1 [1	29,941	1	- 1	
T13	1.69	7.13	۸	0.093	2.993	15	1	1	30.760	3.05	152.63	В
20.00-0.80	ł		В	0.093	2.993		1	1	30,760	1		
			c	0,093	2.993	Į,	ı	1	30.760	i	j	
Sum Weight:	20.02	50.34	ì	1	ì	1	1	MTO	6150,73	48.67	ì	
				}					kip-ft		J	

	Tower Forces - No Ice - Wind 60 To Face												
Section Elevation	Add N'eight	Self Weight	F	•	c,	g,	D _f	D _A	As	F	10'	Ctrl. Face	
ft	ĸ	ĸ	1:			₽₽			fi ²	ĸ	plf		
Ti	0.24	0.49	A	0.t75	2.681	27	0.8	1	9.372	1.13	78.60	C	
255,00-248.00			В	0.175	2.681		0.8	1	9.372				
			C	0.175	2.681		0.8	1	9.372				
240.00-220.00	1.17	1.01	<u>^</u>	0.206	2.575	27	0.8	1	13.810	2.98	148.81	С	
240,00-220,00	1		1 19	0.206	2.575		0.8	1	13.810			1	
Т3	1.69		C	0.206	2.575		0.8	1	13.810		1		
	1.09	1.28		0.203	2.586	26	0.8	1	15.428	4.16	207.87	С	
220,00-280.00			В	0.203	2.586	i	0.8	1	15.428				
1			C	0.203	2.586		0.8	1	15.428	1			
T4	1.69	1.73	A	8.196	261	26	0,8	1	19.273	4.30	214.83	C	

tnxTower	Job 227145	Page 19 of 59
1545 Pldca Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymanth, IN 46563 Phane: (574) 936-4225 FAX: (574) 936-6458	Cilent American Tower Corp.	Designed by na1

Section	Add	Self	F	-	C,	g ₂	D,	D _R	A	F	w	Ctrl
Elevation	Weight	R'eight	a	}	1	1	1	1))	i	Foca
			1 2	l	ĺ	psf	i	i	ſ	ĺ	ı	ı
ft	K	K_			ı		ı	ı	ft²	r	plf	!
168.80-140.00			В	8.149	2.774		0.85	1	22.340			
			C	0.149	2.774		0.85	1	22,348			
17	1.69	4.03	A	0.126	2.861	24	0.85	1	20.585	3.81	190.46	c
140.88-120.00			В	0.126	2.861	1	8.85	1	20.585		1	1
ĺ			c	0.126	2.861	1	0.85	l t	20.585		l	l
TS	1.69	4.62	A	0.117	2.895	23	0.85	1	21.588	3.75	187.35	С
120.00-108.80			В	0.117	2.895		0.85	1	21.588			1
			C	0.117	2.895		0.85	1	21.588		l	
T9	1.69	4.68	A .	8.107	2.937	22	0.85	1	21.976	3,63	181.49	l c
100.80-80.00		' '	В	8.187	2.937		0.85	1	21,976		,	1
			C	0.107	2.937		0,85	1	21.976		1	
T10	1.69	6.81	A	0.107	2.935	21	0.85	1	25.861	3.60	180.07	c
80.00-60.00			B	8.107	2.935		0.85	1	25.061			
1	í		C	0.107	2.935		0.85	1	25.061			
Til	1.69	6.11	A	0.1	2.965	19	8.85	1	25,661	3,40	169.83	С
08.81-00.89	,		В	0.1	2.965		0,85	1	25.661			
ľ	- 1		С	0,1	2.965		0.85	1	25,661			
TI2	1.69	7.02	A	8.099	2.97	17	0.85	1	27.382	3.13	156.37	С
40.00-20.00	- 1		В	0.099	2.97		0,85	1	27.382			
	- 1		C	8.899	2.97		0.85	1	27.382			
T13	1.69	7.13	A	0.093	2.993	15	0.85	1	28.866	2.74	137.01	С
20.08-8.00			В	0,093	2.993	- 1	0.85	1	28.066			
	- 1		С	0.093	2.993	- 1	0.85	1	28.066			
Sum Weight:	20.02	50.34			- 1	- 1		OTAI	5656.39	44.28		
		- 1			- 1	ļ			kip-ft			

Section Elevation	Add Weight	Self Weight	F	•	C,	q,	D,	Da	As	F	ir	Ctrl. Face
jt.	ı.	ĸ	e			psf			· 102	ĸ	plf	
TI	1.54	2.22	A	8.421	2.023	3	1	1	24.959	0.27	18.23	В
255,00-248.08	- 1		В	0,421	2.023	l	1	1	24.959	- 1		
1	- 1		c	8,421	2.823	1	1	1	24.959	- 1		
T2	7.03	3.19	A	0.417	2.031	3	1	1	33.049	0.60*	29.94	В
240,88-220.00			В	8.417	2.831	ĺĺ	1	1 1	33.049	- 1		
	- 1		c	0.417	2.031		1	1	33.849			
13	9.51	3.66	A	0.385	2.094	3	1	1	35.686	8.68	34.28	C
220.08-280.00	i		В	8.385	2.094		1	1 /	35.686	- 1		
1	}		C	8.385	2.894	. 1	1	- 1	35.686	- 1		
T4	9,45	4.73	A	0.348	2.175	3	1	- 11	42.313	8.71	35.51	С
00,081-80.08			В	8.348	2.175		1	1	42.313	1		
1			C	0.348	2.175		1	1	42.313			
T5	9.37	11.83	<u>^ 1</u>	0.411	2.842	3		1	64.799	0.78	39.02	C
80.00-160.00			В	0.411	2.042		11	- 11	64.799	- 1	1	
76	9.29		c l	0.411	2.842	- 1	- 11	- 11	64.799	1		
68.00-140.08	9.29	12.85	A	0.361	2.147	3	1	- 11	65.295	0.78	39,18	C
08.00-140.08				8.361	2.147		11		65,295		- 1	
17	0.21		ç	0,361	2.147	- 1	- 1	- 11	65.295	1		
40.00-128.00	9.21	13.12	<u>^ 1</u>	8.298	2.381	3	1	1	59.722	0.75	37.62	C
40.00-128.00			В	0.298	2.301	- 1	- 17	1	59.722	J	- 1	
1	1	1	c l	0.298	2.301	_ 1	- 11	1)	59.722	1	1	
T8]	9.10	13.84	Α	8.269	2.383	3	1 [1	60.219	0.74	36,89	C

tnxTower	Job 227145	Page 18 of 59
****	Project	Date
1545 Pideo Drive Plymouth, IN 46563	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/13 Designed by
Phone: (574) 936-4221 FAX: (574) 936-6458	American Tower Corp.	na1

Section	Add	Self	F		c,	q _z	D,	D ₂	At	F	w	Ctrl
Elevation	Weight	Weight	a	Į			l	i i	l (Fac
_			-	ļ	i i	psf	i	l			l	ı
ft	K	K							p ²	K	plf	
200.00-180.00			В	0.196	2.61		0.8	1	19,273			
	' i		C	8.196	2.61		0.8	1	19.273			
T5	1.69	3.09	A	0.17	2.7	25	0.8	1	20.794	4,32	216,06	С
190.00-160.00	1		В	0,17	2.7		0,8	1	20.794			ĺ
	· 1		C	0.17	27	1	0.8	1 1	20.794	- 1	1	1
T6	1.69	3.15	A	0,149	2,774	24	0.8	1 1	21,654	4.29	214,49	c
160.00-140.00			В	0.149	2,774	- 1	0.8	1	21.654			1 -
- 1	ı		С	8.149	2,774		0.8	i	21,654	- 1		1
17	1,69	4.03	Ā	8.125	2.861	24	0.6	l il	20.018	4.11	205,32	l c
140.00-120.00			В	0.126	2.861		0.8	l il	20.018	****	103,51	٦ ا
			c	0.126	2.861	- 1	0.8	i	20.018			,
TS	1.69	4.62	Ā	0,117	2.895	23	0.8	l il	20,993	4.03	201.61	l c
20,00-100,80	• •		В	0.117	2.895	- 1	0.8	l il	20,993	7.00	201.01	١ -
,	- 1		čl	0.117	2.895	- 1	0.8	i	20.993	i		
Tel	1,69	4.68	Ă	0.197	2.937	22	0.8	i	21,350	3.90	195.05	С
100.08-80.00	•	-1.00	В	8.187	2937	-	0.8	l if	21.358	3.50	193,02	·
	- 1		١ċ١	0.107	2.937	- 1	0.8	il	21.350	l		
710	1.69	6.01	Ă	0.107	2.935	21	0.8	: : :	24,292	3.85	192.56	С
80,00-60.80		0.01	ĥ	0.107	2.935		0.8	l il	24.292	3.63	19236	
00,00	1		čΙ	0.107	2935		0.8	;	24.292	- 1		
T11	1.69	6.11	ĭ	0.107	2.965	et	0.8	: : :	24.851	3.63	181.35	С
60.00-40.00	1.03	5.11	B	0.1	2.965		0.8	:1	24.851	3.63	191.33	C
00,0040.00	- 1	i	٠Ēl	0.1	2.965	- 1	0.8	: ! !	24.851	- 1	1	
712	1.69	7.02	الما	0.029	2.963	17		1 }		1	1	
40,00-20,00	1.05	7.02	ĥ	8,099		***	0.8	:1	26.529 26.529	3.33	166.61	С
40.00-20.00	1		č		2.97	- 1	0.8	. !		- 1	- 1	
T13				0.099	2.97	!	0.8	- 1	26.529			
20.08-0.00	1.69	7.13	41	0.093	2.993	15	0.8	- 11	27.168	2.92	145.78	C
20,08-0.00	- 1	- 1	В	8.093	2.993		0.8	1	27.168			
			c	0.093	2.993	Į	0.8	1	27,168			
Sum Weight:	20.02	58.34	- 1	- 1	ĺ	- 1	- 1	MTO	5952.35 kip-ft	46.99	ı	

			Τον	ver F	orce	s - N	o Ice	- Wi	nd 90 T	o Face		
Section Elevation	Add Weight	Self Weight	F a	,	С,	q,	D,	D _A	Ae	F	w	Ctrl. Foce
A	ĸ	ĸ	í			psf	l		n	ĸ	plf	
T1	0.24	0.49	4	0.175	2.681	27	0.85	1]	9.781	1.20	79.95	С
255,00-248.00			В	0.175	2.681 2.681	1	0.85	- 11	9,701 9,701	J		
T2	1.17	1.01	Ă	0.206	2.575	27	8.85	i l	14,168	3.25	162.41	c
240,00-220,00	1		В	0.206	2.575	-)	0.85	i)	14.168	3		_
			c	0.206	2.575	i	0.85	1	14.168	- 1		
T3 220.00-208.00	1.69	1.28	AB	0,203 8,283	2.586 2.586	26	0.85 0.85	- !!	15.811 15.811	3.81	190,73	С
220.00-208.00			č	0.203	2,586	- 1	0.85	- :	15.811	- 1	- 1	
T4	1.69	1.73	Ă	0.196	2.61	26	8.85	il	19.841	3.97	198.58	c
200.08-180.00	1		В	0.196	2.61	- 1	0.85	1	19.841			
	1	1	Ċ.	0.196	2.61		0.85	1	19.841	_ 1	- 1	
T5 180.00-160.00	1.69	3,09	A	0,17 8,17	27	25	0.85 0.85	!!	21.410	4.01	200.37	C
100.001-00.001	- 1	ĺ	č l	0.17	2.7	- 1	8.85	- ()	21,410	1	ļ	
T6	1.69	3.15	Ā	0,149	2.774	24	8.85	ii	22,340	3.99	199,46	С

tnxTower	Јо Б 227145	Page 20 of 59
1545 Pidca Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Section Elevation	Add Weight	Self Weight	F	•	C,	qı	D,	D _k	Ar	F	w	Ctrl. Face
			ء ا	l	l	psf		1	i I			
ft	K	K		i		7-5		l	12	ĸ l	plf	
20.80-100.00			В	0.269	2.383		1	1	60.219			
	- 1		C	0.269	2.383		1	t	60.219	- 1		
T9	8.98	13.98	A	0,2.43	2.458	2	1	1	60,425	8.72	35.78	С
100,00-80,00	1		B	0.243	2.458			1	60.425			1 -
	i		C	0.243	2.458		1	i	60,425	i		
T10	8.83	15.65	A	0.229	2.501	2	t t	1	63.573	0.70	34.85	c
80.00-68.00	- 1		Ð	0.229	2.581	- 1	1	1 1	63,573			
	i		C.	0.229	2.501		1	1 1	63,573			
TII	8.64	15.70	A	0.211	2.559	2	t	1	64.045	8.66	32.77	C
60.00-40.00	1		в	0.211	2.559		1	l il	64,045			
1	- 1		C	0.211	2.559	- 1	1	1	64.045		- 1	
T12	8.37	16.56	١٨١	0.197	2.606	2	1	1	64.888	B.59	29.67	C
40.88-20.00	i		В	0.197	2.606	- 1	1	i	64,888			
- 1			ci	0.197	2.606	- 1	1	l il	64,888	J	i	
T13	7,83	16.22	١ ٨ ١	0.181	2.66	2	1	11	64.528	0.51	25.54	C
20.00-0.00	i		В	0.181	2.66	- "1	1	1	64.528			
i			c	0.181	2.66		i.	l il	64,528	1		
Sum Weight:	107.17	142.66			'2.1A.	- 1	-	MTO	1082.05	8.49	ļ	
- 1	- 1		1		limit	- 1			kíp-ft		- 1	

Tower Forces - With Ice - Wind 60 To Face

Section Elevation	Add Weight	Self Weight	F	•	C,	q,	D,	D _k	Az	F	w	Ctrl. Face
rt I	κ	ĸ	6			psf			n²	r l	plf	
Ti	1.54	2.22	A	8,421	2.023	3	0.8	1	23,641	0.27	17.78	c
255.80-240.80			в	0,421	2.023	[8.8	i i	23,641		*****	_
1	1	i	c	8.421	2823	1	8.8	1	23.641	- 1		
T2	7.03	3.19	A	0.417	2.031	ا ا	8.0	i	31,616	0.60	29,92	С
240.00-228.00			В	0.417	2.031	*	8.8	- 1	31.616	*		
	1		c	0.417	2.831	1	0.8	il	31.616			
T3	9.51	3,66	Ā	0.385	2.094	3	0.8	il	34.152	R.68	33,80	В
220,08-200.00	- 1		В	0,385	2,094		0.8	il	34.152			
1	- 1		c	0.385	2.094	1	0.8	i i	34.152	- 1		
T4	9,45	4.73	Ā	0,348	2175	3	0.8	i	40,041	8.70	34.92	В
200.88-180.08	i		В	0.348	2.175		8.8	i l	40.041	•		
,	- 1		c	8.348	2,175	i	O.B	. il	40,041			
T5 1	9.37	11.83	Ā	0.411	2,042	3	8.8	- 11	62,336	0.77	38.43	Я
80.08-168.08			В	0.411	2.042	- 1	0.8	il	62.336			
- }	- 1		C	0.411	2.842	- 1	0.8	il	62.336	,	1	
T6	9.29	12.05	٨١	0.361	2.147	3	8.8	il	62.549	0.77	38.50	В
60.00-140,00			В	0.361	2.147	- 1	0.8	il	62,549			_
- 1	!		c l	0.361	2147	- 1	0.8	i	62.549	- 1	i	
17	9.21	13.12	Αl	0.298	2.301	3	8.8	il	57,455	0.74	37.84	В
40.80-128.00	-		В	0.298	2301	- 1	0.8	il	57,455			
- 1	}	- 1	c l	0,298	2.381	- 1	8.8	- 11	57.455	- 1	- 1	
TS	9.10	13.84	۸I	0.269	2.383	3 أ	0.8	- 11	57.840	0.73	36.28	В
20.00-100.08			в	0.269	2.383	- 1	0.8	il	57.840			
	í	- 1	ĉΙ	0.269	2.383		0.8	il	57.840		- 1	
T9	8,98	13.90	آآ	0.243	2.458	2	0.8	il	57,923	0.70	35.15	В
100.08-00.001			В	0.243	2.458	- 1	8.8	- il	57,923		-2.02	
	- 1		č١	0.2-8	2.458		0.8	- ; ;	57.923		- 1	
TIO	8.83	15.65	انآ	8.229	2.581	2	0.8	:1	60.498	0.68	34.18	В

tnxTower	Job 227145	Page 21 of 59
1145 Pideo Driva	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (374) 936-4221 FAX: (374) 936-6458	Cilent American Tower Corp.	Designed by na1

Section Elevation	Add Weight	Self Weight	F	•	C,	g. psf	D,	D _a	As	F	1P	Ctri Fac
		K	١.	<u> </u>		"			Pt	ĸ	plf	i
80.00-60.00			B	0.229	2.501		A.8	1)	60.191			
- 1	- 1	ĺ	C	0.229	2,581		0.8	1	60.49 B	I		
T11	8.64	15.70	٨	0.211	2.559	2	8.1	1	60.806	0.64	32.01	В
60.00-10.08	- 1		В	8.211	2,559		0.2	1	68,806			
- 1	1		C	0,211	2.559		8,2	1 [60,806			
T12	237	16.56		0.197	2.606	2	8.8		61.476	0.52	28.94	B
40.00-20.00	- 1		В	0.t97	2.606		8,2	1	61.476			
- 1	- 1		C	8,197	2,606		0.8	1	6t.476			ì
T13	7.83	16.22	A	0.121	2.66	2	0.8	1	60.936	0.50	24.86	В
20.00-0.00	- 1		В	0.121	2.66		8,2	1	60.936			
			C	0.181	2.66		8,2	1	60.936			
Sum Weight:	107.17	142.66				i 1		OTM	1065.95	1.35		
							- 1	- 1	kip-ft	- 1		

			OΝ	er Fo	rces	- W	th ic	e - V	Vind 90	To Fac	е .		
Section Elevation	Add Il'sight	Self	F	•	C,	91	D,	Dg	Az	F	~	Ctrl.	Ī
alivation .	14 signt	Weight	a			١.	1 1		i I			Face	ł
Æ	r l	ĸ	:			pıf			ויח	ĸ	plf	i	
TI	1.54	2.22	A	0.421	2.023	3	0.85	1	23,971	0.24	16.33	C	
255.00-240.00			В	0.421	2.023	-	8.25		23.971				
	1		C	0,421	2.023		8.25	i	23.97t			1	
72	7.03	3.19	l A	8.417	2.03t	3	0.85	1	31,974	8.60*	29.94	l c l	
240.00-220,30			В	8.417	2.031	-	0.25	11	31.974			1 - 1	
	- 1		Ĉ	0.417	2.031		0.25	i	31.974	í		1 1	
T3	9.51	3.66		8,385	2.894	3	0.85	ī	34.536	0.68	34.04	fвl	
228.00-200.00			В	0,385	2.094	i -	0.25	î.	34,536		24.04	-	
		'	ī	0.385	2.094		8.85	- 11	34,536	1		1	
T4	9,45	4.73		0.348	2.175	3	0,85	il	40.609	0.78	35.20	l a i	
200.00-180.00			В	5,348	2.t75		0.85	í	40.689		20.00		
			ē.	0.348	2175		0.85	il	40,609	- 1		1 1	
T5	9.37	11.83	Ă	8,411	2.042	3	0.85	il	62.932	8,77	38.71	в	
180.00-160.00	,,,		B	0.411	2.042	- 1	0.23	il	62,952	2.,,	J#.71		
		i i	č	0.411	2.042		a.15	il	62,952				
T6	9.29	12.85	1	8,361	2.147	3	8.83	- 11	63,236	0.72	38.88	В	
160.00-140.00			B	0.361	2.147	- 1	0.85	- ; [63,236	9.70		- 3	
	- 1	i	č	8,361	2.147		0.85	- 11	63.236	- 1			
17	9.21	13,12	Ă	8,292	2.301	3	0.85	- :1	58.822	0.75	37.31	в	
140.00-120.00		13.12	ĥ	0.291	2.301	- 1	0.85	- :1	58.022	0.13	31.31	- 4	
	l l		čl	0.298	2.381	- 1	8.85	- :1	58,022	I		I	
Tal	9.18	13.84	Ă	0.269	2385	3	0.25	:1	58,434	8,73	36.55	в	
20.00-108.00	3.10	43.44	ŝ	8.269	2.383	ا د	0.85	- ; (58,434	2./3 {	20.33	- 1	
	l t		čΙ	3.269	2,383	- 1	a.85	- 11	58.434	ı			
19	2,92	13.90	λl	8,243	2.458	2	0.85	:1	58.548	8,71	35.42	в	
100.00-80.00	-54	13.90	â	8.243	2.458	- 41	0.25	- 11	58.548	8.71	33.44		
	1		ĉ١	0.243	2.458		0.83	:1	58.548	- 1		- 1	
T10	2.83	15.63		0.229	2.501	- 1	0.85	- 11	61,267	8.69		- 1	
80.00-68,00	*.63	13.63	A	8.229	2.501	2	8.85	:1	61,267	8.69	34.39	В	
au.uu-08.00	- 1	- 1	ë l	0.229	2.501	- 1	8.83	il	61.267	- 1			
711	8.64	15.70		8,211	2.559	ا ـ	0,83			0.65		_	
60.00-10.00	4.04	15.70	<u>^ </u>	0.211	2.559	2	0.83	1	61.616	0.65	32.30	В	
00,00-10,00	- 1		В					1	61.616		- 1		
	8,37		e l	0.211 3.197	2.559	1	8.85	: ! !	61.616	1		_	
T12	E.37 [16.56	Λ.	a,197 [2.606	2	8.85	- 11	62.329	8.58	29.2t	В	

tnxTower	Job 227145	Pege 23 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Cilera American Tower Corp.	Designed by na1

Section Elevation	Add Weight	Self Weight	F	•	C,	9+ P4F	D,	D _R	Az	F	7	CtrL Face
	K	κ				_~			η²	K	plf	
									kip-ft			

			Γοι	ver Fo	orces	s - Se	ervic	e - V	Vind 60	To Fac	е	
Section	Add	Self	F		C,	g,	D,	De	Ag	F	15	CtrL
Elevation	N'eight	Weight		1	ł	Ι.	1	1	1	ł		Fore
,	ĸ	K	1:	ì	l	psf*	l	ŀ	יה	ĸ	pif	1
TI	0.24	0.49	1	0,175	2.681	12	0.8	1	9,372	0,52	34.93	c
255,00-240,08		1	Ιŝ	8.175	2.681	l	0,8	l i	9,372	1 "	34.53	١ ۲
		ţ	١ē	0.175	2.681	ł .	0.2	l î	9372	Į.	Į.	Į.
T2	1.17	1.81	l Ă	8,206	2.575	12	0.8	1 1	13.818	1.32	66,14	l c
240.00-220.08			B	0.206	2.575		0,8	i	13.810			I -
		1	l c	0.206	2.575	l	8.8	1 1	13.818	ĺ		Į
13	1.69	1.28	A	0.203	2.586	12	0.2	1	£5.428	1.85	92.39	C
220,00-200.00		l	В	8,203	2.586	l	0.2		15,428	l	ł	
:		ı	С	0.203	2.586		8.2	1	15.428	ŀ	l	
T4	1.69	1.73	A	0.196	2.6t	11	3.1	t	19.273	1.98	95.48	C
200.00-180.88			В	0.196	2.61	l	0.2	!	19.273		İ	l
Ta	1.69	3,89	ļç	8.196 8.17	2.61	۱	0.8	1 !	19.273	ـ ـ		
180.00-160.00	1.09	3,89	l A	8.17	2.7 2.7	11	9.8 8.8	1	20.794 20.794	1.92	96.03	С
180.00-100.00			l ĉ	0.17	27		3.8	l i	20.794			
те!	1.69	3.15	١×	0.149	2.774	11	0.8	l i	21.654	191	95.33	c
160.00-140.00	1.02	3,15	l 🔒	0.149	2.774		0.8	l i	21.654	131	33.73	٠
			ľċ	0.149	2.774	l	0.8	l î	21.654	1		i I
17	1.69	4.03	١Ă	0.126	2.861	18	0.2	l i	20.018	1.83	91.26	c
140,00-120,88	• • • • • • • • • • • • • • • • • • • •		lв	0,126	2.861		3.2	Ιi	28,318	,	71.20	
			ē	0.126	2.861		0.8	Ιi	20,018			
TS :	1.69	4.62	٨	8,117	2.895	18	8.0	l i	20.993	1.79	89.60	c
120.03-100.08			В	8.117	2.895		8.8	1 1	20,993			
			С	0.117	2.895		0.8	1	20.993			
T9	1.69	4.68	A.	5,107	2.937	to.	0.1	1	21.358	1.73	\$6.69	c
80.08-08.801	1		В	0.107	2.937		8.1	1	21.350			
	- 1		c	0,107	2.937		0.1	1	21.358			
T10	1.69	6.01	A	0.107	2.935	9	0.8	1	24.292	1.71	85.52	С
80.00-60,08	i		В	0.107	2.935		0.8		24.292			
\	ا ا		C	0.107	2.935		0.8	1	24.292			
60.00-10.00	1.69	6.11	٨	1.8	2.965	9	0.8	1	24.851	1.61	80.60	C
60,00-10,00			В	0.6	2.965		0.8	1	24.851			
	1.69		c	0.1	2.965	ا ـ	8.8	1	24.851			_ 1
40.00-20.00	1.09 1	7.02	A	0.899	2.97	1	8.8	. !!	26,529	1.42	74.05	c
40.00-20.00	- 1		В	0.099	2.97	- 1	0.2	1 1	26.329	I	- 1	- 1
713	1.69	7,13	C	0.099	2.97 2.993	7	8.8	1	26.529	!		_
20.00-0.00	1.69	7.13	A	8,893	2.993	71	0.8	!	27.168	1.30	64.79	С
20,00-0.00	- 1	- 1	B	0.093	2.993		0.8	!!	27.168 27.168		- 1	
Sum Weight:	20.02	50,34	٠	0.093	Z-393	•	0.8	OTM				
weißur:	20.02	10.14	- 1	- 1	- 1	- 1		OIM	2645.49	20.88	- 1	- 1
									kip-A			- 1

tnxTower	Job 227145	Page 22 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:25:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Carp.	Designed by na1

Section Elevation	Add Weight	Self Weight	F	•	c,	91	D,	Dg	Az	F	w	CtrL Face
nn	ĸ	K				pt/			יית	ĸ	рlf	
40,00-20.00			В	8,197	2.606		8,83	1	62.329			
	- 1		C	0.197	2.606		0.25		62,329			
T13	7.83	16.22		0.181	2.66	2	8,85		61.834	8.5a	25.11	В
20.80-0.00	- 1		В	8.181	2.66		8.23	1	61.834		l i	
	ſ		C	8,183	2.66		0.15	i i	6t.834			
Sum Weight:	t07,17	142,66	1		21A.			OTM	1067.25	131		1
					limit				kip-ft			1

<u>. 10</u>		To	vei	Forc	es -	Serv	ice -	Win	d Norm	al To F	ace	
Section Elevation	Add Weight	Self B'eight	F	•	C,	9,	D,	D_R	As	F	w	Cti
2.161(2.10.1	77 4 13 14	n angen	1 =			per	l		1 1			r
a l	κ I	K	١.		l	1 20		1	ן יח		plf	ĺ
TI	0.24	0,49	A	0.175	2.681	12	1	1	10.690	0,56	37.33	В
255.00-240.00			В	0.175	2.681	1 1	1	i	10.690			1
			C	0.175	2.68t	1	1		10.690			i
T2	1.17	1.01	Α.	8,206	2.575	12	1	1	15.243	1.36	67.99	В
240.00-220.08	- 1		B	0.206	2.575	1 1	1	!	15.243	i		
13	1.69	1.28	C	8.206 0.203	2.575	ا ا	1	1	15,243			١ ـ
228,80-206.08	1.69	1.28	A	0.203	2.586	12	1	1	16.962	1.89	94.34	В
220.00-200.00			l a	0.203	2.586	1 1	1		16.962			
T4	1.69	t.73	١Ă	0.196	261	1 11	1	l i	21,545	1.97	98.34	n
200.00-180.00		1.72	В	8.196	2.61		î	i	21,545	'-'1	20.34	
			ī	8,196	2.61	1 1	i	i	21,545	į.		
T5	1.69	3.89	Ā	0.17	2.7	111	i	i	23.257	1.92	99.16	В
128,80-160.00			В	0.17	2.7		1		23.257			
1	1		C	0.17	2.7	l ì	1	1	23.257	1		1
T6	1.69	3.15	A	0,149	2.774	It	1	1	24.399	t.92	91.12	В
160.80-140.08	- 1		В	0.149	2.774		1	- 1	24.399	Ī		
I			C	0.149	2.774	il	1		24.399			
17 140.00-120.80	1.69	4.03	AB	0.126 8.126	2.861	10	1	1	22.264	1.88	94.14	B
140.00-120.00	1		Ĉ	8.126	2.861		1	1	22,284			
TR	1.69	4.62	X	0.117	2.895	10	- 1	i	23.373	1.25	92,56	В
120.00-100.00		7,04	В	8,117	2.895		il	i	23.373	1.45	92.50	
			č	8.117	2.893		il	i	23,373	ı	ı	
19	1.69	4.68	Ā	8.t07	2.937	10	il	il	23,853	1.79	19.72	В
100.00-20.08			В	8.107	2,937		il	i l	23,853	****		
i i	- 1		cl	8,107	2.937		ī	il	23.853		- 1	
TIE	1.69	18.6	Λ.	8,107	2,935	9	1	1 [27.367	1.78	19,11	В
80.00-60.08	ì		В	8.107	2,935		1	1]	27.367	- 1		
1			c	0.187	2,935		1	* 1	27.367			
T11	t.69	6.11	4	8.1	2.965	9	1	1	28.890	1.68	84,18	В
60,00-40.88	- 1	- 1	В	1.8	2.965	- 1	11		28.090			
T12	1.69	7.02	5	0.1 8.099	2,965		1	:	20.090	1.53	77.36	B
40.80-20.00	1.09	7.02	ŝΙ	0.099	2.97	•1	il	- 11	29.941	1.23	77.36	н
40,00-20,00	1	- 1	ĉ l	0.099	2.97	- 1	i	- :1	29.941			
T13	1.69	7.13	Ă	8.093	2.993	7	i	- 11	30.768	1.36	67.83	В
28,00-8.08	****	1.12	В	0.893	2.993	1	il	il	30.760	126	٠,	
	- 1		Ĉ.	0.093	2,993		il	i I	38.760	1	i	
Sum Weight:	20.82	50,34				- 1	۱,	отм	2733.66	21,63		

tnxTower	Job 227145	Pege 24 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	American Tower Corp.	Designed by na1

			ľov	ver Fo	rces	- Se	rvic	e - V	Vind 90	To Fac	е	
Section Elevation	Add Weight	Self Weight	F	•	C,	g,	D,	D _R	As	F	10	Ctrl.
Lievarian	11 51814	to signs	1 .	ł	l	psf		1	1			race
n i	r I	, r	١.	i	i	1 ~	ì	1	1 02	, K	plf	ì
T!	0,24	0.49	A	0,175	2.681	12	0,85	1	9,701	8.53	35.53	C
255.00-240.00			В	8,175	2.681		3.85		9,701			1
i			C	3.175	2.681	l	0.25		9,701			l
12	1.17	1.01	Ι Α	0.206	2.575	12	8.85	1	14.162	1.44	72.18	l c
248.00-220.80			В	0.206	2.575		8.85	1	14.168			
			C	0.206	2.575		8.85	1 1	14.168			
13	1.69	1.28	A	0.203	2.586	12	8.85	1	£5,811	1.78	24,77	C
220.00-200.08			В	8.203	2.586	l i	0.85	1	(5.811			1
	1		C	0.203	2.586		0.85		15,811			l
T4	1.69	t.73	ı.	8.196	261	11	0.85	1	19.841	1.77	88.26	C
208,00-180.00	J		В	8.196	2.61		0.85	1	19.241			l
!	1.69	3 09	C	0.196	2.6t	١١	8,85	1	19,841			i _
T5 180.00-160.08	1.09	3.09	Ìв	0.17	2.7 2.7	14	0.85 8.85	!	21.418 21.410	1.78	19.05	C
100.00-100.00			۱ë.	0.17	27		8.83	1	21,410			1
т6	1.69	3.15	I A	0.149	2.774	11	0.85	1	22,418	1.77		c
160.00-1-10.03	1.69	3.13	ĥ	8.149	2774	"	0.85		22,348	1,77	88.65	
100.00.001			Ĉ	0.149	2.774		0.85	1	22.348 22.348	1		
17	1.69	4.03	Ă	0.126	2.861	10	0.83	i	20.583	1.69	84.65	c
140.80-128.00	*.05	4.02	â	0.126	2.661	,,,	0.83	l i	20.585	1.69	84.03	· ·
.,0,00,,20.00	- 1		č	8.126	2861		0.85	1	20,383	- 1		
78	1.69	4.62	Ā	0.117	2.895	18	8.83	i	21,588	1.67	83.27	С
128.00-100.00			В	0.117	2.895		0.83	i	21,588	''	****	_
	ı		Ē	8.117	2.895		0.85	i	21.588			
19	1.69	4.68	A.	8.107	2.937	10	0.85	i	21,976	1.61	20.66	C
103,80-80,80			в	0,107	2.937	- 1	8.85	1	21,976			-
	- 1	- 1	c l	0.107	2.937	i	0.85	1	21,976		- 1	
TIS	1.69	6.81	A	0.107	2.933	9	0.85	1	25,061	1.60	80.03	c
80,80-60,00			В	0.107	2.935	- 1	8.85	i	25,861			
- 1		- 1	C	8.107	2,935	- 1	0.85	1	25,061		- 1	
TIL	1,69	6.11	A	8.1	2.961	9	8.83	1	25.661	1.51	75.48	C
60.00-40.00	1	J	В	8.1	2.965	- 1	0,25	1	25,661	ì	1	
Į.	- 1	- 1	C	0.1	2.963		0.85	ŧ	25.661	- 1	i	
T(2	1.69	7.82	A	8.099	2.97		0.23	1,	27.382	1.39	69.58	С
40.00-20.00	- 1		В	0.099	2.97		0,85	- 1	27.382	i	1	
		. 1	c [0,099	2.97	- 1	0.83	1	27.382	- 1	- 1	
T13	1.69	7.13	<u> </u>	0.093	2.993	7	0.85	1	28,066	1.22	60, 29	C
20.00-8.08			В	0.093	2.993	- 1	8.85	1	28.066	- 1	- 1	
	- 1	- 1	c	0.093	2.993	- 1	8,85	- 1	28.866			
Sum Weight:	20.02	50,34	l	- (- 1	l	[OTM	2513.95	19.61	l	
	1	1	,	ŧ	ı	- 1	- 1	,	kip-ft	1	- 1	

	Mast Vectors - No Ice											
Section No.	Section Elevation	Wind Azimuth	Directionality	F	ν,	ν.	OTM _a	OTM _e	Torque			
	255.00-240.08		Wind Normal	_ K	_ K		ktp-ft	kip-ft	kip-ft			
Tı	233.00-240.08	30	Wind Normal	1.02	0.00	-1.02	-253.33 -257,22	-0.33	0.2			
		60	Wind 60	1.20	1.02	-1,04	-146.87	-148.73	0.0			
		90		1.18	1.02	-0.59	-140.07	-253.83	-0.0			

tnxTower	Job 227145	Page 25 of 59
IS4S Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phore: (574) 936-4221 FAX: (574) 936-6458	Cilent American Tower Corp.	Designed by na1

rction Na	Section	Wind	Directionality	F	V.	V	OTM.	OTM:	Torque
Na.	Elevation ft	Azimuth		, l	r l	, r	ktp-ft	k ip-ft	kip-fl
		120	Wind Normal	1.82	0.89	0.51	126,39	-219.56	-0.25
	l	t50	Wind 90	0.74	0.37	0.64	158.99	-92.23	-8,21
		188	Wind 60 Wind 90	0.94 1.78	-0.60	8.94 1.04	232.91	-0.33	-0.24
		240	Wind Normal	1.26	-1.09	0.63	256.86 155.75	148.87 269.74	-0.19 -0.82
	.	278	Wind 90	t.20	-1.20	0.00	-0.18	296.47	0.16
		380	Wind 60	0.94	-0.82	-0.47	-116.72	201.53	0.23
T2	240.80-220.0#	338	Wind 90 Wind Normal	8.74 2.83	-0.37	-0.64	-159.35	91.56	0.21
•-	240.80-220.08	38	Wind 90	2.80	0.00 1.48	-2.83 -2.42	-650.37 -557.79	-0.01 -321.84	0.01 -0.08
		68	Wind 68	2.98	2.58	-1,49	-342.63	-592.83	-0.17
		90	Wind 90	3.25	3.25	80.0	-0.36	-747.08	-0.22
		128	Wind Normal	3.86	2.65	t.53	351.58	-689.45	-0.19
		150 180	Wind 90 Wind 68	2.88	1.40 8.00	2.42	557.06	-321.84	-8.11
		210	Wind 90	2,88	-1.40	2.74 2.42	638.45 557.06	-0.01 321.82	10.01 80.8
		240	Wind Normal	3.06	-2.65	1.53	351.50	609,44	0.17
į		278	Wind 90	3.25	-3.25	0.50	+0,36	747,07	0.22
		380	Wind 60	2.98	-2.58	-1.49	+342.63	592,82	0.18
ъ I	228.00-200.00	330	Wind 90 Wind Normal	2.80 3.51	-1.40 0.00	-2.42	-557.79	321.82	0.11
	220,00-200,00	38	Wind 90	3.81	1.91	-3.51 -3.30	-736.58 -694.83	-0.56 -401.08	8.29 0.19
		60	Wind 68	4.16	3.60	-2.08	-436.83	-756.64	8.02
Į		90	Wind 90	3.81	3.8t	0.00	-8.38	-831.61	-0.16
		120	Wind Normal	3.51	3.04	1.75	367.83	-63B.19	-0.28
ļ		150	Wind 98 Wind 68	3.50 3.42	1.75	3.03	636.8B	-367.97	-0.33
ĺ		210	Wind 98	3.81	0.08 -1.91	3.42 3.30	717.51 693.42	-0.56 399.97	-0.29 -0.19
- 1		248	Wind Normal	4.25	-3.68	2.12	445.45	771.52	-0.19
		270	Wind 90	3.81	-3.81	80,0	-0.30	803.49	0.16
)		380	Wind 60	3.42	-2.96	-1.71	-359.21	621.08	0.27
T4	200,00-180.00	330 0	Wind 90 Wind Normal	3.50 3.70	-1.75	-3.03	-636.69	366.B6	0.33
1	200.00-180.00	30	Wind 90	3.70	0.88 1.99	-3.70 -3.44	-703.69 -653.90	-0.71 -378.01	0.3E 0.25
		60	Wind 60	4.38	3.72	-2.15	-408.57	-787,71	8.03
- 1		90	Wind 90	3.97	3.97	8.00	-0.38	-755,32	-0.21
- 1	1	128	Wind Normal	3.78	3.21	1.85	351.27	-689.79	-0.36
- 1		150 188	Wind 90 Wind 60	3.66	1.83	3.17	602.33	-349.68	-0.43
- 1	i	218	Wind 90	3.57 3.97	8.08 -1.99	3.57 3.44	678.46 653.13	-0.71 376.68	-0.37
ı	1	248	Wind Normal	4.43	-3.83	2.21	420.03	727.47	-0.25 -0.03
- 1		270	Wind 90	3.97	-3.97	6.00	-0.38	753.90	8,21
- 1	1	388	Wind 68	3.57	-3.09	-1.79	-339.81	587.19	0.35
75	180,98-160,08	330 0	Wind 98	3.66	-1.63	-3.17	-603.09	347.27	0.43
" 1	180.88-100.08	30	Wind Normal Wind 90	3.76 4.81	0.08 2.88	-3.76 -3.47	-638.83 -590.46	-0.96	0,46
	- 1	68	Wind 68	4.32	3.74	-2.16	-367.77	-341.49 -637.84	0.30 8.03
- 1		90	Wind 90	4.81	4.01	0.80	-0.46	-682.13	-0.25
- }	1	129	Wind Normal	3.76	3.25	1.88	318.72	-553.78	-0.44
- [i	158	Wind 90	3.71	1.85	3.21	545.13	-315.86	-0.5t
- 1	Į.	180 218	Wind 60 Wind 90	3.61 4.01	0.00 -2.08	3.61	613.93	-0.86	-8.45
- 1	- 1	240	Wind Normal	4.46	-3,86	2.23	589.53 378.82	339.78 656.08	-0.38
- 1		270	Wind 90	4.01	4.81	0.80	-0.46	680.41	0.25
- ((308	Wind 68	3.61	-3.13	-1,81	-307.66	53t.23	0.42
		330	Wind 90	3.71	-t.85	-3.21	-546.86	314.14	9.51
16	160.80-140.80	30	Wind Normal	3.76	0,00	-3,76	-564.38	-1.01	0.54
	ļ	68	Wind 90 Wind 68	3.99 4.29	1.99 3.72	-3,45 -2,14	-5t8.76 -322.28	-308.28	0.35
	1							-558.27	0.84
- 1	1	90	Wind 90	3.99	3.99	0.99	-8,55	-599.39	-0.29

tnxTower	Job	227145	Page 27 of 59
1\$45 Pideo Drive	Project V-2	27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client	American Tower Corp.	Designed by na1

Section No.	Section	Wind	Directionality	F	ν,	ν,	OTM,	OIM,	Torque
Na.	Elevation	Azimidh	1	}		1)	1	
	A			K	ĸ	K	kip-ft	kip-fl	kip-ft
		180	Wind 60	3.08	0.00	3.0B	153,07	-1.76	-8.76
		210	Wind 90	3.40	-1,70	2,94	146.13	83.15	-0.51
- 1		240	Wind Normal	3.78	+3.28	1.89	93,66	162.10	-0.06
J		270	Wind 90	3.40	-3.40	88.0	-0,95	168.87	8.42
ì		308	Wind 60	3.08	-2.67	-1.54	-77.96	13t,63	0.71
!		330	Wind 90	3.16	-1.58	-2.74	-137.93	77.32	0.87
T12	40.00-20.00	0	Wind Normal	2.99	0.00	-2.99	-90.75	-1.91	0.79
		38	Wind 90	3.13	1.56	-2.71	-82.28	-48,82	8,51
- 1		60	Wind 60	3.33	2.89	-1.67	-5t.02	-88.49	0.05
		90	Wind 90	3.13	3.13	8.08	-1.03	-95,73	-0.42
1		128	Wind Normal	2.99	2.59	1.50	43.83	-79.61	-0,74
- 1		150	Wind 90	2.92	1.46	2.53	74.78	-45.68	-0,86
		180	Wind 60	2.84	0.80	2.84	84.21	-1,91	-0.75
- 1		210	Wind 90	3.13	-1.56	2.71	80,22	45.80	-0.51
- 1		240	Wind Normal	3.48	-3.02	1.74	51.19	88,54	-8.86
- 1		278	Wind 90	3.t3	-3.t3	0.08	-t.03	91.91	0.42
- 1		300	Wind 60	2.84	-2.46	-1,42	-43.65	71.91	8.78
- 1		330	Wind 90	2.92	-1.46	-2.53	-76.84	41.86	0,86
Tt3	28.00-0.80	0	Wind Normal	2.63	8.00	-2.63	-27.39	-2.06	0.75
- 1		30	Wind 90	2.74	1,37	-2,37	-24.84	-15.77	3.4E
í		60	Wind 60	2.92	2.53	-1.46	-t5.69	-27.3 t	0.05
		90	Wind 98	2.74	2.74	0.00	-1.11	-29,47	-0.39
(128	Wind Normal	2.63	2.28	131	t 2.83	-24.82	-0.70
		150	Wind 90	2,36	t.28	2.22	21.05	-14.86	-0.81
- 1		190	Wind 60	2.49	0.00	2,49	23,80	-2,06	-8.71
- 1		218	Wind 90	2.74	-1.37	2.37	22.62	11.64	-0.48
- 1		240	Wind Normal	3,85	-2.64	1.53	14.15	24,37	-8.85
i		270	Wind 90	2.74	-2.74	0.00	-1.11	25.34	0.39
l l		300	Wind 68	2.49	-2.16	-1.25	-13,57	19,51	0.66
- 1		338	Wind 90	2.56	-1.28	-2.22	-23.27	18,73	0.81

			Ma	st Totals	- No Ice
Wind Azimuth	ν.	ν,	OTM,	OTN ₄	Torque
	K	K	kip-ft	kip-ft	kip-fl
0	0.00	-41.36	-5229.50	-14.76	7,03
30	21.92	-37.96	-4817.35	-2791.25	4,48
68	40.69	+23.49	-2984.58	-5169.65	0.31
90	44,28	0.80	-8,33	-5671.15	-4.00
£20]	36.82	20.80	2629,12	-4582.94	-6.78
158	20.23	35.04	4400.98	-2560.47	-7.75
t#0[3,30	39.68	5814.46	-14.76	-6.72
210	-21,92	37.96	4300,69	2761.73	-4.48
240	-42.15	24.33	3067.04	5311.93	-0.33
278	-44.28	0.00	-8.33	5641.63	4.00
380	-34.56	-19.95	-2546.5B	4381.63	6.48
338	-20.23	-35.04	-4417.64	2530.96	7.75

Ma	st '	Vec	tors	- With	Ice

tnxTower	Job 227145	Page 26 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Section No.	Section Elevation	Wind Azimuth	Directionality	F	ν,	ν,	OIM.	OTM,	Torque
<u> </u>				ĸ	K	ĸ	kip-ft	kip-fl	kip-ft
		158 188	Wind 90 Wind 60	3,78 3,60	1.85	3.20 3.68	479.50	-278.17	-0.68
		210	Wind 90	3,99	0.88 -1,99	3.45	539.61 517.66	-1.01 298.18	-0.52 -0.35
- 1		240	Wind Normal	4,45	-3.85	2.22	332.98	576.68	-0.04
ļ		270	Wind 90	3.99	-3.99	0.88	-0.55	597.37	0.29
- 1		388 330	Wind 68	3.60	-3.12	~1.80	-270.63	466.78	0.49
177	148.00-120.08	330	Wind 90 Wind Normal	3.70 3.57	-t.85 0.08	-3.20 -3.57	-480.68 -464.49	276.15	03,0
		30	Wind 90	3.E1	1.90	-3,38	-429,47	-1.16 -248.76	8.59 0.39
		60	Wind 60	4.11	3.56	-2.85	-267.55	-463.48	8,04
		90	Wind 90	3.81	3.81	88.8	-0.63	-496.35	-0.32
		120 158	Wind Normal Wind 90	3.57	3,89	1.78	231.31	-402.BB	-0.56
		188	Wind 60	3.52 3.44	1.76 9.88	3.05 3.44	396.t3 446.34	-230.23 -1.16	-0.66
1		218	Wind 90	3.81	-1.90	3.30	428.22	246,44	-0.57 -0,39
		248	Wind Normal	4.24	-3.67	2.12	274.74	475.79	-0.04
1 1		278	Wind 90	3.81	-3.81	0.00	-0.63	494.03	0.32
1 1		388	Wind 68 Wind 90	3.44	-2.98	-1,72	-224.11	385.93	0.54
1 78	120.80-100.00	333	Wind Normal	3.52 3.52	-1.76 0.08	-3.85 -3.52	-397.39 -387.93	227.91 -1.3t	0.66
1 .		38	Wind 90	3,75	1.87	-3.25	-357.66	-287,40	0.43
		60	Wind 60	4.83	3,49	-2.82	+222.47	-385.42	0.05
		90	Wind 98	3.75	3.75	0.80	-0.71	-4t3.48	-0.36
1 1		120 150	Wind Normal Wind 98	3.52 3.47	3.05	1.76	192.90	-336.65	-0.62
1 1		199	Wind 60	3.39	1.74 8.88	3.01	330.03 37t.86	-192.26 -1.31	-0.73 -0.63
1		210	Wind 90	3,75	-1.87	3.25	356.24	204.77	-0.43
1 1		248	Wind Normal	4.17	-3.61	2.08	228.39	395.49	-8.05
		278	Wind 90	3.75	-3.75	0.88	-0.71	410.86	0.36
1 1	} 1	389	Wind 68 Wind 90	3.39	-2.93 -1.74	-1.69	-186.99	321.34	0.59
Т9	198.90-80.08	0	Wind Normal	3.42	0.00	-3.81 -3.42	-331.44 -308.49	189.64 -1.46	0.73 0.71
"		38	Wind 98	3.63	1.81	-3.14	-283.71	-164.81	0.46
	- 1	68	Wind 68	3.90	3.38	-1.95	-176.34	-305.52	0.05
1 1		90	Wind 90	3.63	3.63	8,00	-0.79	-328.15	-0.3B
1 1	}	128	Wind Normal Wind 90	3,42	2.96 1.68	1.71	153.06	-267.94	-0.67
1 /		199	Wind 60	3.28	0.88	2.92 3.28	261.57 294.64	-152.94 -1,46	-0.78 -0.68
	1	210	Wind 90	3.63	-1.81	3.14	282.13	161.88	-0.46
1 1	1	248	Wind Normal	4.84	-3.58	2.02	198.89	3t3.22	-8.05
1 1		278 388	Wind 90	3.63	-3.63	0.80	-0.79	325.23	0.3B
1 1	1	330	Wind 68 Wind 90	3.28 3.37	-2.84 -1.68	-1.64 -2.92	-148.50 -263.15	254.39	0.64
TIB	80.00-60.88	5	Wind Normal	3.42	0.05	-3.42	-240.51	158.81 -1.61	0.78 0.77
l i		38	Wind 90	3.60	1,88	-3.12	-219.28	-127.66	0.50
		60	Wind 68	3.85	3.34	-1.93	-135.66	-235.08	0.05
1 1	- 1	90 128	Wind 90 Wind Normal	3.60	3.68	0.80	-0.87	-253.71	-0.41
1	}	150	Wind Normal Wind 90	3,42	2.96 1.68	2.90	118.95	-209.15	-0.73
1 1	i	180	Wind 60	3,33	0,00	3.26	227.66	-115,91 -1,61	-0.85 -0.74
1 1	Į.	210	Wind 98	3,68	-t.BS	3.12	217.46	124.44	-8.58
1 1	i	240	Wind Normal	4.51	-3.47	2.81	t 39.48	241.48	-0.86
1 1	ŀ	270	Wind 98	3.68	-3.60	0.88	-0.87	250,49	0.41
1 .	ļ	338	Wind 68 Wind 90	3.26 3.35	-2.83 -1.68	-1.63	-115.13	196.38	0.69
TII	60,00-40.00	330	Wind Normal	3.24	0.00	-2.90 -3.24	-204.03 -162.84	115.68 -1.76	0.85
1	,	30	Wind 90	3.40	t.78	-2.94	-148.83	-86.68	0.50
1 1	J	60	Wind 60	3.63	3.14	-1.81	-91.62	-158.81	8.06
	i	90	Wind 98	3.40	3.48	0.88	-0.95	-171,59	-0.42
t t		120	Wind Normal	3.24	2.88	1.62	80.08	-141.97	-8.75
1 1	i	159	Wind 98	3.16	1.58	2.74	136.03	-80.85	-0.87

tnxTower	Јоь 227145	Page 28 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phore: (374) 936-4221 FAX: (374) 936-6488	Client American Tower Corp.	Designed by na1

Section	Section	Wind	Directionality	F	V	ν,	OTAI.	OTM,	Torque
Na	Elevation ft	Azimutti 0		ĸ	x	r l	kip-ft	kip-fl	kip-fl
Tt	255.00-240,88	9	Wind Normal	0.20	0.00	-0,20	-51.08	-2.16	<i>kip∗ji</i> 0.
		39	Wind 90	0.24	0.12	-0.21	-53.34	-32.46	o.
		60 90	Wind 60	0.27	0.23	-0.13	-33.85	-59.32	8,
		120	Wind 90 Wind Normal	0.24	0.24 0.18	0.00 5.10	-0.84	-62.77	-0.
i		150	Wind 90	0.17	0.09	0.15	24.27 36.53	-45.66 -23.73	-8. -0.
		180	Wind 68	0.28	0.08	0.20	47.71	-2.16	-0,1
		210	Wind 90	0.24	-0.12	0.21	51.65	28.15	-0,
		240	Wind Normal	0.27	-0.24	0.14	33.00	56.47	-0.
		270 300	Wind 90 Wind 60	0.24	-0.24 -0.17	0.80	-0.84	58,46	0.
		330	Wind 90	0.17	-0.09	-0.10 -0.15	-25.12 -38.21	39.89 19.42	0.
T2	240.80-220.00	0	Wind Normal	0.54	0.88	-0.54	-125,08	-0.32	0.0
		30	Wind 90	0.55	0.28	-0.48	-112.12	-63,98	-0.0
		68	Wind 68	0.60	0.52	-0.30	-70.67	-119.51	-0.1
ļ		90 120	Wind 96 Wind Normal	0.60	0.60	0.00	-1.85	-138.03	-9.1
- 1		120	Wind 90	0.60 0.55	0.52 0.28	8.30 0.48	67,01 108,42	-1 t9.58	-0.
- 1		180	Wind 60	0.53	8.00	8.53	119.69	-63.98 -0.32	-0.0 -0.0
í		218	Wind 90	0.55	-0.28	0.48	108.42	63.31	0.0
J		248	Wind Normal	0.60	-0.52	0.38	67.01	118.95	0.1
- (270	Wind 90	0.60	-0.60	0.08	-1.85	137.48	0,0
J		380 330	Wind 60 Wind 90	0.60	-0.52 -0.28	-0.30 -0.48	-70.67	118.58	0.0
13 I	220.00-208.00	330	Wind Normal	0.68	0.00	-0.68	-112.12 -144.36	63.35 -2.67	0.0
- 1		30	Wind 90	0.67	0.34	-0.5B	-123,24	-73,29	8.8
ĺ		60	Wind 60	0.67	0.58	-0.33	-71.84	-124.13	8.0
- 1	- 1	90	Wind 90	0.67	8.67	0.00	-0.92	-143.91	0.8
ì	1	120	Wind Normal	0.68	0.59	0.34	70.89	-127.07	-0.0
J	- 1	180	Wind 98 Wind 60	0.68 0.68	0.34	0,59	122.89 (41.85	-74.16 -2.67	-0.8
- 1	ļ	210	Wind 90	0.67	-0.34	0.58	121.39	67.94	-0.0 -0.0
	l l	240	Wind Normal	0.68	-0.59	0.34	78.83	120.22	-0.0
1		278	Wind 90	0.67	-0.67	88.0	-0.92	138.56	-8.0
- 1	1	300	Wind 60	0.68	0.59	-0.34	-71.91	120.28	0.0
T4	200.00-188.00	330	Wind 90 Wind Normal	0.68	-0.34	-0.59	-124.74	68.81	0,8
'	200.00-188.00	30	Wind 90	0.70	0.00 8,35	-0.71 -0.68	-136.89 -115.66	-3,37 -69,49	0.0
i	- 1	60	Wind 68	0.69	0.68	-0.35	-66.72	-116.95	0.0
- 1	i	90	Wind 90	0.78	0.70	8.00	-t.14	-135,60	0.0
- 1	i i	t20	Wind Normal	0.71	0.62	0.36	66.33	-120.24	0.0
- 1	ſ	150 180	Wind 90	0.70	0.35	0.61	114.70	-70.25	-0.8
ı		210	Wind 68 Wind 90	0.78	0.00 -0.35	0.70	131.54	-3.37	-0.0
J	ĺ	240	Wind Normal	0.70	-0.61	0.35	113.37 65.57	62.74 112.17	-0.0 -0.0
- 1		270	Wind 90	0.70	-0.78	0.00	-1.14	128.86	-0.0
- }	- 1	308	Wind 60	0.70	-0.60	-0.35	-67.49	111.54	-0,0
[330	Wind 90	0.70	-0.35	-0.61	-116.99	63.51	0.0
T5	180.00-168.00	.0	Wind Normal	0.78	8.80	-0.78	-134.84	-4.86	0.0.
i	1	38 60	Wind 90 Wind 60	0.77 0.76	0.38	-0.66	-114.20	-69.21	0.0
- 1	i	90	Wind 90	0.70	8.77	-0.38 0.00	-66.04 -1.37	-116.08 -134.35	0.0
- (120	Wind Normal	0.78	0.68	0.39	64.97	-118.96	0.0
	ĺ	150	Wind 90	0.77	8.39	0.67	11261	-69.86	-0,0
- 1	1	180	Wind 60	0.77	0.00	0.77	129.30	-4.06	-0.0
	į	218	Wind 90	0.77	-0.38	0.66	111.47	61.03	-0.5
- 1	- 1	248 278	Wind Normal	0.77	-0.67	8.39	64.31	109.70	-0.02
- 1	- 1	300	Wind 90 Wind 60	0.77	-0.77 -0.67	0.88	-1.37	t26.22	-0.01
- 1	1	330	Wind 90	0.77	-0.67	-0.38	-66.70 -115.34	61.74	-0.00 10.0

tnxTower	Jab 227145	Page 29 of 59
1545 Pidzo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (374) 936-4221 FAX: (374) 936-6438	Cilent American Tower Corp.	Dasigned by na1

Section No.	Section Elevation	Wind	Directionality	F	ν,	ν.	OTM,	OTM _k	Torque
Ma	fi	Asimuth		z	z	x I	kip-ft	kip-f1	kip-fl
		38	Wind 90	8.77	8.38	-0.67	-101,40	-62.37	0.
		60	Wind 60	0.76	0.66	-0.3=	-58.77	-183.78	0,
		90	Wind 98	a,77	0.77	0.00	-1.59	-119.99	8.
		t 20	Wind Normal	0.78	0.68)	0.39	57.17	-106.53	0.
		t 50	Wind 90	0.78	8.39	8.67	99.21	-62.95	-0.
		168	Wind 68	0.77	8.00	8.77	113.91	-4.75	-0.
		210	Wind 90	8.77	-0.38	0.67	98.21	52.87	-0.
		240 270	Wind Normal Wind 90	0.78	-0.67 -0.77	0.39	5 6.60 -1.59	96.84	-0.
- 1		300	Wind 60	8.77 0.77	-0.67	-0.39		110,30	-0.1
- 1		330	Wind 90	0.78	-0.191	-0.57	-19.35 -102.40	95.28 53.45	-0.1 E,1
17	148.00-120.00	330	Wind Normal	0.75	80.8	-0.75	-102.40	-5.42	8,
٠٠ ١	148,00-120,00	38	Wind 90	0.74	8.37	-0.73	-85.80	-53.44	0.0
J		60	Wind 68	0.73	0.64	-0.37	49.50	-87,99	8.1
- 1		90	Wind 90	0.74	8.74	8.80	-1.83	-101.46	8.1 8.1
l l		120	Wind Normal	0.71	0.65	8.38	47.88	-90.13	8.0
- 1		150	Wind 90	0.75	0.37	0.65	82.18	-53.93	-0.1
i		180	Wind 60	0.74	0.00	0.74	94.48	-5,42	-0.
		218	Wind 90	0.74	-0.37	0.61	81.34	42.60	-0.
- 1		248	Wind Normal	8.74	-0.65	8.37	46.59	78.45	-8.0
- 1		270	Wind 90	0.74	-0.74	8,00	-1.83	90.61	-0.0
- 1		300	Wind 60	0.74	-0.64	-0.37	-49.98	77.98	-0.1
		330	Wind 90	0.75	-0.37	-0.65	-85.84	43.02	0.0
T8	120.00-188.00	0	Wind Normal	0.74	8.80	-0.74	-83.23	-6.09	0.1
1		30	Wind 90	8.72	8,36	-0.63	-71.03	-45,90	8.1
- 1		60	Wind 68	0.72	0.62	-0.36	~41.58	-74.52	0.1
- 1		98	Wind 90	0.72	0.72	8.00	-2.87	-85.71	B.6
- 1		t 20	Wind Normal	0.74	0.64	0.37	38.51	-76,37	8,1
		150	Wind 90	0.73	8.37	8.63	57.57	-46.38	-0.0
- 1	Į.	180 218	Wind 68 Wind 90	0.73	0.00	8.73	77.75	-6.09	-8.0
- [Į.	240	Wind Normal	0.72	-0.36	a.63	66.89	33.72	-0.8
		270	Wind Northal	8.73 8.72	-0.63 -0.72	8.37) 8.00	38.11 -2.07	63.51 73.54	-8,0
- 1	1	388	Wind 68	8.72 8.73	-0.72	0,36	-2.07 -41.98	63.84	-0.8 -0.0
- 1	I	330	Wind 90	0.73	-0.83	-0.63	-71.7t	34,12	-0.0
T9	108,80-28,80	8	Wind Normal	0.72	0.00	-0.72	-66,73	-6.74	0.0
[38	Wind 90	0.70	0.00	-0.5t	-57,08	-38,31	0.0
		60	Wind 60	0.78	0.60	-0.35	-33.64	-60,99	0.0
	1	901	Wind 90	8.70	0.70	8.80	-2.32	-69.88)	0.0
		t20	Wind Normal	0.72	0.62	0.36	29.88	-62.52	0.0
- 1		150	Wind 90	B.71	B.35	8.6t	52.90	-38.62	-0.8
- 1	ſ	1 80	Wind 68	0.70	0.08	0,70	60.95	-6.74	-0.0
	- 1	218	Wind 90	0.70	-0.35	0.51	52.36	24.83	-0.1
- 1		240	Wind Normal	0.71	-0.6t	8.35	29.57	48.5E	-0.0
		278	Wind 90	8.70	+0.78	0.00	-2.32	36.48	-0,0
- 1		308	· \Vind 60	0.78)	-0.61	-0.35	-33.96	48.85	-0.6
	ľ	338	Wind 90	0.71	-0.35	-0.61	-57.54	25,14	8.6
TIB	80,00-68.00	0	Wind Normal	8.70	0.08	-0.70	-51.37	-7.37	0.0
- I	ſ	38	Wind 90	0.68	0.34	-0.59	~43.89	-31,22	0.0
- 1		60	Wind 60	0.68	D.58	-0.34	-26.22	-48.32	0.8
- 1	1	90	Wind 90	0.68	0.68	0.00	-2.59	-55.07	0.0
l l	Į.	120	Wind Normal	8.78	8,60	8.35	21.81	-49.62	0.0
- 1		158	Wind 90	8.69	8.34	8.60	39.tt	-31,45	-8.0
- 1	i		Wind 60	8.68	8.00	0.68	45.15	-7.37	-0.8
- 1		210	Wind 90	0.68	-0.34	0.59	38.72	16.47	-0.8
	1	240	Wind Normal	8.69	-0.60	8,35	21.58	34.48	-0,0
- 1	ſ	300	Wind 90 Wind 60	8.68 8.68	-0.68	8.88	-2.59	48.32	-0.8
- 1	- 1				-0.19	-0.34	-26.45	33,97	-0.8
m l	68,00-48.00	330	Wind 90	8.69	-0.34	-0.60	-44.29	16.78	0.81
111	D8.UV-48.00	8	Wind Normal	0.66	0.00	-0.66	-35.63	-7.98	8.83
		30	Wind 90	8.64]	8.32	-0.55	-30.58	-23.98	8.8

tnxTower	Jeb 227145	Page 31 of 59
1345 Pidea Drive	Project V-27 x 255' - #261331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 16563 Phone: (574) 936-4221 FAX: (574) 936-6458	American Towar Corp.	Designed by na1

				Vlast Ve	ectors	- Servi	ce		
Section No.	Section Elevation	Wind Azimuth	Directionality	F	ν,	ν,	OTM,	OTM,	Torque
	ft	•		K _	ĸ	x	ktp-ft	ktp-ft	kip-fl
TI	255.80-240.08		Wind Normal	0.45	0.00	-0.45	-112.69	-0.33	8.12
		30 60	Wind 90 Wind 60	8.53 0.52	8.27 0.45	-0.45 -0.26	-114.42 -65.82	-66.29 -112.64	8,01 8,01
		- Bul	Wind 90	0.52	0.43	0.00	-63.82 -0.18	-132.25	-0.07
	1	1 120	Wind Normal	0.45	95.0	8.23	56.88	-97.77	-0.t1
	!	t58	Wind 90	8.33	0.17	0.29	78.56	-41.17	-0.10
	İ	180	Wind 60	0.42	80.0	0.42	103.41	-8.33	-0.11
		218	Wind 90	8.53	-0.27	8.46	114.06	65.63	-0.88
		248 270	Wind Normal Wind 90	0.56	-0.48 -0.53	0.28 8.00	69.12 -0.18	119.70 131.58	-8.81 8.07
		300	Wind 60	0,42	-0.36	-0.21	-51.98	89.38	8.10
		338	Wind 90	8,33	-0.17	-0.29	-78.92	48.51	8.11
172	240,80-220,00	8	Wind Normal	1.26	0.00	-1.26	-289.26	-0.81	5.81
- 1		38	Wind 90	1.24	8.62	-1,88	-248.11	-143,84	-8.8-
ı		60 90	Wind 60 Wind 90	1.32	1.15	93.0+	-152.48	-263.49	-8.07
- 1		120	Wind Normal	t.44 1.36	1.44 1.18	0.00 8.68	-0.36 156.82	-332.04 -278.87	-0.10 -8.88
- (158	Wind 90	1.24	0.62	1.08	247.38	-143.04	-0.05
J		188	Wind 68	1.22	8.80	1.22	280.00	-0.81	-0.81
ĺ		218	Wind 90	1.24	-0.62	1.88	247.38	143.83	8,84
		240	Wind Normal	1.36	-1.18	B.68	156.82	270.86	8.08
- 1		270 300	Wind 90	1.41	-1.44	8.08	-0.36	332.83	0.10
- 1	i	330	Wind 60 Wind 90	1,32 1,24	-1.15 -0.62	-0.66 -1.08	-152.48 -248.11	263.47 143.83	0.08 8.05
T3	220.00-200.08	330	Wind Normal	1.36	8.00	-1.56	-327.54	-0.56	0.13
۱		30	Wind 90	1.70	0.85	-1.47	-308,63	-178.57	8.09
- 1	J	60	Wind 60	1.85	1.60	-0.92	-194.31	-336.60	8.01
1	í	98	Wind 90	1.70	1.70	8.08	-0.30	-356,58	-8.07
- 1		120	Wind Normal	1,56	1.35	0.78	163.31	-263.95	-0.12
- 1		150 188	Wind 90 Wind 68	1.56	0.78	1.35 1.52	282.53 31 8.72	-163,85 -0.56	-8.15 -8.63
- 1	4	218	Wind 90	1.70	-0.85	1.47	388.02	177.45	-0.09
- 1		240	Wind Normal	1.89	-1.63	0.94	197.81	312.59	-8.81
- 1	1	270	Wind 90	1,70	-1,70	0,00	81.0-	355.46	8.87
		300	Wind 60	1.52	-1.32	-0.76	-159.82	275.73	8.12
T4	1	330	Wind 90	1.56	-0.78	-1.35	-283.14	162.74	0.15
14	208.80-180.00	30	Wind Normal Wind 90	1.65	8.08	-1.65 -1.53	-31 2.96	-0.71	8.17
- 1	1	60	Wind 60	1.91	1.65	-0.95	-298.83 -181.80	-168.40 -314.93	8.11 8.01
- 1		90	Wind 90	1.77	1.77	8.08	-0.38	-336.09	-0.09
- 1		120	Wind Normal	1.65	1,42	8.82	155.91	-271.41	-8.16
- 1	i	1.58	Wind 90	1.63	8.81	1.41	267.49	-155,36	-8,19
- 1	1	188	Wind 60	1.59	0.88	1.59	381.32	-0.71	-0.16
	- 1	218	Wind 90	1.77	-0.88	1.53	290.07	156.98	-0.11
- 1	1	248 270	Wind Normal Wind 90	1.97	-1,70 -1.77	0.98 8.08	186.47	322.93 334.67	10.8- 28.0
- 1	- 1	308	Wind 60	1,59	-1.38	-0.79	-151,24	250.58	8.16
- 1		330	· Wind 90	1,63	-0.81	-1.41	-268.26	153.95	8.19
T5	188.80-160.00	0	Wind Normal	1,67	0.00	-1,67	-284,18	-0.86	8.21
		38	Wind 90	t.78	8.89	-1.54	-262.69	-152.25	0.13
- 1	j	60	Wind 60	1,92	1,66	-0.96	-163.71	-283.61	8.01
- 1	i	90	Wind 90	1.78	1.78	8.00	-0.46	-303.65	-0.11
- 1	1	120	Wind Normal Wind 90	1.67	1.45 0.82	8.83 1.43	141.39 242.02	-246,57 -140,86	-0.19 -0.23
- 1	ì	180	Wind 90	1.61	8.08	1.43	242.02	-1.40,86 -0.86	-0.23 -0.20
		210	Wind 90	1.78	-0.89	1.54	261.76	150,53	-8.13
- 1	ł	240	Wind Normal	1.98	-1.72	8.99	168.11	291.12	-0.01
	I	270	Wind 90	1.78	-1.78	0.00	-0.46	301.93	0.11

tnxTower	Job 227145	Page 30 of 59
1545 Pidea Drive	Project V-27 x 255' -#281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phore: (574) 936-4221 FAX: (374) 936-6458	Cliant American Tower Corp.	Designed by na 1

Section No.	Section Elevation	Wind	Directionality	F	ν,	ν,	OTM,	OTM,	Torque
No.	ft	•		r l	R I	r l	kip-ft	kip-ft	ktp-fl
		68	Wind 60	8.63	0.55	-0.32	-12.72	-35,44	8.8
		90	Wind 90	8.54	0.64	0.80	-2.87	-39,91	0.0
		t 20	Wind Normal	8.66	0.57	0.33	13.51	-36.36	8.0
		150	Wind 90	0.63	0.32	0.56	25.18	-24,13	.0.
- 1		1 60	Wind 68	8.64	80.0	0.64	29.14	-7.98	-8.0
		210	Wind 90	8.64	-0.32	g.55	24.84	8.02	-8.8
J		248	Wind Normal	0.65	-0.55	8.32	13.36	20.13	-0.8
- 1		270	Wied 90	8.64	-0.64	8.00	-2,87	24.82	-0,8
		380	Wind 60	0.64	-0.55	-0.32	-12.87	19.74	-0.8
		330	Wind 90	0.65	-0.32	-0.56	-38.84	8.17	0.0
T12	40.00-20.88	1 0	Wind Normal	g.59	8.00	-0.59	-20.99	-8.54	8.8
		30	Wind 90	0.58	8.29	-0.50	-18.22	-17.22	0.0
- 1		60	Wind 68	0.57	8.58	-0.29	-11.79	-23,43	8.8
- 1		90	Wind 90	0.58	0.58	0.00	-3.19	-25.90	0.0
- 1		120	Wind Normal	0.59	0.5t	8.30	1,72	-23.95	0.8
- 1		150	Wind 90	0.58	8.29	0.51	12,00	-17.38	-0.8
- 1		t so	Wind 68	0.58	8,08	0.58	f4.18	-8.54	-8.0
I		210	Wind 90	0.58	-0.29	0.50	11.85	B.14	-0.0
- 1		248	Wind Normal	0.59	-0.51	0.29	5,63	6.74	-g.8
ı		270	Wind 90	8.58	-0.15	0.80	-3,19	8.83	-8.0
- 1		300	Wind 60	0.52	-0.58	-0.29	-11.87	6.50	-8.0
- 1		330	Wind 90	0.58	-0.29	+0.51	-18.37	0.23	8.0
T13	20.00-0.0g		Wind Normal	0.51	0.80	-0.51	-1,70	-8.96	0.8
		30	Wind 90	0.50	0.21	-0.43	-7,90	-11,45	0,0
1		[60]	Wind 68	0.49	8.43	-0.25	-6.05	-t 3.23	0.8
- 1		[90]	Wind 90	8.58	8.58	g.00	3.59	-13.94	0.0
		t20	Wind Normal	0.51	8.44	0.26	-t, 83	-13.39	0.5
		150	Wind 90	0.58	0.25	g.431	0.75	-11.47	-0.0
- 1		tso	Wind 68	8.58	8.00	0.58	1,38	-8.96	-0.0
1		210	Wind 90	0.50	-0.25	0.43	0.72	-6.47	-8.0
- 1		240	Wind Normal	0.51	-0.44	0.25	-1.06	-4.58	-0.8
1		270	Wind 90	8.50	-0.50	8.88	-3.59	-1.99	-0.8
ı		300	Wind 60	0.50	-0.43	-0.25	-6.08	-4.66	-0.0
- 1		330	Wind 90	8.50	-0.25	-0.43	-7.94	-6.45	8.0

			Ma	st Totals -	With Ic
Wind Azimuth	ν.	ν,	OTM,	OTAL,	Torque
•	K	_ x	ktp-ft	kip-ft	ktp-ft
0	0.00	-1.36	-1076.27	-68,43	0.2
- 30	4.13	-7.16	-933.56	-192.31	. 0.3
60	7.16	-4.13	-554.60	-983.69	0.2
90	1.31	8,00	-26.17	1 126.58	0.1
128	7.29	4.21	506.13	-990,39	-8.0
158	4.13	7.16	873.98	-588,13	-0,1
180	8.00	8.21	t006.23	-61,43	-0.2
218	-4.13	7.36	881,22	455,45	-0.3
240	-7.29	4.21	518.31	860,77	-8,2
278	-8.31	0.00	-26.17	989.72	-0.1
30E)	-7.17	-4.14	-550.42	839,59	0.0
33.8	-4.13	-7 16	-026 22	451 77	0 1

•

tnxTower	Job 227145	Page 32 of 59
1545 Pideo Drive	Project V-27 x 255' - #261331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (374) 936-6458	Client American Tower Corp.	Designed by na1

Section No.	Section Elevation	Wind Azimuth	Directionality	F	ν,	ν,	OTA4.	OTM.	Torque
NO.	ft.			κ	κ .	_ x	k/p-ft	kip-ft	ktp-fl
		300	Wind 60	1.61	-1.39	-0.80	-137.80	235.62	E.
		330	Wind 90	1.65	-0.82	-1.43	-24295	139,14	0.
T6	168.88-140.08	1 8	Wind Normal	1.67	8.88	-1.67	-251.18	-1.81	0.
- 1		38	Wind 90	1.77	8.89	-1,54	-230.86	-133.98	0.
- 1		68	Wind 60 Wind 90	t.91 1.77	1.65	-0.95 0.00	-143.54	-248.68	8.
, t		1 320	Wind Normal	1.67	1.45	8.54	-0.55 124.73	-266.95 -218.00	-g.
- 1		130	Wind 90	1.64	8.82	1.42	212.81	-12419	-0.
- 1		188	Wind 60	1.68	0.08	1.68	239.53	-1.81	-0
		218	Wind 90	1.77	-0,89	1.54	229.77	131.96	-8.
		240	Wind Normal	1.98	-1,71	8.99	1 47.69	255,74	-0.
- 1		278	Wind 90	1.77	-1,77	8.08	-8.55	264.94	0.
- 1		300	Wind 68	1.58	-1.39	-0,80	~120.5E	206.90	0.
_ 1		330	Wind 90	1.64	-0.87	-1.42	-213.98	1 22.17	0.
77	140.88-120.08	_0	Wind Normal	1.59	8.80	-1.59	-286.79	-1.16	8.
- 1		38 68	Wind 90 Wind 60	1,69	0.85	-1.47	-191.23	-111.20	8.
- 1		90	Wind 90	1.69	1.58	-0.91	-119.26 -8.63	-206.64 -221.25	0.
		120	Wind Normal	1.59	1.37	0,79	182.45	-179.70	-0.
		158	Wind 90	1.57	8.78	1.36	175.71	-1/9.70	-0.
- 1		180	Wind 68	1.53	8.88	1.33	198.03	-1,16	-8,
		218	Wind 90	1.69	-0.85	1.47	189,97	108.88	-0,
- 1		248	Wind Normal	1,88	-1.63	0.94	121.76	218.82	-0.
- 1		270	Wind 90	1.69	-1.69	0.00	-8.63	218.92	Ö.
		308	Wind 60	1.53	-1.32	-0.76	-99.95	170.88	8.
1		330	Wind 90	1.57	-0.78	-1.36	-176.96	100.65	E.;
TE	120.00-108.08	. 0	Wind Normal	1.56	8.08	-1,56	-172.81	-1.31	0.
		30)	Wind 90	1.67	0.83	-1.44	-159,35	-92.90	8,
i		60 90	Wind 60 Wind 90	1.79	1.55	-0.90 8.00	-99,27 -0.71	-172.83	8.1
- 1		120	Wind Normal	1.56	1.57	0.78	85.34	-184.58 -158.35	-0.1 -0.1
- 1		150	Wind 90	1.54	0.77	t.34	146.29	-86.18	-0.1
- [i	t 80	Wind 60	1.51	8,00	1.51	164.88	-1.31	-0.5
- 1		218	Wind 90	1,67	-0.83	1.44	157.94	90.28	-0.1
1	1	240	Wind Normal	1.85)	-1.60	8,93	101.11	175.85	-0.5
	1	278	Wind 90	1.67	-1.67	8.00	-0.71	181,88	0,1
- 1		300	Wind 68	1.51	-1.38	-0.75	-83.58	142.09	8.7
		330	Wind 90	1.54	-0.77	-1.34	-147.70	83.56	0.1
19	100.00-80.80	0	Wind Normal	1.52	8,00	-t.52	-137.54	-1.46	8.3
- 1		3B 60	Wind 98	1.61	0.81	-1.40	-126.53	-74.06	8.2
- 1	ì	90	Wind 60 Wind 90	1.73	1.58	-0.87 0.08	-78.81 -0.79	-136,60	8.0 -0.1
- 1		120	Wind Normal	1.52	1.32	8.76	67,59	-146.66 -119.90	-0.1
- 1	1	t.50	Wind 90	1.58	0.75	1.38	115.82	-68.78	-8.3
- 1		188	Wind 60	1,46	8.00	1.46	138,51	-1.46	-0.3
		218	Wind 90	1.61	-0.81	t.40	124.95	71,14	-0.2
1	- 1	240	Wind Normal	1.79	-1.55	0.90	79,96	138.40	-0.0
- 1		270	Wind 90	1.61	-1.61	8.00	-0.79	143.73	0.1
	1	300	Wind 60	1.46	-1.26	-0.73	-66.44	112.25	8.2
- 1	1	330	Wind 90	1.50	-0.75	-1.30	-117.39	65.86	8.3
TIE	80,00-68.88	.0	Wind Normal	1.52	8.88	-1.52	-107.38	-1.61	1.3
- 1		30	Wind 90	t.60	0.80	-1.39	- 97.90	-57.63	8,2
		60	Wind 68	1.71	t.48	-0,86	-60.78	-105,38	8.0
ł	į	90 128	Wind 90	1.60	1.68	B.00	-0.87	-113.66	1.8-
- 1		150	Wind Normal Wind 90	1.52	1.32 8.74	0.76 1.29	52.38 89.42	-93.85 -53.74	-0.3
- 1	Į.	180	Wind 68	1.45	0.00	1.29	188,70	-33,74	-0.3 -0.3
- 1	i	218	Wind 90	1.60	-0.80	1.39	96.16	54.41	-0.3 -0.2
		240	Wind Normal	1.78	-1.54	8.89	61.51	106,43	-0.2
		270	Wind 90	1.60	-1.60	0.00	-0.87	118.43	0.11
- 1									

tnxTower	Job 227145	Page 33 of 59
1345 Pidco Driva	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46565 Plione; (374) 936-4221 FAX: (374) 936-6458	Client American Tower Corp.	Designed by na1

60 Wind 60 1.48 1.28 -0.74 -2.2.25 90 Wind 50 1.39 1.39 0.00 1.03 120 Wind Normal 1.31 1.15 0.66 1.25 1.25 120 Wind Normal 1.31 1.15 0.65 1.25 1.25 120 Wind 50 1.26 0.00 1.25 2.66 120 Wind 50 1.26 0.00 1.25 2.66 121 Wind 90 1.29 -0.69 1.20 35.48 240 Wind Normal 1.55 -1.34 0.77 22.18 240 Wind Mormal 1.55 -1.34 0.77 22.18 300 Wind 60 1.26 -1.39 -0.61 -1.03 -1.03 300 Wind 60 1.26 -0.05 -0.51 -1.34 310 Wind 10 1.26 -0.05 -0.51 -1.34 -1.34 310 Wind 10 1.26 -0.05 -1.34 -1.34 -1.34 310 Wind 10 1.26 -0.05 -1.34 -1.34 -1.34 310 Wind 10 1.26 -0.05 -0.51 -1.34 -1.34 310 Wind 10 1.26 -0.05 -0.51 -1.34 -1.34 310 Wind 10 1.26 -0.05 -0.51 -1.34 -1.34 310 Wind 10 -0.05 -0.05 -0.51 -1.34 -1.34 310 Wind 10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 310 Wind 10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 310 Wind 10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 310 Wind 10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 310 Wind 10 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 310 Wind 10 -0.05 -0.0	-ft ktp-ft 50.52 01.76 029.58 577.24 -064.82 -336.91 -01.76 -0. 35.98 -071.07 -0.1 73.72 8.
T11 60.00-18.08 330 Wind 50 1.49 -0.74 -1.29 -91.16	\$0.52 0. -1.76 0. -39.58 8. -71.56 8. -77.24 -0. -64.88 -8. -36.91 -0. -1.76 -0. 35.98 -0. 71.07 -0.
1.5	-39.58 8. -71.56 8. -77.24 -0. -64.88 -3. -36.91 -0. -1.76 -0. 35.98 -0. 71.07 -0.1
60	-39.58 8. -71.56 8. -77.24 -0. -64.88 -8. -36.91 -0. -1.76 -0. 35.98 -0. 71.07 -0.1
90	-71.56 8: -77.24 -0. -64.88 -8. -36.91 -0. -1.76 -0. 35.98 -0. 71.07 -0.1
128 Wind Normal 1,44 1,25 0,72 35,03 130 Wind 90 1,41 8,70 1,22 59,93 130 Wind 60 1,51 0,70 1,31 64,42 240 Wind Normal 1,51 0,72 1,31 64,42 248 Wind Normal 1,68 -1,46 0,84 41,10 270 Wind 60 1,51 -1,51 0,00 -0,93 300 Wind 60 1,51 -1,51 0,00 -0,93 300 Wind 60 1,31 -1,51 0,00 -1,23 -4,61 40,00-28.08 300 Wind Normal 1,31 0,00 -1,23 -4,61 40,00-28.08 300 Wind Normal 1,30 0,00 -1,23 -4,61 40,00-28.08 300 Wind Normal 1,39 0,00 -1,20 -1,714 40,00-28.08 300 Wind 90 1,49 1,29 -0,74 -22,23 40,00-28.08 300 Wind 90 1,20 0,65 1,12 2,266 400 Wind Normal 1,39 1,39 0,00 1,03 400 Wind Normal 1,39 -1,30 0,66 1,91 400 Wind Normal 1,39 -1,30 0,66 1,26 3,686 400 Wind Normal 1,39 -1,39 -1,39 -1,39 400 Wind Normal 1,35 -1,34 0,77 22,118 400 Wind Normal 1,35 -1,34 0,77 22,128 400 Wind Normal 1,39 -0,69 1,20 35,88 400 Wind Normal 1,39 -0,69 1,20 3,88 400 Wind Normal 1,17 0,00 -1,17 -1,279 400 Wind Normal 1,17 0,00 -1,17 -1,279 400 Wind Normal 1,17 0,00 -1,17 -1,279 400 Wind Normal 1,17 0,00 -1,17 -1,279 400 Wind Normal 1,17 0,00 -1,17 -1,166	-64.88 -8 -36.91 -0 -1.76 -0 35.98 -0 71.07 -0.1
130	-36.91 -0. -1.76 -0. 35.98 -0. 71.07 -0.
180	-1.76 -0.35.98 -0.371.07 -0.4
T12 40.00-28.08 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35.98 +0.1 71.07 -0.1
T12 40,00-28.08 Wind Normal 1.68 -1.46 0.84 41.10 41.10 -0.95 -1.51 -0.00 -0.95	71.07 -0.1
T12 40.00-28.08 0 Wind 90 1.51 -1.51 -1.51 -0.06 -4.051 T12 40.00-28.08 0 Wind 90 1.44 -0.70 -1.22 -6.18.3 330 Wind 90 1.29 0.69 -1.20 -27.14 131 Wind 90 1.29 0.69 -1.20 -27.14 132 Wind 90 1.29 0.69 -1.20 -27.14 133 Wind 90 1.29 0.69 -1.20 -27.14 140 Wind 90 1.29 0.69 -1.20 -27.14 150 Wind 90 1.29 0.69 -1.20 -27.14 150 Wind 90 1.29 0.69 -1.20 -27.14 150 Wind 90 1.29 0.60 -1.20 -27.14 150 Wind 90 1.29 0.60 -1.20 -1.03 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.68 150 Wind 90 1.26 0.00 1.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	
T12 40.00-28.08 330 Wind 60 1.47 -1.15 -0.68 -25.14 3 3	73,72 8,1
T12 40.00-28.08 0 Wind 90 1.44 -0.70 -1.22 -6.11.31 -4.191 -6.70 -1.22 -6.11.31 -4.191 -6.70 -1.22 -6.11.31 -4.191 -6.70 -1.22 -6.11.31 -4.191 -6.70 -1.20 -	
T12 40.00-28.08 0 Wind Sorb 1.39 0.00 -1.33 4.991 38 Wind 50 1.39 0.69 -1.20 -27.14 6 60 Wind 50 1.48 1.28 -0.74 -22.25 9 Wind 50 1.48 1.28 -0.74 -22.25 129 Wind Sorb 1.49 1.29 1.29 0.00 -1.03 129 0.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20	57.52 0.3
38 Wind 99 1.29 0.69 -1.20 -37.14 6.60 Wind 96 1.48 1.28 -0.74 2.22.25 90 Wind 96 1.48 1.28 -0.74 2.22.25 90 Wind 96 1.49 1.39 1.39 0.00 -1.03 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	33.39) 8.3
60 Wind 60 1.49 1.28 -0.74 -22.13 90 Wind 90 1.39 1.39 0.00 1.03 120 Wind Normal 1.33 1.15 0.66 18.91 130 Wind 90 1.30 0.65 1.15 2.266 140 Wind 90 1.30 0.65 1.15 2.266 140 Wind 90 1.30 0.65 1.26 2.266 140 Wind 90 1.39 -0.69 1.20 1.26 240 Wind Normal 1.55 -1.34 0.77 22.18 270 Wind Wind 90 1.30 -1.99 0.00 -1.03 300 Wind 80 1.36 -1.95 -0.61 -1.93 310 Wind 90 1.30 -0.65 -1.13 -1.34 310 Wind 90 1.30 -0.65 -1.13 -1.34 310 Wind 90 1.30 -0.65 -1.13 -1.34 310 Wind 90 1.30 -0.65 -1.13 -1.34 310 Wind 90 1.20 -0.65 -1.13 -1.13 310 Wind 90 1.20 -0.65 -1.13 -1.13 310 Wind 90 1.20 -0.65 -1.13 -1.13 310 Wind 90 1.22 -0.61 -1.03 -1.13 310 Wind 90 1.22 -0.61 -1.03 -1.13	-1.91 0.3
90 Wind 90 1.39 1.39 0.00 4.03 1 130 Wind Normal 1.31 1.15 0.66 18.91 1 150 Wind Son 1.30 0.65 1.12 2.66 1 180 Wind So 1.26 0.00 1.26 36.86 1 218 Wind So 1.26 0.00 1.26 36.86 2 218 Wind So 1.29 0.69 1.20 5.88 2 240 Wind Normal 1.35 1.34 0.77 2.218 2 250 Wind So 1.39 1.39 0.00 1.20 1.00 1 250 Wind So 1.39 1.39 0.00 1.20 1.00 1 250 Wind So 1.26 0.65 0.20 1.20 1 250 Wind So 1.26 0.65 0.20 1.20 1 250 Wind So 1.27 0.00 1.17 1.27 1 250 Wind So 1.27 0.00 1.17 1.27 1 250 0.00 0 Wind Normal 1.77 0.00 1.17 1.27 1 250 0.00 0 Wind Normal 1.79 0.00 1.17 1.17 1.17 1.166	-22.76 0.3
120	-40.39 0.8
150 Wind 90 1.20 0.55 1.12 22.66 180 Wind 90 1.26 0.00 1.26 56.86 218 Wind 90 1.29 -0.69 1.20 55.88 240 Wind Normal 1.25 -1.34 0.77 22.18 270 Wind 90 1.20 -1.39 -0.69 -1.20 30 Wind 90 1.26 -0.69 -0.30 -1.93 30 Wind 90 1.26 -0.95 -0.30 -1.93 310 Wind 90 1.27 0.00 -1.17 -1.79 32 30 Wind 90 1.29 -0.96 -1.17 -1.79 30 Wind 90 1.22 -0.61 -1.91 -1.166	-43.61 -0.1
180	-36,45 +0.3
218 Wind 50 1.99 -0.69 1.70 53.48 240 Wind Normal 1.55 -1.34 0.77 22.18 270 Wind 90 1.29 -1.39 0.00 -1.03 360 Wind 90 1.26 -1.99 -0.61 -1.93 360 Wind 91 1.27 -1.95 -0.61 -1.94 371 22,00-0.00 Wind Wind Wind Wind Wind Wind Wind Wind	-21.37 +0.3
240 Wind Normal 1.55 -1.34 0.77 22.18 270 Vind 90 1.39 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 -1.03 0.00 -1.03 0.00 -1.03 0.00 -1.03 0.00	-1.91 -8.3
70 Wind 90 1.39 -1.39 0.00 1.03 300 Wind 60 1.26 -1.09 0.60 1.997 300 Wind 90 1.26 -1.09 0.61 1.97 713 28,00-0.00 0 Wind Normal 1.17 0.00 -1.17 1.279 30 Wind 90 1.22 0.61 -1.05 -1.166	18.94 -0.2
300 Wind 60 1.26 -1.09 -0.64 -1.95 -1.05 -0.64 -1.95 -1.05	38.29 -0,0
Ti3 28,00-0.00 Wind 90 1.30 -0.65 -1.12 -3.4.73 Wind 90 1.30 -0.65 -1.12 -3.4.73 Wind Normal 1.17 0.00 -1.17 -12.79 Wind 90 1.22 0.61 -1.05 -1.166	39.78 0.1
T13 28,00-0.00 0 Wind Normal 1.17 0.00 -1.17 -12.79 30 Wind 90 1.22 0.61 -1.05 -11.66	30.90 0,3
30 Wind 90 1.22 0.61 -1.05 -11.66	17.54 8.3
	-2.06 8.3
	-8.15 0.2
	13.29 8.0
	14.24 -0.1
	12.18 -0.3
150 Wind 90 1.14 0.57 0.99 8.74	-7.75 +0.3
	-2.06 -0.3 4.03 -0.2
	9.69 -0.0
300 Wind 60 1.11 -0.96 -0.55 -6.65 330 Wind 90 1.14 -0.57 -0.99 -18.96	

		st Totals -	Service		
R'ind Azimuth	ν.	ν,	OIM,	OTM _e	Torqua
•	k	ĸ	hip-ft	kip-fi	kip-fl
0	0.00	-18.38	-2328.85	-14.76	3.13
- 30	9.74	-16.87	-2145.67	-1248.75	1.99
60	ts.08	-10.44	-1331.07	-2305,82	0.14
90	19.68	8.00	-8.33	-2528,71	-1.78
120	16,01	9.24	1163,87	-2045.06	-3.01
150	8.99	15.57	1951.36	-1146.19	-3.44
180	0.00	17.63	2224.02	-14.76	-2.99
210	-9.74	16.87	2129.81	1219.24	-1.99
240	-18.73	10.81	1358.50	23 5 2 66	-0.15
270	-19.68	0.00	-8,33	2499.19	1.78
300	-15.36	-8,87	-1136.44	1939.19	2.88
330	-8.99	-15.57	-1968.02	1116.67	3,44

tnxTower	Job	227145	Page 35 of 59
1545 Pideo Drive	Project	V-27 x 255' - #281331 McHenry, KY	Dale 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client	American Tower Corp.	Designed by nat

Wind Azimuth	F.	F.	ν,	ν.	OTM,	OTM ₄	Tarque
	K_	ĸ		_ κ	ktp-ft	kip-fi	hip-ft
0	0.01	10.0	8.00	-0,01	+3.72	0.06	+0.1
38	0.01	0.01	0.01	-0,01	-3.21	-1.82	-0,0
60	0.01	0.00	0.01	-0.01	-1.84	-3.19	0.0
90	0.01	0.01	0.01	0.00	0.03	-3.69	8.1
120	0.01	0.01	0.01	8.01	1.91	-3.19	0,1
150	8.00	0.01	0.01	0.01	3.28	-1.82	o,
180	0.01	0.01	0.00	0.01	3.78	8.06	8.
210	0.01	0.01	+0.01	0.01	3.28	t.93	o,
248	0.01	0.60	+0.01	0.01	1.91	3.31	0,1
270	0.01	0.01	-0.01	0,00	0.03	3,81	-0.1
300	18.0	0.01	-0.01	-0.01	-1.84	3.31	-0.
330	100.8	0.01	-0.01	-0.01	-3.21	1.93	+0.0

ATC Loading - Elevation 230 - None C								
Wind Azimuth	F.	F,	ν,	ν,	OTM,	OTM ₄	Torque	
a	K	K	K	κ	kip-ft	kip-ft	kip-fl	
0	2,64	8.00	0.00	-2.64	-661.12	0,00	0.00	
30	2.64	0.00	1.32	-2.29	-572,55	-330,56	0.80	
60	2.64	8.00	2.29	-1.32	~330.56	-572,55	0.00	
90	2.64	0.00	2.64	0.00	8.00	-661.12	0.0	
120	2.64	0.00	2.29	1.32	330.56	-572.55	0.8	
150	2.64	0.60	1.32	2.29	572.55	-330.56	0.0	
t 80	2.64	0.00	0.00	2.64	661.12	0,80	0.0	
210	2.64	0.00	-1.32	2.29	572.55	330,56	0.0	
240	2.64	0.00	-2.29	1.32	330.56	572.55	0.0	
270	2.64	0.00	-2.64	0.00	8.00	661.12	0.0	
300	2.64	0.00	-2.29	-1.32	-330.56	572.55	0.0	
330	2.64	0.00	-1.32	-2.29	-572.55	330.56	0.0	

			ATC Loading . E	tevation 240 - None	c		
Wind Azimuth	F ₄	F	ν,	ν,	OTM,	OTM.	Torque
•	ĸ	K	κ	_ K	kip-ft	kip-fl	ktp-ft
0	2.62	0.00	8.00	-2.62	-629.24	8.00	0.
30	2.62	0,00	1.31	-2.27	-544.94	-314.62	8.
68	2.62	0.00	2.27	-1.31	-314.62	-544,94	ū.
90	2.62	0.00	2.62	0.001	0,00	-629.24	ő.
120]	2.62	0.00]	2.27	1.31	314.62	-544,94	ō.
150	2.62	0,00	1.31	2,27	544.94	-314.62	0.
180	2.62	0.00	0.00	2.62	629.24	0.00	8.
210	2.62	0.00	-1.31	2.27	544,94	314.62	o.
240	2.62	0.00	-2.27	131	314,62	544,94	0,
270	2.62	0.00	-2.62	0.00	0.00	629,24	O.
308	2.62	8,00	-2.27	-1.31	-314.62	544,94	0.
330	2.62	0.00	-1.31	-2.27	411.01	344.62	0.

1	ATC Loading - Elevation 230 - None C								
j	Wind Azimuth	F.	F,	ν,	ν,	OTM,	OTM,	Torque	
ı	71		ĸ	ĸ	ĸ	kip-ft	Ho-ft	kip-ft	
J	- 0	260	0.00	8,00	-2.60	-597,65	0.00	0.00	
ı	30	2.60	0.00	1.30	-2.25	-517.58	-298.82	8,00	
ı	60	2,60	0.00	2.25	-1.30	-298,82		0.00	
ı	90)	2,60	0.00	2.60	0.00	8.00	-597.65	0.80	

tnxTower	Job 227145	Page 34 of 59
1545 Pideo Driva	Project V-27 x 255' - #281331 McHenry, KY	Dale 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 FAX: (574) 936-6458	American Tower Corp.	Designed by na1

	Discr	ete Ap	purte	nance	Press	ures ·	No I	ce G	= 0.850
Description	Aiming Azimuth a	Weight K	Offset,	Offset _e	ž ft	K,	q _i	CAc Front	C _s A _c Side ft ²
Beacon	8.0000	0.07	0.00	-2,89	259.39	1.547	27	2.40	2.40
Beacon Extender (4') 803862	0.8000	0.03	8.00	-2.89	257.21	1.544	27	1.11	1.11
8" x 10' lightning rod	240,0000	0.82	-2,50	1.44	259.00	1.546	27	0.63	0.63
ATC Loading	0.0008	2.00	0.00	0.00	250.88	1.535	27	115.00	115,00
ATC Loading	0.0008	2,80	0,00	0.00	240.00	1.522	27	115.00	115.00
TC Loading	0.0000	2.00	8.00	0.00	230.08	1.508	271	115.00	t15.00
ATC Loading	0.0008	2.00	0.80	0.00	220.00	1.494	26	115.00	115.00
-	Sum	8.13	- 1	- 1					******
	Weight:	í	- 1	- 1		- 1			

	Beacon - Elevation 259.59 - From Let A												
Wind	F.	F,	ν,	ν,	OTM,	OTAL,	Tarque						
Azimuth	l l		l l	- (- (· · · · · ·	•						
a	κ	К	ĸ	K	kip-ft	kip-ft	kip-fl						
0	0.06	0.00	0.00	-0.06	-14.64	0,00	0.						
38	0.05	0.03	0,03	-0.05	-12.70	-7.21	-0.						
68	0.03	0.05	0.05	-0.03	-7.42	-12.49	-0.						
90	0.00	0.06	0.86	0.00	-0.21	-14.43	-0.						
t 20	0.03	0.05	0.03	8.03	7.00	-12.49	-0,						
158]	0.05	0.03	0.03	0.03	12.28	-7.21	-0,						
150	0.06	0.00	0.00	0.06	14.22	8.00	0.						
210	0.05	0.03	-0.03	0.05	12.28	7.21	0.						
248	0.03	0.85	-0.05	8.03	7.00	12.49	0.						
270	0.00	0.06	-0.06	0.00	-0.21	14.43	0.						
300	0,03	0.05	-0.05	-0.03	-7.42	12.49	0.1						
330	0.05	0.03	-0.03	-0.05	-12.70	7.21	0.0						

			Extender (4') 89306				
Wind Astrouth	F.	F ₄	V	ν,	OTM₂	OTM,	Torque
_•	. К	K.	ĸ	ĸ	kip-fl	kip-ft	kip-fl
0	0.03	0.00	0.00	+0.03	-6.69	0.00	0.0
30	0.02	8.01	0.01	-0.02	-5.81	-3,30	-0,0-
60	8.01	0.02	0.02	-0.01	~3,39	-5.72	-0.00
90	0.00	0.03	0.03	0,00	-0.09	-6.60	-0.07
120	10.0	0.02	0.02	0.01	3.22	-5.72	-0.00
150	0.02	0.01	8.01	0.02	5.63	-3.30	+0.0-
180	0.03	0.00	00.0	0.03	6,52	0.00	0.00
210	0.02	0.01	-0.01	0.02	5.63	3.30	8.0-
240	0.01	8.02	-0.02	0.01	3,22	5.72	0.00
270	0.00	0.03	-0.03	8.00	-0.09	6,60	0.07
380	0.01	8.82	-0.02	-0.01	-3.39	5,72	0.0
330	0.02	0.01	-0.81	-0.02	-5.81	3.30	0.0

3/8" x 10" tightning rod - Elevation 239 - From Leg C

tnxTower	Job 227145	Page 36 of 59
1545 Pidzo Drive	Project V-27 x 255' - #281331 McHenry, KY	Dale 10:26:19 10/29/13
Plymouth, IN 46563 Phora: (574) 936-4221 FAX: (574) 936-6458	Cilent American Tower Corp.	Designed by na1

Wind F.	F.	F,	ν.	ν.	OTM,	OIM,	Torqu#
•	K	K	ĸ	K	kip-fl	kip-fi	ktp-ft
120	2.60	0.00	2.25	1,30	298.82	-517.58	0.00
150	2.60	0.60	1.30	2.25	517.58	-298.02	0.0
180	2.60	0.00	0.80	2.60	597,65	0.00	0,0
210	2.60	0.00	-1.30	2.25	517.58	298.82	0.0
240	2.60	0.00	-7.25	1.30	298.82	517.58	0.0
270	2,60	0.00	-2.60	0.00	0.00	597.65	0,8
300	2.60	0.00	-2.25	-1.30	-298.82	517.58	0.0
330	2.60	6,00	-1.30	-2.25	-517.58	298.82	0.0

			ATC Loading - I	Irvation 279 - None	C		
R'ind Azimuth	F.	F _s	ν.	ν,	OTM:	OTM.	Torque
•	R	K	K _	K	kip-ft	kip-fi	ktp-ft
0	2.57	0.00	0.00	-2.57	-566.34	0.00	8.0
30	2.57	0.00	1.29	-2.23	-190.46	-203.17	0.0
60	2.57	0.00	2.23	-1.29	-283.17	-490.46	8,0
90	2.57	0,00	2.57	0.00	0.00	-566.34	0.0
120	2.57	0.00	2.23	1.29	283,17	-190,46	0.0
150	2.57	0.00	1.29	2.23	490.46	-283,17	0.0
180	2.57	0.00	0.00	2.57	566.34	0.80	0,0
210	2.57	0.00	-1.29	2.23	490.46	283,17	0.0
240	2.57	0.00	-2.23	1.29	283.17	490,46	0,0
270	2.57	0.00	-2.57	0.00	8,00	566.34	0.0
300	2.57	0.00	-2.23	-1.29	-283.17	490,46	0.0
330	2.57	0.00	-1.29	-2.23	-490.46	283.17	0.0

Discrete Appurtenance Totals - No Ice											
Wind Azimuth	ν,	ν,	OTM ₂	OTM	Torque						
· -	K	_ K	kip-ft	kip-ft	kip-ft						
0	0.00	-10.53	-2479,39	0.06	-0.04						
38	5.27	-9.12	-2147.25	-1239.51	-0.14						
60	9.12	-5.27	-t239.83	-2146.93	-0,20						
90	10.53	8.00	+0.26	-2479.07	-0.21						
120	9.12	5.27	1239.30	-2146.93	-8.17						
150	5.27	9.12	21 46.73	-1239.51	-0.08						
180	0.00	10.53	2478.87	0.06	0.04						
210	-5.27	9.12	2146.73	1239.62	0. t -1						
240	-9.12	5.27	1239.30	21.47.05	0.20						
270	-10.53	0.00	-0.26	2479.19	0.21						
300	-9.12	-5.27	-1239.83	2147.05	0.17						
338	-5.27	-9.12	-21 47.25	1239.62	0.08						

	Discre	te App	urten	ance	Press	ures -	With	lce	$G_H = 0.850$	
Description	Aiming Azimuth	Weight K	Offset,	Officia A	z A	K,	4s psf	CAc Front	CAC Side A	i,
Beacon	0,0000	0.16	0.00	-2.89	259.39	1,547	3	3.40	3,40	t.8403

tnxTower	Job 227145	Page 37 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phore: (574) 936-4221 FAX: (574) 936-6458	American Tower Corp.	Designed by na1

Description	Ainting Azimuth	Weight	Office,	Office	1	κ.	4	C _s Ac Front	C _A Ac Side	4
			_n	ft. I			pxf	ا در		in
Beacon Extender (4') 803062	0.0008	8.07	8.00	-2.19	257.21	1,544	3	1.85	1.88	1.8103
1/8" a 10' lightning rod	240.0080	0,08	-2.50	1.44	259.00	1,546	3	4.31	4.31	1.8403
ATC Loading	0,8000	5.67	0.00	0.88	250,80	1.535	3	188,47	108.47	1.8367
ATC Loading	8.8000	5.66	0.80	8.00	248,88	1,522	3	188.17	188.17	1.8292
ATC Loading	0,0000	5.64	0.00	0,00	230.00	1.501	3	187.86	187.86	1.8214
ATC Loading	0.0000	5.63	0,00	0.00	220.00	1.494	3	187.53	187.53	1.8134
•	Sum	22.91					- 1			
	Weight	1				- 1	- f	1	,	

	Discrete Appurtenance Vectors - With Ice												
	Baccon - Elevation 239,39 - Fram Leg A												
Wind Leimath	F.	F,	ν.	ν,	OTM,	OIM;	Torque						
•	ĸ	r l	ĸ	ĸ	ktp-ft	kip-fi	ktp-ft						
0	0.01	0.00	8,001	-0.01	-2.74	0.00	0.00						
30	0.01	0.00	0.00	-0.81	-2.43	-1.13	-0.0						
60	0.00	0.01	10.0	-0.00	-1,60	-1.96	+0.03						
90	8.00	0.01	0.01	0.00	-0.47	-2.27	-0.83						
120	0.00	0.01	0.01	0.00	0.67	-1.96	+0.02						
150	0.01	8.00	0.00	0.01	1.50	-t.t3	-0.01						
180	0,01	0.00	0.08	0.01	1.88	0.08	8.80						
210	0.01	0.00	-0.00	10.0	1.50	1.13	0.81						
240	0,00	0.01	-0.01	0.08	0.67	1.96	0.02						
270	0.80	0.81	-0.01	0.02	-8.47	2.27	8.03						
380	0.00	0.81	-0.81	-0.00	-1.60	1.96	8.02						
270	0.01	0.00	0.00	201	2.42		0.01						

Wind	F ₄	Fr	ν.	ν,	OTM.	OTM,	Tarque
Azimuth		_ [_ !	_			
	K	T.		κ	kip-ft		kip-ft
0	0.00	0.00	0.80	-0.00	-1,44	0,00	0.
30	8.88	0,00	0.88	-0.00	-1.27	-0.62	-0.
60	0.00	0.00	0.88	+0,08	-0.82	-2.08	-0.
90	0.80	0.00	0.00	0.88	-0.19	-1,24	-0.
120	8.00	0.00	8.88	0,08	0.43	-1.08	-0.
150	0.00	8.00	0.00	0.80	0.89	-0.62	-0.
180	0.00	0.00	0.00	0.80	1.05	0.00	O.
210	0.00	0,00	-0.00	0.08	0.89	0.62	0.
240	8.88	0,00	-0.88	0.08	0.43	1.08	ō.
278	00.0	8,60	-0.00	0.08	-0.19	1.24	0
380	0.80	0.00	-0,00	-0,08	-0.82	1.08	8,
130	0.00	8,00	-0.00	-0.00	-1,27	0.62	Q.

		.2.	& x to lightning r	od - Elevation 259 -	From Leg C		
IVind Azimuh	F.	F,	ν,	ν,	OTM4	OTM ₄	Torque
•	ĸ	. к	r	ĸ	kip-ft	kip-ft	kip-ft
0	10.0	0,01	0.00	-0.01	-2.73	0.20	-0.03
30	0.01	0.01	0.01	-0.01	-2.37	-1.23	-0.82
60	0.01	0.00	8.81	-0.01	-1.32	-2.28	0.00
90	0.01	8.01	0.01	0.88	0.12	-2.67	0.02

tnxTower	Job 227145	Page 39 of 59
1545 Pideo Driva	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymeuth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Cilera American Tower Corp.	Designed by na1

			ATC Loading	- Elevation 210 - No	one C		
B'ind	Fe	F,	ν,	ν,	OTM.	OTM.	Torque
Azimuth						1	
	x	K		κ .	kip-ft	kip-fi	kip-ft
218	8.47	0,00	-0.24	0.41	93.94	54.24	0.80
240	0.47	0.00	-0.41	0.24	54.24	93.94	0.00
270	0.47	0.00	-0.47	8.08	0.00	188.48	0.00
300	0.47	0.00	-0.41	-0.24	-54.24	93,94	0.80
330	0,47	0.00	-0.24	-0.41	-93.94	54,24	0.00

			ATC Loading - E	teration 220 - None	C		
Wind Azinuth	F.	F,	ν,	ν.	OTM.	OTM ₄	Torque
•	K	κ	r l	r l	kip-fl	kip-ft	kip-ft
0	0.47	0.00	0.00	-0.47	-182.62	0.00	0.0
30	0.47	0.00	8.23	-0.40	-88.27	-51,31	0.0
60	0,47	0.00	0.48	-0.23	-51.31	-88.87	0.8
90	8.47	0.00	0.47	0.00	8.00	-102.62	0.0
128	0.47	0,00	0.48	0.23	51,31	-88,87	0.0
150	8.47	0.00	8.23	0.48	88.87	-51,31	0.0
180	0.47	0.00	0.00	0.47	182.62	0.00	0.0
218	8.47	0,00	-0.23	0,40	08.87	51.31	0.8
240	0.47	0.00	-0.40	0.23	51.31	88,87	0.8
270	0.47	8.00	-0.47	0.88	8.00	102.62	0.8
380	0.47	0.00	-0.40	-0.23	-51.31	88.87	0.0
330	0.47	0.00	-0.23	-0.40	- 88 87	41 31	n r

	Discrete Appurtenance Totals								
Wind Azimuth	P.	ν, κ	OTM,	отм,	Torque				
- 0	0.00	-1.92	-152.80	kip-fi	kip-ft				
اود	0.96	-1.66		0.28	-0.03				
			-392.21	-225,93	-0.04				
60)	1.66	-0.96	-226.67	-391.47	-0.03				
90	1.92	0.08	-0.54	-452.86	-0.82				
120	1.66	0.96	225.59	-391, 47	-0.01				
158	0.96	1.66	391,13	-225,93	0.01				
180	8.00	1.92	451.72	0.20	0.03				
218	-0.96	1,66	391,13	226.34	0,04				
240	-1.66	0.96	225.59	39t.87	0.03				
270	-1.92	0.00	-0.54	452.47	0.02				
300	-1.66	-0.96	-226.67	391.87	0.81				
330	-0.96	-1.66	-392.21	226.34	-0.01				

	Discre	te Ap	ourter	ance	Pressu	ıres -	Serv	ce	$G_H = 0.850$
Description	Aiming Azimuth	Weight K	Office,	Offsei, ft	i	κ,	q _t psf	C _A Ac Front ft	C _A Ac Sida R ¹
Beacon	8,8000	0.87	0.88	-2.89	259.39	1.547	12	2.40	
Beacon Extender (4') 803862 5/8° x 10' lightning rod	8,8000	0.83	0,88	-2.89	257,21	1.544	12	1.11	
2/2 x 10 Highliting rod	240.8800	0.82	-2.58	1.44	259,00	1,546	12	8.63	0.63

tnxTower	Job 227145	Page 38 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 EAY: (574) 936-6438	Client American Tower Corp.	Designed by

Wind	F.	F _t	ν,	ν,	OTM,	OIM,	Torque
Azimuth	ĸ	x	x	ĸ	kip-ft	Hp-ft	kip-ft
120	8.01	0.01	8.01	0.01	1.53	-2.28	8.
150	8.00	8.01	0.01	0.01	2.60	-1.23	0.
188	8,81	8.01	8.00	0.81	2.99	0.20	0.
218	0.81	0.81	-0.81	0.01	2.60	1.64	8.
248	8,81	0.60	-0.01	0.81	1.55	2.69	0.
270	0.81	8.01	-0.01	8.88	0.12	3.08	-0.
300	0.81	8.81	-0.01	-0.81	-1.32	2.69	-0.
338	0.00	0.81	-0.81	-0.01	-2.37	1.64	-0.

				levation 250 - None			
Wind Azlmuth	F _a	F,	"	ν.	отм,	OTM ₄	Torque
•	K	. K	ĸ	K	kip-ft	kip-ft	ktp-ft
0	0.41	0.00	0.00	-0.41	-120.39	0.00	0.0
30	0.41	0.00	0,24	+0.42	-104,26	-60.19	0.8
60	8,41	0.00	0.42	-0.24	-60.19	-104,26	0.0
90)	0.48	0.00	8.48	0.00	0.00	-120,39]	0.0
120	0.48	0.00	0.42	0.24	68.19	-104.26	0.0
150	0.41	0.00	8.24	8.42	104.26	-60.19	0.6
180	8,48	8.00	0.80	0.48	120.39	0.00	0.0
210	0.48	0.00	-0.24	0.12	104.26	60.19	0,0
240	0.41	8.00	-0.42	0.24	68.19	104.26	0.0
270	0.48	0.00	-0.48	0.08	0.00	120.39	0.0
300	0.48	0.00	-0.42	-0.24	-60.19	104.26	0.0
330	0.48	0.00	-0.24	-0.42	-104.26	60.19	0.0

Wind Azintuth	F.	F.	ν.	ν,	OTM,	OTM ₂	Torque
	r l	K	K	r i	kip-ft	kip-ft	kip-ft
0	0.41	0.00	0.00	-0,48	-114.48	0.00	0.0
30	8,41	8.00	0.24	-0.41	-99.87	-57.20	0,0
60	0.41	0.00	0.41	-0.241	-57,20	-99.07	0.0
90	0,42	0,00	8.48	0.00	0.00	-114,40	8.0
120	0.48	0.00	0.41	0,24	57.20	-99.07	8.0
150	0.42	0,00	0.24	0.41	99.07	-57,20	0.8
180	0.42	0.00	loae	0,48	114,40	0.00	0.8
218	0.45	0.00	-0,24	0,41	99.07	57.20	0.0
240	0.48	8.00	-0.41	8,24	57.20	99.07	8.8
270	0.42	0.00	-0.40	0,00	8,00	114,40	0.8
300	0.48	0.00	-0.41	-0.24	-57.20	99,07	0.8
330	0.42	8,00	-0.24	-0.41	-99.07	57.20	8.0

Wind Azimuth	F. F. V. V. OTM.	OTM,	OTM ₂	Tarque			
•	_ K	. r	ĸ l	ĸ	kip-fl	kip-ft	ktp-ft
0	0.47	8.00	8.00	-0.47	-101.41	0,00	0.
38	0.47	0.00	0.24	-0.41	-93.94	-54.24	0.1
60	0.47	0.00	0.41	-0.24	-54.24	-93,94	8.
90	0.47	8,00	0.47	0.00	0.00	-108,48	ů.
120	0.47	0.00	0.41	0.24	54.24	-93,94	0.
158	0.47	0.00	0.24	0.41	93.94	-54.24	0.
180	0.47	0.00	0.00	0,47	108.48	0.00	8.0

tnxTower	Job 227145	Page 40 of 59
1545 Ptdco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46565 Phore: (574) 936-4221 FAY: (574) 936-6438	Client American Tower Corp.	Designed by

Description	Alming Azimuth	B'eight K	Offict,	Offsel,	a A	κ,	q. psf	CAc Front	C _M c Side A
ATC Loading	8.8008	2.08	0.00	8.80	250.08	1.535		115.00	115,00
ATC Loading	0.8008	2,00	0.00	0,00	240.00	1.522	12	115.80	115,00
ATC Loading	8.8000	2.00	0.00	0.08	230,00	1.501	12	115.00	115.00
ATC Loading	8.0000	2.80	0.00	8.80	228.00	1.494	12	115.00	115.00
	Sum	8.13					. 1		
	Weight:								ı

			Beacon - Elevatio	m 259.59 - From Le	g A		
Wind Asimuth	F.	F	ν,	14	OTM.	OTA4	Torque
	K	ĸ	x	x	kip-ft	kip-f2	Hp-ft
0	0.02	8.00	8.80	-0.82	-6.52	0,00	0.0
30	0.02	8.01	0.01	-0.82	-5.76	-3.21	-0.0
68	0.01	0.02	0.02	-0.0t	-3.42	-5.55	-0.8
90	0.08	8.02	8.82	80.0	-0.21	-6,41	-0.8
128	8,01	0.02	0.02	0.01	3,00	-5,55	-0.8
150	0.02	0.01	8.01	0.02	5,34	-3.21	-0.0
180	0.82	0.00	8.80	0.02	6.20	0.80	0.0
218	8.82	8.81	-0.01	0.02	5.34	3.21	8,8
248;	0.01	8,02	-0.02	0.01	3,00	5,55	8.0
278	0.80	8.82	-0.02	0.88	-0.21	6.41	8.8
388	0.01	0.82	-0.02	-0.01	-3.42	5,55	0.8

		Веосон	Extender (4) 90305	2 - Elevation 257,21			
Wind Azimuth	F.	F.	ν.	ν,	OIM	OTM ₂	Torque
•	ĸ	κ	κ	r l	ktp-fl	kip-ft	kip-ft
8	0.01	0.00	0.00	-0.01	-3.02	0.00	8.
30	8.81	0.81	0.81	-0.01	-2.63	-1.47	-0.
68	0.01	10.8	8.81	-0.81	-1.55	-2.54	-0.
90	8.00	0.81	0.81	0.00	-0.09	-2.94	-0.
120	0.81	8,81	10,0	0.01	1.38	-254	-0.
158	0.01	8.81	8.01	8.81	2.46	-1.47	-0.
180	0.01	8.00	0.08	0.01	2.85	0.08	8.
210	0.01	0.81	-0.01	0.01	2.46	1.47	0.
240	0,01	0.81	-0.81	0.01	1.38	2,54	0.
270	0.00	8.81	-0.01	0.88	-0.09	2.94	Q,
380	0.01	0,81	-0.01	-0.01	-1.55	2.54	Đ.
330	0.01	0.81	-0.81	-0.01	-2.63	t.47	0.

		1/2	"x 10" lightning rod	Elevation 259 - Fr	om Leg C		
Wind Aximuth	F.	F,	ν.	ν,	OTM.	OTM,	Torque
•	K	_ K	K I	<i>x</i>	kip-ft	kip-ft	ktp-ft
0	0.00	0.01	0.00	-0.01	-1.63	0.06	-0,0-
30	0.01	0.00	8.88	-0.01	-1.41	-0.78	-0.0
60	0.01	8,00	0,01	-0.00	-0.80	-1.39	0.8
90	0.01	0.00	0,01	0.88	0.03	-1.61	0.0
120	80.0	0.01	8,81	8.88	0.87	-1.39	8.0
158	0.88	0.81	8.80	0.81	1.48	-0.78	8.0
180	8,80	8.81	0.88	0.81	1.70	0.06	0.8

tnxTower	Job 227145	Page 41 of 59
1545 Pidco Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymosah, IN 46563 Plume: (374) 936-4221 PAX: (574) 936-6458	Client American Tower Corp.	Designed by ne1

		54	x 10 Deharing rod	Elevation 259 - Fr	om Leg C		
B'Ind Azimuth	F.	F,	V.	ν,	OTM,	оты,	Тогирия
_ • _ [K I	_r	_ r_ _	Lip-ft	Hp-ft	ktp-ft
218	0.81	0.00	-0.00	F.01	1.42	0,19	0.0
240	8.01	0.00	-0.B1	0.00	0.87	1.50	0.0
270	0.01	0.00	-0.81	0.00	0.03	1.72	-0.01
300	0.00	0.01	-0.01	-0,00	-0.80	1.50	-0.0
330	0.00	18.0	-0.00	-0.01	-1,41	0.89	-0.03

			ATC Loading - I	Irretion 250 - Name	C		
B'Ind Azimah	F.	F,	ν,	V	оты,	отм,	Torque
•	_ r _	κ .		r I	kip-ft	ktp-ft	kip-ft
8	1.18	0.00	0.00	-1.18	-293.83	0,00	0.
30	1.18	0.00	0.59	-1.02	-254.47	-146.92	0.
60	1.18	0.00	1.02	-0.59	-146.92	-254,47	0.
90	1.18	0.00	1,12)	0.001	0.00	-293.83	0.
120	1,18	0.00	1.02	0.59	146.92	-254, 47	0.
150	1.18	0.00	0.59	1.02	254.47	-146.92	0.
110	1,18	0.00	0.00	1.18	293.83	0.00	0.
210	1.13	0.00	-0.59	1.02	254.47	146.92	a)
240	1.18	0.00	-1.02	0.59	146.92	254,47	0.6
270	1.11	0.00	-1.18	0.00)	0.00	293.83	O.
300	1.12	0.00	-1.02	-0.59	-146.92	25-1.47	Q,
330.	1.18	0.00	-0.59	-1.02	-254,47	146.92	0,1

			ATC Loading	- Eleration 210 - No	ru C		
B'ind Azimuth	F.	F,	ν,	ν,	OTM,	OTM,	Torque
	_K		x)		ktp-ft	_Hp-ft	ktp-ft
0	1.17	0.00	0.00	-1.17]	-279.66	0.00	0.00
30	1.17	0.00	0.58	10.1-	-242,20	-(39.83	0.00
60	1.17	0.00	1.01	-0.51	-139.83	-212.20	0.00
90	1.17	0.00	1,17	0.00	0.00	-279.66	9.00
120	1.17	0.00	1.01	0.58	139.83	-212.20	0.00
150	1.17	0.00	0.58	1.81	242.20	-139.83	0,00
180	1.17	0.00	0.00	1.17	279.66	0.00	0.00
218	1.17	0.00	-0,5#(1.01	242.20	139.23	0.00
240	1.17	0.00	-1.01	0.58	139.≣3	242.20	0.00
270]	1.17	0.00	-1.17	0.00	0.00	279.66	0.00
300	1.17	0.00	-1.01	-0.58	-139.83	242.20	0.00
330	1.17	0.00	-0.58	-1.01	-242.20	139.83	0.00

			ATC Locative - E	Levetion 230 - Nanu	c		
Wind Azimuth	F	F,	ν.	ν,	OTM	OTM	Torque
•	ĸ	, K	_ K	K.	ktp-ft	Mp-ft	kip-fl
8	1.15	0.00	0.00	-1.15	-265.62	0.00	0.
30	1.15	0.00	0.52	-1.00	-230.03	-132.E1	0.0
60	1.15	0.00	1.00	-0.58	-132.21	-230,03	0.0
90	1.15	0.00	1.15	0.00	0.00	-265.62	Ó.
120	1.15	0.00	1.00	0.58	132.81	-230.03	0.4
150	1.15	0.00	0.52	1.00	230,03	-132.11	0.0
120)	1.15	0.00	8.00	1.15	265.62	0.00	0,4
210	1.15	0.00	-0.58	1.00	230.03	132.81	0.
240	1.15	0.00	-1.00	0.58	132.81	230.03	0,
270	1.15	0.00	-1.15	0.00	6.00	265.62	0.0

tnxTower	Јоb 227145	Page 43 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6418	American Tower Corp.	Designed by na1

Load	Vertical	Sum of	Sum of	Sum of	Sun of	Sum of Torques
Care	Forces	Forces	Forces	Overturning	Overturning	
i	1	l x	Z	Monents, M.	Monents, M.	1
	_		_ <u></u>	_ktp-fl_	ktp-ft	ktp-ft
Wind 60 deg - No Ice		49.81	-28,76	-1224.33	-7316.58	11.0
Wind 90 deg - No les		54.82	0.80		-\$150,22	-4.22
Wind 120 deg - No Ice		45,14	26.06	3863,42	-6729.88	-6,95
Wind 158 deg - No les		25.50	44.16	6547.71	-3799.9\$	-7.82
Wind 130 deg - No Ice		0.00	50.21	7493.33	-14.70	-6.69
Wind 210 deg - No les		-27.12	47.88	6947.42	4001.35	-4.34
Wind 240 deg - No Ice		-51,27	29.60	4306.34	7458,98	-0.13
Wind 278 deg - No lee		-54.82	0.00	-8.59	\$120.52	4.22
Wind 300 deg - No lea		-43.69	-25.22	-3786.41	6328,67	6.65
Wind 330 deg - No Lea		-25.50	-41,16	-6564.89	3770.58	7.82
Momber Ice	92.32					
Total Weight for	272.74			-26.71	-61.23	
Wind 0 deg - Ice		0,00	-10,23	-1529.07	-61.23	0.26
Wind 30 deg - Ice		5.09	-1.12	-1325.77	-818.24	0.29
Wind 60 deg - Ice		8.83	-5.10	-711.27	-1375,16	0.23
Wind 90 deg - Ioc		10.23	0.00	-26.71	-1578.61	0.11
Wind 128 deg - Ice	200	2.96	5.17	731.72	-[38],66	-0.03
Wind 150 deg - loc	25.4	5.09	8.82	1265.11	-314.86	-0.16
Wind 180 deg - Ice		8.60	10.13	1457,95	-68.23	-0.25
Wind 210 deg - Ice	224	-5.09	1.82	1272_35	681,79	-0.29
Wind 240 deg - Ice		-8.95	5.17	735,90	1252.65	-0.23
Wind 270 deg - Ice		-10.23	0.00	-26.71	1442.19	-0.11
Wind 300 deg - Jos		-1.23	-5.10	-777.09	1231,46	0.03
Wind 330 deg - fee		-5.09	-1.82	-1318.53	677.61	191.0
Total Weight	78.48			-1.59	-14.70	
Wind 0 deg - Service		0.00	-23.06	-3422.62	0.06	3.11
Wind 30 deg - Service		12.08	-20,93	-3091.82	-1784.86	1.93
Wind 60 deg - Service		22,14	-12.78	-1873.93	-3245.22	0.05
Wind 90 deg - Service		24.36	0.00	-0.26	-3615.73	-1.87
Wind 120 deg - Service	2-10-1	20.06	11.58	1722.85	-2911.47	-3.89
Wind 150 deg - Service		11.33	19.63	2913.65	-1682.29	-3.48
Wind 128 dog - Service		0.00	22,32	3333.92	0.06	-2.97
Wind 210 deg - Service		-12.88	20,93	3091.30	1784.97	-1.93
Wind 248 deg - Service		-22,79	13.16	1917.48	3321.69	-0.06
Wind 270 dog - Service	200	-24.36	0.00	-0.26	3615,85	1.87
Wind 308 deg - Service		-19.42	-11.21	-1679.29	2908,22	2.96
Wind 330 dog - Service		-11.33	-19.63	-2914.17	1682.40	3.48

	Load Combinations								
Comb. No.		Description							
1	Dead Only								
2	1.2 Dead+1.6 Wind 0 deg - No Ice								
3	0.9 Dead+1.6 Wind 0 deg - No Ice								
4	1.2 Dead+1.6 Wind 38 deg - No Ice								
5	0.9 Dead+1.6 Wind 30 deg - No Ice								
6	1.2 Dead+1.6 Wind 60 deg - No los								
y	0.9 Dead+1.6 Wind 60 deg - No Ice								
	1.2 Dend+1.6 Whad 90 deg - No Ice								
9	0.9 Dead+1.6 Wind 90 deg - No Icu								
10	1.2 Dead+1.6 Wind 120 deg - No loc								
11	0.9 Dead+1.6 Wind 120 deg - No les								
12	1.2 Dead+1.6 Wind 150 dea - No Ice								
13	0.9 Dead+1.6 Wind 150 deg - No Ice								
14	1.2 Dead+1.6 Wind 188 deg - No Ice								

days Torres	Job	Page
tnxTower	227145	42 of 59
	Project	Date
1545 Pideo Drive	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/13
Plymouth, IN 46563	Client	Designed by
Phone: (574) 936-4221 FAX: (574) 936-6458	American Tower Corp.	(na1

			ATC Loading	- Elevation 250 - No	my C		
Wind Azimuh	F.	F,	ν,	ν,	OTM	отм,	Torque
	E	_ =	ж	_ x	kip-ft	Mp-ft	ktp-ft
300	1.15	0.00	-1.00	-0.58	-132.81	230.03	0.00
330	1.15	0.00	-0.58	-1.00	-230.03	132.81	0.00

ATC Loading - Elevation 230 - Nove C									
Wind Asimuth	F.	F.	ν,	ν,	OTM	ОТМ	Torque		
_ • _	_ K _	. K.	x i	ĸ	ktp-ft	Hp-ft	kip-fi		
0)	1.14	0.00	8,00	-1.14)	-251.71	0.00	0,0		
30	1.14	0.00	0.57	-0.99	-217.92	-125,85	0.0		
60	1.14	0.00	0.99	-0.57	-125.85	-217.98	0,0		
90)	1.14	0,00	(.(4)	0.00	0.00)	-251.71	0.0		
120	1.14	0.00	B.99	0.57	125.85	-217.98	0.0		
150	1.14	0,00	0.57	0.99	217,92	-125.85	0.0		
180	1.14)	0.00	0.00	1.14	251,71	0.00	0.0		
210	1.14	0.00	-0.57	0.99	217.98	125.85	0.0		
240	1.14	0.00	-0.99	0.57	125,85	217.98	0.0		
270	1.14	0.00	-1.14	0.00	0.00	251.71	0.0		
300	1.14	0.00	-0.99	-0.57	-125.85	217.91	8.0		
330	1.14	0.00	-0.57	-0.99	-217.98	125.85	0.0		

Discrete Appurtenance Totals - Service

Wind Azimuh	-v	ν,	OTM,	ОТМ	Torque ktp-ft	
•	E.	K	kip-ft	ktp-ft		
- 0	0.00	-4.68	-1102.10	0.06	-0.0	
38	2.34	-4.05	-954.48	-350.86	-0.0	
60	4.05	-2.34	-551.18	-954.16	-0.0	
90	4.68	0.00	-0.26	-1181.78	-0.1	
120	4.05	2.34	558.65	-954,16	-0.0	
150	2.34	4.05	953.95	-550,86	-0.0	
180	0.00	4.68	1101.57	0.06	0.0	
210	-2.34	4.05	953.95	550,981	0.0	
240	-4.05	2.34	558.65	954,28	0.0	
270	-4.68	0.00	-0.26	1181.89	0.1	
300	-4.05	-2.34	-551,12)	954.28	0.0	
330	-2.34	-4.05	-954.48	550.91	0.0	

Force Totals

Load Case	Vertical Forces	Sion of Forces X K	Sion of Forces Z K	Sion of Overturning Aloments, kl, kip-ft	Sun of Overturning Moments, M, kip-fi	Sion of Torquet kip-fl
Log Weight	36.09		100000000000000000000000000000000000000			
Bracing Weight	14.25					
Total Member Self-Weight	50.34			-B.59	-14.70	
Total Weight	71.48			-1.59	-14.70	
Wind 0 dog - No Ice		0,00	-51.89	-7708.89	-14.70	7.00
Wind 30 deg - No Ice		27.12	-17.08	-6964.60	-4030.76	4.34

tnxTower	ver Job 227145		Page 44 of 59
1545 Pideo Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (174) 936-4221 FAX: (574) 916-6458	Client	American Tower Corp.	Designed by na1

Comb	Description	
Na.	0.9 Dead+1.6 Wind 180 deg - No les	
16	1.2 Dead+1.6 Wind 210 deg - No Ice	
17	0.9 Dead+1.6 Wind 210 deg - No Ice	
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dend+1.6 Wind 248 deg - No les	
20	1.2 Dead+1.6 Wind 270 deg - No tea	
21	0.9 Dead+1.6 Wind 270 deg - No Ico	
22	1.2 Dead+1.6 Wind 300 deg - No Ioe	
23	0.9 Dead+1.6 Wind 300 deg - No Ice	
24	1.2 Dead+1.6 Wind 338 deg - No les	
25	0.9 Dead+1.6 Wind 330 deg - No Ion	
26	I.2 Dead+1.0 len+1.0 Temp	
27	I.2 Dead+1.0 Wind 0 dep+1.0 los+1.8 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 lee+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.8 Temp	
30	1.2 Dead+1.0 Wind 90 des+1.0 les+1.0 Temp	
31	1.2 Desd+1.0 Wind 120 deg+1.0 les+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 leg+1.0 Temp	
33	1.2 Dead+1.0 Wind 100 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 218 dea+1.0 Ico+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 lcs+1.0 Team	
36	1.2 Dead+1.0 Wind 270 des+1.0 lee+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 los+1.0 Temp	
38	1.2 Dead+1.8 Wind 330 deg+1.0 Ics+1.0 Temp	
39	Dead+Wind G deg - Service	
40	Dead+Wind 38 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dend+Wind I 20 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind ISS deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 dog - Service	
50	Dead+Wind 330 dog - Service	

Maximum Member Forces

Section No.	Elevation ft	Сопроини Туре	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-fl	Minor Axis Moment ktp-fl		
Ti	255 - 240	Leg	Max Temion	7	9.63	8.22	-0.12		
		-	Max. Compression	2	-11.95	0,81	-0,25		
			Mar. Mx		-1.27	0.35	0,02		
			Max My	14	-6.26	0.06	8.34		
			Max. Vy		1.41	-0.17	-0.86		
			Max. Vx	2	-1.42	10.0	0.21		
		Diagonal	Max Tession	24	3.16	0.00	8.00		
			Max. Compression	12	-2.19	8.00	0.00		
			Max Mx	6	-0.92	0.04	-0.00		
			Max. My	12	-2.83	-0.00	0.01		
			Max. Vv	36	-0.02	0.02	-0.00		
			Max. Vx	12	0.00	-0.00	0.01		
		Top Girt	Max Tention	15	0.47	0.00	0.00		
			Max. Compression	2	-0.57	8,00	0.00		
			Max. Mx	26	-0.02	-0.04	8.08		
			Max. My	10	0.11	8.00	-0.00		
				•		~.00	0,00		

tnxTower	Job	227145	Page 45 of 59
1545 Pideo Drive	Praject	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 FAX: (374) 936-6438	Cilent	American Tower Corp.	Designed by na1

No.	Elevation ft	Component Type	Candition	Gav. Load	Axial	Major Axis Mament	Minar Ax Moment
				Сомь.	<u> </u>	kip-ft	kip-fl
		_	Max. Vx	10	0.00	0.00	0.00
T2	240 - 220	Leg	Max Tensioo	7	65.54	E-22	-0.13
			Max, Compression	2	-71.69	0.03	1.30
			Max. Mx		34.26	-2.33	0.75
			Max. My	14	39.27	-0.01	-2.44
			Max. Vy	20	1.21	-0.75	0.04
			Max. Vx	14	-1.17	-0.07	0,74
		Diagonal	Max Tension	24	18.87	0.06	0,00
		-	Max. Compression	24	-11,42	0.00	0.00
			Max. Mx	5	-3.92	-0.06	0.00
			Max. My		-11.07	-0.05	0,02
			Max, Vy	27	-0.02	0.04	0.08
			Max. Vx	18	-0.00	0.00	H.OH
T3	220 - 200	Len	Max Tension	7	135.33	0.08	-0.01
		-	Max. Compression	ż	-145.88	2.52	-0,82
			Max. Mx	18	-99,53	3.68	-0.01
			Max. My	ï	-4.72	-0.00	2.47
			Max. Vy	18	-0.91	3.68	-0.01
		Max. Vx	16	0.89	0.83	-1.41	
	Diagonal	Max Tension	12	8.38	0.00	0.00	
		- Inguina	Max. Compression	12	-8.79	0.00	0.00
			Max. Mx	3	-4.48	-0.08	-0.00
			Max. My	24	-8.73	-0.04	-0.02
			Max. Vy	27	-0.03	0.03	E.00
			Max. Vx	24	0.00	0.00	80.0
T4 200 - 188	Leg	Max Tension	7				
4-7	+ 200 - 1 au	reg	Max. Compression		190.99	-3.31	-0.80
				2	-205.45	-4.35	-0.02
			Max. Mx		-205.45	-4.35	-0.07
			Max. My		-6.17	-0.05	2.43
			Max. Vy	3	1.26	3.60	-0.01
			Max. Vx	4	-0.48	0.86	-1.17
		Diagonal	Max Tension	12	8.98	0.00	0.00
			Max. Compression	12	-9.07	0.00	0.00
			Max. Mx	4	3.76	E1.0	-0.00
			Max. My	24	-8.99	-0,06	-0.03
			Max. Vy	27	-0.04	8.05	-0.88
			Max. Vx	24	18.0	0.00	0.02
T5	180 ~ 169	Log	Max Tension	7	232.03	-5.19	10.0-
			Max. Compression	2	-249,27	11.15	-0.05
			Max. Mx	2	-225.41	16.50	-0.06
			Max. My	2	-8.94	-0.29	11,54
			Max. Vy	18	-2.63	16.49	-0.02
			Max. Vx	ï	-1.54	0.17	10.84
		Diagonal	Max Tension	13	9.30	0.00	0.00
			Max. Compression	12	-10.37	0.00	0.00
			Max. Mr	7	6.15	0.13	-0.00
			Max. Niv	31	0.29	0.07	0.01
			Max, Vy	31	-0.05	0.09	-0.01
			Max. Vz	31	-0,00	0.00	0,00
16	160 - 140	Leg	Max Tension	7	280.13	-4.96	-0.00
-		146	Max. Compression	ź	-302.71	4.98	-0.13
			Max. Mx	2	-271.91		
				1		15.80	-0.04
			Max. My		-11,13	-0.41	11.70
			Max. Vy	18	-1.61	15,78	-0,01
			Max. Vx	1	-1.12	-0.41	11.70
		Diagonal	Max Tension	10	10.12	0,00	9.00
			Max, Compression	10	-10.34	0,00	0.00
			Max. Mx	6	7.29	0.14	9.00
			Max. My	24	-9.77	-0.06	-0.04
			Max. Vy	29	0.06	0.0E	-0.01
			Mar Vr	74	0.01	0.00	0.00

tnxTower	Job 227145	Page 47 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (374) 936-4221 FAX: (574) 936-6458	Glient American Tower Corp.	Designed by

Section No.	Elevation	Component	Candition	Gon	Axial	Major Axis	Minor Axis
Ma	ft.	Тура		Lond		Montent	Moment
				Comb.	K	ktp-ft	kip-ft
			Max. Compression	2	-565,30	13.19	-0.12
			Max, Mx	22	499.71	-14.15	-0.15
			Max. My	4	-27.94	-0.74	-18.39
		•	Max. Vy	22	1.01	-14.15	-0.15
			Max. Vx	4	1.13	-0.74	-12.39
		Dingonal	Max Tension	18	16.17	0.00	0.00
			Max. Compression	12	-16,38	0.00	0.00
			Max, Mx	29	-0.05	-0.68	0.10
			Max. My	22	-16.09	-0.24	0.10
			Max. Vy	29	-0.22	-0.68	0.10
			Max. Vx	29	0.01	0.00	5.00
T13	28 - 8	Log	Max Tension	7	538.52	-1.12	-0.00
			Max. Compression	2	-602.63	9.20	-0.09
			Max. Mx	18	-601.26	9.22	-0.00
			Max. My	24	-27.83	-1.06	11,90
			Max. Vy	12	-0.64	9.22	-0.00
			Max. Vx	4	-0.73	-1.04	-11.87
		Diogonal	Max Tension	15	17.55	0.00	0.00
		-	Max. Compression	2	-19.64	0.80	0.00
			Max. Mx	30	2.52	-0.65	-0.1E
			Max. My	31	2.00	-0.65	-0.10
			Max. Vv	30	-0.22	-0.65	-0.10
			Max. Vx	31	-0.01	0.00	0,00

	·	Maximum Reactions					
Location	Condition	Gnv. Load Comb.	Vertical K	Harttoniol, X K	Harizontal, 2 K		
Leg C	Max, Vert	18	624.83	53.39	-30,82		
	Max. H.	12	624.83	53.39	-30.B2		
	Max. He	7	-556.85	-48.42	27.95		
	Min. Vert	7	-556.85	~18.42	27.95		
	Min. He	7	-556.85	-48.42	27.95		
	Min. H.	12	624.83	53.39	-30.82		
Leg B	Max. Vert	10	626.15	-53.29	-31,06		
_	Max. Ha	23	-555.86	48.29	28.14		
	Max. H.	23	-555.BE	48.29	28.14		
	Ma. Vert	23	-555.86	48.29	28.14		
	Min. H.	10	626.15	-53,29	-31.06		
	Min. H.	10	626.13	-53.29	-31.86		
LegA	Max. Vert	2	626.16	0.25	61.68		
-	Max. H.	21	23.97	3.15	1.62		
	Max. H.	2	626,16	8.25	61.62		
	Min. Vert	15	-555.86	-0.22	-55.89		
	Min. He	9	23,97	-3.53	1.62		
	Min. H.	15	-555.86	-0.22	-55.89		

Tower Mast Reaction Summary								
Lond Combination	Vertical	Shear	Sheor	Overturning Moment, Ma	Overturning Moment, Ma	Torque		
	ĸ	ĸ	ĸ	kip-fl	ktp-ft	kip-ft		

tnxTower	Job 227145	Page 46 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Pliane: (574) 956-4221 FAX: (574) 936-6438	Cilent American Tower Corp.	Designed by na1

Minor Axis Moment	Section No.	Elevation ft	Component Type	Condition	Gov. Load	Arial	Major Axis Moment	Minor Axis Moment
kip-fl					Самь.		kip-ft	kip-fl
0.00 -0.13	17	140 - 120	Leg	Max Tension	7	307.05	4.13	-0.0t
1.30				Max. Compression Max. Mx	18	-330.86 -330.81	21.87 21.89	-0.19
0.26				Max. My		-330.81 -12.68	0.28	-0.81 12.64
-2.44				Max. Vy	12	-1.53	21,89	-0.81
0.04				Max. Vx	16	-0.75	0.28	12.61
0,74			Disgonal	Max Tension	23	15.82	E.00	0.00
0.00				Max, Compression	18	-17,76	0.00	H.00
0.00				Max. Mix	6	15.35	-0.27	-0.81
0.00 0.02				Max. My	24	-15.75	0.06	0.07
0,08				Max. Vy	29 29	-0.10 -0.01	-0.25	-0.05
E.OE	TS	120 - 100	Leg	Max, Vx Max Tension	7	355.51	0.00 E.03	0.00 -0.81
-0.01	••	140 - 100		Max. Compression	ź	-385.93	20.13	-0.19
-0.82				Max. Mx	19	-380.23	20.17	-0.01
-0.01				Max, My	1	-16,04	-0.3E	11.25
2.47				Max. Vy	18	-1.68	20.15	-0.81
-0.01				Max. Vx	10	-0.40	-10.46	10.41
-1.41 0.00			Disgonal	Max Tension	18	14.72	0.00	0.00
0.00				Max. Compression Max. Mix	12 29	-15.66 1.54	0.0E	B.OE
-0.00				Max. My	3B	0.84	-0.38	-0.05 0.06
-0.02				Max. Vy	29	-B.12	-0.38	-D.85
E.00				Max. Vx	38	0.01	0.00	¥.00
0.0	T9	100 - 20	Log	Max Tension	7	391.78	0.74	-0.01
-0.50			-	Max. Compression	2	-427.71	20,13	-0.20
-0.02				Max. Mix	12	-426.69	20.15	-0.00
-0.02				Max, My		-17.75	0.43	10.21
2.43 -0.01				Max, Vy	19	-1.30	20.04	-0,00
-1.17			Disgonal	Max. Vx Max Tensian	16 23	-0.67 14.83	E.43 0.00	10.20 0.00
0.00			Diagonal	Max. Compression	18	-16.54	0.00	8.00
0.00				Max. Mx	29	1.04	-0.34	-0.06
-0.00				Max. My	28	1.32	-0.31	¥.06
-0.03				Max. Vy	29	-0.13	-0.34	-0.06
-0.68				Max, Vx	32	-0.01	0.00	0.00
B0.0	T10	80 - 60	Leg	Max Tension	7	433.34	2.99	-0.00
-0.01				Max. Compression	.2	-476.12	16.07	-0.15
-0.05 -0.06				Max. Mx	22 4	427.27	~t 6,36	-0.17
11.54				Max, My Max, Vy	22	-21.27 1.24	-0.54 -16.36	-13.81
-0.02				Max. Vx	16	-0.68	-0.54	-0.17 13.79
10.84			Diagonal	Max Tension	12	14.83	0.00	8.00
0,00				Max. Compression	12	-16.17	0.00	00.0
0.00				Max. Mx	29	0.82	-0.52	-0.08
-0.00				Max. My	27	-0,60	-0.51	0.08
0.01				Max. Vy	29	-0.19	-0,53	-0.98
-0,01			_	Max, Vx	27	0.01	0.00	0.08
00,0 -0,0	TII	60 - 40	Leg	Max Tension	?	468,32	0.94	-0.0g
-0.13				Max. Compression	2	-517.78	18,86	-0.15
-0.13				Max. Mx Max. My	18 24	-516.58 -21.18	18.82 -0.78	0.00 6.63
11.70				Max. Vy	18	-1.27	18.88	0.00
-0.01				Max. Vx	4	-0.36	-0.76	-6,55
11.70			Diagonal	Max Tonsion	23	15.26	0.01	0.00
0.00				Max. Compression	10	-17.53	0.00	0.00
0.00				Max. Mx	29	1.77	-0.56	-0.09
0.00				Max, My	28	1,85	-0.5E	0.09
-0.04				Max, Vy	29	-0.20	-0.56	-0.09
-0.91 0.00	****	40 00	•	Max. Vx	29	0.01	0.00	0.00
470	T12	40 -20	Leg	Max Tension	7	507.91	8.74	-0.00

tnxTower	Job 227145	Page 48 of 59
1545 Piden Drive	Praject V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Towar Corp.	Designed by na1

Load Cambination	Vertical	Shear,	Shears	Overturning Monent, M.	Overturning Moment, Ma	Torque
	K	K	ĸ	kip-ft	kip-ft	ktp-ft
Dead Only	78.48	-B.0E	0.00	-8.54	-14.64	-O.0B
1.7 Dead+1.6 Wind 0 deg - No fee	94.18	-0,00	-94.72	-13907.16	-17.85	11.36
0.9 Dead+1.6 Wind 8 deg - No fee	70.63	-0.00	-94.72	-13881.66	-13.39	11.32
1.2 Dend+1.6 Wind 30 deg - No Ica	94.18	43.85	-75.96	-11356.55	-6570.91	7.27
0.9 Dend+1.6 Wind 30 deg - No lon	70.63	43.85	-75.95	-11334.52	-6555.10	7.25
1.2 Dead+1.6 Wind 69 deg - No Icu	94.12	79,70	-46.02	-6799.55	-11776.85	0.16
0.9 Dead+1.6 Wind 60 deg - No fee	70.63	79,70	~16.02	-6785.66	-11752.85	0.17
1.2 Dend+1.6 Wind 90 deg - No fce	94.12	87.71	0.08	-12.58	-13t20.39	-7.10
0.9 Dead+1.6 Wind 90 deg ~ No fee	70.63	87.70	9.00	-9.85	-13093,45	-7.07
1.2 Dead+1.6 Wind 120 deg • No Ice	94.18	82.03	47.36	6937,87	-12052.79	-11.30
0.9 Dead+t.6 Wind 120 deg - No Ico	70.63	82.03	47.36	6929.04	-1202E.51	-11.26
1.2 Dend+1.6 Wind 150 deg - No fee	94.12	43,85	75.96	11337.84	-6567.40	-12.47
0.9 Dead+1.6 Wind 150 deg - No for	70.63	43.85	75.95	11328.91	-6151.79	-12.43
1.2 Dead+1.6 Wind 180 deg - No les	24718	-0.00	92.03	13567.90	-17.85	-10.86
0.9 Dead+1.6 Wind 180 deg = No los	70.63	.8.DB	92.83	13547.94	-13.39	-10.82
1.2 Desd+1.6 Wind 210 deg - No Ice	94.12	-43,85	75.96	11337.91	6531.74	-7.27
0.9 Dead+1,6 Wind 218 deg - No Ice	70.63	-43.85	75.95	11320.98	6525.06	-7.25
1.2 Dend+1.6 Wind 240 deg - No lea	94.18	-82.03	47.36	6937.95	12017.23	-0.12
0.9 Dead+1.6 Wind 240 dag = No Ica	70.63	-82.83	47.36	6929.12	12001.87	-0.19
1.2 Dasd+1.5 Wind 270 dag - No les	94.18	-87.71	0.00	-12.59	13011.90	7.18
7.9 Dead+1,6 Wind 278 deg - No Ice	70.63	-87,70	00.6	-9.85	13066.27	7.07
i.2 Dead+1.6 Wind 300 deg - No Ica	94,18	-79.7 0	~16.02	-6799.65	11741.32	18.82
0.9 Dead+1.6 Wind 388 dog -	70.63	-79.70	-46.02	-6785.75	11726.23	10,77
1.2 Dead+1.6 Wind 338 deg - No fee	94.18	~43.85	-73.96	-11356.65	6535.28	12.47
0.9 Dead+1.6 Wind 338 dog ~	70.63	-43,85	-75.95	-11334.62	6528.39	12.43
.2 Dead+1.0 fee+1.8 Temp	28R.44	-D.RR	80.6	-28.25	-72.12	-0.DR
2 Dead+1.8 Wind 8 deg+1.0	288,44	-0.00	-10.41	-1597.30	-72.69	0.34
.2 Dead+1.8 Wind 30 deg+1.0	288,44	5.15	-E.92	-1374.10	-849,21	0.34
ce+1.8 Temp .2 Dead+1.8 Wind 60 deg+1.0	285,44	8.89	-5.13	-805.03	-141 6.58	0.23
ce+1.0 Temp .2 Dead+1.8 Wind 90 deg+1.0	288.44	10.31	8.00	-29.14	-1625.72	0.07
ca+1.0 Temp .2 Dead+1.8 Wind 120	288.44	9.02	5.21	754.94	-143 0,76	-0.10
eg+1.0 loe+1.0 Temp .2 Dead+1.0 Wind 150	288.44	5.15	8.92	1315.82	-849.20	-0.25

tnxTower	Job 227145	Page 49 of 59	
1345 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13	
Plymmuth, IN 46363 Phores: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1	

Load Combination	Vertical	Shear.	Shear.	Overturning Mament, M,	Overturning Moment, M.	Torque
	κ	κ	κ	kip-fl	kip-ft	kip-ft
deg+1.8 fee+t.0 Temp						
1.2 Dead+1.0 Wind 180	288.44	-8.00	10.27	1522.48	-72.69	-0.34
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 210	288.44	-5.15	8.92	1315.71	703.75	-0.34
deg+1.0 [ce+1.0 Temp						
1.2 Dead+1.0 Wind 240	288.44	-9.02	5.21	754.87	1285.26	-0.24
deg+1.0 Ice+1.8 Temp						
1.2 Dead+1.0 Wind 270	288.44	-10.30	8.88	-29.15	1480.21	-0.07
deg+1.0 [ce+1.0 Temp						
1.2 Dead+1.0 Wind 300	288.44	-8.89	-5.13	-804.95	1271.86	0.10
deg+1.8 Ice+1.0 Temp					10.11.0	0,10
1.2 Dead+1.0 Wind 330	288.44	-5.15	-8.92	-1374.10	703.83	0.25
deg+1.0 Ice+1.0 Temp						٠.ــ
Dead+Wind 0 deg - Service	78.48	-8.00	-26.31	-3864.93	-14.78	3,15
Dead+Wind 30 deg - Service	78,48	12.18	-21.10	-3157.25	-1832.63	t.96
Dead+Wind 60 deg - Service	78,48	22.14	-12.78	-1892.50	-3277.71	0.03
Dead+Wind 90 deg - Service	78.48	24.36	0.00	-8.65	-3650.47	-1.91
Dead+Wind 120 deg - Service	78.48	22,79	13.16	1919.50	-3354.42	-3.13
Dead+Wind 150 deg - Service	78.48	12.18	2t.10	3139.97	-1832.62	-3.51
Dead+Wind 180 deg - Service	78.48	-8.08	25.56	3759.07	-14.78	-3.01
Desd+Wind 210 deg - Service	78.48	-12.18	21.18	3139.97	1883,06	-1.96
Dead+Wind 240 deg - Service	78,48	-22.79	13.16	19t9.50	3324.87	-0.05
Dead+Wind 270 deg - Service	78.48	-24.36	0.00	-8.66	3628.92	1.91
Dead+Wind 380 deg - Service	78.48	-22.14	-12.78	-1892.51	3248.16	3,88
Dead+Wind 330 dea - Service	78.48	-12.18	-21 10	-3157.25	1203.08	3.55

			So	lution Su	ımmary		
	Si	on of Applied Farce	3		Sum of Reaction	# ·	
Load Comb	PX K	PY K	PZ K	P.Y K	PΥ K	PZ K	% Error
1	0.00	-78,48	0.00	0.00	78.48	+0.08	0.000%
2	0.00	-94.18	-94,72	0.80	94.18	94.72	0.003%
3	0.00	-70.63	-94,72	8,80	70,63	94.72	0.003%
4	43.85	-94.18	-75.96	-43.85	94.18	75.96	0.801%
5	43.85	-70.63	-75,96	-43.85	70.63	75.95	0.003%
6	79.70	-94,18	-45,02	-79.70	94.18	46.02	0.001%
7	79.78	-70.63	-46.02	-79,70	70.63	46.02	0.801%
	87.7t	-94.18	0.00	-87.71	94.18	-0.00	0.00194
9	87.71	-70.63	0.00	-87.70	78.63	-0.00	0.803%
10	82.03	-94.18	47.36	-82.03	94,18	-47.36	0.003%
11	82.03	-70.63	47.36	-82.83	70.63	-47.36	8.003%
12	43,85	-94.18	75.96	-43.85	94.18	-75.96	0.001%
13	43.85	-70.63	75,96	-43.85	70,63	-75.95	0.003%
14	0.00	-94.18	92.03	8.08	94.18	-92.83	0.001%
15	0.00	-70.63	92.03	8.88	70,63	-92.83	0.001%
16	-43.85	-94.18	75.96	43.85	94.18	-75.96	8,001%
17	-43.85	-70.63	75.96	43.85	70.63	-75.95	0.003%
18	-82.03	-94.18	47,36	82.03	94.18	-47.36	0.003%
19	-B2.03	-70.63	47.36	82.83	70.63	-47,36	0.003%
20	-87.71	-94,18	00.0	87.71	94,18	-0.88	0.001%
21	-87.71	-70.63	0.00	87,70	78.63	-0.08	0.003%
22	-79.70	-94.18	-46.82	79,70	94.18	46.02	0.00134
23	-79.70	-70.63	-46.02	79.70	70.63	46.82	0.001%
24	-43.85	-94.18	-75.96	43.85	94.18	75.96	0.001%
25	-43,85	-78.63	-75.96	43,85	70.63	75.95	0.003%
26	0.00	-288.44	0,00	0.08	288.44	-0.08	0.000%
27	0.00	-288,44	-10.41	0.00	288,44	18,4t	0.000%

tnxTower	Job	Page
that over	227145	51 of 59
	Project	Date
1545 Pideo Drive	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/1
Plymouth, IN 46563	Cilent	Designed by
Phone: (374) 936-4221 FAX: (374) 936-6458	American Tower Corp.	na1

Yes	13	0.00000001	0,0000\$763
Yes	13	0.0000000t	0.00005687
Yes	13	0.00000001	0.00005614
Yes	13	0.00000001	0.00005494
Yes	12	0.00000001	0.00014951
Yes	12	0.00000001	0.00814577
Yes	12	0.00000001	0.00014585
Yes	12	0.00000001	0.00014551
Yes	12	0.00000001	8.00014908
Yes	13	0.00000001	0.00005477
Yes	12	0.00000001	0.00014294
Yes	12	0.00000001	0.00014671
Yes	12	0.00000001	0.00014900
Yes	12	10000000.0	0.00014669
Yes	12	0.00000001	0.00014289
Yes	12	0.00000001	0.00014657
Yes	12	0.00000000	0.00014887
Yes	12	0.0000000t	0.00014658
Yes	12	0.00000000	0.00014283
Yes	12	0,00000001	0.00014662
Yes	12	0.00000001	0.00014893
Yes	12	0.00000001	0.00014664
	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes 13 Yes 13 Yes 13 Yes 12	Yes 13 0.00000001 Yes 13 0.00000001 Yes 13 0.00000001 Yes 12 0.00000001

		Maximum	Towerl	Deflection	s - Service V	/inc
Section No.	Elevation	Horz. Deflection	Gnv. Load	Tilt	Twist	
	ſŧ	in	Comb.	•		
TI	255 - 240	13.261	39	0,5345	0.0138	
T2	240 - 220	11.589	39	0,5262	0.0122	
13	220 - 200	9.3t4	39	0.4725	0.0091	
T4	200 - 180	7.318	39	0.3978	0.0065	
T5	180 - 160	5.753	39	0.3239	0.0052	
T6	160 - 140	4,323	39	0.2719	0.0041	
T7	140 - t20	3.179	39	0.2149	0.0032	
TS	120 - 100	2.241	39	0.1725	0.0024	
T9	100 - 80	1.507	39	0.1381	0.0018	
T10	80 - 60	0.937	39	0.1034	0.0012	
TH	60 - 40	0.521	39	0.0748	0.0009	
T12	40 - 20	0.238	39	0.0465	0.0006	
T13	20 - 0	0.060	39	0.0229	0.0003	

Critical Deflections and Radius of Curvature - Service Wind								
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of		
_		Load				Curvature		
ft		Comb.	in	•	•	A		
255.00	Beacon	39	13.261	0.5345	0,8138	83697		
250.00	ATC Loading	39	12,708	0.5337	0.0133	R3697		
240.00	ATC Leading	39	11.589	0.5262	0.0122	33732		
230.00	ATC Loading	39	10.442	0.5045	0.0107	61833		
220.00	ATC Loading	39	9.314	8.4725	0.0001	13406		

tnxTower	Job 227145	Page 50 of 59
1545 Pidzo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6438	Client American Tower Corp.	Designed by na1

	Su	m of Applied Force	1		Sum of Reaction	4	
Load	PX	PY	PZ	PX	PΥ	PZ	% Error
Conib.	. K	κ	ĸ	κ	κ	κ	
28	5.15	-288.44	-8.93	-5.15	288.44	8.92	8.000%
29	8.89	-288.44	-5.13	-8.89	288.44	5.13	0.000%
30	10.31	-288.44	0,00	-18.31	288.44	-0.00	0.000%
3t	9.82	-288.44	5.21	-9.02	288.44	-5.21	0.000%
32	5.15	-288,44	8.93	-5.15	288.44	-8.92	0.000%
33	0.00	-288.44	10.27	0.08	288.44	-10.27	0.000%
34	-5.15	-288.44	8.93	5.15	288.44	-8.92	0.000%
35	-9.02	-288.44	5.21	9.82	288.44	-5,21	0.000%
36	-10.31	-288.44	0.00	10.30	288.44	-0.00	0.000%
37	-8.89	-288.44	-5.13	8.89	288.44	5.13	0.000%
38	-5.15	-288.44	-8.93	5.15	288,44	8.92	0.000%
39	0.00	-78.48	-26.31	0.00	78.48	26.31	0.001%
40	12.18	-78.48	-21.10	-12.18	78.48	21.10	0.001%
41	22.14	-78.48	-12.78	-22.14	78,48	12.78	0.001%
42	24.36	-78.48	0.00	-24.36	78.48	-0.00	0.001%
43	22.79	-78,48	13.16	-22.79	78.48	-13,16	0.001%
44	12.18	-78.48	21.18	-12.18	78,48	-21.10	0.081%
45	+0.00	-78,48	25.56	0.00	78.48	-25.56	8,801%
46	-12.18	-78.48	21.18	12.18	78.48	-2t.10	0.801%
47	-22.79	-78.48	13.16	22.79	78.48	-13.16	0.881%
48	-24.36	-78.48	0.80	24,36	78.48	-0.80	0.001%
49	-22.14	-78.48	-12.78	22.14	78.48	12.78	0.001%
50	-12.18	-78.48	-21.10	12.18	78.48	21.10	0.001%

		INOII-E	near Conve	rgence Resul	Its
Load	Converged?	Number	Displacement	Force	
Cambination		of Cycles	Tolerance	Tolerwee	
1	Yce	7	10000000.0	0.00012222	
2	Yes	12	0.00005123	0.00014648	
3	Yes	12	8.00004614	0.00013282	
4	Yes	13	10080008.0	0.00005528	
5	Yes	12	0.00005094	0.00014516	
6	Yes	13	10000000.0	0.88005880	
7	Yes	13	10000000.0	0.88005344	
8	Yes	13	1 0000000.0	0.00005519	
9	Yes	12	0.00005094	0.00814516	
10	Yes	12	0.80005123	8.00014647	
tt	Yes	t2	0.88004614	0.00013281	
12	Yes	13	0.8000000 t	0.80005516	
13	Yes	12	0.00005092	0.88814510	
14	Yes	13	8.00008001	0.00005879	
15	Yes	13	0.00000001	8.00005343	
16	Yes	13	0.00000001	8.80003318	
17	Yes	12	0.00005093	0.80014514	
18	Yes	12	0.00005123	0.08814647	
19	Yes	12	8.00004614	0.00013281	
20	Yes	13	100800008	0.00003519	
21	Yes	12	0.00005094	0.88014515	
22	Yes	13	0.00000001	0.88003880	
23	Yes	13	100000000	0.88005344	
24	Yes	13	0.00000001	0.08003517	
25	Yes	12	8.00005092	0.00014512	
26	Yes	9	0.00008001	0.00011598	
26 27	Yes	13	100000000	8.00005601	
28	Yes	13	1,000,000,0	0.00003680	

tnxTower	Jeb 227145	Page 52 of 59
1545 Pidea Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymnuh, IN 46563 Phone: (374) 936-4221 FAX: (374) 936-6458	Client American Tower Corp.	Designed by na 1

		Maximum	Tower	Deflection	s - Design Wind
Section No.	Elevation	Horz. Deflection	Gnv. Lnod	Tili	Twist
	f	Ĺn .	Сонь.	•	0
TI	255 - 240	47.658	2	1.9189	0.0500
T2	240 - 220	41.653	2	1.8903	0.0441
T3	220 + 200	33.480	2	1.6983	0.0330
T4	200 - 180	26.308	2	t.4301	0.0236
T5	180 - 160	20.681	2	1.1643	0.0186
T6	t60 - 140	15,542	2	0.9772	0.0147
T7	140 - 120	11.430	2	0.7724	0.0113
TS	120 - 100	8.061	2	0.6202	0.0085
T9	100 - 80	5.421	2	0.4967	0.0063
TIO	80 - 60	3.369	2	0,3719	0.0043
TII	60 - 40	1.873	2	0.2691	0.0032
T12	40 - 20	0.856	2	0.1672	0.0021
T13	20 - 0	0.217	ž	0.0874	0.0010

Critical Deflections and Radius of Curvature - Design Wind								
Elevatio n	Approtenance	Gov. Lead	Deflection	Tili	Ywist	Rodius of Curvature		
ft		Camb.	in	•	•	A		
55.00	Beacon	2	47.658	1,9189	0.0500	23462		
250.00	ATC Loading	2	45.673	1.9163	0.0482	23462		
240.00	ATC Loading	2	4t.653	1.8903	0.0441	9466		
230.00	ATC Loading	2	37.534	1.8129	0.0388	17530		
220.00	ATC Loading	2	33.480	1.6983	0.0330	4300		

Bolt Design Data										
Section Na.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Boly K	Allowabis Load K	Ratio Laad Allowable	Allowable Ratia	Criteria
Ti	255	Leg	A325N	0.7500	4	2.41	29.82	0.081	1	Belt Tension
		Diogenal	A325N	0.7508	1	3.16	10.44	0.303		Member Bearing
		Top Girt	A325N	0.7500	1	0.47	10.77	0.043	1	Member Bearing
T2	240	Leg	A325N	0.7500	6	10.92	29.82	0.366 V	1	Bolt Tension
		Diagonal	A325N	0.7500	1	10.87	14.36	0.757	1	Gusset Bearing
13	220	Leg	A325N	0.7500	8	16.92	29.82	0.567	1	Boll Tension
		Diagonal	A325N	8.7580	1	8.79	15.66	0.561	, t	Member Bearing
T4	200	Leg	A325N	t.0000	6	31.83	53.81	0.600	t	Bolt Tension
		Disgonal	A325N	0.7500	t	9,07	15.66	0.579	, ,	Member Bearing
T5	180	Leg	A325N	1.0008	6	38.67	53.01	0.729	1	Boit Tension
		Diagonal	A325N '	1,0000	t	9.30	15.83	0.587	1	Member Bearing

tnxTower	Job 227145	Page 53 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46363 Phone: (574) 936-4221 EAY: (574) 936-A238	Client American Tower Corp.	Designed by na1

Section No.	Elevation	Component Type	Bolt Grade	Bolt Stra	Number Of	Maximum Load per	Altawable Load	Ratio Load	Allowable Ratio	Criteria
	,#			in	Bolts	Bolt K	ĸ	Allowable	•	
T6	160	Leg	A325N	1.0008	6	46.69	53.D1	0.811	1	Bolt Tention
		Diagonal	A321N	1.0000	1	10.18	15.83	0.643	1	Member Bearing
T7	140	Leg	A325N	1.0080	12	25.59	53.01	8.483 V	1	Bolt Tension
		Diagonal	A325N	0.8758	1	15.82	31.32	0.585	1	Member Bearing
TE	120	Leg	A325N	1.0000	12	29.63	53.01	0.559	1	Bolt Tension
		Diagond	A325N	0.8758	1	14.72	31.32	0.470	1	Member Bearing
T9	108	Leg	A325N	1.0008	12	32.65	53.01	0.616	1	Belt Tention
		Diagonal	A3 25N	0.8758	1	14.83	31.32	0.473	1	Member Bearing
TLO	88	Leg	A325N	1.0000	12	36.11	53.81	0.681	1	Bolt Tension
		Diagonal	A325N	0.2750	1	14.83	41.76	B.355 1	1	Member Bearing
Tt1	68	Leg	A325N	1.0000	12	39.03	53.81	0.736	1	Bols Tension
		Diagonal	A325N	0.8758	1	15.86	41.76	0.310	1	Member Bearing
T12	48	Leg	A325N	1.0000	12	42.33	53.81	8,798 V	1	Bolt Tention
		Diegonal	A325N	0.8758	1	16.17	41.76	0.387	1	Member Bearing
T13	20	Leg	F1554-18	1.0000	12	44.88	55.22	B.813 V	1	Bolt Tension
		Diagonal	A325N	0.8750	1	17.55	41.76	0.420	1	Member Bearing

Leg Design Data (Compression)										
Section No.	Eleration	Sta	L	L,	KVr	A	P.	♦ P .	Ratio P.	
	ß		ft.	ft		in ²	ĸ	ĸ	₽P.	
TI	255 - 248	P- 2.50" - 0.75° conn1.5' -C-(Pirod 226169)	15.00	4,16	61.6 K=1.00	1.7040	-11,95	58,12	8.206	
T7	248 - 220	P- 4.00"- 8,75" conn20' -C-Trans-6B-4B-(Pirod	20.00	5.67	53.8 K=1.88	3.1741	-71.69	116,32	0.616	
T3	228 - 200	2261#4) P- 5.00"- 0.75" connTrans-20" -C-{Pirod 226200)	20.03	6.68	42.7 K=1.00	4.2999	-145,88	169.37	0.861	
T4	200 - 168	P- 6.00"- 0.75" connHBD-Trans-28" -C-(Pirod 229377)	28.83	6.68	35.7 K=1.88	5.5813	~205.45	228,83	0,2921	
T5	180 - 168	#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	20.03	10.02	30,4 K=1,08	7,2158	-249.27	383.46	0.821 1	
T6	160 - 148	#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	20,83	18,02	38.4 K=1.00	7.2158	-302.71	383.46	0.9981	
17	140-128	#12ZG -2.00" - 8.875"	28.03	20.03	48.8 V = 1.00	9.4248	-330.86	356,29	0.929	

Compression Checks

tnxTower	Job . 227145	Page 55 of 59
1545 Pidea Driva	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Section No.	Elevation	Sice	L	4	KVr	1	P.	↓P.	Ratio P.
	ft		£	ft		in³	κ	ĸ	₽P.
					K=1.84				J
T3	228 - 200	1.2x2x3/16	8.tt	4,87	123.9 K≈1.88	0.7158	-8.43	10,32	0.816 3
T4	200 - 180	1.2 1/2x2 1/2x3/16	9,60	4.88	tt7.2 K=1.8t	0,9020	-9.07	14.17	8.648 ¹
T5	188 - 160	L3x3x3/16	12.65	6.43	129.5 K≈1.00	1,0900	-10.37	14.54	8.7131
T6	t60 - 148	L3x3x3/16	14.18	7.14	143.8 K=1.08	1,0908	-10.24	11.92	0.859
17	148 - 128	2L3x3x3/16	22.66	11.95	(52.8 K=1.08	2.1880	-17.76	21.10	8.842
TB	128 - 188	2L3x3x3/16	23.79	12.45	159.1 K=1.80	21800	-15.66	19.45	0.805
T9	LOB - 88	2L3x3x3/16	25.83	13.02	166.4 K=1.00	21808	-16.54	17.79	0.938 1
TIB	88 - 68	2L3 1/2x3 1/2x1/4	25.36	t3,65	150,t K=1.08	3,3758	-16.17	33.85	0.478
T11	60 - 48	2L3 1/2x3 1/2x1/4	27.77	14.33	157.5 K=1.00	3,3750	-17,53	30.72	8.571 1
T12	48 - 20	2L3 1/2x3 (/2x1/4	29,25	15.04	165,4 K=1.08	3,3750	-16.30	27,86	8.383 1
T13	20 - 0	2L3 1/2x3 1/2x1/4	30.78	15,80	173,7 K=t.00	3,3750	-19.64	25.27	0.777

¹ P. / 4P. controls

	Top Girt Design Data (Compression)											
Section No.	Elevation	Size	L	L.	KVr	A	P.,	♦ P •	Ratio			
	л		Л	ft		in ³	ĸ	ĸ	å₽.			
Tt	255 - 248	L2x2x3/16	5.00	4.47	136.1 K=1.08	0.7150	-0.57	8.72	0.065			

 $^{1}P_{*}$ / $_{\bullet}P_{*}$ controls

Tension Checks										
		Le	g De	sign [ata (Tensio	n)			
Section No.	Elevation	Size	L	L.	ΚVr	A	P.	♦ P.	Ratio	
	ft		ft	ft		iet2	ĸ	ĸ	₽P.	
TI	255 - 248	P- 2.58" - 0.75" conn15" -C-(Firod 226169)	15,00	4.86	61.6	1.70-10	9.63	76.68	8.126	

tnxTower	Job	227145	Page 54 of 59
1545 Pideo Drive	Praject	V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client	American Tower Corp.	Designed by na1

Section No.	Elevation	Site	L	L,	KVr	Λ	P.	♦ ₽.	Ratio P.
	ft		ft	ft.		in	K	κ	é₽.
TB	128 - 188	208332) #12ZG -2.25" - 0.875" conn. (Pirod 208334)	28.03	20.03	48.8 K=1.00	11.9282	-385.93	451.15	0.155
19	108 - 80	#12ZG -2.25" - 0.275" cons. (Pirod 202334)	20.83	20,83	48.8 K=1.00	11.9282	-427.71	451.15	0.948
TIB	80 - 60	#12ZG - 2.50* - 0.875* conn. (Pirod 288335)	20.83	20.03	48.7 K≃1.00	14.7262	-476.12	557.27	0,854
T11	60 - 4B	#12ZG - 2.58" - 8.875" conn. (Pirod 208335)	20.03	20.03	48.7 K=1.00	14.7262	-517,78	557.27	a.929
T12	40 - 20	#12ZG - 2.75" - 8.875" conn. (Pirod 208337)	28.83	20.03	48.6 K=1.08	17.2127	-565.30	674.68	0.838
T13	20 - 0	#1 2ZG - 2.75" - 8.875" conn. (Pirod 208337)	28.03	20.03	48.6 K=1.08	17.8187	-602.63	674.68	0.893

¹ P. / P. controls

			Truss-	Leg C	iagon	al Data	3	977	1997,00
Section No.	Elevation ft	Diagonal Size	L _i	KVr	P.	A tr'	ν <u>.</u>	ψ. Ε	Stress Ratio
T5	188 - 168	0.5	1.40	94.1	324.71	0.1963	2.63	4.63	0.567
Т6	168 - 148	0.5	1.40	94,1	324.71	0.1963	1.61	4.63	0.347
T7	148 - 128	8.5	1.39	93.2	424.12	8.1963	1.53	4.67	1.327
TB	120 - 188	0.5	1.38	924	536,77	0.1963	1.68	4.71	0.357
T9	100 - 20	0.5	1.38	92.4	536.77	8.1963	1.30	4.71	8.276
T18	88 - 60	B.5	1.36	91.6	662.68	0.1963	1.24	4.75	0.261
T11	60 - 48	B.5	1.36	91.6	662.68	0.1963	1.27	4.75	0.267
Tt 2	48 - 20	0.625	1.35	72,6	801.84	0.3868	1.19	8.74	0.149
TI3	20 - B	B.625	1,35	72.6	881.84	0.3068	8.72	£.74	0.095

Diagonal Design Data (Compression)									
Section No.	Elevation	Stra	L	L,	KVr	А	P.	₽.	Ratio
	j†		ft	ft.		int	K	E	ip.
Ti	255 - 248	1.2x2x1/8	5,80	2.71	91.4 K=1.12	0.4844	-219	9.92	0.291
T2	240 - 220	T 2+2+3/16	7.17	7 An	1076	D 77 50	-11.47	12 50	0.0071

tnxTower	doL	227145	Page 56 of 59
1545 Pidea Drive	Project	V-27 x 255' - #281331 McHenry, KY	Date 10:25:19 10/29/13
Plymouth, IN 46363 Plume: (574) 936-4221 EAY: (574) 936-4221	Client	American Tower Corp.	Designed by na1

Section No.	Elevation	Size	L	L,	KVr	A	Р.	♦₽•	Ratio P
	A		ft	ft.		int	K	ĸ	é₽.
T2	240 - 220	P. 4.00"- 0.75" conn20" -C-Trans-6B-4B-(Pirod 226184)	28.00	6.67	53.8	3.1741	65.54	142.83	0.459
T3	228 - 208	P- 5.00"- 0.75" connTrans-20" -C-(Pirod 225200)	20.03	6.68	42.7	4.2999	135.33	193.49	0.699
T4	200 - 188	P- 6.00"- 0.75" consHBD-Trans-20' -C-(Pirod 229377)	20.03	6.68	35.7	5,5113	190.99	251.16	8.768
T5	188 - 160	#12ZG -t.75* - 1.00* connHBD-Trans (Pirod 229588)	20.03	18.02	30.4	7.2158	23203	324.71	0.715
T6	168 - (40	#1 2ZG -t.75" - t.00" connHBD-Trans (Pirod 229588)	20.83	10,82	30.4	7.2158	280.13	324.71	8.863
77	148 - 120	#12ZG -2.00" - 8.875" connHBD-Truns (Pirod 201332)	20.83	20.83	41,2	9.4248	307.05	424.12	8,724
T8	120 - 188	#12ZG -2.25" - 8,875" conn. (Pirod 208334)	20.83	20.03	48.8	11.9282	355.51	536.77	0.662
T9	100 - 80	#122G -2.25" - 8.875" conn. (Pirod 208334)	28.03	20.83	48.8	11.9282	391,78	536.77	0.738
T18	8D - 6D	#12ZG - 2.50" - 8.875" conn. (Pirod 208335)	20.03	20,03	48.7	14.7262	433.34	662.68	8,654
TIL	68 - 40	#12ZG + 2.58* - 8.875* cons. (Pirod 208335)	20,03	20.03	48.7	14.7262	468.32	662.68	0.707 1
TI2	40 - 20	#12ZG - 2.75" - 8.875" conn. (Pirod 208337)	20,03	20.03	48,6	17.8187	507.91	801.84	0.633 '
TIJ	20 - 8	#12ZG - 2.75" - 8.875" conn. (Pirod 208337)	20.03	20.03	48.6	17.8187	538.52	801.84	0,672 1

¹ P. / P. controls

	Truss-Leg Diagonal Data											
Section No.	Elnvatinn ft	Diagonal Size	L _i	ΚVr	∳₽. K	A In ²	ν. κ	♦V.	Stress			
T5	168 - 168	D.5	1.40	94.1	324.71	0.1963	2.63	4.83	0.567			
T6	168 - 148	0.5	t.40	94.1	324.71	0,1963	1.51	4.63	0347			
77	140 - 128	8.5	1.39	93.2	424.12	8.1963	1.53	4.67	8.327			
TS	128 - 108	8.5	1.38	92.4	536,77	8.1963	1.52	4.71	8.357			
19	158 - 68	0.5	1.38	92.4	536.77	B.1963	1.38	4.7t	8.276			
Tio	88 - 68	8.5	t.36	91.6	662.68	0.1963	1.24	4.75	0.26t			
Tii	60 - 48	0.5	1.36	91.6	662.68	8.1963	1.27	4.75	8.267			
T12	40 - 28	0.625	1.35	72.6	881.84	8,3068	1.19	E.74	8.149			

tnxTower	Job 227145	Page 57 of 59
1545 Pideo Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (574) 936-6458	Client American Tower Corp.	Designed by na1

Section Na.	Elevation ft	Diagonal Size	L ₄ fi	ΚVτ	фР. К	A in²	v. K	ψ. K	Strezs Ratio
T13	20 - 0	0.625	t.35	72.6	801.84	0.3868	0.72	8.74	8.095

ection	Elevation	Size	L	L,	KL/r		P.	¢₽.	Ratio
Na.									P.
	Я		ft	A		int	ĸ	K	ф₽.
TI	255 - 240	L2x2x1/8	5.80	2.71	55.5	0.2813	3.16	12.23	0.258
T2	240 - 228	L2x2x3/16	7.17	3.40	69.7	0.4132	10.87	17,97	0.685 2
									~
T3	228 - 200	L2x2x3/16	7,66	3.85	78.6	0.4132	8.38	17.97	0.466
T4	200 - 180	L2 1/2x2 1/2x3/16	9.60	4.88	76.9	0.5535	8.98	24.08	0.373 1
	200-140	E2 1/2X2 1/2X3/16	2.00	4.44	10.9	0.3333	5.95	24.08	0.373
T5	180 - 160	1.3x3x3/16	12.65	6.43	84.7	0.6593	9.30	28.68	0.3241
									V
T6	160 - 140	L3x3x3/16	14.10	7.14	93.7	8.6593	10.18	28.68	0.355 1
17	140 - 120	21.3x3x3/16	22.66	11.95	155.2	1.3537	15.82	58.89	0.269 2
.,	140-120	22222010	22.00	14.55	1,5.2	1.3337	13.02	30.05	V.209
T8	128 - 100	2L3x3x3/16	23.79	12.45	161,5	1.3537	14.72	58.89	0.250
									V
T9	180 - 80	21.3 x3x3/16	25.83	13.82	168.8	1.3537	14.83	58.89	0.2521
TIO	88 + 60	2L3 1/2x3 1/2x1/4	26.36	13.65	152.1	2.1563	14.83	93.80	0.1581
*14	20 - 00	21.3 1/233 1/231/4	20.30	13.03	1321	7.1303	14.83	93.80	V.13
T11	60 - 48	2L3 1/2x3 1/2x1/4	27.77	14.33	159.6	2.1563	15.86	93.88	8,169
									~
T12	40 - 20	2L3 1/2x3 1/2x1/4	29.25	15.84	167.5	2,1563	16.17	93.80	0.172
T13	20 - 0	2L3 1/2x3 1/2x1/4	38.78	15,80	175.8	2.1563	17.00	07.80	0.1071
113	20-0	21.3 1/2XI/4	Jd. /8	12.40	173.8	4,1303	17.55	93.80	0.187

P. / P. controls

Top Girt Design Data (Tension)									
etion Na	Elevation	Size	L	L.	ΚVr	A	P,	ķ₽,	Ratia
u	ft		ft	_{ft} .		in ²	κ	ĸ	6P.
n	255 - 240	1.2x2x3/16	5.00	4.47	92.6	0.4132	0.47	17.97	0.026

tnxTower	Job 227145	Page 59 of 59	
1545 Pidza Drive	Project V-27 x 255' - #281331 McHenry, KY	Date 10:26:19 10/29/13	
Plymouth, IN 46563 Phone: (574) 936-4221 FAX: (374) 936-6458	Clieni American Tower Corp.	Designed by na1	

Program Version 6.9.0.8 - 9/7/2011 File://plysurfile01/fileroom/Documents/22/7/25/145 ATC #281331 MeHenry, KY V-27x255* (50 percent full radius 02)/02 Towar Cales/22/745.eri

days. Tarry and	Job	Page
tnxTower	227145	58 of 59
	Project	Date
1545 Pideo Drive	V-27 x 255' - #281331 McHenry, KY	10:26:19 10/29/13
Plymouth, IN 46563	Client	Designed by
Phone: (374) 936-4221 FAX: (374) 936-6458	American Tower Corp.	na1

1 P. / &P. controls

			Section Capa	city 1	able			-
ection Na	Elevation ft	Component Type	Ste	Critical Element	P K	øP±io∙ K	% Capacity	Pass Fail
TI	255 - 240	Leg	P- 2.50* - 0.75* conn15' -C-(Pirod 226169)	3	-11.95	58.12	20.6	Past
T2	240 - 220	Leg	P- 4.88"- 0.75" conn20" -C-Trans-6B-IB-(Pirod 226184)	27	-71.69	t16.32	61.6	Pass
T3	228 - 280	Leg	P- 5.80"- 0.75" connTrans-20" -C-(Pirod 226208)	48	-145.88	169.37	86.1	Pass
T4	200 - 180	Leg	P- 6.00"- 8,73" connHBD-Trans-20'-C-(Pired 229377)	69	-205.45	228.83	89.8	Pass
T5	180 - 160	Leg	#12ZG -1.75" - 1.80" sonnHBD-Trans (Pirod 229588)	90	-249.27	383.46	82.1	Pass
T6	168 - 140	Leg	#12ZG -1.75" - 1.80" coanHBD-Trans (Fired 229588)	185	-302.71	303.46	99.8	Рязя
17	148 - 120	Leg	#122G -2.00"- 8.875" connHBD-Trans (Pirod 208332)	120	-330.86	356.29	92.9	Pass
T8	120 - 180	Leg	#12ZG -2.25" - 8.875" conn. (Pirod 20833.4)	129	-385.93	451.15	85.5	Pass
T9	188 - 80	Leg	#12ZG -2.25" - 8.875" conn. (Pirod 208334)	138	-427.71	451.15	94.8	Pass
T10	80 - 60	Leg	#12ZG - 2.50* - 0.875*conn. (Pirod 20833.5)	147	-476.12	557.27	85.4	Pass
T11	68 - 40	Leg	#12ZG - 2.58* - 0.875* conn. (Pirod 28833.5)	156	-517,78	557.27	92.9	Pass
112	40 - 28	Leg	#12ZG - 2.75" - 8.875" conn. (Pirod 208337)	165	-565.30	674.68	83.8	Pass
113	20 + 0	Leg	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)	174	-602.63	674.68	89.3	Pass
Tį	255 - 248	Diagonal	L2x2x1/8	9	-2.89	9.92	29.1 30.3 (b)	Pass
T2	248 - 220	Diagonal	L2x2x3/16	31	-11.42	12.59	90.7	Pass
T3	220 - 280	Diagonal	1.2x2x3/16	51	-8.43	to.32	81.6	Pass
T4	200 - 180	Diagonal	L2 1/2x2 1/2x3/16	72	-9.07	14.17	64.0	Pass
T5	180 - 160	Disgonal	L3x3x3/16	93	-10.37	14.54	71.3	Pass
T6	160 - 140	Diagonal	L3x3x3/16	109	-10.24	11.92	85.9	Pass
17	140 - 120	Dingonal	2L3 x3x3/16	123	-17.76	21.10	84.2	1'011
T8	120 - 100	Diagonal	2L3x3x3/16	132	-15.66	19.45	80.5	Pass
19	100 - 80	Diagonal	2L3x3x3/16	141	-16.54	17.79	93.0	Pass
10	80 - 60	Diagonal	2L3 1/2x3 1/2x1/4	150	-16.17	33.85	47.8	Pass
11	60 - 40	Diagonal	2L3 1/2x3 1/2x1/4	159	-17.53	30.72	57.1	Pass
12	40 - 20	Diagonal	2L3 1/2x3 1/2x1/4	168	-16.30	27.86	58.5	Pass
13	20 - 0	Diagonal	2L3 1/2x3 1/2x1/4	178	-19.64	25.27	77.7	Pass
Ti	255 - 240	Top Girt	L2x2x3/16	4	-0.57	8.72	6.5 Summary	Pass
						Leg (T6)	99.8	Pass
						Diagonal (T9)	93.0	Pass
						Top Girt	6.5	Pass

Structural Analysis Report

Structure

: 255 ft Self Supported Tower

ATC Site Name

: McHenry KY, KY

ATC Site Number

: 281331

Engineering Number

: 541913E2

Proposed Carrier

: Operations Structural

Carrier Site Name

: N/A

Carrier Site Number

: N/A

Site Location

: TBD

MC Henry, KY 42354-9739

37.382419,-86.922281

County

: Ohio

Date

: August 23, 2013

Max Usage

: 103%

Result

: Pass

Christopher Jolly Project Engineer

Table of Contents

Introduction	1
Supporting Documents	. 1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	3
Standard Conditions	. 4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 255 ft self supported tower to reflect the current state of loading.

Supporting Documents

Transcription of the second	1 Value and Dura 1 on # 2404722 alor 11 1 24 2042
Tower Drawings	Valmont Drawing # 249472, dated July 31, 2013
10ttci Diattiigs	Valinont Diawing is 24547 2, dated Jaly 51, 2015

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 mph (3-Second Gust)				
Basic Wind Speed w/ Ice:	30 mph (3-Second Gust) w/ 3/4" radial ice concurrent				
Code:	ANSI/TIA-222-G / 2006 IBC / 2007 Kentucky Building Code				
Structure Class:					
Exposure Category:	С				
Topographic Category:	1				

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact me via email at christopher.jolly@americantower.com or call 919-466-5007.

Existing and Reserved Equipment

	Mount Elev.1 (ft)	Qty.	Antenna	Mount Type	Coax (in)	Carrier		
ĺ	No Existing Equipment Were Used In This Analysis							

Proposed Equipment

Elevati	Elevation¹(ft) Qty. Antenna		Antenna/Mount Type	Coax (in)	Carrier
Mount	RAD	Qiy.	Antenna/Mount Type	COax (III)	Carrier
250.0	250.0	1	115 sq. ft. w/o ice & 10% increase per ¼" ice for icing condition	(18) 1 5/8	
240.0	240.0	1	115 sq. ft. w/o ice & 10% increase per ¼" ice for icing condition	(18) 1 5/8	Future Carriers
230.0	230.0	1	115 sq. ft. w/o ice & 10% increase per ¼" ice for icing condition	(18) 1 5/8	ruture Carriers
220.0	220.0	1	115 sq. ft. w/o ice & 10% increase per ¼" ice for icing condition	(18) 1 5/8	

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

The analysis is based upon the following coax distribution:

Face A: (18) 15/8" coax to the 240' elevation with a total of (18) coax lines exposed to the wind.

Face B: (18) 1 5/8" coax to the 250' elevation & (18) 1 5/8" coax to the 220' elevation stack 18-

on-18 with a total of (18) coax lines exposed to the wind.

Face C: (18) 15/8" coax to the 230' elevation with a total of (18) coax lines exposed to the wind.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	99%	Pass
Diagonals	103%	Pass
Horizontals	9%	Pass
Anchor Bolts	63%	Pass
Leg Bolts	87%	Pass

Foundations

Reaction Component	Analysis Reactions
Uplift (Kips)	543.3
Axial (Kips)	611.4
Shear (Kips)	57.8

New foundations will be designed to support the proposed structure based on the site specific soil report.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Deflection (ft)	Twist (°)	Sway (Rotation) (°)
250.0	1.038	0.022	0.566

^{*}Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:

- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
- Information from drawings in the possession of American Tower Corporation, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to ATC Tower Services, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and American Tower Corporation, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. ATC Tower Services, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

255.00 Sect 13 240.00 Sect 12 220.00 Sect 11 200.00 Sect 10 180.00 Sept 9 160.00 Sect 8 140.00 Sept 7 120.00 Sept 6 100,00 Sept 5 80.00 Sept 4 60.00 Sect 3 40.00 Sect 2 20.00 Sect 1

> Uplift 543,33 k Moment 13,606.90 ft-k Vert 611.39 k Total Down 88.40 k Horiz 57.84 k Total Shear 88.32 k

© 2007 - 2013 by ATC IP LLC. All rights reserved.

Loads: 90 mph no ice 30 mph w / 3/4" radial ice 60 mph Serviceability

Job Information

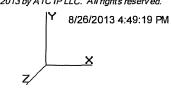
Tower: 281331 Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G Shape: Triangle

Client: Operations Structural

Base Width: 27.00 ft Top Width: 5.00 ft

		Se	ections Properties	
Section	Leg Mem	bers	Diagonal Members	Horizontal Members
1 - 2	12B 50 ksl	12" BD 2.75"	DAE 36 ksi 3.5X3.5X0.25	
3	12B 50 ksi	12" BD 2.5"	DAE 36 ksi 3.5X3.5X0.25	
4	12B 50 ksi	12" BD 2.5"	DAE 36 ksi 3X3X0.1875	
5 - 6	12B 50 ksi	12"BD 2.25"	DAE 36 ksi 3X3X0.1875	
7	12B 50 ksi	12"BD 2"	DAE 36 ksi 3X3X0.1875	
8 - 9	12B 50 ksi	12"BD 1.75"	SAE 36 ksi 3X3X0.1875	
10	PST 50 ksi	6" DIA PIPE	SAE 36 ksi 2.5X2.5X0.1875	
11	PST 50 ksi	5" DIA PIPE	SAE 36 ksi 2X2X0.1875	
12	PST 50 ksi	4" DIA PIPE	SAE 36 ksi 2X2X0.1875	
13	PST 50 ksi	2-1/2" DIA PIPE	SAE 36 ksi 2X2X0.125	SAE 36 ksi 2X2X0.1875


			Discrete Appurtenance										
曰ev (ft)	Type		Qty Description										
250.00 Other 1 115 Sq. Ft. and 135 Sq. Ft 240.00 Other 1 115 Sq. Ft. and 135 Sq. Ft 230.00 Other 1 115 Sq. Ft. and 135 Sq. Ft 220.00 Other 1 115 Sq. Ft. and 135 Sq. Ft 220.00 Other 1 115 Sq. Ft. and 135 Sq. Ft													
Linear Appurtenance													
曰e\ From	(ft) To	Qty	Description										
220.000 5.000 5.000 5.000 5.000 5.000 5.000	250.00 250.00 240.00 240.00 230.00 230.00 220.00	18 1 1 18 1 18 36	1 5/8" Coax Waveguide Waveguide 1 5/8" Coax Waveguide 1 5/8" Coax 1 5/8" Coax										

Site Number: 281331

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Section Forces

LoadCase 1.2D + 1.6W Normal

90.00 mph Normal to Face with No Ice

Gust Response Factor: 0.85 Dead Load Factor: 1.20

Wind Importance Factor: 1.00

Wind Load Factor: 1.60

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Area	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (s qft)	Linear Area (sqft)	lce Linear Area (sqft)		Weight Ice (lb)		Linear Force (lb)	Total Force (lb)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	1.00	1.00	0.00	11.72	31.37	0.00	857.7	0.0	1,133.98	858.54	1,992.53
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	1.00	1.00	0.00	14.75	113.76	0.00	2,461.7	0.0	1,360.44	3,105.7	4,466.16
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	1.00	1.00	0.00	16.88	159.10	0.00	3,376.7	0.0	1,535.73	4,793.1	6,328.85
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	1.00	1.00	0.00	22.23	159.10	0.00	3,908.1	0.0	2,000.40	4,693.1	6,693.59
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	1.00	1.00	0.00	21.61	159.10	0.00	5,150.7	0.0	2,017.96	4,584.5	6,602.52
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	1.00	1.00	0.00	22.89	159.10	0.00	5,229.6	0.0	2,135.04	4,465.3	6,600.38
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	1.00	1.00	0.00	20.79	159.10	0.00	6,471.1	0.0	1,931.93	4,332.8	6,264.75
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	1.00	1.00	0.00	21.95	159.10	0.00	7,184.2	0.0	1,989.13	4,183.0	6,172.21
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	1.00	1.00	0.00	22.48	159.10	0.00	7,253.4	0.0	1,979.66	4,010.0	5,989.71
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	1.00	1.00	0.00	23.85	159.10	0.00	8,120.2	0.0	2,002.34	3,803.4	5,805.74
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	1.00	1.00	0.00	26.97	159.10	0.00	9,092.6	0.0	2,113.79	3,543.3	5,657.09
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	1.00	1.00	0.00	28.43	159.10	0.00	10,011.9	0.0	2,008.52	3,182.0	5,190.54
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	1.00	1.00	0.00	29.28	119.33	0.00	9,680.0	0.0	1,802.74	2,065.1	3,867.93
														78,798.0	0.0		7	1,631.98

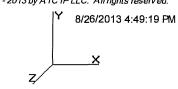
<u>LoadCase</u> 1.2D + 1.6W 60 deg

90.00 mph 60 deg with No ice

Gust Response Factor: 0.85

Wind Importance Factor: 1.00

Dead Load Factor: 1.20 Wind Load Factor: 1.60


Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	lce Linear Area (sqft)		Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	0.80	1.00	0.00	10.20	31.37	0.00	857.7	0.0	986.83	858.54	1,845.38
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	0.80	1.00	0.00	13.16	113.76	0.00	2,461.7	0.0	1,213.87	3,105.7	4,319.59
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	0.80	1.00	0.00	15.18	159.10	0.00	3,376.7	0.0	1,381.06	4,793.1	6,174.18
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	0.80	1.00	0.00	19.76	159.10	0.00	3,908.1	0.0	1,778.11	4,693.1	6,471.29
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	0.80	1.00	0.00	18.88	159.10	0.00	5,150.7	0.0	1,762.52	4,584.5	6,347.08
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	0.80	1.00	0.00	19.86	159.10	0.00	5,229.6	0.0	1,852.67	4,465.3	6,318.01
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	0.80	1.00	0.00	18.41	159.10	0.00	6,471.1	0.0	1,710.35	4,332.8	6,043.17
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	0.80	1.00	0.00	19.44	159.10	0.00	7,184.2	0.0	1,762.27	4,183.0	5,945.36
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	0.80	1.00	0.00	19.85	159.10	0.00	7,253.4	0.0	1,748.02	4,010.0	5,758.07
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	0.80	1.00	0.00	21.09	159.10	0.00	8,120.2	0.0	1,770.19	3,803.4	5,573.59
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	0.80	1.00	0.00	23.58	159.10	0.00	9,092.6	0.0	1,847.90	3,543.3	5,391.20
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	0.80	1.00	0.00	24.87	159.10	0.00	10,011.9	0.0	1,756.57	3,182.0	4,938.59
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	0.80	1.00	0.00	25.54	119.33	0.00	9,680.0	0.0	1,571.98	2,065.1	3,637.17
														78,798.0	0.0		6	8,762.67

Site Number: 281331

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Section Forces

<u>LoadCase</u> 1.2D + 1.6W 90 deg

90.00 mph 90 deg with No Ice

Gust Response Factor: 0.85 Dead Load Factor: 1.20

Wind Importance Factor : 1.00

Wind Load Factor: 1.60

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Area	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (s qft)	Linear Area (sqft)	Ice Linear Area (sqft)		Weight ice (lb)	Force	Linear Force (lb)	Total Force (Ib)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	0.85	1.00	0.00	10.58	31.37	0.00	857.7	0.0	1,023.62	858.54	1,882.16
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	0.85	1.00	0.00	13.56	113.76	0.00	2,461.7	0.0	1,250.51	3,105.7	4,356.24
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	0.85	1.00	0.00	15.61	159.10	0.00	3,376.7	0.0	1,419.73	4,793.1	6,212.84
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	0.85	1.00	0.00	20.38	159.10	0.00	3,908.1	0.0	1,833.68	4,693.1	6,526.86
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	0.85	1.00	0.00	19.56	159.10	0.00	5,150.7	0.0	1,826.38	4,584.5	6,410.94
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	0.85	1.00	0.00	20.62	159.10	0.00	5,229.6	0.0	1,923.26	4,465.3	6,388.60
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	0.85	1.00	0.00	19.01	159.10	0.00	6,471.1	0.0	1,765.74	4,332.8	6,098.56
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	0.85	1.00	0.00	20.07	159.10	0.00	7,184.2	0.0	1,818.99	4,183.0	6,002.07
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	0.85	1.00	0.00	20.50	159.10	0.00	7,253.4	0.0	1,805.93	4,010.0	5,815.98
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	0.85	1.00	0.00	21.78	159.10	0.00	8,120.2	0.0	1,828.23	3,803.4	5,631.63
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	0.85	1.00	0.00	24.43	159.10	0.00	9,092.6	0.0	1,914.37	3,543.3	5,457.67
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	0.85	1.00	0.00	25.76	159.10	0.00	10,011.9	0.0	1,819.56	3,182.0	5,001.57
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	0.85	1.00	0.00	26.47	119.33	0.00	9,680.0	0.0	1,629.67	2,065.1	3,694.86
													•	78,798.0	0.0		6	9,480.00

LoadCase 0.9D + 1.6W Normal

90.00 mph Normal to Face with No Ice (Reduced DL)

Gust Response Factor: 0.85

Dead Load Factor: 0.90 Wind Importance Factor: 1.00

Wind Load Factor: 1.60

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Force	Linear Force (Ib)	Total Force (lb)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	1.00	1.00	0.00	11.72	31.37	0.00	643.3	0.0	1,133.98	858.54	1,992.53
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	1.00	1.00	0.00	14.75	113.76	0.00	1,846.3	0.0	1,360.44	3,105.7	4,466.16
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	1.00	1.00	0.00	16.88	159.10	0.00	2,532.5	0.0	1,535.73	4,793.1	6,328.85
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	1.00	1.00	0.00	22.23	159.10	0.00	2,931.1	0.0	2,000.40	4,693.1	6,693.59
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	1.00	1.00	0.00	21.61	159.10	0.00	3,863.0	0.0	2,017.96	4,584.5	6,602.52
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	1.00	1.00	0.00	22.89	159.10	0.00	3,922.2	0.0	2,135.04	4,465.3	6,600.38
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	1.00	1.00	0.00	20.79	159.10	0.00	4,853.3	0.0	1,931.93	4,332.8	6,264.75
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	1.00	1.00	0.00	21.95	159.10	0.00	5,388.2	0.0	1,989.13	4,183.0	6,172.21
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	1.00	1.00	0.00	22.48	159.10	0.00	5,440.0	0.0	1,979.66	4,010.0	5,989.71
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	1.00	1.00	0.00	23.85	159.10	0.00	6,090.2	0.0	2,002.34	3,803.4	5,805.74
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	1.00	1.00	0.00	26.97	159.10	0.00	6,819.4	0.0	2,113.79	3,543.3	5,657.09
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	1.00	1.00	0.00	28.43	159.10	0.00	7,508.9	0.0	2,008.52	3,182.0	5,190.54
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	1.00	1.00	0.00	29.28	119.33	0.00	7,260.0	0.0	1,802.74	2,065.1	3,867.93
														59,098.5	0.0		7	1,631.98

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II Exposure: C Topo: 1

Y 8/26/2013 4:49:19 PM

© 2007 - 2013 by ATC IP LLC. All rights reserved.

Section Forces

<u>LoadCase</u> 0.9D + 1.6W 60 deg

90.00 mph 60 deg with No ice (Reduced DL)

Gust Response Factor: 0.85 Dead Load Factor: 0.90

Wind Importance Factor: 1.00

Wind Load Factor: 1.60

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)		Weight Ice (lb)		Linear Force (lb)	Total Force (lb)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	0.80	1.00	0.00	10.20	31.37	0.00	643.3	0.0	986.83	858.54	1,845.38
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	0.80	1.00	0.00	13.16	113.76	0.00	1,846.3	0.0	1,213.87	3,105.7	4,319.59
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	0.80	1.00	0.00	15.18	159.10	0.00	2,532.5	0.0	1,381.06	4,793.1	6,174.18
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	0.80	1.00	0.00	19.76	159.10	0.00	2,931.1	0.0	1,778.11	4,693.1	6,471.29
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	0.80	1.00	0.00	18.88	159.10	0.00	3,863.0	0.0	1,762.52	4,584.5	6,347.08
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	0.80	1.00	0.00	19.86	159.10	0.00	3,922.2	0.0	1,852.67	4,465.3	6,318.01
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	0.80	1.00	0.00	18.41	159.10	0.00	4,853.3	0.0	1,710.35	4,332.8	6,043.17
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	0.80	1.00	0.00	19.44	159.10	0.00	5,388.2	0.0	1,762.27	4,183.0	5,945.36
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	0.80	1.00	0.00	19.85	159.10	0.00	5,440.0	0.0	1,748.02	4,010.0	5,758.07
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	0.80	1.00	0.00	21.09	159.10	0.00	6,090.2	0.0	1,770.19	3,803.4	5,573.59
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	08.0	1.00	0.00	23.58	159.10	0.00	6,819.4	0.0	1,847.90	3,543.3	5,391.20
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	0.80	1.00	0.00	24.87	159.10	0.00	7,508.9	0.0	1,756.57	3,182.0	4,938.59
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	0.80	1.00	0.00	25.54	119.33	0.00	7,260.0	0.0	1,571.98	2,065.1	3,637.17
														59,098.5	0.0		€	8,762.67

<u>LoadCase</u> 0.9D + 1.6W 90 deg

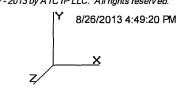
90.00 mph 90 deg with No Ice (Reduced DL)

Gust Response Factor: 0.85

Dead Load Factor: 0.90

Wind Importance Factor: 1.00

Wind Load Factor: 1.60


			Total	Total	ice							<i>y</i>	Ice					
	Wind		Flat	Round	Round					ice	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect	Height	qz	Area	Area	Area	Sol				Thick	Area	Area	Area	Weight	Weight	Force	Force	Force
Seq	(ft)	(psf)	(sqft)	(sqft)	(sqft)	Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	ice (ib)	(lb)	(lb)	(ib)
13	247.5	27.00	7.60	7.19	0.00	0.19	2.64	0.85	1.00	0.00	10.58	31.37	0.00	643.3	0.0	1,023.62	858.54	1,882.16
12	230.0	26.58	7.94	15.00	0.00	0.21	2.55	0.85	1.00	0.00	13.56	113.76	0.00	1,846.3	0.0	1,250.51	3,105.7	4,356.24
11	210.0	26.08	8.50	18.57	0.00	0.21	2.56	0.85	1.00	0.00	15.61	159.10	0.00	2,532.5	0.0	1,419.73	4,793.1	6,212.84
10	190.0	25.53	12.35	22.12	0.00	0.20	2.59	0.85	1.00	0.00	20.38	159.10	0.00	2,931.1	0.0	1,833.68	4,693.1	6,526.86
9	170.0	24.94	13.68	18.83	0.00	0.16	2.75	0.85	1.00	0.00	19.56	159.10	0.00	3,863.0	0.0	1,826.38	4,584.5	6,410.94
8	150.0	24.30	15.14	18.83	0.00	0.14	2.82	0.85	1.00	0.00	20.62	159.10	0.00	3,922.2	0.0	1,923.26	4,465.3	6,388.60
7	130.0	23.57	11.92	22.04	0.00	0.12	2.90	0.85	1.00	0.00	19.01	159.10	0.00	4,853.3	0.0	1,765.74	4,332.8	6,098.56
6	110.0	22.76	12.51	23.64	0.00	0.11	2.93	0.85	1.00	0.00	20.07	159.10	0.00	5,388.2	0.0	1,818.99	4,183.0	6,002.07
5	90.00	21.82	13.15	23.64	0.00	0.10	2.97	0.85	1.00	0.00	20.50	159.10	0.00	5,440.0	0.0	1,805.93	4,010.0	5,815.98
4	70.00	20.69	13.83	25.51	0.00	0.10	2.98	0.85	1.00	0.00	21.78	159.10	0.00	6,090.2	0.0	1,828.23	3,803.4	5,631.63
3	50.00	19.28	16.96	25.51	0.00	0.09	2.99	0.85	1.00	0.00	24.43	159.10	0.00	6,819.4	0.0	1,914.37	3,543.3	5,457.67
2	30.00	17.31	17.83	27.10	0.00	0.09	3.00	0.85	1.00	0.00	25.76	159.10	0.00	7,508.9	0.0	1,819.56	3,182.0	5,001.57
1	10.00	14.98	18.74	27.10	0.00	0.09	3.02	0.85	1.00	0.00	26.47	119.33	0.00	7,260.0	0.0	1,629.67	2,065.1	3,694.86
														59,098.5	0.0		•	9,480.00

Site Number: 281331

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II Exposure: C Topo: 1

Section Forces

LoadCase 1.2D + 1.0Di + 1.0Wi Normal

30.00 mph Normal with 0.75 in Radial Ice

Gust Response Factor: 0.85 Dead Load Factor: 1.20

Wind Load Factor: 1.00 Ice Dead Load Factor: 1.00 Wind Importance Factor: 1.00

Ice Importance Factor: 1.00

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Area	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	lce Linea Area (sqft)	Weight	: Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
13	247.5	3.00	7.60	30.86	23.68	0.46	1.95	1.00	1.00	1.83	28.14	34.42	55.05	4,142.8	3,285.1	140.17	152.33	292.50
12	230.0	2.95	7.94	42.32	27.32	0.44	1.99	1.00	1.00	1.82	35.69	128.94	164.42	11,822.9	9,361.2	177.95	464.82	598.78
11	210.0	2.90	8.50	46.84	28.26	0.41	2.05	1.00	1.00	1.80	38.49	183.17	73.40	13,685.2	10,308.	193.98	446.59	640.56
10	190.0	2.84	12.35	52.68	30.56	0.37	2.13	1.00	1.00	1.79	45.16	182.93	73.28	14,751.6	10,843.	232.20	443.05	675.25
9	170.0	2.77	13.68	47.30	28.47	0.28	2.34	1.00	1.00	1.77	41.77	182.66	73.15	15,846.0	10,695.	230.41	431.82	662.23
8	150.0	2.70	15.14	48.67	29.84	0.25	2.44	1.00	1.00	1.75	43.60	182.37	73.00	16,014.7	10,785.	243.88	419.53	663.41
7	130.0	2.62	11.92	47.53	25.49	0.20	2.59	1.00	1.00	1.72	39.23	182.04	72.84	17,767.6	11,296.	226.64	405.92	632.56
6	110.0	2.53	12.51	49.39	25.75	0.18	2.65	1.00	1.00	1.69	40.75	181.66	72.65	18,515.4	11,331.	232.32	390.61	622.92
5	90.00	2.42	13.15	49.59	25.95	0.17	2.71	1.00	1.00	1.66	41.38	181.21	72.42	18,537.1	11,283,	231,31	373.00	604.31
4	70.00	2.30	13.83	51.56	26.05	0.16	2.75	1.00	1.00	1.62	43.12	180.66	72.15	19,385.9	11,265.	231.60	352.08	583.69
3	50.00	2.14	16.96	51.45	25.94	0.15	2.77	1.00	1.00	1.56	46.16	179.95	71.79	20,531.6	11,439.	233.12	325.96	559.08
2	30.00	1.92	17.83	52.49	25.40	0.14	2.80	1.00	1.00	1.49	47.58	178.91	71.27	21,216.8	11,204.	218.18	290.05	508.23
1	10.00	1.66	18.74	50.54	23.45	0.13	2.85	1.00	1.00	1.33	47.33	132.64	52.68	18,441.7	8,761.6	190.95	184.80	375.76
** = Se	ection Fo	rce Ex	ceeds So	liditv Rati	o Criteria	1							2	210,659.3	131,861.			7,419.28

LoadCase 1.2D + 1.0Di + 1.0Wi 60 deg

** = Section Force Exceeds Solidity Ratio Criteria

30.00 mph 60 deg with 0.75 in Radial Ice

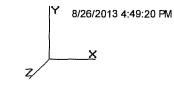
Gust Response Factor: 0.85

Dead Load Factor: 1.20 Wind Load Factor: 1.00

Ice Dead Load Factor: 1.00

Wind Importance Factor: 1.00 Ice Importance Factor: 1.00

Ice Total Total Ice Wind Round Round Eff Linear Flat Total Struct Linear Total Linear Ice Sect Height qz Area Area Area Sol Thick Area Area Weight Weight Force Force Force Δrea Seq (ft) (psf) (sqft) (sqft) (sqft) Ratio Cf Df Dr (sqft) (sqft) (sqft) (lb) Ice (ib) (lb) (lb) (lb) (in) 4,142.8 13 247.5 3.00 7.60 30.86 23.68 0.46 1.95 0.80 1.00 1.83 26.62 34.42 55.05 3,285,1 132.60 152.33 284.93 12 230.0 2.95 7.94 42.32 27.32 0.44 1.99 0.80 1.00 1.82 34.10 128.94 164.42 11,822.9 9,361.2 170.03 464.82 598.78 0.41 2.05 0.80 1.00 1.80 11 210.0 2.90 8.50 46.84 28.26 36.79 183.17 73.40 13,685.2 10,308. 185.41 446.59 631.99 10 190.0 2.84 12.35 52.68 30.56 0.37 2.13 0.80 1.00 1.79 42.69 182.93 73.28 14,751.6 10,843. 219.49 443.05 662.54 9 170.0 2.77 13.68 47.30 28,47 0.28 2.34 0.80 1.00 1.77 39.03 182.66 73.15 15,846.0 10,695. 215.32 431.82 647.14 8 150.0 2.70 15.14 48.67 29.84 0.25 2.44 0.80 1.00 1.75 40.58 182.37 73.00 16,014.7 10,785. 226.95 419.53 646.48 130.0 2.62 11.92 47.53 25.49 0.20 2.59 0.80 1.00 1.72 36.85 182.04 72.84 17,767.6 11,296. 212.86 405.92 7 618.79 6 110.0 2.53 12.51 49.39 25.75 0.18 2.65 0.80 1.00 1.69 38.25 181.66 72.65 18,515.4 11,331. 218.05 390.61 608.66 72.42 18,537.1 11,283. 90.00 2.42 13.15 49.59 25.95 0.17 2.71 0.80 1.00 1.66 38.75 181.21 216.61 373.00 589.61 70.00 2.30 13.83 51.56 26.05 0.16 2.75 0.80 1.00 1.62 40.36 180.66 72.15 19,385.9 11,265. 216.75 352.08 568.84 3 50.00 2.14 16.96 51.45 25.94 0.15 2.77 0.80 1.00 1.56 42.77 179.95 71.79 20,531.6 11,439. 215.98 325.96 541.94 2 30.00 1.92 17.83 52.49 25.40 0.14 2.80 0.80 1.00 1.49 44.01 178.91 71.27 21,216.8 11,204. 201.82 290.05 491.88 1 10.00 1.66 18.74 50.54 23.45 0.13 2.85 0.80 1.00 1.33 43.59 132.64 52.68 18,441.7 8,761.6 175.83 184.80 360.63


^{** =} Section Force Exceeds Solidity Ratio Criteria

Site Number: 281331

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II Exposure: C Topo: 1

Section Forces

LoadCase 1.2D + 1.0Di + 1.0Wi 90 deg

30.00 mph 90 deg with 0.75 in Radial Ice

Gust Response Factor: 0.85

Dead Load Factor: 1.20 Wind Load Factor: 1.00

Ice Dead Load Factor: 1.00

Wind Importance Factor: 1.00 Ice Importance Factor: 1.00

			Total	Total	Ice								Ice					
	Wind		Flat	Round	Round					Ice	Eff	Linear	Linear	Total		Struct	Linear	Total
Sect	Height	qz	Area	Area	Area	Sol				Thick	Area	Area	Area	Weight	Weight	Force	Force	Force
Seq	(ft)	(psf)	(sqft)	(sqft)	(sqft)	Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(lb)	lce (lb)	(lb)	(lb)	(lb)
13	247.5	3.00	7.60	30.86	23.68	0.46	1.95	0.85	1.00	1.83	27.00	34.42	55.05	4,142.8	3,285.1	134.49	152.33	286.82
12	230.0	2.95	7.94	42.32	27.32	0.44	1.99	0.85	1.00	1.82	34.50	128.94	164.42	11,822.9	9,361.2	172.01	464.82	598.78
11	210.0	2.90	8.50	46.84	28.26	0.41	2.05	0.85	1.00	1.80	37.21	183.17	73.40	13,685.2	10,308.	187.55	446.59	634.14
10	190.0	2.84	12.35	52.68	30.56	0.37	2.13	0.85	1.00	1.79	43.30	182.93	73.28	14,751.6	10,843.	222.67	443.05	665.72
9	170.0	2.77	13.68	47.30	28.47	0.28	2.34	0.85	1.00	1.77	39.72	182.66	73.15	15,846.0	10,695.	219.09	431.82	650.91
8	150.0	2.70	15.14	48.67	29.84	0.25	2.44	0.85	1.00	1.75	41.33	182.37	73.00	16,014.7	10,785.	231.18	419.53	650.71
7	130.0	2.62	11.92	47.53	25.49	0.20	2.59	0.85	1.00	1.72	37.44	182.04	72.84	17,767.6	11,296.	216.31	405.92	622.23
6	110.0	2.53	12.51	49.39	25.75	0.18	2.65	0.85	1.00	1.69	38.87	181.66	72.65	18,515.4	11,331.	221.62	390.61	612.22
5	90.00	2.42	13.15	49.59	25.95	0.17	2.71	0.85	1.00	1.66	39.41	181.21	72.42	18,537.1	11,283.	220.29	373.00	593.28
4	70.00	2.30	13.83	51.56	26.05	0.16	2.75	0.85	1.00	1.62	41.05	180.66	72.15	19,385.9	11,265.	220.46	352.08	572.55
3	50.00	2.14	16.96	51.45	25.94	0.15	2.77	0.85	1.00	1.56	43.61	179.95	71.79	20,531.6	11,439.	220.26	325.96	546.23
2	30.00	1,92	17.83	52.49	25.40	0.14	2.80	0.85	1.00	1.49	44.90	178.91	71.27	21,216.8	11,204.	205.91	290.05	495.97
1	10.00	1.66	18.74	50.54	23.45	0.13	2.85	0.85	1.00	1.33	44.52	132.64	52.68	18,441.7	8,761.6	179.61	184.80	364.41
** = Se	ection Fo	rce Ex	ceeds So	lidity Rati	o Criteria	l							2	10,659.3 1	31,861.			7,293.96

LoadCase 1.0D + 1.0W Service Normal

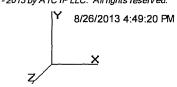
Serviceability - 60.00 Wind Normal

Gust Response Factor: 0.85

Dead Load Factor: 1.00

Wind Load Factor: 1.00

Wind Importance Factor: 1.00


Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Area	Sol Ratio	Cf	Df	Dr	lce Thick (in)	Eff Area (sqft)	Linear Area (sqft)	lce Linear Area (sqft)		Weight Ice (lb)	Struct Force (Ib)	Linear Force (lb)	Total Force (lb)
13	247.5	12.00	7.60	7.19	0.00	0.19	2.64	1.00	1.00	0.00	11.72	31.37	0.00	714.8	0.0	314.99	238.48	553.48
12	230.0	11.81	7.94	15.00	0.00	0.21	2.55	1.00	1.00	0.00	16.60	113.76	0.00	2,051.4	0.0	425.34	862.70	1,288.04
11	210.0	11.59	8.50	18.57	0.00	0.21	2.56	1.00	1.00	0.00	16.88	159.10	0.00	2,813.9	0.0	426.59	1,331.4	1,758.01
10	190.0	11.35	12.35	22.12	0.00	0.20	2.59	1.00	1.00	0.00	22.23	159.10	0.00	3,256.8	0.0	555.67	1,303.6	1,859.33
9	170.0	11.09	13.68	18.83	0.00	0.16	2.75	1.00	1.00	0.00	21.61	159.10	0.00	4,292.3	0.0	560.54	1,273.4	1,834.03
8	150.0	10.80	15.14	18.83	0.00	0.14	2.82	1.00	1.00	0.00	22.89	159.10	0.00	4,358.0	0.0	593.07	1,240.3	1,833.44
7	130.0	10.48	11.92	22.04	0.00	0.12	2.90	1.00	1.00	0.00	20.79	159.10	0.00	5,392.6	0.0	536.65	1,203.5	1,740.21
6	110.0	10.12	12.51	23.64	0.00	0.11	2.93	1.00	1.00	0.00	21.95	159.10	0.00	5,986.9	0.0	552.54	1,161.9	1,714.50
5	90.00	9.70	13.15	23.64	0.00	0.10	2.97	1.00	1.00	0.00	22.48	159.10	0.00	6,044.5	0.0	549.91	1,113.9	1,663.81
4	70.00	9.20	13.83	25.51	0.00	0.10	2.98	1.00	1.00	0.00	23.85	159.10	0.00	6,766.9	0.0	556.21	1,056.5	1,612.71
3	50.00	8.57	16.96	25.51	0.00	0.09	2.99	1.00	1.00	0.00	26.97	159.10	0.00	7,577.1	0.0	587.16	984.25	1,571.41
2	30.00	7.69	17.83	27.10	0.00	0.09	3.00	1.00	1.00	0.00	28.43	159.10	0.00	8,343.2	0.0	557.92	883.89	1,441.82
1	10.00	6.66	18.74	27.10	0.00	0.09	3.02	1.00	1.00	0.00	29.28	119.33	0.00	8,066.7	0.0	500.76	573.66	1,074.43
** = Se	ction Fo	orce Ex	ceeds So	liditv Rati	o Criteria	ı								65,665.0	0.0		1	9,945.21

Site Number: 281331

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Section Forces

LoadCase 1.0D + 1.0W Service 60 deg

Serviceability - 60.00 Wind 60 deg

Gust Response Factor: 0.85
Dead Load Factor: 1.00
Wind Load Factor: 1.00

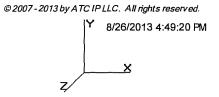
Wind Importance Factor: 1.00

Sect	Wind Height	qz	Total Flat Area	Total Round Area	ice Round Area	Sol				lce Thick	Eff Area	Linear Area	lce Linear Area		Weight	Struct Force	Linear Force	Total Force
Seq	(ft)	(psf)	(sqft)	(sqft)		Ratio	Cf	Df	Dr	(in)	(sqft)	(sqft)	(sqft)	(ib)	Ice (Ib)	(lb)	(lb)	(lb)
13	247.5	12.00	7.60	7.19	0.00	0.19	2.64	0.80	1.00	0.00	10.20	31.37	0.00	714.8	0.0	274.12	238.48	512.60
12	230.0	11.81	7.94	15.00	0.00	0.21	2.55	0.80	1.00	0.00	15.01	113.76	0.00	2,051.4	0.0	384.62	862.70	1,247.32
11	210.0	11.59	8.50	18.57	0.00	0.21	2.56	0.80	1.00	0.00	15.18	159.10	0.00	2,813.9	0.0	383.63	1,331.4	1,715.05
10	190.0	11.35	12.35	22.12	0.00	0.20	2.59	0.80	1.00	0.00	19.76	159.10	0.00	3,256.8	0.0	493.92	1,303.6	1,797.58
9	170.0	11.09	13.68	18.83	0.00	0.16	2.75	0.80	1.00	0.00	18.88	159.10	0.00	4,292.3	0.0	489.59	1,273.4	1,763.08
8	150.0	10.80	15.14	18.83	0.00	0.14	2.82	0.80	1.00	0.00	19.86	159.10	0.00	4,358.0	0.0	514.63	1,240.3	1,755.00
7	130.0	10.48	11.92	22.04	0.00	0.12	2.90	08.0	1.00	0.00	18.41	159.10	0.00	5,392.6	0.0	475.10	1,203.5	1,678.66
6	110.0	10.12	12.51	23.64	0.00	0.11	2.93	0.80	1.00	0.00	19.44	159.10	0.00	5,986.9	0.0	489.52	1,161.9	1,651.49
5	90.00	9.70	13.15	23.64	0.00	0.10	2.97	0.80	1.00	0.00	19.85	159.10	0.00	6,044.5	0.0	485.56	1,113.9	1,599.46
4	70.00	9.20	13.83	25.51	0.00	0.10	2.98	0.80	1.00	0.00	21.09	159.10	0.00	6,766.9	0.0	491.72	1,056.5	1,548.22
3	50.00	8.57	16.96	25.51	0.00	0.09	2.99	0.80	1.00	0.00	23.58	159.10	0.00	7,577.1	0.0	513.31	984.25	1,497.56
2	30.00	7.69	17.83	27.10	0.00	0.09	3.00	0.80	1.00	0.00	24.87	159.10	0.00	8,343.2	0.0	487.94	883.89	1,371.83
1	10.00	6.66	18.74	27.10	0.00	0.09	3.02	08.0	1.00	0.00	25.54	119.33	0.00	8,066.7	0.0	436.66	573.66	1,010.32
** = Se	ction Fo	orce Exe	ceeds So	lidity Rati	o Criteria	3								65,665.0	0.0		1	9,148.18

LoadCase 1.0D + 1.0W Service 90 deg

Serviceability - 60.00 Wind 90 deg

Gust Response Factor: 0.85
Dead Load Factor: 1.00
Wind Load Factor: 1.00


Wind Importance Factor: 1.00

Sect Seq	Wind Height (ft)	qz (psf)	Total Flat Area (sqft)	Total Round Area (sqft)	Area	Sol Ratio	Cf	Df	Dr	ice Thick (in)	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)		Weight Ice (lb)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)
13	247.5	12.00	7.60	7.19	0.00	0.19	2.64	0.85	1.00	0.00	10.58	31.37	0.00	714.8	0.0	284.34	238.48	522.82
12	230.0	11.81	7.94	15.00	0.00	0.21	2.55	0.85	1.00	0.00	15.41	113.76	0.00	2,051.4	0.0	394.80	862.70	1,257.50
11	210.0	11.59	8.50	18.57	0.00	0.21	2.56	0.85	1.00	0.00	15.61	159.10	0.00	2,813.9	0.0	394.37	1,331.4	1,725.79
10	190.0	11.35	12.35	22.12	0.00	0.20	2.59	0.85	1.00	0.00	20.38	159.10	0.00	3,256.8	0.0	509.36	1,303.6	1,813.02
9	170.0	11.09	13.68	18.83	0.00	0.16	2.75	0.85	1.00	0.00	19.56	159.10	0.00	4,292.3	0.0	507.33	1,273.4	1,780.82
8	150.0	10.80	15.14	18.83	0.00	0.14	2.82	0.85	1.00	0.00	20.62	159.10	0.00	4,358.0	0.0	534.24	1,240.3	1,774.61
7	130.0	10.48	11.92	22.04	0.00	0.12	2.90	0.85	1.00	0.00	19.01	159.10	0.00	5,392.6	0.0	490.48	1,203.5	1,694.04
6	110.0	10.12	12.51	23.64	0.00	0.11	2.93	0.85	1.00	0.00	20.07	159.10	0.00	5,986.9	0.0	505.27	1,161.9	1,667.24
5	90.00	9.70	13.15	23.64	0.00	0.10	2.97	0.85	1.00	0.00	20.50	159.10	0.00	6,044.5	0.0	501.65	1,113.9	1,615.55
4	70.00	9.20	13.83	25.51	0.00	0.10	2.98	0.85	1.00	0.00	21.78	159.10	0.00	6,766.9	0.0	507.84	1,056.5	1,564.34
3	50.00	8.57	16.96	25.51	0.00	0.09	2.99	0.85	1.00	0.00	24.43	159.10	0.00	7,577.1	0.0	531.77	984.25	1,516.02
2	30.00	7.69	17.83	27.10	0.00	0.09	3.00	0.85	1.00	0.00	25.76	159.10	0.00	8,343.2	0.0	505.43	883.89	1,389.33
1	10.00	6.66	18.74	27.10	0.00	0.09	3.02	0.85	1.00	0.00	26.47	119.33	0.00	8,066.7	0.0	452.69	573.66	1,026.35
** = Se	ction Fo	orce Exe	ceeds So	lidity Rati	o Criteria	ì							-	65,665.0	0.0		1	9,347.44

Location: McHenry KY, KY

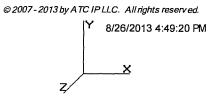
Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Tower Loading

Discrete Appurtenance Properties

A 44 l			No	lce	lce						Vert	
Attach Elev (ft)	Description	Qty	Weight (lb)	CaAa (sf)	Weight (lb)	Ca Aa (sf)	Len (ft)	Width (in)	Depth (in)	Ka	Orientatio Factor	
250.0	115 Sq. Ft. and 135 Sq. Ft	1	2000.00	115.00	5669.67	199.40	0.000	0.000	0.000	1.00	1.00	0.000
240.0	115 Sq. Ft. and 135 Sq. Ft	1	2000.00	115.00	5642.86	198.78	0.000	0.000	0.000	1.00	1.00	0.000
230.0	115 Sq. Ft. and 135 Sq. Ft	1	2000.00	115.00	5642.86	198.78	0.000	0.000	0.000	1.00	1.00	0.000
220.0	115 Sq. Ft. and 135 Sq. Ft	1	2000.00	115.00	5609.87	198.02	0.000	0.000	0.000	1.00	1.00	0.000
	Totals	4	8000.00		22565.27				Number	of Appurte	nances:	4

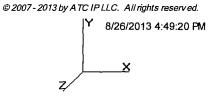

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Description	Qty	Width (in)	n Weight (lb/ft)	t Pct In Block	Spread On Faces	Bundling Arrangement	Cluster Dia (in)	Out Of Zone	Spacing (in)	Orientation Factor	n Ka Override
5.00	250.0	Waveguide	1	2.00	6.00	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
220.0	250.0	1 5/8" Coax	18	1.98	0.82	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
5.00	240.0	1 5/8" Coax	18	1.98	0.82	0	Lin App	Cluster	18.41	N	1.00	1.00	0.00
5.00	240.0	Waveguide	1	2.00	6.00	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
5.00	230.0	1 5/8" Coax	18	1.98	0.82	0	Lin App	Cluster	18.41	N	1.00	1.00	0.00
5.00	230.0	Waveguide	1	2.00	6.00	0	Lin App	Individual	0.00	N	1.00	1.00	0.00
5.00	220.0	1 5/8" Coax	36	1.98	0.82	50	Lin App	Block	0.00	N	1.00	1.00	0.00

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

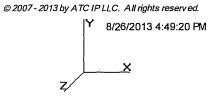

Force/Stress Summary

Section: 1 U-27	Bot Elev (ft): 0.00	Height (ft): 20.	000			
	_			-	phi		ear Bear	
	Force	Len Bracin	•	F'y		•	Rnv phiRn	
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi)	(kip) Bolts	Holes (k	ip) (kip)	% Controls
LEG 12B - 12" BD 2.75"	-590.35 1.2D + 1.6W	20.03 100 100	100 0.0	0.0	675.10 0	0 0	0.00	87 User Input
HORIZ	0.00	0.000 0 0	0.0	0.0	0.00 0	0 0.	.00 0.00	0
DIAG DAE - 3.5X3.5X0.25	-16.72 1.2D + 1.6W	32.80 48 48	3 24 180.7	7 36.0	23.38 2	2 48	70 48.72	71 Member Y
Max Tension Member	Force		it Pn Num	Num	Shear		se Contr	n le
	(KIP) Load Case	(ksi) (ksi)	(kip) Bolts	Holes	Cap (kip) C	ap (kip)	6 Contr	
LEG 12B - 12" BD 2.75"	521.41 1.2D + 1.6W 60		301.80 0		0.00		65 User In	put
HORIZ	0.00	0 0	0.00 0	-	0.00	0.00	0	
DIAG DAE - 3.5X3.5X0.25	14.80 1.2D + 1.6W 60	36 58	93.96 2	2	0.00	48.72	15 Membe	r
Max Splice Forces	Force	Capacity Use		um	olt Type			
	(kip) Load Case	(kip) %			oir Type			
Top Tension	512.44 0.9D + 1.6W 60)	0				
Top Compression	576.09 1.2D + 1.6W)	40 41	L F4 F F 4 4 6 F			
Bot Tension	546.66 0.9D + 1.6W 60	872.28 63		12 1"	F1554-105			
Bot Compression	612.04 1.2D + 1.6W	0.00)					
Section: 2 U-25	Bot Elev (ft): 20.00	Height (1	ft): 20.0				
	Force	Len Bracing	3 %	F'y	phi Pn Num		ar Bear Rnv phiRn	Use
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi)	(kip) Bolts	Holes (ki	p) (kip)	% Controls
LEG 12B - 12" BD 2.75"	-558.34 1.2D + 1.6W	20.03 100 100	100 0.0	0.0	675.10 0	0 0.	00.00	82 User Input
HORIZ	0.00	0.000 0 0	0 0.0	0.0	0.00 0	0 0.	00.00	0
DIAG DAE - 3.5X3.5X0.25	-16.37 1.2D + 1.6W 90	31.24 48 48	24 172.1	36.0	25.77 2	2 48.	70 48.72	63 Member Y
	Force	Fy Fu ph	it Pn Num	Num	Shear	Bear Us		
Max Tension Member	(KIP) Load Case	(ksi) (ksi)	(kip) Bolts	Holes	Cap (kip) C	ap (kip) 🤌	6 Contro	ois
LEG 12B - 12" BD 2.75"	498.63 0.9D + 1.6W 60	50 65 8	01.80 0	0	0.00	0.00	62 Userin	put
HORIZ	0.00	0 0	0.00 0	0	0.00	0.00	0	
DIAG DAE - 3.5X3.5X0.25	15.47 1.2D + 1.6W	36 58	93.96 2	2	0.00	48.72	16 Member	-
Siav Culina Foresa	Force	Capacity Use		ım _				
Max Splice Forces	(kip) Load Case	(kip) %			olt Type			
Top Tension	477.90 0.9D + 1.6W 60	0.00		0				
Top Compression	537.40 1.2D + 1.6W	0.00						
Dat Tanaian	512.44 0.9D + 1.6W 60	654.24 78		49 4	A325			
Bot Tension Bot Compression	576.09 1.2D + 1.6W	0.00		12 1	4323			

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

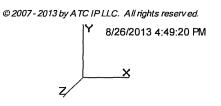

Force/Stress Summary

Section: 3 U-23		Bot Elev (ft): 40.	.00		Hei	ght (f	t): 20	0.000						
			•	-				п.,	phi	N1	M	Shear		11	
	Force		Len		acing		KI /D	Fy	Pn			phiRnv	•		Cantagla
Max Compression Member	(kip) L	oad Case	(ft)	<u> </u>	Υ		KL/R	(KSI)	(kip)	Boits	Holes	(kip)	(kip)	<u>%</u>	Controls
LEG 12B - 12" BD 2.5"		.2D + 1.6W	20.03	100						_		0.00	0.00		User Input
HORIZ	0.00		0.000	0	0	_	• • • •		_			0.00	0.00	0	14t V
DIAG DAE - 3.5X3.5X0.25	-17.15 1	.2D + 1.6W 90	29.73	48	48	24	163.8	36.	28.4	5 2	2	48.70	48.72	60	Member Y
.	Force		Fy	Fu		it Pn		Num	Shea		Bear	Use	Contr	olo	
Max Tension Member	(KIP)	Load Case	(ksi)			<u> </u>		Holes	Cap (I	(ip) C	ap (kip) %		UIS	
LEG 12B - 12" BD 2.5"		0.9D + 1.6W 60				62.70		0		.00	0.00		User In	nput	
HORIZ	0.00		C		0	0.00		0	_	.00	0.00				
DIAG DAE - 3.5X3.5X0.25	15.68 1	I.2D + 1.6W 90	36	i	58	93.96	2	2	0	.00	48.72	2 16	Membe	er	
Max Spiice Forces	Force		Capa	-			Nu		3-14 T	_					
		Load Case	(kip		%		Во		3oit Typ	9					
Top Tension		.9D + 1.6W 60	_	.00	0			0							
Top Compression		.2D + 1.6W		.00	0			40 /							
Bot Tension Bot Compression		.9D + 1.6W 60 .2D + 1.6W	654.	.00	73 0			12	A325						
	337.40 1.														
Section: 4 U-21		Bot Elev (ft): 60.	00		Hei	ght (f	t): 20				•	_		
	Force		Len	Bra	cing	% ا		Гy	phi Pn	Num	Nrim	Shear phiRnv		llee	
Max Compression Member		oad Case	(ft)	X	Y	z	KL/R	-	(kip)		Holes	•	(kip)	%	Controls
LEG 12B - 12" BD 2.5"		2D + 1.6W	<u> </u>	100	100		0.0	0.0				0.00	0.00	84	User Input
HORIZ	0.00	20 1.000	0.000	0	0			0.0				0.00	0.00	0	Osci iliput
DIAG DAE - 3X3X0.1875		9D + 1.6W 90	28.29	48	48	_	176.4			_		48.70	36.54		Member Y
	Force		Fy	Fu	n h i	it Pn	Num	Num	Shea		Bear	Use			
Max Tension Member		Load Case	(ksi)						Cap (l				Contr	ois	
LEG 12B - 12" BD 2.5"	427.84	0.9D + 1.6W 60	50		65 6	62.70	0	0	0	.00	0.00	64	User In	put	
HORIZ	0.00		0		0	0.00	_	0	0	.00	0.00	0			
DIAG DAE - 3X3X0.1875	15.34 1	.2D + 1.6W 90	36		58	58.89	2	2	0	.00	36.54	26	Membe	eΓ	
Max Splice Forces	Force		Capac	-			Nu								
		Load Case	(kip	-	<u>%</u>		Во		Soit Type	-				···	
Top Tension		9D + 1.6W 60		00	0			0							
Top Compression		2D + 1.6W		00	0			40 4							
Bot Tension	442.71 0.	9D + 1.6W 60	654.		68			12 1	A325						
Bot Compression	494.81 1.	2D + 4 CW	^	00	0	ı									

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II Exposure: C Topo: 1

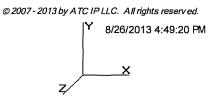

Force/Stress Summary

Section: 5 U-19	Bot Elev (ft): 80.00 Height (ft): 20.000											
	_				ohi	Shear						
	Force	Len Bracing	-	•		•	/phiRn Use					
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi) ((kip) Bolts Ho	les (klp)	(kip) %	Controls				
LEG 12B - 12"BD 2.25"	-426.07 1.2D + 1.6W	20.03 100 100	100 0.0	0.0 4	51.40 0	0.00	0.00 94	User Input				
HORIZ	0.00	0.000 0 0	0 0.0	0.0	0.00 0	0.00	0.00 0					
DIAG DAE - 3X3X0.1875	-16.53 1.2D + 1.6W 90	26.91 48 48	3 24 171.8	B 36.0	16.68 2	2 48.70	36.54 99	Member Y				
May Tayain Mambas	Force		it Pn Num		Shear Bea		Controls					
Max Tension Member	(KIP) Load Case	(ksi) (ksi)	(kip) Bolts	Holes C	ap (kip) Cap (kip) %	Controls					
LEG 12B - 12"BD 2.25"	388.01 0.9D + 1.6W 60		36.80 0	-		0.00 72	User Input					
HORIZ	0.00	0 0	0.00 0	_	= -	0.00 0						
DIAG DAE - 3X3X0.1875	15.12 1.2D + 1.6W 90	36 58	58.89 2	2	0.00 36	6.54 25	Member					
Max Splice Forces	Force	Capacity Use		um	Туре							
	(kip) Load Case	(klp) %			Type							
Top Tension	368.29 0.9D + 1.6W 60)	0								
Top Compression Bot Tension	407.36 1.2D + 1.6W 406.52 0.9D + 1.6W 60	0.00 (654.24 62		12 1 A3	25							
Bot Compression	451.79 1.2D + 1.6W	0.00		12 1 A3	125							
	451.75 1.25 . 1.017	0.00	, 									
Section: 6 U-17	Bot Elev (ft): 100.0	Height (f	ft): 20.00	0							
	P	Law Bunatura	O/		ohi Dan Nasaa Nas	Shear						
	Force	Len Bracing	-				phiRn Use	.				
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R		kip) Bolts Ho	les (kip)		Controls				
LEG 12B - 12"BD 2.25"	-384.51 1.2D + 1.6W	20.03 100 100	_		51.40 0	0.00		User Input				
HORIZ	0.00	0.000 0 0	0.0	0.0	0.00 0	0.00	0.00 0					
DIAG DAE - 3X3X0.1875	-16.40 1.2D + 1.6W 90	25.61 49 49	24 165.0	36.0	18.08 2	2 48.70	36.54 90	Member Y				
	Force	Fy Fu ph	it Pn Num	Num S	Shear Bea	r Use						
Max Tension Member	(KIP) Load Case	(ksi) (ksi)	(kip) Bolts	Holes Ca	ap (kip) Cap (kip) %	Controls					
LEG 12B - 12"BD 2.25"	348.94 1.2D + 1.6W 60	50 65 5	36.80 0	0	0.00	.00 65	User Input					
HORIZ	0.00	0 0	0.00 0	0	0.00	0.00						
DIAG DAE-3X3X0.1875	15.32 1.2D + 1.6W 90	36 58	58.89 2	2	0.00 36	5.54 26	Member					
Max Splice Forces	Force	Capacity Use		um	***							
	(kip) Load Case	(kip) %			Туре							
Top Tension	327.60 0.9D + 1.6W 60	0.00		0								
Top Compression	360.67 1.2D + 1.6W	0.00	-	45								
Bot Tension	368.29 0.9D + 1.6W 60	654.24 56		12 1 A3	25							
Bot Compression	407.36 1.2D + 1.6W	0.00	į									

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

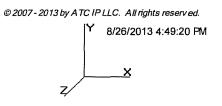


Section: 7 U-15	Bot Elev (ft): 120.0	Height ((ft): 20.0	000				
	_				phi		Shear		_
	Force	Len Bracing	g %	F'y	Pn Num	Num	phiRnv	phiRn l	JS e
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi)	(kip) Bolts	Holes	(kip)	(kip)	% Controls
LEG 12B - 12"BD 2"	-330.67 1.2D + 1.6W	20.03 100 100	100 0.0	0.0	356.50 0	0	0.00	0.00	92 User Input
HORIZ	0.00	0.000 0 0	0 0.0	0.0	0.00 0	0	0.00	0.00	0
DIAG DAE - 3X3X0.1875	-17.29 1.2D + 1.6W	24.42 49 49	24 157.	3 36.0	19.90 2	2	48.70	36.54	86 Member Y
Max Tension Member	Force		it Pn Num	Num	Shear	Bear	Use	Contro	le
	(KIP) Load Case		(kip) Bolts		Cap (kip) Cap	ap (kip)	%		·
LEG 12B - 12"BD 2"	302.80 1.2D + 1.6W 60		124.10 0	-	0.00	0.00	71	User Inp	ut
HORIZ	0.00	0 0	0.00 0	-	0.00	0.00	0		
DIAG DAE - 3X3X0.1875	15.48 1.2D + 1.6W 60	36 58	58.89 2	2	0.00	36.54	26	Member	
Max Splice Forces	Force	Capacity Use		um	lt Tune				
	(kip) Load Case	(kip) %			lt Type				
Top Tension	284.52 0.9D + 1.6W 60	0.00		0					
Top Compression	312.22 1.2D + 1.6W)						
Bot Tension	327.60 0.9D + 1.6W 60	654.24 50		12 1 A	4325				
Bot Compression	360.67 1.2D + 1.6W	0.00)						
Section: 8 U-13	Bot Elev (ft): 140.0	Height (ft): 20.0	000				
	Farra	lan Bunaina	- 0/	Ew	phi Da Num		Shear		.
	Force	Len Bracing] %	F'y	Pn Num	-		phiRn L	se
		•							
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi)	(kip) Bolts	Holes	(kip)	(kip)	% Controls
Max Compression Member LEG 12B - 12"BD 1.75"		•			(kip) Bolts 300.70 0	Holes 0	(kip) 0.00	(kip) 0.00	% Controls 99 User Input
LEG 12B - 12"BD 1.75"	(kip) Load Case	(ft) X Y	100 0.0	0.0					
LEG 12B - 12"BD 1.75" HORIZ	(kip) Load Case	(ft) X Y	100 0.0	0.0	300.70 0	0	0.00	0.00	99 User Input
LEG 12B - 12"BD 1.75" HORIZ	(kip) Load Case -300.56 1.2D + 1.6W 0.00	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45	100 0.0	0.0	300.70 0 0.00 0 11.70 1	0	0.00	0.00 0.00 20.88	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph	100 0.0 0 0.0 45 145.1	0 0.0 0 0.0 1 36.0 Num	300.70 0 0.00 0 11.70 1	0 0 1 Bear	0.00 0.00 31.81	0.00	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi)	100 0.0 0 0.0 45 145.1	0 0.0 0 0.0 1 36.0 Num	300.70 0 0.00 0 11.70 1	0 0 1 Bear	0.00 0.00 31.81 Us e %	0.00 0.00 20.88	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (кір) Load Case	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi)	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts	0 0.0 0 0.0 1 36.0 Num Holes	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca	0 0 1 Bear ap (kip)	0.00 0.00 31.81 Us e %	0.00 0.00 20.88	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (KIP) Load Case 277.28 0.9D + 1.6W 60	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 50 65 3	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 124.70 0	0 0.0 0 0.0 1 36.0 Num Holes	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca	0 0 1 Bear ap (kip) 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (KIP) Load Case 277.28 0.9D + 1.6W 60 0.00	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 50 65 3 0 0	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 224.70 0 0.00 0 28.68 1	0 0.0 0 0.0 1 36.0 Num Holes 0 0 1	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca 0.00 0.00 0.00	0 0 1 Bear ap (kip) 0.00 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88 Contro	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (KIP) Load Case 277.28 0.9D + 1.6W 60 0.00 10.04 1.2D + 1.6W 90	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 50 65 3 0 0 36 58	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 224.70 0 0.00 0 28.68 1	0 0.0 0 0.0 1 36.0 Num Holes 0 0 1	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca 0.00 0.00	0 0 1 Bear ap (kip) 0.00 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88 Contro	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Splice Forces Top Tension	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (κιρ) Load Case 277.28 0.9D + 1.6W 60 0.00 10.04 1.2D + 1.6W 90 Force	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 50 65 3 0 0 36 58 Capacity Use	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 124.70 0 0.00 0 28.68 1	0 0.0 0 0.0 1 36.0 Num Holes 0 0 1	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca 0.00 0.00 0.00	0 0 1 Bear ap (kip) 0.00 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88 Contro	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Splice Forces Top Tension	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (KIP) Load Case 277.28 0.9D + 1.6W 60 0.00 10.04 1.2D + 1.6W 90 Force (kip) Load Case	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 50 65 3 0 0 36 58 Capacity Use (kip) %	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 124.70 0 0.00 0 28.68 1	0 0.0 0 0.0 1 36.0 Num Holes 0 0 1	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca 0.00 0.00 0.00	0 0 1 Bear ap (kip) 0.00 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88 Contro	99 User Input 0 87 Member Z
LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875 Max Tension Member LEG 12B - 12"BD 1.75" HORIZ DIAG SAE - 3X3X0.1875	(kip) Load Case -300.56 1.2D + 1.6W 0.00 -10.19 1.2D + 1.6W 90 Force (KIP) Load Case 277.28 0.9D + 1.6W 60 0.00 10.04 1.2D + 1.6W 90 Force (kip) Load Case 241.91 0.9D + 1.6W 60	(ft) X Y 10.02 100 100 0.000 0 0 16.01 45 45 Fy Fu ph (ksi) (ksi) 6 50 65 3 0 0 36 58 Capacity Use (kip) %	100 0.0 0 0.0 45 145.1 it Pn Num (kip) Bolts 124.70 0 0.00 0 28.68 1	0 0.0 0 0.0 1 36.0 Num Holes 0 0 1	300.70 0 0.00 0 11.70 1 Shear Cap (kip) Ca 0.00 0.00 0.00	0 0 1 Bear ap (kip) 0.00 0.00	0.00 0.00 31.81 Us e %	0.00 0.00 20.88 Contro	99 User Input 0 87 Member Z

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

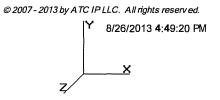


Section: 9 U-11	Bot Elev (1	ft): 160.0	Height (ft): 20	.000	
		_	_	phi	Shear Bear
		Len Bracing S			phiRnv phiRn Use
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R (ksi)	(kip) Bolts Holes	(kip) (kip) % Controls
LEG 12B - 12"BD 1.75"	-250.07 1.2D + 1.6W	10.02 100 100	100 0.0 0.0	300.70 0 0	0.00 0.00 83 User Input
HORIZ	0.00	0.000 0 0	0 0.0 0.0	0.00 0 0	0.00 0.00 0
DIAG SAE - 3X3X0.1875	-10.38 1.2D + 1.6W 90	14.50 45 45	45 131.4 36.0) 14.23 1 1	31.81 20.88 72 Member Z
M Ta ta M a b	Force		Pn Num Num	Shear Bear	Use S
Max Tension Member	(KIP) Load Case	(ksi) (ksi) (k	ip) Bolts Holes	Cap (kip) Cap (kip	o) % Controls
LEG 12B - 12"BD 1.75"	231.33 0.9D + 1.6W 60	50 65 324		0.00 0.00	•
HORIZ	0.00		0.00 0 0	0.00 0.00	
DIAG SAE - 3X3X0.1875	9.88 1.2D + 1.6W 90	36 58 28	8.68 1 1	0.00 20.8	8 34 Member
	Force	Capacity Use	Num		
Max Splice Forces	(kip) Load Case	(kip) %	Bolts E	Boit Type	
Top Tension	195.67 0.9D + 1.6W 60	0.00 0	0		
Top Compression	212.48 1.2D + 1.6W	0.00 0			
Bot Tension	241.91 0.9D + 1.6W 60	327.12 74	6 1	A325	
Bot Compression	263.03 1.2D + 1.6W	0.00 0			
Section: 10 V-9	Bot Elev (f	t): 180.0 l	leight (ft): 20	.000	
				phi	Shear Bear
		Len Bracing %			phiRnv phiRn Use
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R (ksi)	(kip) Bolts Holes	(kip) (kip) % Controls
LEG PST - 6" DIA PIPE	-203.77 1.2D + 1.6W	6.68 100 100	100 35.6 50.0	228.86 0 0	0.00 0.00 89 Member X
HORIZ	0.00	0.000 0 0	0 0.0 0.0	0.00 0 0	0.00 0.00 0
DIAG SAE - 2.5X2.5X0.1875	-7.99 1.2D + 1.6W 90	10.93 44 44	44 117.5 36.0	14.13 1 1	17.89 15.66 56 Member Z
	Force	Fy Fu phit	Pn Num Num	Shear Bear	Use
Max Tension Member	(KIP) Load Case	(ksi) (ksi) (k	ip) Bolts Holes	Cap (kip) Cap (kip) % Controls
LEG PST - 6" DIA PIPE	188.91 0.9D + 1.6W 60	50 65 251	1.10 0 0	0.00 0.00	0 75 Member
HORIZ	0.00	0 0 0	0.00 0 0	0.00 0.00	0 0
DIAG SAE - 2.5X2.5X0.1875	7.97 1.2D + 1.6W 90	36 58 24	1.08 1 1	0.00 15.66	33 Member
May Calico Forces	Force	Capacity Use	Num	No. 14 Trans	
Max Splice Forces	(kip) Load Case	(kip) %		Bolt Type	
			0		
Top Tension	143.87 0.9D + 1.6W 60	0.00 0	U		
Top Compression	156.52 1.2D + 1.6W	0.00 0			
•				A325	

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

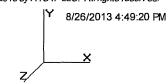


Section: 11 V-7	Bot Elev (fi	t): 200.0	Height (f	t): 20.000)			
				ph		Shear		
		en Bracing		F'y Pi		=	phiRn Use	
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R	(ksi) (k	ip) Bolts Ho	les (kip)	(kip) % Conti	rois
LEG PST - 5" DIA PIPE	-145.74 1.2D + 1.6W	6.68 100 100	100 42.6	50.0 169	9.43 0	0.00	0.00 86 Membe	er X
HORIZ	0.00	0.000 0 0	0 0.0	0.0	0.00 0	0.00	0.00 0	
DIAG SAE- 2X2X0.1875	-8.38 1.2D + 1.6W 90	9.430 44 44	44 126.4	36.0	9.99 1	1 17.89	15.66 83 Membe	er Z
May Tanaian Mambar	Force		t Pn Num		hear Bea		Controls	
Max Tension Member	(KIP) Load Case				p (kip) Cap (
LEG PST - 5" DIA PIPE	133.77 1.2D + 1.6W 60	50 65 1		0		0.00 69	Member	
HORIZ	0.00	0 0	0.00 0	0	_	0.00 0	\$4 I	
DIAG SAE - 2X2X0.1875	8.84 1.2D + 1.6W 90	36 58	17.97 1	1	0.00 15	5.66 49	Member	
Max Splice Forces	Force	Capacity Use	Nu		Tuna			
	(kip) Load Case	(kip) %			Type			
Top Tension Top Compression	78.34 0.9D + 1.6W 60 87.89 1.2D + 1.6W	0.00 0 0.00 0		0				
Bot Tension	143.87 0.9D + 1.6W 60	240.80 60		8 3/4 A3	325			
Bot Compression	156.52 1.2D + 1.6W	0.00 0		0 3/4 AC	323			
	100.02 1.25 1.017	0.00						
Section: 12 V-5	Bot Elev (fl	:): 220.0	Height (f	t): 20.000				
	Fauca 1	on Droot-a	0/	ph F'y Pr		Shear		
		en Bracing		•			phiRn Use	
Max Compression Member	(kip) Load Case	(ft) X Y	Z KL/R		ip) Bolts Ho		(kip) % Contr	rois
LEG PST - 4" DIA PIPE	-70.07 1.2D + 1.6W	6.67 100 100	100 53.0		6.18 0	0.00	0.00 60 Membe	er X
HORIZ		0.000 0 0	0 0.0		0.00 0	0.00	0.00 0	
DIAG SAE - 2X2X0.1875	-10.70 1.2D + 1.6W 90	8.333 44 44	44 113.8	36.0 11	1.72 1	1 17.89	15.66 91 Membe	er Z
	Force		t Pn Num		hear Bea		0 10-1-	
Max Tension Member	(KIP) Load Case	(ksi) (ksi) (kip) Bolts	Holes Ca	p (kip) Cap (l	kip) %	Controls	
LEG PST - 4" DIA PIPE	63.23 0.9D + 1.6W 60	50 65 14	42.65 0	0	0.00	.00 44	Member	
HORIZ	0.00	0 0	0.00 0	0	0.00	0.00		
DIAG SAE - 2X2X0.1875	10.42 1.2D + 1.6W 90	36 58	17.97 1	1	0.00 15	5.66 57	Member	
Max Splice Forces	Force	Capacity Use	Nu		••••			
	(kip) Load Case	(kip) %	Во	its Bolt T	ype			
Top Tension	12.78 0.9D + 1.6W 60	0.00 0		0				
Top Compression	16.70 1.2D + 1.6W	0.00 0		0 04				
Bot Tension Bot Compression	78.34 0.9D + 1.6W 60	180.60 43		6 3/4 A3	225			
BOT LOM DESSION	87.89 1.2D + 1.6W	0.00 0						

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1


Section: 13 V-5		Bot Elev (ft): 240	.0		Hei	ght (f	t): 15.	.000						
	Force		Len	Dr.	acing	• %		F'y	phi Pn Nu	um	Num	Shear phiRnv		Hea	
						•						•	•		
Max Compression Member	(kip)	Load Case	(ft)	X	Y	Z	KL/R	(ksi)	(kip) Bo	oits	Holes	(kip)	(kip)	%	Controls
LEG PST - 2-1/2" DIA PIP	-11.77	1.2D + 1.6W	5.00	100	100	100	63.4	50.0	57.18	0	0	0.00	0.00	20	Member X
HORIZ SAE - 2X2X0.1875	-0.66	1.2D + 1.6W	5.000	100	100	100	152.3	36.0	6.97	1	1	17.89	15.66	9	Member Z
DIAG SAE - 2X2X0.125	-2.94	1.2D + 1.6W 90	7.071	44	44	44	100.4	36.0	9.15	1	1	17.89	10.44	32	Member Z
	Force		Fy	Fu		it Pn	Num	Num	Shear	ı	3e ar	Use			
Max Tension Member	(KIP)	Load Case	(ksi)	(ks	i) (kip)	Bolts	Holes	Cap (kip)) Ca	p (kip)	%	Contr	ois	
LEG PST - 2-1/2" DIA PIP	9.37	1.2D + 1.6W 60	50		65	76.68	0	0	0.00		0.00	12	Membe	r	
HORIZ SAE - 2X2X0.1875	0.62	1.2D + 1.6W 60	36		58	17.97	1	1	0.00		15.66	3	Membe	r	
DIAG SAE - 2X2X0.125	3.03	1.2D + 1.6W 90	36		58	12.09	1	1	0.00		10.44	25	Membe	r	
	Force		Capac	ity	Use		Nu	m							
Max Splice Forces	(kip)	Load Case	(kip))	%_		Во	Its B	Bolt Type						
Top Tension	0.00		0.0	00	0			0							
Top Compression	0.46	1.2D + 1.0Di +	0.0	00	0)									
Bot Tension	12.78	0.9D + 1.6W 60	120.4	40	11			4 3	/4 A325						
Bot Compression	16.70	1.2D + 1.6W	0.0	00	0	1							¥		

Site Number: 281331 © 2007 - 2013 by ATC IPLLC. All rights reserved.

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Support Forces Summary

Load Case	Node	FX (kip)	FY (kip)	FZ (kip)	(-) = Uplift (+) = Down
1.0D + 1.0W Service 90 deg	1b	-10.10	-112.73	-5.38	
•	1a	-13.08	161.84	7.10	
	1	-0.78	24.56	-1.72	
1.0D + 1.0W Service 60 deg	1b	-11.56	-132.89	-6.67	
	1a	-8.35	103.28	4.05	
	1	-0.67	103.28	-9.26	
1.0D + 1.0W Service Normal	1b	-4.90	-56.33	-3.64	
	1a	4.90	-56.33	-3.64	
	1	0.00	186.32	-17.28	
	•	0.00	100.02	11120	
1.2D + 1.0Di + 1.0Wi 90 deg	1b	-1.78	22.49	-0.89	
	1a	-7.27	134.06	4.06	
	1	-0.23	78.27	-3.17	
1 2D ± 1 0Di ± 1 0M 50 do a	1b	-2.39	14.07	-1.38	
1.2D + 1.0Di + 1.0Wi 60 deg	1D 1a	-2.39 -5.41	14.07 110.38	-1.38 2.90	
	1	-0.20	110.37	-6.13	
1.2D + 1.0Dì + 1.0Wi Normai	1b	0.24	45.75	-0.10	
	1a	-0.24	45.75	-0.10	
	1	0.00	143.32	-9.20	
0.9D + 1.6W 90 deg	1b	-40.46	-470.95	-21.77	
	1a	-42.87	515.12	23.08	
	1	-2.84	22.12	-1.31	
0.9D + 1.6W 60 deg	1b	-45.72	-543.33	-26.39	
	1a	-25.84	304.82	12.09	
	1	-2.45	304.82	-28.43	
0.9D + 1.6W Normal	1b	-21.80	-268.39	-15.50	
	1a	21.80	-268.39	-15.50	
	1	0.00	603.07	-57.31	
l.2D + 1.6W 90 deg	1b	-40.01	-464.39	-21.52	
i.utt oo deg	1a	-43.33	523.30	23.35	
	1	-2.82	29.49	-1.83	
1.2D + 1.6W 60 deg	1b	-45.28	-536.90	-26.14	
	1a	-26.29	312.65	12.36	
	1	-2.44	312.65	-28.95	
1.2D + 1.6W Normai	1b	-21.36	-261.49	-15.24	
I.AD . I.OYY NOTHIAI	1a	21.36	-261.49 -261.49	-15.24 -15.24	
	1a 1	0.00	611.39	-15.24 -57.84	
	1	U.UU	011.35	-37.04	

Max Upiift: 543.33 (kip) Moment: 13,606.90 (ft-kip) 1.2D + 1.6W Normal

 Max Down:
 611.39 (kip)
 Total Down:
 88.40 (kip)

 Max Shear:
 57.84 (kip)
 Total Shear:
 88.32 (kip)

Location: McHenry KY, KY

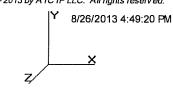
Code: ANSI/TIA-222 Rev G

Struct Class: II Exposure: C

Topo: 1

© 2007 - 2013 by ATC IP LLC. All rights reserved.

Y 8/26/2013 4:49:20 PM


© 2007 - 2013 by ATC IP LLC. All rights reserved.

Location: McHenry KY, KY

Code: ANSI/TIA-222 Rev G

Struct Class: II
Exposure: C
Topo: 1

Site Number: 281331

Deflections and Rotations

	Elevation	Deflection	Twist	Sway
Load Case	(ft)	(ft)	(deg)	(deg)
Serviceability - 60.00 Wind 60 deg	220.00	0.7344	0.0219	0.5022
	226.67	0.7945	0.0219	0.5292
	240.00	0.9202	0.0218	0.5507
	250.00	1.0163	0.0216	0.5558
Serviceability - 60.00 Wind 90 deg	220.00	0.7381	0.0127	0.5061
	226.67	0.7986	0.0127	0.5311
	240.00	0.9250	0.0126	0.5539
	250.00	1.0216	0.0126	0.5608
Serviceability - 60.00 Wind Normal	220.00	0.7502	0.0223	0.5122
Δ	226.67	0.8118	0.0222	0.5405
	240.00	0.9397	0.0222	0.5602
	250.00	1.0377	0.0221	0.5662
30.00 mph 60 deg with 0.75 in Radial Ice	220.00	0.3135	0.0094	0.2227
	226.67	0.3396	0.0094	0.2345
	240.00	0.3956	0.0093	0.2471
	250.00	0.4388	0.0092	0.2484
30.00 mph 90 deg with 0.75 in Radial Ice	220.00	0.3141	0.0054	0.2234
	226.67	0.3407	0.0054	0.2373
	240.00	0.3965	0.0054	0.2477
	250.00	0.4396	0.0053	0.2496
30.00 mph Normal with 0.75 in Radial Ice	220.00	0.3160	0.0095	0.2249
	226.67	0.3431	0.0095	0.2396
	240.00	0.3991	0.0094	0.2489
6	250.00	0.4424	0.0093	0.2493
90.00 mph 60 deg with No Ice (Reduced DL)	220.00	2.6383	0.0789	1.8026
	226.67	2.8545	0.0795	1.8999
	240.00	3.3039	0.0789	1.9749
	250.00	3.6487	0.0784	1.9944
90.00 mph 60 deg with No Ice	220.00	2.6453	0.0792	1.8086
. •	226.67	2.8622	0.0798	1.9063
	240.00	3.3133	0.0791	1.9819
	250.00	3.6593	0.0787	2.0014
90.00 mph 90 deg with No Ice (Reduced DL)	220.00	2.6485	0.0458	1.8134
(226.67	2.8649	0.0464	1.9014
	240.00	3.3170	0.0458	1.9851
	250.00	3.6631	0.0459	2.0099
90.00 mph 90 deg with No Ice	220.00	2.6555	0.0460	1.8195
	226.67	2.8726	0.0466	1.9081
	240.00	3.3264	0.0460	1.9921
	250.00	3.6737	0.0461	2.0170
90.00 mph Normal to Face with No Ice (Reduced DL)	220.00	2.6880	0.0804	1.8319
The state of the s	226.67	2.9064	0.0798	1.9330
	240.00	3.3665	0.0803	2.0064
	250.00	3.7172	0.0805	2.0270
90.00 mph Normal to Face with No Ice	220.00	2.6951	0.0807	1.8382
and the fact that the fact the fact the fact	226.67	2.9143	0.0800	1.9398
	240.00	3.3759	0.0806	2.0133
	250.00			
	200.00	3.7279	0.0808	2.0340

Page 17

 Site Number:
 281331
 © 2007 - 2013 by ATC IP LLC. All rights reserved.

 Location:
 McHenry KY, KY
 Y 8/26/2013 4:49:20 PM


 Code:
 ANSI/TIA-222 Rev G

<u>×</u>

Struct Class: II
Exposure: C

Topo: 1

250.00 0.0000 0.0000 0.0000

AMERICAN TOWER®

CORPORATION

ATC TOWER SERVICES, INC. 8505 FREEPORT PARKWAY SUITE 135 IRVING, TX 75063 PHONE: (972) 999-8900 / FAX: (972) 999-8940

281331 - MCHENRY KY, KY

PROJECT DESCRIPTION

PROPOSED NEW FOUNDATION DESIGN FOR A 255' "VALMONT" SELF-SUPPORTING TOWER.

AS-BUILT SIGN-OFF							
OESCRIPTION	SIGNATURE	OATE					
CONTRACTOR NAME							
CONTRACTOR REPRESENTATIVE (PRINT NAME)							
CONTRACTOR REPRESENTATIVE (SIGNATURE)							
REOEVELOPMENT P.M. (PRINT NAME)	7						
REOEVELOPMENT P.M. (SIGNATURE)							

SHEET TITLE

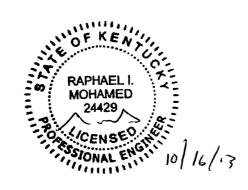
REV.

D	RO	\cap T	Q1	ANAL	ΛΔ	PV	•
_	\boldsymbol{T}	 	.71	HVIN	/1/-	T	

ATC PROJECT NUMBER: 54191373

CUSTOMER: OPERATIONS STRUCTURAL

CUSTOMER SITE NUMBER: N/A


CUSTOMER SITE NAME: N/A

SITE ADDRESS: TBD

MC HENRY, KY 42354-9739

DATE: 10/03/13

REVISION: 0

SHEET

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the state of Kentucky.

вом	BILL OF MATERIALS (1 PAGE)	0
IGN	IBC GENERAL NOTES	0
A-1	PIER AND MAT FOUNOATION OETAILS	0
A-RL	BAR LIST FOR REINFORCING STEEL AND GENERAL NOTES	0

ILANTITY	OHANTITY			BILL OF MATERIAL		PIECE	WEIGHT	
QUIRED	QUANTITY PROVIDED	PART NUMBER	DESCRIPTION	LENGTH	SHEET LIST	WEIGHT	(lb)	NOTES
			MATERIAL & HARDWARE					
39	39	-	#5 REBARS, GRADE 60	10'-5 1/2"	A-1, A-RL	10.9	425	
54	54		#9 REBARS, GRADE 60 #9 REBARS, GRADE 60	7'-3 1/2"	A1, A-RL A1, A-RL	24.8	1339	
152	152	-	#9 REBARS, GRADE 60	37'-6"	A1, ARL	127.5	19380	· ·
	-			· · · · · · · · · · · · · · · · · · ·				
								
							+	
						 	++	
					·			
						 	1	
***************************************							1	
							 	
						- 	 	
						 	 	
	 					+	 	
						 	 	
		::::::::::::::::::::::::::::::::::::::				+	 	
						 		
		· · · · · · · · · · · · · · · · · · ·				1	 	
						-		
				7,		1		
			and the second s					
							ļ — l	
	<u> </u>							
						 		
						+	 	
						 		
·		· · · · · · · · · · · · · · · · · · ·				 		
						 	 	
•								
			a. 			1		
						1		
						<u> </u>	ļl	
						•	1 1	

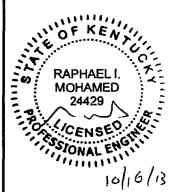
AMERICAN TOWER*

ATC TOWER SERVICES, INC.

ATC TOWER SERVICES, INC.

8505 FREEPORT PARKWAY
SUITE 135
IRVING, TX 75063
PHONE: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972) 999-8900
FAX: (972

REV.	DESCRIPTION	BY	DAIL
 A ∃	RST ISSUE	DH	10-03-13
Λ			
$\overline{\wedge}$			
$\overline{\lambda}$			
$ \mathcal{V}_{-} $			·····


ATC SITE NUMBER:

281331

ATC SITE NAME: MCHENRY KY, KY

SITE ADDRESS:

MC HENRY, KY 42354-9739

RAWN BY:	DH	
PPROVED BY:		
ATE DRAWN:	10-03-13	
OB NO:	54191373	
UPPET TITLES		

BILL OF MATERIALS

SHEET NUMBER:

BOM

REV.#

GENERAL

- ALL METHODS, MATERIALS AND WORKMANSHIP SHALL FOLLOW THE DICTATES OF GOOD CONSTRUCTION PRACTICE.
- ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION.
- THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS. DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- 4. ANY SUBSTITUTIONS MUST CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS, AND SHOULD BE SIMILAR TO THOSE SHOWN. ALL SUBSTITUTIONS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 5. ANY MANUFACTURED DESIGN ELEMENTS MUST CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS AND SHOULD BE SIMILAR TO THOSE SHOWN. THESE DESIGN ELEMENTS MUST BE STAMPED BY AN ENGINEER PROFESSIONALLY REGISTERED IN THE STATE OF THE PROJECT, AND SUBMITTED TO THE ENGINEER OF RECORD FOR APPROVAL PRIOR TO FARRICATION
- ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY, PER TIA-1019-A-2011, TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS.
- CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.

STRUCTURAL STEEL

- ALL DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATIONS, LATEST EDITION.
- ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- ALL U-BOLTS SHALL BE ASTM A307 OR EQUIVALENT, WITH LOCKING DEVICE, UNLESS NOTED OTHERWISE.
- 4. FIELD CUT EDGES, EXCEPT DRILLED HOLES, SHALL BE GROUND SMOOTH.
- ALL FIELD CUT SURFACES AND FIELD DRILLED HOLES SHALL BE REPAIRED WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A760 AND MANUFACTURERS RECOMMENDATIONS.
- ALL FIELD DRILLED HOLES TO BE USED FOR FIELD BOLTING INSTALLATION SHALL BE STANDARD HOLES, AS DEFINED BY AISC, UNLESS NOTED OTHERWISE.

WELDING

- ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE (100% IF REJECTABLE DEFECTS ARE FOUND) TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- 3. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- 6. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING 1/2" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A760 AND MANUFACTURERS RECOMMENDATIONS.

BOLT TIGHTENING PROCEDURE

- STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC-2004 (SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM A325 OR ASTM A490 BOLTS.)
- TIGHTEN FLANGE BOLTS BY AISC "TURN-OF-THE-NUT" METHOD, USING THE CHART BELOW:

BOLT LENGTHS UP TO AND INCLUDING FOUR DIAMETERS

1/2"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
5/8°	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
3/4"	BOLTS UP TO AND INCLUDING 3.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
7/8*	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS UP TO AND INCLUDING 4.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS UP TO AND INCLUDING 5.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS UP TO AND INCLUDING 5.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS UP TO AND INCLUDING 6.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIAMETERS BUT NOT EXCEEDING EIGHT DIAMETERS

1/2"	BOLTS 2.25 TO 4.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
5/8"	BOLTS 2.75 TO 5.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
3/4"	BOLTS 3.25 TO 6.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
7/8"	BOLTS 3.75 TO 7.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1"	BOLTS 4.25 TO 6.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS 4,75 TO 9.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS 5,25 TO 10.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS 5.75 TO 11.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS 6,25 TO 12.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT

SPLICE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED
AS PER SECTION 6.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING
A325 OR A490 BOLTS", LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE
INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 6.2.1 THROUGH 8.2.4.

6.2.1 TURN-OF-NUT PRETENSIONING
BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND
BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1, UNTIL
ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION
IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN
THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE
AMOUNT OF ROTATION SPECIFIED ABOVE. DURING THE TIGHTENING

OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

 ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.

ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT UNDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT. THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.

PAINT

 AS REQUIRED, CLEAN AND PAINT PROPOSED STEEL ACCORDING TO FAA ADVISORY CIRCULAR AC 70/7480-1K.

APPLICABLE CODES AND STANDARDS

- ANSI/TIA: STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES. 222-G EDITION.
- 2. 2006 INTERNATIONAL BUILDING CODE.
- 2007 KENTUCKY BUILDING CODE.
- ACI 316: AMERICAN CONCRETE INSTITUTE, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE, 318-05.
- CRSI: CONCRETE REINFORCING STEEL INSTITUTE, MANUAL OF STANDARD PRACTICE, LATEST EDITION.
- AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION, MANUAL OF STEEL CONSTRUCTION, LATEST EDITION.
- AWS: AMERICAN WELDING SOCIETY D1.1, STRUCTURAL WELDING CODE, LATEST EDITION.

	SUMMARY OF SPECIAL INSPECTIONS				
	VERIFICATION AND INSPECTION TASK	CONTINUOUS	PERIODIC		
1.	VERIFY PLACEMENT LOCATIONS AND PLUMBNESS, CONFIRM ELEMENT DIAMETERS, BELL DIAMETERS (IF APPLICABLE), LENGTHS, EMBEDMENT INTO BEDROCK (IF APPLICABLE), AND ADEQUATE END-BEARING STRATA CAPACITY. RECORD CONCRETE OR GROUT VOLUMES.	x	_		
2.	INSPECTION OF REINFORCING STEEL, INCLUDING PRESTRESSING TENDONS, AND PLACEMENT.		x		
3.	INSPECTION OF BOLTS TO BE INSTALLED IN CONCRETE PRIOR TO AND DURING PLACEMENT OF CONCRETE WHERE ALLOWABLE LOADS HAVE BEEN INCREASED OR WHERE STRENGTH DESIGN IS USED.	X	-		
4.	VERIFYING USE OF REQUIRED DESIGN MIX.	-	х		
5.	AT THE TIME FRESH CONCRETE IS SAMPLED TO FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE.	X			

AMERICAN TOWER*

I ATC TOWER SERVICES, INC.

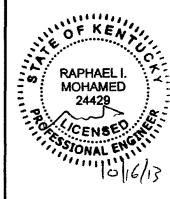
8505 FREEPORT PARKWAY SUITE 135 IRVING, TX 75063 PHONE: (972) 999-8900 FAX: (972) 999-8940 NYSE AMT

NYSE AMT

THESE DRAWNOS AMO/ON THE ACCOMPANYING
SPECIFICATION AS INSTRUMENTS OF SERVICE ARE THE
EXCLUSIVE PROPERTY OF ATC TOWER SERVICES, INC.
THER USE AND PUBLICATION SHALL BE RESTRICTED TO
THE CRICANL SITE FOR WHICH THEY ARE PREPARED.
ANY USE OR DISCLOSURE OTHER THAN THAT WHICH
RELATES TO ATC TOWER SERVICES, INC OR THE SPECIFIED
CARRER IS STREETLY PROMBITED. THE OTHESE
DOCUMENTS SHALL RELIAN THE PROPERTY OF ATC TOWER
SERVICES, INC WHITHER OF NOT THE PROJECT IS
EXECUTED. NETHER THE ARCHITECT NOR THE ENGINEER
WILL BE PROVIDING ON-SITE CONSTRUCTION REWEW OF
THIS PROJECT. CONTRACTORYS JUST VERBY AND
DISCREPANCES, MY PROR ISSUANCE OF THIS
DRAWNOR IS SUPERSECTED BY THE LATEST VERSION ON
FRE WITH ATC TOWER SERVICES, INC.

THE DESCRIPTIONS.

REV.	DESCRIPTION	BY	DATE
Δ£	IRST ISSUE	DH	10-03-13
Δ			
Δ_{-}			
Δ			
17			


ATC SITE NUMBER: 281331

ATC SITE NAME:

MCHENRY KY, KY

SITE ADDRESS:

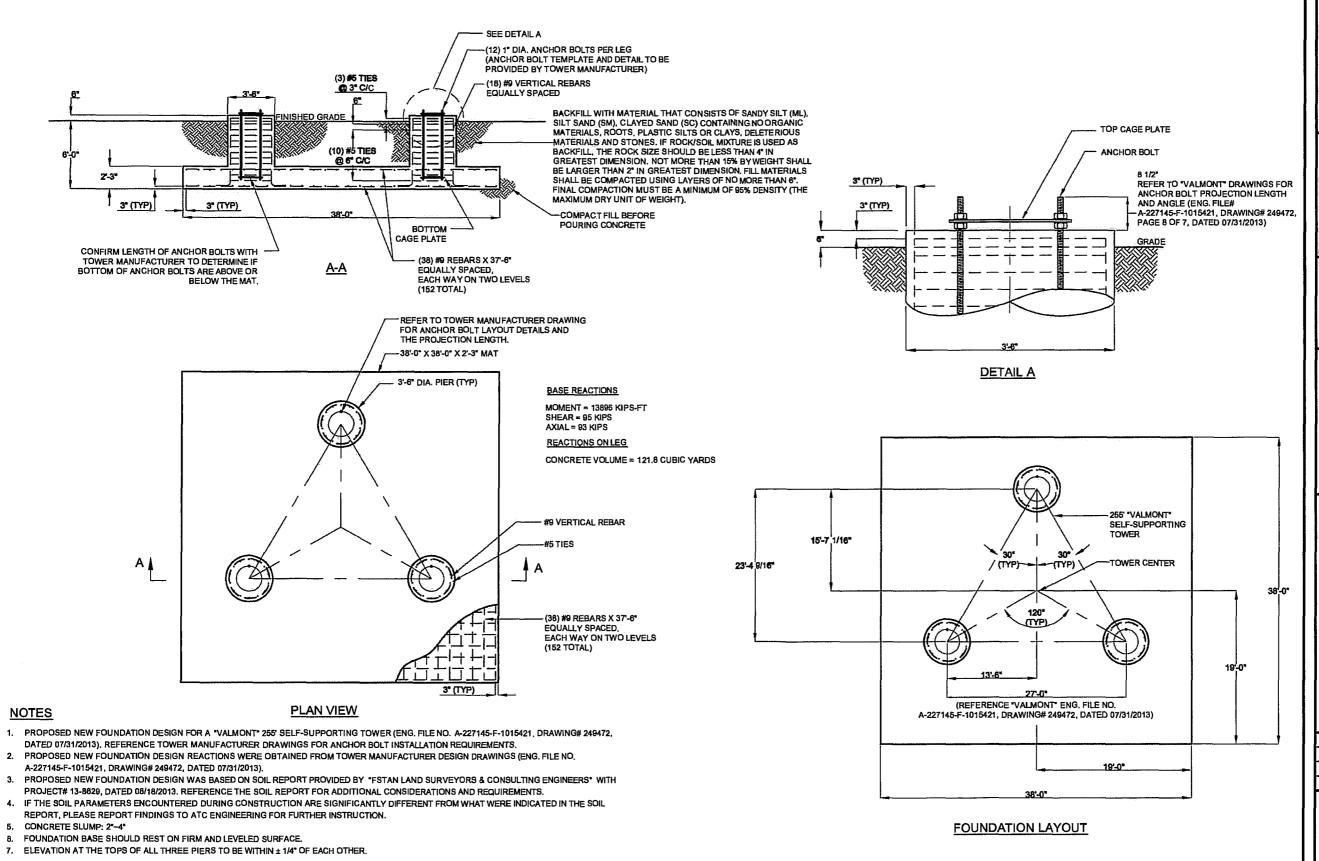
MC HENRY, KY 42354-9739

DRAWN BY: DH

APPROVED BY:

DATE DRAWN: 10-03-13

JOB NO: 54191373


SHEET TITLE:

IBC GENERAL NOTES

SHEET NUMBER:

0

REV.#

AMERICAN TOWER

ATC TOWER SERVICES, INC.

8505 FREEPORT PARKWAY IRVING, TX 75063 PHONE: (972) 999-8900 FAX: (972) 999-8940 NYSE AMT

NYSE AMT
THESE DRAWNOS AND/OR THE ACCOMPANING
SPECIFICATION AS INSTRUMENTS OF SERVICE ARE THE
EXCLUSIVE PROPERTY OF AIC TOWER SERVICES, INC.
THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO
THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED.
ANY USE OR DISCLOSINE OTHER THAN THAT WHICH
RELATES TO AIC TOWER SERVICES, INC OR THE SPECIFIE
CARRER IS STRICTLY PROHIBITED. TITLE TO THESE
DOCUMENTS SHALL REMAIN THE PROPERTY OF AIC TOWES
SERVICES, INC WHITHER OR NOT THE PROPERTY OF AIC TOWES
SERVICES, INC WHITHER OR ANOTHER PROPERTY OF AIC TOWES
SERVICED. METHER THE ARCHITECT FOR THE ENGINEER
WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF
THIS PROJECT. CONTRACTORS USES VERYE ALL
DIMENSIONS AND ADVISE AIC TOWER SERVICES, INC OF
ANY DISCREPANCIES. ANY PEROR ISSUANCE OF THIS
DRAWNIC IS SUPPRISEDED BY THE LATEST VERSION ON
PLES OF THE

REV.	DESCRIPTION	BY	DATE
Δ FI	RST ISSUE	DH	10-03-13
Δ			

ATC SITE NUMBER: 281331

ATC SITE NAME:

MCHENRY KY, KY

SITE ADDRESS:

MC HENRY, KY 42354-9739

DRAWN BY: APPROVED BY: DATE DRAWN: 10-03-13 54191373 JOB NO:

SHEET TITLE:

PIER AND MAT FOUNDATION **DETAILS**

SHEET NUMBER:

N.T.S.

A-1

REV.#

QTY REQ'D	REBAR SIZE	LENGTH	TOTAL WEIGHT (LBS)	ТҮРЕ			BENDING DIAG	RAM	
39	#5	- 10 ' - 5 1/2"	425	ROUND TIE	3'-0" 1'-			В	A
54	#9	7'-31/2"	1339	90° BEND VERTICAL	A B 5'-9" 1'-95		D 5'-31/2"	INSIDE RADIUS 4-1/2"	A D INSIDE RADIUS
		-	-	SQUARE OR RECTANGULAR TIE	A B	C	INSIDE RAD.		INSIDE RADIUS C C
-	-	-	-	U-SHAPE 90° BEND	A B	С	D	INSIDE	INSIDE RADIUS D A
152	- #9	37 '- 6"	19380	STRAIGHT	A 37 '- 6"		<u></u>	Α	

GENERAL FOUNDATION CONSTRUCTION NOTES

- ALL REBAR (HORIZONTAL & VERTICAL) SHALL BE SECURELY WIRE TIED TO PREVENT DISPLACEMENT DURING POURING OF CONCRETE.
- 2. CONCRETE TO HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4,500 PSI AT 28 DAYS AND A MAXIMUM W/CM RATIO NOT EXCEEDING 0.45.
- 3. REINFORCED CONCRETE CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH ACI
- 4. MINIMUM CONCRETE COVER OVER REBAR IS 3".
- 5. BACKFILL SHALL BE SELECTED MATERIAL, WELL COMPACTED IN LAYERS NOT EXCEEDING 12".
- 8. BACKFILL SHALL BE PLACED SO AS TO PREVENT ACCUMULATION OF WATER AROUND THE FOUNDATION.
- 7. REINFORCING MATERIAL SHALL BE IN ACCORDANCE WITH ASTM SPECIFICATION A615-85.
- 6. ALL REBAR TO BE GRADE 60 (UNLESS NOTED).

FOUNDATION AND ANCHOR TOLERANCES

- 1. VERTICAL EMBEDMENTS OUT OF PLUMB: 1.0 DEGREE.
- 2. DRILLED FOUNDATION OUT OF PLUMB: 1.0 DEGREE.
- 3. DEPTH OF FOUNDATION: PLUS 3" (76mm) OR MINUS 0".
- 4. PROJECTIONS OF EMBEDMENTS: PLUS OR MINUS 1/4" (6mm).
- 5. CONCRETE DIMENSIONS: PLUS OR MINUS 1" (25mm).
- 6. REINFORCING STEEL PLACEMENT: PLUS OR MINUS 1/2" INCLUDING CONCRETE COVER.
- 7. TOP LEVELS OF ALL THREE PIERS FROM EACH OTHER: PLUS OR MINUS 1/4"
- 6. FOLLOWING ARE THE MINIMUM OVERLAP LENGTHS OF REBARS IF REQUIRED:

#6 BARS = 2'-0"

#8 BARS = 2'-8" #9 BARS = 3'-0"

#10 BARS = 3'-8" #11 BARS = 4'-0"

AMERICAN TOWER

A.T. ENGINEERING SERVICES, PLLC

8505 FREEPORT PARKWAY SUITE 135 IRVING, TX 75083

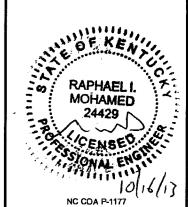
IRVING, TX 75083

PHONE: (972) 999-8900

FAX: (972) 999-8940

NYSE AMT

THESE CRAINES AND/OR THE ACCOMPANING
SPECFEATION AS INSTRUMENTS OF SERVICE AND THE EXCLUSIVE PROPERTY OF AIC TOWER SERVICES, INC.
THER USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY AMP PREPARED. ANY USE OR DISCLOSINE OTHER THAN THAT WHICH RELATES TO AIC TOWER SERVICES, INC. OR THE SPECFEE CARRIER IS STRICTLY PROHIBITED. THE THAT HAT WHICH RELATES TO AIC TOWER SERVICES, INC. OR THE SPECFEE CARRIER IS STRICTLY PROHIBITED. THE PROJECT IS EXECUTED. NETHER THE AND HITC PROPERTY OF AIC TOWER SERVICES, INC WHETHER THE AND HITC CONTROLLOR OF WEWEW OF THIS PROJECT. CONTRACTOR(S) MUST VERBLY ALL DIMERSONS AND ADMES AIC TOWER SERVICES, INC. OF THIS DRAINING IS SUPERSECTED BY THE LATEST VERSION ON FILE WITH AIC TOWER SERVICES, INC.


FILE WITH	FILE WITH ATC TOWER SERVICES, INC.								
REV.	DESCRIPTION	BY	DATE						
Δ£	IRST ISSUE	JL_	9/18/13						
Λ_{-}									
$ abla^-$									
$\overline{\Lambda}$									
$\overline{\wedge}$									

ATC SITE NUMBER: 280358

ATC SITE NAME:

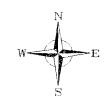
PILOT RILEY NC, NC

SITE ADDRESS: PERRY RD ZEBULON, NC 27597-6316

DRAWN BY: APPROVED BY: RAM DATE DRAWN: 9/18/13 54498071A JOB NO:

SHEET TITLE:

BAR LIST FOR REINFORCING STEEL AND GENERAL NOTES


SHEET NUMBER:

REV.# 0

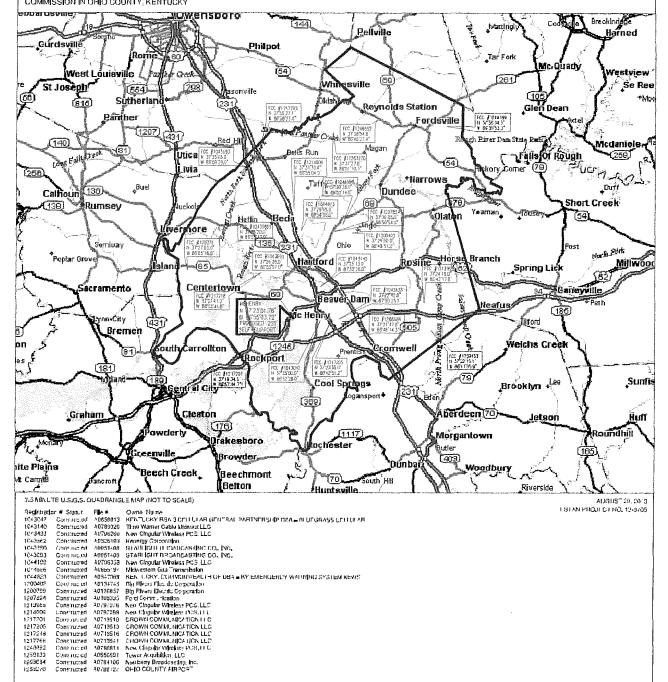
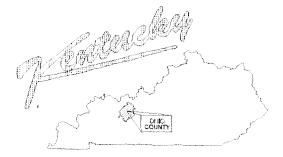

A-RL

EXHIBIT D COMPETING UTILITIES, CORPORATIONS, OR PERSONS LIST AND MAP OF LIKE FACILITIES IN VICINITY

OHIO COUNTY, KENTUCKY AT&T SITE NAME: MCHENRY TOWER LOCATION EXHIBIT

TOWERS DEPICTED ARE ALL KNOWN CONSTRUCTED TOWER SITES REGISTERED WITH THE FEDERAL COMMUNICATIONS COMMISSION IN OHIO COUNTY, KENTUCKY



40556591 40784106 40788127

T Alan Neal Company Land Surveyors and Consulting Engineers

P.B. Box 17546 7313/2315 Crittended Dive, Louisvile, Kr. 48217 Phone: (802) 635-5896 (802) 636-5111 Fox (902) 636-5263

EXHIBIT E CO-LOCATION REPORT

281331 McHenry

TAX INFO

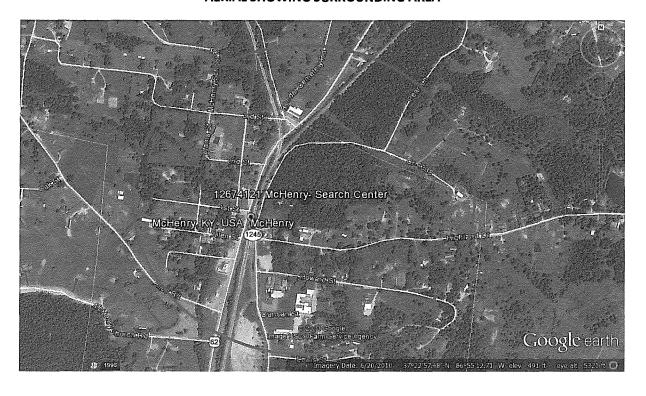
Parcel # 118-112, 118-113, & 118-115

93 Pearl Lane

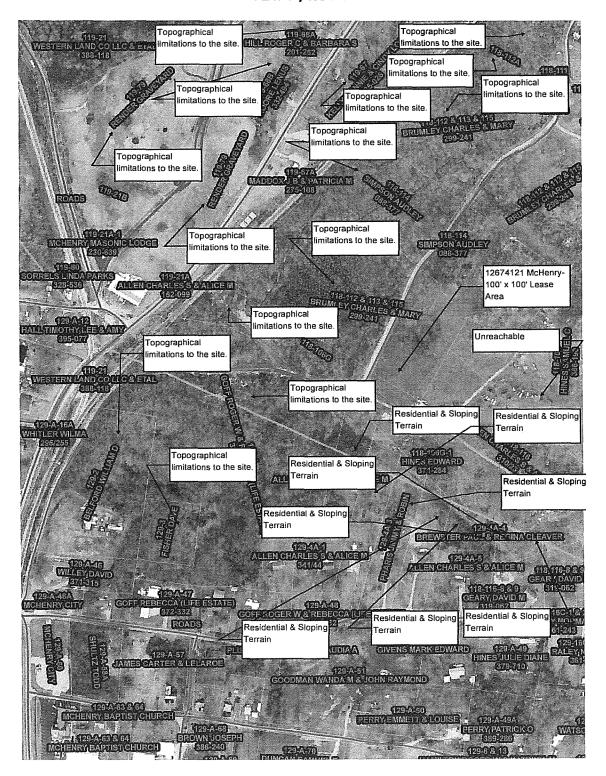
Beaver Dam, KY 42320

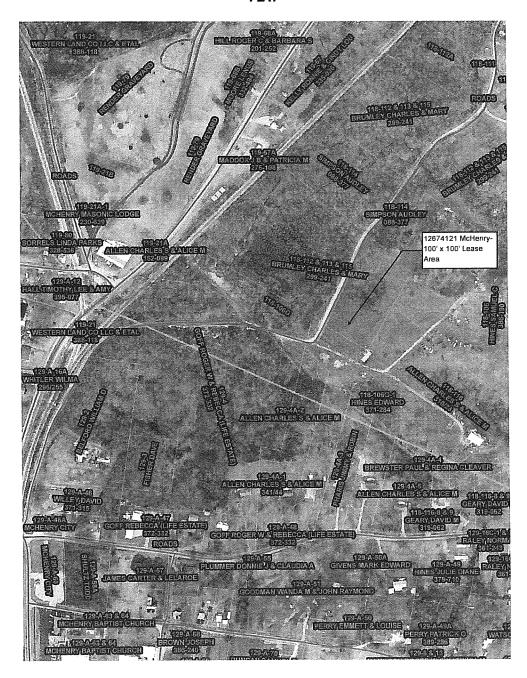
There are no FCC registered structures within the search area or within an additional one mile radius. Search Ring Center: 37.382583 N, -86.920722 W

SUMMARY OF CHOSEN SITE

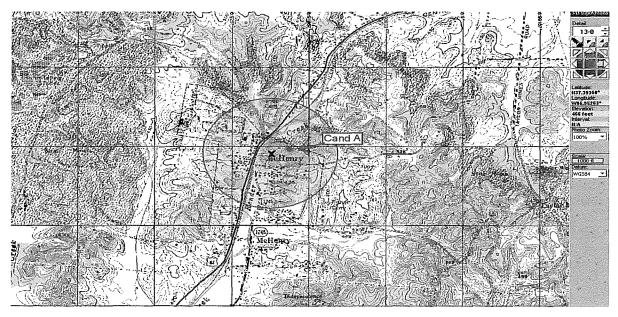

Within the search ring there are no existing structures to be noted. The search ring is comprised of mainly rural residential neighborhoods. The area chosen is close to the top of the hill and the furthest away from the existing houses in the area and has natural screening in all directions. This parcel was chosen as it had an existing access off of the road and was within the search ring. Power and telephone facilities are located nearby. Ohio County, KY has no zoning or permitting requirements.

This site meets RF objectives. The landlord owns most of the Search Ring. The closest house to the proposed location is owned by the landlord and they want to have the site on their property. Below is a Brisn K Ran 7 map of the search ring identifying Candidate A. Brian Ramirez-Site Acquisition


SITE SKETCH

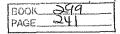


AERIAL SHOWING SURROUNDING AREA



PLAT W/ NOTES

TOPO MAP



McHenry 37.382583 -86.920722

FEMA MAP

DEED (2 Pages)

93 Par/LANCE

DEED OF CORRECTION

WHEREAS, Lora Moore did, by Deed dated July 10, 1991, sell and convey certain property therein described to Charles Brumley and Mary Brumley, his wife, which Deed is recorded in Deed Book 277 at Page 674, Ohio County Clerk's Office, and

WHEREAS, one parcel of the land in said Deed is incorrectly described because it contains erroneous survey calls and for the purpose of correcting the description of Tract I of Parcel C of said Deed, NOW THEREFORE, this Deed of Correction, made and entered into this ______ day of October, 1995, by and between LORA MOORE, a widow, McHenry, Kentucky 42354, GRANTOR, and CHARLES BRUMLEY and MARY BRUMLEY, his wife, 93 Pearl Lane, Beaver Dam, Kentucky 42320, GRANTEES:

WITNESSETH:

THAT FOR AND IN CONSIDERATION of the purchase money previously paid, and in order to correct the description of Tract I of Parcel C in Deed Book 277 at Page 674 of record in the Office of the Ohio County Clerk, the receipt and sufficiency of which is hereby acknowledged, the GRANTOR has bargained and sold and does by these presents transfer, alien, grant, sell and convey unto the said Grantees, for and during their joint lives with the remainder in fee simple to the survivor of them, his or her heirs and assigns forever, the following real estate, situate and lying in Ohio County, Kentucky, and more particularly described as follows, to-wit:

Beginning at iron stake at the I.C. Rail Road Company right away corner to Dan Moore and with his line, thence S. 66-15 E. 1185 feat to iron stake S. 23-45 W. 181 feet to iron stake corner to Kenneth Phipps, thence with his line N. 66-30 W. 1238 feet to an iron stake at the I.C. Rail Road right away, thence with right of way N. 35-25 E. 190 feet to the beginning containing 4 acres more or less. Part of Parcel 68-B.

TO HAVE AND TO HOLD the above described property together with all the appurtenances and privileges thereunto belonging unto the Grantees, for and during their joint lives with remainder in fee simple to the survivor of them, his or her heirs and assigns forever, with Covenant of GENERAL WARRANTY OF TITLE.

LESSIE R. JOHNSON

	BOOK 299	-
į	PAGE <u>242</u>	

By their signatures hereon, the Grantor and Grantees hereby join in the execution of hereof in order to ratify and confirm the corrected description of the property conveyed herein, and to correct the description of Tract I of Parcel C in the Deed to Charles Brumley and Mary Brumley, his wife by Deed from Lora Moore, a widow, dated July 10, 1991, and recorded in Deed Book 277 at Page 674, which parcel was incorrectly described therein and is correctly described Merein and they certify no additional sum of money was paid for this Deed. The Grantees sign this deed solely to comply with the consideration certification required by KRS Chapter 382 and for no other purpose.

IN TESTIMONY WHEREOF, witness the signatures of the Grantor, and the Grantees, this the day and year first above written.

GRANTOR:	FILED FOR RECORD
Low Mosre.	7.30 O'Clock A · M. and recorded in Alexandria Alexandr
LORA MOORE, a widow	Attest Lessie R. Johnson, Clerk D.C
GRANTEES:	Ву
Charles Brumley	MARY BRYSLEY, his wife
STATE OF KENTUCKY COUNTY OF OHIO	
Acknowledged and sworn to b October, 1995, by LORA MOORE, a	
My commission expires:	NOTARY PUBLIC 1-23-16
STATE OF KENTUCKY COUNTY OF OHIO	
Acknowledged and sworn to b October, 1995, by CHARLES BRUMLE	pefore me this <u>33</u> day of MARY BRUMLEY, his wife.
,	Las Mille
My commission expires:	MOTAN PUBLIC

I certify this instrument was prepared by E. Glenn Miller, Attorney at Law, P.O. Box 83, Fleener Building, Hartford, Kentucky

PARCEL INFORMATION

Ohio COUNTY PVA OFFICE 301 Main Street Hartford, Kentucky 42347

Wednesday, May 01, 2013

Name and Address BRUMLEY CHARLES & MARY 93 PEARL LANE BEAVER DAM KY 42320

Map Number 118-112 & 113 & 115
Property Address PEARL LN 93

Description MODULAR/27.75 AC/MTL BLDG

District County
Class Farm
Acres 27,75

Land \$114,600

Improvements \$0

Land and Improvements \$114,600

Exemption \$36,000 Taxable Value \$78,600

Fair Cash Value \$132,600

Deed Number 299-241

Sale Date

Previous Owner

Authorized Signature

PICTURES (on following pages)

Looking NORTH at Site

Looking SOUTH at Site

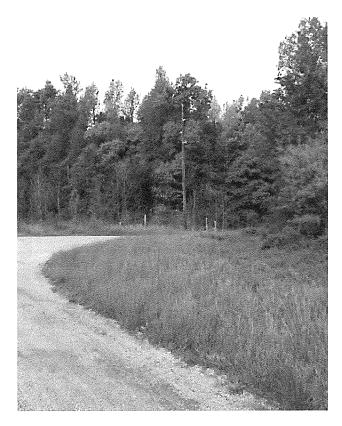
Looking EAST at Site

Looking WEST at Site

Looking NORTH from Site

Looking SOUTH from Site

Looking EAST from Site


Looking WEST from Site

Proposed Access Road

View of Lease Area

Power

Telco

EXHIBIT F FAA

Federal Aviation
Administration
Administration

Due to a government shutdown the Federal Aviation A Iministration (FAA) Obstruction
Federal Aviation Group (OFG) is correctly closed. This closure prevents us from processing any new or previously submitted applications for off-airport filings under 14 CFR Part 77. Upon returning the FAA OFG staff will process applications in order based on the date they were filed.

« OF/AAA

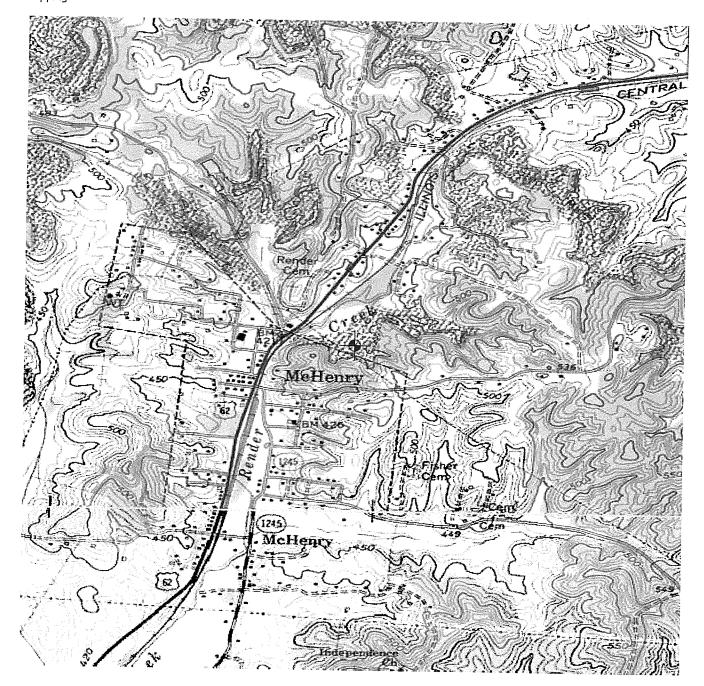
Form 7460-1 for ASN: 2013-ASO 7493-OF have a valid FAA issued determination, and you are calling to have a NOTAM Issued, please call: (202) 267-9354.

For information only.

This proposal has not yet been studied. Study outdoores will be posted at a later date. Public comments are not requested, and will not be considered at this time.

74.00 (40 mg/s)		AND LANGE				
Overview						
Slimly (ASN): 2013-ASO-7493-OE	Received Date: NR/27/2013					
Prior Study:	Entered Date: 08/27/2013					
Status: Wirk In Pringress	Mag: Vsesov Mags					
Construction Info	Structure Summary					
Natice Of: CONSTR	Stroid ore Type: Antenna Tower					
Duration: PERM (Months: A Days: A)	Structure Name: MCHENRY KY (281831)					
Work Schedule:	FCC Number:					
Structure Details	Height and Elevation					
alilinle (NAD 83): 37°23' 01.78" N	Ргоро	se				
mryilmle (NAN 83): 86° 55′ 03.72" W	Site Elevation:	24				
Dalum: NAD 83	Structure Height:	26				
CILY: MC HENRY		70				
State: KY	• • •	~~				
Nearest Country: Ohio	Frequencies					
	Luw Frey High Frey Helf FRP Huit					
	698 806 MHz 1000 W					
	806 824 MHz 500 W					
	824 849 MHz 500 W					
	851 866 MH∠ 500 W					
	869 894 MHZ 500 W					
	896 901 MHZ 500 W					
	901 902 MH2 7 W					
	930 931 MHz 3500 W					
	931 932 MH ₂ 3500 W					
	932 932,5 MHz 17 dBW					
	935 940 MHz 1000 W					
	940 941 MHz 3500 W					
	1850 1910 MH∠ 1640 W					
	1930 1990 MHz 1640 W					
	2305 2310 MH∠ 2000 W					
	2345 2360 NHz 2000 W					

EXHIBIT G KENTUCKY AIRPORT ZONING COMMISSION


KENTUCKY TRANSPORTATION CABINET

TC 56-50 Rev. 07/2010 Page 2 of 2

KENTUCKY AIRPORT ZONING COM MISSION

APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

American Towers, Inc. ADDRESS (street) CITY STATE ZIP	APPLICANT (name)		PHONE	FAX	KY AERONAUTICAL	.STUDY#	
### APPLICANT'S REPRESENTATIVE (name) PHONE FAX ADDRESS (street) CITY STATE ZIP APPLICATION FOR New Construction Atteration Existing WORK SCHEDULE BURATION Permanent Temporary (months days) Start End TYPE Crane Quilding MARKING PAINTING LIGHTING PREFERSED Antenna Tower Red Lights & Paint White-medium intensity White-high intensity Bower Line Water Tank Dual-red & medium intensity white Dual-red & high intensity white LATITUDE LONGITUDE S6°55'3.72" Other LATITUDE LONGITUDE S6°55'3.72" Other WERREST KENTUCKY NEAREST KENTUCKY PUBLIC USE OR MILITARY AIRPORT OVERALL HEIGHT (site elevation plus total structure height, feet) OURSENT (FAA aeronautical study #) OVERALL HEIGHT (site elevation plus total structure height, feet) OURSENT (FAA aeronautical study #) DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KY aeronautical study #) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) FEAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) DESCRIPTION OF PROPOSAL PROPOSAL PROPOSAL PROPIOSAL P	` '		(781) 926-7126				
APPLICANT'S REPRESENTATIVE (name) PHONE FAX	ADDRESS (street)		aty		STATE	ZΙΡ	
ADDRESS (street) APPLICATION FOR New Construction Alteration Stating WORK SO-HEDULE DURATION Permanent Temporary (months days) Start End TYPE Crane Building MARAING/ PAINTING/ LIGHTING PRETHEND Antenna Tower Bed Lights & Paint White medium intensity White-high intensity white Dual- red & high intensity white Landfill Other Cher LIGHTINDE STATE DUAL- red & medium intensity white Dual- red & high intensity white LIGHTINDE STATE DUAL- Red Lights & Paint William NADB3 NAD27 37°23°1.78° Be5°55°3.72° Dother NEAREST KENTUCKY City MCHENRY County OHIO STEELEVATION (AMSL, feet) OVERALL HEIGHT (site elevation plus total structure height, feet) 706 OVERALL HEIGHT (site elevation plus total structure height, feet) PREVIOUS (KY aeronautical study #) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach US3S7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Rease see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CHIRTICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PREVIOUS (KFS aeronautical study in the previous of my knowledge and belief.) PREVIOUS (FaA aeronautical study #) DESCRIPTION (From preasons the previous of the best of my knowledge and belief.) No Yes, when? 08/27/2013 CHIRTICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) No complete the previous of	• •		Woburn		MA	01801	
APPLICATION FOR New Construction Alteration Existing WORK SCHEDULE DURATION Permanent Temporary (months days) Start End TYPE Cane Building MARKING PAINTING LIGHTING FREHENED Antenna Tower Red Lights & Paint White- medium intensity White- high intensity Dual- red & medium intensity white Dual- red & high intensity white Landfill Other Dual- red & high intensity white Dual- red & high intensity white Landfill Other DOINGTUDE DATUM NADBS NAD27 37°23'1.78" 86°55'3.72" Other NEAREST KENTUCKY NEAREST KENTUCKY PUBLIC USE OR MILITARY AIRPORT CITY MCHENRY County OHIO STERLEVATION (AMS., feet) TOTAL STRUCTURE HEGHT (ACL, feet) CURRENT (FAA aeronautical study #) 265 OVERALL HEIGHT (site elevation plus total structure height, feet) PREVIOUS (FAA aeronautical study #) TOS DISTANCE (from nearest Kentucky public use or Military airport to structure) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USSS7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Pease see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PREVIOUS (KP aeronautical study #) CERCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) No Manuel Start End Nother End & Path Manuel Start End Nother End & Path Manuel Start End Nother End & Path Manuel Start End Nother End & Path Manuel Start End NAD27 OUTAL STRUCTURE HEGHT (ACL, feet) CURRENT (FAA aeronautical stud	APPLICANT'S REPRESEN	TATIVE (name)	PHONE	FAX			
DURATION Permanent Temporary (months days) Start End TYPE Crane Building MARKING PAINTING LIGHTING PRETENCE) Antenna Tower Ped Lights & Paint White-medium intensity White-high intensity Power Line Water Tank Dual- red & medium intensity white Dual- red & high intensity white Landfill Other Dual- red & medium intensity white Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high intensity Dual- red & high i	ADDRESS (street)		ату		STATE	ZΡ	
Antenna Tower Red Lights & Paint White-medium intensity White-high intensity Power Line Water Tank Dual-red & medium intensity white Dual-red & high intensity white Landfill Other Cher DNGTIUDE DATUM NAD83 NAD27 37-231.78" 86-55-3.72" Other Ot							
Power Line		Building					
□ Landfill □ Other □ Other LATITUDE 37°23′1.78″ 36°55′3.72″ □ Other NEAREST KENTUCKY OLY OHIO STEELEVATION (AMSL, feet) 107AL STRUCTURE HBGHT (AGL, feet) 2013-ASO-7493-OE OVERALL HBGHT (site elevation plus total structure height, feet) 2013-ASO-7493-OE OVERALL HBGHT (site elevation plus total structure height, feet) PREVIOUS (FAA aeronautical study #) DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KYaeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach US3S7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) PESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No □ Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KFS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	🔀 Antenna Tower						
37°23'1.78" 86°55'3.72" □ Other NEAREST KENTUCKY City MC HENRY County OHIO STEELEVATION (AMS., feet) 441 265 OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) PRESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No □ Yes, when? 08/27/2013 DERITHCATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KFS 183.990 (3). Noncompliance with FAA regulations may result in further penalties.)				dium intensity white	☐ Dual- red & hi	gh intensity white	
NEAREST KENTUCKY City MCHENRY County OHIO STEELEVATION (AMSL, feet) 441 265 OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Hease see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) DISTANCE (From rearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Hease see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3), Noncompliance with FAA regulations may result in further penalties.)		1				83 🗌 NAD27	
Aty MCHENRY County OHIO STEELEVATION (AMSL, feet) 441 265 OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KYaeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL Proposed tower FAA Form 7460-1 (Har the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) PROPOSAL PROP					<u> </u>		
STEELEVATION (AMSL, feet) 441 265 CURRENT (FAA aeronautical study #) 2013-ASO-7493-OE OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KYaeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties)			NEAREST KENTUCK	Y PUBLICUSE OR MI	ILITARY AIRPORT		
A41 265 2013-ASO-7493-OE OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KYaeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/ 27/ 2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTHES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties)						() () ()	
OVERALL HEIGHT (site elevation plus total structure height, feet) 706 DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KY aeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties)	,	' '		HEGHT (AGL, feet)	,		
DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KYaeronautical study #) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)				Γ4\			
DISTANCE (from nearest Kentucky public use or Military airport to structure) DIRECTION (from nearest Kentucky public use or Military airport to structure) DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 DERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	,	elevation plus tot	ar structure neight, reet)		PREVIOUS (FAA ae	ronauticai study #)	
DESCRIPTION OF LOCATION (Attach USGS 7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 DESTRIPCATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalities.)		t Kantuala en eblic	voo or Military airn	and to drugtura	DDE/IOUS/IO	vacutical dudy#	
DESCRIPTION OF LOCATION (Attach USGS7.5 minute quadrangle map or an airport layout drawing with the precise site marked and any certified survey.) Rease see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	DISTANCE (from nearest Kentucky public use or Willitary airport to structure)						
Marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	DIRECTION (from neare	st Kentucky publi	ic use or Military air	port to structure)			
Marked and any certified survey.) Please see attached map DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	DESCRIPTION OF LOCAT	ΠΟΝ (Attach LIS	3S7 5 minute quadr	angle man or an airr	l port lavout drawing	with the precise site	
PESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)			so i .o iiiii ato quaai	angle map of an an	,ori rayout ur urring	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DESCRIPTION OF PROPOSAL. Proposed tower FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS183.990(3). Noncompliance with FAA regulations may result in further penalties.)	,	• •					
FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)	110000 000 0000000	۲					
FAA Form 7460-1 (Has the "Notice of Construction or Alteration" been filed with the Federal Aviation Administration?) No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties)	DESCRIPTION OF PROP	OSAL					
No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties (in the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete with t	Proposed tower						
No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties (in the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete with t	•						
No Yes, when? 08/27/2013 CERTIFICATION (I hereby certify that all the above entries, made by me, are true, complete, and correct to the best of my knowledge and belief.) PENALTIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties (in the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the compliance with the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete, and correct to the best of the complete with t	FAA Form 7460-1 (Has t	he "Notice of Co	nstruction or Altera	tion" been filed with	the Federal Aviation	Administration?)	
my knowledge and belief.) PENALTIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)							
PENALITIES (Persons failing to comply with KPS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KPS 183.990(3). Noncompliance with FAA regulations may result in further penalties)	CERTIFICATION (I hereb	yœrtifythat all	the above entries, m	nade by me, are true,	complete, and corre	ect to the best of	
imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties)							
<u> </u>		PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or					
NAME TITLE SGNATURE, Details conducted to the DATE							
KATIO IVIII OF INSTALL DISPARACCOMPINE		TITLE	SIGNATURE Kat	Distally signed by Kate Author Discommand Million of American The Million Towers are out-FAG-FCC Compliance.	i e		
Katie Miller Compliance Ratie Willer 08/27/2013	Katie Miller	Compliance	, , , , , , , , , , , , , , , , , , ,		08/27/2013		
Chairperson, KAZC Administrator, KAZC	COMMISSION ACTION		· ·	•			
Approved SIGNATURE DATE	Approved	SIGNATURE			DATE		
Disapproved							

EXHIBIT H GEOTECHNICAL REPORT

GEOTECHNICAL FOUNDATION DESIGN


Proposed McHenry Tower
N37° 23' 01.78" W86° 55' 03.72"
93 Pearl Lane,
Beaver Dam, Ohio County, Kentucky
FStan Project No. 13-8630; AT&T NSB No. 143428; ATC No. 281331

FStan Land Surveyors & Consulting Engineers 426 East Warnock Street Louisville, KY 40217 Phone: (502) 636-5111 Fax: (502) 636-5263

Prepared For:

Ms. Melissa Brofford American Tower Corporation 10 Presidential Way Woburn, MA 01801

Date: August 18, 2013 Revised: October 31, 2013

Land Surveyors and Consulting Engineers Formerly F.S. Land & T. Alan Neal Companies

August 18, 2013

Ms. Melissa Brofford American Tower Corporation 10 Presidential Way Woburn, MA 01801

Re: Geotechnical Engineering Study

Proposed 255-foot Self-support Tower with a 10-foot Lightning Arrestor

American Tower Corporation Site Name: McHenry

N37° 23' 01.78" W86° 55' 03.72"

93 Pearl Lane, Beaver Dam, Ohio County, Kentucky

FStan Project No. 13-8630; AT&T NSB No. 143428; ATC No. 281331

Dear Ms. Brofford:

Transmitted herewith is our geotechnical engineering report for the referenced project. This report contains recommendations to aid design and construction of the tower foundations based on our report of the soil conditions given under the cover of FStan 12-8629.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

Cordially,

Elizabeth W. Stuber, P.E.

Geotechnical Engineer

Kentucky License No.: 21636

Copies submitted: (3) Ms. Melissa Brofford

McHenry August 18, 2013 Revision: October 31, 2013

LETTER OF TRANSMITTAL

TABLE OF CONTENTS

			<u>Page</u>
1	. PU	RPOSE AND SCOPE	1
2	. PR	OJECT CHARACTERISTICS	1
3	. FO	UNDATION DESIGN RECOMMENDATIONS	2
	3.1	Tower	3
	3.1	.1. Drilled Piers	3
	3.1	.2. Mat Foundation	4
	3.2.	EQUIPMENT BUILDING	4
	3.3.	DRAINAGE AND GROUNDWATER CONSIDERATIONS	5
4	GE	NERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS	5
	4.1.	DRILLED PIERS	5
	4.2	FILL COMPACTION	7
	4.3	CONSTRUCTION DEWATERING	7
5	WA	ARRANTY AND LIMITATIONS OF STUDY	7

APPENDIX

BORING LOCATION PLAN GEOTECHNICAL BORING LOG SOIL SAMPLE CLASSIFICATION

McHenry August 18, 2013 Revision: October 31, 2013

GEOTECHNICAL ENGINEERING INVESTIGATION American Tower Corporation Site Name: McHenry N37° 23' 01.78" W86° 55' 03.72"

93 Pearl Lane, Beaver Dam, Ohio County, Kentucky FStan Project No. 13-8630; AT&T NSB No. 143428; ATC No. 281331

1. PURPOSE AND SCOPE

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by drilling three soil test borings and to evaluate this data with respect to foundation concept and design for the proposed tower. Also included is an evaluation of the site with respect to potential construction problems and recommendations dealing with quality control during construction.

2. PROJECT CHARACTERISTICS

American Tower Corporation is proposing to construct a 255 feet tall self-support communications tower with a 10 foot lightning arrestor on property owned by Charles and Mary Brumley, located at N37° 23' 01.78" W86° 55' 03.72", 93 Pearl Lane, Beaver Dam, Ohio County, Kentucky. The proposed lease area will be 100 feet x 100 feet with an access area to the northwest between the site and Pearl Lane. The site is located on a hilltop that is currently being used as a pasture. A 30 foot road right-of-way has been established by record plat to the southwest with electric transmission lines further southwest. The topographical site relief within the lease area is about 7 feet. The elevation of the site is approximately 441 feet msl. Surface water runoff is directed by the topography toward the northwest. A detailed evaluation of long-term slope stability was beyond the scope of this study. The proposed tower location is shown on the Boring Location Plan in the Appendix.

Preliminary information provided us indicates that this project will consist of constructing a self-support communications tower 255 feet tall with a 10 foot lightning arrestor. We have assumed the following structural information:

McHenry August 18, 2013

Revision: October 31, 2013

• Compression (per leg) = 400 kips

• Uplift (Per Leg) = 300 kips

• Total shear = 40 kips

The development will also include a small equipment shelter near the base of the tower. The

wall and floor loads for the shelter are assumed to be less than 4 kip/ln.ft. and 200 lbs/sq.ft.,

respectively.

Site Geology

The Hartford, Kentucky Geologic Quadrangle map indicates that the Pennsylvanian aged

Carbondale Formations underlay the site. These formations consist of sandstone, shale, siltstone,

coal and limestone. The Carbondale formation is also known to be karst with sinkhole, joints and

an uneven bedrock surface. No sinkholes were noted on the 7.5-minute topographic map at the

site or within one-half mile of the site. The site is also located in the Western Kentucky Coal

Fields and strip mining was noted very near the site. Oil and gas wells and cave formations are

numerous Ohio County.

3. FOUNDATION DESIGN RECOMMENDATIONS

The following design recommendations are based on the previously described project

information, the subsurface conditions encountered in our borings, the results of our laboratory

testing, empirical correlations for the soil types encountered, our analyses, and our experience. If

there is any change in the project criteria or structure location, you should retain us to review our

recommendations so that we can determine if any modifications are required. The findings of

such a review can then be presented in a supplemental report or addendum.

We recommend FStan be retained to review the near-final project plans and specifications,

pertaining to the geotechnical aspects of the project, prior to bidding and construction. We

recommend this review to check that our assumptions and evaluations are appropriate based on

the current project information provided to us, and to check that our foundation and earthwork

2

recommendations were properly interpreted and implemented.

3.1 Tower

Our findings indicate that the proposed self-support tower can be supported on drilled piers or on a common mat foundation.

3.1.1 Drilled Piers

Drilled piers that bear in the weathered shale or siltstone bedrock below a depth of about 20 feet can be designed for a net allowable end bearing pressure of 20,000 pounds per square foot (psf). However, this value should be reduced to 10,000 psf below a depth of 35 feet. The following table summarizes the recommended values for use in analyzing lateral and frictional resistance for the various strata encountered at the test boring. It is important to note that these values are estimated based on the standard penetration test results and soil types, and were not directly measured. The values provided for undrained shear strength and total unit weight are ultimate values and appropriate factors of safety should be used in conjunction with these values. If the piers will bear deeper than about 40 feet, a deeper boring should be drilled to determine the nature of the deeper material.

Depth Below Ground Surface, feet	Undrained Shear Strength, psf	Angle of Internal Friction, Ø, degrees	Total Unit Weight, pcf	Allowable Passive Soil Pressure, psf/one foot of depth	Allowable Side Friction, psf
0 – 20	1,000	0	120	750 + 40D	200
20 – 35	10,000	0	135	7,500 + 45(D-20)	2500
35 - 40	5,000	0	135	3,500 + 45(D-35)	1200

Note: D = Depth below ground surface (in feet) to point at which the passive pressure is calculated.

It is important that the drilled piers be installed by an experienced, competent drilled pier contractor who will be responsible for properly installing the piers in accordance with industry standards and generally accepted methods, without causing deterioration of the subgrade. The recommendations

McHenry August 18, 2013

Revision: October 31, 2013

contained herein relate only to the soil-pier interaction and do not account for the structural design

of the piers.

3.1.2 Mat Foundation

As an alternative, the tower could be supported on a common mat foundation bearing at a depth of

at least 3.5 feet in the highly weathered shale. A net allowable bearing pressure of up to 1,500

pounds per square foot may be used. This value may be increased by 30 percent for the maximum

edge pressure under transient loads. A friction value of 0.30 may be used between the concrete and

the underlying clay soil. The friction value can be increased to 0.45 between the concrete and

limestone bedrock. The passive pressures given for the drilled pier foundation may be used to resist

lateral forces.

It is important that the mat be designed with an adequate factor of safety with regard to overturning

under the maximum design wind load.

3.2 Equipment Building

The equipment building may be supported on shallow spread footings bearing in the shallow

weathered shale or silty clay and designed for a net allowable soil pressure of 1,000 pounds per

square foot. The footings should be at least ten inches wide. If the footings bear on soil they

should bear at a depth of at least 36 inches to minimize the effects of frost action. All existing

topsoil or soft natural soil should be removed beneath footings.

The floor slab for the new equipment building may be subgrade supported on a properly prepared

subgrade. The slab should be designed and adequately reinforced to resist the loads proposed.

The exposed subgrade should be carefully inspected by probing and testing as needed. Any

organic material still in place, frozen or excessively soft soil and other undesirable materials

should be removed.

Once the subgrade has been properly prepared and evaluated, fill may be placed to attain the

desired final grade. Any non-organic, naturally occurring, non-expansive soils can be used for

4

McHenry August 18, 2013

Revision: October 31, 2013

structural fill, including those encountered on this site, pending evaluation by the geotechnical

engineer.

All engineered fill should be compacted to a dry density of at least 98 percent of the standard

Proctor maximum dry density (ASTM D698). The compaction should be accomplished by

placing the fill in about eight inch loose lifts and mechanically compacting each lift to at least the

specified density. Field tests should be performed on each lift as necessary to insure that adequate

compaction is being achieved.

3.3 **Drainage and Groundwater Considerations**

Good site drainage must be provided. Surface run-off water should be drained away from the

shelter building and not allowed to pond. It is recommended that all foundation concrete be

placed the same day the excavation is made.

At the time of this investigation, groundwater was not encountered. Therefore, no special

provisions regarding groundwater control are considered necessary for the proposed structures.

4 GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

It is possible that variations in subsurface conditions will be encountered during construction.

Although only minor variations that can be readily evaluated and adjusted for during construction

are anticipated, it is recommended the geotechnical engineer or a qualified representative be

retained to perform continuous inspection and review during construction of the soils-related

phases of the work. This will permit correlation between the test boring data and the actual soil

conditions encountered during construction.

4.1 **Drilled Piers**

The following recommendations are recommended for drilled pier construction:

• Clean the foundation bearing area so it is nearly level or suitably benched and

5

is free of ponded water or loose material.

- Provide a minimum drilled shaft diameter of 36 inches to reasonably enter the drilled shaft excavation for cleaning, bottom preparation and inspection.
- Make provisions for ground water removal from the drilled shaft excavation.
 While the borings were dry prior to rock coring and significant seepage is not anticipated, the drilled pier contractor should have pumps on hand to remove water in the event seepage into the drilled pier is encountered.
- Specify concrete slumps ranging from 4 to 7 inches for the drilled shaft construction. These slumps are recommended to fill irregularities along the sides and bottom of the drilled hole, displace water as it is placed, and permit placement of reinforcing cages into the fluid concrete.
- Retain the geotechnical engineer to observe foundation excavations after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.
- Install a temporary protective steel casing to prevent sidewall collapse, prevent excessive mud and water intrusion, and to allow workers to safely enter, clean and inspect the drilled shaft.
- Inspect the drilled shaft excavation after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.
- Clean the socket "face" prior to concrete placements. Cleaning will require hand cleaning or washing if a mud smear forms on the face of the rock. The geotechnical engineer should approve the rock socket surface prior to concrete placement.
- The protective steel casing may be extracted as the concrete is placed provided
 a sufficient head of concrete is maintained inside the steel casing to prevent
 soil or water intrusion into the newly placed concrete.
- Direct the concrete placement into the drilled hole through a centering chute to reduce side flow or segregation.

McHenry August 18, 2013 Revision: October 31, 2013

4.2 Fill Compaction

All engineered fill placed adjacent to and above the tower foundation should be compacted to a

dry density of at least 95 percent of the standard Proctor maximum dry density (ASTM D-698).

This minimum compaction requirement should be increased to 98 percent for any fill placed

below the tower foundation bearing elevation. Any fill placed beneath the tower foundation

should be limited to well-graded sand and gravel or crushed stone. The compaction should be

accomplished by placing the fill in about 8 inch (or less) loose lifts and mechanically compacting

each lift to at least the specified minimum dry density. Field density tests should be performed on

each lift as necessary to insure that adequate moisture conditioning and compaction is being

achieved.

Compaction by flooding is not considered acceptable. This method will generally not achieve the

desired compaction and the large quantities of water will tend to soften the foundation soils.

4.3 Construction Dewatering

Groundwater may be encountered during drilled pier excavation. It is anticipated that any such

seepage can be handled by conventional dewatering methods such as pumping from sumps.

Dewatering of drilled pier excavations that extend below the groundwater level may be more

difficult since pumping directly from the excavations could cause a deterioration of the bottom of

the excavation. If the pier excavations are not dewatered, concrete should be placed by the tremie

method.

5 WARRANTY AND LIMITATIONS OF STUDY

Our professional services have been performed, our findings obtained, and our recommendations

prepared in accordance with generally accepted geotechnical engineering principles and practices.

This warranty is in lieu of all other warranties, either express or implied. FStan is not responsible

for the independent conclusions, opinions or recommendations made by others based on the field

exploration and laboratory test data presented in this report.

7

McHenry August 18, 2013

Revision: October 31, 2013

A geotechnical study is inherently limited since the engineering recommendations are developed

from information obtained from test borings, which depict subsurface conditions only at the

specific locations, times and depths shown on the log. Soil conditions at other locations may differ

from those encountered in the test borings, and the passage of time may cause the soil conditions to

change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not

become evident until the course of construction. Construction monitoring by the geotechnical

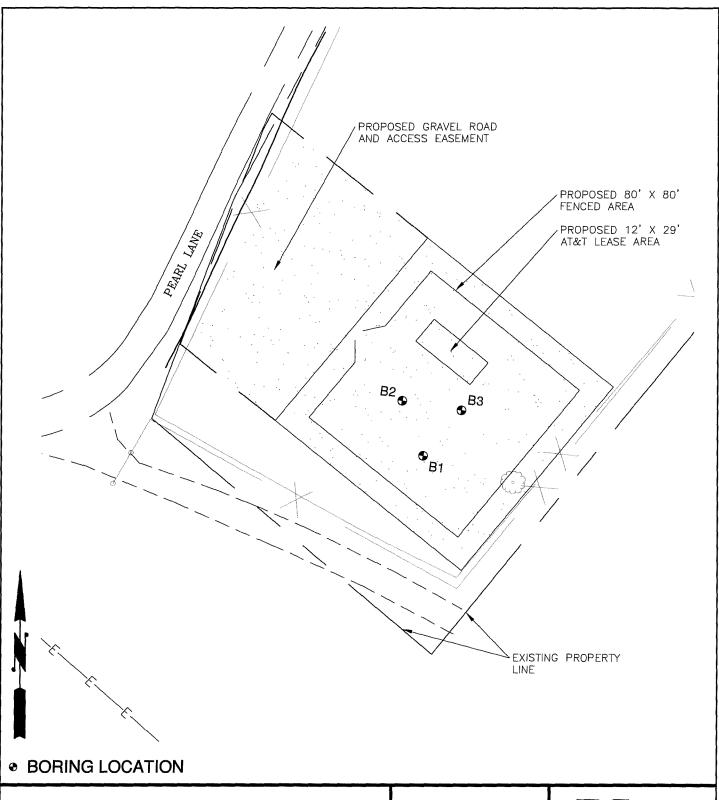
engineer or a representative is therefore considered necessary to verify the subsurface conditions

and to check that the soils connected construction phases are properly completed. If significant

variations or changes are in evidence, it may then be necessary to reevaluate the recommendations

of this report. Furthermore, if the project characteristics are altered significantly from those

discussed in this report, if the project information contained in this report is incorrect, or if


additional information becomes available, a review must be made by this office to determine if any

modification in the recommendations will be required.

8

APPENDIX

BORING LOCATION PLAN
GEOTECHNICAL BORING LOG
SOIL SAMPLE CLASSIFICATION

BORING LOCATION PLAN

SITE NAME: MCHENRY PROPOSED 255' SELF-SUPPORT TOWER WITH 10' LIGHTING ARRESTOR NOT TO SCALE

FSTAN PROJECT#:

13-8630

DATE:

08-18-13

Formerly F.S. Land & T. Alan Neal Company

Land Surveyors and Consulting Engineers 2540 Ridgemor Court, Suits 102 Louisville, KY 40299

Phone: (502) 635-5886 (502) 638-5111 Fax: (502) 636-5263

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

						·····			E	Boring No: D- I
Client: Ame	erican Tower Corporation		Proj	ect	Nun	nber: 1	3-86	29		
Project: Proposed McHenry Tower					Firm	ı: Hoos	ier E	Drilli	ng	
Location: N	N37° 23' 01.78"/W86° 55' 03.72"		Proj	ect	Mar	nager: I	3eth	Stu	ber	****
Date Starte	d: 8/12/2013		Tota	al De	epth	of Bori	ng:	40 f	<u>t</u>	
Date Comp	leted: 8/12/2013		N	A oı	n ro	ds				
Boring Meth	nod: HSA-Manual Hamer		D	RY	at c	ompleti	on			
Surface Ele	Ņ	<u> </u>	A h	ours aft	er cc	mp	etio	n		
Layer Depth ft 9	Material Description	De _l Sca	ale 📙	No.	Гуре	Sample l	Data Rec. %	PP tsf	W %	Remarks
3.5	SILTY CLAY (CL) - stiff, reddish brown with some rock fragments				SS	4-5-6	100	101	70	
	highly weathered black SHALE wtih trace coal		5	2	SS	3-3-3	100			
6.0	SILTY CLAY (CL) - soft, wet, brown with black nodes		=	3	ss	2-2-3	100			
			10	4	SS	1-2-2	100			
			15	5	ss	2-3-3	100			
18.5	SHALE - highly weathered, gray with trace coal		20	6	ss	1-2-3	78			
25.0	SILTSTONE - hard, slightly weathered, light gray	:	25	18	ss	50	0			
× × × × × × × × × × × × × × × × × × ×			30—	7	RC		80			RQD=57%
× × × × × × × × × × × × × × × × × × ×	- soft to medium hard with thin mud seams	;	35	8	RC		95			RQD=33%
	Bottom of Boring at 40 ft									Page 1

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

	502-030-3203							В	oring No: B-Z			
Client: Ame	Client: American Tower Corporation					Project Number: 13-8629						
Project: Pro	pposed McHenry Tower		Drilling Firm: Hoosier Drilling									
Location: N	37° 23' 01.78"/W86° 55' 03.72"		Project Manager: Beth Stuber									
Date Started	Date Started: 8/12/2013					ing:	15 f	t				
Date Compl		NΑ	on r	ods								
Boring Meth	od: HSA-Manual Hamer		DF	Y at	completi	on						
Surface Elevation: NA					hours aft	er co	ompl	etion				
Layer Cube Depth Bo	Material Description	Dep Sca ft	le ├─	о. Тур	Sample e Blows	Rec.	PP	W	Remarks			
3.5	SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone highly weathered black SHALE with trace coal			SS	4-4-5	100		%				
6.0	SILTY CLAY (CL) - soft to medium stiff, very moist, reddish brown with some rock fragments		5 = 3	s ss	2-3-4	100						
		1	0 +	ss	2-2-2	100						
15.0	Bottom of Boring at 15 ft	1	5	5 88	3-2-3	100						
		2	20 -									
		2	5—									
		_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		3	0-1									
		3	5-									
		41	0 -									
į		···							Page 1 of			

GEOTECHNICAL BORING LOG 13-8629.GPJ FSTAN.GDT 11/1/13

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

		502-030-3203							Е	Boring No: B-3
Client:	Ame	erican Tower Corporation	F	Project Number: 13-8629						
Projec	t: Pro	oposed McHenry Tower		Drilling Firm: Hoosier Drilling						
Location	on: N	l37° 23' 01.78"/W86° 55' 03.72"	F	rojec	t Ma	nager:	Beth	Stu	ber	
Date S	tarte	d: 8/12/2013	Т	otal I	Depti	n of Bor	ing:	15 f	t	
Date C	omp	leted: 8/12/2013		NA	on ro	ods				
Boring	Meth	nod: HSA-Manual Hamer		DR'	at c	completi	on			
Surfac		vation: NA		ŅΑ	NA h	ours aft	er co	ompl	etior	1
Layer Depth	ayer Dep epth Material Description Sca ft Graph Sca					Sample				Remarks
ft	Ē	·	ft		Туре	Blows	Rec.	PP tsf	W %	
		SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone		1	ss	5-4-5	100			
3.5-		highly weathered black SHALE wtih trace coal	5	2	ss	4-4-3	100			
6.0-		SILTY CLAY (CL) - soft to medium stiff, very moist, reddish brown with some rock fragments		3	ss	3-3-3	100			
			10	- 4	ss	2-2-3	100			
15.0-			15	5	ss	3-3-3	100			
, 5, 0		Bottom of Boring at 15 ft								
			20							
			25							
			30							
			35							
			40							
				-						

SOIL CLASSIFICATION CHART

ži ži	A IOD DAMO	ONC.	SYM	3OLS	TYPICAL
IVI.	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS	.00	GW	WELL-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR ND FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRAOED SANOS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANOS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANOY CLAYS, SILTY CLAYS, LEAN CLAYS
COILO				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIC	SHLY ORGANIC S	OILS	77 57 57 57 F 57 57 57 7 57 57 57 57	PT	PEAT, HŪMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

GEOTECHNICAL SOIL ANALYSIS STUDY

Proposed McHenry Tower
N37° 23' 01.78" W86° 55' 03.72"
93 Pearl Lane,
Beaver Dam, Ohio County, Kentucky
FStan Project No. 13-8629; AT&T NSB No. 143428; ATC No. 281331

FStan Land Surveyors & Consulting Engineers 426 East Warnock Street Louisville, KY 40217 Phone: (502) 636-5111 Fax: (502) 636-5263

Prepared For:

Ms. Melissa Brofford American Tower Corporation 10 Presidental Way Woburn, MA 01801

Date: August 18, 2013 Revised: October 31, 2013

Land Surveyors and Consulting Engineers Formerly F.S. Land & T. Alan Neal Companies

August 18, 2013

Ms. Melissa Brofford American Tower Corporation 10 Presidential Way Woburn, MA 01801

Re: Geotechnical Engineering Study

Proposed 255-foot Self-support Tower with a 10-foot Lightning Arrestor

American Tower Corporation Site Name: McHenry

N37° 23' 01.78" W86° 55' 03.72"

93 Pearl Lane, Beaver Dam, Ohio County, Kentucky

FStan Project No. 13-8629; AT&T NSB No. 143428; ATC No. 281331

Dear Ms. Brofford:

Transmitted herewith is our geotechnical engineering report for the referenced project. This report contains our findings, an engineering interpretation of these findings.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

Cordially,

Elizabeth W. Stuber, P.E. Geotechnical Engineer

Kentucky License No.: 21636

Copies submitted: (3) Ms. Melissa Brofford

McHenry August 18, 2013 Revision: October 31, 2013

LETTER OF TRANSMITTAL

TABLE OF CONTENTS

	Page
1. PURPOSE AND SCOPE	1
2. PROJECT CHARACTERISTICS	1
3. SUBSURFACE CONDITIONS	2
4 WARRANTY AND LIMITATIONS OF STUDY	3

APPENDIX

BORING LOCATION PLAN GEOTECHNICAL BORING LOG SOIL SAMPLE CLASSIFICATION

McHenry August 18, 2013 Revision: October 31, 2013

GEOTECHNICAL ENGINEERING INVESTIGATION American Tower Corporation Site Name: McHenry N37° 23' 01.78" W86° 55' 03.72"

93 Pearl Lane, Beaver Dam, Ohio County, Kentucky FStan Project No. 13-8629; AT&T NSB No. 143428; ATC No. 281331

1. PURPOSE AND SCOPE

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by drilling three soil test borings.

2. PROJECT CHARACTERISTICS

American Tower Corporation is proposing to construct a 255 feet tall self-support communications tower with a 10 foot lightning arrestor on property owned by Charles and Mary Brumley, located at N37° 23' 01.78" W86° 55' 03.72", 93 Pearl Lane, Beaver Dam, Ohio County, Kentucky.

Three soil test borings were drilled based on the tower center location established in the field by the project surveyor. Split-spoon samples were obtained by the Standard Penetration Test (SPT) procedure (ASTM D1586) in the test boring. Borings 2 and 3 were terminated at the scheduled depth of 15 feet. Boring 1 encountered auger refusal at 18.5 below the existing ground surface. A sample of the refusal material was cored in Boring 1 from 25 to 40 feet below the ground surface. The split-spoon samples were inspected and visually classified by a geotechnical engineer. Representative portions of the soil samples were sealed in glass jars and returned to our laboratory.

The boring logs are included in the Appendix along with a sheet defining the terms and symbols used on the logs and an explanation of the Standard Penetration Test (SPT) procedure. The logs present visual descriptions of the soil strata encountered, Unified System soil classifications, groundwater observations, sampling information, laboratory test results, and other pertinent field data and observations.

McHenry August 18, 2013

Revision: October 31, 2013

Site Geology

The Hartford, Kentucky Geologic Quadrangle map indicates that the Pennsylvanian aged

Carbondale Formations underlay the site. These formations consist of sandstone, shale, siltstone,

coal and limestone. The Carbondale formation is also known to be karst with sinkhole, joints and

an uneven bedrock surface. No sinkholes were noted on the 7.5-minute topographic map at the

site or within one-half mile of the site. The site is also located in the Western Kentucky Coal

Fields and strip mining was noted very near the site. Oil and gas wells and cave formations are

numerous in Ohio County.

3. SUBSURFACE CONDITIONS

The subsurface conditions were explored by drilling three test borings at the base of the proposed

tower that was staked in the field by the project surveyor. The Geotechnical Soil Test Boring Logs,

which are included in the Appendix, describes the materials and conditions encountered. A sheet

defining the terms and symbols used on the boring log is also included in the Appendix. The

general subsurface conditions disclosed by the test borings are discussed in the following

paragraphs.

Only a thin veneer of topsoil was encountered at the existing ground surface. Below the topsoil, the

borings encountered silty clay (CL) of low plasticity with the exception of a highly weathered shale

layer from about 3.5 to 6 feet in each of the borings. The SPT N-values in the clayey soils ranged

from 4 to 11 blows per foot indicating a soft to medium stiff consistency. Borings 2 and 3 were

terminated in the silty clay at the scheduled depth of 15 feet. Boring 1 encountered highly

weathered shale at about 18.5 feet and met with auger refusal at about 25 feet. Auger refusal is

defined as the depth at which the boring can no longer be advanced using the current drilling

method.

The refusal material was cored from 25 to 40 feet below the ground surface in Boring 1. Siltstone

that was hard, slightly weathered was encountered. At about 35 feet, the rock was much softer and

contained mud seams. The core run was terminated at 40 ft. The recoveries of the rock cores were

2

Project Number 13-8639

August 18, 2013 Revision: October 31, 2013

McHenry

80 to 95 percent and the RQD values ranged from 33 to 57 percent. These values generally

represent fair to good quality rock from a foundation support viewpoint.

Observations made at the completion of soil drilling operations indicated the borings to be dry. It

must be noted, however, that short-term water readings in test borings are not necessarily a reliable

indication of the actual groundwater level. Furthermore, it must be emphasized that the

groundwater level is not stationary, but will fluctuate seasonally.

Based on the limited subsurface conditions encountered at the site and using Table 1615.1.1 of

the 2002 Kentucky Building Code, the site class is considered "C". Seismic design requirements

for telecommunication towers are given in section 1622 of the code. A detailed seismic study

was beyond the scope of this report.

WARRANTY AND LIMITATIONS OF STUDY

Our professional services have been performed, our findings obtained, and our recommendations

prepared in accordance with generally accepted geotechnical engineering principles and practices.

This warranty is in lieu of all other warranties, either express or implied. FStan is not responsible

for the independent conclusions, opinions or recommendations made by others based on the field

exploration and laboratory test data presented in this report.

A geotechnical study is inherently limited since the engineering recommendations are developed

from information obtained from test borings, which depict subsurface conditions only at the

specific locations, times and depths shown on the log. Soil conditions at other locations may differ

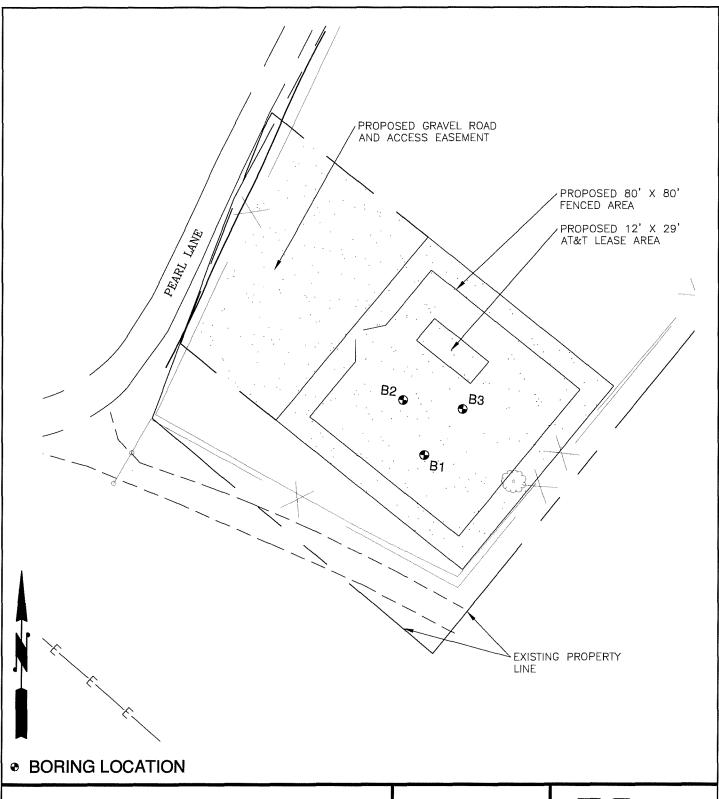
from those encountered in the test borings, and the passage of time may cause the soil conditions to

change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not

become evident until the course of construction. Construction monitoring by the geotechnical

engineer or a representative is therefore considered necessary to verify the subsurface conditions


3

McHenry August 18, 2013 Revision: October 31, 2013

and to check that the soils connected construction phases are properly completed. If significant variations or changes are in evidence, it may then be necessary to reevaluate the recommendations of this report. Furthermore, if the project characteristics are altered significantly from those discussed in this report, if the project information contained in this report is incorrect, or if additional information becomes available, a review must be made by this office to determine if any modification in the recommendations will be required.

APPENDIX

BORING LOCATION PLAN
GEOTECHNICAL BORING LOG
SOIL SAMPLE CLASSIFICATION

BORING LOCATION PLAN

SITE NAME: MCHENRY PROPOSED 255' SELF-SUPPORT TOWER WITH 10' LIGHTING ARRESTOR **NOT TO SCALE**

FSTAN PROJECT#:

13-8629

DATE:

08-18-13

Formerly F.S. Land & T. Alan Neal Company

Land Surveyors and Consulting Engineers 2540 Ridgemar Court, Suite 102 Louisville, KY 40299

Phone: (502) 635-5866 (502) 636-5111 Fax: (502) 636-5263

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111

Geotechnical Boring Log

~		502-636-5263							E	Boring No: B-1
Client: American Tower Corporation					Project Number: 13-8629					
Project: Proposed McHenry Tower					g Firn	n: Hoos	sier [Orilliı	ng	
Location: N37° 23' 01.78"/W86° 55' 03.72"					t Mar	nager:	Beth	Stu	ber	
Date S	tarte	d: 8/12/2013	ר	Total I	Depth	of Bori	ing:	40 f	t	
Date C	ompl	eted: 8/12/2013		NA	on ro	ds				
Boring	Meth	od: HSA-Manual Hamer		DR'	Y at c	ompleti	on			
Surface	e Ele	vation: NA		NA	NA h	ours aft	er co	ompl	letio	n
Layer Depth ft	Legend	Material Description	Depti Scale ft	е —	. Туре	Sample Blows	Data Rec. %	PP tsf	W %	Remarks
		SILTY CLAY (CL) - stiff, reddish brown with some rock fragments		1	ss	4-5-6	100	ISI	70	
3.5—		highly weathered black SHALE wtih trace coal	5	5 2	ss	3-3-3	100			
6.0-		SILTY CLAY (CL) - soft, wet, brown with black nodes		3	ss	2-2-3	100			
			10	4	ss	1-2-2	100			
						222	100			

GEOTECHNICAL BORING LOG 13-8629.GPJ FSTAN.GDT 10/31/13

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

								E	Boring No: D-Z
Client: American	Tower Corporation	Pro	ojec	Nu	mber: 1	3-86	29		
Project: Propose	Dri	Drilling Firm: Hoosier Drilling							
Location: N37° 2	Pre	Project Manager: Beth Stuber							
Date Started: 8/	То	tal C	epth	of Bori	ng:	15 f	t		
Date Completed:		NA d	on ro	ds					
Boring Method: I	1	DRY	at c	ompleti	on				
Surface Elevation		<u>1 A</u>	NA h	ours aft	er cc	mpl	letio	n	
Layer Depth Depth Scale ft Scale					Sample				Remarks
1 1		ft	No.	Туре	Blows	Rec.	PP tsf	W %	No. and
some	Y CLAY (CL) - medium stiff, reddish brown with e clay shale and sandstone	-	1	ss	4-4-5	100			
	weathered black SHALE wtih trace coal	5-	2	ss	3-3-4	100			
6.0 SILTY reddis	Y CLAY (CL) - soft to medium stiff, very moist, sh brown with some rock fragments	-	3	ss	2-3-4	100			
		10-	4	ss	2-2-2	100			
			5	SS	202	100			
15.0 Botto	m of Boring at 15 ft	15—		33	3-2-3	100			
		20-							
		25							
		_							
		30-							
		30 — — — — — 35 —							
		35 — —							
		-							
		40							
		=							

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

Client: American Tower Corporation Project Number: 13-8629 Project: Proposed McHenry Tower Location: N37° 23' 01.78"/W86° 55' 03.72" Project Manager: Beth Stuber Date Started: 8/12/2013 Date Completed: 8/12/2013 Boring Method: HSA-Manual Hamer Surface Elevation: NA Layer Depth ft ft SilTy CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone Silty CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone Project Number: 13-8629 Drilling Firm: Hoosier Drilling Project Manager: Beth Stuber Total Depth of Boring: 15 ft NA on rods NA on rods NA NA hours after completion Sample Data No. Type Blows Rec. PP W Remark ft No. Type Blows Rec. PP W Some clay shale and sandstone	ks
Location: N37° 23' 01.78"/W86° 55' 03.72" Date Started: 8/12/2013 Total Depth of Boring: 15 ft NA on rods Boring Method: HSA-Manual Hamer Surface Elevation: NA Layer Depth ft Sample Data NA NA hours after completion Material Description Sillary CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone Project Manager: Beth Stuber Total Depth of Boring: 15 ft NA NA on rods NA NA hours after completion Sample Data No. Type Blows Rec. PP W fts f %	ks
Date Started: 8/12/2013 Date Completed: 8/12/2013 Boring Method: HSA-Manual Hamer Surface Elevation: NA Layer Depth ft SilLTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone Total Depth of Boring: 15 ft NA on rods DRY at completion NA NA NA hours after completion Sample Data No. Type Blows Rec. PP W tsf % Remarked: 8/12/2013 NA on rods NA NA NA hours after completion Remarked: 8/12/2013 NA on rods NA NA NA hours after completion Sample Data No. Type Blows Rec. PP W tsf %	ks
Date Completed: 8/12/2013 Boring Method: HSA-Manual Hamer Surface Elevation: NA Layer Depth ft Silty CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone NA on rods DRY at completion NA NA hours after completion Sample Data No. Type Blows Rec. PP W tsf % Remark	ks
Boring Method: HSA-Manual Hamer Surface Elevation: NA Layer Depth ft Siltry CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone DRY at completion NA NA hours after completion Sample Data No. Type Blows Rec. PP W tsf % Remark	ks
Surface Elevation: NA Layer Depth ft SiLTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone NA NA hours after completion Sample Data No. Type Blows Rec. PP W tsf % SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone	ks
Layer Depth ft Material Description Scale ft No. Type Blows Rec. PP W tsf % SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone 1 SS 5-4-5 100	ks
SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone	ks
SILTY CLAY (CL) - medium stiff, reddish brown with some clay shale and sandstone	
some clay shale and sandstone	
3.5	
nightly weathered black SHALE with trace coal 5 2 SS 4-4-3 100	
SILTY CLAY (CL) - soft to medium stiff, very moist, reddish brown with some rock fragments	
10 4 SS 2-2-3 100	
15.0 Bottom of Boring at 15 ft SS 3-3-3 100	
20— ———————————————————————————————————	
25— 25— ———————————————————————————————	
30	
35—	


SOIL CLASSIFICATION CHART

		L CLASSII	,	3OLS	TYPICAL		
M.	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS	9 .00	GW	WELL-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES		
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES		
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
		LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED SOILS	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INDRGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS		
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
HIC	GHLY ORGANIC S	OILS	77	PT	PEAT, HŪMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

EXHIBIT I DIRECTIONS TO WCF SITE

Driving Directions to the Proposed Tower Site

- 1. Beginning at the Ohio County Judge Executive's office located at 130 E. Washington Street, Hartford, KY 42347, head southwest toward Cs-1046.
- 2. Turn left onto South Main Street / US-231 South and travel approximately 4.0 miles.
- 3. Turn right onto US-62 West/ West 1st Street and travel approximately 2.6 miles.
- 4. Turn left onto Render Spur Road and travel approximately 0.1 miles.
- 5. Take a right onto Cr-1338/Pearl Lane.
- 6. After traveling approximately 0.3 miles, your destination will be on the left. The address is 93 Pearl Lane, Beaver Dam, KY 42320.
- 7. The site coordinates are
 - a. 37 deg 23 min 01.78 sec N
 - b. 86 deg 55 min 03.72 sec W

Prepared by: Robert W. Grant Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT J COPY OF REAL ESTATE AGREEMENT

Site Name: McHenry KY Site Number: 281331

LEASE AGREEMENT

THIS LEASE AGREEMENT ("Agreement") is made effective as of the date of the latter signature hereof (the "Execution Date") and is by and between Landlord and American Tower.

RECITALS

- A. WHEREAS, Landlord is the owner of that certain parcel of land (the "Property") located in the County of Ohio, State of Kentucky, as more particularly described on Exhibit A:
- В. WHEREAS, Landlord desires to grant to American Tower an option to lease from Landlord a portion of the Property (the "Compount"), together with easements for ingress and egress and the installation and maintenance of utilities (the "Easement" and together with the Compound, the "Site") both being approximately located as shown on Exhibit B; and

NOW, THEREFORE, in consideration of the mutual covenants and agreements herein contained, and other good and valuable consideration, the receipt, adequacy and sufficiency of all of which are hereby acknowledged, the parties hereto hereby agree as follows:

1. Business and Defined Terms. For the purposes of this Agreement, the following capitalized terms have the meanings set forth in this paragraph 1.

(a) American Tower: American Towers LLC, a Delaware

limited liability company d/b/a Delaware

American Towers LLC

(b) Notice Address of American Tower: American Towers LLC

c/o American Tower Corporation

10 Presidential Way Woburn, MA 01801 Attn: Land Management

with a copy to: American Towers LLC

c/o American Tower Corporation

116 Huntington Ave. Boston, MA 02116 Attn: Law Department

Landlord: (c)

Charles Brumley and Mary Brumley

(d) Notice Address of Landlord: 93 Pearl Lane

Beaver Dam, KY 42320

- (e) Initial Option Period: One (1) year
- (f) Renewal Option Period(s): One (1) period of one (1) year.
- (g)Option Period: The Initial Option Period and any Renewal Option Period(s)

Site Name: McHenry Site Number: 281331

(h) Option Consideration (Initial Option Period)

(i) Option Extension Consideration (Renewal Option Period(s))

- (j) Commencement Date: The date specified in the written notice by American Tower to Landlord exercising the Option constitutes the Commencement Date of the Term.
- (k) Initial Term: Five years, commencing on the Commencement Date and continuing until midnight of the day immediately prior to the fifth anniversary of the Commencement Date.
- (1) Renewal Terms: Each of the Five (5) successive periods of five years each, with the first Renewal Term commencing upon the expiration of the Initial Term and each subsequent Renewal Term commencing upon the expiration of the immediately preceding Renewal Term.
 - (m) Term: The Initial Term with any and all Renewal Terms
 - (n) Rent: The monthly amount of
- (0) Increase Amount: Rent will increase at the commencement of each Renewal Term by an amount equal to the previous five year period.
 - (p) Increase Date: The first date of each Renewal Term.

2. Option to Lease.

- (a) <u>Grant of Option</u>. Landlord hereby gives and grants to American Tower and its assigns, an exclusive and irrevocable option to lease the Site during the Initial Option Period (the "Option").
- (b) <u>Extension of Option</u>. The Initial Option Period will automatically be extended for each Renewal Option Period unless American Tower provides Landlord written notice of its intent not to extend the Option.
- (c) <u>Consideration for Option</u>. Option Consideration is due and payable in full within 30 days of the Execution Date and American Tower will pay Landlord any Option Extension Consideration within 30 days of the commencement of any Renewal Option Period.
 - (d) Option Period Inspections and Investigations.
 - (i) During the Option Period, Landlord will provide American Tower with any keys or access codes necessary for access to the Property.
 - (ii) During the Option Period, American Tower and its officers, agents, employees and independent contractors may enter upon the Property to perform or cause to be performed test borings of the soil, environmental audits, engineering studies and to conduct a metes and bounds survey of the Site and/or the Property (the "Survey"), provided that American Tower will not unreasonably interfere with Landlord's use of the Property in conducting these activities. At American Tower's discretion, the legal description of the Site as shown on the Survey may replace Exhibit B of this Agreement and be added as Exhibit B of the Memorandum of Lease.
 - (iii) American Tower may not begin any construction activities on the Site during the Option Period other than those activities described in, or related to, this paragraph 2(d).

Site Name: McHenry Site Number: 281331

A CONTRACTOR

(e) <u>Exercise of Option</u>. American Tower may, in its sole discretion exercise the Option by delivery of written notice to Landlord at any time during the Option Period. If American Tower exercises the Option then Landlord will lease the Site to American Tower subject to the terms and conditions of this Agreement. If American Tower does not exercise the Option, this Agreement will terminate.

3. Term.

- (a) <u>Initial Term</u>. The Initial Term is as provided in paragraph 1(k).
- (b) Renewal Terms. American Tower will have the right to extend this Agreement for each of the Renewal Terms. Each Renewal Term will be on the same terms and conditions provided in this Agreement except that Rent will escalate as provided in paragraph 4(b). This Agreement will automatically be renewed for each successive Renewal Term unless American Tower notifies Landlord in writing of American Tower's intention not to renew the Agreement at any time prior to the expiration of the Initial Term or the Renewal Term which is then in effect.

4. Consideration.

- (a) American Tower will pay its first installment of Rent within thirty (30) days of the Commencement Date. Thereafter, Rent is due and payable in advance on the first day of each calendar month to Landlord at Landlord's Notice Address. Rent will be prorated for any partial months, including, the month in which the Commencement Date occurs.
 - (b) On the Increase Date, the Rent will increase by the Increase Amount.

1

- (c) In the event American Tower makes an overpayment of Rent or any other fees or charges to Landlord during the Term of this Agreement, American Tower may, but will not be required, to treat any such overpayment amount as prepaid Rent and apply such amount as a credit against future Rent due to Landlord.
- (d) American Tower will not be required to remit the payment of Rent to more than two recipients at any given time.

5. <u>Use.</u>

- (a) American Tower will be permitted to use the Site for the purpose of constructing, maintaining, removing, replacing, securing and operating a communications facility, including, but not limited to, the construction or installation and maintenance of a telecommunications tower (the "Tower"), structural tower base(s), guy anchors, guy wires, communications equipment, one or more buildings or equipment cabinets, radio transmitting and receiving antennas, personal property and related improvements and facilities on the Compound (collectively, the "Tower Facilities"), to facilitate the use of the Site as a site for the transmission and receipt of communication signals including, but not limited to, voice, data and internet transmissions and for any other uses which are incidental to the transmission and receipt of communication signals (the "Intended Use").
- (b) American Tower, at its sole discretion, will have the right, without prior notice or the consent of Landlord, to license or sublease all or a portion of the Site or the Tower Facilities to other parties (each, a "Collocator" and collectively, the "Collocators"). The Collocators will be entitled to modify the Tower Facilities and to erect additional improvements on the Compound including but not limited to antennas, dishes, cabling, additional buildings or shelters ancillary to the Intended Use. The Collocators will be entitled to all rights of ingress and egress to the Site and the right to install utilities on the Site that American Tower has under this Agreement.

6. Tower Facilities.

(a) American Tower will have the right, at American Tower's sole cost and expense, to erect the Tower Facilities which will be the exclusive property of American Tower throughout the Term as well as upon the expiration or termination of this Agreement.

- (b) Landlord grants American Tower a non-exclusive easement in, over, across and through the Property and other real property owned by Landlord contiguous to the Site as may be reasonably required for construction, installation, maintenance, and operation of the Tower Facilities including: (i) access to the Site for construction machinery and equipment, (ii) storage of construction materials and equipment during construction of the Tower Facilities, and (iii) use of a staging area for construction, installation and removal of equipment.
- (c) American Tower may, at its sole expense, use any and all appropriate means of restricting access to the Compound or the Tower Facilities, including, without limitation, construction of a fence and may install and maintain identifying signs or other signs required by any governmental authority on or about the Site, including any access road to the Site.
- (d) American Tower will maintain the Compound, including the Tower Facilities, in a reasonable condition throughout the Term. American Tower is not responsible for reasonable wear and tear or damage from casualty and condemnation. Landlord grants American Tower the right to clear all trees, undergrowth, or other obstructions and to trim, cut, and keep trimmed all tree limbs which may interfere with or fall upon the Tower Facilities or the Site.
- (e) American Tower will remove all of the above-ground portions of the Tower Facilities within 180 days following the expiration or termination of this Agreement.
- (f) If the Tower is a guyed tower, Landlord grants American Tower an easement in, over, across and through the Property or any other real property owned by Landlord as may be necessary to American Tower during the Term of this Agreement for the installation, maintenance, alteration, removal, relocation and replacement of and access to guy wires and guy wire anchors which may be required by American Tower at its sole discretion and located outside of the Site.

7. Utilities.

- (a) American Tower will have the right to install utilities, at American Tower's expense, and to improve present utilities on the Property and the Site. American Tower will have the right to permanently place utilities on (or to bring utilities across or under) the Site to service the Compound and the Tower Facilities.
- (b) If utilities necessary to serve the equipment of American Tower or the equipment of any Collocator cannot be located within the Site, Landlord agrees to allow the installation of utilities on the Property or other real property owned by Landlord without requiring additional compensation from American Tower or any Collocator. Landlord will, upon American Tower's request, execute a separate recordable written easement or lease to the utility company providing such service evidencing this right.
 - (c) American Tower and the Collocators each may install backup generator(s).

8. Access

- (a) In the event that the Site loses access to a public right of way during the Term, Landlord and American Tower will amend this Agreement, at no imposed cost to either party, to provide access to a public way by: (i) amending the location of the Easement; or (ii) granting an additional easement to American Tower.
- (b) To the extent damage (including wear and tear caused by normal usage) to the Easement or any other route contemplated hereunder intended to provide American Tower with access to the Site and the Tower Facilities is caused by Landlord or Landlord's tenants, licensees, invites or agents, Landlord will repair the damage at its own expense.
- (c) Landlord will maintain access to the Compound from a public way in a free and open condition so that no interference is caused to American Tower by Landlord or lessees, licensees, invitees or agents of Landlord. In the event that American Tower's or any Collocator's access to the Compound is impeded or denied by Landlord or Landlord's lessees, licensees, invitees or agents, without waiving any other rights that it may have at law or in equity, American Tower may at its sole discretion deduct from Rent due under this Agreement an amount equal to the law of the each day that such access is impeded or denied.
- 9. Representations and Warranties of Landlord. Landlord represents and warrants to American Tower's successors and assigns:
 - (a) Landlord has the full right, power, and authority to execute this Agreement;
- (b) There are no pending or threatened administrative actions, including bankruptcy or insolvency proceedings under state or federal law, suits, claims or causes of action against Landlord or which may otherwise affect the Property;
- (c) The Property is not presently subject to an option, lease or other contract which may adversely affect Landlord's ability to fulfill its obligations under this Agreement, and the execution of this Agreement by Landlord will not cause a breach or an event of default of any other agreement to which Landlord is a party. Landlord agrees that it will not grant an option or enter into any contract or agreement which will have any adverse effect on the Intended Use or American Tower's rights under this Agreement;
- (d) No licenses, rights of use, covenants, restrictions, casements, servitudes, subdivision rules or regulations, or any other encumbrances relating to the Property prohibit or will interfere with the Intended Use;
- (e) Landlord has good and marketable fee simple title to the Site, the Property and any other property across which Landlord may grant an easement to American Tower or any Collocator, free and clear of all liens and encumbrances. Landlord covenants that American Tower will have the quiet enjoyment of the Compound during the term of this Agreement. If Landlord fails to keep the Site free and clear of any liens and encumbrances, American Tower will have the right, but not the obligation, to satisfy any such lien or encumbrance and to deduct the full amount paid by American Tower on Landlord's behalf from future installments of Rent;
- (f) American Tower will at all times during this Agreement enjoy ingress, egress, and access from the Site 24 hours a day, 7 days a week, to an open and improved public road which is adequate to service the Site and the Tower Facilities; and
- (g) These representations and warranties of Landlord survive the termination or expiration of this Agreement.

- 10. Interference. Landlord will not use, nor will Landlord permit its tenants, licensees, invitees or agents to use any portion of the Property in any way which interferes with the Intended Use, including, but not limited to, any use on the Property or surrounding property that causes electronic or physical obstruction or degradation of the communications signals from the Tower Facilities ("Interference"). Interference will be deemed a material breach of this Agreement by Landlord and Landlord will have the responsibility to terminate Interference immediately upon written notice from American Tower. Notwithstanding anything in this Agreement to the contrary, if the Interference does not cease or is not rectified as soon as possible, but in no event longer than 24 hours after American Tower's written notice to Landlord, Landlord acknowledges that continuing Interference will cause irreparable injury to American Tower, and American Tower will have the right, in addition to any other rights that it may have at law or in equity, to bring action to enjoin the Interference.
- 11. <u>Termination</u>. This Agreement may be terminated, without any penalty or further liability upon written notice as follows:
- (a) By either party upon a default of any covenant of this Agreement by the other party which is not cured within 60 days of receipt of written notice of default (without, however, limiting any other rights available to the parties in law or equity); provided, that if the defaulting party commences efforts to cure the default within such period and diligently pursues such cure, the non-defaulting party may not terminate this Agreement as a result of that default.
- (b) Upon 30 days' written notice by American Tower to Landlord if American Tower is unable to obtain, maintain, renew or reinstate any agreement, easement, permit, certificates, license, variance, zoning approval, or any other approval which may be required from any federal, state or local authority necessary to the construction and operation of the Tower Facilities or to the Intended Use (collectively, the "Approvals"); or
- (c) Upon 30 days' written notice from American Tower to Landlord if the Site is or becomes unsuitable, in American Tower's sole, but reasonable judgment for use as a wireless communications facility by American Tower or by American Tower's licensee(s) or sublessee(s).
- (d) In the event of termination by American Tower or Landlord pursuant to this provision, American Tower shall be relieved of all further liability hereunder.

12. <u>Taxes.</u>

(a) American Tower will pay any personal property taxes assessed on or attributable to the Tower Facilities. American Tower will reimburse Landlord for any increase to Landlord's real property taxes that are directly attributable to American Tower's Site and/or Tower Facilities upon receipt of the following: (1) a copy of Landlord's tax bill; (2) proof of payment; and (3) written documentation from the assessor of the amount attributable to American Tower. American Tower shall have no obligation to reimburse Landlord for any taxes paid by Landlord unless Landlord requests reimbursement within 12 months of the date said taxes were originally due. Additionally, as a condition precedent to Landlord having the right to receive reimbursement, Landlord shall, within 3 days of receipt of any notice from the taxing authority of any assessment or reassessment, provide American Tower with a copy of said notice. American Tower shall have the right to appeal any assessment or reassessment relating to the Site or Tower Facilities and Landlord shall either (i) designate American Tower as its attorney-in-fact as required to effect standing with the taxing authority, or (ii) join American Tower in its appeal.

(b) Landlord will pay when due all real property taxes and all other fees and assessments attributable to the Property, Compound and Easement. If Landlord fails to pay when due any taxes affecting the Property or the Site, American Tower will have the right, but not the obligation, to pay such taxes and either: (i) deduct the full amount of the taxes paid by American Tower on Landlord's behalf from future installments of Rent, or (ii) collect such taxes by any lawful means.

13. Environmental Compliance.

(a) Landlord represents and warrants that:

- (i) No Hazardous Materials have been used, generated, stored or disposed of, on, under or about the Property in violation of any applicable law, regulation or administrative order (collectively, "Environmental Laws") by either Landlord or to Landlord's knowledge, any third party; and
- (ii) To Landford's knowledge, no third party been permitted to use, generate, store or dispose of any Hazardous Materials on, under, about or within the Property in violation of any Environmental Laws.
- (b) Landlord will not, and will not permit any third party to use, generate, store or dispose of any Hazardous Materials on, under, about or within the Property in violation of any Environmental Laws.
- (c) American Tower agrees that it will not use, generate, store or dispose of any Hazardous Material on, under, about or within the Site in violation of any applicable laws, regulations or administrative orders.
- (d) The term "Hazardous Materials" means any: contaminants, oils, asbestos, PCBs, hazardous substances or wastes as defined by federal, state or local environmental laws, regulations or administrative orders or other materials the removal of which is required or the maintenance of which is prohibited or regulated by any federal, state or local government authority having jurisdiction over the Property.

14. Indemnification.

(a) General.

- (i) Landlord, its heirs, grantees, successors, and assigns will exonerate, hold harmless, indemnify, and defend American Tower from any claims, obligations, liabilities, costs, demands, damages, expenses, suits or causes of action, including costs and reasonable attorney's fees, which may arise out of: (A) any injury to or death of any person; (B) any damage to property, if such injury, death or damage arises out of or is attributable to or results from the acts or omissions of Landlord, or Landlord's principals, employees, invitees, agents or independent contractors; or (C) any breach of any representation or warranty made by Landlord in this Agreement.
- (ii) American Tower, its grantees, successors, and assigns will exonerate, hold harmless, indemnify, and defend Landlord from any claims, obligations, liabilities, costs, demands, damages, expenses, suits or causes of action, including costs and reasonable attorney's fees, which may arise out of: (A) any injury to or death of any person; (B) any damage to property, if such injury, death or damage arises out of or is attributable to or results from the negligent acts or omissions of American Tower, or American Tower's employees, agents or

independent contractors; or (C) any breach of any representation or warranty made by American Tower in this Agreement.

(b) Environmental Matters.

- Landlord, its heirs, grantees, successors, and assigns will indemnify, defend, reimburse and hold harmless American Tower from and against any and all damages arising from the presence of Hazardous Materials upon, about or beneath the Property or migrating to or from the Property or arising in any manner whatsoever out of the violation of any Environmental Laws, which conditions exist or existed prior to or at the time of the execution of this Agreement or which may occur at any time in the future through no fault of American Tower. Notwithstanding the obligation of Landlord to indemnify American Tower pursuant to this Agreement, Landlord will, upon demand of American Tower, and at Landlord's sole cost and expense, promptly take all actions to remediate the Property which are required by any federal, state or local governmental agency or political subdivision or which are reasonably necessary to mitigate environmental damages or to allow full economic use of the Site, which remediation is necessitated from the presence upon, about or beneath the Property of a Hazardous Material. Such actions include but not be limited to the investigation of the environmental condition of the Property, the preparation of any feasibility studies, reports or remedial plans, and the performance of any cleanup, remediation, containment, operation, maintenance, monitoring or actions necessary to restore the Property to the condition existing prior to the introduction of such Hazardous Material upon, about or beneath the Property notwithstanding any lesser standard of remediation allowable under applicable law or governmental policies.
- (ii) American Tower, its grantees, successors, and assigns will indemnify, defend, reimburse and hold harmless Landlord from and against environmental damages caused by the presence of Hazardous Materials on the Compound in violation of any Environmental Laws and arising solely as the result of American Tower's activities after the execution of this Agreement.

15. Right of First Refusal; Sale of Property.

- (a) During the Term, prior to selling the Site or any portion of or interest in the Property or the Site, including but not limited to a leasehold interest or easement, or otherwise transfer Landlord's interest in Rent, and prior to assigning the Rent or any portion of Rent to a third party, Landlord shall notify American Tower in writing of the sale price and terms offered by a third party (the "Offer"), together with a copy of the Offer. American Tower will have the right of first refusal to purchase the real property interest or Rent or portion of Rent being sold by Landlord to such third party on the same financial terms of the Offer. American Tower will exercise its right of first refusal within 30 days of receipt of Landlord's notice and if American Tower does not provide notice within 30 days, American Tower will be deemed to have not exercised its right of first refusal. If American Tower does not exercise its right of first refusal, section 15(b) of this Agreement will control the terms of the sale.
- (b) Landlord may sell the Property or a portion thereof to a third party, provided: (i) the sale is made subject to the terms of this Agreement; and (ii) if the sale does not include the assignment of Landlord's full interest in this Agreement the purchaser must agree to perform, without requiring compensation from American Tower or any Collocator, any obligation of the Landlord under this Agreement, including Landlord's obligation to cooperate with American Tower as provided hereunder, which obligation Landlord would no longer have the legal right or ability to perform following the sale without requiring compensation from American Tower or any Collocator to be paid to such purchaser.

16. Assignment.

- (a) Any sublease, license or assignment of this Agreement that is entered into by Landlord or American Tower is subject to the provisions of this Agreement.
- (b) Landlord may assign this Agreement in its entirety to any third party in conjunction with a sale of the Property in accordance with Paragraph 15 of this Agreement. Landlord will not otherwise assign less than Landlord's full interest in this Agreement without the prior written consent of American Tower.
- (c) American Tower may assign this Agreement without prior notice to or the consent of Landlord. Upon assignment, American Tower shall be relieved of all liabilities and obligations hereunder and Landlord shall look solely to the assignee for performance under this Agreement and all obligations hereunder.
- (d) American Tower may mortgage or grant a security interest in this Agreement and the Tower Facilities, and may assign this Agreement and the Tower Facilities to any such mortgagees or holders of security interests including their successors and assigns (collectively, "Secured Parties"). If requested by American Tower, Landlord will execute such consent to such financing as may reasonably be required by Secured Parties. In addition, if requested by American Tower, Landlord agrees to notify American Tower and American Tower's Secured Parties simultaneously of any default by American Tower and to give Secured Parties the same right to cure any default as American Tower. If a termination, disaffirmance or rejection of the Agreement by American Tower pursuant to any laws (including any bankruptcy or insolvency laws) occurs, or if Landlord will terminate this Agreement for any reason, Landlord will give to Secured Parties prompt notice thereof and Secured Parties will have the right to enter upon the Compound during a 30-day period commencing upon Secured Parties' receipt of such notice for the purpose of removing any Tower Facilities. Landlord acknowledges that Secured Parties are third-party beneficiaries of this Agreement.
- Condemnation. If a condemning authority takes all of the Site, or a portion sufficient in American Tower's sole judgment, to render the Site unsuitable for the Intended Use, this Agreement will terminate as of the date the title vests in the condemning authority. Landlord and American Tower will share in the condemnation proceeds in proportion to the values of their respective interests in the Site (which for American Tower includes, where applicable, the value of the Tower Facilities, moving expenses, prepaid rent and business dislocation expenses). If a condemning authority takes less than the entire Site such that the Site remains suitable for American Tower's Intended Use, the Rent payable under this Agreement will be reduced automatically by such percentage as the area so condemned bears to the Site as of the date the title vests in the condemning authority. A sale of all or part of the Site to a purchaser with the power of eminent domain in the face of the exercise of eminent domain power will be treated as a taking by condemnation for the purposes of this paragraph.
- 18. <u>Insurance</u>. American Tower will purchase and maintain in full force and effect throughout the Option Period and the Term such general liability and property damage policies as American Tower may deem necessary. Said policy of general liability insurance will at a minimum provide a combined single limit of \$1,000,000.

19. Waiver of Damages.

(a) In the event that American Tower does not exercise its Option: (i) Landlord's sole compensation and damages will be fixed and liquidated to the sums paid by American Tower to Landlord as consideration for the Option; and (ii) Landlord expressly waives any other remedies it may have for a breach of this Agreement including specific performance and damages for breach of contract.

(b) Neither Landlord nor American Tower will be responsible or liable to the other party for any loss or damage arising from any claim to the extent attributable to any acts of omissions of other licensees or tower users occupying the Tower Facilities or vandalism or for any structural or power failures or destruction or damage to the Tower Facilities except to the extent caused by the negligence or willful misconduct of such party.

- (c) EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, IN NO EVENT WILL LANDLORD OR AMERICAN TOWER BE LIABLE TO THE OTHER FOR, AND AMERICAN TOWER AND LANDLORD EACH HEREBY WAIVE THE RIGHT TO RECOVER INCIDENTAL, CONSEQUENTIAL (INCLUDING, BUT NOT LIMITED TO, LOST PROFITS, LOSS OF USE OR LOSS OF BUSINESS OPPORTUNITY), PUNITIVE, EXEMPLARY AND SIMILAR DAMAGES.
- 20. <u>Confidentiality.</u> Landlord will not disclose to any third party the Rent payable by American Tower under this Agreement and will treat such information as confidential, except that Landlord may disclose such information to prospective buyers, prospective or existing lenders, Landlord's affiliates and attorneys, or as may be required by law or as may be necessary for the enforcement of Landlord's rights under the Agreement.

21. Subordination Agreements.

- (a) If the Site is encumbered by a mortgage or deed of trust, within 30 days of receipt of a written request from American Tower, Landlord agrees to execute and obtain the execution by its lender of a non-disturbance and attornment agreement in the form provided by American Tower, to the effect that American Tower and American Tower's sublessees and licensees will not be disturbed in their occupancy and use of the Site by any foreclosure or to provide information regarding the mortgage to American Tower.
- (b) Should a subordination, non-disturbance and attornment agreement be requested by Landlord or a lender working with Landlord on a loan to be secured by the Property and entered into subsequent to the Execution Date, American Tower will use good faith efforts to provide Landlord or Landlord's lender with American Tower's form subordination, non-disturbance and attornment agreement executed by American Tower within 30 days of such request.
- 22. Notices. All notices or demands by or from American Tower to Landlord, or Landlord to American Tower, required under this Agreement will be in writing and sent (United States mail postage pre-paid, certified with return receipt requested or by reputable national overnight carrier service, transmit prepaid) to the other party at the addresses set forth in paragraph 1 of this Agreement or to such other addresses as the parties may, from time to time, designate consistent with this paragraph 22, with such new notice address being effective 30 days after receipt by the other party. Notices will be deemed to have been given upon either receipt or rejection.

23. Further Acts.

- (a) Within 15 days after receipt of a written request from American Tower, Landlord will execute any document necessary or useful to protect American Tower's rights under this Agreement or to facilitate the Intended Use including documents related to title, zoning and other Approvals, and will otherwise cooperate with American Tower in its exercise of its rights under this Agreement.
- (b) American Tower will be entitled to liquidated damages for the revenue lost by American Tower as a result of any delay caused by Landlord's unwillingness to execute a document or to take any other action deemed necessary by American Tower to protect American Tower's leasehold rights or to

facilitate the Intended Use. As the actual amount of such lost revenue is difficult to determine, the parties agree that American Tower may deduct the amount of the day from future installments of Rent for any delay to American Tower caused by Landlord's failure or unwillingness to act, such amount being an estimate of American Tower's lost revenue. American Tower's right to collect such liquidated damages will in no way affect American Tower's right to pursue any and all other legal and equitable rights and remedies permitted under applicable laws.

Memorandum of Lease. Simultaneously with the execution of this Agreement, the parties will enter into the Memorandum of Lease attached to this Agreement as Exhibit C which American Tower may record in the public records of the county of the Property. Landlord acknowledges and agrees that after Landlord signs the Memorandum of Lease but before American Tower records it, American Tower may add both: (a) a reference to the recording granting Landlord its interest in the Property; and (b) a legal description of the Site as Exhibit B. Landlord agrees to execute and return to American Tower a recordable Amended Memorandum of Lease in form supplied by American Tower if: (i) the information included in the Memorandum of Lease changes, or (ii) if it becomes clear that such information is incorrect or incomplete or if this Agreement is amended.

25. Miscellaneous.

- (a) This Agreement runs with the Property and is binding upon and will inure to the benefit of the parties, their respective heirs, successors, personal representatives and assigns.
- (b) American Tower may at American Tower's sole cost and expense procure an abstract of title or a commitment to issue a policy of title insurance (collectively "Title") on the Property.
- (c) Landlord hereby waives any and all lien rights it may have, statutory or otherwise, in and to the Tower Facilities or any portion thereof, regardless of whether or not same is deemed real or personal property under applicable laws.
- (d) The substantially prevailing party in any litigation arising hereunder is entitled to its reasonable attorney's fees and court costs, including appeals, if any.
- (e) Each party agrees to furnish to the other, within 30 days after request, such estoppel information as the other may reasonably request.
- (f) This Agreement constitutes the entire agreement and understanding of Landlord and American Tower with respect to the subject matter of this Agreement, and supersedes all offers, negotiations and other agreements. There are no representations or understandings of any kind not stated in this Agreement. Any amendments to this Agreement must be in writing and executed and delivered by Landlord and American Tower.
- (g) If either Landlord or American Tower is represented by a real estate broker in this transaction, that party is fully responsible for any fees due such broker and will hold the other party harmless from any claims for commission by such broker.
- (h) The Agreement will be construed in accordance with the laws of the state in which the Site is situated.
- (i) If any term of the Agreement is found to be void or invalid, the remainder of this Agreement will continue in full force and effect.

- (j) American Tower may obtain title insurance on its interest in the Site, and Landlord will cooperate by executing any documentation required by the title insurance company.
- (k) This Agreement may be executed in two or more counterparts, all of which are considered one and the same agreement and become effective when one or more counterparts have been signed by each of the parties, it being understood that all parties need not sign the same counterpart.
- (I) Landlord will not, during the Option Period or the Term, enter into any other lease, license, or other agreement for the same or similar purpose as the Intended Use, on or adjacent to the Property.
- (m) Failure or delay on the part of either party to exercise any right, power or privilege hereunder will not operate as a waiver thereof and waiver of breach of any provision hereof under any circumstances will not constitute a waiver of any subsequent breach.
- (n) The parties agree that irreparable damage would occur if any of the provisions of this Agreement were not performed in accordance with their specified terms or were otherwise breached. Therefore, the parties agree the parties will be entitled to an injunction(s) in any court in the state in which the Site is located to prevent breaches of the provisions of this Agreement and to enforce specifically the terms and provisions of the Agreement, this being in addition to any other remedy to which the parties are entitled at law or in equity.
- (o) Each party executing this Agreement acknowledges that it has full power and authority to do so and that the person executing on its behalf has the authority to bind the party.
- (p) The parties agree that a scanned or electronically reproduced copy or image of this Agreement will be deemed an original and may be introduced or submitted in any action or proceeding as competent evidence of the execution, terms and existence hereof notwithstanding the failure or inability to produce or tender an original, executed counterpart of this Agreement and without the requirement that the unavailability of such original, executed counterpart of this Agreement first be proven.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, Landlord and American Tower have each executed this Agreement as of the respective dates written below.

[INSERT OWNER AND STATE APPROPRIATE SIGNATURE BLOCKS, CONFORMING WITH THE STATE'S REQUIREMENT FOR WITNESSES.]

LANDLORD:

Charles Brumley and Mary Brumley

Name: Charles Brumley

Date: 6-20-13

Name: Mary Brumley

Date: 6-20-13

Acknowledgements

STATE OF KENTUCKY COUNTY OF OHIO

I, a Notary Public of the County and State aforesaid, certify that Charles Brumley and Mary Brumley came before me this day and acknowledged the execution of the foregoing instrument.

Witness my hand and official stamp or seal, this 20	day of
[Affix Notary Seal]	Notary Public My commission expires:
PUBLIC ID NO. 495959 MY COMMISSION EXPIRES 5-3-16	Mac, 3,2016
AMERICAN TOWER:	
American Towers LLC, a Delaware limited liability company	
By: Name: Title:	
Date:	
COMMONWEALTH OF MASSACHUSETTS) ss:
COUNTY OF MIDDLESEX	
On the day of	
American Towers LLC, before me.	, 01
	Notary Public
	My Commission Expires:

AMERICAN TOWER:

American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC

By:

Name:

Shawn Lanier

Title: Vice President Legal

Date:

3-8-2013

COMMONWEALTH	OF	MASSA	CHU	SETTS
--------------	----	-------	-----	-------

) ss:

COUNTY OF MIDDLESEX

On the Lorday of Least, 2013 the undersigned notary public, personally appeared proved to me through satisfactory evidence of identification, which were personally known, to be the person who name is signed on the preceding or attached document, and acknowledged that he/she signed it voluntarily for its stated purpose, as the lorday of American Towers LLC a Delaware limited liability company d/b/a Belaware American Towers LLC, before me.

Notary Public

My Commission Expires:

LESLIE R. CORBIN
Notary Public
COMMONWEALTH OF MASSACHUSETTS
My Commission Expires
May 29, 2020

The following exhibits are attached to this Agreement and incorporated into this Agreement:

Description or Depiction of Property Description or Depiction of Site Memorandum of Lease Exhibit A Exhibit B

Exhibit C

EXHIBIT A

DESCRIPTION OR DEPICTION OF PROPERTY

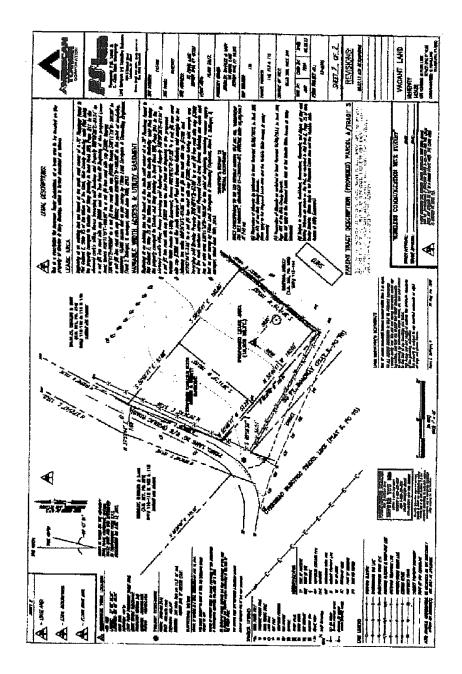
The Property is described and/or depicted as follows:

SITE: McHENRY DATE: 06.27.13

This is a description for American Tower Corporation, of a lease area to be located on the property of Charles & Mary Brumley, which is further described as follows:

LEASE AREA

Beginning at an existing iron rod found at the south west corner of a 30' Roadway found in Plat Cabinet E, Slide 75 of the Office of the Clerk, Ohio County Kentucky; said Plat being the property conveyed to Charles and Mary Brumley in Deed Book 299, Page 241 in the aforesaid clerk's office; thence traversing said Roadway and Property S88°58'36"E-51.51' to a set #5 iron road with cap #3282 and the True Point Of Beginning of the proposed Lease Area; thence N39°11'19"E-100.00' to a set #5 iron road with cap #3282; thence S50°48'41"E-100.00' to a set #5 iron road with cap #3282; thence S39°11'19"W-100.00' to a set #5 iron road with cap #3282; thence N50°48'41"W-100.00' to the point of beginning, containing 10,000 square feet as per survey by FStan Land Surveyors & Consulting Engineers, Frank L Sellinger, II, surveyor, dated June 18th, 2013.


VARIABLE WIDTH ACCESS & UTILITY EASEMENT

Beginning at an existing iron rod found at the south west corner of a 30' Roadway found in Plat Cabinet E, Slide 75 of the Office of the Clerk, Ohio County Kentucky; said Plat being the property conveyed to Charles and Mary Brumley in Deed Book 299, Page 241 in the aforesaid clerk's office; thence traversing said Roadway and Property S88°58'36"E-51.51' to a set #5 iron road with cap #3282 and the True Point Of Beginning of the proposed Variable Width Access & Utility Easement; thence N50°48'41"W-51.22' to a set #5 iron road with cap #3282 and the south margin of Pearl Lane; thence following said margin for the following two calls: N20°34'43"E-97.56' to a set #5 iron road with cap #3282 and N27°57'44"E-7.69' to a set #5 iron road with cap #3282; thence leaving said margin and traversing said Brumley Property S50°48'41"E-83.85' to a set #5 iron road with cap #3282 and the most northern corner of said Proposed Lease Area; thence following the north west line of said area S39°11'19"W-100.00' to the point of beginning, containing 6801.9 square feet as per survey by FStan Land Surveyors & Consulting Engineers, Frank L Sellinger, II, surveyor, dated June 18th, 2013.

EXHIBIT B

DESCRIPTION OR DEPICTION OF SITE

Locations are approximate. American Tower may, at its option, replace this exhibit with a copy of the survey of the Site.

EXHIBIT C

MEMORANDUM OF LEASE

[see following pages]

EXHIBIT K NOTIFICATION LISTING

McHenry Landowner Notice Listing

Edward Hines PO Box 139 McHenry, KY 42354

Roger W. & Rebecca Goff (Life Estate) Jackie Goff & Rodney Goff & Cynthia P. 2416 Highland Dr. Beaver Dam, KY 42320

Charles S. & Alice M. Allen PO Box 157 McHenry, KY 42354

Paul Brewster & Regina Cleaver 2272 Highland Dr. Beaver Dam, KY 42320

Jimmy & Robin Pharis 2292 Highland Dr. Beaver Dam, KY 42320

Samuel C. Hines 445 3rd St. McHenry, KY 42354

Audley Simpson c/o Nora M. Crew 2731 Teresa St. Portage, IN 46368

Charles & Mary Brumley 93 Pearl Lane Beaver Dam, KY 42320

EXHIBIT L COPY OF PROPERTY OWNER NOTIFICATION

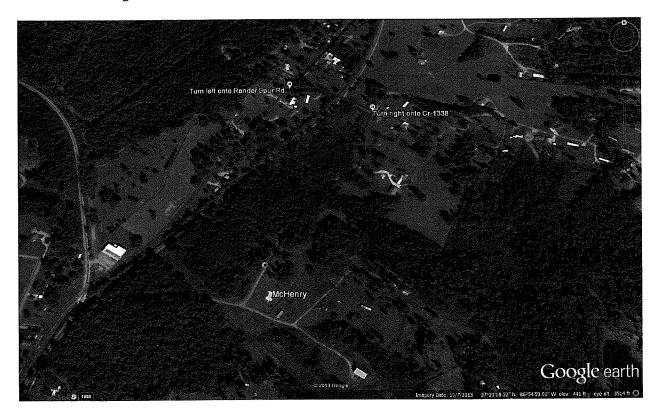
1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

Notice of Proposed Construction of Wireless Communications Facility Site Name: McHenry

Dear Landowner:

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 93 Pearl Lane, Beaver Dam, KY 42320 (37°23'01.78" North latitude, 86°55'03.72" West longitude). The proposed facility will include a 255-foot tall antenna tower, plus a 10-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the Ohio County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2013-00386 in any correspondence sent in connection with this matter.


We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely, David A. Pike Attorney for AT&T Mobility

enclosure

Driving Directions to the Proposed Tower Site

- 1. Beginning at the Ohio County Judge Executive's office located at 130 E. Washington Street, Hartford, KY 42347, head southwest toward Cs-1046.
- 2. Turn left onto South Main Street / US-231 South and travel approximately 4.0 miles.
- 3. Turn right onto US-62 West/ West 1st Street and travel approximately 2.6 miles.
- 4. Turn left onto Render Spur Road and travel approximately 0.1 miles.
- 5. Take a right onto Cr-1338/Pearl Lane.
- 6. After traveling approximately 0.3 miles, your destination will be on the left. The address is 93 Pearl Lane, Beaver Dam, KY 42320.
- 7. The site coordinates are
 - a. 37 deg 23 min 01.78 sec N
 - b. 86 deg 55 min 03.72 sec W

Prepared by: Robert W. Grant Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT M COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA CERTIFIED MAIL

Hon. David Johnston
Ohio County Judge Executive
Ohio County Community Center
130 East Washington Street
Hartford, KY 42347

RE:

Notice of Proposal to Construct Wireless Communications Facility

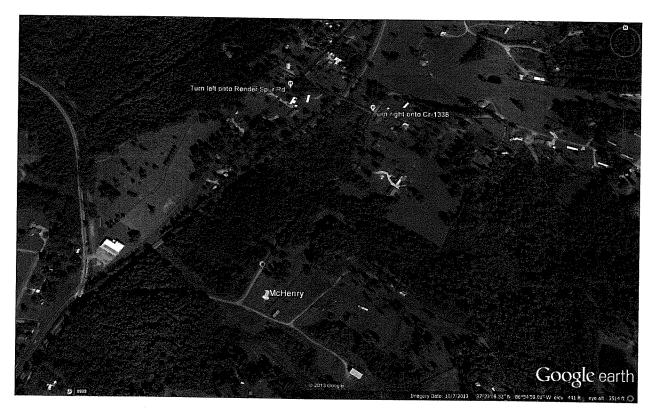
Kentucky Public Service Commission Docket No. 2013-00386

Site Name: McHenry

Dear Judge Johnston:

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 93 Pearl Lane, Beaver Dam, KY 42320 (37°23'01.78" North latitude, 86°55'03.72" West longitude). The proposed facility will include a 255-foot tall antenna tower, plus a 10-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2013-00386 in any correspondence sent in connection with this matter.


We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,

David A. Pike Attorney for AT&T Mobility enclosure

Driving Directions to the Proposed Tower Site

- 1. Beginning at the Ohio County Judge Executive's office located at 130 E. Washington Street, Hartford, KY 42347, head southwest toward Cs-1046.
- 2. Turn left onto South Main Street / US-231 South and travel approximately 4.0 miles.
- 3. Turn right onto US-62 West/ West 1st Street and travel approximately 2.6 miles.
- 4. Turn left onto Render Spur Road and travel approximately 0.1 miles.
- 5. Take a right onto Cr-1338/Pearl Lane.
- 6. After traveling approximately 0.3 miles, your destination will be on the left. The address is 93 Pearl Lane, Beaver Dam, KY 42320.
- 7. The site coordinates are
 - a. 37 deg 23 min 01.78 sec N
 - b. 86 deg 55 min 03.72 sec W

Prepared by: Robert W. Grant Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT N COPY OF POSTED NOTICES

SITE NAME: MCHENRY NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "**tower**," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC d/b/a AT&T Mobility proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165. (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number Case No. 2013-00386 in your correspondence.

New Cingular Wireless PCS, LLC d/b/a AT&T Mobility proposes to construct a telecommunications **tower** near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165 (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number Case No. 2013-00386 in your correspondence.

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA TELEFAX: 270-298-9572

Ohio County Times News Attn: Sarah Carroll Advertising Manager 314 Main Street PO Box 226 Hartford, KY 42347

RE:

Legal Notice Advertisement

Site Name:

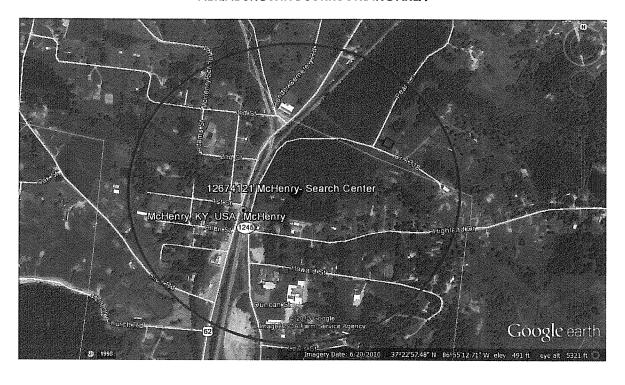
McHenry

Dear Ms. Carroll:

Please publish the following legal notice advertisement in the next edition of the *Ohio County Times News*:

NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 93 Pearl Lane, Beaver Dam, KY 42320 (37°23'01.78" North latitude, 86°55'03.72" West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2013-00386 in any correspondence sent in connection with this matter.


After this advertisement have been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely,

Robert W. Grant Pike Legal Group, PLLC

EXHIBIT O COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

AERIAL SHOWING SURROUNDING AREA

