Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	4
MW	525
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$455,000,000	\$867	\$21,775,000	\$77,149,000
Fabric Filter	\$133,000,000	\$253	\$5,804,000	\$21,990,000
PAC Injection	\$6,890,000	\$13	\$3,858,000	\$4,697,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$595,890,000	\$1,135	\$31,537,000	\$104,058,000

DRAFT

From:	Saunders, Eileen
То:	Turner, Steven; Hensley, Mike
Sent:	6/3/2010 2:41:35 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run
Attachments:	Cane Run Unit 4 Cost Estimates 052810.pdf; Cane Run Unit 5 Cost Estimates 052810.pdf; Cane Run
	Unit 6 Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:34 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Cane Run Units 4-6. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bw.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	4
MW	168
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$63,000,000	\$375	\$2,219,000	\$9,886,000
WFGD	\$152,000,000	\$905	\$8,428,000	\$26,926,000
Fabric Filter	\$33,000,000	\$196	\$1,924,000	\$5,940,000
Lime Injection	\$2,569,000	\$15	\$983,000	\$1,296,000
PAC Injection	\$2,326,000	\$14	\$1,087,000	\$1,370,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$253,395,000	\$1,508	\$14,691,000	\$45,529,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	5
MW	181
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$66,000,000	\$365	\$2,421,000	\$10,453,000
WFGD	\$159,000,000	\$878	\$8,789,000	\$28,139,000
Fabric Filter	\$35,000,000	\$193	\$2,061,000	\$6,321,000
Lime Injection	\$2,752,000	\$15	\$1,089,000	\$1,424,000
PAC Injection	\$2,490,000	\$14	\$1,120,000	\$1,423,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$265,742,000	\$1,468	\$15,530,000	\$47,871,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	6
MW	261
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$86,000,000	\$330	\$2,793,000	\$13,259,000
WFGD	\$202,000,000	\$774	\$10,431,000	\$35,014,000
Fabric Filter	\$45,000,000	\$172	\$2,672,000	\$8,149,000
Lime Injection	\$3,873,000	\$15	\$1,367,000	\$1,838,000
PAC Injection	\$3,490,000	\$13	\$1,336,000	\$1,761,000
Neural Networks	\$500,000	\$2	\$50,000	\$111,000
Total	\$340,863,000	\$1,306	\$18,649,000	\$60,132,000

DRAFT

From:Lucas, Kyle J.To:Saunders, EileenCC:Hillman, Timothy M.; Mahabaleshwarkar, AnandSent:6/2/2010 7:55:13 AMSubject:167987.23.0200 100602 - EON Draft AQCS Design BasisAttachments:Design Basis for E-ON 060110.pdf

Eileen, Attached please find the design basis with updated references based on our conversation last week. Regards, Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Dasign Basis

									EW Brown, Ghent, (Design Basi	k, Trimble County, G Is	reen River							
Unit Designation		EW Brown		-	G	hent	4	4	Cane Run	6/1/2010		Mill	Creek	4	Trimble	County	Green	n River	R-france
Ultimate Coal analysis, wet basis		2	3		2				•	8		2	3	4		Z			Reference
Carbon, % Hydrogen, %	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	61.20 4.28	65.41 4.46	65.41 4.46	Data from E-ON Data from E-ON
Sulfur, %	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	3.36	2.60	2.60	Data from E-ON
Nitrogen, % Chlorine, %	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.34	1.34 0.00	Data from E-ON Data from E-ON
Oxygen, %	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.89	6.69	6.69	Data from E-ON
Ash, % Moisture, %	12.00	12.00 11.00	12.00	12.00	12.00	12.00 11.00	12.00 11.00	12.00	12.00	12.00 11.00	12.00 11.00	12.00	12.00	12.00 11.00	12.00	12.00	9.00	9.00 10.50	Data from E-ON Data from E-ON
Higher Heating Value, Btu/Ib	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,200	11,600	11,600	Data from E-ON
Trace Metal Analysis, ppm Antimony (Sb)	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.07	1.07	Data from E-ON
Arsenic (As)	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	13.00	10.00	10.00	Data from E-ON
Barium (Ba) Cadmium (Cd)	74.00 0.65	74.00 0.65	74.00 0.65	74.00	74.00 0.65	74.00	74.00	74.00 0.65	74.00 0.65	74.00 0.65	74.00	74.00 0.65	74.00 0.65	74.00 0.65	74.00 0.65	74.00 0.65	49.00	49.00 0.30	Data from E-ON Data from E-ON
Chlorine (Cl)	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1600.00	1845.00	1845.00	Data from E-ON
Chromium (Cr) Fluorine (F)	23.00 98.00	23.00 98.00	23.00 98.00	23.00 96.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00 98.00	23.00	23.00 98.00	23.00 98.00	23.00 98.00	17.00 71.00	17.00 71.00	Data from E-ON Data from E-ON
Lead (Pb)	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	11.00	Data from E-ON
Magnesium (Mg) Mercury (Hg)	684 00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	684.00 0.12	509.00 0.10	509.00 0.10	Data from E-ON Data from E-ON
Nickel (Ni)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	14.00	14.00	Data from E-ON
Selenium (Se) Strontium (Sr)	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	2.94 56.00	1.93 30.00	1.93 30.00	Data from E-ON Data from E-ON
Vanadium (V)	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	Data from E-ON
Zinc (Zn) Ash Analysis, % by mass	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	48.00	50.00	50.00	Data from E-ON
Alumina (Al2O3)	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	21.69	19.45	19.45	Data from E-ON
Barium Oxide (BaO) Lime (CaO)	0.07 2.74	0.07 2.74	0.07	0.07	0.07	0.07	0.07 2.74	0.07 2.74	0.07 2.74	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06 2.89	Data from E-ON Data from E-ON
Iron Oxide (Fe2O3)	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	21.80	19.90	19.90	Data from E-ON
Magnesia (MgO) Manganese Oxide (MnO)	0.91	0.91 0.04	0.91	0.91	0.91	0.91	0.91 0.04	0.91	0.91	0.91 0.04	0.91 0.04	0.91	0.91	0.91	0.91 0.04	0.91	0.91	0.91	Data from E-ON Data from E-ON
Phosphorous Pentoxide (P2O5)	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.21	0.21	Data from E-ON
Potassium Oxide (K2O) Silica (SiO2)	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.00	2.33 45.88	2.33 45.88	2.33 45.89	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.33 45.88	2.41 49.65	2.41 49.65	Data from E-ON Data from E-ON
Sodium Oxide (Na2O)	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.77	0.77	Data from E-ON
Strontium Oxide (SrO) Sulfur Trioxide (SO3)	0.05	0.05 2.58	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05 2.58	0.05	0.05	0.04 2.47	0.04 2.47	Data from E-ON Data from E-ON
Titania (TiO2)	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.08	1.08	Data from E-ON
Undetermined Unit Characteristics	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	D.12	0.12	0.12	0.13	0.13	Data from E-ON
Gross Turbine Generator Load, MW	110	180	457	541	517	523	526	168	181	261	330	330	423	525	547	760	75	109	Data from E-ON
Boiler Efficiency, % (HHV) Boiler Heat Input, MBtu/hr (HHV)	85.32 999.80	86.73 1.665.50	86.53 4.120.43	85.74 5,369	86.83 4,327	86.31 5,496	86.77 5,473	85.12 1.603	87.14	87.09 2,589	85.40 3,224	85.40 3.311	86.51 4,209	86.51 5,122	66.68 5.310	86.92 6,583	89.02 848	85.25 1,150	Data from E-ON Data from E-ON
Coal Flow Rate, Ib/hr	89,268	148,705	367,895	479,375	386,339	490,714	488,661	143,125	156,875	231,161	287,857	295,625	375,804	457,321	474,107	587,768	73,103	99,138	Data from E-ON
Capacity Factor, % Fly Ash Portion of Total Ash, %	44.00 80.0	62.00 80.0	57.00 80.0	81.00	71.00	78.00	77.00	60.00 80.0	62.00 80.0	54.00 80.0	68.00 80.0	70.00	75.00	75.00	85.00	87.00 80.0	26.00 80.0	32.00 80.0	Data from E-ON Data from E-ON
Air Heater Leakage, %	10.0	10.0	10.0	10.0	10.0	10.0	10.0	16.7	17.0	7.8	10.0	10.0	10.0	10.0	10.0	6.0	6.8	6.8	Data from E-ON
Excess Air, % Economizer Outlet Conditions	34.352	18.258	16.848	18.258	21.926	21.926	20.433	20.00	20.00	20.00	20.00	20.00	20.00	20.00	18.258	19,700	25.000	25.000	Data from E-ON
Flue Gas Temperature, F	650	730	730	729	610	731	791	580	630	617	760	760	690	640	700	586	475	610	B&V Combustion Calculations
Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr	-8.0 1 090 927	-3.7 1.615.221	-5.0 3.952.267	-3.2 5.206.933	-5.1 4 316 060	-5.1 5.482.104	-4.5 5 397 559	-4.0 1 575 668	-3.0	-4.0 2.544.856	-5.0 3 169 029	-5.0 3.254.545	-5.0 4.137.234	-5.0 5.034.667	-6.0 5.149.714	-6.0 6.455.853	-5.0 886 785	-8.0 1.202.598	B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm	509,072	796,739	1,955.176	2,563,081	1,922.533	2.718,161	2,805,958	680.015	779,254	1,137,376	1.608,445	1,651,849	1,979.343	2.303,938	2,490,348	2,816.034	345,095	536,927	B&V Combustion Calculations
Uncontrolled Sulfur Dioxide Concentration, Ib/MBtu Uncontrolled Sulfur Dioxide Mass Flow Rate, Ib/hr	6.00 5.993	6.00 9.983	6.00 24.697	6.00 32.161	6.00 25.936	6.00 32,942	6.00 32.805	6.00	6.00 10.531	6.00 15.518	6.00 19.324	6.00	6.00 25,228	6.00 30.701	6.00 31.828	6.00	4.48	4.48	= % Sulfur in Coal x 20,000 / HHV B&V Combustion Calculations
Uncontrolled PM Concentration, lb/MBtu	8.746	8.746	8.746	8,746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	8.746	6.334	6.334	B&V Combustion Calculations
Uncontrolled PM Mass Flow Rate, Ib/hr Uncontrolled Mercury Concentration, Ib/TBtu	8,744 10.71	14,566 10.71	36,037 10,71	46.957	37,844	48,068 10.71	47,867 10,71	14,020 10.71	15,367 10.71	22,643 10,71	28,197 10.71	28,958	36,812 10.71	44,797 10.71	46,441	57,575 10.71	5,371 8.62	7,284 8.62	= Uncontrolled PM (lb/MBtu) x Heat Input (MBtu/hr) = Hg in Coal (ppm) x Coal Flow Rate (lb/hr) / Heat Input (MBtu/hr)
Uncontrolled HCI Mass Flow Rate, lb/hr	147	244.63	605.21	789	636	807	804	235	258	380	474	486	618	752	780	967	139	188	= HCl in Coal (ppm) / 1,000,000 x Coal Flow Rate (lb/hr) x MW of HCl / MW of Cl
Uncontrolled HCI Concentration, Ib/MBtu Hot-Side ESP Outlet Conditions	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	D.15	0.15	0.15	0.16	0.16	= HCl Flowrate (lb/hr) / Heat Input (MBtu/hr)
Flue Gas Temperature, F					605	708	770											600	B&V Combustion Calculations
Flue Gas Pressure, in. w.g.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	-10.80	-10.90	-10.8	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	-8.1	B&V Combustion Calculations
Flue Gas Mass Flow Rate, Ib/hr Volumetric Flue Gas Flow Rate, acfm	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	4,531,863	5,756,209	5,667,437 2,947,083	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	Unit has a Cold-	1,262,728 562,236	B&V Combustion Calculations B&V Combustion Calculations
Controlled PM Concentration, Ib/MBtu	side ESP	side ESP	side ESP	side ESP	0.0565	0.0451	0.0248	side ESP	side ESP	side ESP	side ESP	side ESP	side ESP	side ESP	side ESP	side ESP	side ESP		B&V Combustion Calculations
Controlled PM Mass Flow Rate, Ib/hr					244	248	135.73											92	= Controlled PM (lb/MBtu) x Heat Input (MBtu/hr)
Particulate Removal Efficiency, % SCR Outlet Conditions					99.35	99.48	99.72											98.74	= { 1- Controlled PM (b/MBtu) / Uncontrolled PM (b/MBtu) } x 100
Flue Gas Temperature, F				729]	708	770						690	640	700	586			B&V Combustion Calculations
Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr	No SCR	No SCR	New SCR Planned	-13.2 5,311,071	No SCR	-20.90 5,871,333	-20.8 5,780,786	No SCR	No SCR	No SCR	No SCR	No SCR	-13.0 4.219.979	-13.0 5,135,360	-16.0 5,252,708	-11.0 6,584,970	No SCR	No SCR	B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm			for 2012	2,682,371	1	2,977,658	3,085,629						2,061,162	2,399,175	2,606,716	2,910,365			B&V Combustion Calculations
Controlled NOx Concentration, Ib/MBtu				0.0639	4	0.0479	0.0627						0.0584	0.0589	0.076	0.076			Data from E-ON = Controlled NOx (lb/MBtu) x Heat Inout (MBtu/hr)
Controlled NOx Mass Flow Rate, Ib/hr Air Heater Outlet Conditions				343		263	343						246	302	404	500			= Controlled NOX (ID/MBtu) X Heat Input (MBtu/hr)
Flue Gas Temperature, F	350	330	340	361	309	322	309	369	299	318	375	375	330	330	320	324	243	363	B&V Combustion Calculations
Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, lb/hr	-14.00	-8.00 1.776,743	-18.00 4.347.494	-22.4 5.842.179	-18.60 4.985.049	-36.10 6.458,467	-29.4 6,358,865	-8.0	-6.0 2.021.310	-8.0 2,744,081	-10.0 3.485,932	-10.0 3.580.000	-18.0 4,641.976	-18.0 5.648.896	-22.5 5.777.979	-16.0 6.980.068	-9.0 947,426	-13.5 1.349.077	B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm	415,851	589,646	1,498,187	2,091,568	1,657,754	2,288,309	2,175,592	641,787	642,552	2,744,081 896,674	1,229,416	1,262,592	1,581,582	1,924,653	1,965,750	2,345,528	280,496		B&V Combustion Calculations B&V Combustion Calculations
Cold-Side ESP Outlet Conditions	340	320	330	358				369	299	318	340	340	330	330	320	324	230		P21/ Combustion Coloulations
Flue Gas Temperature, F Flue Gas Pressure, in. w.g.	-18.00	-12.00	-19.00	-25.7	1			-9.1	-6.8	-9.8	-14.0	-14.0	-23.0	-21.0	-25.5	-18.0	-11.0	1	B&V Combustion Calculations B&V Combustion Calculations
Flue Gas Mass Flow Rate, lb/hr	1.260,021	1.865,580	4,564.869	6,134.288		No Cold-side ESP. Unit has a Hot-side		1,931.225	2.122,376	2.881,285	3.660.228	3,759.000	4.874.075	5.931,341	6,066,878	7,398.872	994,797	No Cold-side ESP. Unit has a Hot-side	B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm Controlled PM Concentration, Ib/MBtu	436,197 0.241	618,296	1,559,510	2,209,920 0.023	ESP	ESP	ESP	676,568 0.041	676,855 0.034	947,034 0.024	1,250,977 0.0385	1,284,735 0.0443	1,684.442 0.0517	2,039,199 0.0354	2,082,968 0.017	2,502,995 0.31	290,916 0.063	ESP	B&V Combustion Calculations Data from E-ON
Controlled PM Mass Flow Rate, Ib/hr	241	166.55	412.04	123	1			66	60	62	124	147	218	181	90	2041	53	1	= Controlled PM (lb/MBtu) x Heat Input (MBtu/hr)
Particulate Removal Efficiency, %	97.24	98.86	98.86	99.74	ļ			99.53	99.61	99.73	99.56	99.49	99.41	99.60	99.81	96.46	99.01	ļ	= { 1- Controlled PM (lb/MBtu) / Uncontrolled PM (lb/MBtu) } x 100
Fabric Filter Outlet Conditions Flue Gas Temperature, F																313			B&V Combustion Calculations
Flue Gas Pressure, in. w.g.	1															-23.1	1		B&V Combustion Calculations
Flue Gas Mass Flow Rate, lb/hr Volumetric Flue Gas Flow Rate, acfm	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	7,398,872 2,500,664	No Fabric Filter	No Fabric Filter	B&V Combustion Calculations B&V Combustion Calculations
Controlled PM Concentration, Ib/MBtu	1															0.015	1		Data from E-ON
Controlled PM Mass Flow Rate, lb/hr																99			= Controlled PM from fabric Filter (lb/MBtu) × Heat Input (MBtu/hr)
Particulate Removal Efficiency, % ID Fan Outlet Conditions																95.16			= { 1- FF Controlled PM (lb/MBtu) / ESP Controlled PM (lb/MBtu) } x 100
Flue Gas Temperature, F	356.05	332.17	346.44	376.94	325.52	346.34	333.60	379.03	306.39	327.81	354.85	355.15	348.83	348.83	340.08	334.60	235.91	371.55	B&V Combustion Calculations
Flue Gas Pressure, in. w.g.	10.00	10.00	10.00	6.10	11.40	5.90	14.60	8.00	7.00	8.00	10.00	10.00	10.00	10.00	10.00	15.77	1.00	1.00	B&V Combustion Calculations
Flue Gas Mass Flow Rate, Ib/hr Volumetric Flue Gas Flow Rate, acfm	1,260,021 415,059	1,865,580 594,805	4,564,869	6,134,288 2,086,965	4,985,049 1,571,913	6,458,467 2,119,437	6,358,865 2,010,799	1,931,225 656,526	2,122,376 660,654	2,881,285 917,824	3.660,228 1.200,841	3,759,000 1,233,697	4,874.075	5,931,341 1,932,543	6,066,878 1,954,644	7,396,672 2,334,113	994,797 284,775	1,349,077 461,503	B&V Combustion Calculations B&V Combustion Calculations
· · · · · · · · · · · · · · · · · · ·					. ,,														·

Dasign Basis

	EW Brown 2 2 3 2 616 a common/shared scrubbe 129.64 2.00 8.136,097 2.028,786 679 0.10 98.33 No WESP	1 131.74 170 6.534.149 1.643.977 805 0.150 97.50	G 128.04 1.50 5.252.980 1.308.084 865 0.200 96.67	hent 129.28 2.00 6.834.132 1.705,743 824 0.150 97.50	4 128.50 1.60 6,711.801 1.671.656 821 0.150	4 131.19 2.00 2,056.206 517.157 659	Cane Run 5 125.96 2.00 2,226,116 550.120	6/1/2010 6 128.80 2.00 3.036,144	1 130.30 1.00 3.879.298	Mill C 2 130.32 1.00	3 129.60 1.00	4 129.60 1.00	Trimble 1 129.24 2.00	2 129.43 6.00	Green 3	4	Reference B&V Combustion Calculations
Flue Gas Temperature, F Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, lb/hr Volumetric Flue Gas Flow Rate, lb/hr Controlled Suffur Dioxide Concentration, lb/MBtu Suffur Dioxide Concentration, lb/MBtu Suffur Dioxide Removal Efficiency, % Vet ESP Outlet Conditions Flue Gas Temperature, F	129.64 2.00 8.136.087 2.029.786 679 0.10 98.33	131.74 1 70 6,534.149 1,643,977 805 0.150	1.50 5,252,980 1,306,064 865 0.200	2.00 6,834,132 1.705,743 824 0.150	1.60 6,711,801 1,671,656 821	2.00 2,056,206 517,157	2.00 2,226,116	2.00	1.00	1.00	1.00	1.00	2.00		3	4	B&V Combustion Calculations
Flue Gas Temperature, F Flue Gas Pressure, In. w.g. Flue Gas Mass Flow Rate, lb/hr Controlled Sulfur Dioxide Mass Flow Rate, acfm Controlled Sulfur Dioxide Kass Flow Rate, lb/hr Controlled Sulfur Dioxide Concentration, lb/MBtu Sulfur Dioxide Removal Efficiency, % et ESP Outlet Conditions Flue Gas Ressure, In. w.g. Flue Gas Pressure, In. w.g. Flue Gas Flow Rate, lb/hr	129.64 2.00 8.136.087 2.029.786 679 0.10 98.33	131.74 1 70 6,534.149 1,643,977 805 0.150	1.50 5,252,980 1,306,064 865 0.200	2.00 6,834,132 1.705,743 824 0.150	1.60 6,711,801 1,671,656 821	2.00 2,056,206 517,157	2.00 2,226,116	2.00	1.00	1.00	1.00	1.00	2.00				
Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr /dumetric Flue Gas Flow Rate, ac/m Controlled Sulfur Dioxide Mass Flow Rate, Ib/hr Controlled Sulfur Dioxide Concentration, Ib/MBtu Jufur Dioxide Removal Efficiency, % et ESP Outlet Conditions Flue Gas Temperature, F Flue Gas Flow Rate, Ib/hr	2.00 8,136,097 2,029,786 679 0.10 98.33	1 70 6,534,149 1,643,977 805 0,150	1.50 5,252,980 1,306,064 865 0.200	2.00 6,834,132 1.705,743 824 0.150	1.60 6,711,801 1,671,656 821	2.00 2,056,206 517,157	2.00 2,226,116	2.00	1.00	1.00	1.00	1.00	2.00				
iue Gas Mass Flow Rate, lb/hr folumetric Fue Gas Flow Rate, acfm fournetric Fue Gas Flow Rate, acfm fourtoled Suffur Dioxide Amas Flow Rate, lb/hr fourtoled Suffur Dioxide Concentration, lb/MBtu fulfur Dioxide Removal Efficiency, % for tSP Outlet Conditions fue Gas Temperature, F fue Gas Flow Rate, lb/hr fue Gas Rass Flow Rate, lb/hr fue Gas Mass Flow Rate, lb/hr fue Gas Mass Flow Rate, lb/hr fue Gas Mass Flow Rate, lb/hr fue Gas flow Rate, l	8,136.097 2,029,736 679 0.10 98.33	6,534,149 1,643,977 805 0,150	5,252,980 1,306,064 865 0.200	6,834,132 1.705,743 824 0.150	6,711,801 1,671,656 821	2,056,206 517,157	2,226,116	2.00	1.00	1.00	1.00	1.40	2.00	6.00			
Unimetric Flux Gas Flow Rate, acfm ontrolled Sulfur Dioxide Mass Flow Rate, lb/hr ontrolled Sulfur Dioxide Concentration, lb/MBtu Ufur Dioxide Removal Efficiency, % t ESP Outlet Conditions ue Gas Temperature, F ue Gas Pressure, in: w.g. ue Gas Rass Flow Rate, lb/hr	2,029,736 679 0.10 98.33	1,643,977 805 0.150	1,306,064 865 0.200	1.705,743 824 0.150	1,671,656 821	517,157		3,036,144	1.00	3,984,228 5,157.618	1.00	00 1.00	2				B&V Combustion Calculations
ontrolled Sulfur Dioxide Mass Flow Rate, Ib/hr ontrolled Sulfur Dioxide Concentration, Ib/MBtu difur Dioxide Removal Efficiency, % t ESP Outlet Conditions use Gas Temperature, F use Gas Mass Flow Rate, Ib/hr	679 0.10 98.33	805 0.150	865	824 0.150	821		550.100				1,1011011	6,277,442	6,413,722	7,813,543	No Scrubber		B&V Combustion Calculations
ontrolled Suffur Dioxide Concentration, Ib/MBtu uffur Dioxide Removal Efficiency, % ESP Outlet Conditions ue Gas Temperature, F ue Gas Pressure, inv.g. ue Gas Mass Flow Rate, Ib/nr	0.10 98.33	0.150	0.200	0.150	447			754,452	972,502	998,878	1,291.025	1.571,359	1,598,535	1,927.087			B&V Combustion Calculations
Ifur Dioxide Removal Efficiency, % ESP Outlet Conditions ue Gas Temperature, F ue Gas Pressure, in. w.g. ue Gas Mass Flow Rate, Ib/hr	98.33						736	1,750	1,515	1,556	2,441	2,407	441	546			B&V Combustion Calculations
ESP Outlet Conditions Je Gas Temperature, F Je Gas Mass Flow Rate, It/hr Je Gas Mass Flow Rate, It/hr		97.50	96.67	97.50		0.411	0.419	0.676	0.47	0.47	0.58	0.47	0.083	0.083			= Controlled SO ₂ (lb/hr) / Heat Input (MBtu/hr)
ue Gas Temperature, F ue Gas Pressure, in. w.g. ue Gas Mass Flow Rate, Ib/hr			1		97.50	93.15	93.02	88.73	92.17	92.17	90.33	92.17	98.62	98.62			= { 1- Controlled SO ₂ (lb/MBtu) / Uncontrolled SO ₂ (lb/MBtu) } x 100
ue Gas Pressure, in. w.g. ue Gas Mass Flow Rate, Ib/hr		1					1	1 /									
lue Gas Mass Flow Rate, lb/hr								1						129.43			B&V Combustion Calculations
	NO WESF	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	2.00	No WESP	No WESP	B&V Combustion Calculations
olumetric Flue Gas Flow Rate, acfm								1 '					Ļ	7,813.543			B&V Combustion Calculations
								<u> </u>						1,945,943			B&V Combustion Calculations
ck Outlet Emissions ¹								<u>└────′</u>									
Ifur Dioxide Emission Concentration, Ib/MBtu 0.10	0.10 0.10	0.15	0.20	0.15	0.15	0.411	0.419	0.676	0.47	0.47	0.58	0.47	0.083	0.083	4.48		Data from E-ON
Ifur Dioxide Emission Rate, lb/hr 100	167 412	805	865	824	821	659	736	1,750	1,515	1.556	2,441	2,407	441	546	3,798	0,100	= SO ₂ Emission (lb/MBtu) x Heat Input (MBtu/hr)
M Emission Concentration, Ib/MBtu 0.241	0.1 0.1	0.023	0.0565	0.0451	0.0248	0.041	0.034	0.024	0.0385	0.0443	0.0517	0.0354	0.017	0.015	0.063		Data from E-ON
M Emission Rate, Ib/hr 241	167 412	123	244	248	136	66	60	62	124	147	218	181	90	99	53	92	= PM Emission (lb/MBtu) × Heat Input (MBtu/hr)
Ox Emission Concentration, Ib/MBtu 0.4463	0.4374 0.3319	0.0639	0.276	0.0479	0.0627	0.3394	0.3843	0.272	0.3169	0.3139	0.0584	0.0589	0.076	0.076	0.4011	0.3864	Data from E-ON
Ox Emission Rate, lb/nr 446	728 1,368	343	1,194	263	343	544	675	704	1,022	1,039	246	302	404	500	340	444	= NOx Emission (lb/MBtu) x Heat Input (MBtu/hr)
g Emission Concentration, Ib/TBtu 5.0	5.0 5.0	2.0	3.5	2.0	2.0	3.5	3.5	3.5	3.0	3.0	2.5	2.5	1.2	1.0	5.5	5.5	Data from E-ON
	8.33E-03 2.06E-02	1.07E-02	1.51E-02	1.10E-02	1.09E-02	5.61E-03	6.15E-03	9.06E-03	9.67E-03	9.93E-03	1.05E-02	1.28E-02	6.37E-03	6.58E-03	4.66E-03	6.33E-03	= Hg Emission (lb/TBtu) x Heat Input (MBtu/hr) / 1,000,000
CI Emission Concentration, Ib/MBtu 0.002	0.002 0.002	0.0015	0.0017	0.0015	0.0015	0.00095	0.00095	0.00095	0.0015	0.0015	0.0015	0.0015	0.00085	0.00085	0.017	0.017	Data from E-ON
CI Emission Rate, lb/hr 2	3 8	8	7	8	8	2	2	2	5	5	6	8	5	6	14	20	= HCI Emission (lb/MBtu) x Heat Input (MBtu/hr)
O Emission Concentration, Ib/MBtu									**			~~		**	~		CO Emissions are not known
O Emission Rate, Ib/hr								/							-		CO Emissions are not known
ioxin/Furan Emission Concentration, Ib/MBtu													-				Dioxin/Furan Emissions are not known
ioxin/Furan Emission Rate, Ib/hr -		-		-				-		-		-		-	-		Dioxin/Furan Emissions are not known

167987

6/2/2010

From:Ritchey, StacyTo:Saunders, EileenSent:6/2/2010 10:21:39 AMSubject:Environmental Summay (rev3 6-1-10).xlsxAttachments:Environmental Summay (rev3 6-1-10).xlsx

	А	В	С	D	E	F	G	н	I	J	К	L	М	N
1	Black & Veatch Study Cost Estimate	es												
2	\$ in thousands													
3														
4														
5			Capital Cost		O&M Cost	Tot	al Capital and O	&M Le	velized Annual Co	sts		2010	2011	2012
6	BROWN													
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$1,156		\$141					
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$41,477		\$6,345					
9	Brown 1 - PAC Injection		\$1,599		\$614		\$2,213		\$809					
10	Brown 1 - Neural Networks		\$500		\$50		\$550		\$111					
11	Brown 1 - Overfire Air		\$767		\$132		\$899		\$225					
12	Total Brown 1		\$44,022		\$2,273		\$46,295		\$7,631					
	Brown 2 - SCR		\$92,000		\$3,278		\$95,278		\$14,474				\$18,400	\$41,400
15	Brown 2 - Baghouse		\$51,000		\$1,959		\$52,959		\$8,166				. ,	. ,
	Brown 2 - PAC Injection		\$2,476		\$1,090		\$3,566		\$1,391					
17	Brown 2 - Neural Networks		\$500		\$50		\$550		\$111					
18	Brown 2 - Lime Injection		\$2,739		\$1,155		\$3,894		\$1,488					
19 20	Total Brown 2		\$148,715		\$7,532		\$156,247		\$25,630					
	Brown 3 - Baghouse		\$61,000		\$3,321		\$64,321		\$10,745					
	Brown 3 - PAC Injection		\$5,426		\$2,330		\$7,756		\$2,990					
23	Brown 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
24	Total Brown 3		\$67,426		\$5,751		\$73,177		\$13,957					
25 26	Total Brown		\$260,163		\$15,556		\$275,719		\$47,218					
27			<i>\$</i> 200,103		<i>Q13,550</i>		<i>42,3),13</i>		<i>\$17,</i> 210					
28														
29	GHENT													
	Ghent 1 - Baghouse		\$131,000		\$5,888		\$136,888		\$21,831					
_	Ghent 1 - PAC Injection		\$6,380		\$4,208		\$10,588		\$4,984					
32	Ghent 1 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
33	Total Ghent 1		\$138,380		\$10,196		\$148,576	1	\$27,037					
34							600 f 0==						6 45 405	6400.455
	Ghent 2 - SCR		\$227,000		\$7,078		\$234,078		\$34,704				\$45,400	\$102,150
	Ghent 2 - Baghouse		\$120,000		\$5,002		\$125,002		\$19,606					
	Ghent 2 - PAC Injection		\$6,109		\$2,880		\$8,989	-	\$3,623					
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks		\$5,483 \$1,000		\$2,775 \$100		\$8,258 \$1,100		\$3,442					
39 40	Total Ghent 2 - Neural Networks		\$1,000 \$359,592		\$100 \$17,835		\$1,100 \$377,427	-	\$222 \$61,597					
40	Total Grent 2		286,866¢		\$17,635		şs77,427		\$01,39 <i>1</i>					
42	Ghent 3 - Baghouse		\$138,000		\$6,122		\$144,122		\$22,917					
43	Ghent 3 - PAC Injection		\$6,173		\$4,134		\$10,307		\$4,885					
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
45	Total Ghent 3		\$145,173		\$10,356		\$155,529		\$28,024					
46								I						

	0	Р	Q	R	S
1					
2					
3					
4					
5	2013	2014	2015	2016	Total
6					
7					
8					
9					
10					
11					
12					
13 14	\$31,280	\$920			\$92,000
14	Ş51,280	<i>\$</i> 920			\$92,000
16					
17					
18					
19 20					
21					
22					
23					
24 25					
26					
27					
28					
29					
30					
31					
32					
33					
34 35	\$77,180	\$2,270			\$227,000
35	ν <i>1,</i> 1ου	ş∠,270			\$227,000
37					
38					
39					
40					
41					
42					
43					
44					
45 46					
L 40					1

	А	В	С	D	E	F	G	н	I	J	к	L	М	N
47	Ghent 4 - Baghouse		\$117,000		\$5,363		\$122,363		\$19,602					
48	Ghent 4 - PAC Injection		\$6,210		\$3,896		\$10,106		\$4,652					
49	Ghent 4 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
50	Total Ghent 4		\$124,210		\$9,359		\$133,569		\$24,476					
51							. ,		. ,					
52	Total Ghent		\$767,355		\$47,746		\$815,101		\$141,134					
53														
54														
55	GREEN RIVER													
56	Green River 3 - SCR		\$29,000		\$1,040		\$30,040		\$4,569				\$5,800	\$13,050
57	Green River 3 - CDS-FF		\$38,000		\$6,874		\$44,874		\$11,499					
58	Green River 3 - PAC Injection		\$1,112		\$323		\$1,435		\$458					
59	Green River 3 - Neural Networks		\$500		\$50		\$550		\$111					
60 61	Total Green River 3		\$68,612		\$8,287		\$76,899		\$16,637					
	Green River 4 - SCR		\$42,000		\$1,442		\$43,442		\$6,553				\$8,400	\$18,900
	Green River 4 - CDS-FF		\$54,000		\$10,289		\$64,289		\$16,861					\$10,500
	Green River 4 - PAC Injection		\$1,583		\$515		\$2,098		\$708					
	Green River 4 - Neural Networks		\$500		\$50		\$550		\$103					
66	Total Green River 4		\$98,083		\$12,296		\$110,379		\$24,233					
67	Total Green River 4		\$30,005		\$12,290		\$110,579		\$24,233					
68	Total Green River		\$166,695		\$20,583		\$187,278		\$40,870					
69		-	-			ľ								
70														
71	CANE RUN													
72	Cane Run 4 - FGD		\$152,000		\$8,428		\$160,428		\$26,926				\$39,520	\$76,000
73	Cane Run 4 - SCR		\$63,000		\$2,219		\$65,219		\$9,886				\$12,600	\$28,350
74	Cane Run 4 - Baghouse		\$33,000		\$1,924		\$34,924		\$5,940					
75	Cane Run 4 - PAC Injection		\$2,326		\$1,087		\$3,413		\$1,370					
76	Cane Run 4 - Lime Injection		\$2,569		\$983		\$3,552		\$1,296					
77	Cane Run 4 - Neural Networks		\$500		\$50		\$550		\$111					
78	Total Cane Run 4		\$253,395		\$14,691		\$268,086		\$45,529					
79	0 B 5 50B		<u> </u>		<u> </u>		64.67 700		<u> </u>				611.040	470 500
	Cane Run 5 - FGD		\$159,000		\$8,789		\$167,789		\$28,139				\$41,340	\$79,500
	Cane Run 5 - SCR		\$66,000		\$2,421		\$68,421		\$10,453				\$13,200	\$29,700
	Cane Run 5 - Baghouse		\$35,000		\$2,061		\$37,061		\$6,321					
	Cane Run 5 - PAC Injection		\$2,490		\$1,120		\$3,610		\$1,423					
	Cane Run 5 - Lime Injection		\$2,752		\$1,089		\$3,841		\$1,424					
	Cane Run 5 - Neural Networks		\$500		\$50		\$550		\$111					
86 87	Total Cane Run 5		\$265,742		\$15,530		\$281,272		\$47,871					
	Cane Run 6 - FGD		\$202,000		\$10,431		\$212,431		\$35,014				\$52,520	\$101,000
	Cane Run 6 - SCR		\$86,000		\$2,793		\$88,793		\$13,259				\$17,200	\$101,000
	Can Rune 6 - Baghouse		\$45,000		\$2,672		\$47,672		\$13,239				φ±1,200	\$30,700
	Cane Run 6 - PAC Injection		\$45,000		\$2,672		\$47,872		\$8,149					
	Cane Run 6 - Lime Injection		\$3,490		\$1,336		\$4,826		\$1,761					
1 74	Carle Null 6 - Lime Injection		\$5,873		\$1,50/		\$3,240		٥٤٥,٦٤					

47 48 49 50 51				
49 50				
50				
50				
51				
52				
53				
54				
55				
56	\$9,860	\$290		\$29,000
57				
58				
59				
60				
61 62	\$14,280	\$420		\$42,000
63	\$14,200	Ş420		\$42,000
64				
65				
66 67				
68				
69				
70				
71				
72	\$34,200	\$2,280		\$152,000
73	\$21,420	\$630		\$63,000
74				
75				
76				
77				
78				
79	605 775	¢2.205		6450.000
80	\$35,775	\$2,385		\$159,000
81	\$22,440	\$660		\$66,000
82				
83				
84				
85				
86 87				
88	\$45,450	\$3,030		\$202,000
89	\$29,240	\$860		\$86,000
90	723,270	2000		200,000
91				
91				

	А	В	С	D	E	F	G	н	I	J	К	L	М	N
93	Cane Run 6 - Neural Networks		\$500		\$50		\$550		\$111					
94 95	Total Can Run 6		\$340,863		\$18,649		\$359,512		\$60,132					
96	Total Cane Run		\$860,000		\$48,870		\$908,870	-	\$153,532					
97			\$000,000		\$10,070		<i><i><i>quccjuic</i></i></i>		<i>\</i> 100,001					
98														
99	Mill Creek													
	Mill Creek 1 - FGD		\$297,000		\$14,341		\$311,341		\$50,486				\$77,220	\$148,500
	Mill Creek 1 - SCR		\$97,000		\$3,366		\$100,366		\$15,171				\$19,400	\$43,650
	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$84,477		\$13,335					
	Mill Creek 1 - Electrostatic Precipita	tor	\$32,882		\$3,581		\$36,463		\$7,583					
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$6,625		\$2,750					
	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$6,504		\$2,569					
	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
107	Total Mill Creek 1		\$517,774		\$29,102		\$546,876		\$9 2 ,116					
108	Mill Creek 2 - FGD		\$297,000		\$14,604		\$311,604		\$50,749				677 000	\$148,500
	Mill Creek 2 - FGD Mill Creek 2 - SCR		\$297,000		\$14,804		\$100,401		\$15,206				\$77,220 \$19,400	\$148,500
													\$19,400	\$43,650
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$84,518		\$13,376					
	Mill Creek 2 - Electrostatic Precipita	ator	\$32,882		\$3,664		\$36,546		\$7,666					
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$6,752		\$2,877					
	Mill Creek 2 - Lime Injection		\$4,480		\$2,117		\$6,597		\$2,662					
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
116 117	Total Mill Creek 2		\$517,774		\$29,744		\$547,518		\$92,758					
118	Mill Creek 3 - FGD		\$392,000		\$18,911		\$410,911		\$66,617				\$101,920	\$196,000
119	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$118,923		\$18,797					
120	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$8,805		\$3,894					
121	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
122 123	Total Mill Creek 3		\$512,592		\$27,147		\$539,739		\$89,530					
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$476,775		\$77,149				\$118,300	\$227,500
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$138,804		\$21,990				\$110,000	<i>\$227,500</i>
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$10,748		\$4,697					
	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
128	Total Mill Creek 4		\$595,890		\$31,537		\$627,427		\$104.058					
129	Total Mill Creek 4		<i>4000,000</i>		<i>401,007</i>		<i><i><i>qozyizy</i></i></i>		<i>\$</i> 101,000					
130	Total Mill Creek		\$2,144,030		\$117,530		\$2,261,560		\$378,462					
131														
132														
133	TRIMBLE													
134	Trimble 1 - Baghouse		\$128,000		\$5,782		\$133,782		\$21,360					
135	Trimble 1 - PAC Injection		\$6,451		\$4,413		\$10,864		\$5,198					
136	Trimble 1 - Neural Networks		\$1,000		\$100		\$1,100		\$222					
137	Total Trimble 1		\$135,451		\$10,295		\$145,746		\$26,780					
138														

	0	Р	Q	R	S
93					
94					
95					
96					
97 98					
99					
100	\$66,825	\$4,455			\$297,000
101	\$32,980	\$970			\$97,000
102					
103					
104					
105					
106					
107 108					
109	\$66,825	\$4,455			\$297,000
110	\$32,980	\$970			\$97,000
111	<i>\$52,500</i>	<i>\$510</i>			\$57,000
112					
113					
114					
114					
116 117					
118	\$88,200	\$5,880			\$392,000
119					
120					
121					
122					
123					
124	\$102,375	\$6,825			\$455,000
125					
126					
127					
128 129					
130					
131					
131					
132					
133					
134					
135					
137 138					

	А	В	С	D	E	F	G	Н	1	J	К	L	М	N
139	Total Trimble		\$135,451		\$10,295		\$145,746		\$26,780					
140														
141														
142	Grand Total		\$4,333,694		\$260,580		\$4,594,274		\$787,996			\$0	\$667,840	\$1,336,550

	0	Р	Q	R	S
139					
140					
141					
142	\$711,310	\$37,300	\$0	\$0	\$2,753,000

From:	Saunders, Eileen
То:	Wilson, Stuart; Karavayev, Louanne
Sent:	6/4/2010 3:49:26 PM
Subject:	Draft- Environmental Compliance Summary
Attachments:	Environmental Summay (rev5 6-3-10).xlsx

Stuart and LouAnne,

As described in my meeting notice, please see the summary of the information I received from B&V. Due to the sensitivity of this information, I ask that it not be distributed at this time. We can discuss the summary in more detail during our call on Monday.

⊤hank you,

Eileen

	Α	В	С	D	E	F	G	Н
1	Black & Veatch Study Cost Estimates							
2	\$ in thousands							
3								
4								
5			Capital Cost		O&M Cost	Lev	elized Annual Co	sts
6	BROWN							
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$141	
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$6,345	
9	Brown 1 - PAC Injection		\$1,599		\$614		\$809	
10	Brown 1 - Neural Networks		\$500		\$50		\$111	
11	Brown 1 - Overfire Air		\$767		\$132		\$225	
12 13	Total Brown 1		\$44,022		\$2,273		\$7,631	
	Brown 2 - SCR		\$92,000		\$3,278		\$14,474	
	Brown 2 - Baghouse		\$51,000		\$1,959		\$8,166	
	Brown 2 - PAC Injection		\$2,476		\$1,090		\$1,391	
	Brown 2 - Neural Networks		\$500		\$50		\$111	
_	Brown 2 - Lime Injection		\$2,739		\$1,155		\$1,488	
19	Total Brown 2		\$148,715		\$7,532		\$25,630	
20								
	Brown 3 - Baghouse		\$61,000		\$3,321		\$10,745	
	Brown 3 - PAC Injection		\$5,426		\$2,330		\$2,990	
	Brown 3 - Neural Networks		\$1,000		\$100		\$222	
24 25	Total Brown 3		\$67,426		\$5,751		\$13,957	
26	Total Brown		\$260,163		\$15,556		\$47,218	
27								
28								
29	GHENT							
30	Ghent 1 - Baghouse		\$131,000		\$5,888		\$21,831	
31	Ghent 1 - PAC Injection		\$6,380		\$4,208		\$4,984	
32	Ghent 1 - Neural Networks		\$1,000		\$100		\$222	
33	Total Ghent 1		\$138,380		\$10,196		\$27,037	
34 25	Cheet 2 SCD		¢227.000		67.070		624 704	
	Ghent 2 - SCR		\$227,000		\$7,078		\$34,704	
	Ghent 2 - Baghouse		\$120,000		\$5,002		\$19,606	
	Ghent 2 - PAC Injection Ghent 2 - Lime Injection		\$6,109		\$2,880 \$2,775		\$3,623 \$3,442	
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks		\$5,483 \$1,000		\$2,775		\$3,442	
39 40	Total Ghent 2 - Neural Networks		. ,		\$100 \$17,835		\$222 \$61,597	
40	Total Grent 2		\$359,592		\$17,835		762,195	
42	Ghent 3 - Baghouse		\$138,000		\$6,122		\$22,917	
	Ghent 3 - PAC Injection		\$6,173		\$4,134		\$4,885	
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$222	
45	Total Ghent 3		\$145,173		\$10,356		\$28,024	
46								

	А	В	С	D	E	F	G	Н
47	Ghent 4 - Baghouse		\$117,000		\$5,363		\$19,602	
48	Ghent 4 - PAC Injection		\$6,210		\$3,896		\$4,652	
49	Ghent 4 - Neural Networks		\$1,000		\$100		\$222	
50	Total Ghent 4		\$124,210		\$9,359		\$24,476	
51			1					
52	Total Ghent		\$767,355		\$47,746		\$141,134	
53								
54								
55	GREEN RIVER		<u> </u>		44 6 46		<u> </u>	
	Green River 3 - SCR		\$29,000		\$1,040		\$4,569	
57	Green River 3 - CDS-FF		\$38,000		\$6,874		\$11,499	
58	Green River 3 - PAC Injection		\$1,112		\$323		\$458	
59	Green River 3 - Neural Networks		\$500		\$50		\$111	
60 61	Total Green River 3		\$68,612		\$8,287		\$16,637	
	Green River 4 - SCR		\$42,000		\$1,442		\$6,553	
63	Green River 4 - CDS-FF		\$54,000		\$10,289		\$16,861	
64	Green River 4 - PAC Injection		\$1,583		\$515		\$708	
65	Green River 4 - Neural Networks		\$500		\$50		\$111	
66	Total Green River 4		\$98,083		\$12,296		\$24,233	
67								
68	Total Green River		\$166,695		\$20,583	_	\$40,870	
69 70								
71	CANE RUN							
	Cane Run 4 - FGD		\$152,000		\$8,428		\$26,926	
73	Cane Run 4 - SCR		\$63,000		\$2,219		\$9,886	
	Cane Run 4 - Baghouse		\$33,000		\$1,924		\$5,940	
75	Cane Run 4 - PAC Injection		\$2,326		\$1,087		\$1,370	
76	Cane Run 4 - Lime Injection		\$2,569		\$983		\$1,296	
77	Cane Run 4 - Neural Networks		\$500		\$50		\$111	
78	Total Cane Run 4		\$253,395		\$14,691		\$45,529	
79							4-	
	Cane Run 5 - FGD		\$159,000		\$8,789		\$28,139	
	Cane Run 5 - SCR		\$66,000		\$2,421		\$10,453	
82	Cane Run 5 - Baghouse		\$35,000		\$2,061		\$6,321	
83	Cane Run 5 - PAC Injection		\$2,490		\$1,120		\$1,423	
84	Cane Run 5 - Lime Injection		\$2,752		\$1,089		\$1,424	
85	Cane Run 5 - Neural Networks		\$500		\$50		\$111	
86 87	Total Cane Run 5		\$265,742		\$15,530		\$47,871	
	Cane Run 6 - FGD		\$202,000		\$10,431		\$35,014	
	Cane Run 6 - SCR		\$86,000		\$2,793		\$13,259	
	Can Rune 6 - Baghouse		\$45,000		\$2,672		\$8,149	
91	Cane Run 6 - PAC Injection		\$3,490		\$1,336		\$1,761	
					· -/		· -/· -	

	А	В	С	D	E	F	G	Н
93	Cane Run 6 - Neural Networks		\$500		\$50		\$111	
94	Total Can Run 6		\$340,863		\$18,649		\$60,132	
95		_						
96 97	Total Cane Run		\$860,000		\$48,870		\$153,532	
98								
99	Mill Creek							
100	Mill Creek 1 - FGD		\$297,000		\$14,341		\$50,486	
101	Mill Creek 1 - SCR		\$97,000		\$3,366		\$15,171	
102	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$13,335	
103	Mill Creek 1 - Electrostatic Precipita	itor	\$32,882		\$3,581		\$7,583	
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$2,750	
105	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$2,569	
	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$222	
107	Total Mill Creek 1		\$517,774		\$29,102		\$92,116	
108	Mill Creek 2 - FGD		\$297,000		\$14,604		\$50,749	
_	Mill Creek 2 - SCR		\$97,000		\$3,401		\$15,206	
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$13,376	
	Mill Creek 2 - Electrostatic Precipita	tor	\$32,882		\$3,664		\$13,370	
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$2,877	
	Mill Creek 2 - Lime Injection		\$4,480		\$2,340		\$2,662	
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$222	
116	Total Mill Creek 2		\$517,774		\$29,744		\$92,758	
117			<i><i><i>4327)771</i></i></i>		<i><i><i></i></i></i>		<i>401,700</i>	
118	Mill Creek 3 - FGD		\$392,000		\$18,911		\$66,617	
119	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$18,797	
120	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$3,894	
	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$222	
122 123	Total Mill Creek 3		\$512,592		\$27,147		\$89,530	
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$77,149	
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$21,990	
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$4,697	
127	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$222	
128	Total Mill Creek 4		\$595,890		\$31,537		\$104,058	
129			+,		+;:		<i>+==</i> .,===	
130	Total Mill Creek		\$2,144,030		\$117,530		\$378,462	
131								
132								
133	TRIMBLE							
	Trimble 1 - Baghouse		\$128,000		\$5,782		\$21,360	
	Trimble 1 - PAC Injection		\$6,451		\$4,413		\$5,198	
	Trimble 1 - Neural Networks		\$1,000		\$100		\$222	
137 138	Total Trimble 1		\$135,451		\$10,295		\$26,780	
130								

	А	В	С	D	E	F	G	Н
139	Total Trimble		\$135,451		\$10,295		\$26,780	
140								
141								
142	Grand Total		\$4,333,694		\$260,580		\$787,996	

	А	В	С	D	E
1	Black & Veatch Study Cost Estimate	s			
2					
3					
4					
5			MW		\$/kW
6	BROWN				
7	Brown 1 - Low NOx Burners				\$11
8	Brown 1 - Baghouse				\$364
9	Brown 1 - PAC Injection				\$15
10	Brown 1 - Neural Networks				\$5
11	Brown 1 - Overfire Air				\$7
12	Total Brown 1		110		\$400
13					
	Brown 2 - SCR				\$511
15	Brown 2 - Baghouse				\$283
16	Brown 2 - PAC Injection				\$14
17	Brown 2 - Neural Networks				\$3
18	Brown 2 - Lime Injection				\$15
19	Total Brown 2		180		\$826
20	Brown 3 - Baghouse				\$133
21	Brown 3 - PAC Injection				\$135
22	Brown 3 - Neural Networks				\$12
23	Total Brown 3		457		\$148
24	Total Brown 3		457		
26	Total Brown		747		\$348
27					
28					
29	GHENT				
30	Ghent 1 - Baghouse				\$242
31	Ghent 1 - PAC Injection				\$12
32	Ghent 1 - Neural Networks				\$2
33	Total Ghent 1		541		\$256
34	Chart 2 CCD				¢ 400
	Ghent 2 - SCR				\$439
	, ,				\$232
37	Ghent 2 - PAC Injection				\$12
38	Ghent 2 - Lime Injection				\$11
39	Ghent 2 - Neural Networks				\$2
40 41	Total Ghent 2		517		\$696
42	Ghent 3 - Baghouse				\$264
43	Ghent 3 - PAC Injection				\$12
44	Ghent 3 - Neural Networks				\$2
45	Total Ghent 3		523		\$278
46					,

	A	В	С	D	E
47	Ghent 4 - Baghouse				\$222
48	Ghent 4 - PAC Injection				\$12
49	Ghent 4 - Neural Networks				\$2
50	Total Ghent 4		526		\$236
51					
52	Total Ghent		2,107		\$364
53					
54					
55					
56	GREEN RIVER				
57	Green River 3 - SCR				\$408
58	Green River 3 - CDS-FF				\$535
59	Green River 3 - PAC Injection				\$16
60	Green River 3 - Neural Networks				\$7
61 62	Total Green River 3		71		\$966
63	Green River 4 - SCR				\$385
64	Green River 4 - CDS-FF				\$495
65	Green River 4 - PAC Injection				\$15
66	Green River 4 - Neural Networks				\$1
67	Total Green River 4		109		\$900
68			105		4 500
69	Total Green River		180	-	\$92 6
70					
71					
72	CANE RUN				
73	Cane Run 4 - FGD				\$905
74	Cane Run 4 - SCR				\$375
75	Cane Run 4 - Baghouse				\$196
76	Cane Run 4 - PAC Injection				\$14
77	Cane Run 4 - Lime Injection				\$15
78	Cane Run 4 - Neural Networks				\$3
79	Total Cane Run 4		168		\$1,508
80					ć070
81	Cane Run 5 - FGD				\$878 ¢265
82	Cane Run 5 - SCR				\$365
83	Cane Run 5 - Baghouse				\$193
84	Cane Run 5 - PAC Injection				\$14
85	Cane Run 5 - Lime Injection				\$15
86	Cane Run 5 - Neural Networks			-	\$3
87 88	Total Cane Run 5		181		\$1,468
89	Cane Run 6 - FGD				\$774
55	Cane Run 6 - SCR				\$330
90					7550
90 91	Can Rune 6 - Baghouse				\$172

	Α	В	C	D	Е
93	Cane Run 6 - Lime Injection				\$15
94	Cane Run 6 - Neural Networks				\$2
95	Total Can Run 6		261		\$1,306
96					
97 98	Total Cane Run		610		\$1,410
98 99					
100	Mill Creek				
101	Mill Creek 1 - FGD				\$900
102	Mill Creek 1 - SCR				\$294
103	Mill Creek 1 - Baghouse				\$245
104	Mill Creek 1 - Electrostatic Precipita	ator			\$100
105	Mill Creek 1 - PAC Injection				\$13
106	Mill Creek 1 - Lime Injection				\$14
107	Mill Creek 1 - Neural Networks				\$3
108	Total Mill Creek 1		330		\$1,569
109					4000
	Mill Creek 2 - FGD				\$900
	Mill Creek 2 - SCR				\$294
	Mill Creek 2 - Baghouse				\$245
	Mill Creek 2 - Electrostatic Precipita	ator			\$100
	Mill Creek 2 - PAC Injection				\$13
	Mill Creek 2 - Lime Injection				\$14
	Mill Creek 2 - Neural Networks		220		\$3
117	Total Mill Creek 2		330		\$1,569
	Mill Creek 3 - FGD				\$927
120	Mill Creek 3 - Baghouse				\$270
	Mill Creek 3 - PAC Injection				\$13
122	Mill Creek 3 - Neural Networks				\$2
123	Total Mill Creek 3		423		\$1,212
124					
	Mill Creek 4 - FGD				\$867
	Mill Creek 4 - Baghouse				\$253
	Mill Creek 4 - PAC Injection				\$13
	Mill Creek 4 - Neural Networks				\$2
129 130	Total Mill Creek 4		525		\$1,135
131	Total Mill Creek		1,608		\$1,333
132		1	,		<i>, _,</i>
133					
134	TRIMBLE				
	Trimble 1 - Baghouse				\$234
	Trimble 1 - PAC Injection				\$12
	Trimble 1 - Neural Networks				\$2
138	Total Trimble 1		547		\$248

	А	В	C	D	E
139					
140	Total Trimble		547		\$248
141					
142					
143	Grand Total		5,799		\$747

From:	Saunders, Eileen
То:	Ritchey, Stacy
Sent:	6/22/2010 11:51:43 AM
Subject:	Fw: 167987.26.0000 100614 - EON Draft AQCS Costs - EW Brown
Attachments:	Brown Unit 1 Cost Estimates 061110.pdf

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Hillman, Timothy M. <HillmanTM@bv.com>; Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>
Sent: Mon Jun 14 12:58:22 2010
Subject: 167987.26.0000 100614 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS costs for the addition of an SCR for Brown Unit 1--the costs are included as option #1. Due to the time constraints with getting the information for the draft report compiled we will keep the approved LNB/OFA technology in the report and in associated process flows, schedules, and drawings for this unit. We can discuss including the SCR technology as part of the final report. Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@by.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Lucas, Kyle J.

Sent: Sunday, May 30, 2010 1:43 PM To: 'Saunders, Eileen'

Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand

Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

<< File: Brown Unit 3 Cost Estimates 052810.pdf >> << File: Brown Unit 1 Cost Estimates 052810.pdf >> << File: Brown Unit 2 Cost Estimates 052810.pdf >>

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bv.com This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Black & Veatch Cost Estimates

167987

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	06/11/10

Base Option - LNB and OFA for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

Option 1 - SCR for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$59,000,000	\$536	\$2,075,000	\$9,255,000
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$101,099,000	\$919	\$4,216,000	\$16,520,000

DRAFT

From:Hillman, Timothy M.To:Lucas, Kyle J.; Saunders, Eileen; Mahabaleshwarkar, Anand; Mehta, Pratik D.CC:King, Michael L. (Mike)Sent:6/7/2010 8:37:30 AMSubject:RE: E.ON AQC Study - Weekly Project Conference CallAttachments:EON ACTION ITEM LIST 060710.xls

Team,

Just a reminder of our 1 pm (2 pm EST) Project Conference Call this afternoon (conference room P3J-W for the B&V folks). I've attached an updated Action Item list for your review prior to the meeting. Also, lets add to the standing meeting agenda a discussion of the follow-up questions/comments from Eileen contained in her Friday, June 4th email.

Thanks,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overband Park, KS 66211 Phone: (913) 458-7928 Ernait hillmantm@bv.com

 From:
 Hillman, Timothy M.

 Sent:
 Wednesday, May 12, 2010 9:51 AM

 To:
 Hillman, Timothy M.; Lucas, Kyle J.; 'Saunders, Eikeen'; Mahabakeshwarkar, Anand

 Cc:
 King, Michael L. (Mike)

 Subject:
 E.ON AQC Study - Weekly Project Conference Call

 When:
 Monday, June 07, 2010 1:00 PM-2:00 PM (GMT-06:00) Central Time (US & Canada).

 Where:
 P3J-W (B&V Folks)

Weekly Project Update Conference Call. Eileen, Please invite others as you see necessary.

Dial-in Number: 877-603-8688 Conf ID: 8791684

Standing Agenda:

1) Project Status

2) Action Item List

3) Scheduled Activities for the Week

	А	В	С	D	E	F	G	I	J	К
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO		
2										
3	ITEM #	SOURC	CE	DESCRIPTION	FILE NO.	RESPON	ISIBILITY	ATE ADDE	RIG DUE DAT	RR DUE D
4		DOC/MTNG	DATE			CO.	INITIAL			
5	1	Conf Call	5/3/10	Send template for environmental requirements matrix		BV	АМ	05/03/10	05/03/10	05/03/10
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	тн	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	тн	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
20	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
23	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
24	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	
24 25										
20					1					

	М	N	0
1			
2			
3	STATUS	NOTES	
4			
5	Closed		1
6	Closed		
7	Closed		
8	Closed		
9	Closed		
10	Closed		
	Closed		
11	Closed		
12	Closed		
13	Closed	EON confirmed at 5/10 Kick-off Meeting.	
14	Closed		
15	Closed		
16	Closed		
17	Closed		
18	Closed		
19	Closed	Email of June 2nd with revised Design Basis.	
20	Closed		
21		Responses provided during 1020 (EST) cell	
22	Closed	Responses provided during 1030 (EST) call.	
23	Open	Plan to discuss in Monday (6/7) call.	
24	Open		
25			

***********	A	В	С	D	E	F	G	1	J	К
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40	36									
41	37									
42	38									
43										
44	39									
45	40									
46	41									
47	42									
48	43									
49	44									
50	45									
_ 50										

	М	Ν	0
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

	Α	В	С	D	E	F	G	I	J	К
51	46									
52	47									
53	48									
54	49									
	50									
55	51									
56	52									
57	53									
58	54									
59										
60	55									
61	56									
62	57									
63	58									
64	59									
65	60									
66	61									
67	62									
	63									
68	64									
69	65									
70										
71	66									
72	67									
	68									
73	69									
74										

	М	N	0							
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										
62										
63										
64										
65										
66										
67										
68										
69										
70										
71										
72										
73										
74										
	A	В	С	D	E	F	G	I	J	K
----	----	---	---	---	---	---	---	---	---	---
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
86	81									
87	82									
88	83									
89	84									
90	85									
91	86									
92	87									
93	88									
94	89									
95	90									
96	91									
97	92									
97	93									
	94									
99										

	М	N	0
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			

	A 95	В	С	D	E	F	G	I	J	K
100										
101	96									
102	97									
103	98									
104	99									
105	100									
	101									
106	102									
107	103									
108	104									
109	105									
110	106									
111	107									
112										
113	108									
114	109									
115	110									
116	111									
117	112									
118	113									
119	114									
120	115									
121										
122										
123 124 125										
125										

	М	N	0
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124 125			

	А	В	С	D	E	F	G	l l	J	ĸ
7098										
7099										
7100										
7101										
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									

	М	Ν	0
7098			
7099			
7100			
7101			
7102			
7103			
7104			
7105			
7106			
7107			
7108			
7109			

	A	В	С	D	E			
1	EON	E.ON U.S.	E.ON U.S. SERVICES INC. COMF					
2	ES	Eileen Sau	nders					
3	GB	Greg Black	[
4	GR	Gary Revle	tt					
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15	<u>BV</u>		atch (B&V)					
16	тн	Tim Hillma	n					
17	KL	Kyle Lucas						
18	AM	Anand Mał	Anand Mahabaleshwarker					
19	MK	Mike King						
20	BO	Brian O'Ne	al					

From:Lucas, Kyle J.To:Saunders, EileenCC:Hillman, Timothy M.; Mahabaleshwarkar, AnandSent:6/14/2010 12:58:22 PMSubject:167987.26.0000 100614 - EON Draft AQCS Costs - EW BrownAttachments:Brown Unit 1 Cost Estimates 061110.pdf

Eileen,

Attached please find the draft AQCS costs for the addition of an SCR for Brown Unit 1--the costs are included as option #1. Due to the time constraints with getting the information for the draft report compiled we will keep the approved LNB/OFA technology in the report and in associated process flows, schedules, and drawings for this unit. We can discuss including the SCR technology as part of the final report. Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

 From:
 Lucas, Kyle J.

 Sent:
 Sunday, May 30, 2010 1:43 PM

 To:
 'Saunders, Eileen'

 Cc:
 Hillman, Timothy M.; Mahabaleshwarkar, Anand

 Subject:
 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

<< File: Brown Unit 3 Cost Estimates 052810.pdf >> << File: Brown Unit 1 Cost Estimates 052810.pdf >> << File: Brown Unit 2 Cost Estimates 052810.pdf >>

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

E-ON Fleetwide Study

Black & Veatch Cost Estimates

167987

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	06/11/10

Base Option - LNB and OFA for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

Option 1 - SCR for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$59,000,000	\$536	\$2,075,000	\$9,255,000
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$101,099,000	\$919	\$4,216,000	\$16,520,000

DRAFT

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	6/7/2010 11:16:42 AM
Subject:	FW: E.ON AQC Study - Weekly Project Conference Call
Attachments:	EON ACTION ITEM LIST 060710.xls

Scott,

On Friday, I sent you an invitation to participate on the B&V call at 2pm our time. Here is the action item list and the call in number below. Let me know if you will participate.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Monday, June 07, 2010 8:38 AM
To: Lucas, Kyle J.; Saunders, Eileen; Mahabaleshwarkar, Anand; Mehta, Pratik D.
Cc: King, Michael L. (Mike)
Subject: RE: E.ON AQC Study - Weekly Project Conference Call

Team,

Just a reminder of our 1 pm (2 pm EST) Project Conference Call this afternoon (conference room P3J-W for the B&V folks). I've attached an updated Action Item list for your review prior to the meeting. Also, lets add to the standing meeting agenda a discussion of the follow-up questions/comments from Eileen contained in her Friday, June 4th email.

Thanks,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

nothy M. May 12, 2010 9:51 AM thy M.; Lucas, Kyle J.; 'Saunders, Eileen'; Mahabaleshwarkar, Anand L. (Mike) AQC Study - Weekly Project Conference Call ine 07, 2010 1:00 PM-2:00 PM (GMT-06:00) Central Time (US & Canada). V Folks)

Weekly Project Update Conference Call. Eileen, Please invite others as you see necessary.

Dial-in Number: 877-603-8688 Conf ID: 8791684

Standing Agenda:

1) Project Status

2) Action Item List

3) Scheduled Activities for the Week

	А	В	С	D	E	F	G	I	J	К
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO		
2										
3	ITEM #	SOURC	CE	DESCRIPTION	FILE NO.	RESPON	ISIBILITY	ATE ADDE	RIG DUE DAT	RR DUE D
4		DOC/MTNG	DATE		CO. INITIAL					
5	1	Conf Call	5/3/10	Send template for environmental requirements matrix		BV	АМ	05/03/10	05/03/10	05/03/10
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	тн	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	тн	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
20	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
23	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
24	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	
24 25										
20					1					

	М	N	0
1			
2			
3	STATUS	NOTES	
4			
5	Closed		1
6	Closed		
7	Closed		
8	Closed		
9	Closed		
10	Closed		
	Closed		
11	Closed		
12	Closed		
13	Closed	EON confirmed at 5/10 Kick-off Meeting.	
14	Closed		
15	Closed		
16	Closed		
17	Closed		
18	Closed		
19	Closed	Email of June 2nd with revised Design Basis.	
20	Closed		
21		Responses provided during 1020 (EST) cell	
22	Closed	Responses provided during 1030 (EST) call.	
23	Open	Plan to discuss in Monday (6/7) call.	
24	Open		
25			

	A	В	С	D	E	F	G	I	J	К
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41	36									
42	37									
43	38									
44	39									
45	40									
46	41									
47	42									
48	43									
	44									
49	45									
50										

	М	Ν	0
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

	Α	В	С	D	E	F	G	J	К
51	46								
52	47								
53	48								
54	49								
	50								
55	51								
56	52								
57	53								
58	54								
59									
60	55								
61	56								
62	57								
63	58								
64	59								
65	60								
66	61								
67	62								
	63								
68	64								
69	65								
70									
71	66								
72	67								
	68								
73	69								
74									

	М	N	0
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			

	Α	В	С	D	E	F	G	I	J	К
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
	81									
86	82									
87	83									
88	84									
89	85									
90	86									
91	87									
92	88									
93	89									
94	90									
95	91									
96	92									
97										
98	93									
99	94									

	М	Ν	0
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			

	A 95	В	С	D	E	F	G	I	J	K
100										
101	96									
102	97									
103	98									
103	99									
	100									
105	101									
106	102									
107	103									
108	104									
109	105									
110	106									
111										
112	107									
113	108									
114	109									
115	110									
116	111									
117	112									
118	113									
	114									
119	115									
120										
121										
122										
123										
124 125										

	М	N	0
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124 125			

	А	В	С	D	E	F	G	Ι	J	ĸ
7098										
7099										
7100										
7101										
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									

	М	Ν	0
7098			
7099			
7100			
7101			
7102			
7103			
7104			
7105			
7106			
7107			
7108			
7109			

	A	В	С	D	E			
1	EON	E.ON U.S.	SERVICES	INC. COM	PANY			
2	ES	Eileen Sau	nders					
3	GB	Greg Black	[
4	GR	Gary Revie	tt					
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15	<u>BV</u>		atch (B&V)					
16	тн	Tim Hillma	n					
17	KL	Kyle Lucas						
18	AM	Anand Mał	Anand Mahabaleshwarker					
19	MK	Mike King						
20	BO	Brian O'Ne	al					

From:	Saunders, Eileen
То:	Wilson, Stuart; Karavayev, Louanne
Sent:	6/14/2010 2:17:39 PM
Subject:	Fw: 167987.26.0000 100614 - EON Draft AQCS Costs - EW Brown
Attachments:	Brown Unit 1 Cost Estimates 061110.pdf

Stuart and LouAnne,

Please see the cost estimate for a Brown Unit 1 SCR. I had to leave early for an afternoon doctor's appointment but please email me if you have any questions.

Thanks,

Eileen

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Hillman, Timothy M. <HillmanTM@bv.com>; Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>
Sent: Mon Jun 14 12:58:22 2010
Subject: 167987.26.0000 100614 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS costs for the addition of an SCR for Brown Unit 1--the costs are included as option #1. Due to the time constraints with getting the information for the draft report compiled we will keep the approved LNB/OFA technology in the report and in associated process flows, schedules, and drawings for this unit. We can discuss including the SCR technology as part of the final report.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

 From:
 Lucas, Kyle J.

 Sent:
 Sunday, May 30, 2010 1:43 PM

 To:
 'Saunders, Eileen'

 Cc:
 Hillman, Timothy M.; Mahabaleshwarkar, Anand

 Subject:
 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

<< File: Brown Unit 3 Cost Estimates 052810.pdf >> << File: Brown Unit 1 Cost Estimates 052810.pdf >> << File: Brown Unit 2 Cost Estimates 052810.pdf >>

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

E-ON Fleetwide Study

Black & Veatch Cost Estimates

167987

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	06/11/10

Base Option - LNB and OFA for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

Option 1 - SCR for NOx Control

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$59,000,000	\$536	\$2,075,000	\$9,255,000
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$101,099,000	\$919	\$4,216,000	\$16,520,000

DRAFT

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:6/14/2010 3:40:08 PMSubject:167987.28.0600 100614 EON AQC Project - Action Item List from 061410 Project Conference CallAttachments:EON ACTION ITEM LIST 061410.xls

Eileen,

Please find attached the updated action item list from our conference call today.

Best regards,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	А	В	С	D	E	F	G	I	J	K
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO	STUDY	
2										
3	ITEM #	SOURC	CE	DESCRIPTION		RESPON	ISIBILITY	ATE ADDE	RIG DUE DAT	RR DUE Di
4		DOC/MTNG	DATE			CO.	INITIAL			
5	1	Conf Call	5/3/10	Send template for environmental requirements matrix		BV	АМ	05/03/10	05/03/10	05/03/10
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	ТН	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	ТН	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
21	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
23	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
24	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	
25	21	Conf Call	6/7/10	Estimate AQC Costs for Brown Units 1 & 2 Combined		BV	АМ	06/07/10	06/08/10	

	М	N	0	Ρ	Q	R	S	Т	U	V	W
1											
2											
3	STATUS	NOTES									
4											
5	Closed										
6	Closed										
7	Closed										
8	Closed										
9	Closed										
10	Closed										
	Closed										
11	Closed										
12	Closed										
13	Closed	EON confirmed at 5/10 Kick-off Meeting.									
14	Closed										
15	Closed										
16	Closed										
17	Closed										
18	Closed										
19		Function for the second sector of Design Design									
20	Closed	Email of June 2nd with revised Design Basis.									
21	Closed										
22	Closed	Responses provided during 1030 (EST) call.									
23	Closed	Responses provided during Monday (6/7) call.									
24	Open										
25	Closed	Email of June 8th.									

	Α	В	С	D	E	F	G	I	J	К
26	22	Conf Call	6/7/10	Provide Description of the Fixed and Variable O&M Costs included in the estim	ate.	BV	АМ	06/07/10	06/08/10	
20	23	EON Email	6/10/10	Brown 1 SCR Costs		BV	KL	06/10/10	06/14/10	
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40	36									
41										
42	37									
43	38									
44	39									
45	40									
	41									
46	42									
47	43									
48										
49	44									

	М	N	0	Р	Q	R	S	Т	U	V	W
26	Closed	Email of June 8th.									
	Closed	Email of June 14th - Note: Draft Report will have I	NB. E.C	DN to	comment	during revie	w period wh	ether to use	e SCR or Ll	NB in the Fi	nal Report.
27											
28											
29											
30											
31											·
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											
45											
46											
47											
48											
49											

	Α	В	С	D	E	F	G	I	J	K
50	45									
51	46									
	47									
52	48									
53	49									
54										
55	50									
56	51									
57	52									
58	53									
	54									
59	55									
60	56									
61	57									
62										
63	58									
64	59									
65	60									
66	61									
67	62									
	63									
68	64									
69	65									
70										
	66									
71	67									
72	68									
73	00									

50	W
52	
53	
54	
55	
55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	

	Α	В	С	D	E	F	G	I	J	К
74	69									
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
86	81									
87	82									
88	83									
89	84									
90	85									
91	86									
92	87									
93	88									
94	89									
95	90									
96	91									
97	92									
97	93									
98										

	М	N	0	Р	Q	R	S	Т	U	V	W
74	-										
75											
76											
77											
78											
79											
80											
81											
82											
83											
84											
85											
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											

	Α	В	С	D	E	F	G	I	J	K	
99	94										
100	95										
101	96										
102	97										
103	98										
104	99										
105	100										
105	101										
	102										
107	103										
108	104										
109	105										
110	106										
111	107										
112	108										
113	109										
114	110										
115	111										
116	112										
117											
118	113				-						
119	114										
120	115										
121											
122											
123											
120			1				1		l		
	М	Ν	0	Р	Q	R	S	Т	U	V	W
-------------	---	---	---	---	---	---	---	---	---	---	---
99											
100											
101											
102											
103											
104											
105											
106											
107											
108											
109											
110											
111											
112											
113											
11 4											
115											
116											
117											
118											
119											
120											
121											
122											
123											

	Α	В	С	D	E	F	G	I	J	K
7097										
7098										
7099										
7100										
7101										
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									

	М	N	0	Р	Q	R	S	Т	U	V	W
7097											
7098											
7099											
7100											
7101											
7102											
7103											
7104											
7105											
7106											
7107											
7108											
7109											

	A	В	D	Е							
1	EON	E.ON U.S.	E.ON U.S. SERVICES INC. CO								
2	ES	Eileen Sau	nders								
3	GB	Greg Black									
4	GR	Gary Revle	tt								
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15	<u>BV</u>	Black & Ve									
16	тн	Tim Hillma	n								
17	KL	Kyle Lucas									
18	AM	Anand Mah	rker								
19	MK	Mike King									
20	BO	Brian O'Ne									

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:6/23/2010 2:05:02 PMSubject:167987.28.0600 100623 EON AQC Project - Action Item List from 062110 Project Conference CallAttachments:EON ACTION ITEM LIST 062310.xls

Eileen,

Please find attached the updated action item list from our Monday conference call.

Best regards,

Tim Hillman | Senior Air Quality Scientist

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	А	В	С	D	E	F	G	I	J	К
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO		
2										
3	ITEM #			DESCRIPTION	FILE NO.		ISIBILITY	ATE ADDE	RIG DUE DAT	RR DUE D/
4		DOC/MTNG	DATE			CO.	INITIAL			
5		Conf Call	5/3/10	Send template for environmental requirements matrix		BV	AM	05/03/10		
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	тн	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	ТН	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
20	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
22	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	06/17/10
24	21	Conf Call	6/7/10	Estimate AQC Costs for Brown Units 1 & 2 Combined		BV	АМ	06/07/10	06/08/10	
25										

	М	N	0	Ρ	Q	R	S	Т	U	V	W
1											
2											
3	STATUS	NOTES									
4											
5	Closed										
6	Closed										
7	Closed										
8	Closed										
9	Closed										
10	Closed										
	Closed										
11	Closed										
12	Closed										
13	Closed	EON confirmed at 5/10 Kick-off Meeting.									
14	Closed										
15	Closed										
16	Closed										
17	Closed										
18	Closed										
19	Closed	Empil of June 2nd with revised Design Pasia									
20		Email of June 2nd with revised Design Basis.									
21	Closed										
22	Closed	Responses provided during 1030 (EST) call.									
23	Closed	Responses provided during Monday (6/7) call.									
24	Closed										
25	Closed	Email of June 8th.									

	A	В	С	D	E	F	G	I	J	К
26	22	Conf Call	6/7/10	Provide Description of the Fixed and Variable O&M Costs included in the estimat	te.	BV	АМ	06/07/10	06/08/10	
	23	EON Email	6/10/10	Brown 1 SCR Costs		BV	KL	06/10/10	06/14/10	
27										
28	24	BV Email	6/17/10	Receive EON comments on draft report		EON	ES	06/21/10	06/24/10	
29	25	EON Email	6/22/10	Perform additional (out of scope) cost scenarios as described in BV email of 6/2	1/10.	BV	KL	06/22/10	06/25/10	
	26	EON Email	6/22/10	Issue Final Report		BV	KL	06/22/10	07/09/10	
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
	36									
41	37									
42	38									
43	39									
44	40									
45										
46	41									
47	42									
48	43									
49	44									
		1	1	1						

	М	N	0	Р	Q	R	S	Т	U	V	W
26	Closed	Email of June 8th.									
	Closed	Email of June 14th - Note: Draft Report will have	LNB. E.C	DN to	comment o	during revie	w period wh	ether to use	SCR or Li	NB in the Fir	nal Report.
27											
28	Open										
	Open	Balance of deliverables due with final report.									
29	Open										
30				-							
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											
45											
46											
47											
48				-							
49											

	Α	В	С	D	E	F	G	I	J	К
50	45									
51	46									
52	47									
	48									
53	49									
54	50									
55	51									
56										
57	52									
58	53									
59	54									
60	55									
	56									
61	57									
62	58									
63	59									
64										
65	60									
66	61									
67	62									
68	63									
69	64									
09	65									
70										
71	66									
72	67									
	68									
73										

50	W
52	
53	
54	
55	
55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	

	Α	В	С	D	E	F	G	I	J	К
74	69									
75	70									
76	71									
77	72									
78	73									
	74									
79	75									
80	76									
81	77									
82	78									
83	79									
84										
85	80									
86	81									
87	82									
88	83									
89	84									
90	85									
91	86									
92	87									
	88									
93	89									
94	90									
95	91									
96	92									
97	93									
98	35									

	М	N	0	Р	Q	R	S	Т	U	V	W
74											
75											
76											
77											
78											
79											
80											
81											
82											
83											
84											
85											
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											

	Α	В	С	D	E	F	G		J	K
99	94									
100	95									
	96									
101	97									
102	98									
103	99									
104										
105	100									
106	101									
107	102									
108	103									
109	104									
110	105									
	106									
111	107									
112	108									
113	109									
114										
115	110									
116	111									
117	112									
118	113									
	114									
119	115									
120										
121										
122										
123										

	M	N	0	Р	Q	R	S	Т	U	V	W
99											
100											
101											
102											
103											
104											
105											
106											
107											
108											
109											
110											
111											
112											
113											
114											
115											
116											
117											
118											
119											
120											
121											
122											
123											

	Α	В	С	D	E	F	G	J	K
124									
125 126 127 128 129 130 131 132 133 134									
126									
127									
128									
129									
130									
131									
132									
133									
134									
136									
135 136 137									
138									
139									
139 140									
141									
141 142 143 144 145 146 147									
143									
144									
145									
146									
147									
148 149									
149									
150									
7090									
7091									
7092									
7093									
7094									
7095									
7096									
7097									
7098									
7099									
7100									

	М	Ν	0	Ρ	Q	R	S	Т	U	V	W
124											
125 126											
126											
127											
120											
129 130											
131											
131 132											
133											
134											
135											
133 134 135 136 137 138											
138											
139											
140											
141 142											
142											
143											
144											
145 146											
140											
148											
148 149											
150											
7090											
7091											
7092											
7093											
7094											
7095											
7096											
7097											
7098											
7099											
7100											

	A	В	C	D	E	F	G	1	J	К
7101										
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									

	М	Ν	0	Ρ	Q	R	S	Т	U	V	W
7101											
7102											
7103											
7104											
7105											
7106											
7107											
7108											
7109											

	A	В	С	D	E					
1	EON	E.ON U.S.	E.ON U.S. SERVICES INC. COM							
2	ES	Eileen Sau	nders							
3	GB	Greg Black	[
4	GR	Gary Revie	tt							
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15	<u>BV</u>		atch (B&V)							
16	тн	Tim Hillma	n							
17	KL	Kyle Lucas								
18	AM	Anand Mał	Anand Mahabaleshwarker							
19	MK	Mike King								
20	BO	Brian O'Ne								

From:	Jackson, Audrey
То:	Saunders, Eileen
Sent:	6/23/2010 3:15:48 PM
Subject:	Document Comment Blank (2) (2).xls
Attachments:	Document Comment Blank (2) (2).xls

FYI

	A	В	С	D	E	F	G	Н
1]		E	ENVIRON	l ■MENTAL COMPLIANCE AQC	S PROJECT		
_							M U.S.	
2				1			۱ 	
4						Due Date:		
5		Description:						
6								
7	Item No	ent reference or :	Ву	comment Dat	EON US Comments	Black and Veatch Response	Response Date	e
8	1							
9	2							
10	3							
11	4						ļ	
12	5							
13 14	6 7							
14	8							-
16	9						<u> </u>	
17	10							
18	10							
19	12						<u> </u>	
20	13							1
21	14							
20 21 22 23 24 25 26 27	15							
23	16							
24	17							
25	18							
26	19							
27	20						ļ	
28 29 30							 	
29							<u> </u>	-
30								
31 32 33 34 35								
33								
34							1	
35								
36								
36 37								
38								
39								
40								-
41								
42							 	
43 44							 	
44 45							<u> </u>	l
45 46							<u> </u>	+
40							<u> </u>	<u> </u>
47							<u> </u>	
40							<u> </u>	
50								<u> </u>
51							<u> </u>	1
52	1						1	1
53				1			1	
54								

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:6/8/2010 3:38:24 PMSubject:167987.28.0600 100608 EON AQC Project - Action Item List from 060710 Project Conference CallAttachments:EON ACTION ITEM LIST 060810.xls

Eileen,

Please find attached the updated action item list from our conference call yesterday.

Best regards,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	А	В	С	D	E	F	G	I	J	K
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO	STUDY	
2										
3	ITEM #	SOURC	CE	DESCRIPTION	FILE NO.	RESPON	ISIBILITY	ATE ADDE	RIG DUE DAT	RR DUE Di
4		DOC/MTNG	DATE			CO.	INITIAL			
5	1	Conf Call	5/3/10	Send template for environmental requirements matrix		BV	АМ	05/03/10	05/03/10	05/03/10
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	ТН	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	ТН	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
21	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
23	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
24	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	
25	21	Conf Call	6/7/10	Estimate AQC Costs for Brown Units 1 & 2 Combined		BV	АМ	06/07/10	06/08/10	

	М	N	0
1			
2			
3	STATUS	NOTES	
4			
5	Closed		
6	Closed		
7	Closed		
8	Closed		
9	Closed		
10	Closed		
11	Closed		
12	Closed		
	Closed		
13	Closed	EON confirmed at 5/10 Kick-off Meeting.	
14	Closed		
15	Closed		
16	Closed		
17	Closed		
18	Closed		
19	Closed	Email of June 2nd with revised Design Basis.	
20	Closed		
21	Closed	Responses provided during 1030 (EST) call.	
22	Closed	Responses provided during Monday (6/7) call.	
23			
24	Open		
25	Closed	Email of June 8th.	

	Α	В	С	D	E	F	G	I	J	K
26	22	Conf Call	6/7/10	Provide Description of the Fixed and Variable O&M Costs included in the estim	ate.	BV	AM	06/07/10	06/08/10	
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40	36									
41	37									
42	38									
43	39									
44	40									
45	41									
46	42									
47	43									
48	40									
49	44									
50	40									

26 27 28 29 30 31 32 33	Closed	Email of June 8th.	
27 28 29 30 31 32			
28 29 30 31 32			
29 30 31 32			
30 31 32			
31 32			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

	Α	В	С	D	E	F	G	J	К
51	46								
52	47								
53	48								
54	49								
	50								
55	51								
56	52								
57	53								
58	54								
59	55								
60									
61	56								
62	57								
63	58								
64	59								
65	60								
	61								
66	62								
67	63								
68	64								
69	65								
70									
	66								
71	67								
72	68								
73	69								
74									

	М	Ν	0
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			

	Α	В	C	D	E	F	G	I	J	K
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
86	81									
87	82									
88	83									
89	84									
90	85									
91	86									
92	87									
93	88									
94	89									
95	90									
96	91									
97	92									
97	93									
	94									
99										

	М	N	0
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			

	Α	В	С	D	E	F	G	I	J	K
100	95									
101	96									
102	97									
103	98									
104	99									
105	100									
106	101									
107	102									
107	103									
109	104									
110	105									
	106									
111	107									
112	108									
113	109									
114	110									
115	111									
116	112									
117	113									
118	114									
119	115									
120	115									
121										
122										
123										
124 125										

	М	N	0
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124 125			

	Α	В	С	D	E	F	G	J	K
126									
127									
128 129 130									
129									
130									
130 131 132 133 134 135									
132									
133									
134									
135									
136									
137									
138 139									
139									
1/11									
141 142 143 144 145 146 147 148 149 150 151									
143									
144									
145									
146									
147									
148									
149									
150									
151									
152									
7091									
7092									
1002									
7093									
7094									
7095									
7096									
1000									
7097									
7098									
7099									
7100									
7101									

	М	Ν	0
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
140			
147			
140			
150			
150			
152			
152			
7091			
7092			
7093			
7094			
7095			
7096			
7097			
7098			
7099			
7100			
7101			

	Α	В	С	D	E	F	G	I	J	K
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									
	М	Ν	0							
------	---	---	---							
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109										

	A	В	С	D	E		
1	EON	E.ON U.S.	SERVICES	INC. COM	PANY		
2	ES	Eileen Sau	nders				
3	GB	Greg Black	[
4	GR	Gary Revie	tt				
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15	<u>BV</u>		atch (B&V)				
16	тн	Tim Hillma	n				
17	KL		Kyle Lucas				
18	AM	Anand Mał	Anand Mahabaleshwarker				
19	MK	Mike King					
20	BO	Brian O'Ne	al				

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	6/10/2010 8:25:55 AM
Subject:	FW: 167987.14.0100 100608 - Conference Call (6/7) Question Response
Attachments:	Brown 1&2 Combined Fabric Filter 060810.pdf

Scott,

Here is the follow-up information from our call with B&V.

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Tuesday, June 08, 2010 10:08 AM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.14.0100 100608 - Conference Call (6/7) Question Response

Eileen,

From the conference call yesterday there were two questions in which B&V was to investigate and provide response.

1. What is the high level estimated cost to combine Brown's Unit 1 and Unit 2 exhaust flows into one common PJFF?

Response.

Attached please find the draft cost estimate for the common PJFF. For the common PJFF, real estate is available, but will require some demolition and relocation of scrubber electrical feedlines (13.2 kV electrical feedlines). The PJFF will also need to be elevated to provide access to road traffic. The difference between individual and combined PJFF is approximately \$23,000,000 in capital cost. The combined PJFF will be cheaper than individual PJFF.

2. Will B&V provide both fixed and variable O&M costs?

Response.

The O&M costs included on the draft cost summary sheets for each unit's approved AQC technology provided on May 30, 2010 are comprised of both fixed and variable O&M costs. These costs are based on both unit specific information as well as other economic data provided by E.ON. The detailed fixed and variable O&M costs will be included as part of the draft report on June 18.

Regards, Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

E-ON Fleetwide Study

Black & Veatch Cost Estimates

167987

Plant Name:	Brown
Unit:	1&2
MW	290
Project description	High Level Emissions Control Study
Revised on:	06/07/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$68,000,000	\$234	\$2,789,000	\$11,065,000

DRAFT

From:	Revlett, Gary
То:	Straight, Scott
Sent:	5/13/2010 2:28:34 PM
Subject:	Re: Potential New Environmental Requirements for Electric Generating Units

Scott,

Will do, but this is what Eileen passed out at our Black and Veatch kick-off meeting this pass Monday.

Gary

From: Straight, Scott
To: Revlett, Gary
Sent: Thu May 13 13:09:58 2010
Subject: FW: Potential New Environmental Requirements for Electric Generating Units

Gary, this caught me off guard today in front of Paul. Please cc me on anything you send to one of my staff in the future. Thanks

Scott

From: Voyles, John
Sent: Thursday, May 13, 2010 12:03 PM
To: Thompson, Paul; Bowling, Ralph; Sinclair, David; Straight, Scott; Schram, Chuck; Hudson, Rusty; Pfeiffer, Caryl; Schetzel, Doug
Subject: Fw: Potential New Environmental Requirements for Electric Generating Units

Here's the emission limit draft from EA to the scenario team.

JV

From: Revlett, Gary
To: Saunders, Eileen
Cc: Voyles, John; Black, Greg
Sent: Fri May 07 07:51:44 2010
Subject: Potential New Environmental Requirements for Electric Generating Units

Good Morning Eileen,

Attached is my revised estimate of future EPA environmental requirements and limits. As mentioned earlier this week, I have been asked to develop information under 3 options. The first air table (EPA acts fast) is similar to the air requirement table I originally sent you. However, I have revised some of the numeric limits based on last week's publication of the proposed industrial boiler MACT regulation. The last two tables have been added as additional options. The first new table represents a delay in implementation schedule and the second new table represents a delay in implementation and possible higher limits being proposed under the EGU MACT and revised CAIR. If you have any questions, let me know.

Thanks,

Gary

<<Generation Future Environmental Requirements.xlsx>>

From:Lucas, Kyle J.To:Saunders, EileenSent:5/14/2010 9:52:24 AMSubject:AQC template for EON approval of technologiesAttachments:AQC technology Recommendation 051310.pdf

Here is the template

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emaik lucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Plant: *Insert Plant Name* Unit: *Insert Number*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the site-specific considerations developed during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation								
Pollutant	AQC Equipment	E.ON Approval to Cost						
NO _x	B&V to insert recommended technology	□ Yes □ No						
SO ₂	B&V to insert recommended technology	□ Yes □ No						
PM	B&V to insert recommended technology	🗆 Yes 🗆 No						
CO	B&V to insert recommended technology	□ Yes □ No						
Hg	B&V to insert recommended technology	□ Yes □ No						
HCI	B&V to insert recommended technology	□ Yes □ No						
Dioxin/Furan	Dioxin/Furan B&V to insert recommended technology							
Note: If E.ON does not approve a specific technology, an explanation can be included in								

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

E.ON Comments:

Insert Today's Date

Plant: Insert Plant Name Unit: Insert Number

Pollutant: NO_x

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: SO₂

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Particulate (PM)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: CO

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (If this is the case delete the bullets above and this parenthesis.)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Mercury (Hg)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Hydrogen Chloride (HCI)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Dioxin/Furan

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	5/14/2010 10:12:39 AM
Subject:	B&V Template
Attachments:	AQC technology Recommendation 051310.pdf; AQCS Fleetwide Compliance Matrix B&V May 3 2010.xls

Scott,

I would like to send this out to John and Ralph prior to our call. This template is an example of one of the deliverables B&V plans to send throughout the week next week. Also, I am attaching a copy of the compliance matrix that they will complete for us by June 1, 2010 for one option per unit.

I am sitting on a quick conference call now but if you would like to reach me, please call my cell phone 693-9231.

Thanks,

Eileen

Plant: *Insert Plant Name* Unit: *Insert Number*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the site-specific considerations developed during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation								
Pollutant	AQC Equipment	E.ON Approval to Cost						
NO _x	B&V to insert recommended technology	□ Yes □ No						
SO ₂	B&V to insert recommended technology	□ Yes □ No						
PM	B&V to insert recommended technology	🗆 Yes 🗆 No						
CO	B&V to insert recommended technology	□ Yes □ No						
Hg	B&V to insert recommended technology	□ Yes □ No						
HCI	B&V to insert recommended technology	□ Yes □ No						
Dioxin/Furan	Dioxin/Furan <i>B&V to insert recommended technology</i>							
Note: If E.ON does not approve a specific technology, an explanation can be included in								

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

E.ON Comments:

Insert Today's Date

Plant: Insert Plant Name Unit: Insert Number

Pollutant: NO_x

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: SO₂

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Particulate (PM)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: CO

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (If this is the case delete the bullets above and this parenthesis.)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Mercury (Hg)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Hydrogen Chloride (HCI)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Dioxin/Furan

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

	A	В	С	D	E	F	G	н		J	К	L	М
1												EON Flee	etwide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW Net	Priority	Fuel Burned	Pollutant	Compliance D	AQC Control	Uncontrolled Er	Removal %
4		E. W. Brown											
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8 9	4								PM				
9 10	6								со				
11	7								voc				
12	8								Ha				
13	9								Hg HAPs				
14	10								H2SO4				
15	11								SO3-SAM				
16	12								HCL				
17	13								HF				
18													
19													
20													
21													
22 23				2					NOx				
23									SO2				
24									PM PM				
24 25 26 27 28									PM				
20									со				
28									voc				
29									На				
29 30									Hg HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
32 33 34 35									HF				
35													
36													
37													
38													
39				3					NOx				
40									SO2				
41									PM				
42 43									PM				
43 44									со				
44 45									voc				
45 46									Hg				
40		l		L					Ing				

1 impliance Analysis and High Level Capital and O&M Cost Estimation 2	Cost Corrections if \$/ton removed	applicable \$/kW	¢O&M Costs \$
2	Cost Corrections if \$/ton removed	applicable \$/kW	
3 Current Controlled Future Required Er Future Regulatory D Tons removed with Cons removed with Cons removed with Cons removed Capital costs 4	Cost Corrections if	applicable \$/kW	
5	\$/ton removed	\$/kW	\$
6			
7 <t< td=""><td></td><td></td><td></td></t<>			
8			
9			
10			
11 11 11 12 11 11 13 11 11 14 11 11 15 11 11			
12			
13 14 15 14			
14			
15			
17			
18			
19			
19			
21			
23			
24			
25			
22			
27			
28			
28			
30			
31			
33			
34			
37			
38			1
39			1
40			
41			
42			1
44			
44			
46			

*******	X	Y	Z
1			
2 3			
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15 16			
17 18			
19			
20			
20			
22 23			
23			
24			
25			
27	-		
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			

	А	В	C	D	E	F	G	н	I	J	K	L	M
47									HAPs				
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
53													
54													
55													
56													
57		Revision #											
58		Date of Revision											
59		Notes											
60													
61													

	N	0	P	Q Q	R	S	Т	U	V	W
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										

	Х	Y	Z
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			

	Α	В	C	D	E	F	G	н		J	К	L	М
1		•	•		•			•		•	•	EON Flee	twide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Ghent								-			
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								co				
11	7								VOC				
12	8								Hg HAPs				
13	9								HAPs				
14 15	10								H2SO4 SO3-SAM				l
15	11 12								HCL				
17	12								HF				
17	13												l
19													
20													
20						I	I					<u> </u>	
22				2					NOx	1		1	
22				2					SO2				
23 24									PM				
25									PM				
26													
27									co				
28									voc				
29									Hg				
30									HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
34									HF				
33 34 35 36													ļ]
36												· · · · · ·	ļ]
37												<u> </u>	ļ
38 39													
39				3					NOx			ļ	ļ
40									SO2				
41									PM				
42									PM				
43 44 45 46												ļ	
44									CO VOC				
40													
46 47									Hg HAPs				ll
47		1					L		INAPS			<u> </u>	<u> </u>

	N	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2		Ŭ	•							
3	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4			j ,			\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5						,		,		<i>,</i>
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
23										
24									1	
22 23 24 25 26 27										
26										
27										
28										
29										
30										
31										
32										
33										
34										
34 35 36										
36										
37										
38										
38 39										
40										
41									1	
42										
43										
44								İ		
44 45										
46								İ		
47										
<u> </u>						1	1	1	1	

A I Z 1		Х	Y	Z
2	1	^	1	2
3 Levelized Anni Remarks Revision 4 \$ - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - - - 16 - - - 17 - - - 18 - - - 19 - - - 20 - - - 21 - - - 22 - - - - 23 - - - - <td></td> <td></td> <td></td> <td>1</td>				1
4 \$		Lauraliza d'Annu	Demonstra	Daviaian
5		Levenzea Anni	Remarks	Revision
6		\$		
7				
8				
9				
10				
11	_			
12				
13				
14	13			
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27 28 29 30 31 32 33 33 34 35 36 37 38 39 40 41 42 43 43 44 45 46				
28				
29				
30 31 32 33 33 34 34 35 35 36 37 38 39 40 41 42 43 44 44 45 46 4				
32 33 33 34 35 35 36 37 38 39 40 41 41 42 43 44 45 46				
32 33 33 34 35 35 36 37 38 39 40 41 41 42 43 44 45 46	31			
34	32			
35	33			
36	34			
37	35			
38				
39 40 41 42 42 43 43 44 45 46	37			
40 41 42 43 43 44 45 46	38			
41 42 43 44 45 46	39			
42 43 44 45 46	40			
43				
44 45 46 46				
45 46				
46				
47				
	47			

	А	В	С	D	E	F	G	Н	I	J	К	L	М
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
53													
54													
55													
56 57				4					NOx				
57									SO2				
58									PM				
59									PM				
60													
61									CO				
62									VOC				
63									Hg				
64 65									HAPs				
65									H2SO4				
66									SO3-SAM				
67									HCL				
68									HF				
69													
70													
71													
72													
73													
74		Revision #											
75		Date of Revision											
76		Notes											
77													
78													

	N	0	Р	Q	R	S	Т	U	V	W
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
48 49 50 51 52 53 54 55 56 57 58 59 60										
61 62 63 64 65 66 67										
62										
63										
64										
65										
66										
67										
68										
69										
68 69 70 71										
71										
72 73 74 75 76 77										
73										
74										
75										
76										
77										
78										
	Х	Y	Z							
----	---	---	---							
48	ĺ									
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										
62										
63										
64										
65										
66										
67										
68										
69										
70										
71										
72										
73										
74										
75										
76										
77										
78										

	A	В	С	D	E	F	G	н		J	К	L	M
1												EON Flee	twide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Cane Run											
5	1			4					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO VOC				
11 12	7												
13	8 9								Hg HAPs				
13	9 10								H2SO4				
15	10								SO3-SAM				
16	12								HCL				
17	12								HF				
18	10												
19													
20													
21													
22				5					NOx				
22 23									SO2				
24 25 26 27									PM				
25									PM				
26													
27									co				
28 29 30									voc				
29									Hg				
30									HAPs				
31									H2SO4				
32									SO3-SAM				
32 33 34 35 36 37									HCL				
34									HF				
30													
30													
37				1						1			
30												1	
39				6					NOx SO2				
40 41									PM				
41									PM				
42 43													
43									со				
44									voc				
45									Hg				
40					1				l i i g				

	N	0	P apital and O&M Cos	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2										
3	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12										
13 14										
14										
15										
17										
18										
19										
19 20										
21										1
23										
22 23 24 25 26 27										
25										
26										
27										
28 29 30										
29										
30										
31 32										
32									L	
33										
34										
33 34 35 36										
36 37										
38								l		
						l		l		1
39 40										
40										
41										
42 43										
43									-	
44 45										
46										
L+0			1			1	1	1	1	

	X	Y	Z
1			
2			
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18 19			
20			
21			
22			
23			
24			
25			
26			
27 28			
20 29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			1
40			
40			
41			
42			
43			
44			
45			
40			

	А	В	C	D	E	F	G	н	I	J	K	L	M
47									HAPs				
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
53													
54													
55													
56													
57		Revision #											
58		Date of Revision											
59		Notes											
60													
61													

	N	0	P	Q Q	R	S	Т	U	V	W
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										

	Х	Y	Z
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			

	Α	В	С	D	E	F	G	Н		J	К	L	М
1				•				•		•	•	EON Flee	twide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Mill Creek					-			-			
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO				
11	7								VOC				
12	8								Hg HAPs				
13	9												
14 15	10								H2SO4 SO3-SAM				
15	11 12								HCL				
17	12								HF				
17	13												
19													
20													
20						I							
22				2					NOx	1			
22				2					SO2				
24									PM				
25									PM				
26													
27									co				
28									voc				
29									Hg				
30									HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
33 34 35 36									HF				
35													
36													
37													
38													
39				3					NOx				
40									SO2				
41									PM				
42									PM				
43 44 45													
44									co voc				
45													
46 47									Hg HAPs				
47		L		1					INAPS				

	Ν	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2										
3	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4		•				\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19 20										
20										
21										
22										
23										
22 23 24 25 26 27										
25										
26										
27										
28										
30										
31										
32										
33										
34										
34 35 36										
36										
37										
38										
38 39										
40										
41										
42										
43										
44										
44 45										
46										
47										
						1	1	1	I	

A I Z 1 2		X	Y	Z
2	1	^	1	2
3 Levelized Annu Remarks Revision 4 \$				1
4 \$			Demonstra	Daviaian
5		Levenzed Annu	Remarks	Revision
6		\$		
7				
8				
9				
10				
11	_			
12				
13				
14	13			
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27 28 29 30 31 31 32 33 33 34 35 36 36 37 38 39 40 41 42 43 43 44 45 46				
28				
29				
30 31 31 32 33 34 34 35 35 36 37 38 39 40 41 42 43 44 44 45 46 44				
32 33 33 34 35 35 36 37 38 39 40 41 41 42 43 44 45 46				
32 33 33 34 35 35 36 37 38 39 40 41 41 42 43 44 45 46	31			
34	32			
35	33			
36	34			
37	35			
38				
39 40 41 42 43 44 45 46	37			
40 41 42 43 44 45 46	38			
41 42 43 44 45 46	39			
42 43 44 45 46	40			
43				
44 45 46				
45 46				
46				
47				
	47			

	А	В	С	D	E	F	G	Н		J	K	L	М
48									H2SO4				
49 50									SO3-SAM				
50									HCL				
51									HF				
52 53 54													
53													
54													
55													
56 57				4					NOx				
57									SO2				
58									PM				
58 59									PM				
60													
61									co				
62									VOC				
63									Hg				
64									HAPs				
65 66									H2SO4				
66									SO3-SAM				
67									HCL				
68									HF				
69													
70													
71													
72													
73													
74		Revision #											
75		Date of Revision											
76		Notes											
77													
78													

	Ν	0	Р	Q	R	S	Т	U	V	W
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
48 49 50 51 52 53 54 55 56 57 58 59 60										
61 62 63 64 65 66 67										
62										
63										
64										
65										
66										
67										
68 69 70 71										
69										
70										
71										
72 73 74 75 76 77										
73										
74										
75										
76										
77										
78										

	Х	Y	Z
48	Î		
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			

	А	В	С	D	E	F	G	Н	I	J	К	L	М
1												EON Flee	twide AQCS Co
2													
	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance	AQC Control	Uncontrolled Er	Removal %
4		Trimble County											
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO				
11	7								VOC				
12	8 9								Hg HAPs				
13 14	10								HAPS H2SO4				
14	10								SO3-SAM				
16	12								HCL				
17	13								HF				
18	10												
18 19													
20													
21									1				
				2					NOx				
22 23 24 25 26 27									SO2				
24									PM				
25									PM				
26													
27									со				
28									voc				
29									Hg				
28 29 30 31 32 33 4 35									HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
34									HF				
35											ļ		
36 37													
3/										1			
38													
39		D											
40		Revision #											
41		Date of Revision											
42		Notes											
43													
44													

	N	0	Р	Q	R	S	Т	U	V	W
	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
14										
15										
16										
17 18										
18										
20										
										1
21										1
22										
23										
22 23 24 25										
25										
20										<u> </u>
27										
28 29 30										
30										
31										
31 32 33 34 35										
33										
34										
35										
36										
36 37										
38										
39										
40										
41										
42										
43										
44										
<u> </u>						1	1			

XY	7
1	Z
2	
	vision
4 \$	vision
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

	А	В	С	D	E	F	G	н		J	К	L	М
1												EON Flee	twide AQCS Co
2													
	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Green River											
5	1			3					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO				
11	7								VOC				
12	8								Hg HAPs				
13	9								HAPs H2SO4				
14 15	10 11								SO3-SAM				
15	12								HCL				
17	13								HF				
18	15												
18 19													
20													
21						<u> </u>							
22				4					NOx				
23									SO2				
24									PM				
23 24 25 26 27									PM				
26													
27									со				
28 29 30									VOC				
29									Hg HAPs				
30									HAPs				
31									H2SO4				
32								L	SO3-SAM				
31 32 33 34 35 36 37									HCL				
34									HF				
35													
36													
					l					1	l	l	
38						ļ			<u> </u>				
39		D · · · "											
40		Revision # Date of Revision											
41 42													
42		Notes											
43													
44													

	N	0	Р	Q	R	S	Т	U	V	W
	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
14										
15										
16										
17 18										
18										
20										
										1
21										1
22										
23										
22 23 24 25										
25										
20										<u> </u>
21										
28 29 30										
30										
31										
31 32 33 34 35										
33										
34										
35										
36										
36 37										
38										
39										
40										
41										
42										
43										
44										
<u> </u>						1	1			

XY	7
1	Z
2	
	vision
4 \$	vision
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

From:	Saunders, Eileen
То:	Voyles, John; Bowling, Ralph
CC:	Straight, Scott
Sent:	5/14/2010 12:09:20 PM
Subject:	Information for the Conference Call
Attachments:	AQC technology Recommendation 051310.pdf; AQCS Fleetwide Compliance Matrix B&V May 3 2010.xls

John and Ralph,

Here are two templates I will be discussing on our call today.

Thank you,

Eileen

Plant: *Insert Plant Name* Unit: *Insert Number*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the site-specific considerations developed during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation									
Pollutant	AQC Equipment	E.ON Approval to Cost							
NO _x	B&V to insert recommended technology	□ Yes □ No							
SO ₂	B&V to insert recommended technology	□ Yes □ No							
PM	B&V to insert recommended technology	🗆 Yes 🗆 No							
CO	B&V to insert recommended technology	□ Yes □ No							
Hg	B&V to insert recommended technology	□ Yes □ No							
HCI	B&V to insert recommended technology	□ Yes □ No							
Dioxin/Furan <i>B</i> & <i>V</i> to insert recommended technology □ Yes □ No									
Note: If E.ON does not approve a specific technology, an explanation can be included in									

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

E.ON Comments:

Insert Today's Date

Plant: Insert Plant Name Unit: Insert Number

Pollutant: NO_x

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: SO₂

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Particulate (PM)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: CO

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (If this is the case delete the bullets above and this parenthesis.)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Mercury (Hg)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Hydrogen Chloride (HCI)

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

Plant: Insert Plant Name Unit: Insert Number

Pollutant: Dioxin/Furan

Feasible Control Options:

- Name of option #1
- Name of option #2
- Name of option # (continue as needed)
- <u>Not Applicable</u> as the unit is currently meeting target emission level. (*If this is the case delete the bullets above and this parenthesis.*)

- Consideration #1
- Consideration #2
- Consideration # (continue as needed)

	А	В	С	D	E	F	G	Н		J	К	L	М
1												EON Flee	etwide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW Net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		E. W. Brown											
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6												
11	7								VOC				
12 13	8								Hg HAPs				
13	9								HAPS H2SO4				
14 15	10 11								ND3-SAM				
15	12								HCL				
17	12								HF				
17	13								пг				
19													
20													
21													
21				2					NOV	1		1	
22 23				2					NOx SO2				
23									PM				
24									PM				
24 25 26 27													
20									со				
28									VOC				
28 29 30									Ha				
30									Hg HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
34 35 36									HF				
35													
36													
37													
38													
39				3		İ			NOx				
40									SO2				
41									PM				
42						1			PM				
43						İ							
44						1			CO				
45									VOC				
46									Hg				

	Ν	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level Ca	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Corrections i	f applicabl	
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
15										
16										
17										
18										
19										
19 20										
21										
22										
22 23										
24 25 26 27										
25										
26										
27										
28 29										
29										
30 31										
31										
32										
34										
33 34 35 36										
36										
37										
38										
39										
40										
41										
42										
42 43										
44 45										
45										
46										

	X	Y	Z
	<u> </u>	1	2
1			
2		Domorko	Devision
4	Levelized Annu \$	Remarks	Revision
4	۵ ا		
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			

	Α	В	С	D	E	F	G	Н		J	K	L	M
47									HAPs				
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
53													
54													
55													
56													
57		Revision #											
58		Date of Revision											
59		Notes											
60													
61													

	N	0	Р	Q	R	S	Т	U	V	W
47										
48										
49										
50										
51										
52										
53										
54										
55										
56										
57										
58										
59										
60										
61										

	Х	Y	Z
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			

	Α	В	С	D	E	F	G	н		J	К	L	М
1												EON Flee	twide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Ghent											
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO				
11	7								VOC				
12	8								Hg				
13	9								HAPs				
14	10								H2SO4				
15	11								SO3-SAM				
16 17	12 13								HCL HF				
10	15								пг				
18 19													
20													
20													
21				<u> </u>	1			1	NOu		1		
22 23 24				2					NOx SO2				
23									PM				
24									PM				
25 26 27													
20									co				
28									VOC				
29									Ha				
29 30									Hg HAPs				
31									H2SO4				
32									SO3-SAM				
33									HCL				
34									HF				
35													
31 32 33 34 35 36 37													
38 39													
39				3					NOx				
40									SO2				
41									PM				
42									PM				
43 44 45 46													
44									CO VOC				
45									VOC				
46									Hg				
47									HAPs				
	N	0	Р	Q	R	S	Т	U	V	W			
------------	--------------------	--------------------	---------------------	---------------------	-------------------	----------------	-----------	----------------	-------	-----------			
	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation									
2													
3	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs			
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$			
5													
6													
7													
8													
9													
10													
11													
12 13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35 36													
36													
									1				
38 39													
39 40													
40													
41													
42													
44													
44 45													
46													
47													
<u>, 1</u>			1						I	1			

	V	Y	7
	X	Ť	Z
1			
2		-	
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
<u> </u>		I	I

	А	В	С	D	E	F	G	Н	I	J	K	L	М
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52 53 54													
53													
54													
55													
56 57				4					NOX				
57									SO2				
58 59									PM				
59									PM				
60													
61									co				
62									VOC				
63									Hg				
64									HAPs				
65 66									H2SO4				
66									SO3-SAM				
67									HCL				
68									HF				
69													
70													
71													
72													
73													
74		Revision #											
75		Date of Revision											
76		Notes											
77													
78													

	Ν	0	Ρ	Q	R	S	Т	U	V	W
48										
49										
50										
51										
52										
49 50 51 52 53 54										
55										
56										
57										
58										
55 56 57 58 59 60										
60										
61 62 63 64 65 66 67										
62										
63										
64										
65										
66										
67										
68 69 70										
69										
70										
71										
72										
73										
72 73 74 75 76 77										
75										
76										
77										
78										

	X	Y	Z
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			

	Α	В	С	D	E	F	G	Н		J	К	L	М
1												EON Flee	etwide AQCS Co
2													
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance D	AQC Control	Uncontrolled Er	Removal %
4		Cane Run											
5	1			4					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5								00				
10 11	6 7								CO VOC				
12	8												
13	9								Hg HAPs				
14	10								H2SO4				
15	10								SO3-SAM				
16	12								HCL				
17	13								HF				
18													
19													
20													
21													
22				5					NOx				
23									SO2				
24									PM				
25									PM				
24 25 26 27													
27									CO				
28									VOC				
28 29 30									Hg HAPs				
30 31									HAPS H2SO4				
31									SO3-SAM				
33									HCL				
34				<u> </u>					HF				
34 35 36													
36													
37													
38													
39				6		İ			NOx				
40									SO2				
41									PM				
42									PM				
43													
44									CO				
45									VOC				
46									Hg				

	Ν	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level Ca	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
14										
16										
17										
18										
19										
19 20										
21										
22										
22 23										
24										
25										
24 25 26 27										
27										
28 29										
29										
30 31										
31										
32										
34										
33 34 35 36										
36										
37										
38										
39										
40										
41										
42										
42 43										
44 45										
45										
46										

	X	Y	Z
	<u> </u>	1	2
1			
2		Domorko	Devision
4	Levelized Annu \$	Remarks	Revision
4	۵ ا		
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			

	А	В	С	D	E	F	G	н	I	J	К	L	M
47									HAPs				
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
53													
54													
55													
56													
57		Revision #											
58		Date of Revision											
59		Notes											
60													
61													

	N	0	Р	Q	R	S	Т	U	V	W
47										í l
48										
49										
50										í The second sec
51										
52										í The second sec
53										
54										
55										
56										
57										
58										
59										
60										
61										ĺ

	Х	Y	Z
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			

	Α	В	С	D	E	F	G	Н		J	К	L	М
1	<u></u>					•		•	1	•	•	EON Flee	twide AQCS Co
2						1							
3	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Mill Creek			<u>_</u>		,						
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5												
10	6								CO				
11	7								VOC				
12	8								Hg				
13	Ø								HAPs				
14	10								H2SO4				
15	11								SO3-SAM				
16	12								HCL				
17	13								HF				
18													
19													
20													
21													
22 23				2					NOx				
23									SO2				
24									PM				
25 26									PM				
26													
27 28									CO				
28									VOC				
29 30									Hg				
30									HAPs				
31 32									H2SO4				
32									SO3-SAM				
33 34 35 36 37									HCL HF				
25						+			nr				
30													
37						+		<u> </u>		+	<u> </u>	+	
20						1		1		1	1	I I	
38 39				3		+			NOx				
40				+ ³		+			SO2	+			
40						+		<u> </u>	PM	+	+	+	
41									PM				
42						+		<u> </u>	1 141	<u> </u>	<u> </u>		
43 44 45 46						-			co				
45						+		1	CO VOC		1		
46						-			Hg				
40									HAPs				
L#/		1		1	I	1		1	11/7/5	1	1	L	

	N	0	Р	Q	R	S	Т	U	V	W
	mpliance Analysis	and High Level C	apital and O&M Cos	t Estimation						
2										
3	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35 36										
36										
									1	
38 39										
39 40										
40										
41										
42										
44										
44 45										
46										
47										
<u>, 1</u>			1						I	1

	V	Y	7
	X	Ť	Z
1			
2		-	
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
<u> </u>		I	I

	А	В	С	D	E	F	G	Н		J	К	L	М
48									H2SO4				
49									SO3-SAM				
50									HCL				
51									HF				
52													
52 53 54													
55													
56				4					NOx				
57									SO2				
58									PM				
59									PM				
60													
61									co				
62									VOC				
63									Hg				
64									HAPs				
65 66									H2SO4				
66									SO3-SAM				
67									HCL				
68									HF				
69													
70													
71													
72													
73													
74		Revision #											
75		Date of Revision											
76		Notes											
77													
78													

	N	0	Р	Q	R	S	Т	U	V	W
48										
49										
50										
51										
52										
48 49 50 51 52 53 54										
										1
55										
56										
57										
55 56 57 58 59 60										
59										
61 62 63 64 65 66 67 68 69 70 71										
62										
63										
64										
65										
66										
67										
68										
69										
70										
										<u>i</u>
72 73 74 75 76 77 78										
73										
74										
75										ļ
76										ļ
77										ļ
78										

	X	Y	Z
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			

	А	В	С	D	E	F	G	Н	I	J	к	L	М
1												EON Flee	twide AQCS Co
2													
	ltem #	Plant/Site	Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Trimble County											
5	1			1					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5								00				
10 11	6								CO VOC				
12	7 8												
12	9								Hg HAPs				
14	10								H2SO4				
14	10								SO3-SAM				
16	12								HCL				
17	13								HF				
18	10												
18 19													
20													
21													
				2					NOx				
22 23 24 25 26 27									SO2				
24									PM				
25									PM				
26													
27									CO				
28									VOC				
29 30									Hg HAPs				
30									HAPs				
31									H2SO4				
32									SO3-SAM				
33 34 35									HCL				
34									HF				
30													
36 37													
37				1			I			1		1	L
39		Devision #											
40 41		Revision #											
41		Date of Revision											
42		Notes											
43													
44													

	N	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level Ca	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
14 15										
15										
17										
18										
19										
20										
21										
22										
22 23 24 25										
24										
25										
26										
26 27										
28										
28 29										
30										
31										
31 32										
33 34 35										
34										
35										
36 37										
37										
38										
39										
40										
41										
42										
43										
44										

	×	Y	7
******	X	Ý	Z
1			
2			
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			

	А	В	С	D	E	F	G	Н		J	к	L	M
1												EON Flee	etwide AQCS Co
2													
			Vintage	Unit	Unit rating MWg	MW net	Priority	Fuel Burned	Pollutant	Compliance [AQC Control	Uncontrolled Er	Removal %
4		Green River											
5	1			3					NOx				
6	2								SO2				
7	3								PM				
8	4								PM				
9	5								00				
10 11	6								CO VOC				
12	7												
12	9								Hg HAPs				
14	10								H2SO4	1			
15	11								SO3-SAM				
16	12								HCL				
17	13								HF				
18													
18 19													
20													
21													
				4					NOx				
22 23 24 25 26 27									SO2				
24									PM				
25									PM				
26													
27									CO				
28									VOC				
29 30									Hg HAPs				
30									HAPs				
31									H2SO4				
32									SO3-SAM				
33 34 35	1								HCL HF				
34													
30										 		+	
36 37													
38					l			1	1		1	1	
39		I I			I			1	1	I T	I	1	1
40		Revision #								+			
40		Date of Revision											
41		Notes											
43	1												
44													
44													

	N	0	Р	Q	R	S	Т	U	V	W
1	mpliance Analysis	and High Level Ca	apital and O&M Cos	t Estimation						
2										
	Current Controlled	Future Required Er	Future Regulatory D	Tons removed with (Tons removed with	Capi	tal costs	Cost Correc	tions	O&M Costs
4						\$/ton removed	\$/kW	\$/ton removed	\$/kW	\$
5										
6										
7										
8										
9										
10										
11										
12 13										
13										
14 15										
15										
17										
18										
19										
20										
21										
22										
22 23 24 25										
24										
25										
26										
26 27										
28										
28 29										
30										
31										
31 32										
33 34 35										
34										
35										
36 37										
37										
38										
39										
40										
41										
42										
43										
44										

	E		
	X	Y	Z
1]		
2			
3	Levelized Annu	Remarks	Revision
4	\$		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			1
<u> </u>			

From:Lucas, Kyle J.To:Saunders, EileenCC:Hillman, Timothy M.; Mahabaleshwarkar, AnandSent:5/17/2010 12:53:34 PMSubject:EON - AQC Assessment Draft TOCAttachments:Draft EON AQC Report TOC 051710.pdf

Eileen,

Attached please find the draft AQC assessment report's Table of Contents. This draft TOC represents our first approach to the report's structure. If you would like, we can discuss at today's conference call.

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskg@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

LGE-KU-00004704

Air Quality Control Technology Assessment

Table of Contents

1.0	Introd	luction							
2.0	Pollut	ant Emis	sions Targets						
3.0	Study	Basis							
	3.1	Site Vi	sits						
	3.2	Cost M	lethodology						
	3.3	Econor	nic Assumptions						
	3.4	Emissio	on Summary Matrix						
4.0	Air Qu	ontrol Cost Estimate (Capital and O&M)							
	4.1	E.W. B	E.W. Brown - Units 1, 2 and 3						
		4.1.1	Control Technology Summary						
		4.1.2	Capital and O&M Costs						
		4.1.3	AQC Equipment Replacement Schedule						
		4.1.4	Special Considerations						
		4.1.5	Summary						
	4.2	Ghent -	- Units 1, 2, 3, and 4						
		4.2.1	Control Technology Summary						
		4.2.2	Capital and O&M Costs						
		4.2.3	AQC Equipment Replacement Schedule						
		4.2.4	Special Considerations						
		4.2.5	Summary						
	4.3	Cane Run - Units 4, 5 and 6							
		4.3.1	Control Technology Summary						
		4.3.2	Capital and O&M Costs						
		4.3.3	AQC Equipment Replacement Schedule						
		4.3.4	Special Considerations						
		4.3.5	Summary						
	4.4	Mill Cr	reek - Units 1, 2, 3, and 4						
		4.4.1	Control Technology Summary						
		4.4.2	Capital and O&M Costs						
		4.4.3	AQC Equipment Replacement Schedule						
		4.4.4	Special Considerations						
		4.4.5	Summary						
	4.5	Trimble	e County - Units 1 and 2						
		4.5.1	Control Technology Summary						
		4.5.2	Capital and O&M Costs						
		4.5.3	AQC Equipment Replacement Schedule						

E.ON US

Air Quality Control Technology Assessment

Table of Contents (Continued)

	4.5.4	Special Considerations
	4.5.5	Summary
4.6	Green	River - Units 3 and 4
	4.6.1	Control Technology Summary
	4.6.2	Capital and O&M Costs
	4.6.3	AQC Equipment Replacement Schedule
	4.6.4	Special Considerations
	4.6.5	Summary
Conc	lusions	

Tables

TBD

5.0

Appendices

At	ppendix	A –	Control	Technol	logv I	Descrit	otions
· • ŀ	ponuna	11	Control	1 conno	iosy i	/05011	5110115

Appendix B - Air Quality Control Assessment Technology Options Sheets

Appendix C – Project Design Memorandum

Appendix D - E ON Economic Evaluation Information

Appendix E – Control Technology Costs Estimation Worksheets

Appendix F – Control Technology Site Arrangement Drawings

Appendix G – Schedule

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:5/17/2010 4:58:12 PMSubject:EON - AQC Study - Action Item List from 051710 Project Conference CallAttachments:EON ACTION ITEM LIST 051710.xls

Eileen,

Please find attached an updated action item list from our project conference call this afternoon.

Best regards,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	Α	В	С	D	E	F	G		J	К
1		-		ACTION ITEM LIST - EO	N AIR	QUALI	TY CO	NTROL	STUDY	
2										
3	ITEM #	SOUR	CE	DESCRIPTION	FILE NO.	RESPO	NSIBILITY	ATE ADDE	RIG DUE DAT	RR DUE D/
4		DOC/MTNG	DATE			CO.	INITIAL			
5		Conf Call	5/3/10	Send template for environmental requirements matrix		BV	AM	05/03/10		
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	во	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	тн	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	ТН	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	AM	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	МК/ТН	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	AM	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	
20										
21										
22										
22										
24										
25										

	М	N	0
1			
2			
3	STATUS	NOTES	
4			
5	Closed		
6	Closed		
7	Closed		
	Closed		
8	Closed		
9	Closed		
10	Closed		
11	Closed		
12	Closed		
13	Closed	EON confirmed at 5/10 Kick-off Meeting.	
14	Closed		
15			
16	Open		
17	Open		
18	Open		
19	Open		
20			
21			
22			
23			
24			
25			

26 27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41	36					
42	37					
43	38					
44	39					
45	40					
46	41					
47	42					
48	43					
49	44					
50	45					

	М	Ν	0
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

	Α	В	С	D	E	F	G	I	J	K
51	46									
52	47									
53	48									
54	49									
55	50									
56	51									
57	52									
	53									
58	54									
59	55									
60	56									
61	57									
62	58									
63	59									
64										
65	60									
66	61									
67	62									
68	63									
69	64									
	65									
70	00									
71	66									
72	67									
73	68									
74	69									

	М	N	0
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			

	Α	В	С	D	E	F	G		J	K
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
86	81									
87	82									
88	83									
	84									
89 90	85									
	86									
91	87									
92	88									
93	89									
94	90									
95	91									
96	92									
97	93									
98	94									
99										

	М	Ν	0							
75										
76										
77										
78										
79										
80										
81										
82										
83										
84										
85										
86										
87										
88										
89										
90										
91										
92										
93										
94										
95										
96										
97										
98										
99										
	Α	В	С	D	E	F	G	I	J	K
------------	-----	---	---	---	---	---	---	---	---	---
100	95									
101	96									
102	97									
103	98									
104	99									
105	100									
105	101									
	102									
107	103									
108	104									
109	105									
110	106									
111	107									
112	108									
113	109									
114	110									
115	111									
116	112									
117	113									
118										
119	114									
120	115									
121										
122										
123										
124 125										
		1	1					1	1	

	М	N	0
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123 124			
124 125			

	А	В	С	D	E	F	G	1	J	К
126	5									
127 128 129										
128										
129										
130 131 132										
131										
132										
133 134 135 136										ļ
134										l
135										l
136										l
137										
138										l
137 138 139 140										├ ───┤
1/1										<u>├</u> ───┤
141 142 143 144 145 146 147 148 149										┝───┤
142										
143										
145										
146										
147										
148										
149										
150										
151										
152										
7091										
7092										
7093										
7094										
7094										
7095										
7096										
7097										
7098										
7099										
7100										
7101										

	М	Ν	0
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
147			
148			
149			
150			
150			
152			
1.52			
7091			
7092			
7093			
7094			
7095			
7096			
7097			
7098			
7099			
7100			
7101			

	Α	В	С	D	E	F	G	J	ĸ
7102									
7103									
7104									
7105									
7106									
7107									
7108									
7109	58								

	М	Ν	0
7102			
7103			
7104			
7105			
7106			
7107			
7108			
7109			

	А	В	С	D	Е
1	EON	E.ON U.S.	SERVICES	INC. COM	PANY
2	ES	Eileen Sau	nders		
3	GB	Greg Black			
4	GR	Gary Revle	tt		
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15	<u>BV</u>	Black & Ve	atch (B&V)		
16	тн	Tim Hillma	n		
17	KL	Kyle Lucas			
18	AM	Anand Mah	abaleshwai	′ker	
19	MK	Mike King			
20	BO	Brian O'Ne	al		

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:5/17/2010 5:19:44 PMSubject:RE: EON - AQC Study - Action Item List from 051710 Project Conference CallAttachments:EON ACTION ITEM LIST 051710.xls

Slight revision made to the action item list.

Thanks,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Hillman, Timothy M.
Sent: Monday, May 17, 2010 3:58 PM
To: 'Saunders, Eileen'
Cc: Mahabaleshwarkar, Anand; Lucas, Kyle J.
Subject: EON - AQC Study - Action Item List from 051710 Project Conference Call

Eileen,

Please find attached an updated action item list from our project conference call this afternoon.

Best regards,

Tim Hillman | Senior Air Quality Scientist Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	А	В	С	D	E	F	G		J	К
1				ACTION ITEM LIST - EC	N AIR	QUAL	TY CO	NTROL	STUDY	
2										
з	ITEM #	SOUR	CE	DESCRIPTION	FILE NO.	RESPO	NSIBILITY	ATE ADDE	RIG DUE DAT	RR DUE D/
4		DOC/MTNG	DATE			CO.	INITIAL			
5		Conf Call	5/3/10	Send template for environmental requirements matrix		BV	AM	05/03/10		
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	во	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	TH	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	TH	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	AM	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
10	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	
20										
21										
22										
23										
24										
25										

	м	N	0
1			
2			
3	STATUS	NOTES	
4			
5	Closed		
6	Closed		
7	Closed		
8	Closed		
	Closed		
9	Closed		
10	Closed		
11	Closed		
12	Closed		
13	Closed	EON confirmed at 5/10 Kick-off Meeting.	
14	Closed		
15	Open		
16			
17	Open		
18	Open		
19	Open		
20			
21			
22			
23			
24			
25			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
29	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
33	
34	
35	
36	
37	
38	
39	
40	
40 45	
47 42	
43 43	
44 49 44	
45 50 45	

	М	N	0
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

	Α	В	С	D	E	F	G		J	K
51	46									
52	47									
53	48									
54	49									
55	50									
56	51									
57	52									
	53									
58	54									
59	55									
60	56									
61	57									
62	58									
63	59									
64										
65	60									
66	61									
67	62									
68	63									
69	64									
	65									
70										
71	66									
72	67									
73	68									
74	69									

	М	N	0
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			

	Α	В	С	D	E	F	G	I	J	К
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
	76									
81	77									
82	78									
83	79									
84	80									
85	81									
86	82									
87	83									
88	84									
89	85									
90	86									
91										
92	87									
93	88									
94	89									
95	90									
96	91									
97	92									
98	93									
99	94									
- 33			1							

	М	N	0
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94			
95			
96			
97			
98			
99			

Α	В	С	D	E	F	G	I	J	К
95									
96									
97									
98									
99									
100									
101									
102									
103									
104									
105									
106									
107									
108									
109									
110									
111									
112									
113									
114									
115									

	М	N	0
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123 124			
124 125			

	А	В	С	D	E	F	G	1	J	К
126	5									
127 128 129										
128										
129										
130 131 132										
131										
132										
133 134 135 136										ļ
134										l
135										l
136										l
137										
138										l
137 138 139 140										├ ───┤
1/1										<u>├</u> ───┤
141 142 143 144 145 146 147 148 149										┝───┤
142										
143										
145										
146										
147										
148										
149										
150										
151										
152										
7091										
7092										
7093										
7094										
7094										
7095										
7096										
7097										
7098										
7099										
7100										
7101										

110111.	М	Ν	0
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
147			
148			
149			
149			
151			
152			
1.52			
7091			
7092			
7093			
7094			
7095			
7096			
7097			
7098			
7099			
7100			
7101			

	Α	В	С	D	E	F	G	J	ĸ
7102									
7103									
7104									
7105									
7106									
7107									
7108									
7109	58								

	М	Ν	0
7102			
7103			
7104			
7105			
7106			
7107			
7108			
7109			

	А	В	С	D	Е
1	EON	E.ON U.S.	SERVICES	INC. COM	PANY
2	ES	Eileen Sau	nders		
3	GB	Greg Black			
4	GR	Gary Revle	tt		
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15	<u>BV</u>	Black & Ve	atch (B&V)		
16	тн	Tim Hillma	n		
17	KL	Kyle Lucas			
18	AM	Anand Mah	abaleshwai	′ker	
19	MK	Mike King			
20	BO	Brian O'Ne	al		

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Mahabaleshwarkar, Anand; Hillman, Timothy M.
Sent:	5/18/2010 7:02:30 PM
Subject:	EON AQC Selection Sheet - Trimble County
Attachments:	Trimble County Unit 1 051810.doc

Eileen,

Attached please find the AQC technology selection sheet for Trimble County Unit 1. At this time, we believe that Unit 2 has a full suite of AQC technologies that may meet the target emission levels and will be determined later when the unit is operational. Thus, we have not included an AQC technology selection sheet for this unit. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, please confirm the CO targeted emission level noted in the matrix is 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@by.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Plant: *Trimble County* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost*
NO _x	<u>No new technology is required</u> . Existing SCR can meet the new NOx compliance limit of 0.11 lb/MBtu	🗆 Yes 🗆 No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	<u>No new technology is required</u> for PM as current ESP is capable of meeting 0.03 lb/MBTU emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size PJFF.	
HCI	No new technology selected. Existing WFGD can meet the new HCl compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> and new Pulse Jet Fabric Filter (PJFF) required to meet the compliance requirements.	□ Yes □ No
	does not approve a specific technology, an explanation sectioncomments by E.ON on specific issues regarding	

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Plant: *Trimble County* Unit: *1*

E.ON Comments:

Plant: *Trimble County* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

 <u>No new NO_x control technology is required</u>. The unit is currently equipped with state of the art SCR that can meet future target NOx emissions level of 0.11 lb/MBtu.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO2 emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a

Plant: *Trimble County* Unit: *1*

continuous basis and hence is the most feasible control technology. The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.

Special Considerations:

- Full size PJFF.
- PAC to be injected downstream of the existing ESP but upstream of new PJFF.
- Location: A PJFF would be required downstream of the PAC injection system.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole and electrical duct banks running underground between the existing ID fans and scrubber inlet duct will need to be avoided or relocated to make real estate available.
 - Array of I-beam structures (currently supporting no equipment) located between the existing ID fans and scrubber inlet needs to be demolished.
 - New PJFF will be installed at a higher elevation needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• The <u>new PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *Trimble County* Unit: *1*

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen	
То:	Crutcher, Tom; Turner, Haley	
Sent:	5/18/2010 7:08:40 PM	
Subject:	Fw: EON AQC Selection Sheet - Trimble County	
Attachments:	Trimble County Unit 1 051810.doc	

Tom and Haley,

Please see the information below. As described in my earlier email, I will send out a conference number so we can discuss this tomorrow.

I have not had the chance to open this since I am working from my Blackberry at the moment.

Also, disregard the question they asked in the email. I will check that out with Gary in the morning.

Thank you,

Eileen

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>; Hillman, Timothy M. <HillmanTM@bv.com>
Sent: Tue May 18 19:02:30 2010
Subject: EON AQC Selection Sheet - Trimble County

Eileen,

Attached please find the AQC technology selection sheet for Trimble County Unit 1. At this time, we believe that Unit 2 has a full suite of AQC technologies that may meet the target emission levels and will be determined later when the unit is operational. Thus, we have not included an AQC technology selection sheet for this unit. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, please confirm the CO targeted emission level noted in the matrix is 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Plant: *Trimble County* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost
NO _x	<u>No new technology is required</u> . Existing SCR can meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	🗆 Yes 🗆 No
РМ	<u>No new technology is required</u> for PM as current ESP is capable of meeting 0.03 lb/MBTU emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size PJFF.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	New Powdered Activated Carbon (PAC) Injection and new Pulse Jet Fabric Filter (PJFF) required to meet the compliance requirements.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included in the following sectioncomments by E.ON on specific issues regarding control equipment		

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Plant: *Trimble County* Unit: *1*

E.ON Comments:

Plant: *Trimble County* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

 <u>No new NO_x control technology is required</u>. The unit is currently equipped with state of the art SCR that can meet future target NOx emissions level of 0.11 lb/MBtu.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO2 emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a

Plant: *Trimble County* Unit: *1*

continuous basis and hence is the most feasible control technology. The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.

Special Considerations:

- Full size PJFF
- PAC to be injected downstream of the existing ESP but upstream of new PJFF.
- Location: A PJFF would be required downstream of the PAC injection system.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole and electrical duct banks running underground between the existing ID fans and scrubber inlet duct will need to be avoided or relocated to make real estate available.
 - Array of I-beam structures (currently supporting no equipment) located between the existing ID fans and scrubber inlet needs to be demolished.
 - New PJFF will be installed at a higher elevation needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• The <u>new PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *Trimble County* Unit: *1*

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:Saunders, EileenTo:Straight, ScottSent:5/18/2010 7:15:13 PMSubject:Fw: EON AQC Selection Sheet - Trimble CountyAttachments:Trimble County Unit 1 051810.doc

Scott,

Here is the first document from B&V. If you open this on your Blackberry, you can scroll down and read some of the text.

Also, I will get the question they asked in their email clarified in the morning.

I will be setting up a call to discuss with the TC team in the morning.

Thanks,

Eileen

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>; Hillman, Timothy M. <HillmanTM@bv.com>
Sent: Tue May 18 19:02:30 2010
Subject: EON AQC Selection Sheet - Trimble County

Eileen,

Attached please find the AQC technology selection sheet for Trimble County Unit 1. At this time, we believe that Unit 2 has a full suite of AQC technologies that may meet the target emission levels and will be determined later when the unit is operational. Thus, we have not included an AQC technology selection sheet for this unit. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, please confirm the CO targeted emission level noted in the matrix is 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.
Plant: *Trimble County* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost*
NOx	<u>No new technology is required</u> . Existing SCR can meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	<u>No new technology is required</u> for PM as current ESP is capable of meeting 0.03 lb/MBTU emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size PJFF.	
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> and new Pulse Jet Fabric Filter (PJFF) required to meet the compliance requirements.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included in the following sectioncomments by E.ON on specific issues regarding control equipment		

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Plant: *Trimble County* Unit: *1*

E.ON Comments:

Plant: *Trimble County* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

 <u>No new NO_x control technology is required</u>. The unit is currently equipped with state of the art SCR that can meet future target NOx emissions level of 0.11 lb/MBtu.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO2 emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a

Plant: *Trimble County* Unit: *1*

continuous basis and hence is the most feasible control technology. The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.

Special Considerations:

- Full size PJFF
- PAC to be injected downstream of the existing ESP but upstream of new PJFF.
- Location: A PJFF would be required downstream of the PAC injection system.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole and electrical duct banks running underground between the existing ID fans and scrubber inlet duct will need to be avoided or relocated to make real estate available.
 - Array of I-beam structures (currently supporting no equipment) located between the existing ID fans and scrubber inlet needs to be demolished.
 - New PJFF will be installed at a higher elevation needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• The <u>new PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *Trimble County* Unit: *1*

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Mahabaleshwarkar, Anand; Hillman, Timothy M.
Sent:	5/19/2010 2:26:31 PM
Subject:	EON AQC Selection Sheets - E.W. Brown
Attachments:	E.W. Brown Unit 1 051910.doc; E.W. Brown Unit 2 051910.doc; E.W. Brown Unit 3 051910.doc

Eileen,

Attached please find the AQC technology selection sheet for E.W. Brown Units 1-3. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, We understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@by.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *E.W. Brown* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: *1*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be located downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> No space is available outside the boiler building on the north side to install the SCR. Therefore, the new SCR needs to be constructed on the east side of the boiler building. Potentially at an elevated level.
- <u>Construction Issues</u> Tight space for tie-in and connection of ductwork between economizer outlet and SCR.
 - Soot blower air compressor tanks, service water piping and circulating water piping needs to be demolished and relocated.
 - Demineralization system building, which is currently not in use and is located on the north side of the boiler building, needs to be demolished.
 - Secondary air duct may need to be raised to clear the space.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: *1*

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the ductwork exiting the ID fans of Unit 1 and upstream of new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 1.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 1.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

 <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but not a long term solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Limited space available at grade level outside the boiler building on the north side to install the SCR. Therefore the new SCR will need to be constructed at an elevation above grade level.
- <u>Construction Issues</u> Unit 2 abandoned dry stack and main auxiliary transformer on the north side outside the boiler building.
 - Demolition and relocation of main auxiliary transformer of Unit 2.
 - Demolition of existing pre-dust collectors.
 - SCR will need to be constructed on a dance floor.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the ductwork exiting the ID fans of Unit 2 and upstream of new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost*
NO _x	<u>No new technology is required</u> . The new SCR which will be constructed in 2012 can meet the new NO_x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 3

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 3

Pollutant: NO_x

Feasible Control Options:

 <u>No new NOx control technology is required</u>. The unit will be equipped with SCR in 2012 that can meet the future target NO_x emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of common wet FGD scrubber.
- <u>Real Estate Constraints</u> No real estate constraints.
- <u>Construction Issues</u> Possible underground service water pipelines interference.
 - May require relocation of underground service water pipelines

Plant: *E.W. Brown* Unit: 3

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 3.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *E.W. Brown* Unit: 3

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Clements, Joe
To:	'Lucas, Kyle J.'
CC: Sent:	King, Michael L. (Mike); Hillman, Timothy M.; Mahabaleshwarkar, Anand; Saunders, Eileen; Imber, Philip; Straight, Scott; Whitworth, Wayne 4/26/2010 9:21:33 AM
Subject:	RE: E.ON Air Quality Control Study
Attachments:	Clements, Joe.vcf

Kyle,

Please provide a native format copy of your proposal. Please include an excel worksheet of your estimate with it as well. We would like to see resource x hours x billing rate by task by COB today.

I am out of my office all day today at the Trimble County Station, with spotty cell phone coverage. If you need to speak with me directly, drop me an email and I will phone you when I am available.

Thanks

Joe Clements Project Engineering Mgr. Contracts Major Capital Projects Mobile 502-724-9101 Work 502-627-2760 EON U.S. 820 West Broadway Louisville, Ky 40202

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Friday, April 23, 2010 5:11 PM
To: Clements, Joe
Cc: King, Michael L. (Mike); Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: E.ON Air Quality Control Study

Joe,

Based on our telephone conversation on Wednesday April 21, attached please find the proposal for the requested air quality control services. We understand that E.ON requires this study to be completed by June 18 and we are available to start this project immediately to meet this deadline. Additionally, we have completed a similar study for Ameren UE and have included a Letter of Recommendation for your consideration.

Please feel free to contact Mike King at (734) 622-8516 or myself should you have any questions.

Regards, Kyle Lucas

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential

information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Full Name: Last Name: First Name: Job Title: Company:	Clements, Joe Clements Joe Mgr Contracts/Mjr Capital Proj E.ON U.S. Services Inc. Project Engineering
Business Address:	Broadway Office Complex-3 820 W. Broadway Louisville, KY 40202
Business: Mobile: Pager:	(502) 627-2760
E-mail: E-mail Display As:	Joe.Clements@eon-us.com Clements, Joe <joe.clements@eon-us.com></joe.clements@eon-us.com>

From:	Saunders, Eileen
То:	Fraley, Jeffrey; Pabian, Brad; Carman, Barry
Sent:	5/19/2010 2:38:16 PM
Subject:	FW: EON AQC Selection Sheets - E.W. Brown
Attachments:	E.W. Brown Unit 1 051910.doc; E.W. Brown Unit 2 051910.doc; E.W. Brown Unit 3 051910.doc

All,

I just received the sheets for Brown. Please review them and I will set up a conference call for tomorrow so we can discuss what we would like B&V to estimate.

Please ignore the question in the email below regarding the CO targeted emission level. Gary Revlett is checking on that answer for me.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Wednesday, May 19, 2010 2:27 PM
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand; Hillman, Timothy M.
Subject: EON AQC Selection Sheets - E.W. Brown

Eileen,

Attached please find the AQC technology selection sheet for E.W. Brown Units 1-3. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, We understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

Kyle Lucas | Environmental Permitting Manager

Black & Veatch - Building a World of Difference ${}^{\scriptscriptstyle\mathsf{TM}}$

11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission,

dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *E.W. Brown* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: *1*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be located downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> No space is available outside the boiler building on the north side to install the SCR. Therefore, the new SCR needs to be constructed on the east side of the boiler building. Potentially at an elevated level.
- <u>Construction Issues</u> Tight space for tie-in and connection of ductwork between economizer outlet and SCR.
 - Soot blower air compressor tanks, service water piping and circulating water piping needs to be demolished and relocated.
 - Demineralization system building, which is currently not in use and is located on the north side of the boiler building, needs to be demolished.
 - Secondary air duct may need to be raised to clear the space.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: *1*

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the ductwork exiting the ID fans of Unit 1 and upstream of new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: *1*

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 1.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 1.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost*
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but not a long term solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Limited space available at grade level outside the boiler building on the north side to install the SCR. Therefore the new SCR will need to be constructed at an elevation above grade level.
- <u>Construction Issues</u> Unit 2 abandoned dry stack and main auxiliary transformer on the north side outside the boiler building.
 - Demolition and relocation of main auxiliary transformer of Unit 2.
 - Demolition of existing pre-dust collectors.
 - SCR will need to be constructed on a dance floor.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the ductwork exiting the ID fans of Unit 2 and upstream of new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.
Plant: *E.W. Brown* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>No new technology is required</u> . The new SCR which will be constructed in 2012 can meet the new NO_x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 3

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 3

Pollutant: NO_x

Feasible Control Options:

 <u>No new NOx control technology is required</u>. The unit will be equipped with SCR in 2012 that can meet the future target NO_x emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of common wet FGD scrubber.
- <u>Real Estate Constraints</u> No real estate constraints.
- <u>Construction Issues</u> Possible underground service water pipelines interference.
 - May require relocation of underground service water pipelines

Plant: *E.W. Brown* Unit: 3

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 3.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *E.W. Brown* Unit: 3

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	5/19/2010 3:46:55 PM
Subject:	FW: EON AQC Selection Sheets - E.W. Brown
Attachments:	E.W. Brown Unit 1 051910.doc; E.W. Brown Unit 2 051910.doc; E.W. Brown Unit 3 051910.doc

Here is the template for Brown. I have a call with the station in the morning to discuss. My call with Trimble was moved to Friday due to a schedule conflict. I expect to receive Ghent's information later this evening and the other three stations tomorrow.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Wednesday, May 19, 2010 2:27 PM
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand; Hillman, Timothy M.
Subject: EON AQC Selection Sheets - E.W. Brown

Eileen,

Attached please find the AQC technology selection sheet for E.W. Brown Units 1-3. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, We understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *E.W. Brown* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: *1*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be located downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> No space is available outside the boiler building on the north side to install the SCR. Therefore, the new SCR needs to be constructed on the east side of the boiler building. Potentially at an elevated level.
- <u>Construction Issues</u> Tight space for tie-in and connection of ductwork between economizer outlet and SCR.
 - Soot blower air compressor tanks, service water piping and circulating water piping needs to be demolished and relocated.
 - Demineralization system building, which is currently not in use and is located on the north side of the boiler building, needs to be demolished.
 - Secondary air duct may need to be raised to clear the space.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the ductwork exiting the ID fans of Unit 1 and upstream of new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 1.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 1.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but not a long term solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Limited space available at grade level outside the boiler building on the north side to install the SCR. Therefore the new SCR will need to be constructed at an elevation above grade level.
- <u>Construction Issues</u> Unit 2 abandoned dry stack and main auxiliary transformer on the north side outside the boiler building.
 - Demolition and relocation of main auxiliary transformer of Unit 2.
 - Demolition of existing pre-dust collectors.
 - SCR will need to be constructed on a dance floor.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the ductwork exiting the ID fans of Unit 2 and upstream of new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>No new technology is required</u> . The new SCR which will be constructed in 2012 can meet the new NO_x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 3

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *E.W. Brown* Unit: 3

Pollutant: NO_x

Feasible Control Options:

 <u>No new NOx control technology is required</u>. The unit will be equipped with SCR in 2012 that can meet the future target NO_x emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of common wet FGD scrubber.
- <u>Real Estate Constraints</u> No real estate constraints.
- <u>Construction Issues</u> Possible underground service water pipelines interference.
 - May require relocation of underground service water pipelines

Plant: *E.W. Brown* Unit: 3

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 3.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Plant: *E.W. Brown* Unit: 3

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Mahabaleshwarkar, Anand; Hillman, Timothy M.
Sent:	5/19/2010 6:02:21 PM
Subject:	EON AQC Selection Sheets - Ghent
Attachments:	Ghent Unit 1 051910.doc; Ghent Unit 2 051910.doc; Ghent Unit 3 051910.doc; Ghent Unit 4 051910.doc

Eileen,

Attached please find the AQC technology selection sheets for Ghent Units 1-4. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Ghent* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included the following sectioncomments by E.ON on specific issues regarding control equipme		

Plant: *Ghent* Unit: *1*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• <u>No new PM control technology is required.</u> The unit is currently equipped with an ESP technology that can meet the future target PM emission level of 0.03 lb/MBTU.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *1*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 1.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 1.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the existing ID fans of Unit 1 and upstream of the new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork and abandoned stack interference. Access for heavy cranes may be a possible issue
 - Require demolition of ductwork
 - May require demolition of existing abandoned dry stack of Unit 1
 - Demolition and relocation of pipe rack for access

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *1*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 <i>lb/MBtu</i>	□ Yes □ No
РМ	<u>New full size Pulse Jet Fabric Filter (PJFF) is</u> <u>required</u> to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Ghent* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Space is available outside the boiler building on the south side to install the SCR. The SCR will be elevated above grade.
- <u>Construction Issues</u> Access for heavy equipment and cranes is not available.
 - Demolition and relocation of overhead walkway from Unit 2 to Unit 3 boiler building.
 - Demolition and relocation of some of the overhead power lines.
 - Tower cranes are required for access of heavy equipment and construction of SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the existing ID fans of Unit 2 and upstream of the new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork interference. Access for heavy cranes may be a possible issue
 - Requires demolition of ductwork
 - Demolition and relocation of pipe rack for access

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	<u>No new technology is required</u> . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included in		can be included in

Plant: *Ghent* Unit: 3

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: 3

Pollutant: NO_x

Feasible Control Options:

• <u>No new NO_x control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of the new booster fans for Unit 3.

Plant: *Ghent* Unit: 3

- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 3.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.
Plant: *Ghent* Unit: 3

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included i the following sectioncomments by E.ON on specific issues regarding control equipme		

Plant: *Ghent* Unit: *4*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *4*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *4*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 4.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 4.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the existing ID fans of Unit 4 and upstream of the new booster fans for Unit 4.
- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Joyce, Jeff; Nix, Stephen; Piening, Carla
Sent:	5/19/2010 6:23:10 PM
Subject:	Fw: EON AQC Selection Sheets - Ghent
Attachments:	Ghent Unit 1 051910.doc; Ghent Unit 2 051910.doc; Ghent Unit 3 051910.doc; Ghent Unit 4 051910.doc

All,

Here are the templates for Ghent. I will arrange a call tomorrow for us to discuss their data sheets.

Thanks,

Eileen

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>; Hillman, Timothy M. <HillmanTM@bv.com>
Sent: Wed May 19 18:02:21 2010
Subject: EON AQC Selection Sheets - Ghent

Eileen,

Attached please find the AQC technology selection sheets for Ghent Units 1-4. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaski@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained

therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Ghent* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included i the following sectioncomments by E.ON on specific issues regarding control equipme		

Plant: *Ghent* Unit: *1*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• <u>No new PM control technology is required.</u> The unit is currently equipped with an ESP technology that can meet the future target PM emission level of 0.03 lb/MBTU.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *1*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 1.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 1.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the existing ID fans of Unit 1 and upstream of the new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork and abandoned stack interference. Access for heavy cranes may be a possible issue
 - Require demolition of ductwork
 - May require demolition of existing abandoned dry stack of Unit 1
 - Demolition and relocation of pipe rack for access

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *1*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 <i>lb/MBtu</i>	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x 10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Ghent* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Space is available outside the boiler building on the south side to install the SCR. The SCR will be elevated above grade.
- <u>Construction Issues</u> Access for heavy equipment and cranes is not available.
 - Demolition and relocation of overhead walkway from Unit 2 to Unit 3 boiler building.
 - Demolition and relocation of some of the overhead power lines.
 - Tower cranes are required for access of heavy equipment and construction of SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the existing ID fans of Unit 2 and upstream of the new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork interference. Access for heavy cranes may be a possible issue
 - Requires demolition of ductwork
 - Demolition and relocation of pipe rack for access

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	<u>No new technology is required</u> . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included in		

Plant: *Ghent* Unit: 3

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: 3

Pollutant: NO_x

Feasible Control Options:

• <u>No new NO_x control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of the new booster fans for Unit 3.

Plant: *Ghent* Unit: 3

- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 3.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: 3

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included i the following sectioncomments by E.ON on specific issues regarding control equipme		

Plant: *Ghent* Unit: *4*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *4*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *4*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 4.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 4.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the existing ID fans of Unit 4 and upstream of the new booster fans for Unit 4.
- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	5/19/2010 9:29:30 PM
Subject:	Fw: EON AQC Selection Sheets - Ghent
Attachments:	Ghent Unit 1 051910.doc; Ghent Unit 2 051910.doc; Ghent Unit 3 051910.doc; Ghent Unit 4 051910.doc

Ghent

From: Lucas, Kyle J. <LucasKJ@bv.com>
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand <MahabaleshwarkarA@bv.com>; Hillman, Timothy M. <HillmanTM@bv.com>
Sent: Wed May 19 18:02:21 2010
Subject: EON AQC Selection Sheets - Ghent

Eileen,

Attached please find the AQC technology selection sheets for Ghent Units 1-4. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Ghent* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>No new technology is required</u> . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included in the following sectioncomments by E.ON on specific issues regarding control equipment		

Plant: *Ghent* Unit: *1*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• <u>No new PM control technology is required.</u> The unit is currently equipped with an ESP technology that can meet the future target PM emission level of 0.03 lb/MBTU.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *1*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 1.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 1.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the existing ID fans of Unit 1 and upstream of the new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork and abandoned stack interference. Access for heavy cranes may be a possible issue
 - Require demolition of ductwork
 - May require demolition of existing abandoned dry stack of Unit 1
 - Demolition and relocation of pipe rack for access

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *1*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 <i>lb/MBtu</i>	□ Yes □ No
РМ	<u>New full size Pulse Jet Fabric Filter (PJFF) is</u> <u>required</u> to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Ghent* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:
Plant: *Ghent* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Space is available outside the boiler building on the south side to install the SCR. The SCR will be elevated above grade.
- <u>Construction Issues</u> Access for heavy equipment and cranes is not available.
 - Demolition and relocation of overhead walkway from Unit 2 to Unit 3 boiler building.
 - Demolition and relocation of some of the overhead power lines.
 - Tower cranes are required for access of heavy equipment and construction of SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the existing ID fans of Unit 2 and upstream of the new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Ductwork interference. Access for heavy cranes may be a possible issue
 - Requires demolition of ductwork
 - Demolition and relocation of pipe rack for access

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>No new technology is required</u> . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
PM	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCl compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu. does not approve a specific technology, an explanation	□ Yes □ No

Plant: *Ghent* Unit: 3

the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: 3

Pollutant: NO_x

Feasible Control Options:

• <u>No new NO_x control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of the new booster fans for Unit 3.

Plant: *Ghent* Unit: 3

- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 3.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: 3

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Ghent* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	No new technology is required . Existing SCR can meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing WFGD can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	No new technology is required for PM as current ESP is capable of meeting 0.03 lb/MBtu emissions.	
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected.</u> Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No
Note: If E.ON does not approve a specific technology, an explanation can be included the following sectioncomments by E.ON on specific issues regarding control equipme		

Plant: *Ghent* Unit: *4*

and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Plant: *Ghent* Unit: *4*

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit is currently equipped with SCR that can meet the future target NOx emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

• No new PM control technology is required to meet the 0.03 lb/MBTU emissions limit.

Special Considerations:

• A new PJFF will be required to meet mercury control using PAC. The existing ESP alone will not be capable of meeting the mercury compliance emissions using PAC.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *Ghent* Unit: *4*

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing hot-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- PJFF for Unit 4.
- PAC to be injected downstream of the existing ID fans but upstream of new full size PJFF for Unit 4.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the existing ID fans of Unit 4 and upstream of the new booster fans for Unit 4.
- <u>Real Estate Constraints</u> There is very limited space available between the ID fan outlet and wet scrubber inlet on the west side. The new PJFF will be installed on the south side of Unit 4 ESP, with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Electrical manhole, electrical duct banks and circulating water and storm water drain piping running underground on the south side of Unit 4 ESP will need to be relocated to make real estate available.
 - Warehouse needs to be demolished
 - Well water pumps needs to be relocated

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Plant: *Ghent* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/20/2010 11:08:35 AM
Subject:	SNCR description
Attachments:	Picture (Metafile) 1.jpg

Eileen,

Please pass this along to your staff.

SNCR systems reduce NO_x emissions by injecting a reagent at multiple levels in the steam generator, as illustrated in the figure. SNCR systems rely solely on reagent injection (rather than a catalyst) and an appropriate reagent injection temperature, good reagent/gas mixing, and adequate reaction time to achieve NO_x reductions. SNCR systems can use either ammonia or urea as the reagent. Ammonia or urea is injected into areas of the steam generator where the flue gas temperature ranges from 1,500 to 2,200° F. The furnace of a pulverized coal fired boiler operates at temperatures between 2,500 to 3,000° F.

Figure Schematic of SNCR System with Multiple Injection Levels

SNCR systems are capable of achieving a NO_x emission reduction as high as 50 to 60 percent in optimum conditions (adequate reaction time, temperature, and reagent/ flue gas mixing, high baseline NO_x conditions, multiple levels of injectors), with ammonia slips of 10 to 50 ppmvd. Lower ammonia slip values can be achieved with lower NO_x reduction capabilities. Typically, optimum conditions are difficult to achieve, resulting in emission reduction levels of 20 to 40 percent. Potential performance is very site-specific and varies with fuel type, steam generator size, allowable ammonia slip, furnace carbon monoxide (CO) concentrations, and steam generator heat transfer characteristics.

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik lucaskj@bv.com This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From:Saunders, EileenTo:Fraley, Jeffrey; Pabian, Brad; Carman, BarrySent:5/20/2010 2:39:26 PMSubject:FW: SNCR descriptionAttachments:Picture (Metafile) 1.jpg

Here is the SNCR description from B&V.

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Thursday, May 20, 2010 11:09 AM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: SNCR description

Eileen,

Please pass this along to your staff.

SNCR systems reduce NO_x emissions by injecting a reagent at multiple levels in the steam generator, as illustrated in the figure. SNCR systems rely solely on reagent injection (rather than a catalyst) and an appropriate reagent injection temperature, good reagent/gas mixing, and adequate reaction time to achieve NO_x reductions. SNCR systems can use either ammonia or urea as the reagent. Ammonia or urea is injected into areas of the steam generator where the flue gas temperature ranges from 1,500 to 2,200° F. The furnace of a pulverized coal fired boiler operates at temperatures between 2,500 to 3,000° F.

Figure Schematic of SNCR System with Multiple Injection Levels

SNCR systems are capable of achieving a NO_x emission reduction as high as 50 to 60 percent in optimum conditions (adequate reaction time, temperature, and reagent/ flue gas mixing, high baseline NO_x conditions, multiple levels of injectors), with ammonia slips of 10 to 50 ppmvd. Lower ammonia slip values can be achieved with lower NO_x reduction capabilities. Typically, optimum conditions are difficult to achieve, resulting in emission reduction

levels of 20 to 40 percent. Potential performance is very site-specific and varies with fuel type, steam generator size, allowable ammonia slip, furnace carbon monoxide (CO) concentrations, and steam generator heat transfer characteristics.

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Mahabaleshwarkar, Anand; Hillman, Timothy M.
Sent:	5/20/2010 3:13:24 PM
Subject:	EON AQC Selection Sheets - Cane Run
Attachments:	Cane Run Unit 4 052010.doc; Cane Run Unit 5 052010.doc; Cane Run Unit 6 052010.doc

Eileen,

Attached please find the AQC technology selection sheets for Cane Run Units 4-6. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaski@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Cane Run* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	New Wet Flue Gas Desulfurization (WFGD) is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: *4*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 4.
- New ID Fans and wet liner/stack required for Unit 4 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: *4*

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 4

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 4

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 4 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 4

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 4 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 4

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 5

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 5

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 5.
- New ID Fans and wet liner/stack required for Unit 5 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 5

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 5

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 5

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 5 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 5 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 5

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 5 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 5

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 5

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 6

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
ΝΟχ	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 6

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 6.
- New ID Fans and wet liner/stack required for Unit 6 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.
Plant: *Cane Run* Unit: 6

E.ON Comments:

05/19/2010

Plant: *Cane Run* Unit: 6

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NOx compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NOx emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NOx emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NOx emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: *Cane Run* Unit: 6

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 6 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 6 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: *Cane Run* Unit: 6

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- <u>Note</u>: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 6 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 6

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 6

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Turner, Steven; Hensley, Mike
Sent:	5/20/2010 3:17:47 PM
Subject:	FW: EON AQC Selection Sheets - Cane Run
Attachments:	Cane Run Unit 4 052010.doc; Cane Run Unit 5 052010.doc; Cane Run Unit 6 052010.doc

Steve and Mike,

Please see the AQCS Template for your station. I will check your calendars to see if you are available for a conference call tomorrow. Please ignore the CO question below as I have already passed that question on to Gary Revlett.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Thursday, May 20, 2010 3:13 PM
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand; Hillman, Timothy M.
Subject: EON AQC Selection Sheets - Cane Run

Eileen,

Attached please find the AQC technology selection sheets for Cane Run Units 4-6. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaski@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained

therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Cane Run* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
ΝΟχ	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: *4*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 4.
- New ID Fans and wet liner/stack required for Unit 4 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: *4*

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 4

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 4

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 4 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 4

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 4 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 4

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 5

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
ΝΟχ	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 5

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 5.
- New ID Fans and wet liner/stack required for Unit 5 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 5

E.ON Comments:

05/19/2010

Plant: *Cane Run* Unit: 5

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 5

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 5 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 5 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 5

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 5 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 5

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 5

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 6

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
ΝΟχ	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 6

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 6.
- New ID Fans and wet liner/stack required for Unit 6 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 6

E.ON Comments:

05/19/2010

Plant: *Cane Run* Unit: 6

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NOx compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NOx emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NOx emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NOx emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: *Cane Run* Unit: 6

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 6 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 6 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: *Cane Run* Unit: 6

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- <u>Note</u>: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 6 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 6

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 6

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Hensley, Mike; Turner, Steven
Sent:	5/20/2010 3:19:34 PM
Subject:	FW: EON AQC Selection Sheets - Cane Run
Attachments:	Cane Run Unit 4 052010.doc; Cane Run Unit 5 052010.doc; Cane Run Unit 6 052010.doc

My apologies. I was working on the Brown document and accidentally forwarded their information to you. Please delete that email and use this one instead.

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Thursday, May 20, 2010 3:13 PM
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand; Hillman, Timothy M.
Subject: EON AQC Selection Sheets - Cane Run

Eileen,

Attached please find the AQC technology selection sheets for Cane Run Units 4-6. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Cane Run* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	New Wet Flue Gas Desulfurization (WFGD) is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: *4*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 4.
- New ID Fans and wet liner/stack required for Unit 4 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: *4*

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 4

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 4

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 4 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 4

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 4 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 4

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.
Plant: *Cane Run* Unit: 5

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	New Wet Flue Gas Desulfurization (WFGD) is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> <u>required with new full size Pulse Jet Fabric Filter</u> (<u>PJFF)</u> to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 5

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 5.
- New ID Fans and wet liner/stack required for Unit 5 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 5

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 5

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 5

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 5 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 5 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 5

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 5 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 5

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 5

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 6

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	New Wet Flue Gas Desulfurization (WFGD) is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> <u>required with new full size Pulse Jet Fabric Filter</u> (<u>PJFF)</u> to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 6

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 6.
- New ID Fans and wet liner/stack required for Unit 6 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 6

E.ON Comments:

05/19/2010

Plant: *Cane Run* Unit: 6

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NOx compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NOx emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NOx emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NOx emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: *Cane Run* Unit: 6

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 6 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 6 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: *Cane Run* Unit: 6

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- <u>Note</u>: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 6 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 6

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 6

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Fraley, Jeffrey; Pabian, Brad; Carman, Barry
Sent:	5/20/2010 3:35:03 PM
Subject:	AQCS Response - Brown Station
Attachments:	Brown AQC Comments.docx; E W Brown Unit 1 051910 eon response.doc; E W Brown Unit 2
	051910 eon response docx; E W Brown Unit 3 051910 eon response docx

All,

Please see the email and attachments that I would like to forward to B&V. I decided Brad did an excellent job explaining his points and put his comments as a separate document. You will see though, that I refer to those comments in the body of the template.

If I missed anything, please feel free to edit and send it back to me. I would like to send this today, but if you cannot review, please send it back to me tomorrow morning so I can forward it to B&V.

Here is the sample email to B&V:

All,

Please see the response from the Brown Team. You will notice that I have attached a separate document with comments regarding their preference for controlling NOx for the **station**. As you review the document, please refer to the previously forwarded document titled, "Estimated Requirements Under Future New Environmental Regulations" developed by Gary Revlett for guidance.

If you have any questions, please contact me as soon as possible.

Thank you,

Eileen

Comments on Brown AQC study by Black and Veatch Brad Pabian

B&V recommended either a SNCR or SCR on Brown units 1 and 2 in their initial assessment of Brown station. This was due to their assertion that NOx limits would be imposed on a unit by unit basis. If this is the case, then their recommendations are valid. If, however, the NOx limits are imposed on a plant wide basis, then there may be a cheaper alternative. Brown 3 will be fitted with an SCR capable of 0.07 lbs/MMBTU NOx output. If Brown 2 was fitted with a similar SCR, Brown 1 may be able to come into compliance simply with better low NOx burners and over fired air. The rough calculations below show how this may be possible. These are not detailed and accurate numbers, only rough approximations.

Current Unit 3 Full Load Heat Input: ~4700 MMBTU/hr Current Unit 2 Full Load Heat Input: ~1730 MMBTU/hr Current Unit 1 Full Load Heat Input: ~1070 MMBTU/hr Total Plant Full Load Heat Input: ~7500 MMBTU/hr Maximum Plant Full Load NOx Emissions (at 0.11 lb/MMBTU): 825 lb/hr Maximum Unit 3 NOx Emissions with 0.07 lb/MMBTU SCR in service: 329 lb/hr Maximum Unit 2 NOx Emissions with 0.07 lb/MMBTU SCR in service: 121 lb/hr

Maximum allowable Unit 1 NOx Emissions with Unit 2 and 3 SCR in service: 375 lb/hr Maximum allowable Unit 1 NOx Emission rate: 0.35 lb/MMBTU

Unit 1 currently runs between 0.4 and 0.5 lb/MMBTU, which is the reason that it seemed possible to attain 0.35 lb/MMBTU with less costly means. In addition, when capacity factor is considered, the allowable NOx emission rate on Unit 1 would be higher, since it has historically had a lower capacity factor than the other two units at Brown. I would suggest that capacity factor be treated as safety margin with respect to meeting the limits and that B&V propose a cost to upgrade burner equipment on Unit 1 to achieve approximately 0.3 to 0.32 lb/MMBTU emissions. The only time that this would not be a practical solution would be if the NOx limits were applied on a continuous basis, rather than by year. If so, then a Unit 3 outage would put the plant over the limit. This could be managed, possibly, with overlapping outages, etc. If the NOx regulations are applied on a unit by unit basis, NOx removal of 30-40% by an SNCR as described by B&V would not be capable of bringing Unit 1 into compliance, and a full SCR would be required.

The second major question I had was relative to disposal of material captured by a future baghouse, particularly considering heavy metals that would be captured. Please be sure B&V identifies costs that may be associated with construction of facilities to handle the waste. It should also be made clear in their final document that the potential baghouse requirements for Units 1 and 2 could be met by a single combined baghouse.

Plant: *E.W. Brown* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1×10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected</u> . Existing common WFGD to units 1, 2 and 3 can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: *1*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Please clarify if the PJFF is shared between Units 1&2. Also, the plant would prefer B&V to estimate the option of using low NOx burners and overfire air on Unit 1 and put the SCR on Unit 2 and 3 in order to achieve Plant compliance. According to the sheet titled, "Estimated Requirements Under Future New Environmental Regulations" provided to B&V by E.ON, the revised CAIR section 4.9 calls for Plant wide compliance. The Brown Team does not believe that an SCR should be the first option for compliance for this Unit. Please see the attached document prepared by Brad Pabian for further details.

Therefore, B&V should explore this option for the basis of the estimate. Eileen Saunders will discuss with management if E.ON would like B&V to provide costs associated with adding an SCR to Unit 1.

Is an SNCR feasible for the Brown Station? If not, please explain.

Plant: *E.W. Brown* Unit: *1*

Plant: *E.W. Brown* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be located downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> No space is available outside the boiler building on the north side to install the SCR. Therefore, the new SCR needs to be constructed on the east side of the boiler building. Potentially at an elevated level.
- <u>Construction Issues</u> Tight space for tie-in and connection of ductwork between economizer outlet and SCR.
 - Soot blower air compressor tanks, service water piping and circulating water piping needs to be demolished and relocated.
 - Demineralization system building, which is currently not in use and is located on the north side of the boiler building, needs to be demolished.
 - Secondary air duct may need to be raised to clear the space.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the ductwork exiting the ID fans of Unit 1 and upstream of new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 1.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 1.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

<u>Please clarify if the PJFF is shared between Units 1&2. If so, B&V needs</u> to make sure that the cost estimate only reflects one baghouse.

See comments on Unit 1 regarding the SCR estimate.

Plant: *E.W. Brown* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but not a long term solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Limited space available at grade level outside the boiler building on the north side to install the SCR. Therefore the new SCR will need to be constructed at an elevation above grade level.
- <u>Construction Issues</u> Unit 2 abandoned dry stack and main auxiliary transformer on the north side outside the boiler building.
 - Demolition and relocation of main auxiliary transformer of Unit 2.
 - Demolition of existing pre-dust collectors.
 - SCR will need to be constructed on a dance floor.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the ductwork exiting the ID fans of Unit 2 and upstream of new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>No new technology is required</u> . The new SCR which will be constructed in 2012 can meet the new NO_x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 3

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

No additional comments

Plant: *E.W. Brown* Unit: 3

Pollutant: NO_x

Feasible Control Options:

• <u>No new NOx control technology is required</u>. The unit will be equipped with SCR in 2012 that can meet the future target NO_x emissions level of 0.11 lb/MBtu.

Special Considerations:

• Plant is currently planning injection technology to mitigate SO₃ from the SCR.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 3 will be located downstream of the existing ID fans of Unit 3 and upstream of common wet FGD scrubber.
- <u>Real Estate Constraints</u> No real estate constraints.
- <u>Construction Issues</u> Possible underground service water pipelines interference.
 May require relocation of underground service water pipelines

Plant: *E.W. Brown* Unit: 3

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 3.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 3.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

Plant: *E.W. Brown* Unit: 3

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	5/20/2010 3:56:49 PM
Subject:	FW: EON AQC Selection Sheets - Cane Run
Attachments:	Cane Run Unit 4 052010.doc; Cane Run Unit 5 052010.doc; Cane Run Unit 6 052010.doc

Cane Run data.

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Thursday, May 20, 2010 3:13 PM
To: Saunders, Eileen
Cc: Mahabaleshwarkar, Anand; Hillman, Timothy M.
Subject: EON AQC Selection Sheets - Cane Run

Eileen,

Attached please find the AQC technology selection sheets for Cane Run Units 4-6. Please review this information and provide your approval for the recommended technologies. If E.ON chooses not to approve any of recommended technologies, please provide a detailed description of the alternative approach.

Additionally, we understand you are confirming the CO targeted emission level noted in the matrix of 0.02 lb/MBtu (for each of the 18 coal-fired units). We have assumed that this value is correct and was developed from the recent boiler MACT. However, B&V does not know of any feasible and proven CO control technology for units of this type and size.

Please feel free to contact us if you have any questions,

Regards, Kyle

Kyle Lucas | Environmental Permitting Manager

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: lucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Plant: *Cane Run* Unit: *4*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NO _x	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	New Wet Flue Gas Desulfurization (WFGD) is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: *4*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 4.
- New ID Fans and wet liner/stack required for Unit 4 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: *4*

E.ON Comments:

05/19/2010
Plant: Cane Run Unit: 4

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 4

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 4 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 4 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 4

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 4 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 4

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: *4*

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 5

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 5

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 5.
- New ID Fans and wet liner/stack required for Unit 5 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 5

E.ON Comments:

05/19/2010

Plant: Cane Run Unit: 5

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR)
 Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: Cane Run Unit: 5

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 5 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 5 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: Cane Run Unit: 5

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- *Note*: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 5 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 5

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 5

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *Cane Run* Unit: 6

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for the one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	<u>New Selective Catalytic Reduction (SCR) is</u> <u>required</u> to meet the new NO _x compliance limit of 0.11 lb/MBtu.	□ Yes □ No
SO ₂	<u>New Wet Flue Gas Desulfurization (WFGD)</u> is required to meet the new SO ₂ compliance limit of 0.25 lb/MBtu.	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBTU (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing WFGD can meet the new HCI compliance limit of 0.002 lb/MBtu	
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15 x10 ⁻¹⁸ lb/MBtu.	□ Yes □ No

Plant: *Cane Run* Unit: 6

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

Special Considerations Summary:

- Complete demolition of everything behind the boiler.
- Demolish and Build in Phases; requires ~20-30 month of construction outage for Unit 6.
- New ID Fans and wet liner/stack required for Unit 6 which will be a common concrete shell for units 4, 5 and 6 with separate wet flue liners.
- Relocate existing overhead power lines towards the backend equipment to minimize construction hazards.
- New common stack located near unit 5.
- Existing stacks demolished.
- Construction sequence starts with unit 5.

Plant: *Cane Run* Unit: 6

E.ON Comments:

05/19/2010

Plant: *Cane Run* Unit: 6

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NOx compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NOx emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NOx emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NOx emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigation system.
- New ID fan installation as needed.
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the new air heater.

Pollutant: SO₂

Feasible Control Options:

- Semi-Dry Flue Gas Desulfurization (FGD)
- Wet Flue Gas Desulfurization (WFGD)

Special Considerations:

- Semi-Dry FGD systems may be able to achieve the new SO₂ compliance limit of 0.25 lb/MBtu but it will not provide a long term consistent solution for SO₂ emissions less than 0.25 lb/MBtu on high sulfur fuels. The O&M costs economics could favor use of a wet FGD technology when scrubbing high sulfur coals expected to be burned at Cane Run units.
- WFGD can consistently achieve SO₂ emissions of 0.25 lb/MBtu on a continuous basis and has a capability to expand to meet the SO₂ emissions even lower than

Plant: *Cane Run* Unit: 6

0.25 lb/MBtu burning high sulfur content coals. Hence WFGD is the most feasible and expandable control technology considered for SO_2 reduction including future requirements.

- New ID fan installation as needed.
- Existing WFGD will be demolished.
- Existing ID fans will be demolished
- <u>Location</u>: WFGD would be required downstream of the new ID fans and upstream of the new stack.
- To minimize outage time, Unit 6 Scrubbers will be installed in parallel with SCR. and installation of baghouse.

Pollutant: Particulate (PM)

Feasible Control Options:

- Cold-side Dry ESP
- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- Both dry cold-side ESP and COHPAC combination may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu. However a full size PJFF offers more direct benefits or co-benefits of removing future multi-pollutants using some form of injection upstream when compared to dry ESPs. Hence either ESPs or COHPAC combination is not recommended.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New ID fan installation as needed.
- Existing ESP will be demolished (no additional PM filtration proposed for ash sales).
- New air heater needed.
- Existing air heater demolished.
- <u>Location</u>: A new PJFF for Unit 6 will be located downstream of the new air heater and upstream of the new ID fans.
- Existing ID fans will be demolished.

Plant: *Cane Run* Unit: 6

Pollutant: CO

Feasible Control Options:

- No feasible and proven technology is available for this type and size of unit to meet the 0.02 lb/MBtu emission limit.
- <u>Note</u>: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Pollutant: Mercury (Hg)

Feasible Control Options:

• New Powdered Activated Carbon (PAC) Injection in conjunction new PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable to removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- A Full size PJFF in conjunction with PAC injection for Unit 6 is recommended to remove 90% mercury emissions.
- PAC to be injected downstream of the new air heater but upstream of new full size PJFF for Unit 6

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCI emissions with an existing Wet FGD and similarly it is expected to meet the same target emission level of 0.002 lb/MBtu with new Wet FGD recommended.

Special Considerations:

• New WFGD proposed as control technology for SO₂ reduction for future requirements will also meet HCI target emission level.

Plant: *Cane Run* Unit: 6

Pollutant: Dioxin/Furan

Feasible Control Options:

• PAC injection with new PJFF considered for mercury control can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	5/20/2010 3:56:29 PM
Subject:	FW: AQCS Response - Brown Station
Attachments:	Brown AQC Comments.docx; E W Brown Unit 1 051910 eon response.doc; E W Brown Unit 2
	051910 eon response.docx; E W Brown Unit 3 051910 eon response.docx

Scott,

Here is the proposed response for cost estimating for Brown. Jeff Fraley and his staff were involved in creating the response. I have sent it to them for review before it goes to B&V.

I have also had conferences with the Ghent team and TC is tomorrow. I am in the process of scheduling Cane Run's conference call hopefully for tomorrow as well.

The only outstanding stations at this point are Mill Creek and Green River. B&V is working toward getting that information to me today.

Thanks,

Eileen

From: Saunders, Eileen
Sent: Thursday, May 20, 2010 3:35 PM
To: Fraley, Jeffrey; Pabian, Brad; Carman, Barry
Subject: AQCS Response - Brown Station

All,

Please see the email and attachments that I would like to forward to B&V. I decided Brad did an excellent job explaining his points and put his comments as a separate document. You will see though, that I refer to those comments in the body of the template.

If I missed anything, please feel free to edit and send it back to me. I would like to send this today, but if you cannot review, please send it back to me tomorrow morning so I can forward it to B&V.

Here is the sample email to B&V:

All,

Please see the response from the Brown Team. You will notice that I have attached a separate document with comments regarding their preference for controlling NOx for the **station**. As you review the document, please refer to the previously forwarded document titled, "Estimated Requirements Under Future New Environmental Regulations" developed by Gary Revlett for guidance.

If you have any questions, please contact me as soon as possible.

Thank you,

Eileen

Comments on Brown AQC study by Black and Veatch Brad Pabian

B&V recommended either a SNCR or SCR on Brown units 1 and 2 in their initial assessment of Brown station. This was due to their assertion that NOx limits would be imposed on a unit by unit basis. If this is the case, then their recommendations are valid. If, however, the NOx limits are imposed on a plant wide basis, then there may be a cheaper alternative. Brown 3 will be fitted with an SCR capable of 0.07 lbs/MMBTU NOx output. If Brown 2 was fitted with a similar SCR, Brown 1 may be able to come into compliance simply with better low NOx burners and over fired air. The rough calculations below show how this may be possible. These are not detailed and accurate numbers, only rough approximations.

Current Unit 3 Full Load Heat Input: ~4700 MMBTU/hr Current Unit 2 Full Load Heat Input: ~1730 MMBTU/hr Current Unit 1 Full Load Heat Input: ~1070 MMBTU/hr Total Plant Full Load Heat Input: ~7500 MMBTU/hr Maximum Plant Full Load NOx Emissions (at 0.11 lb/MMBTU): 825 lb/hr Maximum Unit 3 NOx Emissions with 0.07 lb/MMBTU SCR in service: 329 lb/hr Maximum Unit 2 NOx Emissions with 0.07 lb/MMBTU SCR in service: 121 lb/hr

Maximum allowable Unit 1 NOx Emissions with Unit 2 and 3 SCR in service: 375 lb/hr Maximum allowable Unit 1 NOx Emission rate: 0.35 lb/MMBTU

Unit 1 currently runs between 0.4 and 0.5 lb/MMBTU, which is the reason that it seemed possible to attain 0.35 lb/MMBTU with less costly means. In addition, when capacity factor is considered, the allowable NOx emission rate on Unit 1 would be higher, since it has historically had a lower capacity factor than the other two units at Brown. I would suggest that capacity factor be treated as safety margin with respect to meeting the limits and that B&V propose a cost to upgrade burner equipment on Unit 1 to achieve approximately 0.3 to 0.32 lb/MMBTU emissions. The only time that this would not be a practical solution would be if the NOx limits were applied on a continuous basis, rather than by year. If so, then a Unit 3 outage would put the plant over the limit. This could be managed, possibly, with overlapping outages, etc. If the NOx regulations are applied on a unit by unit basis, NOx removal of 30-40% by an SNCR as described by B&V would not be capable of bringing Unit 1 into compliance, and a full SCR would be required.

The second major question I had was relative to disposal of material captured by a future baghouse, particularly considering heavy metals that would be captured. Please be sure B&V identifies costs that may be associated with construction of facilities to handle the waste. It should also be made clear in their final document that the potential baghouse requirements for Units 1 and 2 could be met by a single combined baghouse.

Plant: *E.W. Brown* Unit: *1*

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

AQC Technology Recommendation		
Pollutant	AQC Equipment	E.ON Approval to Cost
NO _x	New Selective Catalytic Reduction (SCR) is required to meet the new NOx compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	<u>No new technology selected</u> . Existing common WFGD to units 1, 2 and 3 can meet the new HCI compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: *1*

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

Please clarify if the PJFF is shared between Units 1&2. Also, the plant would prefer B&V to estimate the option of using low NOx burners and overfire air on Unit 1 and put the SCR on Unit 2 and 3 in order to achieve Plant compliance. According to the sheet titled, "Estimated Requirements Under Future New Environmental Regulations" provided to B&V by E.ON, the revised CAIR section 4.9 calls for Plant wide compliance. The Brown Team does not believe that an SCR should be the first option for compliance for this Unit. Please see the attached document prepared by Brad Pabian for further details.

Therefore, B&V should explore this option for the basis of the estimate. Eileen Saunders will discuss with management if E.ON would like B&V to provide costs associated with adding an SCR to Unit 1.

Is an SNCR feasible for the Brown Station? If not, please explain.

Plant: *E.W. Brown* Unit: *1*

Plant: *E.W. Brown* Unit: *1*

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but it will not provide a long term consistent solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NO_x reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be located downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> No space is available outside the boiler building on the north side to install the SCR. Therefore, the new SCR needs to be constructed on the east side of the boiler building. Potentially at an elevated level.
- <u>Construction Issues</u> Tight space for tie-in and connection of ductwork between economizer outlet and SCR.
 - Soot blower air compressor tanks, service water piping and circulating water piping needs to be demolished and relocated.
 - Demineralization system building, which is currently not in use and is located on the north side of the boiler building, needs to be demolished.
 - Secondary air duct may need to be raised to clear the space.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but it is not considered a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 1 will be located downstream of the ductwork exiting the ID fans of Unit 1 and upstream of new booster fans for Unit 1.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 1

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 1.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 1.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 2

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost [*]
NOx	New Selective Catalytic Reduction (SCR) is required to meet the new NO _x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	New Powdered Activated Carbon (PAC) Injection required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected. Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No

Plant: *E.W. Brown* Unit: 2

Note: If E.ON does not approve a specific technology, an explanation can be included in the following section--comments by E.ON on specific issues regarding control equipment and a decision to approve a technology should be described in detail.

E.ON to return written approval and comments sections to B&V.

E.ON Comments:

<u>Please clarify if the PJFF is shared between Units 1&2. If so, B&V needs</u> to make sure that the cost estimate only reflects one baghouse.

See comments on Unit 1 regarding the SCR estimate.

Plant: *E.W. Brown* Unit: 2

Pollutant: NO_x

Feasible Control Options:

- Selective Non Catalytic Reduction (SNCR) / Selective Catalytic Reduction (SCR) Hybrid
- Selective Catalytic Reduction (SCR)

Special Considerations:

- SNCR/SCR Hybrid systems may be able to achieve the new NO_x compliance limit of 0.11 lb/MBtu but not a long term solution for NO_x emissions less than 0.11 lb/MBtu.
- SCR can consistently achieve NO_x emissions of 0.11 lb/MBtu on a continuous basis and has a capability to expand to meet the NO_x emissions even lower than 0.11 lb/MBtu. Hence SCR is the most feasible and expandable control technology considered for NOx reduction including future requirements.
- Likely require SO₃ mitigate system.
- New booster and/or ID fan installation as needed.
- <u>Location</u>: SCR would be required downstream of the existing economizer and upstream of the air heater.
- <u>Real Estate Constraints</u> Limited space available at grade level outside the boiler building on the north side to install the SCR. Therefore the new SCR will need to be constructed at an elevation above grade level.
- <u>Construction Issues</u> Unit 2 abandoned dry stack and main auxiliary transformer on the north side outside the boiler building.
 - Demolition and relocation of main auxiliary transformer of Unit 2.
 - Demolition of existing pre-dust collectors.
 - SCR will need to be constructed on a dance floor.

Pollutant: SO₂

Feasible Control Options:

• <u>No new SO₂ control technology is required</u>. The unit is currently equipped with a shared/common wet FGD technology that can meet future target SO₂ emissions level of 0.25 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Particulate (PM)

Feasible Control Options:

- Compact Hybrid Particulate Collector (COHPAC[™]).
- Pulse Jet Fabric Filter (PJFF)

Special Considerations:

- COHPAC may be able to achieve the new PM compliance limit of 0.03 lb/MBtu but not a long term solution for PM emissions less than 0.03 lb/MBtu.
- A full-size PJFF can consistently achieve PM emissions of less than 0.03 lb/MBtu on a continuous basis and has a capability to expand to meet the PM emissions lower than 0.03 lb/MBtu. Hence a full size PJFF is the most feasible and expandable control technology considered for PM reduction including future requirements.
- New booster and/or ID fan installation as needed.
- Existing ESP to be kept for additional PM filtration.
- <u>Location</u>: A new PJFF for Unit 2 will be located downstream of the ductwork exiting the ID fans of Unit 2 and upstream of new booster fans for Unit 2.
- <u>Real Estate Constraints</u> No space is available at grade level to install the new PJFF. Therefore the new PJFF will need to be constructed at an elevation above grade level, probably above the existing ESP with Booster fan or ID fan upgrades.
- <u>Construction Issues</u> Heavy foundations and supports.
 - New PJFF will be installed at a higher elevation above the existing ESP, needing heavy support columns that need to be landing outside the existing ESP foundations.

Pollutant: CO

Feasible Control Options:

- <u>No feasible and proven technology is available for this type and size of unit</u> to meet the 0.02 lb/MBtu emission limit.
- Note: Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu.

Plant: *E.W. Brown* Unit: 2

Pollutant: Mercury (Hg)

Feasible Control Options:

• Powdered Activated Carbon (PAC) Injection in conjunction with new full size PJFF can meet the new Hg compliance limit of 1 x 10⁻⁶ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

- The existing cold-side dry ESP will not be capable of removing 90% mercury with PAC injection and hence not recommended for cost considerations.
- Full size PJFF for Unit 2.
- PAC to be injected downstream of the existing ESP but upstream of new full size PJFF for Unit 2.

Pollutant: Hydrogen Chloride (HCl)

Feasible Control Options:

• <u>No new control technology is required</u> as the unit is currently meeting target emission level of 0.002 lb/MBtu HCL emissions with an existing Wet FGD.

Pollutant: Dioxin/Furan

Feasible Control Options:

• <u>PAC injection with new PJFF considered for mercury control</u> can meet the dioxin/furan compliance limit of 15 x 10⁻¹⁸ lb/MBtu or lower on a continuous basis and hence is the most feasible control technology.

Special Considerations:

• Dioxin and Furan removal will be a co-benefit with targeted mercury emissions removal and additional PAC consumption beyond mercury removal will be required.

Plant: *E.W. Brown* Unit: 3

The following AQC control technologies comprise the recommended technologies to control unit pollutant emissions to the targeted emission levels. As summarized on the following pages, the recommended technologies are based on the known technology limitations, future expanding capability, arrangement or site fatal flaws, constructability challenges, unit off-line schedule requirements or site-specific considerations developed or understood during the field work conducted during the week of May 10th, as well as information provided by E.ON. B&V will analyze costs for one selected/approved technology for each applicable pollutant.

	AQC Technology Recommendation	
Pollutant	AQC Equipment	E.ON Approval to Cost*
NO _x	<u>No new technology is required</u> . The new SCR which will be constructed in 2012 can meet the new NO_x compliance limit of 0.11 lb/MBtu	□ Yes □ No
SO ₂	No new technology is required . Existing common WFGD to units 1, 2 and 3 can meet the new SO ₂ compliance limit of 0.25 lb/MBtu	□ Yes □ No
РМ	New full size Pulse Jet Fabric Filter (PJFF) is required to meet the new PM compliance limit of 0.03 lb/MBtu.	□ Yes □ No
CO	No feasible and proven technology is available. Existing combustion controls cannot meet the new CO compliance limit of 0.02 lb/MBtu (Please confirm CO emission level is 0.02 and not 0.20 lb/MBtu)	□ Yes □ No
Hg	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new Hg compliance limit of 1 x 10^{-6} lb/MBtu.	□ Yes □ No
HCI	No new technology selected . Existing common WFGD to units 1, 2 and 3 can meet the new HCl compliance limit of 0.002 lb/MBtu	□ Yes □ No
Dioxin/Furan	<u>New Powdered Activated Carbon (PAC) Injection</u> required with new full size Pulse Jet Fabric Filter (PJFF) to meet the new dioxin/furan compliance limit of 15×10^{-18} lb/MBtu.	□ Yes □ No