REGEVED

July 30,2008
AUG: 042008
PUBLIC SERVICE
COMMISSION
Kentucky Public Service Commission
P.O. Box 615

211 Sower Blvd.
Frankfort, KY 40602-0615

RE: KY-00-0818A OAKLAND

Dear Public Service Commission;

$$
2008-260
$$

Please accept the attached application for a Certificate of Public Convenience and Necessity for a cellular communications tower at 2511 Oakland Ridge, Olive Hill, KY 41164

Please find enclosed, one(1) original and five (5) copies of the entire application. Should you have any
questions, please feel free to contact me at (231) 929-4555, ext. 28 or via email at syagle@cellere.us.
sincerely,
Sandidee vagle
Title and Leasing specialist

> COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION
In the Matter of:
Application of Central States Tower Holdings, LLC for Issuance
Case No. 2008-00260
of a Certificate of Public, Convenience and Necessity to Construc
a Cell Site (KY-00-0818A OAKLAND) in Olive Hill Kentucky
APPLICATION FOR A CERTIFICATE OF
PUBLIC CONVENIENCE AND NECESSITY

Cellere, LLC ("Cellere") as agent for Central States Tower Holdings, LLC ("Central States"), pursuant to KRS 278.020 and 278.040, hereby submits this application for a certificate of public convenience and necessity to construct a cell site to be known as the KY-00-0818A OAKLAND ("OAKLAND") cell site in Olive Hill, Kentucky, namely the county of Carter, Kentucky.

1. As required by 807 KAR $5: 001$ Sections $8(1)$ and (3), and 807 KAR $5: 063$, Cellere states that it is a Michigan limited liability company who is acting as agent for Central States Tower Holdings, LLC, who is a Delaware limited liability company and whose full name and address are: Cellere, LLC, 4110 Copper Ridge Drive, Suite 204, Traverse City, Michigan 49684. Central States Tower Holdings, LLC, whose address is: 323 S. Hale Street, Suite \#100, Wheaton, IL 60187.
2. Pursuant to 807 KAR $\S 1(1)(b)$, a copy of the applicant's applications to and approval from the Federal Aviation Administration and Kentucky Airport Zoning Commission are submitted as Exhibit "A".
3. Pursuant to 807 KAR 5:063 $\S 1(1)(\mathrm{d})$, applicant is submitting as Exhibit " B ", a geotechnical investigation report, signed and sealed by a professional engineer registered in Kentucky, that includes boring logs and foundation design recommendations; and as Exhibit " E ", a map that outlines the finding as to the susceptibility of the area surrounding the proposed site to flood hazard.
4. Pursuant to 807 KAR $5: 063 \S 1(1)(\mathrm{e})$, clear directions from the county seat to the proposed site, including highway numbers and street names, if applicable, with the telephone number of the person who prepared the directions are submitted as Exhibit "C".
5. Pursuant to 807 KAR $\S 1(1)(f)$, a copy of the lease for the property on which the cell tower is proposed to be located is submitted as Exhibit "D".
6. Pursuant to 807 KAR $\S 1(1) / \mathrm{g})$, experienced personnel will manage and operate the OAKLAND cell site. The Vice President of Construction for Cellere, LLC., Chuck Norris, is ultimately responsible for all construction of the cell tower. Mr. Norris has over 15 years of experience. Arthur J. Krueger, Licensed Professional Engineer of Wilcox Professional Services, is responsible for the design specifications of the proposed tower (identified in Exhibit "B"). S.M. Naeem Akhter, Licensed Professional Engineer of Glenmartin, is responsible for the foundation design of the proposed tower (identified in Exhibit " B "). Central States Tower Holdings, LLC, is responsible for the operations of the tower, once constructed. Central States operates cellular communications towers in 19 states with the principals having $35+$ years of experience.
7. Pursuant to 807 KAR 5:063 § 1(1)(h), a site development plan or survey, signed and sealed by a professional engineer registered in Kentucky, that shows the proposed location of the tower and all easements and existing structures within 500 feet of the proposed site on the property on which the tower will be located, and all easements and existing structures within 200 feet of the access drive, including the intersection with the public street system, is submitted as Exhibit "E"
8. Pursuant to 807 KAR 5:063 $\S 1$ (1)(i), a vertical profile sketch of the tower, signed and sealed by a professional engineer registered in Kentucky, indicating the height of the tower and the placement of all antennae is submitted as Exhibit "B".
9. Pursuant to 807 KAR $5: 063 \S 1(1)(j)$, the tower and foundation design plans and a description of the standard according to which the tower was designed, signed and sealed by a professional engineer registered in Kentucky, is submitted as Exhibit " B ".
10. Pursuant to 807 KAR 5:063 $\S 1(1((k)$, a map, drawn to a scale no less than one (1) inch equals 200 feet, that identifies every structure and every owner of real estate within 500 feet of the proposed tower, is submitted as Exhibit "E".
11. Pursuant to 807 KAR 5:063 $\$ 1(1)(I)$, applicant hereby affirms that every person who owns property within 500 feet of the proposed tower has been: (i) notified by certified mail, return receipt requested, of the proposed construction, (ii) given the commission docket number under which the applications will be processed; and (iii) informed of his or her right to request intervention.
12. Pursuant to KRS 278.665 (2), applicant hereby affirms that every person who, according to the records of the property valuation administrator, owns property contiguous to the property where the proposed cellular tower will be located has been; (i) notified by certified mail, return receipt requested, of the proposed construction; (ii) given the commission docket number under which the application will be processed; and (iii) informed of his or her right to request intervention.
13. Pursuant to 807 KAR $5: 063 \S 1(1)(\mathrm{m})$, a list of the property owners who received the notice together with copies of the certified letters sent to listed property owners, is submitted as Exhibit " F ".
14. Pursuant to 807 KAR 5:063 $\S 1(1)(n)$, applicant hereby affirms that the Office of Carter County Judge Executive has been: (i) notified by certified mail, return receipt requested, of the proposed construction; (ii) given the commission docket number under which the application will be processed; and (iii) informed of its right to request intervention
15. Pursuant to 807 KAR 5:063 $\S 1(1)(0)$, a copy of the notice send to the Carter County Judge Executive is submitted as Exhibit " G ".
16. Pursuant to 807 KAR $5: 063 \S 1(1)(p)$, applicant hereby affirms that (i) two written notices meeting subsection two \{2\} of this section have been posted, one in a visible location on the proposed site and one on the nearest public road; and (ii) the notices shall remain posted for at least two weeks after the application has been filed.
17. Pursuant to 807 KAR 5:063 § 1(2)(a), applicant affirms that:
(a) A written notice, of durable material at least two (2) feet by four (4) feet in size, stating that "Central States Tower Holdings, LLC proposes to construct a telecommunications tower on this site", including the addresses and telephone numbers of the applicant and the Kentucky Public Service Commission, has been posted and shall remain in a visible location on the proposed site until final disposition of the application; and
(b) A written notice, of durable material at least two (2) feet by four (4) feet in size, stating that "Central States Tower Holdings, LLC, proposes to construct a telecommunications tower near this site", including the addresses and telephone numbers of the applicant and the Kentucky Public Service Commission, has been posted on the public road nearest the site.

A Copy of each sign is attached as Exhibit " H ".

18. Pursuant to 807 KAR $5: 063 \S 1(1)(\mathrm{q})$, a statement that notice of the location of the proposed construction has been published in a newspaper of general circulation in the county in which the construction is proposed, a copy of which is submitted as Exhibit " 1 ".
19. Pursuant to 807 KAR $5: 063 \S 1(1)(r)$, the cell site, which has been selected, is in a relatively undeveloped area in Olive Hill, in Carter County, Kentucky.
20. Pursuant to 807 KAR $5: 063 \S 1(1)($ s), Central States, LLC, has considered the likely effects of the installation on nearby land uses and values and has concluded that there is no more suitable location reasonably available from which adequate service to the area can be provided, and that there is no reasonably available opportunity to co-locate. Central States, LLC, has attempted to co-locate on towers
designed to host multiple wireless service provider's facilities or existing structures, such as a
telecommunications tower, or another suitable structure capable of supporting the utility's facilities.
21. Pursuant to 807 KAR $5: 063 \S 1(1)(\mathrm{t})$, a map of the area in which the tower is proposed to be located,
that is drawn to scale and that clearly depicts the search area in which a site should, pursuant to radio frequency requirements, be located is submitted as Exhibit " J ".
22. Pursuant to KRS 100.987 (2 (/a), a grid map, that is drawn to scale, that shows the location of all existing cellular antenna towers and that indicates the general position of proposed construction sites for new cellular antenna towers is submitted as Exhibit " K ".
23. No reasonably available telecommunications tower, or other suitable structure capable of supporting the cellular facilities of Central States, LLC and which would provide adequate service to the area exists.
24. Correspondence and communication with regard to this application should be addressed to:

Benjamin Meredith
Cellere, LLC
4110 Copper Ridge Drive, Suite 204
Traverse City, MI 49684
(231) $929-4555$
(fax) 929-0099
bmeredith@cellere.u

WHEREFORE, Cellere, LLC , as agent for Central States Tower Holdings, LLC, requests the Commission to enter and order:

1. Granting a certificate of public convenience and necessity to construct the OAKLAND cell site; and
2. Granting all other relief as appropriate

Respectfully submitted,
\square
$\mathrm{B}_{\text {Benjamin Meredith }}$
Cellere, LLC
4110 Copper Ridge Drive, Suite 204
Traverse City, MI 49684
(231) 929-4555
(fax) 929-0099
bmeredith@cellere.us

Index to Exhibits

EXH. A FAA Application and Determination; Kentucky Airport Zoning Commission Application and Approval

EXH. B Geotechnical Report; Survey; Tower Design; Tower Foundation Design
EXH. C. Directions to Site from County Sea
EXH. D Memorandum of Lease
EXH. E Site Plan-500' Radius Map with Flood Plain Information
EXH. F Affidavit of Notification of Adjacent Property Owners and Owners within 500 feet
EXH. G Certified Letter to Judge Executive
EXH. H Public Notice Signs (photos)
EXH. I Affidavit of Publication of Public Notice
EXH. J Map of Search Area
EXH. K Map of Existing and Proposed Towers

EXHIBIT A

FAA Application and Determination
And
Kentucky Airport Zoning Commission
Application and Approval

Federal Aviation Administration
Air Traffic Airspace Branch, ASW-520
2601 Meacham Blvd.
Fort Worth, TX 76137-0520

Issued Date: 05/19/2008
Brian Meier
Central States Tower Holdings, LLC
323 South Hale Street Suite 100
Wheaton, IL 60187

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C. Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Tower KY-00-0818A OAKLAND
Location:	Olive Hill, KY
Latitude:	$38-24-01.10 \mathrm{~N}$ NAD 83
Longitude:	$83-09-38.02 \mathrm{~W}$
Heights:	300 feet above ground level (AGL)
	1276 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is marked and/or lighted in accordance with FAA Advisory circular 70/7460-1 K Change 2, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(M-Dual), \& 12 .

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be completed and returned to this office any time the project is abandoned or:

At least 10 days prior to start of construction (7460-2, Part I)

Within 5 days after the construction reaches its greatest height (7460-2, Part II)See attachment for additional condition(s) or information.
This determination expires on 11/19/2009 unless:
a) extended, revised or terminated by the issuing office
(b) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE POSTMARKED OR DELIVERED TO THIS OFFICE AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body

A copy of this determination will be forwarded to the Federal Communications Commission if the structure is subject to their licensing authority

If we can be of further assistance, please contact our office at (817) 838-1994. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2008-ASO-1845-OE.

Signature Control No: 569641-102132084

Linda Steele
Technician
Attachment(s)
Additional Information

A separate study is required for any transmitting frequency(ies) on this antenna tower

Notice of Proposed Construction or Alteration - Off Airport

\qquad
Details for Case : KY-00-0818A OAKLAND
Show Project Summary

Case Status			
2008-ASO-1845-OE		Date Accepted: 04/02/2008	
Status: Accepted		Date Determined: Letters: None	
Construction / Alteration Information		Structure Summary	
Notice of:	Construction	Strucure Type: Antenna Tower	
Duration:	Permanent	Structure Name: Kr-00-0818A OAKLIAND	
${ }^{\text {if }}$ Temporary :	Months: Days:	FCC Number:	
Work Schedule - Start:		Prior ASN:	
Work Schedule - End:			
State filing:	Not fled with State		
Structure Details		Common Frequency Bands	
Latitude:		Low Frea High rea Frea Unit ERP	ERP Unit
Longitude:	$83^{\circ} 9^{\prime \prime} 38.02^{\prime \prime} \mathrm{W}$	Specific Frequencies	
Horizontal Datum:	NAD83		
Site Elevation (SE):	976 (nearest foot)		
Structure Height (AGL):	300 (nearest foot)		
Marking/Lighting:	Dual-red and medium intensity		
other :			
Nearest City:	Olive Hill		
Nearest State:	Kentucky		
Description of Location	Vacant field		
Description of Proposal	Tower only		

Steven L. Beshear

Governor

KENTUCKY AIRPORT ZONING COMMISSION
 90 Airport Road
 502-564-4480

Frankfort, Kentucky 40601
http://transportation.ky.gov/aviation/kyzoning.ptax:
$502-502-564-7953$ 502-564-4480

July 23, 2008
APPROVAL OF APPLICATION
APPLICANT:
Central States Tower, Inc.
323 South Hale Street, Suite 100
Wheaton, IL 60187
SUBJECT: AS-022-2KY5-08-087

STRUCTURE:	Antenna Tower
LOCATION:	Olive Hill, KY
COORDINATES:	$38-24-01.1$ N $/ 83-09-38.02 \mathrm{~W}$
HEIGHT:	300^{\prime} AGL/1276'AMSL

300'AGL 1276^{\prime} AMSL
The Kentucky Airport Zoning Commission has approved your application for a permit to construct 300'AGL $/ 1276^{\prime}$ AMSL Antenna Tower near Olive Hill KY $38-24-01.1 \mathrm{~N}$ / $83-09$ 38.02 W .

This permit is valid for a period of 18 months from its date of issuance. If construction is not completed within this period, this permit shall lapse and be void, and no work shall be performed without a new application being approved by the commission.

A copy of the approved application is enclosed for your files.
M-Dual Obstruction lighting is required

Kentuchyt

An Equal Opportunity Employer M/F/D

KENTUCKY AIRPORT ZONING COMMISSION
90 Airport Road
502-564-4480 Fankfor, Kentucky 40601 fax: 502-564-795 502-564-4480
mtp://ran
CONSTRUCTION/ALTERATION STATUS REPORT

July 23, 2008
AERONAUTICAL STUDY NUMBER: AS-022-2KY5-08-087
Central States Tower, Inc
Central States Tower, Inc
323 South Hale Street, Suite 100
Wheaton, IL 60187
This concerns the permit which was issued to you by the Kentucky Airport Zoning Commission on July 10 , 2008. This permit is valid for a period of 18 months from the date of issuance. If construction is not completed within this period, this permit shall lapse and be void, and no work shall be performed without a new application being approved by the commission. When appropinate, please indicae Airport Zoning Commission, 90 Airport Road, Building 400 Frankfort, KY 40601. (502) 564-4480

STRUCTURE:
COORDINATES
Olive Hill, KY
38-24-01.1 N / 83-09-38.02 W
300'AGL/1276'AMSL
CONSTRUCTION/ALTERATION STATUS

1. The project () is abandoned. () is not abandoned
2. Construction status is as follows

Sructure reached its grealest height of \qquad f. AGL

Date construction was completed. \qquad
Type of obstruction marking/painting
Type of obstruction lighting. \qquad
As built coordinates.
Miscellaneous Information: \qquad

DATE \qquad
SIGNATURE/TITLE

An Equal Opportunity Employer M/F/D

April 2, 2008

Administrator
Kentucky Airport Zoning Commission
Department of Aviation
200 Metro Street
Frankfort, KY 40622

RE: Form TC 56-50E - Application for New Construction

Hello,
Enclosed please find Form TC-56-50-E for your review and approval for the construction of a new 300 telecommunications tower proposed in Olive Hill, Carter County, Kentucky. I have enclosed a copy of the FAA Form 7460-1, a quad map showing the location of the proposed tower and a copy of the 1A Certification.

If you have any questions or require any additional information please don't hesitate to contact our office

Thank you,

Joann Wendels
Cellere, Agent for Central States Tower, Inc.

Notice of Proposed Construction or Alteration - Off Airport
Project Name: CENTR-000091824-0B Sponsor: Central States Tower Holdings, LIC \quad AC
Details for Case : KY-00-0818A OAKLAND
Show Project Summary

Case Status			
$\begin{array}{ll}\text { ASN: } & \text { 2008-ASO--1645-OE } \\ \text { Status: }\end{array}$		Date Accepted:	04/02/2008
		Date Determined	
		Letters:	None
Construction / Alteration Information		Structure Summary	
Notice of:	Construction	Strueture Type:	Antenna Tower
Duration:	Permanent	Structure Name:	KY-00-0818A OAKLAND
if Temporary :	Morths: Days:	Fcc Number:	
Work Schedule-5tart:		Prior ASN:	
Work Schedule - End:			
State Filing:	Not filed with State		
Structure Details		Common Frequ	ncy Bands
Latitude:	$38^{\circ} 24^{\prime} 1.11^{\prime \prime} \mathrm{N}$	Low Frea	Thifeq Freq Unit Enp
Longitude:	$88^{80} 9^{\prime \prime} 38.02^{\prime \prime} \mathrm{W}$	Specific Freque	cles
Horizantal Datum:	nadB		
Site Elevation (SE):	976 (nearest foot)		
Structure Height (AGL):	300 (nearest foot)		
Marthing/Lighting:	Dual-red and medium Intensty		
Other :			
Nearest City:	Olve HIII		
Nearest State:	kentucky		
Description of Location:	Vacant fild		
Description of Proposal:	Tower only		

EXHIBIT B

Geotechnical Report; Survey; Tower Design Tower Foundation Design

SOIL BORING AND ROCK CORING INVESTIGATION REPORT

CST SITE NO. KY-00-0818A
OAKLAND
Olive Hill, Carter County, Kentucky

Prepared for:
CST Holdings, LLC
323 South Hale Street, Suite 100
Wheaton, Illinois 60187
Prepared by:
Wilcox Professional Services, LLC
One Madison Avenue
Cadillac, MI 49601
Wilcox Project No. 25036.00004.09
Applied Geotechnical Services, Inc.
June 9, 2008
Wilcox

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1. INTRODUCTION
1.1 Project Description 1
1.2 Scope of Services
2. FIELD AND LABORATORY PROGRAM
2.1 Field Program
2.2 Laboratory Testing 4
2.3 Laboratory Soil Box Resistivity Test 4
3. SITE AND SUBSURFACE CONDITIONS
3.1 Site Conditions 6
3.2 Soil and Rock Conditions 6
3.3 Groundwater Level Observations 7
4. RESULTS \& RECOMMENDATIONS
4.1 Mat Foundation Recommendations 8
4.2 Engineered Fill Placement
4.3 General Comments 10

APPENDIX
distance of approximately 30 feet uphill and 30 feet downhill of the tower center;
B) Performing appropriate laboratory testing including visual engineering classification, natural moisture content, unconfined compressive strength estimates on representative cohesive samples, performing resistivity, pH , chloride, and sulfide testing of a composite soil sample obtained between depths of 1 to 10 feet; and
C) Preparing an engineering report providing our recommendations for the tower foundation design and construction. The written report includes recommendations regarding the allowable soil bearing capacity, estimated settlement, and construction considerations related to foundation construction.

The field drilling operations were performed by Triad Engineering, Inc. of Scott Depot, West Virginia with coordination by Wilcox Professional Services, LLC. The laboratory testing and engineering report preparation were performed under the direction and supervision of a registered professional engineer according to generally accepted standards and procedures in the practice of geotechnical engineering. If changes occur in the design, location, or concept of the project, the conclusions and recommendations contained in this report are not valid unless Wilcox Professional Services, LLC reviews the changes. Wilcox Professional Services, LLC will then provide any necessary changes in writing. Our conclusions and recommendations are based on the soil boring/rock coring performed by Triad Engineering, Inc. and project information provided by Cellere, Inc. Slope stability analyses for the proposed tower were beyond the scope of the present geotechnical investigation. We recommend an evaluation of the factor of safety of the proposed mat foundation with respect to global and sliding block failure mechanisms be performed prior to construction.

Central States Tower No. KY-00-0818A - Oakland
Wilcox Project No. 25036.00004.09

1. INTRODUCTION

We have completed the Soil Boring \& Rock Coring Investigation for the proposed Central States Tower Site No. KY-00-0818A - Oakland self-supporting lattice tower to be located in Olive Hill, Carter County, Kentucky. Cellere, Inc. retained Wilcox Professional Services, LLC to perform this investigation. Subsequently, Wilcox has retained Applied Geotechnical Services, Inc. for laboratory testing and assistance with preparing the engineering report. This report presents the results of the soil boring/rock coring investigation and our estimated soil and rock parameters to be used in the design of the tower foundation.

1.1 Project Description

We understand Central States Tower is planning to construct a 300 -foot high, selfsupporting lattice type tower at the site. The tower will have three legs on an equilateral triangle. We estimate the tower base width may be approximately 29 feet. At the time this investigation was completed, the tower loads were not yet available. Based on estimated tower loads for a multi-carrier co-locate site, we estimate the tower may impose a compression load per leg of approximately 510 kips, an uplift load per leg of approximately 435 kips , a total shear load of approximately 75 kips and a overturning moment of approximately 12,080 foot-kips.

We estimate the tower base plate elevation may be in the range of Elevation 971 to 973 feet.

1.2 Scope of Services

Our scope of services for this project is as follows.
A) Performing one soil boring at the center of the tower to auger refusal on bedrock, followed by NQ rock coring to a depth of 10 feet into the bedrock and performing soil borings extending to auger refusal on bedrock at a

Central States Tower No KY-00-0818A - Oakland
Wilcox Project No. 25036.00004 .09

EXECUTIVE SUMMARY, Page 2 of 2

We anticipate the use of a jack-hammer or similar rock excavation equipment may be necessary to level the base of the mat foundation on the limestone bedrock surface.

Several feet of cut and fill is anticipated to achieve finished grades within the proposed tower area. We recommend the subgrade soils be scarified and properly benched prio to placement of engineered fill to reduce the risk of a slip plane forming along the native soil-engineered fill surface

Do not consider this summary separate from the entire text of this report, with all the conclusions and qualifications mentioned herein. Details of our analysis and recommendations are discussed in the following sections and in the appendix of this report.

REPORT PREPARED BY
Applied Geotechnical Services, Inc.
\square
Jefferey T. Anagnostou, P.E., C.P.G
Project Consultant

REPORT REVIEWED BY:
Wilcox Professional Services, LLC

Arthur J. Krueger, P.E.
Project Manager

EXECUTIVE SUMMARY

The driller did not report encountering topsoil at the site. At the locations of Borings 1 and 3 , approximately 2 to 3 feet of sandy clay was encountered, followed by weathered limestone. The driller reported auger refusal on apparent limestone at depths of 3 feet and $41 / 2$ feet, respectively. At the location of Boring 2, performed at the center of towe location, sandy clays were encountered to a depth of approximately 17 feet, followed by weathered limestone to a depth of 20 feet. The driller reported auger refusal on
 limestone at a depth of 20 feet. NQ rock coring was then performed from approximate the existing ground surface encountered limestone that extended to the explored depth of 30 feet

Borings 1 and 3 were reported as dry both during drilling and upon completion of the boring. Boring 2 was also reported as dry during drilling. However, water was introduced into Boring 2 during the NQ rock coring operations. Therefore, the groundwater level was not obtained upon completion. Based on our review of the site topographic map and the available soil and rock core information, we estimate the prevailing groundwater level may be located below the explored depth of the soil/ rock core borings.

We understand Central States Tower is planning the construction of a 300 -foot self supporting tower at the site. At the time of our investigation, no information was available to us as to the tower manufacturer or loads. These loads vary considerably depending on the tower characteristics and the number of carriers. Estimated tower loads, based on our experience with similar towers, are presented in Section 1.1 of this report

We understand mat-and-pier or mat-type foundations are typically used for support of the self-supporting towers such as proposed for the site. Based on the subsurface conditions revealed by the soil and rock core borings, we concur with the use of either-mat-and-pier or mat foundations for support of the proposed tower. We estimate the mat foundation may be on the order of 30 to 35 square feet in plan area and be constructed at a depth of approximately 6 feet below the existing ground surface. Based on these conditions, we recommend the mat be designed for a presumptive maximum net allowable soil pressure of 6,000 pounds per square foot (psf) on the undisturbed hard sandy clay or weathered limestone
2. FIELD AND LABORATORY PROGRAM
2.1 Field Program

Cellere, Inc. selected the depth and location of the borings in consultation with Wilcox Professional Services, Inc. As shown on the Schematic Soil Boring Location Plan, a total of three (3) soil borings were performed for the project. The approximate ground surface elevation at the soil rock core boring locations were estimated based on the ground surface elevation contour lines shown on the Survey Plan prepared by HLG Engineering and Surveying, Inc. dated April 8, 2008 and are presented in Table 1

2. Table 1. Approximate Ground Surface Elevation at SoillRock Core Boring Locations	
Soil Boring No.	Approximate Ground Surface Elevation (ft)
B-1	$977+/-$
B-2	$975+/-$
B-3	$971+/-$

A truck mounted rotary drill rig was used to perform the soil boring. Standard split-spoon samplers were used to obtain the soil samples by the Standard Penetration Test (SPT) method in general conformance with ASTM Standard D1586. The number of blows required to drive the sampler 12 inches, after an initial seating of 6 inches, with a 140 pound hammer falling 30 inches is termed the Standard Penetration Resistance, N -value A graphical representation of the N-values is given on the boring logs appended to this report.

During the field operations, the drill crew maintained a log of the subsurface conditions, including changes in stratigraphy and observed groundwater levels. After completion of the drilling operations, the boreholes were backfilled with drill cuttings and bentonite crumbles.

2.2

The soil and rock samples were placed in sealed containers in the field and brought to the laboratory for testing and classification. A geotechnical engineer classified the samples in general conformance with the Unified Soil Classification System. The cored rock samples were classified by Triad Engineering, Inc

Laboratory testing of the soil samples included estimating the unconfined compressive strength of the cohesive split-spoon samples with a calibrated hand penetrometer. With a hand penetrometer, the unconfined compressive strength of a soil sample is estimated by measuring the resistance of the soil sample to the penetration of a small calibrated spring-loaded cylinder. The penetrometer can measure a maximum unconfined compressive strength of $41 / 2$ tons per square foot (tsf).

The cores were logged for core recovery and Rock Quality Designation (RQD) by a Triad Engineering, Inc. engineer. The RQD is one of the standard measurements of rock competence and is given by the percentage ratio of the total length of the recovered samples 4 inches or more in length to the total length of the core run. Sometimes, core lengths smaller than 4 inches may be included if they are judged to have been fractured during coring and handling.

We will hold the soil and rock core samples for 60 days from the date of this report. If you would like the samples, please contact us within this time frame.

2.3 Laboratory Soil Box Resistivity Test Results

Estimated earth resistivity values of the subsoil below the proposed development area were obtained by performing laboratory resistivity testing using the Miller Soil Box Resistivity instrument. The testing was performed on selected composite split-spoon

Central States Tower No. KY-00-0818A - Oakland
Wilcox Project No. 25036.00004.09
samples from Soil/Rock Core Borings B-1 through B-3. The composite samples were prepared by thoroughly mixing prior to placement in the soil box instrument. The following estimated earth resistivity values are presented based on the Miller Soil Box Resistivity test results and may be used with judgment in the design of the lightning protection grounding system:

Table 1. Miller Soil Box Resistivity Results			
Boring Numbers	Sample Numbers	Represented Depth Below Ground Surface (ft)	Resistivity (Ohm-feet)
B-1-B-3	S1-S4	1 to 10	65

3. SITE AND SUBSURFACE CONDITIONS

3.1 Site Conditions

The subject site is located at +/- 2511 Oakland Ridge in Olive Hill, Carter County Kentucky. Based on our review of the Survey Plan prepared by HLG Engineering and Surveying, Inc. dated April 8, 2008 and the Central States Tower site Candidate Package it appears the site is situated along the north side of a relatively gentle, wooded ridge sloping downwards towards the north. Within the proposed tower compound, the ground surface slopes downward at approximately $61 / 2$ units horizontal to 1 unit vertical. The ground surface elevations range from approximately Elevation 977 within the southeastern portion of the compound to Elevation 965 feet in the vicinity of the northwestern portion of the site.

3.2 Soil and Rock Conditions

The driller did not report encountering topsoil at the site. At the locations of Borings 1 and 3 , approximately 2 to 3 feet of sandy clay was encountered, followed by weathered limestone. The driller reported auger refusal on apparent limestone at depths of 3 feet and $41 / 2$ feet, respectively. At the location of Boring 2, performed at the center of tower location, sandy clays were encountered to a depth of approximately 17 feet, followed by weathered limestone to a depth of 20 feet. The driller reported auger refusal on limestone at a depth of 20 feet. NQ rock coring was then performed from approximate depths of 20 feet to 30 feet below the existing ground surface. The rock coring encountered limestone that extended to the explored depth of 30 feet

The sandy clays were stiff to hard with calibrated hand penetrometer unconfined compressive strengths of 1 to 4 tsf and natural moisture contents of approximately 22 to 29 percent. The limestone specimen obtained from the NQ rock coring possessed a recovery of 90 percent and an RQD value of 18 percent.

Central States Tower No KY-00-0818A - Oakland
Wilcox Project No 25036.0000409

The stratification depths shown on the soil boring log represent the soil and rock conditions at the boring location. Variations may occur at locations away from the boring Additionally, the stratigraphic lines represent the approximate boundary between soil and rock types; the transition may be more gradual than what is shown. The boring log was prepared on the basis of laboratory classification and testing as well as the field logs of the explored soils and bedrock.

The soil/rock core boring logs are presented in the appendix. The soil and rock profile described above is a generalized description of the conditions encountered at the boring ocation. Please consult the boring logs for more specific information

3.3 Groundwater Level Observations

Borings 1 and 3 were reported as dry both during drilling and upon completion of the boring. Boring 2 was also reported as dry during drilling. However, water was introducing into Boring 2 during the NQ rock coring operations. Therefore, the groundwater level was not obtained upon completion. Based on our review of the site topographic map and the available soil and rock core information, we estimate the prevailing groundwater level may be located below the explored depth of the soil/ rock core borings. Expect the prevailing groundwater level to vary due to changes in precipitation, evaporation, surface run-off, and other factors. The groundwater levels discussed herein and shown on the boring logs represent the conditions at the time of the measurements
4. RESULTS \& RECOMMENDATIONS

4.1 Mat Foundation Recommendations

We understand mat-and-pier or mat-type foundations are typically used for support of the self-supporting towers such as proposed for the site. Based on the subsurface conditions revealed by the soil and rock core borings, we concur with the use of either-mat-and-pier or mat foundations for support of the proposed tower. We estimate the mat foundation may be on the order of 30 to 35 square feet in plan area and be constructed at a depth of approximately 6 feet below the existing ground surface. Based on these conditions, we recommend the mat be designed for a presumptive maximum net allowable soil pressure of 6,000 pounds per square foot (psf) on the undisturbed hard sandy clay or weathered limestone. The mat foundation excavation must be properly sloped or shored in accordance with local, state, and federal trench safety requirements.

The mat foundation excavation can be backfilled with on-site excavated soils free of topsoil and other deleterious materials. All backfill should be constructed as engineered fill. We anticipate the on-site overburden will generally be sandy clay. Compaction equipment suitable for compacting cohesive materials should be used. Place the engineered fill in the mat foundation excavation in level lifts not exceeding 9 inches in loose thickness, and compact to a minimum of 95 percent of the maximum laboratory dry density as determined in accordance with ASTM Standard D-1557 (Modified Proctor). All engineered fill should be placed and compacted at or near the optimum moisture content. The moisture/density relations for the material to be used for engineered fill should be confirmed by a qualified geotechnical engineer prior to placement in the field.

Based on our experience with similar soils, we estimate 125 pounds per cubic foot (pcf) in-place moist density may result from the above compaction requirements.

Central States Tower No. KY-00-0818A - Oakland
Wilcox Project No. 25036.00004.09

We anticipate the use of a jack-hammer or similar equipment may be necessary to leve the base of the mat foundation. In addition, we recommend the subgrade below fill areas be benched as discussed in Section 4.2 of this report. Slope stability analyses for the proposed tower were beyond the scope of the present geotechnical investigation. We recommend an evaluation of the factor of safety of the proposed mat foundation with respect to global and sliding block failure mechanisms be performed prior to construction.

Once the tower loads are known, Wilcox Professional Services, LLC should be notified so we can re-evaluate our design recommendations in the light of the actual loads.

We recommend all foundation construction be performed under the supervision of a qualified geotechnical engineer. The appropriate type and number of field tests and observations should be performed to verify the foundation bearing material is suitable

4.2 Engineered Fill Placement

We anticipate several feet of cut and fill will be required to achieve finished grades within the tower compound area. To reduce the risk of a potential slip plane developing between the engineered fill and underlying subgrade soils, we recommend the subgrade surface be scarified and properly benched prior to placement of the engineered fill

Any fill beneath on-grade structures should be an approved, environmentally clean material. The fill should also be free of organic matter, frozen soil, clods, or other harmfu material. Spread the fill in level lifts, not exceeding 9 inches in loose thickness, and compact the soil to a minimum of 95 percent of the maximum dry density. Determine the maximum dry density according to ASTM Standard D1557 (Modified Proctor). All engineered fill should be placed at or near the optimum moisture content.

4.3 General Comments

The purpose of this report is to aid in the tower foundation. If changes occur in the design, location, or concept of the project, the recommendations contained in this report are not valid. The changes must be reviewed by WILCOX PROFESSIONAL SERVICES, LLC with the recommendations of this report modified or affirmed in writing by WILCOX PROFESSIONAL SERVICES, LLC.

We base the estimated soil and rock parameters presented in this report upon the data from the soil/rock core borings performed at the approximate locations shown on the Schematic Soil Boring/Rock Core Location Plan. This report does not reflect variations that may occur away from the boring location. The nature and extent of any such variations may not become clear until the time of construction. If significant variations then become evident, it may be necessary for us to re-evaluate our report recommendations.

We recommend WILCOX PROFESSIONAL SERVICES, LLC be given the opportunity to review the final design plans and specifications as they relate to the recommendations presented in this report. The review is necessary to verify that the report conclusions and recommendations have been interpreted according to our intent and are properly incorporated into the design. Further, the review will verify that subsequent changes to the project have not affected our recommendations. Without this review, we cannot be held responsible for misinterpretation of our data, analysis, and/or our recommendations or how these are incorporated in the final design.

We also recommend a qualified geotechnical engineer supervise all geotechnical related work, including foundation construction, subgrade preparation, and engineered fil placement. The geotechnical engineer should perform the appropriate testing to confirm the geotechnical conditions given in the report are found during construction.

The contract specifications should include the following:

The contractor will, upon becoming aware of subsurface or latent physical conditions differing from those disclosed by the original soil investigation work, promptly notify the owner verbally to permit verification of the conditions, and in writing, as to the nature of the differing conditions. No claim by the contractor for any conditions differing from those anticipated in the plans and specifications and disclosed by the soil studies will be allowed unless the contractor has so notified the owner, verbally and in writing, as required above, of such differing subsurface conditions."

APPENDIX

1. SCHEMATIC SOILIROCK CORE LOCATION PLAN
2. GENERAL NOTES
3. SOIL/ROCK CORE BORING LOGS (B-1 to B-3)
4. UNIFIED SOIL CLASSIFICATION SYSTEM

GENERAL NOTES

Drilling \& Sampling Symbols

SS - Split Spoon ($1^{3} / \mathrm{s}^{1}$ I.D., $2^{\prime \prime}$ O.D., except where
noted
ST - Shelby Tube (3^{*} O.D., except where noted)
PA - Power Auger
PS - Piston Sample (3 " diameter)
WB - Wash Boring
WS - Wash Sampl

- Wash Sample

Standard Penetration Test " N " Value - Blows per foot after an initial 6 -inch seating of a 140 -pound hammer falling 30 inches on a 2 -inch O.D. split spoon, except where noted.

Water Level Measurement Notation

First- When noted during drilling or sampling process.
Completion- A fter all drilling tools are removed from borehole.
HR- Number of hours after completion. N/R- Not recorded.
Dry- \quad No measurable water level found in borehole.

HA - Hand Auger Boring
BS - Bag Sample
RC - Rock Core with diamond bit
NX size, except where noted
RB- Roller Bit
N/A - Not applicable or available
\longrightarrow Sit

$$
\begin{array}{ll}
\text { Boulders- } & \text { Greater than } 6^{\prime \prime}(152 \mathrm{~mm}) \\
\text { Cobbles - } & 3^{\prime \prime} \text { to } 6^{"}(76 \text { to } 152 \mathrm{~mm}) \\
\text { Gravel - } & \text { Coarse: } 1 / 4 \text { to } 3 "(19 \mathrm{~m}) 76 \mathrm{~mm}) \\
& \text { Fine: } \text { No. to to } 3 / 4(4.75 \text { to } 19 \mathrm{~mm}) \\
\text { Sand - } & \text { Coarse: } \text { No. } 10 \text { to No. } 4(2 \text { to } 4.75 \mathrm{~mm}) \\
& \text { Medium: } \text { No. } 40 \text { to No. } 10(.425 \text { to } 2 \mathrm{~mm}) \\
& \text { Fine: No. } 200 \text { to No. } 40(.074 \mathrm{~mm} \text { to } \\
& .425 \mathrm{~mm}) \\
\text { Silt - } & \text { Minus No. } 200(.005 \mathrm{~mm} \text { to } .074 \mathrm{~mm}) \\
\text { Clay - } & \text { Less than } .005 \mathrm{~mm}
\end{array}
$$

Water levels indicated on the boring logs are the levels measured in the boring at the time indicated. The accurate determination of groundwater levels may not be possible with short term observations, especially in impervious soils. The level shown may fluctuate throughout the year with variations in precipitation, evaporation, runoff, and other hydrogeologic features.

CLASSIFICATION

	Cohesionless Soil
Relative Density " N " Value (Blows/ft)	
Very Loose	0 to 4
Loose	5 to 9
Medium Dense	10 to 29
Dense	30 to 49
Very Dense	50 to 79
Extremely Dense	Over 8

Soil Constituents
"Trace"
"Trace to Some"
"And"
Less than 10%

Less
10% to 19%
20% to 34%
35% to 50%

Cohesive Soil

Geea than 4
If clay content is sufficient so that clay dominates soil properties, then clay becomes the primary noun with other major soil constituent as modifier, i.e. silty clay Other minor soil constituents may be added according to estimates of soil constituents present, i.e. silty clay trace to some sand, trace gravel.
AGS, Inc.
15798 Riverside, Livonia, M1 48154
Tel/Fax: (734) 432-2631

Unified Soil Classification

July 29, 2008

An ISO 9001:2000 Certified Company

One Madison Ave
Cadillac, M149601 Cadillac, M1 49601
$231-775.755$
Find Fax: 231 -775-3135
www.wilcox.us

Built on Quality
Stinuously improving our
Hality of service to meet
and exceed our
and exceed our
clients expectations
Mr. Brian Meier
CST Holdings, LLC
323 South Hale Street, Suite 100
Wheaton, Illinois 60187

Re: Soil Boring \& Rock Coring Investigation Central States Tower Site No. KY-00-0818A - Oakland /- 2511 Oakland Ridge Olive Hill, Carter County, Kentucky Oive Hill, Carter County, Kentucky
Wroject No. 25036.00004.09

Dear Mr. Meie

We have completed the Soil Boring \& Rock Coring Investigation for the proposed Central States Tower, Inc. 300-foot self support tower in Olive Hill, Carter County Kentucky. This report presents the results of our soil boring/rock coring investigation and estimated soil and rock parameters to be used as a guideline in the design of the tower foundations.

This letter also presents the results of the analytical testing for the pH , chloride and sulfide in the soil samples. The pH , Chloride, and sulfide analytical testing was performed on a composite sample formed by mixing portions of split spoon samples S-1 through S-4 from Borings 1 through 3. The composite sample was prepared by thoroughly mixing prior to testing. The pH testing was performed by AGS using a Cole-Parmer Model 05985-80 Digi-Sense pH meter. Chloride and sulfide analytical testing was performed by EQL Laboratories, inc. of Sterling Heights, Michigan. The test results indicate the soil sample possessed a pH of 7.3 a chloride content of 38 parts per million (ppm) and a sulfide content below the laboratory detection level. A copy of the test results is appended to this letter.

We appreciate the opportunity to assist you and the design team on this project. there are any questions, please do not hesitate to contact me at 231-775-7755

Respectfully,

WILCOX PROFESSIONAL SERVICES, LLC

Enclosure

described of toliows.

 Thence, beering South osilior East, a distonce of 208,38 leet to o poin Thence. bearing Soulh $12^{\prime} 5^{\prime} 144^{\circ}$ West, a distonce ol 172.90 teet to a point:
 Thence, beoring 5oulh $53299^{\prime 2}$. Eost, o distance of 318996 leet to o point
 Thence, berring South $288^{4} 4^{\prime} 39^{\circ}$ Eost. o distonce of 279.92 leel to o point Thence, beoring Soulh $4727^{2} 55^{*}$ Esosi, a dislance of 27054 leel to o poin Thence, bering Soulth $44^{13} 3^{\circ} 56^{\circ}$ East, o distance of 21.1 .37 leet to a point
 Thence, beoring Soulh $7604^{\prime 244^{4}}$ Esos. a disisonce of 105.40 feel to a point Thence, beering South $66^{\circ 50^{\prime}} 20^{\circ}$ East. a cistance of Isi.04 leet to a point
 Thence, beering North $66^{\circ} 2^{2} 30^{\circ}$ Esst, o dislonece of 107.92 teet to o point

 166.95 teel, olong said orc lor a disitance of 172.34 teel to a point: Thence, beaing South $6622^{2} 30^{\circ}$ West. o distunce of 107.92 feel to o point:

hence, bearing North $66^{\circ} 50^{\circ} 20^{\circ}$ West, a distonce of 129.02 feet 100 point:
Thence, bering North $76.0 \mathrm{c}^{\prime} 2^{\circ}$ " west, 9 o distance of 106.84 Ieet to a poinl:

 Hence, beering North 47275:- West, o distance of 27475 leet to a point; Thence. beoring North $28.44^{\prime} 39^{-}$West. a distonce of 28.25 teel to a points Thence, beering Norih $4125^{6} 14^{\circ}$ West, o distance of 170.75 teet to o point: thence, beoring North $5322^{9} 12^{*}$ West, o distonce of 316.32 teet to a point
 1.86 teet, olong soid orc lor o distonce of 329.99 leet 100 point: hence, berring North 03130r-west, a isistonce of 204.85 leet to o point
 Thence, beering North $5005^{\prime 5} 52^{2}$ Eost, a distonce of 10243 teet to a point:

 . Berings ore obesed on The Nor This tegal descripion was prepered based on o survey under the supervision of Anthony
 max enginebring, ulc 9000 Sw FREEWAY, Sle \# 410 Houston. Texos 77074 Phone (713) 773-252
Fox (713) 773-2558 SUTE 100
WHEATON, 12.60187 SITE NO.: KY-00-0B18A SITE ADDRESS: 251 OAKLAND RIDGE
OLNE HIL, KENTUCKY 41154

- plan prepared ex -	
HLG, ENGINE	NG AND SURVEYNG, INC.
$\frac{A b}{a b}$	705-F LAKEVIEW PLAZA BLVD. WORTHINGONE OH 43085 (514) B41-0053 (FHNE) (614) B41-0170 (FAX)

(cst))

SITE NO. KY-00-0818A
SITE NAME, OAKLAND

at\&t

AT\&T Site No WV308A
AT\&T Site Namer CST

Thence of o right ongle, beering South $2955^{\prime} 00^{-5}$ Est, odistance ol 25.00 teet to o Thence ot oright ongle, beering Noth $6006^{\prime} 52^{*}$ Eost, a distonce of 25.00 teet to o
point; Thence of o right ongle, beoring South $2955^{\circ} 00^{\circ}$ Eoss. o distance of 25.00 reet to a
point; Thence of a right ongle, beering South 5006 '52" West, a distance of 152.43 leet to o
point;

Thence, beering South 0313'01" Eost. o distonce of 208.38 feet to o point: Thence, beering South $125{ }^{2} 144^{\circ}$ West, a distonce of 172.90 teet to a point:
 ,
Thence, bearing Soulh 53291^{12} Eost, o distonce of 318.96 teet to o point Thence, beering South $4126^{\prime} 4^{\circ}$ Eost, a distonce of 176.17 leet to 0 point: Thence, beering South $288^{\prime 4} 33^{\circ}$ Esst, a distonce of 279.92 teel to a point; Thence, beering South $4727^{\prime 5} 5^{1}$ Esst, a distonce of 270.64 leet to a point; Thence, beering South $443^{\prime} 51^{\circ}$ East, a distance of 21.137 teet to a point: Thence, becring Soulh $507^{\circ} 8^{\circ} 0^{-E}$ East, a distance of 199.54 teet to o point; Thence, bearing South $7604^{\circ 24} 4^{\circ}$ East, o distonce of 105,40 leet to 0 point: Thence, bering Soulh $6650^{\circ} 20^{\circ}$ Esst. o distonce of 131.04 teet to o point:

 Thence, beoring Nooth $74077^{\circ} 5^{\circ}$ west. a distance of 219.65 teet to a point;
 Thence. beering Soulh $666^{2} 2^{\prime 3} 0^{\circ}$ West, o distonce of 107.92 teet to a pon

Thence, beoring North $66^{\prime 5} 50^{\prime 20}$ West, a distance of 129.02 leet to a point Thence, becring Nooth 7604^{244} West, a distance of 106.84 leel to a point Thence, beoring North 6078"ol" west, a distonce of 206.27 teet to a point 4.322^{*} "er or ol 21355 Thence, bearing Notit $4727^{\prime} 51^{\circ}$ West, o distonce of 274.76 leet to a point Thence, beering Noth $2844^{3} 39^{\circ}$ West, o distance of 28.26 teet to a point Thence, beoring North $41266^{\circ} 4^{*}$ West, a distonce of 170.75 leet to a point Thence bering Noth $5329^{\prime} 12^{\circ}$ Mest. a distronce of 31632 leet to 00 Roint
 11.86 feet. olong soid orc tor o distonce of 329.99 leet to o point: Thence, beering North $122^{51} 1^{4}$ Eost, a distonce of 169.37 leet to a point Thence, beering North $0313^{3} 0^{\prime \prime}$ West, o distonce of 204.85 leet to o point
 Thence, beoring North $6006^{\prime} 52^{\circ}$ Esst, a distonce of 102.43 leet to o point

 Beerings ore bosed on True Ny
herein 10 indicate ongles only.

SITE NAME. OAKLAND SITE NO.: KY-00-0818A

$\frac{- \text { PLAN PREPARED BY - }}{\frac{\text { HLG, ENGINEERING AND SURVE ING, INC. }}{\text { AT }}}$

CONCRETE AND REINFORCING STEEL NOTES:

2. AL CONCRETE SHAL HavE A MINMUM COMPRESSNE STRENGTH OF
3. SLAB FOUNDATION DESIGN ASSUMING ALLOWABLI SOIL BEARING PRESSURE

4. A CHAMFER 3/4* SHAL EE PROODED AT AL EXPOSED EDGES OF
5. NSTALATON OF CONCRETE EXPANSION/WEDGE ANCHOR SHAL QE PER

 CONCREIE
APPROVED
EQPANAL.

(7) COMPOUND GRADE
n.t.s.

notes:
6. concete minh io me class - - - talerance
7. TEST FOR 3000 PSI AT 7. 14, \& 28 dars per pour gy inoependent la
8. All CONCRETE TO be SIX SACK MIX

(4) CONCRETE BTS PAD / GEN. PAD SECTION

(8) ${ }^{\prime}$ ' H-FRAME DETAIL

notes
1．WHEN USING COMPONENTS AS SHOWN IN STANDARD DETALLS，MAXIMUM ALOWABLE SPAN T FOR 10 FEET GRIDGE CHANNEL
2．WHEN USING COMPONENTS FOR SPLICING BRIDGE CHANNEL SECTINS，THE SPLCE SHOUD
 4．CUT RRIDGE CHANNEL SECTONS SHAL HAVE RAW EDGES SPRAYED WITH COLD GALVANIZE
SOFTENERS WIL BE ADDED TO PROTECT THE
5．ICE 日RIDES MAY 日E CONSTRUCTED WTH COMPONENTS FROM OTHER MANUFACTURERS，
6．DEVAATONS FROM STANNARSS FRR COMPONENT INSTALATIONS ARE PERMTTED WTH THE
7．DEVATIONS FROM ICE BRIDGE FOUNDATIONS REQUIRE ENGINEERING APPROVAL
a．THE DESIGN IS BASED ON ASCE 7－98， 3 SECOND GUST WIND SPEED of 110 MPH
EXPOSURE C，ELEVATOO AT GRADE．
9．THIS DESIGN IS BASED ON 24° WIDE ICE BRIDGE AND（18） $15 / 8^{\circ}$ DIA COAX CABLIES AND
MAX．POST SUPPORT SPACING OF $10^{\circ}-0^{\circ}$ ．
（1）ICE BRIDGE SUPPORT POST FOUNDATION

（2）FENCE／BARBED WIRE ARM DETAIL N．t．s．

（3）MAN GATE DETALL

MAX ENGINEERING，LLC 9000 SW FREEWAY，Ste ： 410 Houston，Texas 77074 Phone（713）773－2525 Fax（713）773－2558	（cst）） CENTRAL BTATES TOWER，NC． 323 SOUTH HALE STREET SUITE 100 WHEATON，IL 60187

SITE No：KY－00－0818A

 SITE NAME，OAKLAND 25111 OAKLAND RIDGEOLNE HILL．KY 41164

					SHEET TITE
					ICE BRIDGE \＆FENCE DETAILS
\％ $107 / 23 / 88$	PER Cluent recomenatiows	${ }_{\text {H0 }}$	${ }^{\mathrm{V}} \mathrm{O}$		IGE BRIDGE a FENGE DETALL
－ 0 05／06／008	For	H0			\％
No．）mate	Rensions	日	cık ${ }^{\text {NeP }}$		C－3

SITE WORK GENERAL NOTES

1. THE SUBCONTRACTOR SHAL CONTAC
TO THE START OF CONSTRUCTON.
 UTLITES WHERE ENCOUNIERED IN THE WORK, SHALL AND OROOETECIED ALL TMMES, AND WHERE REQURED TOR THE PROPER EXECUTION OF THE CAUTION SHOULD RE USED BY THE SUBCONTRACTTR WHEN EXCAVATING
 SHAL PROMDE SAFET TRAINNG FOR THE WORKING CREW. THIS WIL
INCLUDE BUT NOT EE LIMIED TO A) FAL PROTECTON B) CONFINED INCLUDE BUT NOT BE LIMIED TO A) FAL PROTECTIN B) CO
SPACE C) ELECTRICAL SAEETY D) TRENCHING \& EXCAVATON.
2. ALL SITE WORK SHAL BE AS INDICATED ON THE DRAWINGS AND
3. IF NECESSARY RUBBIISH, STUMPS, DEBRIS, STCKS, STONES AND OTHER
REFUSE SHALI BE REMOVED FROM THE STE AND DISPOSED OF LEGALY
4. AL EXISTNG INACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER EE REMOTED AND/ OR CAPPED, PLUGGED OR OTHERWISE DISCONTNUED AT POINTS WHCC WLL NOT INTERERERE WITH THE EXECUION OF THE
WORK, TUBECT TOITE THE APPROVAL OF CONTRCTOR, OWNER AND/OR
LOCAL UTLIIES.
5. THE SUBCONTCACTOR SHAL PROVDE SITE SIENAGE IN ACCORDANCE
6. THE SIIE SHAL BE GRADED TO CAUSE SURRACE WATER TO fLOW AWA
7. NO FLU OR EMBANKMENT MATERIAL SHALL BE PIACED ON FROZEN GROUND. FROZEN MATERLAL
8. THE SUB GRADE SHALL EE COMPACTED AND RROUGHT TO A SMOOTH
9. THE AREAS OF THE OWNERS PROPERTM DISTURBED BY THE HORK AND GRADED TO A UNFFRM SLOPE, AND SAT OR RED TO PREVENT EROSION AS SPECIFED IN THE PROUECT SPECIFCATONS,
10. SUBCONTRACTOR SHALL MINMIIEE DISTUREANCE TO XISTING SIE
DURING CONSTUCTON.
EROSION CONTROL MEASURES, IF REOU

STRUCTURAL STEEL NOTES

- AL STEEL WORK SHAAL BE PANTED IN ACCORDANCE WITH THE PROLECT SPRCIICCATONS AN

2. AL WELDING SHAL EE PERFORMED USING ETOXX EEECTRODES AND NOT SHOWN. PROVDE THE MINIMMM SIIE PER TABEE J2.4 IN THE THE AISC "MANUAL OF STEEL
SHALL BE TOUCHED UP.
 4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATNG MAY USE
$5 / 8$ DAA, ASTM A 307 BOLTS UNLESS NOTED OTHERWISE.
3. INSTALAATION OF CONCREEE EXPANSION/WEDEE ANCHOR, SHALL BE

APPLIGABLE BUILDING CODES AND STANDARDS

2. ALL CONCRETE SHALL HAYE A MINMUMM COMPRESSNE STRENGTH 0
3. SLAA FOUNDATON DESIGN BASED ON ASSUMING ALLOWABLE SOIL
SOIL BEARING PRESSURE OF 2OOO PSF.
 CONFORM TO ASTM A 185 WELDED STEEL WREE FABRIC UNLESS NOTTED
OTHERWISE. SPLCES SHALL \quad EE CLASS " B AND AL HOOKS SHALL BE OTHERWISE. SPLLC
5. A CHAMFER $3 / 4^{\circ}$ SHALL BE PROVIDED AT AL EXPOSED EDGES O
CONCREE, UNO, IN ACCORDANCE WTH ACI 301 SECTON 4.2.4.
6. INSTALATON OF CONCRETE EXPANSION/WEDGE ANCHOR. SHAL BE PER DOWEL OR ROD SHAL CONERM TO MANUFACTURER'S RECOMENDATON
FOR EMEEDMENT DETH OR AS SHOWN ON THE DRAWINGS. NO REBAR
 Holes in concreile Expasion bolis
RAMSET/REDEAD OR APPROVED Equal.

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAANGG, THE FOLLOWING DEFINTIONS SHALL APPLY:

 ACCOMPUSHED AS SHOUN ONTHE CONSTRUCTION

2. DRAWINGS PROVIDED HERE ARE NOT TO SCALE AND ARE INTENDED TO SHOW OUTINE ONLY.
3. UNLESS NOTED OTHERISE THE WORK SHAL INCLDEE FURNSNING MATERNLS. EDUIPMENT RAWINGS
4. THE SUBCONRRACTOR SHAL INSTALL AL EQUPMEN AND MATERALS IN ACCORDANCE WITH
5. IF THE SPECIFIED EQUPMENT CANNOT BE INSTALED AS SHOWN ON THESE DRAWING, THE
6. SUBCONTRACTOR SHAL DETERMINE ACTUAL ROUTNG OF CONDUT, POWER AND T1 CAELES
7. THE SUECONTRACTTR SHAL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING

8. subcontractor shall leave premises in clean condition.

SUBCONTRACIORS WORK SHALL COMPLY WITH ALL THE APPLCABLE NATONAL STATE AND LOCAL CODES AS ADOPTED EY THE LOCAL AUTHORTT HAVING JURISOICTION (AHU)
FOR THE LOCATON. THE EDTON OF THE AHS ADOPTED CODES AND STANDARDS IN EFFECT ON

2003 STATE CONSTRUCTION CODE (2003 IBC)
NATONAL ELECTRICAL CODE (NEC 2002 PART \& STATE MENDMENTS) WTH LOCAL UNDERWRITEN
LABORATORIES APPROVED ELECTRICAL PRODUCTS
LIFE SAFETY CODE NFPA - 10
subcontractor's work shall coomply wit the latest edmon of the following: american concrete instiute gacio 318, bulbing code requirement for structural american instiute of steel construction (aisc). manual of stel construction (asd) TIECOMMUNCACONS INDUSTRY ASSOCLITION (TTA) EAA-222-F, STRUCTURAL STANDARDS FOR
STRUCTURAL ANIENNA TOWER AND ANTENNA SUPPORTNG STRUCTURES INSTIUTE FOR ELECTRICAL AND EEECTRONICS ENGINNERS (IEEE) B1. GUIDE FRR MEAUURING
EARTH RESITVIVT, GROUND IMPEDENCE AND EARTH SURFACE POTENTAL OF A GROUND SSSTEM,

IeEe 1100 (1999) recommended practice for powerng and grounding of electronic. ieeee c62.41, recommended practices on surge voltages in low voltage ac power TA Bo7 COMMERCILL BULDING GROUNING AND BONDING REQUREMENTS FOR TELECORDA
GR-1503 COAXAL CABLE CONNECTIONS.
 SHAL GOVERN. WHERE THER IS A CONFLTT REM WEEN AGENERAL REQUIREMENT AND A SPECIFI SHAL GOVEN. WHERE THER IS A CONFUCT BETWEEN A
REQUIREMENT, THE SPECIFC REQUREMENT SHAL GOVERN.

ABBREVIATIONS \& SYMBOLS

SYMBOLS

S/6 SOLD GRound bus bar
SS/N SOLD NEUTRAL Bus bar $\Rightarrow \quad \theta$ SUPPLEMENTAL GROUND CONDUCTOR - To CIRCUIT BRERKER
\bigcirc SINGLE-POLE THERMAL-MAGNETIC $_{\text {CIRCUT }}$

- Chemical ground rod
- ground rod
\square DISCONNECT SWITCH
(4) meter

EXOTHERMIC WELD (CADWEL)
(UNLESS OTHERWIE NOTED)

11-() $5 / 8^{\circ} \times 10^{\circ}$ COPPER CLAD STEEL GROUND
IIH $5 / \mathrm{B}^{\circ} \times 10^{\circ}$ COPPER CLAD STEEL GROUND
ROD WHT NSPECTION SLEEVE

- EXOTHERMIC WELD (CADWEL)
-_ grounding wire

ABBREVIATIONS
agl above grade level
bts base transcever stato
(E)
MIN
MISTING
MINIMM
N.t.S. Not to scale

REF REFERENCE
rf radio frequency
t.b.d. to be determined
t.b.r. To be resolved
$\begin{array}{cc}\text { TRP } & \text { TTPICAL } \\ \text { REQ } \\ \text { REQUIRED }\end{array}$
EGR EQUIPMENT GROUND RING
awg american mire gauge
mge master ground bus
eg Equipment groun
bCW bare copper wire
slad smart integrated access devic
gen generator
igr interior ground ring (halo)
res radio base station

SITE NO: KY-00-0818A SITE NAME: OAKLAND

2511 OAKLAND RIDGE
OUVE HIL, KY 41164

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ELECTRICAL INSTALLATION NOTES

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATONS, NEC AND ALA APPLLABIE LOCAL CODES. CONDUTT ROUTNGS ARE SCHEMATC.
SHALL INSTALL CONOITS SO THAT ACCESS TO EQUPMENT IS NOT BLOCKED.
2. WIRING, RACEWAY AND SUPPORT METHODS AND MATERLALS SHALL COMPLY WTH THE REQUIREMENTS
OF THE NEC.
3.
4. ALL CIRCUITS SHALL be segregated and mantain minimum cable separation as required by
5. cables shall not be routed through ladder-sthe cable tray rungs.
6. EACH END OF EVERY POWER, POWER PHAEE CONDUCTOR (IIE., HOTS), GROUNDING, AND T1 CONDUCTOR
 WTH NEC \& OSHA.
7. AL ELECTIICAL COMPONENTS SHAL RE CLEARLY LABELED WITH PLASSC TAPE PER COLOR SCHEDLLE CONFGURATION, POWER OR AMPACTTY RATNG, AND BRANCH CIRCUIT ID NUMBERS (IE. PANELBOARD AND CIRCUT ID's).
8. PANELBOARDS (II Numbers) AND internal circuit breakers (CIRCuit id numbers) Shall be
9. ALL TE WRAPS SHALL BE CUT FLUSH wTH APPROVED CUTTING TOOL to REMOVE SHARP EDGES.
10. POWER, CONTROL AND EQUPPMENT GROUND WIRING IN TUBING OR CONDUTT SHAL BE SINGLE CONDUCTOR (\#14 AWG OR LARGER), 600 V . OLL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR $90{ }^{\circ} \mathrm{C}$ (WET AND DRY OPERATION: LSTED OR LABELED FOR THE
LOCATON AND RACEWAY STSTEM USED. UNLESS OTHERWIIE SPECIFED.
11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHAL EE SINGLE CONDUCTOR (HG COPPER CABLE RATED FOR 90 ${ }^{\circ} \mathrm{C}$ (WET AND DRY) OPERATON; LSTED OR LABELED FOR THE LOCATION AND RACEWAY STSTEM USED. UNLESS OTHERMISE SPECIIFED.
12. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUT, SHALI BE MULT-CONDUCTTR, TTPE TC
CABLE (\#14 AWG OR LARGER), 600 V . OLL RESISANT THHN OR THWN -2 , CLASS B STRANDED CABLE ($\# 14$ AWG OR LARGER), 600 V . OLL RESISTANT THHN OR THWN-2, CLASS B STRANDED
COPPER CABLE RATED FOR $90{ }^{\circ} \mathrm{C}$ (WIT AND DRY) OPERATON; WTH OUTR JACKGT; USTED OR COPPER CABLE RATED FOR $90 \cdot \mathrm{C}$ (WEG AND DRY) OPERATON; WTHT
LAEELED FOR THE LOCATION USED. UNLESS OTHERISE SPECIFED.
13. AL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STTLE, COMPRESSION WIRE LUGS AND WWRENUTS EY THOMAS AND BETTS (OR EQUAL). LUGS AD
OPERATION AT NO LESS THAN $75 C$ ($9 \sigma C$ IF AVALLABLE).
14. RACEWAY AND CABE TRAY SHAL BE LSTED OR LABELED FOR ELLCTRICAL USE IN ACCORDANCE

15. ELECTRCAL METALIC TUBING (EMT) OR RIGID NONMETALC CONDUT (I.E., RIGID PVC SCHEDULE 40,
OR RIGID PVC SCHEDULE 80 FOR LOCATONS SUBUECT TO PHTSICAL DAMAGE) SHALL BE USED FOR OR RIGD PVC SCHEDUE 80
EXPOSED INDOOR LOCATONS
16. ELECTRICAL METAUC TUBING (EMT). ELLECTRICAL NONMETALIC TUBING (ENT). OR RIIID NONMEEAUC
CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INOOR LOCATIONS.
17. Galvanized steel intermedate metami conduit (imc) shall be used for outdoor locations
18. RIGID NONMETAUC CONDUI (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 8O) SHAL BE IN REINFORCED CONCREEE IN AREAS OF HEAW VEHICLE RAFFTC.
19. LOUID-TIGHT FIEXIBE METAWC CONDUTT (LYUUD-TIE FEEX) SHALL BE USED INDOORS AND
OUTDOORS, WHERE VBRATON OCCURS OR LLEXIBLLTY IS NEEEED.
20. CONDUT AND TUBING FTTINGS SHALL BE THREAED OR COMPRESSION-TTPE AND APPROVED FOR THE
21. Cabinets, boxes, and wirewars shall be listed or labeled for electrical use in

IEEE, AND NEC.
21. WIREWAYS SHAL BE EPOXY-COATED (GRAM) AND INCLUDE A HINGED COVER, DESIGNED TO SWING

ELECTRICAL INSTALLATION NOTES (cont.)

23. EQUIPMENT CABIETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED O OR EPOXY-COATED SHEET STEEL SHAL MEET
INDOORS OR NEMA $3 R$ (OR BETER) OUTOOORS
24. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED. EPOXY-COATED, OR NON-CORRODING: SHALL MEET OR EXCEED UL S14A AND NEMA OS 1 ; AND RATED NEM
OR BETER) BETIER INDOORS, OR WEATHER PROTECTED (WP OR BETITER) OUTDOORS.
25. NONMTALIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND
RATED NEMA 1 (OR BETER INOORS, OR WEATHER PROTECTED (WP OR BETER) OUTDOORS.
26. THE SUBGONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTO Berore commencing work on the ac power disiribuion panels.
27. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND
DISTRIBUTON PANELS IN ACCORDANCE WTH THE APPLCABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.

(2) TYPICAL TRENCH DETAILS

VERSCAL POSTS SHAL BE BONDED TO THE RRING AT EACH CORNER AND AT EACH GATE
POST. AS A MNMM ONE VERICAL POSTE SHAL BE BONDED TO THE GROUND RING IN EVERY 100 FOOT STRAIGHT RUN TO FENCE.
28. BOND EACH HORIZONTAL POLE / BRACE TO EACH OTHER AND TO EACH VERTCAL POST
THAT IS BONOED TO THE EXTERIOR GROUND RING
(1) FENCE GATE GROUNDING DETALLS
(3) FENCE GROUNDING DETALLS

SITE No، KY=00-0818A SITE NAME, OAKLAND 25111 OAKLAND RIDGE
OLVE HIL, KY 41164

ELECTRICAL NOTES:

1. SUBCONTRACTOR SHAL PROVIDE 200AMP, SINGLE PHASE, $120 / 240$
2. SUBCONTRCTTR SHAL COOROINATE WTHT UULITY COMPANY BEFORE THE START OF CONSTRUCTON POWER AND TELEPHONE CONDUT
SHAL BE PROVIDED AND NSTALED PER UTLUTY REQUIREMENTS.
3. FOR COMPLETE INTERNAL MIRING AND ARRANGEMENT REFER TO
4. SUBGONTRAGTTR SHAL INSTALL SUFFICIENT LENGTHS OF LFMC ELBOWS, COUPUNGS. TCC) NECESSARY, FRED CONNECHONH FROM IMC

5. CUT. COLL AND TAPE A 3 FOOT PIGTAL FROM END OF LFMC FOR

(1) 200 AMP SINGLE LINE DIAGRAM

NOTE:

cabint

EQUPMENT ASSEMBLY DRAWINGS AND RISER DAGRRMS MUST BE
SUBMIIED TO A UIUTY PLANNER FOR ACCEPTANCE PRIOR TO SUBMITID TO
INSALIATON.
4. CABIEETS AND CONDUTTS SHOW SHAL CONTAN ONLY UNMETERED
5. TRANSMISSION TOWER SERVCES WLL UTULZE A STANDARD 200 AMP
SERVICE $W /$ CONTINUOUS CONDUIT TO THE SOURCE.
6. SUBSTAION CEUULAR SERVICES WIL BE A SINGLE 2OOAMP

7. ALL CONDUT AND NPPIE ENTRES TO CABINGT AND MEIER BOXES MIL BE MADE WITH WEATHERPROOF HUBS. CONNECTORS
LOCKUTS LITED FOR THE APPUCATONS. NON-MEALIC

9. ONLY ONE SERVCE ALLOWED PER LUG. ALI GROUNDING AND
BONING MUST COMPLY WTH NEC 250 REOURED.

NOTES:
COORRINATE WITH LOCAL TELCO UUTUTY PRIOR TO PROCURING AND
2. ALL MATERILL Shall meet requirements of Local telco utluty.
3. IIEM \#4 SHAL BE FURNSHED AND INSTALED GY CONTRACTOR.
BOND SURGE PROTECTION UNIT TO GROUND BAP WTH \#G AWG
coordinate size. Ttpe and quantit of tem(s) \#5 with local
5. INSTAL ITEM \#G ONLY IF REQUIRED BY UTUUT. RECEPTACLE

NEW TOWER LLGGT KIT TO BE INSTALLED BY CONTRACTOR

(3) NEW UTILITY FRAME (TELCO) DETAILS

GLENMARTIN	Job	Site: Oakland SO: 18927	Page 1 of 10
GLENMARTIN 13620 Old Hwy 40	Project	295' HS 90mph-G (18754 model)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:21:10 07/15/08 } \end{array}$
Boonville, Mo 65233 Phone: (660) 882-2734 FAX: (660) 882-7200	Client	Cellere	Designed by GM

SITE NAME: Oakland
SITE \#: KY-00-0818A
SITE \#: KY-00-0818A
SALES ORDER: 18927
SITE ADDRESS: Carter County, Kentucky
Purchaser. Cellere
Project Contact. Braxton Dougher
bdougherty@cellere.us

Contact Address:

Atth: Braxton Dougherty
Cellere, LLC
Ste 204 eipper Ridge Drive
Traverse City M1 49684
All documents and details prepared in accordance with applicable EIA/TIA-222-G under the direct supervision of a registered professional engineer under the laws of the state of Kentucky, Enclosed calculations are certified and meet all specified purchaser requirements

CERTIFED by: Naerm Akhter
date reviewed $7-22-08$

GLENMARTIN	Job	Site: Oakland SO: 18927	Page 2 of 10
GLENMARTIN 13620 Old Hwy 40	Project	295' HS 90mph-G (18754 model)	$\begin{aligned} & \text { Date } \\ & \text { 12:21:10 07/15/08 } \end{aligned}$
Boonville, Mo 65233 Phone: (660) 882-2734 FAX: (660) 882-7200	Client	Cellere	Designed by GM

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 295.52 ft above the ground line
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 4.00 ft at the top and 26.50 ft at the base.
The following design criteria apply:
ower is located in Carter County, Kentucky.
Basic wind speed of 90 mph
Structure Class II.
Topographic Category 1
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with heigh
Ice density of 56 pcf .
A wind speed of 30 mph is used in combination with ice
Temperature drop of $50^{\circ} \mathrm{F}$
All members stamped for identification in accordance with EIA/TIA-222G.
Lock washers provided for all brace bolted connections. Brace connection bolts meet A325X structural joint
specification. All X-braces are center bolted.,
Step bolt climb ladder provided on single leg with fall protection cable.
All members hot dipped galvanized after fabrication per ASTM A123. Hardware (Bolts, Nuts, Etc.) galvanized pe ASTM B695 Class 50 (Mechanical)..
All welded joints and connections certified for integrity and quality per AWS DI:1
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

```
Consider Moments Leg
    Consider Moments - Horizontals
    Use Moment Magnificiation
V Use Code Stress Ratios 
```



```
    L_
    Use Special Wind Profile
    Include Bolts In Member Capacity
    Leg Bolis Are At Top Of Section
    Secondary Horizontal Braces Leg 
    M Use Diamond Inner Bracing(
```

```
Distribute Leg Loads As Uniform
    Assume L.egs Pinmed
    Assume Rigid Index Plate
    V Usume Cear Spans Inder Plate Wind Area
    Use Clear Spans For KL/r
    Retension Guys To Initial Tension
        M Bypass Mast Stability Checks
        Use Azimutt Dish Coefficien
        Project Wind Area of Appurt 
        Autocalc Torque Arm A reas 
    Sort Capacity Reports By Componen
        \(\checkmark\) Treat Feedine Bundles As Cylinder
        Use ASE 10 - - Braces As Ly Cules
Calculate Redundant Bracing
        Calculate Redundant Bracing Forces
        SRIore Reduncanc Mermbers in FEA
        All Leg Panels Have Same Allowable
        Offset Girn At Foundatio
        Consider Feedline Torque
        Include Angle Block Shear Chec
    Include Angle Block sh
Poles
    Include Shear-Torsion Interaction
    Use Top Mounted Sockets
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & \[
\text { Page } 3 \text { of } 10
\] \\
\hline GLENMARTIN & Project & 295' HS 90mph-G (18754 model) & \[
\begin{array}{|l|}
\hline \text { Date } \\
\text { 12:21:10 07/15/08 }
\end{array}
\] \\
\hline \begin{tabular}{l}
Boonville. Mo 65233 \\
Phone (660) 882-2734 \\
FAX: (660) 882-7200
\end{tabular} & Client & Cellere & Designed by GM \\
\hline
\end{tabular}


Maximum Tower Deflections - Service Wind
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Section } \\
\text { No. }
\end{gathered}
\]} & Elevation & \(\underbrace{\text { Horz }}_{\text {deflection }}\) & Gov. & Till & Twist \\
\hline & \(A\) & \({ }_{\text {defection }}^{\text {in }}\) & Comb & - & - \\
\hline Ti & 295.52-29052 & 18910 & 47 & 07416 & 00000 \\
\hline T2 & 290 52-275 52 & 18131 & 47 & 07376 & 00000 \\
\hline \({ }^{1}\) & 275 52-255 84 & 15844 & 47 & 06795 & 00000 \\
\hline T4 & 255 84-236.16 & 13163 & 47 & 05929 & 00000 \\
\hline T5 & 23616-21648 & 10829 & 47 & 05166 & 00000 \\
\hline 16 & 21648-1968 & 8834 & 47 & 04307 & 00000 \\
\hline T7 & 1968-17712 & 7163 & 47 & 03618 & 00000 \\
\hline T8 & 17712.15744 & 5720 & 47 & 03157 & 00000 \\
\hline T9 & 15744-13776 & 4468 & 47 & 02687 & 00000 \\
\hline T10 & 13776-11808 & 3410 & 47 & 02212 & 00000 \\
\hline T11 & 118.08-98.4 & 2524 & 47 & 01876 & 00000 \\
\hline 112 & 984-78.72 & 1777 & 47 & 01536 & 00000 \\
\hline 113 & 7872-5904 & 1164 & 47 & 01195 & 00000 \\
\hline T14 & 5904-3936 & 0691 & 47 & 00850 & 00000 \\
\hline 115 & 3936-1968 & 0340 & 47 & 00570 & 00000 \\
\hline 116 & 1968 - 0 & 0109 & 43 & 00286 & 00000 \\
\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation & Appurtenance & \[
\begin{aligned}
& \text { Gov } \\
& \text { Load }
\end{aligned}
\] & Deffection & Tilt & \(\tau_{\text {wist }}\) & \[
\begin{aligned}
& \text { Radius of } \\
& \text { Curvature }
\end{aligned}
\] \\
\hline \[
\stackrel{f}{29500}
\] & BM-120 & Comb. & in & \(\bigcirc\) & \(\bigcirc\) & A \\
\hline 28500 & \({ }_{\text {BM-1207 }}\) & 47 & 18829
17274 & \({ }_{0} 07225\) & 00000 & \({ }_{25319}\) \\
\hline 27500 & BM-1207 & 47 & 15767 & 06770 & 00000 & 10978 \\
\hline 265.00 & BM-1207 & 47 & 14.363 & 0.6310 & 0.0000 & 12220 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & \[
\begin{array}{ll}
\text { Page } & \\
4 \text { of } 10
\end{array}
\] \\
\hline \begin{tabular}{l}
GLENMARTIN \\
13620 Old Hwy 40
\end{tabular} & Project & 295' HS 90mph-G (18754 model) & \[
\begin{aligned}
& \text { Date } \\
& \text { 12:21:10 07/15/08 }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Boomille, Mo 65233 \\
Phone: (660) 882-2734 \\
FAX: (660) 882-7200
\end{tabular} & Client & Cellere & Designed by GM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{Maximum Tower Deflections - Design Wind} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Section } \\
& \text { No. }
\end{aligned}
\]} & Elevarion & Hor= & Gov. & Tilt & \({ }_{\text {Twist }}\) \\
\hline & & Deffection & \({ }_{\text {Load }}\) & & \\
\hline & \(f\) & in & Comb. & \(\bigcirc\) & \(\bigcirc\) \\
\hline TI & 295.52-29052 & 68175 & 18 & 26741 & 00002 \\
\hline T2 & 290.52-27552 & 65366 & 18 & 26597 & 00002 \\
\hline T3 & 275.52-255.84 & 57121 & 18 & 24502 & 0.0002 \\
\hline T4 & 255 84-236.16 & 47458 & 18 & 21380 & 00002 \\
\hline I5 & 23616-216.48 & 39042 & 18 & 18630 & 00002 \\
\hline \({ }^{16}\) & 21648-1968 & 31850 & 18 & 15533 & 00002 \\
\hline 17 & 1968-17712 & 25.823 & 18 & 13047 & 00001 \\
\hline 18 & 177.12.157.44 & 20622 & 18 & 11383 & 00001 \\
\hline T9 & 15744-137 76 & 16106 & 18 & 09690 & 00001 \\
\hline T10 & 137.76-118.08 & 12290 & 18 & 07976 & 00001 \\
\hline TII & 11808-984 & 9098 & 18 & 06763 & 00001 \\
\hline T12 & 984-78.72 & 6406 & 18 & 0.5538 & 00000 \\
\hline 113 & 78.72-5904 & 4195 & 18 & 04307 & 00000 \\
\hline 114 & 59.04-39 36 & 2491 & 18 & 03065 & 00000 \\
\hline 115 & 39 36-19.68 & 1.226 & 18 & 02054 & 0.0000 \\
\hline T16 & 1968.0 & 0394 & 18 & 01031 & 00000 \\
\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Design Wind
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation & Appurrenance & \[
\begin{aligned}
& \text { Gov } \\
& \text { Load } \\
& \text { Comb. }
\end{aligned}
\] & \begin{tabular}{l}
Deflection \\
in
\end{tabular} & Till & Twist & \[
\begin{aligned}
& \text { Radius of } \\
& \text { Curvature }
\end{aligned}
\]
\[
f
\] \\
\hline 29500 & BM-1207 & 18 & 67883 & 26733 & 00002 & 25166 \\
\hline 28500 & BM-1207 & 18 & 62278 & 26053 & 00002 & 7021 \\
\hline 27500 & ВМ-1207 & 18 & 56847 & 24411 & 00002 & 3054 \\
\hline 265.00 & BM-1207 & 18 & 51.784 & 2.2755 & 0.0002 & 3399 \\
\hline
\end{tabular}

\section*{Bolt Design Data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Section } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{gathered}
\text { Elevation } \\
f i
\end{gathered}
\] & Component Type & \[
\begin{aligned}
& \text { Bort } \\
& \text { Grade }
\end{aligned}
\] & \[
\begin{gathered}
\text { Boll Size } \\
\text { in }
\end{gathered}
\] & \[
\begin{gathered}
\text { Number } \\
\text { Of } \\
\text { Botrs }
\end{gathered}
\] & \[
\begin{gathered}
\text { Maximum } \\
\text { Load } \\
\text { Bolt } \\
\text { Ib }
\end{gathered}
\] & \[
\begin{gathered}
\text { Allowable } \\
\text { Load } \\
\text { lb }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ratio } \\
\hline \text { Load } \\
\hline \text { Allowable }
\end{gathered}
\] & \[
\begin{gathered}
\text { Allowable } \\
\text { Ratio }
\end{gathered}
\] & Criteria \\
\hline \multirow[t]{2}{*}{TI} & \multirow[t]{2}{*}{29552} & L.eg & A325X & 0.7500 & 4 & 008 & 2982060 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0000 Z^{\prime} \\
& 0242
\end{aligned}
\]} & 1 & Bolt Tension \\
\hline & & Diagonal & A325X & 0.5000 & 1 & 1771.86 & 731250 & & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{T2} & \multirow[t]{2}{*}{29052} & Leg & A325X & 07500 & 4 & 107989 & 2982060 & 0036 & 1 & Bolt Tension \\
\hline & & Diagonal & A325X & 05000 & 1 & 4924.84 & 731250 & 0.673 & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{T3} & \multirow[t]{2}{*}{27552} & Leg & A325X & 1.0000 & 4 & 867469 & 5301440 & 0164 & 1 & Bolt Tension \\
\hline & & Diagonal & A325X & 0.5000 & 1 & 627335 & 883573 & 0710 & 1 & Both Shear \\
\hline \multirow[t]{2}{*}{T4} & \multirow[t]{2}{*}{25584} & Leg & A325X & 10000 & 4 & 2207700 & 5301440 & 0.416 & 1 & Bolt Tension \\
\hline & & Diagonal & A325X & 0.5000 & 1 & 595242 & 883573 & \(0674{ }^{\prime}\) & 1 & Both Shear \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & Page 5 of 10 \\
\hline \multirow[t]{2}{*}{} & Project & 295' HS 90mph-G (18754 model) & \[
\begin{array}{|l|}
\hline \text { Date } \\
\text { 12:21:10 07/15/08 }
\end{array}
\] \\
\hline & Client & Cellere & Designed by GM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Section } \\
\text { No }
\end{gathered}
\] & \[
\begin{gathered}
\text { Elevation } \\
f
\end{gathered}
\] & \begin{tabular}{l}
Component \\
type
\end{tabular} & \[
\begin{aligned}
& \text { Bolt } \\
& \text { Grade }
\end{aligned}
\] & \[
\begin{gathered}
\text { Bolt Size } \\
\text { in }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Number } \\
\text { Of } \\
\text { Bolts }
\end{gathered}
\] & \[
\begin{gathered}
\text { Maximum } \\
\text { Loadper } \\
\text { Boll } \\
\text { Ib }
\end{gathered}
\] & \[
\begin{gathered}
\text { Allowable } \\
\text { Loadd } \\
l b
\end{gathered}
\] & \[
\begin{gathered}
\text { Ratio } \\
\text { Load } \\
\hline \text { Lllowable }
\end{gathered}
\] & \[
\begin{gathered}
\text { Allowable } \\
\text { Ratio }
\end{gathered}
\] & Crieria \\
\hline \multirow[t]{2}{*}{Ts} & \multirow[t]{2}{*}{23616} & Leg & A325X & 10000 & 4 & 3391480 & 5301440 & 0640 & 1 & Bolt Tension \\
\hline & & Diagonal & A 325 X & 05000 & 1 & 591206 & 883573 & \(0669 \not{ }^{\prime}\) & 1 & Bolt Shear \\
\hline \multirow[t]{2}{*}{T6} & \multirow[t]{2}{*}{21648} & Leg & A325x & 10000 & 6 & 2930450 & 5301440 & 0553 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 05000 & 1 & 638153 & 8835.73 & 0.722 & 1 & Both Shear \\
\hline \multirow[t]{2}{*}{77} & \multirow[t]{2}{*}{1968} & Leg & A325X & 10000 & 6 & 3542050 & 5301440 & \[
0668
\] & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 05000 & 1 & 697647 & 883573 & 0790 & 1 & Bolt Shear \\
\hline \multirow[t]{2}{*}{\({ }^{18}\)} & \multirow[t]{2}{*}{177.12} & Leg & A325x & 1.0000 & 6 & 4124970 & 5301440 & 0778 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 0.7500 & , & 760415 & 1233980 & \[
0.616
\] & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{T9} & \multirow[t]{2}{*}{15744} & Leg & A 325 X & 1.0000 & 6 & 47056.20 & 53014.40 & 0888 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 07500 & 1 & 8435.19 & 1233980 & 0684 & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{T10} & \multirow[t]{2}{*}{13776} & Leg & A325X & 10000 & 10 & 3167910 & 5301440 & \[
0598
\] & 1 & Bolt Tension \\
\hline & & Diagonal & A 325 X & 07500 & 1 & 940466 & 1645310 & 0572 & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{TII} & \multirow[t]{2}{*}{11808} & Leg & A325X & 10000 & 10 & 3507590 & 5301440 & 0662 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 07500 & 1 & 1044150 & 1645310 & 0635 & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{T12} & \multirow[t]{2}{*}{984} & Leg & A325X & 10000 & 10 & 3850050 & 5301440 & 0726 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 07500 & , & 1120860 & 1645310 & 0681 & 1 & Member Bearing \\
\hline \multirow[t]{2}{*}{\(T 13\)} & \multirow[t]{2}{*}{7872} & Leg & A325x & 10000 & 10 & 4191820 & 5301440 & 0791 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 07500 & 2 & 626976 & 1988040 & 0315 & 1 & Boll Shear \\
\hline \multirow[t]{2}{*}{\(T 14\)} & \multirow[t]{2}{*}{5904} & Leg & A325X & 10000 & 10 & 4535720 & 5301440 & 0856 & 1 & Bolt Tension \\
\hline & & Diagonal & A325X & 07500 & 2 & 665112 & 1988040 & 0335 & 1 & Bolt Shear \\
\hline \multirow[t]{2}{*}{115} & \multirow[t]{2}{*}{3936} & Leg & A325x & 10000 & 10 & 4876140 & 5301440 & 0920 & 1 & Bolt Tension \\
\hline & & Diagonal & A325x & 07500 & 2 & 714393 & 1988040 & \[
0359
\] & 1 & Boll Shear \\
\hline \multirow[t]{2}{*}{T16} & \multirow[t]{2}{*}{1968} & Leg & A325X & 10000 & 10 & 5218040 & 5301440 & 0984 & , & Bolt Tension \\
\hline & & Diagonal & A325X & 07500 & , & 797760 & 1988040 & \(0401 \%\) & 1 & Bott Shear \\
\hline
\end{tabular}

Compression Checks
Leg Design Data (Compression)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Section } \\
& \text { No. }
\end{aligned}
\] & Elevation & Size & \({ }^{L}\) & & K/r & & \(P_{u}\) & \[
\phi P_{n}
\] & \[
\begin{gathered}
\text { Ratio } \\
P_{u} \\
\hline
\end{gathered}
\] \\
\hline & \(\pi\) & & \({ }^{\text {f }}\) & \({ }_{\text {f }}\) & & \(i n^{2}\) & 16 & 16 & \(\phi P_{n}\) \\
\hline T1 & \[
\begin{aligned}
& 29552 . \\
& 29052 \\
& \\
& \hline
\end{aligned}
\] & P1 5x 145 & 500 & 492 & \[
\begin{gathered}
948 \\
\mathrm{~K}=1.00
\end{gathered}
\] & 07995 & -316853 & 1865720 & \[
0170^{\circ}
\] \\
\hline 12 & \[
\begin{aligned}
& 290520 \\
& 27552 \\
& 52
\end{aligned}
\] & P2x. 154 & 1500 & 497 & \[
\begin{gathered}
758 \\
\mathrm{~K}=1.00
\end{gathered}
\] & 10745 & -29967 10 & 3176640 & 0943 \\
\hline T3 & \[
\begin{aligned}
& 27552 \\
& 2558 \\
& 25
\end{aligned}
\] & P3 5x 226 & 1970 & 490 & \[
\begin{gathered}
440 \\
\mathrm{~K}=1.00
\end{gathered}
\] & 26795 & . 8678900 & 104643.00 & 0829 \\
\hline T4 & 25584. & P5x 258 & 1970 & 490 & 31.3 & 42999 & -13848200 & 18008300 & 07691 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & \[
\text { Page } 6 \text { of } 10
\] \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
GLENMARTIN \\
13620 Old Huy 40 Boonville. Mo 65233 Phone: (660) 882-2734 FAX: (660) \(882-7200\)
\end{tabular}} & Project & 295' HS 90mph-G (18754 model) & \[
\begin{array}{|l|}
\hline \text { Date } \\
12: 21: 10 \\
07 / 15 / 08
\end{array}
\] \\
\hline & Client & Cellere & \[
\begin{array}{r}
\text { Designed by } \\
G M
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Section } \\
\text { No. }
\end{gathered}
\]} & Elevation & \multirow[t]{2}{*}{Size} & \({ }^{\text {L }}\) & \(L_{4}\) & \multirow[t]{2}{*}{K/r} & \multirow[t]{2}{*}{A

\(i n^{2}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& P_{u} \\
& { }_{b}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\phi P_{n} \\
b
\end{gathered}
\]} & \multirow[t]{2}{*}{Ratio} \\
\hline & \(f\) & & \(\pi\) & f & & & & & \\
\hline & 23616 & & & & K=1 00 & & & & \(\checkmark\) \\
\hline Ts & \[
\begin{aligned}
& 23616 . \\
& 21648
\end{aligned}
\] & P5x 258 & 1970 & 490 & \[
\begin{gathered}
313 \\
K=100
\end{gathered}
\] & 42999 & -18241500 & 18008300 & \[
\stackrel{1.013}{x^{\prime}}
\] \\
\hline & & 49-3(101 CR)-88 & & & & & & & \\
\hline T6 & 21648-1968 & P6x 28 & 1970 & 490 & \[
{\underset{K}{262}}_{262}
\] & 55813 & -22304800 & 23885600 & \[
{ }^{0.934}{ }^{\prime}
\] \\
\hline 17 & 1968-17712 & P8x 322 & 1970 & 4.90 & \[
\begin{gathered}
200 \\
\mathrm{~K}=1.00
\end{gathered}
\] & 83993 & -26262400 & 36703600 & \(0716^{\prime}\) \\
\hline 18 & \[
\begin{aligned}
& 17712- \\
& 15744
\end{aligned}
\] & P8× 322 & 1970 & 490 & \[
\begin{gathered}
200 \\
K=100
\end{gathered}
\] & 83993 & -30240700 & 36703600 & \[
\stackrel{0824^{\prime}}{\eta^{\prime}}
\] \\
\hline T9 & \[
\begin{aligned}
& 15744 . \\
& 137.76
\end{aligned}
\] & P8x 322 & 1970 & 654 & \[
\begin{gathered}
267 \\
\mathrm{~K}=100
\end{gathered}
\] & 83993 & -34012000 & 35875300 & \(0948^{1}\) \\
\hline T10 & \[
\begin{aligned}
& 137.76 \\
& 11808
\end{aligned}
\] & P10x 365 & 1970 & 654 & \[
\underset{K=100}{214}
\] & 11.9083 & -38005600 & 51829200 & \(0733^{1}\) \\
\hline 111 & 11808.98 .4 & Piox 365 & 1970 & 654 & \[
\begin{gathered}
214 \\
\mathrm{~K}=100
\end{gathered}
\] & 11.9083 & -42056700 & 518292.00 & \(0811^{1}\) \\
\hline H2 & 984-7872 & P10x 365 & 1970 & 654 & \[
\begin{gathered}
214 \\
\mathrm{~K}=100
\end{gathered}
\] & 119083 & -46148400 & 51829200 & \(0890^{\prime}\) \\
\hline 113 & 7872-5904 & P10x 365 & 1970 & 654 & \[
\begin{gathered}
214 \\
\mathrm{~K}=100
\end{gathered}
\] & 119083 & -503025 00 & 51829200 & 0971 \\
\hline T14 & 5904-3936 & P12x 375 & 1970 & 654 & \[
\begin{gathered}
179 \\
K=100
\end{gathered}
\] & 145790 & -54511200 & 64081500 & \({ }^{0851}{ }^{\prime}\) \\
\hline T15 & 3936-19.68 & P12x 375 & 1970 & 654 & \[
\begin{gathered}
179 \\
\mathrm{~K}=100
\end{gathered}
\] & 145790 & -587980 00 & 64081500 & \(0918^{\prime}\) \\
\hline 116 & 1968 -0 & P12x 375 & 19.70 & 654 & \[
\begin{gathered}
179 \\
\mathrm{~K}=100
\end{gathered}
\] & 145790 & -63045900 & 64081500 & \(0984^{\prime}\) \\
\hline
\end{tabular}
\({ }^{1} p_{\text {u }} / \phi p_{n}\) controls
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Diagonal Design Data (Compression)} \\
\hline Section & Elevation & Siee & 1. & \({ }_{\text {L }}\) & K/r & A & \(P_{n}\) & \(\phi P_{n}\) & Ratio \\
\hline No & \(f\) & & \(f\) & \(f\) & & \(i n^{2}\) & 16 & 16 & \({ }_{p}{ }_{p}\) \\
\hline TI & \[
\begin{aligned}
& \begin{array}{l}
29552 \\
29052 \\
290
\end{array}
\end{aligned}
\] & L1 1/2x1 \(1 / 2 \times 1 / 8\) & 634 & 304 & \[
\begin{gathered}
1233 \\
\mathrm{~K}=100
\end{gathered}
\] & 03594 & \(-177186\) & 533898 & \[
\begin{gathered}
\phi P_{n}-1 \\
0332 \mathrm{i}
\end{gathered}
\] \\
\hline T2 & \[
\begin{gathered}
29052- \\
27552
\end{gathered}
\] & L1 \(1 / 2 \times 11 / 2 \times 1 / 8\) & 638 & 3.03 & \[
\begin{aligned}
& 1229 \\
& K=1.00
\end{aligned}
\] & 03594 & -492484 & 537719 & \(0.916^{\prime}\) \\
\hline T3 & \[
\begin{gathered}
275.52- \\
255.84
\end{gathered}
\] & L. \(3 / 4 \times 13 / 4 \times 3 / 16\) & 730 & 356 & \[
\begin{aligned}
& 1243 \\
& \mathrm{~K}=1.00
\end{aligned}
\] & 0.6211 & -6273 35 & 907509 & \begin{tabular}{l}
\(0.691^{1}\) \\
\(\checkmark\)
\end{tabular} \\
\hline T4 & \[
\begin{gathered}
255.84- \\
23616
\end{gathered}
\] & L1 3/4x1 3/4x3/16 & 856 & 412 & \[
\begin{aligned}
& 1439 \\
& K=100
\end{aligned}
\] & 06211 & . 580527 & 677915 & \(0856^{1}\) \(\forall\) \\
\hline Ts & \[
\begin{gathered}
23616 \\
21648
\end{gathered}
\] & L2x2x3/16 & 992 & 481 & \[
\begin{aligned}
& 1464 \\
& K=100
\end{aligned}
\] & 07150 & -591206 & 753618 & \(0784^{1}\) \\
\hline T6 & 21648-1968 & L2 1/2x2 1/2x3/16 & 1134 & 548 & \[
\begin{aligned}
& 132.7 \\
& K=100
\end{aligned}
\] & 09020 & -638153 & 1156390 & \(0552^{1}\) \\
\hline 57 & 1968-17712 & L2 1/2×2 1/2x3/16 & 1281 & 6.12 & \[
\begin{aligned}
& 1485 \\
& K=100
\end{aligned}
\] & 09020 & -6976 47 & 924429 & 0755 , \\
\hline 18 & \[
\begin{aligned}
& 17712- \\
& 15744
\end{aligned}
\] & L3x3x3/16 & 1431 & 688 & \[
\begin{aligned}
& 1385 \\
& K=100
\end{aligned}
\] & 10900 & -779743 & 1284000 & \[
0607
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & Page 7 of 10 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
GLENMARTIN \\
13620 Old Hwy 40 \\
Boonville, Mo 65233 \\
Phone: (660) 882-2734 \\
FAX: (660) 882-7200
\end{tabular}} & Project & 295' HS 90mph-G (18754 model) & \[
\begin{aligned}
& \text { Date } \\
& \text { 12:21:10 07/15/08 }
\end{aligned}
\] \\
\hline & Client & Cellere & Designed by GM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Section & Elevation & Size & 4. & \(L_{\text {LIM }}\) & K/r & \({ }^{\text {A }}\) & \({ }^{\prime \prime}\) & \(\phi P_{n}\) & Ratio \\
\hline & \(f\) & & \(f\) & \(f\) & & \(i n^{2}\) & \({ }^{\text {b }}\) & 16 & \(\frac{P_{n}}{\phi P_{n}}\) \\
\hline т9 & \[
\begin{aligned}
& 15744 . \\
& 137.76
\end{aligned}
\] & L3x3x3/16 & 1635 & 793 & \[
\begin{aligned}
& 1596 \\
& \mathrm{~K}=100
\end{aligned}
\] & 10900 & -878371 & 966803 & \[
\begin{gathered}
4, r_{n}^{\prime} \\
0909
\end{gathered}
\] \\
\hline T10 & \[
\begin{aligned}
& 13776- \\
& 11808
\end{aligned}
\] & L.3.351/4 & 17.83 & 858 & \[
\begin{gathered}
1739 \\
K=100
\end{gathered}
\] & 14400 & .966966 & 1076170 & \(0899^{1}\) \\
\hline TII & 11808-984 & L. \(31 / 2 \times 31 / 2 \times 1 / 4\) & 1934 & 933 & \[
\begin{aligned}
& 161.4 \\
& K=100
\end{aligned}
\] & 1.6900 & -1070930 & 1465920 & 07311 \\
\hline 112 & 984.7872 & L3 \(3 / 2 \times 31 / 2 \times 1 / 4\) & 20.85 & 1010 & \[
\begin{aligned}
& 1746 \\
& K=1.00
\end{aligned}
\] & 16900 & -1152450 & 1252770 & \[
{ }^{09200^{\prime}}
\] \\
\hline T13 & 78.72-5904 & L4x4x1/4 & 2239 & 1086 & \[
\begin{aligned}
& 1640 \\
& K=100
\end{aligned}
\] & 19400 & \(-1253950\) & 1629660 & \begin{tabular}{l}
\(0769^{\prime}\) \\
\(\gamma\)
\end{tabular} \\
\hline T14 & 5904-3936 & L4x4x1/4 & 23.93 & 1155 & \[
\begin{aligned}
& 1743 \\
& \mathrm{~K}=100
\end{aligned}
\] & 19400 & \(-1330230\) & 1441800 & 0923' \\
\hline T15 & 3936-1968 & L4x4x5/16 & 2548 & 1233 & \[
\begin{gathered}
1870 \\
K=100
\end{gathered}
\] & 24000 & \(-1428790\) & 1550220 & \(0922^{1}\) \\
\hline 116 & 1968 -0 & L4x4x 3 /8 & 2703 & 1311 & \[
\begin{aligned}
& 1996 \\
& K=100
\end{aligned}
\] & 28600 & \(-1595520\) & 1621680 & 0984 ' \\
\hline
\end{tabular}
\({ }^{1} p_{n} \mid \phi P_{n}\) controls

\section*{Top Girt Design Data (Compression)}

\({ }^{1} P_{n} / \phi P_{n}\) controls

\section*{Tension Checks}

Leg Design Data (Tension)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Section} & Elevation & \multirow[t]{3}{*}{Size} & L. & \(L_{n}\) & \multirow[t]{3}{*}{K/r} & \multirow[t]{3}{*}{\[
\begin{aligned}
& A \\
& i n^{2}
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& P_{u} \\
& l b
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\phi P_{n}
\]
lb} & \multirow[t]{3}{*}{\[
\frac{\text { Ratio }}{\frac{P_{n}}{\phi P_{n}}}
\]} \\
\hline & & & & & & & & & \\
\hline & \(f\) & & \({ }_{\text {ft }}\) & \({ }_{\text {fi }}\) & & & & & \\
\hline T1 & \[
\begin{aligned}
& 29552 . \\
& 29052
\end{aligned}
\] & P1 \(5 \times 145\) & 500 & 492 & 94.8 & 07995 & 269455 & 3597560 & \[
0075
\] \\
\hline T2 & \[
29052-
\] & P2x. 154 & 15.00 & 497 & 75.8 & 10745 & 2773830 & 4835390 & \[
0574
\] \\
\hline T3 & \[
\begin{aligned}
& 27552- \\
& 25584
\end{aligned}
\] & P3 5x 226 & 19.70 & 490 & 44.0 & 26795 & 8096430 & 12057900 & \(0671^{1}\) \\
\hline T4 & \[
\begin{aligned}
& 25584 \\
& 23616
\end{aligned}
\] & P5x 258 & 1970 & 490 & 313 & 42999 & 12983900 & 19349400 & \(0671^{1}\) \\
\hline TS & 23616. & P5x 258 & 1970 & 490 & 313 & 42999 & 17068700 & 19349400 & 08821 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
GLENMARTIN \\
GLENMARTIN \\
13620 Old Hwy 40 \\
Boonville, Mo 65233 \\
Phone: (660) 882-2734
FAX: (660) 882-7200 \\
FAX: (660) 882-7200
\end{tabular}} & Job & Site: Oakland SO: 18927 & \({ }^{\text {Page }} 8\) \\
\hline & Project & 295' HS 90mph-G (18754 model) & \[
\begin{array}{|l|}
\hline \text { Date } \\
\text { 12:21:10 07/15/08 }
\end{array}
\] \\
\hline & Client & Cellere & Designed by
\(\qquad\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Section } \\
\text { No }
\end{gathered}
\]} & Elevation & \multirow[t]{2}{*}{Size} & 1. & \(L_{\text {u }}\) & \multirow[t]{3}{*}{K/ri} & \multirow[t]{3}{*}{\[
\begin{aligned}
& A \\
& i n^{2}
\end{aligned}
\]} & \multirow[t]{3}{*}{\(p_{u}\)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\phi P_{n} \\
b
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Rario } \\
P_{n} \\
\hline P_{P_{n}}
\end{gathered}
\]} \\
\hline & \(f\) & & \(\pi\) & & & & & & \\
\hline & 1648 & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
49-3\binom{401}{\text { P6x } 28}-88 \\
\hline
\end{gathered}
\]} & & & & & & & \\
\hline T6 & 21648-1968 & & 1970 & 490 & 262 & 55813 & 20761000 & 25116100 & 08271 \\
\hline & & & & & & & & & \(\gamma\) \\
\hline 17 & 1968-17712 & P8× 322 & 1970 & 490 & 200 & 83993 & 24277400 & 37796700 & 0642 ' \\
\hline 18 & \[
\begin{aligned}
& 17712- \\
& 15744 \\
& 157
\end{aligned}
\] & P8× 322 & 1970 & 490 & 200 & 83993 & 27765900 & 37796700 & \[
0735
\] \\
\hline T9 & \[
15744-
\] & P8× 322 & 1970 & 654 & 267 & 83993 & 31063800 & 37796700 & \(0822^{\prime}\) \\
\hline 110 & \[
13776-
\] & P10x 365 & 1970 & 654 & 21.4 & 11.9083 & 344611.00 & 53587300 & \[
0643
\] \\
\hline TII & 11808-98.4 & P10x 365 & 1970 & 654 & 214 & 119083 & 37869200 & 53587300 & 07071 \\
\hline & & & & & & & & & \(V^{\prime}\) \\
\hline H2 & 984-7872 & P10x 365 & 1970 & 654 & 214 & 119083 & 41286400 & 53587300 & \[
0770^{\prime}
\] \\
\hline T13 & 7872-5904 & P10x 365 & 1970 & 654 & 214 & 119083 & 44712000 & 53587300 & \[
0834^{\prime}
\] \\
\hline T14 & 5904-3936 & P12x 375 & 1970 & 654 & 179 & 145790 & 48125400 & 65605300 & 0734 \\
\hline T15 & 3936-1968 & P12x 375 & 1970 & 654 & 179 & 145790 & 51541600 & 65605300 & 0786 \\
\hline & & & & & & & & & \(\square\) \\
\hline T16 & 1968 -0 & P12 \(\times 375\) & 1970 & 654 & 179 & 145790 & 54881200 & 65605300 & \({ }^{0837}\) \\
\hline
\end{tabular}
\(P_{n} / \phi P_{n}\) controls
Diagonal Design Data (Tension)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Diagonal Design Data (Tension)} \\
\hline Section & Elevation & Size & \(t\) & \({ }_{L \text { w }}\) & K/r & A & \(P_{w}\) & \(\phi P_{n}\) & Ratio \\
\hline No. & \(f\) & & ft & \(f\) & & \(i n^{2}\) & 1 l & 16 &  \\
\hline TI & \[
\begin{aligned}
& 295520 \\
& 29052 \\
& 52
\end{aligned}
\] & L. \(1 / 2 \times 1 / 1 / \times 1 / 8\) & 634 & 304 & 785 & 02109 & 176936 & 1028320 & \[
\begin{gathered}
\phi P_{n}, \\
0172
\end{gathered}
\] \\
\hline 12 & \[
\begin{gathered}
290.52- \\
27552 \\
52
\end{gathered}
\] & L. \(1 / 2 \times 1 / 1 / 2 \times 1 / 8\) & 638 & 303 & 782 & 0.2109 & 479516 & 1028320 & \(0466^{\prime}\) \\
\hline 13 & \[
\begin{gathered}
275.52- \\
255.84
\end{gathered}
\] & L1 3/4x1 3/4×3/16 & 730 & 356 & 795 & 0.3779 & 609142 & 18424.10 & 0331 \\
\hline T4 & \[
\begin{gathered}
255.84- \\
236.16
\end{gathered}
\] & L1 3/4x13/4x3/16 & 760 & 3.65 & 816 & 03779 & 582021 & 1842410 & \begin{tabular}{l}
\(0316^{\prime}\) \\
\(\gamma\)
\end{tabular} \\
\hline Ts & \[
\begin{gathered}
23616- \\
216.48
\end{gathered}
\] & L.2x2x3/16 & 992 & 481 & 93.5 & 0.4484 & 564586 & 2185750 & \[
\stackrel{0258}{ }{ }^{\prime}
\] \\
\hline 16 & 21648-1968 & L2 1/2x2 \(1 / 2 \times 3 / 16\) & 1134 & 548 & 845 & 05886 & 614306 & 2869470 & \[
02141
\] \\
\hline T7 & 1968-177.12 & L2 1/2x2 1/2x3/16 & 1281 & 612 & 945 & 05886 & 678489 & 2869470 & \(0236{ }^{1}\) \\
\hline 18 & \[
\begin{gathered}
17712 . \\
15744
\end{gathered}
\] & L.3x3x3/16 & 1431 & 688 & 879 & 06945 & 760415 & 3385460 & \[
0225
\] \\
\hline т9 & 15744. 13776 & L3x3x3/16 & 1635 & 793 & 1013 & 06945 & 843519 & 3385460 & 0249 ' \\
\hline
\end{tabular}

\(P_{n} / \phi P_{n}\) controls
Top Girt Design Data (Tension)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Top Girt Design Data (Tension)} \\
\hline Section & Elevation & Size & \(t\). & \({ }_{L}{ }_{\text {m }}\) & K/r & A & \(P_{n}\) & \(\phi P_{n}\) & Ratio \\
\hline No & \(f\) & & fi & A & & \(\mathrm{in}^{2}\) & lb & lb & \(\frac{P_{n}}{\phi P_{m}}\) \\
\hline TI & \[
\begin{gathered}
29552- \\
29052
\end{gathered}
\] & L. \(1 / 2 \times 11 / 2 \times 1 / 8\) & 400 & 384 & 991 & 02695 & 92320 & 1313960 & \({ }^{00070}\) \\
\hline
\end{tabular}
\({ }^{\prime} P_{n} / \phi P_{n}\) controls

\section*{Section Capacity Table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Section Capacity Table} \\
\hline Section & Elevation & Component & Size & Critical & P & \({ }^{\text {ofataw }}\) & \% & Pass \\
\hline Section & \(f\) & Type & & Element & 16 & 16 & Capacity & Fail \\
\hline \multirow[t]{2}{*}{11} & 29552-290.52 & Leg & P1.5x 145 & 1 & -316853 & 1865720 & 170 & Pass \\
\hline & & Diagonal & L1 1/2x \(1 / 2 \times 1 / 8\) & 7 & -1771.86 & 533898 & 332 & Pass \\
\hline \multirow{3}{*}{T2} & & Top Girt & L.1 \(1 / 2 \times 11 / 2 \times 1 / 8\) & 5 & -97247 & 335134 & 290 & Pass \\
\hline & 290 52-275 52 & Leg & P2x. 154 & 15 & -29967.10 & 3176640 & 943 & Pass \\
\hline & & Diagonal & L1 \(1 / 2 \times 11 / 2 \times 1 / 8\) & 16 & -492484 & 537719 & 916 & Pass \\
\hline \multirow[t]{2}{*}{\({ }^{13}\)} & 27552-25584 & Leg & P3 5x 226 & 34 & -8678900 & 10464300 & 829 & Pass \\
\hline & & Diagonal & LI 3/4x \(3 / 4 \times 3 / 16\) & 37 & -627335 & 9075.09 & 691 & Pass \\
\hline \multirow[t]{2}{*}{14} & 255 84-23616 & Leg & P5x 258 & 61 & -13848200 & 18008300 & 76.9 & Pass \\
\hline & & Diagonal & L1 \(3 / 4 \times 13 / 4 \times 3 / 16\) & 64 & -5805 27 & 677915 & 856 & Pass \\
\hline T5 & 23616-21648 & Leg & P5x 258 & 89 & -18241500 & 18008300 & 1013 & Pass \\
\hline \multirow{3}{*}{T6} & & Diagonal & L2x2x3/16 & 92 & -591206 & 7536.18 & 784 & Pass \\
\hline & 21648-1968 & Leg & P6x 28 & 115 & -22304800 & 23885600 & 934 & Pass \\
\hline & & Diagonal & L2 \(1 / 2 \times 21 / 2 \times 3 / 16\) & 118 & -638153 & 1156390 & \[
552
\] & Pass \\
\hline \({ }^{7}\) & 1968 -17712 & Leg & P8x 322 & 143 & -262624 00 & 36703600 & 716 & Pass \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GLENMARTIN & Job & Site: Oakland SO: 18927 & \[
{ }^{\text {Page }} 10 \text { of } 10
\] \\
\hline \multirow[t]{2}{*}{} & Project & 295' HS 90mph-G (18754 model) & Date
12:21:10 07/15/08 \\
\hline & Client & Cellere & \[
\begin{array}{r}
\text { Designed by } \\
\mathrm{GM}
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Section
No. & \[
\underset{f}{\text { Elevarion }}
\] & \[
\begin{aligned}
& \text { Component } \\
& \text { Type }
\end{aligned}
\] & Size & Critical & \[
\begin{aligned}
& p \\
& l b
\end{aligned}
\] & \[
{ }^{o P_{\text {allam }}} 1
\] & \[
\begin{gathered}
\frac{\%}{\%}\left(\begin{array}{c}
\text { Capacity }
\end{array}\right.
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pass } \\
& \text { Fail }
\end{aligned}
\] \\
\hline & & Diagonal & L2 1/2x2 1/2x3/16 & 145 & -697647 & 924429 & \[
\begin{gathered}
755 \\
790 \text { (b) }
\end{gathered}
\] & Pass \\
\hline \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{17712-15744} & \multirow[t]{2}{*}{\[
\underset{\text { Diagonal }}{\stackrel{\text { Leg }}{ }}
\]} & \multirow[t]{2}{*}{\[
\underset{L, 3 \times 3 \times 3 / 16}{P 8.322}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 169 \\
& 172
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& -30240700 \\
& -779743
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 36703600 \\
& 12840000
\end{aligned}
\]} & 824
607 & Pass
Pass \\
\hline & & & & & & & \({ }_{616 \text { (b) }}^{607}\) & Pass \\
\hline \multirow[t]{2}{*}{T9} & 15744-137.76 & Leg & P8x 322 & 198 & -340120 00 & 35875300 & 948 & Pass \\
\hline & \multirow[t]{3}{*}{13776-11808} & Diagonal & L.3x3x3/16 & 199 & -878371 & 9668.03 & 90.9 & Pass \\
\hline \multirow[t]{2}{*}{T10} & & Leg & P10x 365 & 217 & -38005600 & 51829200 & 73 & Pass \\
\hline & & Diagonal & L.3x3x \(1 / 4\) & 220 & -966966 & 1076170 & 899 & Pass \\
\hline \multirow[t]{2}{*}{T11} & 11808-98.4 & Leg & P10x 365 & 240 & -420567 00 & 51829200 & 811 & Pass \\
\hline & & Diagonal & L3 1/2x \(\times 1 / 2 \times 1 / 4\) & 243 & -10709 30 & 1465920 & 731 & Pass \\
\hline \multirow[t]{2}{*}{T12} & \multirow[t]{2}{*}{984-7872} & Leg & P10x 365 & 260 & -46148400 & 51829200 & 890 & Pass \\
\hline & & Diagonal & L.3 1/2x \(\times 1 / 2 \times 1 / 4\) & 262 & -1152450 & 1252770 & 920 & Pass \\
\hline \multirow[t]{2}{*}{T13} & 7872-5904 & Leg & Plox 365 & 280 & -50302500 & 51829200 & 97.1 & Pass \\
\hline & \multirow[b]{2}{*}{5904-3936} & Diagonal & L4x4x1/4 & 283 & -1253950 & 1629660 & 769 & Pass \\
\hline T14 & & L.eg & P12x 375 & 301 & -54511200 & 64081500 & 851 & Pass \\
\hline & \multirow{3}{*}{3936-1968} & Diagonal & L4x4x/14 & 307 & -1330220 & 1441800 & 856 (b)
923 & Pass \\
\hline \multirow[t]{2}{*}{tis} & & Leg & P12x 375 & 322 & -587980 00 & 64081500 & 918 & Pass \\
\hline & & & & & & & 920 (b) & \\
\hline & \multirow{8}{*}{1968 -0} & Diagonal & \({ }^{14 \times 4 \times 5 / 16}\) & 325 & -1428790 & 1550220 & 922 & Pass \\
\hline \multirow[t]{7}{*}{116} & & Leg & P12x 375 & 343 & -63045900 & 64081500 & 984 & Pass \\
\hline & & \multirow[t]{6}{*}{Diagonal} & \multirow[t]{6}{*}{L4×4×3/8} & \multirow[t]{6}{*}{347} & \multirow[t]{6}{*}{\(-1595520\)} & 1621680 & 984 & Pass \\
\hline & & & & & & 162168 & Summary & \\
\hline & & & & & & L.eg (T5) & 1013 & Pass \\
\hline & & & & & & Diagonal (T16) & 984 & Pass \\
\hline & & & & & & Top Girt & 290 & Pass \\
\hline & & & & & & Bolt Checks RATING = & \begin{tabular}{l}
984 \\
101.
\end{tabular} & Pass
Pass \\
\hline
\end{tabular}

Program Version 511 -2/24/2008 File.C./Documents and Setings/Scott H/Desktop/temp/18927/295' HS 90 mph -G (18754 model) eri


EXHIBIT C
Site from County Seat
Directions

\section*{Directions to the Site}

From the County Seat of Carter County, Kentucky

Dakland Site
Carter County, Kentucky

From the Carter County Courthouse in Grayson, Kentucky, begin heading East on US-60/ W. Main Street toward Hillview Street for 0.2 miles. Turn LEFT onto KY-1/KY-7/ Railroad Street. Continue on \(\mathrm{KY}-1 / \mathrm{KY}-7\) for 1 mile. Merge onto I-64 West via ramp on the LEFT for 15.1 miles. Take the KY-2 exit, EXIT 156, toward KY59/ Olive Hill/ Vanceburg for 0.3 miles. Turn RIGHT onto KY-2 for 3.4 miles. Turn RIGHT onto Ervin Ridge for 1.4 miles. Turn LEFT onto Oakland Ridge. End at 2511 Oakland Ridge, Olive Hill, Kentucky 41164.

```

FEL 231.929.4555
Mww.celere.us
410 Copper Ridge Drive, Suite 204, Traverse City, MI 49684

```

\section*{EXHIBIT D}

Memorandum of Lease

\section*{MEMORANDUM OF LEASE}

\section*{Return to:}

C/O Central States Tower Holdings, LLC
323 S. Hale Street Suite 100
Wheaton, IL 60187
(630) 221-8500 Main Number

Attn: Property Manager

Re: Cell Site \#KY-00-0818A; Cell Site Name: Oakland

Prepared Bv:
Benjamin Meredith
Benjamin
Cellere
4110 Copper Ridge Drive Ste. 204
Traverse City, MI 49684
(231) 929-4555
\(\overbrace{3}^{(231)} 929-4\)
B M - aio

State: Carter

This Memorandum of Lease is entered into on this 28 day of Aec. and Alice Joy Gee Buckler, a his wife, having a mailing address of 2511 Oakland Ridge. Olive Hill Ky 4116 (hereinafter referred to as "Landlord") and Central States Tower Holdings, LLC, a Delaware limited liability company, having a mailing address of 323 S. Hale Street, Suite 100 , Wheaton, IL 60187 (hereinafter referred to as "Tenant").
1. Landlord and Tenant entered into a certain Option and Lease Agreement ("Agreement") on the \(\frac{28^{\text {th }}}{}\) day of \(\xrightarrow[\text { improvements. All of the foregoing are set forth in operating and maintaining a communications facility and other }]{\text { Dec }}\) improvements. All of the foregoing are set forth in the Agreement.
2. The initial lease ierin will be five (5) years ("Initial Tern") commencing on the effective date of written notification by Tenant to Landlord of Tenant's exercise of the Option, with five (5) successive five (5) yea options to renew.
3. A portion of the Property being leased to Tenant contained and described in Exhibit A annexed hereto.
4. This Memorandum of Lease is not intended to amend or modify, and shall not be deemed or construed as amending or modifying, any of the terms, conditions or provisions of the Agreement, all of which are hereby ratified and affirmed. In the event of a conflict between the provisions of this Memorandum of Lease and the provisions of the Agreement, the provisions of the Agreement shall control. The Agreement shall be binding upon and inure to the benefit of the parties and their respective heirs, successors, and assigns, subject to the provisions of the Agreement.

IN WITNESS WHEREOF, the parties have caused this Agreement to be effective as of the last date written
below.
WITNESSES:

\(\frac{\text { Print Name: Brenda Burchett }}{\text { Brent }}\)

Yorenderbandit
Print Name: Brenda Burchett
witnesses:
Marianne Brant
Print Name: MARIANNE GRANT
"LANDLORD"


By, Alice thu Buctelir
Print Name: Alice Joy Gee Buckler
Its: Owner
Date: \(\quad 12-14-07\)
"TENANT"
Central States Tower Holdings, LLC
a Delaware limited liability company

By:
Print Name. Brian P. Meier
Its: C.O.O.
Date: \(\quad 12-26-2007\)
[ACKNOWLEDGMENTS APPEAR ON THE NEXT PAGE]

\section*{LANDLORD ACKNOWLEDGMENT}

INDIVIDUAL ACKNOWLEDGMENT

STATE OF Kentucky
COUNTY OF Carter ) \({ }_{\text {) }}\) s:

BE IT REMEMBERED, that on this \(14^{\text {th }}\) day of DeC. , 2007 before me, the subscriber, a person authorized to take oaths in the State of Kentucky, personally appeared John Buckler and Alice Joy Gee Buckler, his wife being duly sworn on his/her/their oath, deposed and made proof to my satisfaction that he/she/they is/are the person named in the within instrument; and I, having first made known to him/her/them the contents thereof, he/she/they di acknowledge that he/she/they signed, sealed and delivered the same as his/her/their voluntary act and deed for the purposes therein contained.

\section*{Notary Public: Qundy H.Sparks \\ My Commission Expires: \(4-12-11\)}

\section*{PARTNERSHIP (consisting of corporations) ACKNOWLEDGMENT}

STATE OF
COUNTY OF ) ss :

1 CERTIFY that on \(\qquad\) personally came before me and this/these person(s) acknowledged under oath to my satisfaction, that:
(a) this/these person(s) signed, sealed and delivered the attached document as
a corporation of the State of, which is a general partner of the partnership named in thi document;
(b) the proper corporate seal of said corporate general partner was affixed; and
(c) this document was signed and delivered by the corporation as its voluntary act and deed as [a] general partner(s) on behalf of said partnership [by virtue of authority from its Board of Directors].

Notary Public:
My Commission Expires: \(\qquad\)

\section*{CORPORATE ACKNOWLEDGMENT}

STATE OF
COUNTY OF
) ss

I CERTIFY that o \(\qquad\) 2007, [name of representative] personally came before me and acknowledged under oath that he or she:
(a) is the [title] of [name of corporation] the corporation named in the attached instrument,
(b) was authorized to execute this instrument on behalf of the corporation and
(c) executed the instrument as the act of the corporation.

Notary Public: \(\qquad\)
\(\qquad\)

\section*{TENANT ACKNOWLEDGMENT}
STATE OF ILLINOIS
COUNTY OF Du Pager
) ss:

On the \(28+4\) day of \(\operatorname{lec}\) 2007, before me personally appeared Brian P. Meier. its C.O.O, and acknowledged under oath that he is duly authorized to sign on behalf of Central States Tower Holding, LLC, the Tenan named in the attached instrument, and as such was authorized to execute this instrument on behalf of the Limited Liability Company.

Notary Public:


> OFFICIALLSEAL
BARARA MENL
NOTAAY PUBLIC, STATE OFILLINOIS
> NOTARY PUBLIG, STATE OF ILLINOIS
> My Commission Explres 01/22/2011

Site Name: Oakland
Site Number: KY-00-0818A

\section*{EXHIBIT A}

\section*{DESCRIPTION OF PROPERTY}

Page 1 of 1
to the Memorandum of Lease dated \(\xrightarrow{\text { Aec. } 2 g^{n}}\) 2007, by and between John Buckler and Alice Jov Gee Buckler, a his wife, as Landlord, and Central States Tower Holdings, LLC, a Delaware limited liability company, as Tenant.

The Property is described and/or depicted as follows:
All that certain tract or parcel of land, situate, laying and being in Carter County Kentucky and on the Buffalo fork of Tygart Creek and bounded and described as follows:

Beginning at a white oak, corner to John W. Burton's land; thence a northwest course with said Burton's line to J. M. Cartee line; thence with said Cartee line to Pat McGlone's line; thence S 13 W to a poplar; thence S. 29 W . to the to of the cliff, thence around the top of the cliff with J. M. Cartee's line to Denise Stallard's line; then with said Stallard's line to A. E. Kiser's corner at foot of cliff; thence S. 27 E. with A. B. Kiser's line 135 poles to Andrew Brown's line and corner; thence S. 44 E . with Brown's line to the beginning containing 140 acres plus or minus.

There is excluded from this conveyance the following described tract of land now owned by the estate of A. W. McGlone - Beginning at a hickory 3.27 W .37 poles to an elm standing by a rock; S. \(661 / 2 \mathrm{~W} .5\) poles to a stone; N 16 W \(3 / 5\) poles to a stone; N 40 E 27 poles to a poplar and beech at the branch; N 19 E .21 poles to a white oak on top of a cliff; S 43 E 26 poles to a poplar; N 73 E \(32-2 / 5\) poles to the beginning containing \(1413 / 16\) ares, plus or minus.

Also, the following described strip of land on the waters of Buffalo Creek in Carter County Kentucky, to-wit
Starting at a small spotted oak and set stone on top of cliff in A. B. Kiser and Wayman Buckler line, the said pooted oak being 11 rods and 10 feet from the A.B. Kisser and Stellard Corner, thence running south with, cliff 60 rods to cedar and set stone and a spotted oak at top of cliff; thence running east 30 rods to a set stone and a cedar with the cliff , hor Records.

Aiso, ihe following described property, to-wit:
A certain tract of land laying and being on the waters of Buffalo Fork of Tygart's Creek in Carter County, Ky. And bounded as follows: Beginning at a large white oak, a corner to Frazier and in the original A.B. Kiser survey, thence with Kiser's line, S. \(27 \mathrm{E}-\mathrm{Va} .2-52\) poles to a stone on said Kiser's line, a spotted oak bears N. 6 W .18 links- then leaving said Kiser's line on new lines S. \(58 \mathrm{E} .201 /\) poles to a small white oak and mulbury bush on east side of the poles to an X on the "Buzzard Rock" by a sourwood and sassafras, thence N. 19 E. \(164 / 5\) poles to a black oak, N. 12 E . \(144 / 5\) poles to a small locust at the road, thence with the road N. \(741 / 2 \mathrm{~W} .121 / 2\) poles to a small hickory by the road N. 24 \(1 / 4\) W. \(323 / 5\) poles to a black oak in Frasier line, thence with said Frasier's line S 44 W .113 poles to the beginning
 \# 57 page 152-53, Carter County Deed Records.

Site Name: Oakland
Site Number: KY-00-0818A

Carter County
OR 211 PG 221

\section*{EXHIBIT E}

Site Plan - 500' Radius Map with
Flood Plain Information

\section*{EXHIBIT F}

Affidavit of Notification of Adjacent Property Owners and Owners within 500 feet

Application of Central States Tower Holdings, LLC for Issuance
of a Certificate of Public Convenience and Necessity to Construc
a Cell Site (KY-00-0818A 0AKL.AND) in Olive Hill Kentucky

\section*{Affidavit of Sandee L. Yagle}

\section*{I, Sandee L. Yagle, being duly sworn, depose and state as follows}
1. My name is Sandee L. Yagle and I am an employee of Cellere, LLC, agent for Centra States Tower Holdings, LLC, and am submitting this affidavit in conjunction with the above referenced matter
2. In order to demonstrate compliance with 807 KAR 5:063 § 1(1)(1), Exhibit 1 identifies, with the exception of the individual identified in paragraph 4, the names of the residents/ tenants and property owners within 500 feet of the proposed tower who have been: (i) notified by written notice of the proposed construction, sufficient postage prepaid, by United States Certified Mail, return receipt requested; (ii) given the Commission docket number under which the application will be processed; and (iii) informed of the right to request intervention.
3. Attached as Exhibit 2 is a copy of the United States Certified Mail return receipts that demonstrate proof of service of the written notice of the proposed construction upon (all of whom could be located to respond): (1) Sy Berry; (2) Carl and Janet Burge; (3) Carter Caves State Park; (4) Jennifer Evans; (5) James and Louise McGlone; (6) William E. Ramey; and John Buckler. (See Exhibit1)
4. Attached as Exhibit 3 is a copy of the United States Certified Mail return receipt indicating that the USPS attempted to deliver the certified mail to two different addresses and was rejected as
"moved, left no address" and "attempted, not known". The tax assessor has only this address to send tax bills: 1911 Oakland Ridge, Olive Hill, KY 41164. The address of 720 State Highway 986, Olive Hill, KY 41164 appears as the address in the phone register. No other address could be located for Dana Adkins at this time, therefore she cannot be served by the United States Certified Mail in compliance with 807 KAR 5:063 \(\S 1(\|)\) and (m).

Further Affiant saith not.


State of Michigan
County of Grand Traverse
Subscribed and Sworn to before me this \(30^{-4}\) day of July, 2008.
My commission expires: \(2 / 2 / 2012\)


DAVID ANTHONY LARGEN
Notary Public, State of Michigan
County of Grand Traverse
My Commission Expires 02.02-2012
Acting in the County of \(G, R\). TRA VERSE

\section*{Landowner and Adjacent Landowner List}

\section*{Central States Tower Holdings, LLC Oakland Site} Olive Hill, Kentucky


\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Dakland Ridge, llive Hill, KY 41164. A map showing the location is attached

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

\section*{Executive Director's Office Public Service Commission of Kentucky} P.O. Box 615

Frankfort, Kentucky 40602

\section*{Please refer to case number 2008-00260 in your correspondence.}

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


July 2, 2008
Carl and Janet Burge
9695 St. Hwy 2
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Oakland Ridge, Olive Hill; KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's Dffice Public Service Commission of Kentucky P.O. Box 615

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


Carter Caves State Park
344 Caveland Drive
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide celluar telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Oakland Pidge Olive Hill KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's Office Public Service Commission of Kentucky
P.O. Box 615

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


\section*{Public Notice}

Ceilere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commanwealth of Kentucky (the "Commission" for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Oakland Ridge Olive Hill KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

\section*{Executive Director's Office} Public Service Commission of Kentucky

\section*{P. 0. Box 615}

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


July 2, 2008
James and Louise McGlone
9180 St. Hwy 2
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Dakland Ridge, Olive Hill, KY 41164. A map showing the location is attached

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's Dffice Public Service Commission of Kentuck
\[
\text { P.O. Box } 615
\]

Frankfort, Kentucky 40602

\section*{Please refer to case number 2008-00260 in your correspondence.}

Cellere and Central States welcome the opportunity to serve and provide wireless service in you community


July 2, 2008
William E Ramey
6596 Carter Caves Road
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide ellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Dakland Ridge, Olive Hill, KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's 0ffice Public Service Commission of Kentucky
P.O. Box 615

Frankfort Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


John Buckler
2511 Oakland Ridge
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Oakland Ridge, Olive Hill, KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's Office Public Service Commission of Kentucky
P.O. Box 615

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


8e-60-56eso-selex trizi gaban se ot wantae SSBudat on I ding gifow smivog

refspegqex \%at

 abp!y puejyeo LI6L
sulyp \(\forall\) eue \(\square\)

 986 КемЧБ!Н әұеłS OZL su!ypt eued

7896tsumen
2z86995000sZ90
ヨロvisod sn
© ZE'G\$


Dana Adkins
911 Oakland Ridge
Olive Hill, KY 41164

\section*{Public Notice}

Cellere, LLC, a Michigan limited liability company as agent for Central States Tower Holdings, LLC is applying to the Public Service Commission of the Commonwealth of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to construct a new cellular tower facility to provide cellular telephone service. This facility will include a 300 foot tower to be located at \(+/-2511\) Oakland Ridge, Olive Hill, KY 41164. A map showing the location is attached.

The Commission invites your comments regarding this proposed construction. Also, the Commission wants you to be aware of your right to intervene in this matter. Your comments and request for intervention should be addressed to:

Executive Director's Office Public Service Commission of Kentucky P.O. Box 615

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Cellere and Central States welcome the opportunity to serve and provide wireless service in your community!


\section*{Dana Adkins}

1911 Oakland Ridge
Olive Hill, KY 41164


Dana Adkins
720 State Highway 986
Olive Hill, KY 41164


\section*{EXHIBIT G}

Certified letter to Judge Executive

\section*{July 7, 2008}

Via Certified Mail
Carter County Judge Executive
Charles Wailace
300 West Main Street
Room 227
Grayson, KY 41143
RE: Public Notice - Public Service Commission of Kentucky
Case No. 2008-00260
Cellere, LLC, as agent for Central States Tower Holdings, LLC, is applying to the Public Service Commission of Kentucky (the "Commission") for a Certificate of Public Convenience and Necessity to propose construction and operation for a new facility to provide cellular telecommunications service in propose construction and operation for a new facility to provide celliuar telecommunic to Carter County. The facility will include a 300 foot tower and an equipment shelter to be located at + - -2
Oakland Ridge, Olive Hill, Kentucky 41164 . A map showing the location of the proposed new facility is enclosed.

The Commission invites your comments regarding the proposed construction. You also have the right to intervene in this matter

Your comments and request for intervention should be addressed to:
Executive Director's Office
Public Service Commission of Kentucky
P.O. Box 615

Frankfort, Kentucky 40602
Please refer to case number 2008-00260 in your correspondence.

Sincerely,

Benjamin Meredith
Cellere, LLC
Enclosure
sly


\section*{EXHIBIT H}

Public Notice Signs
(Photos)


EXHIBITI
Affidavit of Publication of Public Notice

\section*{Morehead News Group}
\[
\begin{aligned}
& \text { Newspaper Holdings, Inc. } 722 \text { W. First St, forehead, KY } 40351 \\
& 606-784-4116 \text { or } 800-247-6142
\end{aligned}
\]

\section*{Affidavit of Publication}

STATE OF KENTUCKY
county of Carter

I, Betty Kelly, classified clerk, of Morehead News Grasp, in the aforesaid State and County, hereby certify that the attached advertisement appear ed on \(-30-08\) in the S live till Time's


Subscribed and sworn to before me, a Notary Public, within and for the State and County aforesaid, by Betty Kelly, on the above date.


My Commission Expires: \(\qquad\)
 The Worehewide Mate themes


\section*{EXHIBIT J}

Map of Search Area

```

