RICENED

DEC 07 2007

PUBLIC SERVICE COMMISSION

Kentucky Utilities Company

Financial Statements (Unaudited)

As of September 30, 2007 and 2006

TABLE OF CONTENTS

Financial Statements	.1
Statements of Income	.1
Statements of Retained Earnings	.1
Balance Sheets	
Statements of Cash Flows	

Notes to Financial Statements	5
Note 1 - General	5
Note 2 - Rates and Regulatory Matters	5
Note 3 - Financial Instruments	8
Note 4 - Pension and Other Postretirement Benefit Plans	9
Note 5 - Income Taxes	10
Note 6 - Short-Term and Long-Term Debt	11
Note 7 - Commitments and Contingencies	12
Note 8 - Related Party Transactions	16
Note 9 - Subsequent Events	18

Kentucky Utilities Company Balance Sheets (Unaudited) (Millions of \$)

ASSETS	September 30, <u>2007</u>	December 31, <u>2006</u>
Current assets:		
Cash and cash equivalents	\$ 1	\$6
Restricted cash (Note 6)	40	23
Accounts receivable – less reserves of \$2 million	168	123
Accounts receivable from affiliated companies (Note 8)	6	50
Income tax receivable		6
Materials and supplies:		
Fuel (predominantly coal)	. 49	64
Other materials and supplies		34
Prepayments and other current assets	4	7
Total current assets		313
Other property and investments	28	25
Utility plant:		
At original cost	4,714	4,168
Less: reserve for depreciation	1,604	1,553
Net utility plant	3,110	2,615
Deferred debits and other assets:		
Regulatory assets (Note 2):		
Pension and postretirement benefits	. 66	64
Other		83
Cash surrender value of key man life insurance		35
Other assets		8
Total deferred debits and other assets	**************************************	190
Total assets	. <u>\$ 3,662</u>	<u>\$ 3,143</u>

Kentucky Utilities Company Statements of Cash Flows (Unaudited) (Millions of \$)

	For the Nine Septe	Months mber 30,	Ended
	2007	2	<u>006</u>
CASH FLOWS FROM OPERATING ACTIVITIES:			
Net income	\$ 130	\$	109
Items not requiring cash currently:			
Depreciation and amortization	89		86
Deferred income taxes	(2)		1
VDT amortization	-		3
Investment tax credit - net	28		-
Other	2		10
Changes in current assets and liabilities:			
Accounts receivable	(1)		35
Materials and supplies	15		(4)
Other current assets	3		(6)
Accounts payable	(26)		25
Accrued income taxes	9		(13)
Other current liabilities	1		13
Pension funding	(13)		-
Fuel adjustment clause receivable, net	(22)		(24)
MISO exit	-		(20)
Other	(4)		(7)
Net cash provided by operating activities	209	-	208
CASH FLOWS FROM INVESTING ACTIVITIES:			
Construction expenditures	(512)		(236)
Change in restricted cash	(17)		7
Net cash used for investing activities	(529)		(229)
CASH FLOWS FROM FINANCING ACTIVITIES:			
Retirement of bonds (Note 6)	(107)		(36)
Proceeds from issuance of affiliated company debt (Note 6)	502		50
Repayment of debt from affiliated company (Note 6)	(216)		(11)
Issuance of pollution control bonds	81		16
Capital contribution	55		
Net cash provided by financing activities	315		19
CHANGE IN CASH AND CASH EQUIVALENTS	(5)		(2)
CASH AND CASH EQUIVALENTS AT BEGINNING OF PERIOD	6		7
CASH AND CASH EQUIVALENTS AT END OF PERIOD	<u>\$ 1</u>	\$	5

The following regulatory assets and liabilities were included in KU's Balance Sheets:

Kentucky Utilities Company (unaudited)

(in millions)	September 30, <u>2007</u>	December 31, <u>2006</u>
FAC	\$ 38	\$ 16
ARO	24	22
MISO exit	20	20
ECR	11	10
Unamortized loss on bonds	10	10
Other	8	5
Subtotal	111	83
Pension and postretirement benefits	66	64
Total regulatory assets	<u>\$ 177</u>	<u>\$ 147</u>
Accumulated cost of removal of utility plant	\$304	\$ 297
Deferred income taxes – net	29	27
Other		6
Total regulatory liabilities	<u>\$ 343</u>	<u>\$ 330</u>

KU does not currently earn a rate of return on the FAC regulatory asset, which is a separate recovery mechanism with recovery within twelve months. No return is earned on the pension and postretirement benefits regulatory asset which represents the changes in funded status of the plans. The Company will seek recovery of this asset in future proceedings with the Kentucky and Virginia Commissions. No return is currently earned on the ARO asset. This regulatory asset will be offset against the associated regulatory liability, ARO asset and ARO liability at the time the underlying asset is retired. The MISO exit amount represents the costs relating to the withdrawal from MISO membership. KU expects to seek recovery of this asset in future proceedings with the Kentucky and Virginia Commissions. KU currently earns a rate of return on the remaining regulatory assets.

FAC. In December 2006, the Kentucky Commission initiated its periodic two-year review of KU's past operations of the fuel clause and transfer of fuel costs from the FAC to base rates. In March 2007, intervenors representing industrial customers challenged KU's recovery of \$5.1 million in aggregate fuel costs KU incurred during a period prior to its exit from the MISO and requested the Kentucky Commission disallow this amount. A public hearing was held in May 2007. Final briefs were filed by the Company and the intervenors in June 2007. In October 2007, the Kentucky Commission issued its Order in this proceeding. The Kentucky Commission findings were that KU incurred no improper fuel cost during the two-year review period and that KU was in compliance with the provisions of Administrative Regulation 807 KAR 5:5056. The Kentucky Commission further approved KU's recommendation for the transfer of fuel cost from the FAC to base rates. In November 2007, the KIUC filed a petition for rehearing, claiming the Kentucky Commission misinterpreted the KIUC's arguments in the proceeding. The Company expects a ruling from the Kentucky Commission by the end of November 2007.

choice for most consumers in the applicable regions of the state. Thereafter, a hybrid model of regulation is expected to apply in Virginia, whereby utility rates would be reviewed every two years and a utility's rate of return on equity shall not be set lower than the average of the rates of return for other regional utilities, with certain caps, floors or adjustments. The legislation is effective in July 2007, and also includes a 10% nonbinding goal for renewable power generation by 2022, as well as incentives for new generation, including renewables. Under the legislation KU retains an existing exemption from customer choice and other restructuring activities as applicable to KU's limited service territory in Virginia. However, KU will be subject to a rate proceeding in the first six months of 2009 based on calendar year 2008 financial data under the hybrid model of regulation. Beginning in 2011, KU will make biennial rate filings with the Virginia Commission.

Ghent FGD Inquiry. In October 2006, the Kentucky Commission commenced an inquiry into elements of KU's planned construction of one of its three new FGDs at the Ghent generating station. The proceeding requested, and KU provided, additional information regarding configuration details, expenditures and the proposed construction sequence applicable to future construction phases of the Ghent FGD project. In January 2007, the Kentucky Commission issued an Order completing its inquiry in the matter and confirming its approval of KU's construction plan. The Order also provided general guidance for jurisdictional utilities regarding applicable information and data requirements for future CCN applications and subsequent proceedings.

Note 3 - Financial Instruments

Interest Rate Swaps (hedging derivatives). KU has used over-the-counter interest rate swaps to hedge exposure to market fluctuations in certain of its debt instruments. Pursuant to Company policy, use of these financial instruments is intended to mitigate risk, earnings and cash flow volatility and is not speculative in nature. Management has designated all of the interest rate swaps as hedge instruments. Financial instruments designated as fair value hedges and the underlying hedged items are periodically marked to market with the resulting net gains and losses recorded directly into net income. Upon termination of any fair value hedge, the resulting gain or loss is recorded into net income. Financial instruments designated as cash flow hedges have resulting gains and losses recorded within stockholders' equity.

KU was party to an interest rate swap agreement with a notional amount of \$53 million as of December 31, 2006. The interest rate swap was terminated in February 2007, when the underlying debt was defeased. Under this swap agreement, KU paid variable rates based on LIBOR averaging 7.44% and received fixed rates averaging 7.92% in 2007, prior to the termination of the swap. The swap agreement in effect at December 31, 2006, had been designated as a fair value hedge. The fair value designation was assigned because the underlying fixed rate debt had a firm future commitment. For the nine months ended September 30, 2006, the effect of marking these financial instruments and the underlying debt to market resulted in pre-tax gains of less than \$1 million recorded in interest expense. There was no activity related to the swap in the third quarter of 2007, due to its termination in February 2007.

Interest rate swaps hedge interest rate risk on the underlying debt. Under SFAS No. 133, *Accounting for Derivative Instruments and Hedging Activities*, as amended, in addition to swaps being marked to market, the item being hedged must also be marked to market. Consequently for the year ended December 31, 2006, KU's debt reflects a mark-to-market adjustment of less than \$1 million.

anticipates making further voluntary contributions in 2007 to fund the Voluntary Employee Beneficiary Association trusts to match the annual postretirement expense and funding the postretirement medical account under the pension plan up to the maximum amount allowed by law.

Note 5 - Income Taxes

A United States consolidated income tax return is filed by E.ON U.S.'s direct parent, EUSIC, for each tax period. Each subsidiary of the consolidated tax group, including KU, will calculate its separate income tax for the tax period. The resulting separate-return tax cost or benefit will be paid to or received from the parent company or its designee. KU also files income tax returns in various state jurisdictions. With few exceptions, KU is no longer subject to U.S. federal, state or non-U.S. income tax examinations by tax authorities for years before 2004. Statutes of limitations related to the 2004 and later returns are still open. Tax years 2005, 2006 and 2007 are under audit by the IRS with the 2007 return being examined under an IRS pilot program named "Compliance Assurance Process". This program accelerates the IRS's review to the actual calendar year applicable to the return and ends 90 days after the return is filed.

KU adopted the provisions of FIN 48 effective January 1, 2007. At the date of adopting FIN 48, KU had \$2 million of unrecognized tax benefits, primarily related to federal income taxes. If recognized, the entire \$2 million of unrecognized tax benefits would reduce the effective tax rate.

Included in other liabilities at September 30, 2007, is less than \$1 million of tax positions for which the ultimate deductibility is highly certain but for which there is uncertainty about the timing of such deductibility. Furthermore, possible amounts of uncertain tax positions for KU that may decrease within the next 12 months total \$1 million. The estimated amount of the change in uncertain tax position is based on the expiration of statutes during 2007.

KU, upon adoption of FIN 48, adopted a new financial statement classification for interest and penalties. Prior to the adoption of FIN 48, KU recorded interest and penalties for income taxes on the income statement in income tax expense and in the taxes accrued balance sheet account, net of tax. Upon adoption of FIN 48, interest and penalties are recorded as operating expenses on the income statement and accrued expenses in the balance sheet, on a pre-tax basis. The interest accrued is based on federal and state large corporate underpayment interest rates.

The amount KU recognized as interest accrued related to unrecognized tax benefits in interest expense in operating expenses was less than \$1 million at both September 30, 2007 and December 31, 2006. No penalties were accrued by KU upon adoption of FIN 48 or through September 30, 2007.

In June 2006, KU and LG&E filed a joint application with the DOE requesting certification to be eligible for investment tax credits applicable to the construction of TC2. In November 2006, the DOE and the IRS announced that KU and LG&E were selected to receive the tax credit. An additional IRS certification required to obtain the investment tax credit was received in August 2007. KU's portion of the tax credit will be approximately \$101 million over the construction period of TC2 and will be amortized to income over the life of the related property. In the third quarter of 2007, based on eligible construction expenditures incurred in 2007, KU recorded \$10 million of federal investment tax credit. The credit recorded decreased current federal income taxes by \$10 million, during the three months ended September 30, 2007, and \$30 million for the nine months ended September 30, 2007.

E.ON U.S. maintains a revolving credit facility totaling \$150 million and \$200 million at September 30, 2007 and December 31, 2006, respectively, with an affiliated company, E.ON North America, Inc., to ensure funding availability for the money pool. The balance is as follows:

		Amount	Balance	Average
(\$ in millions)	<u>Total Available</u>	Outstanding	<u>Available</u>	Interest Rate
September 30, 2007	\$150	\$122	\$28	5.45%
December 31, 2006	\$200	\$102	\$98	5.49%

Redemptions of long-term debt year-to-date through September 30, 2007, are summarized below:

		Principal			
		Amount		Secured/	
Year	Description	(in millions)	Rate	Unsecured	<u>Maturity</u>
2007	Pollution control bonds	\$54	Variable	Secured	2024
2007	First mortgage bonds	\$53	7.92%	Secured	2007

Issuances of long-term debt year-to-date through September 30, 2007, are summarized below:

		Principal			
		Amount		Secured/	
Year	Description	<u>(in millions)</u>	Rate	Unsecured	Maturity
2007	Pollution control bonds	\$ 54	Variable	Unsecured	2034
2007	Pollution control bonds	\$ 18	Variable	Unsecured	2026
2007	Pollution control bonds	\$9	Variable	Unsecured	2037
2007	Due to Fidelia	\$ 53	5.69%	Unsecured	2022
2007	Due to Fidelia	\$ 75	5.86%	Unsecured	2037
2007	Due to Fidelia	\$ 50	5.98%	Unsecured	2017
2007	Due to Fidelia	\$100	5.96%	Unsecured	2028

KU no longer has any secured debt and is no longer subject to periodic reporting under the Securities Exchange Act of 1934.

In October 2007, KU entered into a long-term borrowing arrangement with Fidelia in principal amount of \$70 million.

Note 7 - Commitments and Contingencies

Except as may be discussed in this quarterly report (including Note 2), material changes have not occurred in the current status of various commitments or contingent liabilities from that discussed in KU's Annual Report for the year ended December 31, 2006 (including in Notes 2 and 9 to the financial statements of KU contained therein). See the above-referenced notes in KU's Annual Report regarding such commitments or contingencies.

Owensboro Contract Litigation. In May 2004, the City of Owensboro, Kentucky and OMU commenced a suit now removed to the U.S. District Court for the Western District of Kentucky, against KU concerning a long-term power supply contract (the "OMU Agreement") with KU. The dispute involves interpretational differences regarding issues under the OMU Agreement, including various payments or charges between KU and OMU and rights concerning excess power, termination and emissions

Ambient Air Quality. The Clean Air Act requires the EPA to periodically review the available scientific data for six criteria pollutants and establish concentration levels in the ambient air sufficient to protect the public health and welfare with an extra margin for safety. These concentration levels are known as NAAQS. Each state must identify "nonattainment areas" within its boundaries that fail to comply with the NAAQS and develop an SIP to bring such nonattainment areas into compliance. If a state fails to develop an adequate plan, the EPA must develop and implement a plan. As the EPA increases the stringency of the NAAQS through its periodic reviews, the attainment status of various areas may change, thereby triggering additional emission reduction obligations under revised SIPs aimed to achieve attainment.

In 1997, the EPA established new NAAQS for ozone and fine particulates that required additional reductions in SO₂ and NOx emissions from power plants. In 1998, the EPA issued its final "NOx SIP Call" rule requiring reductions in NOx emissions of approximately 85 percent from 1990 levels in order to mitigate ozone transport from the midwestern U.S. to the northeastern U.S. To implement the new federal requirements, in 2002, Kentucky amended its SIP to require electric generating units to reduce their NOx emissions to 0.15 pounds weight per MMBtu on a company-wide basis. In 2005, the EPA issued the CAIR which requires additional SO₂ emission reductions of 70 percent and NOx emission reductions of 65 percent from 2003 levels. The CAIR provides for a two-phase cap and trade program, with initial reductions of NOx and SO₂ emissions due by 2009 and 2010, respectively, and final reductions due by 2015. The final rule is currently under challenge in a number of federal court proceedings. In 2006, Kentucky proposed to amend its SIP to adopt state requirements similar to those under the federal CAIR. Depending on the level of action determined necessary to bring local non-attainment areas into compliance with the new ozone and fine particulate standards, KU's power plants are potentially subject to additional reductions in SO₂ and NOx emissions. KU's weighted-average company-wide emission rate for SO₂ in the third quarter of 2007 was approximately 1.21 lbs./MMBtu of heat input, with every generating unit below its emission limit established by the Kentucky Division for Air Quality.

Hazardous Air Pollutants. As provided in the 1990 amendments to the Clean Air Act, the EPA investigated hazardous air pollutant emissions from electric utilities and submitted a report to Congress identifying mercury emissions from coal-fired power plants as warranting further study. In 2005, the EPA issued the CAMR establishing mercury standards for new power plants and requiring all states to issue new SIPs including mercury requirements for existing power plants. The EPA issued a model rule which provides for a two-phase cap and trade program with initial reductions due by 2010 and final reductions due by 2018. The CAMR provides for reductions of 70 percent from 2003 levels. The EPA closely integrated the CAMR and CAIR programs to ensure that the 2010 mercury reduction targets will be achieved as a "co-benefit" of the controls installed for purposes of compliance with the CAIR. The final rule is also currently under challenge in the federal courts. In 2006, Kentucky proposed to amend its SIP to adopt state requirements similar to those under the federal CAMR. In addition, in 2005 and 2006, state and local air agencies in Kentucky have proposed or adopted rules aimed at regulating additional hazardous air pollutants from sources including power plants. To the extent those rules are final, they are not expected to have a material impact on KU's power plant operations.

Acid Rain Program. The 1990 amendments to the Clean Air Act imposed a two-phased cap and trade program to reduce SO_2 emissions from power plants that were thought to contribute to "acid rain" conditions in the northeastern U.S. The 1990 amendments also contained requirements for power plants to reduce NOx emissions through the use of available combustion controls.

Regional Haze. The Clean Air Act also includes visibility goals for certain federally designated areas, including national parks, and requires states to submit SIPs that will demonstrate reasonable progress toward preventing future impairment and remedying any existing impairment of visibility in those areas.

Brown New Source Review Litigation. In April 2006, the EPA issued an NOV alleging that KU had violated certain provisions of the Clean Air Act's new source review rules relating to work performed in 1997, on a boiler and turbine at KU's E.W. Brown generating station. In December 2006, the EPA issued a second NOV alleging the Company had exceeded heat input values in violation of the air permit for the unit. During 2006, KU provided data responses to the EPA with respect to the allegations in the NOVs. In March 2007, the Department of Justice filed a complaint in federal court in Kentucky alleging the same violations specified in the prior NOVs. The complaint seeks civil penalties, including potential per-day fines, remedial measures and injunctive relief. In April 2007, KU filed an answer in the civil suit denying the allegations. In July 2007, a July 2009 date for trial on the merits was scheduled. The parties continue periodic settlement discussions. KU cannot determine the overall outcome or potential effects of these matters, including whether substantial fines, penalties or remedial construction may result.

Section 114 Requests. In August 2007, the EPA issued administrative information requests under Section 114 of the Clean Air Act requesting new source review-related data regarding certain construction and maintenance activities at LG&E's Mill Creek 4 and Trimble County 1 generating units and KU's Ghent 2 generating unit. The Companies are complying with the information requests and are not able to predict further proceedings in this matter at this time.

Ghent Opacity NOV. In September, 2007, the EPA issued an NOV alleging that KU had violated certain provisions of the Clean Air Act's operating rules relating to opacity during June and July 2007 at Units 1 and 3 of KU's Ghent generating station. KU is not able to estimate the outcome or potential effects of these matters, including whether substantial fines, penalties or remedial construction may result.

General Environmental Proceedings. From time to time, KU appears before the EPA, various state or local regulatory agencies and state and federal courts regarding matters involving compliance with applicable environmental laws and regulations. Such matters include liability under the Comprehensive Environmental Response, Compensation and Liability Act for cleanup at various off-site waste sites and ongoing claims regarding GHG emissions from KU's generating stations. Based on analysis to date, the resolution of these matters is not expected to have a material impact on the operations of KU.

Note 8 - Related Party Transactions

KU and other subsidiaries of E.ON engage in related party transactions. Transactions between KU and E.ON U.S. subsidiaries are eliminated upon consolidation of E.ON U.S. Transactions between KU and E.ON subsidiaries are eliminated upon consolidation of E.ON. These transactions are generally performed at cost and are in accordance with the FERC regulations under PUHCA 2005 and the applicable Kentucky Commission and Virginia Commission regulations. The significant related party transactions are disclosed below.

Electric Purchases

KU and LG&E purchase energy from each other in order to effectively manage the load of their retail customers and to satisfy off-system sales. These sales and purchases are included in the statements of

In September 2007, KU received a capital contribution from its common shareholder, E.ON U.S. in the amount of \$55 million.

Note 9 - Subsequent Events

On October 25, 2007, KU entered into a long-term borrowing agreement with Fidelia with a principal amount of \$70 million, interest rate of 5.71% and a maturity date of October, 25, 2019.

.

Louisville Gas and Electric Company

Financial Statements (Unaudited)

As of September 30, 2007 and 2006

TABLE OF CONTENTS

Financial Statements	1
Statements of Income	
Statements of Retained Earnings	
Balance Sheets	
Statements of Cash Flows	
Statements of Comprehensive Income	

Notes to Financial Statements	7
Note 1 - General	
Note 2 - Rates and Regulatory Matters	7
Note 3 - Financial Instruments	
Note 4 - Pension and Other Postretirement Benefit Plans	
Note 5 - Income Taxes	
Note 6 - Short-Term and Long-Term Debt	
Note 7 - Commitments and Contingencies	
Note 8 - Segments of Business	
Note 9 - Related Party Transactions	

Louisville Gas and Electric Company Statements of Retained Earnings (Unaudited) (Millions of \$)

	1111001.1	onths Ended mber 30,	Nine Mont Septem	ber 30,
	<u>2007</u>	2006	<u>2007</u>	<u>2006</u>
Balance at beginning of period Net income Preferred stock buyback Subtotal	45	\$ 609 40 649	\$ 639 101 <u>(4)</u> 736	\$ 621 90 711
Cash dividends declared on stock: Cumulative preferred Common Subtotal		<u>35</u> 35	1 65 66	2 95 97
Balance at end of period	<u>\$ 670</u>	<u>\$ 614</u>	<u>\$ 670</u>	<u>\$ 614</u>

Louisville Gas and Electric Company Balance Sheets (cont.) (Unaudited) (Millions of \$)

ABILITIES AND EQUITY	September 30, <u>2007</u>	ber 31, <u>06</u>
Current liabilities:		
Current portion of long-term debt	\$ 120	\$ 248
Notes payable to affiliated companies (Note 6 and Note 9)	106	68
Accounts payable	89	103
Accounts payable to affiliated companies (Note 9)	36	55
Customer deposits	19	18
Other current liabilities	39	40
Total current liabilities		532
Long-term debt:		
Long-term debt (Note 6)	455	328
Long-term debt to affiliated company (Note 6 and Note 9)	363	225
Mandatorily redeemable preferred stock	_	 19
Total long-term debt		 572
Deferred credits and other liabilities:		
Accumulated deferred income taxes	341	333
Accumulated provision for pensions and related benefits	95	149
Investment tax credit	47	41
Asset retirement obligation	29	28
Regulatory liabilities (Note 2):		
Accumulated cost of removal of utility plant	239	232
Deferred income taxes – net and other	70	89
Other liabilities	43	44
Total deferred credits and other liabilities		 916
Cumulative preferred stock		 70
Common equity:		
Common stock, without par value –		
Authorized 75,000,000 shares, outstanding 21,294,223 shares.	424	424
Additional paid-in capital.	40	40
Accumulated comprehensive loss	(8)	(9)
Retained earnings		639
Total common equity		 1,094
Total liabilities and equity	\$ 3,217	\$ 3,184

Louisville Gas and Electric Company Statements of Comprehensive Income (Unaudited) (Millions of \$)

	Three Months Ended September 30,		Nine Months Ended September 30,					
	<u>200</u>	<u>)7</u>	<u>20</u>	006	<u>2</u> (007	<u>20</u>	06
Net income	\$	45	\$	40	\$	101	\$	90
Gain (loss) on derivative instruments and hedging activities – net of tax benefit (expense) of \$3 million, \$4 million,								
\$(1) million and \$(1) million, respectively (Note 3)		(4)		(6)		1		2
Comprehensive income, net of tax		(4)		(6)		1		2
Comprehensive income	\$	41	\$	34	\$	102	\$	92

The following regulatory assets and liabilities were included in LG&E's Balance Sheets:

Louisville Gas and Electric Company (unaudited)

(in millions)	September 30, <u>2007</u>	December 31, <u>2006</u>
ARO	\$ 24	\$ 22
Unamortized loss on bonds	19	20
Gas supply adjustments	16	21
FAC	14	4
MISO exit	13	13
ECR	4	9
Other	9	4
Subtotal	99	93
Pension and postretirement benefits	126	126
Total regulatory assets	<u>\$ 225</u>	<u>\$ 219</u>
Accumulated cost of removal of utility plant	\$ 239	\$ 232
Deferred income taxes – net	50	54
Gas supply adjustments	12	31
Other	8	4
Total regulatory liabilities	<u>\$ 309</u>	<u>\$ 321</u>

LG&E does not currently earn a rate of return on the regulatory assets associated with the gas supply cost and gas performance-based ratemaking adjustments (both made through the Gas Supply Clause) and FAC; both the Gas Supply Clause and the FAC are separate recovery mechanisms with recovery within twelve months. No return is earned on the pension and postretirement benefits regulatory asset which represents the changes in funded status of the plans. The Company will seek recovery of this asset in future proceedings with the Kentucky Commission. No return is currently earned on the ARO asset. This regulatory asset will be offset against the associated regulatory liability, ARO asset and ARO liability at the time the underlying asset is retired. The MISO exit amount represents the costs relating to the withdrawal from MISO membership. LG&E expects to seek recovery of this asset in future proceedings with the Kentucky Commission. LG&E currently earns a rate of return on the remaining regulatory assets.

FAC. In December 2006, the Kentucky Commission initiated its periodic two-year review of LG&E's past operations of the fuel clause and transfer of fuel costs from the FAC to base rates. In March 2007, intervenors representing industrial customers challenged LG&E's recovery of \$0.5 million in aggregate fuel costs LG&E incurred during a period prior to its exit from the MISO and requested the Kentucky Commission disallow this amount. A public hearing was held in May 2007. Final briefs were filed by the Company and the intervenors in June 2007. In October 2007, the Kentucky Commission issued its Order in this proceeding. The Kentucky Commission findings were that LG&E incurred no improper fuel cost during the two-year review period and that LG&E was in compliance with the provisions of Administrative Regulation 807 KAR 5:5056. The Kentucky Commission further approved LG&E's recommendation for the transfer of fuel cost from the FAC to base rates. In November 2007, the KIUC filed a petition for rehearing, claiming the Kentucky Commission misinterpreted the KIUC's arguments in the proceeding. The Company expects a ruling from the Kentucky Commission by the end of November 2007.

retail gas activities. This corrective event places these activities in compliance for future periods. In August 2007, the FERC advised LG&E that it had concluded its investigation related to prior periods and had closed the matter with no further actions.

Note 3 - Financial Instruments

Interest Rate Swaps (hedging derivatives). LG&E uses over-the-counter interest rate swaps to hedge exposure to market fluctuations in certain of its debt instruments. Pursuant to Company policy, use of these financial instruments is intended to mitigate risk, earnings and cash flow volatility and is not speculative in nature. Management has designated all of the interest rate swaps as hedge instruments. Financial instruments designated as cash flow hedges have resulting gains and losses recorded within other comprehensive income and stockholders' equity. Financial instruments designated as fair value hedges and the underlying hedged items are periodically marked to market with the resulting net gains and losses recorded directly into net income. Upon termination of any fair value hedge, the resulting gain or loss is recorded into net income.

LG&E was party to various interest rate swap agreements with aggregate notional amounts of \$211 million as of September 30, 2007 and December 31, 2006. Under these swap agreements, LG&E paid fixed rates averaging 4.38% and received variable rates based on LIBOR or the Securities Industry and Financial Markets Association's municipal swap index averaging 3.87% at September 30, 2007. The swap agreements in effect at September 30, 2007, have been designated as cash flow hedges and mature on dates ranging from 2020 to 2033. The cash flow designation was assigned because the underlying variable rate debt has variable future cash flows. The hedges have been deemed to be fully effective resulting in a pre-tax gain of \$2 million for the nine months ended September 30, 2007, recorded in other comprehensive income. Upon expiration of these hedges, the amount recorded in other comprehensive income to earnings in the next twelve months is less than \$1 million. A deposit in the amount of \$9 million, used as collateral for one of the interest rate swaps, is included in restricted cash on the balance sheet. The amount of the deposit required is tied to the market value of the swap. The remaining restricted cash relates to construction deposits.

Energy Trading and Risk Management Activities (non-hedging derivatives). LG&E conducts energy trading and risk management activities to maximize the value of power sales from physical assets it owns. Energy trading activities are principally forward financial transactions to hedge price risk and are accounted for on a mark-to-market basis in accordance with SFAS No. 133, *Accounting for Derivative Instruments and Hedging Activities*, as amended.

The table below summarizes LG&E's energy trading and risk management activities for the nine months ended September 30:

(in millions)	<u>2007</u>	<u>2006</u>
Fair value of contracts at beginning of period, net asset	\$ 1	\$ 1
Fair value of contracts when entered into during the period	-	2
Contracts realized or otherwise settled during the period	-	(3)
Changes in fair values due to changes in assumptions	(1)	5
Fair value of contracts at end of period, net asset	<u>\$</u>	<u>\$5</u>

No changes to valuation techniques for energy trading and risk management activities occurred during 2007 or 2006. Changes in market pricing, interest rate and volatility assumptions were made during both

LG&E adopted the provisions of FIN 48 effective January 1, 2007. At the date of adopting FIN 48, LG&E had \$7 million of unrecognized tax benefits, \$5 million related to federal income taxes and \$2 million related to state income taxes. If recognized, the entire \$7 million of unrecognized tax benefits would reduce the effective tax rate.

Included in other liabilities at September 30, 2007, is less than \$1 million of tax positions for which the ultimate deductibility is highly certain but for which there is uncertainty about the timing of such deductibility. Furthermore, possible amounts of uncertain tax positions for LG&E that may decrease within the next 12 months total \$1 million. The estimated amount of the change in uncertain tax position is based on the expiration of statutes during 2007.

LG&E, upon adoption of FIN 48, adopted a new financial statement classification for interest and penalties. Prior to the adoption of FIN 48, LG&E recorded interest and penalties for income taxes on the income statement in income tax expense and in the taxes accrued balance sheet account, net of tax. Upon adoption of FIN 48, interest and penalties are recorded as operating expenses on the income statement and accrued expenses in the balance sheet, on a pre-tax basis. The interest accrued is based on federal and state large corporate underpayment interest rates.

The amount LG&E recognized as interest accrued related to unrecognized tax benefits in interest expense in operating expenses was less than \$1 million at both September 30, 2007 and December 31, 2006. No penalties were accrued by LG&E upon adoption of FIN 48 or through September 30, 2007.

In June 2006, LG&E and KU filed a joint application with the DOE requesting certification to be eligible for investment tax credits applicable to the construction of TC2. In November 2006, the DOE and the IRS announced that LG&E and KU were selected to receive the tax credit. An additional IRS certification required to obtain the investment tax credit was received in August 2007. LG&E's portion of the tax credit will be approximately \$24 million over the construction period of TC2 and will be amortized to income over the life of the related property. In the third quarter of 2007, based on eligible construction expenditures incurred in 2007, LG&E recorded \$3 million of federal investment tax credit. The credit recorded decreased current federal income taxes by \$3 million, during the three months ended September 30, 2007, and \$8 million for the nine months ended September 30, 2007.

Note 6 - Short-Term and Long-Term Debt

All of LG&E's first mortgage bonds were released and terminated in April 2007. Only the tax-exempt revenue bonds issued by the counties remain. Under the provisions for certain of LG&E's variable-rate pollution control bonds, the bonds are subject to tender for purchase at the option of the holder and to mandatory tender for purchase upon the occurrence of certain events, causing the bonds to be classified as current portion of long-term debt in the balance sheets. The average annualized interest rate for these bonds during the nine months ended September 30, 2007 was 3.69%.

During June 2007, LG&E's five existing lines of credit totaling \$185 million expired and were replaced with short-term bilateral lines of credit facilities totaling \$125 million. There was no outstanding balance under any of these facilities at September 30, 2007. During the third quarter of 2007, LG&E extended the maturity date of these facilities through June 2012.

Dividends on the shares of preferred stock ceased to accumulate on the redemption date and no further dividends will be paid or will accrue on such preferred stock thereafter. In April 2007, LG&E agreed with Fidelia to eliminate the lien on two secured intercompany loans totaling \$125 million.

In April 2007, LG&E entered into two long-term borrowing arrangements with Fidelia in an aggregate principal amount of \$138 million. The loan proceeds were used to fund the preferred stock redemption and to repay certain short-term loans incurred to fund the pension contribution made by the Company during the first quarter.

In April 2007, LG&E completed a series of financial transactions impacting its periodic reporting requirements. The pollution control revenue bonds issued by certain governmental entities secured by the \$31 million Pollution Control Series S, the \$60 million Pollution Control Series T and the \$35 million Pollution Control Series U bonds were refinanced and replaced with new unsecured tax-exempt bonds of like amounts. Pursuant to the terms of the bonds, an underlying lien on substantially all of LG&E's assets was released following the completion of these steps.

As of April 27, 2007, LG&E no longer has any secured debt and is no longer subject to periodic reporting under the Securities Exchange Act of 1934.

Note 7 - Commitments and Contingencies

Except as may be discussed in this quarterly report (including Note 2), material changes have not occurred in the current status of various commitments or contingent liabilities from that discussed in LG&E's Annual Report for the year ended December 31, 2006 (including in Notes 2 and 9 to the financial statements of LG&E contained therein). See the above-referenced notes in LG&E's Annual Report for information regarding such commitments or contingencies.

Construction Program. LG&E had approximately \$94 million of commitments in connection with its construction program at September 30, 2007.

In June 2006, LG&E and KU entered into a construction contract regarding the TC2 project. The contract is generally in the form of a lump-sum, turnkey agreement for the design, engineering, procurement, construction, commissioning, testing and delivery of the project, according to designated specifications, terms and conditions. The contract price and its components are subject to a number of potential adjustments which may serve to increase or decrease the ultimate construction price paid or payable to the contractor. The contract also contains standard representations, covenants, indemnities, termination and other provisions for arrangements of this type, including termination for convenience or for cause rights.

TC2 Air Permit. In December 2005, the Sierra Club and other environmental groups filed a petition challenging the air permit issued for the TC2 baseload generating unit. The filing of the challenge did not stay the permit, so the Company was free to proceed with construction during the pendancy of the action. In June 2007, the state hearing officer assigned to the matter recommended upholding the air permit with minor revisions. In September 2007, the Secretary of the Kentucky Environmental and Public Protection Cabinet issued a final order approving the hearing officer's recommendation and upholding the permit. The Sierra Club did not seek judicial review of the final order. In addition, the Company applied for a permit revision to reflect minor design changes to TC2. In October 2007, the Sierra Club submitted comments to the Cabinet objecting to the draft permit revision and attempting to reassert its previous general objections to the generating unit. The Company is currently unable to predict the ultimate outcome of this matter.

agencies in Kentucky have proposed or adopted rules aimed at regulating additional hazardous air pollutants from sources including power plants. To the extent those rules are final, they are not expected to have a material impact on LG&E's power plant operations.

Acid Rain Program. The 1990 amendments to the Clean Air Act imposed a two-phased cap and trade program to reduce SO_2 emissions from power plants that were thought to contribute to "acid rain" conditions in the northeastern U.S. The 1990 amendments also contained requirements for power plants to reduce NOx emissions through the use of available combustion controls.

Regional Haze. The Clean Air Act also includes visibility goals for certain federally designated areas, including national parks, and requires states to submit SIPs that will demonstrate reasonable progress toward preventing future impairment and remedying any existing impairment of visibility in those areas. In 2005, the EPA issued its CAVR detailing how the Clean Air Act's BART requirements will be applied to facilities, including power plants, built between 1962 and 1974 that emit certain levels of visibility impairing pollutants. Under the final rule, because the CAIR will result in more visibility improvement than BART, states are allowed to substitute CAIR requirements in their regional haze SIPs in lieu of controls that would otherwise be required by BART. The final rule has been challenged in the courts.

Installation of Pollution Controls. Many of the programs under the Clean Air Act utilize cap and trade mechanisms that require a company to hold sufficient emissions allowances to cover its authorized emissions on a company-wide basis and do not require installation of pollution controls on every generating unit. Under cap and trade programs, companies are free to focus their pollution control efforts on plants where such controls are particularly efficient and utilize the resulting emission allowances for smaller plants where such controls are not cost effective. LG&E had previously installed flue gas desulfurization equipment on all of its generating units prior to the effective date of the acid rain program. LG&E's strategy for its Phase II SO₂ requirements, which commenced in 2000, is to use accumulated emission allowances to defer additional capital expenditures and to continue to evaluate improvements to further reduce SO₂ emissions. In order to achieve the NOx emission reductions mandated by the NOx SIP Call, LG&E installed additional NOx controls, including selective catalytic reduction technology, during the 2000 to 2006 time period at a cost of \$187 million. In 2001, the Kentucky Commission granted recovery in principle of these costs incurred by LG&E under its periodic environmental surcharge review mechanisms.

In order to achieve the emissions reductions mandated by the CAIR and CAMR, LG&E expects to incur additional operating and maintenance costs in operating such controls. In 2005, the Kentucky Commission granted recovery in principle of these costs incurred by LG&E under its periodic environmental surcharge review mechanisms. LG&E believes its costs in reducing SO₂, NOx and mercury emissions to be comparable to those of similarly situated utilities with like generation assets. LG&E's compliance plans are subject to many factors including developments in the emission allowance and fuels markets, future legislative and regulatory enactments, legal proceedings and advances in clean air technology. LG&E will continue to monitor these developments to ensure that its environmental obligations are met in the most efficient and cost-effective manner.

Potential GHG Controls. In 2005, the Kyoto Protocol for reducing GHG emissions took effect, obligating 37 industrialized countries to undertake substantial reductions in GHG emissions. The U.S. has not ratified the Kyoto Protocol and there are currently no mandatory GHG emission reduction requirements at the federal level. Legislation mandating GHG reductions has been introduced in the Congress, but no federal legislation has been enacted to date. In the absence of a program at the federal level, various states, including 11 northeastern U.S. states under the Regional GHG Initiative program and California, have adopted their own GHG emission reduction programs. Substantial efforts to pass federal GHG legislation

Note 9 - Related Party Transactions

LG&E and other subsidiaries of E.ON engage in related party transactions. Transactions between LG&E and E.ON U.S. subsidiaries are eliminated upon consolidation of E.ON U.S. Transactions between LG&E and E.ON subsidiaries are eliminated upon consolidation of E.ON. These transactions are generally performed at cost and are in accordance with FERC regulations under PUHCA 2005 and the applicable Kentucky Commission regulations. The significant related party transactions are disclosed below.

Electric Purchases

LG&E and KU purchase energy from each other in order to effectively manage the load of their retail customers and to satisfy off-system sales. These sales and purchases are included in the statements of income as electric operating revenues and purchased power operating expense. LG&E intercompany electric revenues and purchased power expense is as follows:

	Three Months Ended		Nine Months Ended		
	September 30,		September 30,		
(in millions)	<u>2007</u>	2006	2007	<u>2006</u>	
Electric operating revenues from KU	\$18	\$23	\$71	\$67	
Purchased power from KU	7	17	33	52	

Interest Charges

See Note 6, Short-Term and Long-Term Debt, for details of intercompany borrowing arrangements. Intercompany agreements do not require interest payments for receivables related to services provided when settled within 30 days.

LG&E's intercompany interest expense is as follows:

	Three Months Ended		Nine Months Ended		
	September 30,		September 30,		
(in millions)	2007	<u>2006</u>	2007	<u>2006</u>	
Interest on money pool loans	\$1	\$-	\$3	\$1	
Interest on Fidelia loans	5	3	12	8	

Other Intercompany Billings

E.ON U.S. Services provides LG&E with a variety of centralized administrative, management and support services. These charges include payroll and income taxes paid by E.ON U.S. on behalf of LG&E, labor and overhead charges of E.ON U.S. Services employees performing services for LG&E and vouchers paid by E.ON U.S. Services, including fuel purchases, on behalf of LG&E. The cost of these services are directly charged to LG&E, or for general costs which cannot be directly attributed, charged based on predetermined allocation factors, including the following ratios: number of customers, total assets, revenues, number of employees and other statistical information. These costs are charged on an actual cost basis.

In addition, LG&E and KU provide services to each other and to E.ON U.S. Services. Billings between LG&E and KU relate to labor and overheads associated with union employees performing work for the other utility, charges related to jointly-owned combustion turbines and other miscellaneous charges. Billings from LG&E to E.ON U.S. Services include cash received by E.ON U.S. Services on behalf of

E.ON U.K. Ltd (formerly Powergen Ltd, formerly Powergen PLC), E.ON U.S. LLC (formerly LG&E Energy LLC, formerly LG&E Energy Corp.), LOUISVILLE GAS & ELECTRIC COMPANY, AND KENTUCKY UTILITIES COMPANY

÷

CASE N0. 2000-095

Response to Summary of Findings, No. 15

"LG&E and KU should annually file their current 3-year capital budgets, including an explanation for any reductions in the capital budget items greater that 10 percent."

Please see the attached table entitled Three-Year Capital Budgets.

-

Transmission System Planning Guidelines

September 11, 2007

E.ON plans its transmission system to meet or exceed the fundamental requirements of a reliable bulk electric system as recommended by the NERC Reliability Standards and the SERC Supplement.

Table 1 describes the contingencies and measurements E.ON utilizes in testing and assessing the performance of its transmission system. Stability of the network should be maintained and cascading outages should not occur. Section 3.1 discusses the applicable thermal limits for Normal and Contingency conditions. Section 3.2 discusses the applicable voltage limits for Normal and Contingency conditions. Section 3.3 discusses modeling issues and how they are considered.

Additionally, E.ON periodically evaluates the risk and consequences of extreme contingency events.

3.1 Thermal Limits

E.ON has established normal and emergency thermal limits (MVA) for each facility based upon its established facility ratings methodology. Flows should be within normal MVA ratings with normal generation and normal transmission system conditions. Flows should be within emergency MVA ratings for each contingency where "No" Loss of Demand Or Curtailed Firm Transfers is indicated. The recorded circuit flow will be the maximum MVA flow of either end. The recorded transformer flow will be the "design output" flow; GSU flows will be measured at the HV side, Step-down transformers will be measured at the LV side and system tie transformers will be measured on the side where the flow exits the transformer. A facility will be overloaded when the MVA flow, rounded to two decimal places, exceeds the applicable rating.

3.2 Voltage Limits

A transmission voltage of 94 percent of the nominal value is the minimum acceptable for normal load service and should be maintained at all load serving busses with normal generation and normal transmission system conditions. Any 500 kV system bus voltage should not exceed 110 percent of the nominal value and any other transmission bus voltage should not exceed 105 percent of the nominal value.

Transmission level voltage at the major power plants should be maintainable with normal generation and normal transmission system conditions during summer and winter peak load conditions, as follows:

Power <u>Plant</u>	Transmission <u>Bus (kV)</u>	Scheduled Voltage (kV)	Per Unit <u>Voltage</u>
Brown	Brown N 138	142	1.029
Cane Run	Cane Run Sw 138	138	1.000
Ghent	Ghent 345	355	1.029
Green River	Green River 138	142	1.029
Mill Creek	Mill Creek 345	352	1.020
Trimble County	Trimble Co 345	352	1.020
Elmer Smith	Smith 138	142	1.029

Table 2 Normal Plant Voltages at System Peak Load

A transmission voltage of 90 percent of the nominal value is the minimum acceptable for contingency load service and should be maintained at all load serving busses during any transmission system contingency or generation and transmission system contingency.

Generators and plant auxiliary systems are generally designed to operate within +/- 5% of the nameplate or nominal voltage. Table 3, on the following page, shows the required transmission level voltage at each generating unit to maintain generator voltage and auxiliary bus voltage above 95% of nominal with the unit operating at maximum MW and MVAR output. The transmission level voltage should exceed the voltage specified in Table 3 during any contingency condition. Only on-line generators are applicable to the analysis.

3.3 Modeling Considerations

- <u>Seasons Assessed –</u> The power flow analysis used in the Planning process will evaluate the adequacy of the transmission system to provide Network Integration Transmission Service using summer and winter peak load models and will be documented by an annual Transmission Expansion Plan. Transmission constraints that may occur during shoulder and off-peak conditions will be managed via the ATC process, including potential redispatches. System Impact Studies for Generator Interconnections and any dynamic analysis will also utilize other seasonal and light load models, as appropriate.
- <u>Generation Dispatch</u> Replacement generation required to offset unit outages should be simulated from the most restrictive of internal sources, AEP, Cinergy, and/or TVA. Maximum plant output will be achieved by simulating an outage of one unit at another plant and prorating additional reductions, as necessary, across all on-line units at other plants
- <u>Single Contingency -</u> A single contingency may outage multiple transmission components in the common zone of relay protection. Reclosure of the non-faulted components will be evaluated but is not required if violations occur as a result of the post-fault restoration. Procedures should be developed and documented if the component is not to be reclosed.
- Load Restoration and Switching Post-fault conditions and conditions after load restoration and or switching should be evaluated. Post-contingency operator-initiated actions to restore load service must be simulated. Load that is off-line as a result of the contingency being evaluated may be switched to alternate sources during the restoration process but load should not be taken off-line to perform switching. Post-contingency operator-initiated actions may be simulated to reduce the flow through transformers or increase voltages but not to reduce line flows.
- <u>Transmission Capacitor Switching -</u> Transmission capacitor status (on/off) should be simulated consistent with automatic voltage control (on/off) settings and operating practice during normal transmission system conditions. Capacitor switching should not be simulated to eliminate voltage violations that result from a contingency unless the automatic voltage control would cause the capacitor to operate.
- <u>Off-Peak Voltage Control</u> Transmission system changes to manage Off-Peak voltages will be identified and evaluated using operation data. Seasonal adjustment of fixed taps on transmission transformers should not be required to control voltages within the acceptable ranges. Switching EHV system facilities out of service to reduce off-peak voltages is undesirable.
- <u>Voltage Fluctuations</u> E.ON limits voltage fluctuation due to customer load variations and transmission capacitor switching to a maximum of 3% during normal transmission conditions and 6% during single transmission contingencies. These maximum values apply if the fluctuation occurs less frequently than once per hour. If more frequent, the maximum allowable voltage fluctuation is reduced as per the Limits of Flicker published in IEEE Std 519. The maximum normal and contingency fluctuations are limited to the "Border Line of Visibility" and the "Border Line of Irritability" curves, respectively.

4 Impacted Facilities

Generator Interconnections, Transmission to Transmission Interconnections, Network Integrated Transmission Service, and Long-Term Firm Point to Point (1 yr or longer) Requests require studies to identify facilities that are impacted. The following minimum requirements are used to identify Impacted Facilities:

- the flow increases by 1.00% or more,
- the voltage decreases by 0.50% or more, or
- the short circuit current increases by 5.00% or more.

Impacted Facilities that are identified with pre-existing criteria violations (simulations on base case models) will be evaluated to determine the upgrade required to mitigate the pre-existing violation. Such upgrade and associated rating will be used to determine if additional costs are required due to the Request.

STANDARD & POOR'S

RatingsDirect

_ *RESEARCH*

Summary: Kentucky Utilities Co.

Publication date:	03-Jan-2007
Primary Credit Analyst:	Todd A Shipman, CFA, New York (1) 212-438-7676;
	todd_shipman@standardandpoors.com
Secondary Credit Analyst:	Brian Kahn, New York;
	brian_kahn@standardandpoors.com

Credit Rating: BBB+/Stable/A-2

Rationale

The ratings on Kentucky Utilities Co. are based on the credit profile of parent E.ON U.S. LLC. The E.ON U.S. ratings reflect the credit characteristics of the two operating utilities in Kentucky, Kentucky Utilities and Louisville Gas & Electric Co., and the company's focus on operating the fully integrated utilities, with implicit support for credit quality from E.ON U.S.' ultimate parent, E.ON AG (AA-/Watch Neg/A-1+), factored into the analysis. E.ON has prominently expressed its support for E.ON U.S. and its intent to maintain its U.S. presence.

E.ON U.S.'s business risk profile is rated '6' (satisfactory), and its financial risk profile is considered intermediate. (Utility business risk profiles are categorized from '1' (excellent) to '10' (vulnerable).)

The company's satisfactory business risk profile is supported by low-risk, regulated, and financially sound gas distribution and electric operations, efficient generation facilities that allow for competitive rates, and a supportive regulatory environment. The company's electric operations benefit from a fuel adjustment mechanism and an environmental cost recovery mechanism, while the company's smaller gas operations benefit from a weather normalization adjustment clause and a cost-of-gas cost adjustment mechanism. Together, these mechanisms reduce exposure to environmental requirements, weather, and potential volatility in natural gas prices, all of which normally raise credit-related concerns.

Unregulated operations, a large industrial customer base, and coal-fired generation facilities that require large environmental expenditures detract from the business risk profile. E.ON U.S. may significantly reduce its unregulated operations if a preliminary agreement to exit its involvement with Big Rivers Electric Corp. is finalized. It is anticipated that Big Rivers will obtain control of its plants in September 2007. Currently, E.ON U.S. S. leases and operates four of Big River's power plants.

Liquidity

STANDARD & POOR'S

RatingsDirect

RESEARCH

Summary: Louisville Gas & Electric Co.

Publication date:	05-Jan-2007
Primary Credit Analyst:	Todd A Shipman, CFA, New York (1) 212-438-7676;
	todd_shipman@standardandpoors.com
Secondary Credit Analyst:	Brian Kahn, New York;
	brian_kahn@standardandpoors.com

Credit Rating:	BBB+/Stable/NR
----------------	----------------

Rationale

The ratings on Louisville Gas & Electric Co. are based on the credit profile of parent E.ON U.S. LLC. The E. ON U.S. ratings reflect the credit characteristics of the two operating utilities in Kentucky, Louisville Gas & Electric and Kentucky Utilities Co., and the company's focus on operating the fully integrated utilities, with implicit support for credit quality from E.ON U.S.' ultimate parent, E.ON AG (AA-/Watch Neg/A-1+), factored into the analysis. E.ON has prominently expressed its support for E.ON U.S. and its intent to maintain its U.S. presence.

E.ON U.S.'s business risk profile is rated '6' (satisfactory), and its financial risk profile is considered intermediate. (Utility business risk profiles are categorized from '1' (excellent) to '10' (vulnerable).)

The company's satisfactory business risk profile is supported by low-risk, regulated, and financially sound gas distribution and electric operations, efficient generation facilities that allow for competitive rates, and a supportive regulatory environment. The company's electric operations benefit from a fuel adjustment mechanism and an environmental cost recovery mechanism, while the company's smaller gas operations benefit from a weather normalization adjustment clause and a cost-of-gas cost adjustment mechanism. Together, these mechanisms reduce exposure to environmental requirements, weather, and potential volatility in natural gas prices, all of which normally raise credit-related concerns.

Unregulated operations, a large industrial customer base, and coal-fired generation facilities that require large environmental expenditures detract from the business risk profile. E.ON U.S. may significantly reduce its unregulated operations if a preliminary agreement to exit its involvement with Big Rivers Electric Corp. is finalized. It is anticipated that Big Rivers will obtain control of its plants in September 2007. Currently, E.ON U.S. S. leases and operates four of Big River's power plants.

Liquidity

STANDARD & POOR'S

RATINGSDIRECT®

June 12, 2007

Research Update: E.ON U.S. 'BBB+' Rating Affirmed, Outlook Stable

Primary Credit Analyst: Todd A Shipman, CFA, New York (1) 212-438-7676,todd_shipman@standardandpoors.com

Secondary Credit Analyst: Brian Kahn, New York,brian_kahn@standardandpoors.com

Table Of Contents

Rationale

Outlook

Ratings List

www.standardandpoors.com/ratingsdirect

provides a \$200 million credit facility to E.ON U.S., to ensure funding availability for its money pool.

Outlook

The stable outlook on E.ON U.S. is based on continued support from E.ON AG and a corporate strategy that maintains a primarily low-risk, utility-based business risk profile. The ratings and outlook for E.ON U.S. and its subsidiaries are linked to those on E.ON. The importance of E.ON'S U.S. operations to its group strategy remains a factor in the ratings on E.ON U.S. Any change in the parent's attitude toward its U.S. holdings or in Standard & Poor's perception of the parent's support could lead to a rating change. Completion of the Big Rivers transaction would lessen the company's exposure to unregulated activities and could lead to an improved business risk profile and higher ratings.

Ratings List

Ratings Affirmed

E.ON U.S. LLC	
Corporate credit rating	BBB+/Stable/
Kentucky Utilities Co.	
Corporate credit rating	BBB+/Stable/A-2
Senior secured debt	BBB+
Preferred stock	BBB-
Commercial paper	A-2
Louisville Gas & Electric Co.	
Corporate credit rating	BBB+/Stable/
Senior unsecured debt	BBB+
Preferred stock	BBB-

Complete ratings information is available to subscribers of RatingsDirect, the real-time Web-based source for Standard & Poor's credit ratings, research, and risk analysis, at www.ratingsdirect.com. All ratings affected by this rating action can be found on Standard & Poor's public Web site at www.standardandpoors.com; under Credit Ratings in the left navigation bar, select Find a Rating, then Credit Ratings Search.

- Issuer Comment: E. ON U.S. LLC

Moody's comments on E.ON U.S. LLC and its subsidiaries

Moody's Investors Service said that the downgrade yesterday of the senior unsecured rating of E.ON AG to A2 from Aa3 does not trigger a change in the rating or outlook of E.ON U.S. LLC (A3 Issuer rating) and its subsidiaries Louisville Gas & Electric Company (LG&E: A2 Issuer Rating), Kentucky Utilities (KU: A2 Issuer Rating) and E.ON U.S. Capital Corp. (A3 senior unsecured debt).

The ratings for E.ON U.S. LLC and its subsidiaries reflect the substantial degree to which they maintain an independent credit profile that is supported by the primarily regulated nature of their underlying cash flows. Specifically, core financial metrics (incorporating Moody's standard analytical adjustments) remain positioned within the ranges outlined in our Rating Methodology for A-rated utilities with medium business risk profiles. LG&E's ratio of FFO to debt and FFO interest coverage were approximately 24% and 6 times for the twelve months ended December 31, 2006. KU's credit metrics for the same period were slightly stronger at approximately 26% and greater than 7 times, respectively.

The credit analysis of E.ON U.S. LLC and its subsidiaries also considers inter-company funding support in the form of loans from other subsidiaries of E.ON AG. Due to the magnitude of on-going inter-company funding the ratings and outlook of the U.S. entities could be affected if E.ON AG's senior unsecured rating were to be downgraded further from its current A2 level.

The rating outlook for E.ON AG, E.ON U.S. LLC, LG&E, KU and E.ON U.S. Capital Corp. is stable.

E.ON U.S. LLC is headquartered in Louisville, Kentucky.

Contacts	Phone
Scott Solomon/New York	201-915-8764
Richard E. Donner/New York	212-553-7226
Michael Rowan/New York	212-553-4465
William L. Hess/New York	212-553-3837

© Copyright 2007, Moody's Investors Service, Inc. and/or its licensors including Moody's Assurance Company, Inc. (together, "MOODY'S"). All rights reserved.

ALL INFORMATION CONTAINED HEREIN IS PROTECTED BY COPYRIGHT LAW AND NONE OF SUCH INFORMATION MAY BE COPIED OR OTHERWISE REPRODUCED, REPACKAGED, FURTHER TRANSMITTED, TRANSFERRED, DISSEMINATED, REDISTRIBUTED OR RESOLD, OR STORED FOR SUBSEQUENT USE FOR ANY SUCH PURPOSE, IN WHOLE OR IN PART, IN ANY FORM OR MANNER OR BY ANY MEANS WHATSOEVER, BY ANY PERSON WITHOUT MOODY'S PRIOR WRITTEN CONSENT. All information contained herein is obtained by MOODY'S from sources believed by it to be accurate and reliable. Because of the possibility of human or mechanical error as well as other factors, however, such information is provided "as is" without warranty of any kind and MOODY'S, in particular, makes no representation or warranty, express or implied, as to the accuracy, timeliness, completeness, merchantability or fitness for any particular purpose of any such information. Under no circumstances shall MOODY'S have any liability to any person or entity for (a) any loss or damage in whole or in part caused by, resulting from, or relating to, any error (negligent or otherwise) or other circumstance or contingency within or outside the control of MOODY'S or any of its directors, officers, employees or agents in connection with the procurement, collection, compilation, analysis, interpretation, communication, publication or delivery of any such information, or (b) any direct, indirect, special, consequential, compensatory or incidental damages whatsoever (including without limitation, lost profits), even if MOODY'S is advised in advance of the possibility of such damages, resulting from the use of or inability to use, any such information. The credit ratings and financial reporting analysis observations, if any, constituting part of the information contained herein are, and must be construed solely as, statements of opinion and not statements of fact or recommendations to purchase, sell or hold any securities. NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, TIMELINESS, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY SUCH RATING OR OTHER OPINION OR INFORMATION IS GIVEN OR MADE BY MOODY'S IN ANY FORM OR MANNER WHATSOEVER. Each rating or other opinion must be weighed solely as one factor in any investment decision made by or on behalf of any user of the information contained herein, and each such user must accordingly make its own study and evaluation of each security and of each issuer and guarantor of, and each provider of credit support for, each security that it may consider purchasing, holding or selling.

MOODY'S hereby discloses that most issuers of debt securities (including corporate and municipal bonds, debentures, notes and commercial paper) and preferred stock rated by MOODY'S have, prior to assignment of any rating, agreed to pay to MOODY'S for appraisal and rating services rendered by it fees ranging from \$1,500 to approximately \$2,400,000. Moody's Corporation (MCO) and its wholly-owned credit rating agency subsidiary, Moody's Investors Service (MIS), also maintain policies and procedures to address the independence of MIS's ratings and rating processes. Information regarding certain affiliations that may exist between directors of MCO and rated entities, and between entities who hold ratings from MIS and have also publicly reported to the SEC an ownership interest in MCO of more than 5%, is posted annually on Moody's website at www.moodys.com under the heading "Shareholder Relations - Corporate Governance - Director and Shareholder Affiliation Policy."

Credit Opinion: Kentucky Utilities Co.

Kentucky Utilities Co.

Lexington, Kentucky, United States

Ratings

Category Outlook	Moody's Rating Stable	
Issuer Rating	A2	
Senior Secured Shelf	(P)A1	
Ult Parent: E.ON AG		
Outlook	Stable	
Bkd Sr Unsec Bank Credit Facility -Dom Curr	A2	
Senior Unsecured MTN -Dom Curr	A2	
Commercial Paper -Dom Curr	P-1	
Parent: E. ON U.S. LLC		
Outlook	Stable	
Issuer Rating	A3	

Analyst Scott Solomon/New York Richard E. Donner/New York William L. Hess/New York

Opinion

Company Profile

Kentucky Utilities (KU) is a regulated public utility engaged in the generation, transmission and distribution of electricity. It provides electricity to approximately 501,000 customers in 77 counties in central, southeastern and western Kentucky and to approximately 30,000 customers in 5 counties in southwestern Virginia. KU's coal-fired electric generating plants produce most of KU's electricity. In Virginia, KU operates under the name Old Dominion Power Company.

Contacts

1.212.553.1653

Phone

KU is a wholly-owned subsidiary of E.ON U.S. LLC (A3 Issuer Rating). E.ON U.S. is an indirect wholly-owned subsidiary of E.ON AG (A2 senior unsecured). KU's affiliate Louisville Gas and Electric Company (LG&E: A2 Issuer Rating), is a regulated public utility also operating in Kentucky. Although LG&E and KU are separate legal entities, they are operated as a single, fully integrated system and provide the majority of the consolidated earnings and cash flow of E.ON U.S. LLC.

Rating Rationale

Kentucky Utilities Company's (KU) A2 Issuer Rating is based on the utility's strong financial profile, favorable cost positions and balanced regulatory environments. Core financial metrics (incorporating Moody's standard analytical adjustments) remain positioned within the ranges outlined in our Rating Methodology for A-rated utilities with medium business risk profiles. Specifically, KU's ratio of FFO to debt and FFO interest coverage for the twelve months ended December 31, 2006 were approximately 26% and greater than 7 times respectively.

KU has an environmental cost recovery mechanism in its electric rates that allow for the recovery of environmental costs required to meet federal and state statutes. This is important given that KU and LG&E expect their combined near-term environmental capital spending to exceed \$1 billion through 2009. The utility also benefits from a fuel adjustment clause that eliminates supply cost volatility.

The credit analysis of KU considers intercompany funding support in the form of loans from other subsidiaries of E.ON AG. Due to the magnitude of on-going intercompany funding the ratings and outlook of KU could be affected if E.ON AG's senior unsecured rating were to be downgraded from its current level.

Credit Opinion: Louisville Gas & Electric Company

Louisville Gas & Electric Company

Louisville, Kentucky, United States

Ratings

Category	Moody's Rating	
Outlook	Stable	
Issuer Rating	A2	
Ult Parent: E.ON AG		
Outlook	Stable	
Bkd Sr Unsec Bank Credit Facility -Dom Curr	A2	
Senior Unsecured MTN -Dom Curr	A2	
Commercial Paper -Dom Curr	P-1	
Parent: E. ON U.S. LLC		
Outlook	Stable	
Issuer Rating	A3	
Contacts		
Analyst	Phone	

Analyst	
Scott Solomon/New York	
Richard E. Donner/New York	
William L. Hess/New York	

1.212.553.1653

Opinion

Company Profile

Louisville Gas and Electric Company (LG&E) is a regulated public utility that supplies natural gas to approximately 324,000 customers and electricity to approximately 398,000 customers in Louisville and adjacent areas in Kentucky. LG&E's coal-fired electric generating plants produce most of LG&E's electricity.

LG&E is a wholly-owned subsidiary of E.ON U.S. LLC (A3 Issuer Rating). E.ON U.S. is an indirect wholly-owned subsidiary of E.ON AG (A2 senior unsecured). LG&E's affiliate Kentucky Utilities (KU: A2 Issuer Rating), is a regulated public utility also operating in Kentucky. Although LG&E and KU are separate legal entities, they are operated as a single, fully integrated system and provide the majority of the consolidated earnings and cash flow of E.ON U.S.

Rating Rationale

LG&E's A2 Issuer Rating is based on the utility's strong financial profile, favorable cost positions and balanced regulatory environments. Core financial metrics (incorporating Moody's standard analytical adjustments) remain positioned within the ranges outlined in our Rating Methodology for A-rated utilities with medium business risk profiles. Specifically, LG&E's ratio of FFO to debt and FFO interest coverage for the twelve months ended December 31, 2006 were approximately 24% and greater than 6 times respectively.

LG&E has an environmental cost recovery mechanism in its electric rates that allow for the timely recovery of environmental costs required to meet federal and state statutes. This is important given that LG&E and KU expect their combined near-term environmental capital spending to exceed \$1 billion through 2009. The utility also benefits from a fuel adjustment clause that eliminates supply cost volatility.

The credit analysis of LG&E also considers intercompany funding support in the form of loans from other subsidiaries of E.ON AG. Due to the magnitude of on-going intercompany funding the ratings and outlook of LG&E could be affected if E.ON AG's senior unsecured rating were to be downgraded from its current level.

The challenges ahead for LG&E include supporting the level of demand in its service territory and maintaining an adequate reserve margin. To that end, it has begun construction of a 750-megawatt coal-fired generating station of

Kentucky Utilities Company And Louisville Gas & Electric Company

i

1

í

•

Analysis of Supply-Side Technology Alternatives

Prepared by

Generation Systems Planning

November 2004

LEVEL	IZED SCREENING METHODOLOGY AND RESULTS	30
1.	Base Analysis with SO ₂ and NO _x Impact	30
2.	Alternative Analysis with CO ₂ Impact	34

.

-

••

£

ł

~~~~

## KENTUCKY UTILITIES COMPANY LOUISVILLE GAS & ELECTRIC COMPANY ANALYSIS OF SUPPLY-SIDE TECHNOLOGY ALTERNATIVES

#### INTRODUCTION

This study evaluated several supply-side technology costs and performance estimates for currently available and emerging technologies. The study was conducted by first constructing optimal (least-cost) operation for each technology at various levels of utilization. A detailed evaluation (using production costing computer models) of all currently available/emerging technologies was impractical due to the large number of possible alternatives and the significant amount of time required for computer simulation if each were modeled individually. Therefore, it was necessary to reduce the list of possible technology alternatives to a more manageable size. To achieve this, a discussion of the sources for, and adjustments to, the data presented within this analysis and a brief description of each generating technology is presented. This is followed by a description of the levelized screening methodology and associated sensitivities. Finally, the basis for recommending one technology over another is presented and those technologies suggested for additional computer simulation are identified.

#### **DATA SOURCES**

Black & Veatch gathered information on several technology alternatives and submitted to the Companies a final examination in September 2004. The document included technical descriptions for all technologies, detailed capital costs, performance expectations, emission rates, and O&M costs for conventional generation alternatives (pulverized coal, simple and combined cycle combustion turbines). The non-conventional technologies (renewable energy, waste-toenergy, advanced coal and combustion turbines, and energy storage systems) have the same data as the conventional alternatives but in less detail due to their maturity and infrequent use as 2,400 psig for conventional (subcritical) boiler designs, improving the efficiency by 10 percent (to around 45 percent overall). This evaluation contains seven "Greenfield" pulverized coal options, which include three subcritical units varying from 250 MW to 500 MW and four supercritical units ranging in size from 500 MW to 750 MW. Of the seven coal options, three of these were considered high sulfur (4.5 percent or more sulfur content) and included both a subcritical and a supercritical unit of 500 MW size, and a 750 MW supercritical unit.

#### 2. Circulating Fluidized Bed Combustion

Fluidized bed combustion (FBC) boilers with steam turbine generators have been widely used in the United States, Europe, and Japan since the mid-1980s for independent power/cogeneration and utility power. There are two types of FBC: Circulating FBC (CFBC) and Pressurized FBC (PFBC).

CFBC involves injecting a portion of the combustion air through the bottom of a watercooled bed consisting of fuel, limestone, and ash. This upwardly flowing air causes the layers to mix in a turbulent environment and to behave in a fluid-like manner. CFBC technology allows units to burn a diversity of low-grade coal and non-coal fuels in addition to high-grade coals without costly control equipment such as FGDs and SCRs to satisfy environmental emission limitations. The low combustion temperatures reduce thermal  $NO_x$  formation while the ability to introduce limestone directly into the furnace controls  $SO_2$  emissions.

CFBC has matured to where it is now comparable to most modern solid fuel fired plants, including conventional, pulverized coal units. Both a 250-MW unit and 500-MW unit were included in this study, each of which was assumed to have a capacity factor of 100 percent.

included in the study has two trains, each of which would contain all components listed for the 250-MW unit. A capacity factor of 85 percent was assumed for both units.

Ĺ

ļ

#### Liquid/Gas-Fueled Technologies

#### 1. Reciprocating Engine

Reciprocating engines have been used for a number of years to provide primary and backup sources of electrical generation for power, industrial, and many other applications. Medium speed engines, operating at less than 1,000 rpm, are typically used for power generation because of higher efficiencies and lower O&M costs. Advantages of reciprocating engines are static heat rates from 50 to 100 percent load, excellent load-following characteristics, guaranteed emission rates maintained at operating levels down to 25 percent load, and typical startup times for larger reciprocating engines of only 15 minutes. Disadvantages of reciprocating engines include high uncontrolled air pollutant emission rates and unproven emission control technologies.

Two types of reciprocating engines were included in this study: spark ignition engines and compression ignition engines. Spark ignition engines operate on gaseous fuel such as natural gas, propane, or waste gases from industrial processes while compression ignition engines operate on liquid fuels such as diesel. The study includes a 5-MW spark ignition engine and a 10-MW compression ignition engine. A capacity factor of 50 percent was used for each type of engine.

#### 2. Simple Cycle Combustion Turbines

Simple cycle combustion turbines generate power by compressing ambient air and then heating the pressurized air (to at least 2000°F) by injecting and burning natural gas or oil, and forcing the heated gases to expand through a turbine. The turbine drives the air compressor and

lower  $NO_x$  and carbon monoxide (CO) emissions, improved efficiency, and potentially greater operating flexibility if duct burners are used. Disadvantages are reduced plant reliability and increased maintenance, increase in overall staffing requirements due to added plant complexity, and volatility of natural gas prices.

(

Several combined cycle configurations were evaluated in this study ranging in capacity from 118.5 MW to 483.9 MW at 90°F. A capacity factor of 100 percent was used for each combined cycle configuration evaluated.

Along with the conventional GE and Westinghouse machines currently available, three other advanced combined cycle technologies (humid air turbine, Kalina Cycle, Cheng Cycle) were also included. These technologies are generally considered developmental, but offer significant potential for efficiency improvements over conventional technologies.

The humid air turbine (HAT) cycle utilizes a natural gas-fired intercooled regenerative cycle with a saturator that adds considerable moisture to the compressor discharge air (such that the combustor inlet flow contains 20 to 40 percent water vapor). The turbine exhaust is further heated by a recuperator (using turbine exhaust) before being sent to the combustor. Water vapor adds to the turbine output while intercooling reduces the compressor work requirement. The heat addition in the recuperator reduces the amount of fuel heat input required. The HAT reviewed herein is rated at 450 MW and has a capacity factor of 70 percent.

The Kalina Cycle combustion turbine involves injecting ammonia into the vapor side of the cycle. The ammonia/water working fluid provides thermodynamic advantages based on nonisothermal boiling and condensing behavior of the dual component fluid, coupled with the ability to alter the ammonia concentration at various points in the cycle. This capability allows more effective heat acquisition, regenerative heat transfer, and heat rejection. The cycle is similar in nature to the combined cycle process except exhaust gas from the combustion turbine enters a heat housed in a single unit about the size of a refrigerator. Microturbines can operate on a wide range of fuels, including natural gas, ethanol, propane, biogas, and other renewable fuels. Design enhancements such as catalytic combustion and air bearings further reduce already low emissions and maintenance requirements.

(

The baseload and peaking microturbines considered in this evaluation are each rated 30 kW, and at that size are suitable to supply load to individual customers only. The capacity factor used for the evaluation of microturbines was 10 percent.

#### 5. Fuel Cell

Fuel cells electrochemically convert hydrogen-rich fuel, typically natural gas, to direct current (DC) electricity. Inverters are required to convert the DC power to AC. Fuel cell construction is inherently modular making it easy to size power plants tailored to the utility's load growth and the constraints of the plant site.

Each cell consists of an anode, cathode, and an electrolyte. Fuel cells oxidize a fuel at the anode, which releases electrons into an electrical circuit. Simultaneously, water and heat are produced at either the anode or cathode depending on the electrolyte used. Fuel cells, unlike batteries, do not consume their electrodes with use, but only the fuel and oxygen (in the air) supplied to them.

There are four major fuel cell types in development: phosphoric acid, molten carbonate, solid oxide, and proton exchange membrane. The most mature of the four is the phosphoric acid fuel cell (PAFC). PAFC plants range from 200 kW to 11 MW in size and have efficiencies on the order of 40 percent. Since fuel cells operate at constant temperature and pressure regardless of load, the thermal energy liberated by the electrochemical reaction can be used in thermal

#### **Renewable Resource Technologies**

#### 1. Wind Energy

Wind is converted to power via a rotating turbine and generator. Utility-scale wind systems consist of multiple wind turbines ranging in size from 100 kW to 2 MW. A complete wind energy system contains several wind turbines and has a total rating between 5 MW and 300 MW. Capacity factors range from 25 to 40 percent and depend upon the wind regime in the area. Therefore, wind energy is considered an intermediate load technology that cannot be relied upon as firm capacity. Wind power is rated on a scale of Class 1 to Class 7, with Class 7 representing an area with substantial wind speeds (20 to 27 mph). A Class 3 rating or above is needed in order for it to be considered economically feasible. The Companies' service area experiences wind ratings of Class 1 and 2, which restricts the economic feasibility of this technology.

-

Despite the obvious limitations, a 50 MW wind system with a 33 percent capacity factor was considered for this evaluation.

#### 2. Solar

Solar energy conversion technologies capture the sun's energy and converts it to thermal energy (solar thermal) or electrical energy (solar photovoltaic), which drives the device (turbine, generator, or heat engine) for electrical generation. Sunlight is concentrated with mirrors or lenses to achieve the high temperatures needed for solar thermal power systems. Solar thermal technologies currently in use include the following: parabolic trough, parabolic dish, solar chimney, and central receiver. Parabolic trough represents the vast majority of systems installed although most of these installations are less than 50 kW. Current grid-connected solar photovoltaic systems are generally below 200 kW with capacity factors of around 20 percent.

percent. Efficiencies of biomass plants are lower when compared to modern coal units due to lower heating values and higher moisture contents in the fuel. Resources economically located within a deliverable area limit the plant size. The most efficient and economically attractive options for electrical generation from biomass resources include co-fired projects which would only offset fossil fuel consumption. Additionally, there are several concerns about the negative impact of co-firing on plant operations, including impacts on capacity, boiler performance, and premature poisoning of air pollution control equipment.

The biomass alternative included in this evaluation is a co-fired facility with a 27.5 MW output and a capacity factor of 80 percent.

#### 4. Geothermal

Geothermal power plants use heat from the earth to generate steam and drive turbine generators for the production of electricity. The production of geothermal energy in the US currently ranks third in renewable energy sources, following hydroelectric and biomass. There are three types of geothermal power conversion systems in common use, including dry steam, flash steam, and binary cycle steam. Capital costs of geothermal facilities can vary widely as the drilling of individual wells can cost as much as four million dollars, and the number of wells drilled depends on the success of finding the resource. Variable O&M costs include the replacement of production wells.

Geothermal power is limited to locations where geothermal pressure reserves are found. Most geothermal reserves can be found in the western portion of the United States, but virtually no geothermal resources exist in this area. However, the Companies' service territory has a sufficient amount of low-temperature resources to be suitable for heat pump.

A 30 MW binary cycle unit with an 80 percent capacity factor is included in this study.

ł

are generally less than 50 MW with a capacity factor between 60 and 80 percent. Mass burning of SW was once seen as an environmentally and economically sound alternative for dealing with the shrinking landfill space in the United States. However, environmental concerns over pollutants, high capital costs, and public opposition make it doubtful that new WTE facilities utilizing MSW will be constructed in the near future.

In spite of the apparent difficulties associated with burned MSW for generation of energy, a 7-MW unit with a 70 percent capacity factor was considered in this evaluation.

RDF is an evolution of MSW technology in which the waste is sorted and processed into fluff or pellets. It is preferred in many refuse-to-energy applications due to its ability to be combusted with technologies traditionally used for coal. Combustion temperatures for MSW and RDF must be kept lower than 800°F to minimize boiler tube degradation caused by chlorine compounds in the flue gas. Unit size, capacity factors, and environmental concerns for RDF are similar to MSW characteristics. As a result, a 7-MW unit fueled by RDF with a capacity factor of 70 percent was also considered in the evaluation process.

LFG is a valuable energy source that can be utilized in several applications, including power production, and is considered to be a mature WTE technology. LFG is produced by the decomposition of wastes stored in landfills where it is collected and piped from wells, filtered, and then compressed. Although gas is produced when decomposition begins within a landfill, it may be several years before there is an adequate supply of gas to fuel an electric generator. Later, as the site ages, gas production (as well as the quality of the gas) declines to the point at which power generation is no longer economic. In the case of a typical well-engineered and well-operated landfill, gas may be produced for as many as 50 to 100 years, but electricity production may be economically feasible for only 10 to 15 years, Power can be generated via a combustion turbine, factor is that the Companies have no boilers in their system that would be similar to any of the styles required to use TDFs.

Nevertheless, the TDF alternative included in this evaluation is a co-fired system and is rated at 50 MW with capacity factor of 70 percent.

#### **Energy Storage Technologies**

## 1. Pumped Hydro Energy Storage (PHES)

Central hydro energy storage is the oldest and most prevalent of the central station energy storage options and requires a setup similar to conventional hydroelectric facilities. Conventional PHES plants typically use an upper and lower reservoir. Off-peak electrical energy is used to pump water from the lower reservoir to upper reservoir. When the energy is required during peak hours, the water in the upper reservoir is converted to electricity as the water flows through a turbine to the lower reservoir. Environmental impacts from PHES can be significant if improperly sited and geologic conditions preclude many areas from consideration of this technology. Additionally, increasingly restrictive environmental regulations and established uses of the river systems in proximity to the Companies may further hamper consideration of this alternative. Finally, high capital costs and extended lead times are significant disadvantages that must be accounted for when considering this alternative.

ĺ

For the PHES unit used in this screening analysis, the nameplate rating corresponds to 500 MW. Pumped hydro is considered a viable option to serve intermediate load levels but the low capacity factor (13 percent in this evaluation) makes it difficult for this technology to compete with other peaking technologies.

#### 2. Battery Energy Storage (BES)

With a BES unit, off-peak energy is used to charge a battery for use during peak periods.

#### **Other Technologies**

#### 1. Ohio Falls Expansion

Expansion of the Ohio Falls Station by the additions of Units 9 and 10 into existing empty bays was included as an option in the screening analysis. This expansion included two 209.2" diameter propeller units housed in an extension of the existing powerhouse. These units would rotate at 149 rpm and have a maximum turbine output of 16.8 MW (summer rating of 5 MW and dependant upon river flow) each. Based upon historical river flow, expected energy from the expansion units would be approximately 74 GWH annually. Therefore, the maximum capacity factor would be 25 percent. Estimated capital cost for Units 9 and 10 is \$46.7 million combined. The Ohio Falls Station is considered a run-of-the-river facility where nature and the Army Corps of Engineers control the river flow. Therefore, the energy production of the facility can vary significantly and may not be available at the time of the Companies' peak needs.

#### ANALYSIS OVERVIEW

- ( -

The Companies screening analysis consists of 47 generation alternatives developed by Burns & McDonnell, Voith Siemens, Cummins & Barnard, WV Hydro and Black & Veatch. The screening process involves utilizing specific unit operating data such as unit ratings, heat rate, operation and maintenance expenses, and capacity factors to accurately assess lifetime costs associated with owning and operating each technology type and size.

Sensitivities are utilized to provide valuable information on how each technology will perform under various operating conditions. Some of the sensitivities contained in this analysis are based on variations in capital cost, technology operating efficiency (measured by heat rate), and fuel cost. Each of the previously mentioned sensitivities has three possible scenarios: base, low, and high, which results in 27 sensitivity combinations. The remaining sensitivity considered in the screening evaluation concerns emissions. The base case analysis includes costs associated with NO<sub>x</sub> and SO<sub>2</sub> emissions. CO<sub>2</sub> emissions are a possibility in the future and an evaluation which considers NO<sub>x</sub>, SO<sub>2</sub>, and CO<sub>2</sub> emissions is included in this analysis as an alternative to the base case.

An analysis comparing total levelized costs for all technologies as a function of capacity factor was also performed. This additional level of analytical scrutiny results in 891 (i.e., 27 cases x 11 capacity factor ranges x 3 least cost options = 891) "opportunities" for each technology to be identified as one of the three least cost options. Total costs are evaluated over a 30-year planning period in all possible case combinations.

Descriptions of the sensitivity analysis, resulting scenarios evaluated, screening analysis, and the levelized analysis are included in the following sections. The final portion of this emission cost adders for  $NO_x$  are applied to the variable O&M expense for all applicable technologies.  $SO_2$  emission costs are based upon the Cantor-Fitzgerald allowances prices and estimates from 2004 through 2010, with prices thereafter assumed to escalate by two percent annually.

£

(

A 2004 SO<sub>2</sub> allowance price of \$172/ton and a NO<sub>x</sub> allowance price of \$3125/ton were the starting allowance values used in the analyses (source: Cantor-Fitzgerald).

The second case evaluates potential additional cost of  $CO_2$  emissions in addition to costs associated with  $SO_2$  and  $NO_x$  emissions. Rising concentrations of greenhouse gases may be responsible for undesirable climate changes, and legislation to restrict  $CO_2$  emissions (a greenhouse gas) has been *proposed*. One proposed solution is the implementation of a carbon tax which could impact the least-cost options resulting from this screening analysis.

The magnitude of proposed carbon tax varies significantly. A current expectation for a carbon tax is in the range of \$10 to \$40 per ton of carbon emitted and is based on external analysis. As with the  $SO_2$  adder, the carbon cost adder was added to the fuel cost of the technology as discussed below.

#### 1. Capital Cost Sensitivity

Black & Veatch has two technology ratings that can be used to adjust the capital cost for each technology type. The technologies are classified as either conventional or non-conventional generating alternatives and take into account the maturity level of the technologies. Conventional generation alternatives are currently available, widely-used and proven technologies whereas nonconventional generation alternatives are still in development or have not been widely implemented or operated. Both ratings take into consideration the issue of uncertainty in cost and performance data. From there, the capital costs supplied by Black & Veatch for each technology size are

#### 3. Fuel Cost

The third sensitivity conducted in the screening analysis considers the cost of fuel consumed by each technology. The Companies develop 30-year base fuel forecasts for all fuels that are either used or could be used at existing plants. Sensitivity fuel forecasts are then developed depicting high and low fuel cost scenarios. Base coal price forecasts are adjusted by data received from Global Insight for the high and low fuel cost sensitivities. Representative fuel costs for each technology screened were obtained from the base and sensitivity fuel forecasts and are shown in Exhibit 2(a).

Ć

ļ

As previously described, in an effort to include the impact of  $SO_2$  emissions in the screening study, an adder was applied to the coal prices shown in Exhibit 2(a). The adder represents, on a cents per MBtu basis, the annual cost of  $SO_2$  allowances. Only technologies whose primary fuel is coal have the adder. The sulfur content of the Low and High Fuel Forecasts was assumed to be equal to that of the Base Fuel Forecast. Therefore, once the adder was determined for the Base Fuel Forecast, it could be applied to both the Low and High Forecasts without any further adjustments. Exhibit 2(b) details the calculation of the SO<sub>2</sub> adder.

Inclusion of the SO<sub>2</sub> adder increases the fuel cost from 0.5 to 6 Cents per MBtu depending on the year and sulfur content. The small impact of the SO<sub>2</sub> adder is due to the fact that all technologies being considered in the analysis have very low SO<sub>2</sub> emissions resulting from either pre/post combustion removal processes. Addition of the SO<sub>2</sub> adder to the Base, Low and High Fuel Forecasts results in the fuel costs used in this analysis. The specific fuels utilized by each technology evaluated in this analysis are identified in Exhibit 2(c).

#### SCREENING ANALYSIS

The least-cost operation of the technologies presented in this study occurs over significantly different capacity factors. Therefore, an analysis that compares the total cost for each technology as a function of capacity factor is required. As previously discussed, the cost data for all technologies in this analysis originate from Black & Veatch or were derived based on information and/or cost estimates received by the Companies.

Based on the results of economic analysis performed in the Companies' 2002 IRP Supply-Side Screening report and using recommendations prepared by Burns & McDonnell, the Companies have selected design parameters for the Trimble County Unit 2. The construction of a 732 MW supercritical pulverized coal unit was determined to represent the most economically viable option and it was evaluated using the same considerations as the other technologies evaluated in the screening process. Beside the Trimble County Unit 2 option, there were several other coal options in the screening analysis for future coal units. Next, each technology listed in Exhibit 3, regardless of viability or technical maturity, was evaluated over a 30-year planning period in all 27 cases for both the Base Case Analysis and the Alternative Analysis with CO<sub>2</sub> Impact.

No technologies were excluded from the screening analysis based solely on technical maturity, practicality, or feasibility. For example, even though climatic information for Kentucky suggests wind turbine technology would not be a practical supply-side option in Kentucky, wind turbine technology was not excluded from the analysis.

Several technologies were limited to maximum capacity factors based on design characteristics of the option and their application to the Companies' service territory. The pumped hydro energy storage, battery energy storage, and compressed air energy storage options were limited to a 20 percent capacity factor based on design characteristics of the technologies supplied

## LEVELIZED SCREENING METHODOLOGY AND RESULTS

Ĺ

#### 1. Base Analysis with $SO_2$ and $NO_x$ Impact

A 30-year levelized cost methodology was utilized in the base analysis. An annual total cost, comprised of capital, fixed O&M, variable O&M, fuel and other costs, is determined for each technology over a range of capacity factors from 0-100 percent in 10 percent increments. For each technology, levelized costs in S/kW at varying capacity factors were then compared and least-cost technologies at each capacity factor increment were determined. Levelization allows for the cost of each technology to be compared over the 30-year life of each project. A non-levelized analysis considers costs of owning and operating generating units for only a single year. Comparison of cost over the life of each technology is more accurate because of differing annual escalation rates for fuel, O&M and capital associated with determining the total annual cost of each technology. Exhibits 4 and 5 include relevant information, which when utilized in conjunction with Exhibits 2 and 3, allow replication of the results presented here. Exhibit 4 provides a complete source of equations used in the levelization process. Exhibit 5 provides the Adjusted 30-year Levelization Factor (Adj. L<sub>N</sub>) for the Base Fuel Forecast and other miscellaneous information referred to within the equations of Exhibit 4. Adjusted L<sub>N</sub>s for the Low and High Fuel Forecasts can be determined in a similar manner.

Using the equations of Exhibit 4 and data contained within Exhibits 2(a)-2(d), Exhibit 3, and Exhibit 5, the total 30-year levelized cost (\$/kW-yr in 2004 dollars) of each technology was calculated for each capacity factor increment. The results of this process are shown in pages 1 through 27 of Exhibit 6. Least-cost technologies over all ranges of capacity factors have been identified at the bottom of each case exhibit and are shaded in the tables. Technology capacity factors shown in pages 1 through 27 of Exhibit 6 were limited to the maximum allowed by the technology and/or environment in which they operate as previously discussed. For easy reference,

# Table 3 Second and Third Least-Costly Technologies In At-Least One Sensitivity Case

1

( market and a second s

Trimble County 2 - 732 MW Supercritical Pulverized Coal Supercritical Pulverized Coal – 750 MW Supercritical Pulverized Coal, High Sulfur – 750 MW Ohio Falls 9 and 10 – 10 MW Humid Air Turbine Cycle CT – 450 MW Simple Cycle GE 7FA CT – 480 MW Combined Cycle 2x1 GE 7FA CT – 484 MW TDF Multi-Fuel CFB (10% Co-fire) – 50 MW Wind Energy Conversion – 50 MW Subcritical Pulverized Coal, High Sulfur – 500 MW

The 11 different technology types and sizes specified between Tables 3 and 4 are those, at first glance, that appear to deserve consideration in detailed computer models. However, this list must be examined further before selecting technologies to pass onto the detailed analysis. As previously stated, there are 891 "opportunities" for each technology to be identified as one of the first three least cost options. Table 4, below, identifies how many occurrences a technology appeared as either first, second, or third least cost options over any capacity factor range. All technologies not identified within Table 4 failed to appear as one of the top three least-cost options in any of the cases identified.

| Table 4                                         |  |  |
|-------------------------------------------------|--|--|
| The Frequency of Occurrence of Each             |  |  |
| Technology as First, Second or Third Least Cost |  |  |

| # Occurences |     | ices |                |                                                     |  |
|--------------|-----|------|----------------|-----------------------------------------------------|--|
| 1st          | 2nd | 3rd  | <b># Occur</b> | Technology Name                                     |  |
| 135          | 54  | 46   | 235            | TC2 732 MW Supercritical Pulverized Coal            |  |
| 162          | 0   | 0    | 162            | WV Hydro                                            |  |
| 0            | 48  | 107  | 155            | Supercritical Pulverized Coal - 750 MW              |  |
| 0            | 82  | 72   | 154            | Supercritical Pulverized Coal, High Sulfur - 750 MW |  |
| 0            | 54  | 13   | 67             | Ohio Falls 9 and 10                                 |  |
| 0            | 27  | 18   | 45             | Humid Air Turbine Cycle CT - 450 MW                 |  |
| 0            | 27  | 0    | 27             | Simple Cycle GE 7FA CT - 148 MW                     |  |
| 0            | 0   | 23   | 23             | Combined Cycle 2x1 GE 7FA CT - 484 MW               |  |
| 0            | 5   | 6    | 11             | TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            |  |
| 0            | 0   | 8    | 8              | Wind Energy Conversion - 50 MW                      |  |
| 0            | 0   | 4    | 4              | Subcritical Pulverized Coal, High Sulfur - 500 MW   |  |

The WV Hydro option is a power purchase agreement that includes only O&M costs and has no capital costs associated with it. This option was selected as first option 162 times and is the only other option besides the TC2 unit to place first among the least cost options.

The GE 7FA 148 MW simple cycle combustion turbines will be considered for further optimization analysis. Conversion to Combined Cycle appeared as a third place generation alternative 23 times. Prior to any installation of a combined cycle unit, the Companies will be able to evaluate the possibility of conversion of existing simple cycle combustion turbines to combined cycle operation.

As stated previously in this report, the Humid Air Turbine Cycle CT is only in developmental stages and is not commercially available. Therefore, even though it shows up as second and third place among the least cost generation alternatives, this option will not be evaluated further.

Similarly, the tire-derived fuel (TDF) multi-fuel combustion fluidized bed shows up in the second and third place positions among least cost generation alternatives. However, this option will not be evaluated further because of numerous potential difficulties as described previously in part 6 under the Renewable Resource Technology section of this report. Each of these issues (e.g. permitting issues, ash disposal, the negative publicity from fires, etc.) potentially presents a significant stumbling block and in total, prevents TDF from being considered as a viable solution to the Companies' forecasted generation shortfall.

#### Alternative Analysis with CO<sub>2</sub> Impact

As previously described, a separate analysis was performed to evaluate the impact of a carbon tax on the outcome of the screening analysis. The same sensitivities (inclusion of the impact of  $SO_2$  and  $NO_x$ , variability of capital cost, heat rate, and fuel cost) were performed in this analysis as were performed in the preliminary and base case analysis. After implementing carbon

comparison of Table 6 and Table 3 from above shows that the technologies remain the same, with

(

į

the exception of Biomass (Co-Fire) 27.5-MW unit, when a carbon tax of \$10 per ton is considered.

#### Table 6 Second and Third Least-Costly Technologies In At-Least One Sensitivity Case

Trimble County 2 – 732 MW Supercritical Pulverized Coal Supercritical Pulverized Coal, High Sulfur – 750 MW Supercritical Pulverized Coal – 750 MW Ohio Falls 9 and 10 – 10 MW Humid Air Turbine Cycle Combustion Turbine – 450 MW Simple Cycle GE 7FA CT – 148 MW TDF Multi-Fuel CFB (10% Co-Fire) Combined Cycle 2x1 GE 7FA CT – 484 MW Wind Energy Conversion – 50 MW Subcritical Pulverized Coal, High Sulfur-500 MW Biomass (Co-Fire) – 27.5 MW

Table 7 identifies how many times a technology appeared as either the first, second or third least-cost option over any capacity factor range and with  $CO_2$  emission tax rates. The analysis with a \$10 per ton carbon tax has virtually no impact, with the exception of adding the Biomass (Co-Fire) unit to the technology alternatives. The order and number of occurrences is only slightly changed and the Biomass alternative only occurs once in the third least-costly technology rankings. The scenario where the carbon tax is estimated at \$10 per ton is shown in Table 7.

All eleven of the technologies present in the scenario without carbon adders (shown in Table 4) are the same in the scenario with the \$10 per ton carbon tax (shown in Table 7), with the addition of the twelfth technology of Biomass (Co-Fire) at 27.5 MW. The only observable changes in the two scenarios involve the number of occurrences and the resulting ranking. Although the number of occurrences changes between the two cases, the changes are not enough to result in significantly rearranging the order of the least cost units. The ordinal ranking remains the same, with the exception of the 50-MW TDF Multi-Fuel CFB (10 percent Co-fire) unit and the 484-MW Combined Cycle unit swapping places for eighth and ninth ranking.

Ĺ

#### **RECOMMENDATIONS**

Based on the various analyses discussed above, the technologies listed in Table 8 are recommended for further analysis in the optimization studies using Strategist, a detailed modeling program. The technologies identified will provide a diverse set of alternatives to be evaluated in production and capital costing computer models. Exhibit 9 is a graphical representation of the least-cost technologies, which will be further evaluated in the Strategist optimization software modeling.

# Table 8Technologies Suggested for AnalysisWithin Strategist

Trimble County 2 – 732 MW Supercritical Pulverized Coal Unit Supercritical Pulverized Coal, High Sulfur – 750 MW WV Hydro – Power Purchase Agreement Ohio Falls 9 and 10 – Run of River expansion Simple Cycle GE 7FA CT – 148 MW Combined Cycle 2x1 GE 7FA CT – 484 MW

 $\left( \begin{array}{c} \end{array} \right)$ 

# **Technologies Screened**

| Tech. ID       | Technology Description                                                   | Category          | Sub-Category             |
|----------------|--------------------------------------------------------------------------|-------------------|--------------------------|
| 6.1            | Pumped Hydro Energy Storage - 500 MW                                     | Storage           | Hydro                    |
| 6.2            | Lead-Acid Battery Energy Storage - 5 MW                                  | Storage           | Battery                  |
| 6.3            | Compressed Air Energy Storage - 500 MW                                   | Storage           | Compressed Air           |
| 2.1.1          | Simple Cycle GE LM6000 CT - 31 MW                                        | Natural Gas       | SCCT                     |
| 2.1.2          | Simple Cycle GE 7EA CT - 73 MW                                           | Natural Gas       | SCCT                     |
| 2.1.3          | Simple Cycle GE 7FA CT - 148 MW                                          | Natural Gas       | SCCT                     |
| 2.2.1          | Combined Cycle GE 7EA CT - 119 MW                                        | Natural Gas       | CCCT                     |
| 2.2.2          | Combined Cycle GE 7FA CT - 235 MW                                        | Natural Gas       | CCCT                     |
| 2.2.3          | Combined Cycle 2x1 GE 7FA CT - 484 MW                                    | Natural Gas       | CCCT                     |
| 2.1.4          | W 501F CC CT - 258 MW                                                    | Natural Gas       | CCCT                     |
| 2.5.1          | Spark Ignition Engine - 5 MW                                             | Natural Gas       | Reciprocating Engine     |
| 2.5.2          | Compression Ignition Engine - 10 MW                                      | Natural Gas       | Reciprocating Engine     |
| 3.1.1          | Wind Energy Conversion - 50 MW                                           | Renewable         | Wind                     |
| 3.2.1          | Solar Thermal, Parabolic Trough - 100 MW                                 | Renewable         | Solar                    |
| 3.2.2          | Solar Thermal, Parabolic Dish - 1.2 MW                                   | Renewable         | Solar                    |
| 3.2.3          | Solar Thermal, Central Receiver - 50 MW                                  | Renewable         | Solar                    |
| 3.2.4          | Solar Thermal, Solar Chimney - 200 MW                                    | Renewable         | Solar                    |
| 3.3            | Solar Photovoltaic - 50 kW                                               | Renewable         | Solar                    |
| 3.4.1          | Biomass (Co-Fire) - 27.5MW                                               | Renewable         | BioMaas                  |
| 3.5            | Geothermal - 30 MW                                                       | Renewable         | Geotherm                 |
| 3.6            | Hydroelectric - New - 30 MW                                              | Renewable         | Hydro                    |
| 102            | WV Hydro                                                                 | Renewable         | Hydro                    |
| 4.1            | MSW Mass Burn - 7 MW                                                     | Waste To Energy   | MSW                      |
| 4.2            | RDF Stoker-Fired - 7 MW                                                  | Waste To Energy   | RDF                      |
| 4.3            | Landfill Gas IC Engine - 5 MW                                            | Waste To Energy   | LFG                      |
| 4.4            | TDF Mutti-Fuel CFB (10% Co-fire) - 50 MW                                 | Waste To Energy   | TDF                      |
| 4.5            | Sewage Studge & Anaerobic Digestion085 MW                                | Waste To Energy   | SS                       |
| 5.1.1          | Humid Air Turbine Cycle CT - 450 MW                                      | Natural Gas       | CT CT                    |
| 5.1.2          | Kalina Cycle CC CT - 275 MW                                              | Natural Gas       | CCCT                     |
| 5.1.3          | Cheng Cycle CT - 140 MW                                                  | Natural Gas       | CCCT                     |
| 5.2.1          | Pressurized Fluidized Bed Combustion - 250 MW                            | Coal              | Fluidized Bed Combustion |
| 5.3.1          | IGCC - 287 MW                                                            | Coal Gasification | IGCC                     |
| 5.3.2          | IGCC - 534 MW                                                            | Coal Gasification | IGCC                     |
| 5.4            | Fuel Cell - 0.2 MW                                                       | Storage           | Fuel Cell                |
| 5.5.1          | Peaking Microturbine - 0.03 MW                                           | Natural Gas       | СТ                       |
| 5.5.2          | Baseload Microturbine - 0.03 MW                                          | Natural Gas       | CT                       |
| 2.3.1          | Supercritical Pulverized Coal - 500 MW                                   | Coal              | Pulverized Coal          |
| 2.3.1          | Supercritical Pulverized Coal, High Sulfur - 500 MW                      | Coal              | Pulverized Coal          |
| 2.3.3          | Supercritical Pulverized Coal - 750 MW                                   | Coal              | Pulverized Coal          |
| 2.3.3          | Subcritical Pulverized Coal - 250 MW                                     | Coal              | Pulverized Coal          |
| 2.3.4          | Subcritical Pulverized Coal - 250 MW                                     | Coal              | Pulverized Coal          |
| 2.3.5          | Subcritical Pulverized Coal, High Sulfur - 500 MW                        | Coal              | Pulverized Coal          |
| 2.3.0          | Supercritical Pulverized Coal, High Sulfur - 500 MW                      | Coal              | Pulverized Coal          |
| 2.3.1          |                                                                          | Coal              | Fluidized Bed Combustion |
| 2.4.1<br>2.4.2 | Circulating Fluidized Bed - 250 MW<br>Circulating Fluidized Bed - 500 MW | Coal              | Fluidized Bed Combustion |
| ∠.4.∠<br>100   | Ohio Falls 9 and 10                                                      | Renewable         | Hydro                    |
| 100            | TC2 732 MW Supercritical Pulverized Coal                                 | Coal              | Pulverized Coal          |

#### CONFIDENTIAL INFORMATION

6

# Calculation of SO<sub>2</sub> Adder (Cents/MBtu)

| (    | Post FGD:Assume 95% Re  | emoval Eff) |                       |           |                       |           |                       |
|------|-------------------------|-------------|-----------------------|-----------|-----------------------|-----------|-----------------------|
|      | #SO <sub>2</sub> /MBTU> |             | 0.310                 |           | 0.055                 |           | 0.115                 |
| -    | <b>.</b>                |             | L                     |           |                       |           |                       |
|      |                         | High        | SO <sub>2</sub>       | Lov       | v SO <sub>2</sub>     |           | SO <sub>2</sub>       |
|      | SO <sub>2</sub> \$/ton  | Base Cost   | SO <sub>2</sub> Adder | Base Cost | SO <sub>2</sub> Adder | Base Cost | SO <sub>2</sub> Adder |
|      | Esc @ VO&M              |             |                       |           |                       |           |                       |
| 2004 | 172                     |             | 3                     |           | 0                     |           | 1                     |
| 2005 | 392                     |             | 6                     |           | 1                     |           | 2                     |
| 2006 | 405                     |             | 6                     |           | 1                     |           | 2<br>2<br>2<br>2<br>3 |
| 2007 | 412                     |             | 6                     |           | 1                     |           | 2                     |
| 2008 | 419                     |             | 6                     |           | 1                     |           | 2                     |
| 2009 | 407                     |             | 6                     |           | 1                     |           | 2                     |
| 2010 | 536                     |             | 8                     |           | 1                     |           |                       |
| 2011 | 547                     |             | 8                     |           | 2<br>2                |           | 3                     |
| 2012 | 558                     |             | 9                     |           | 2                     |           | 3                     |
| 2013 | 569                     |             | 9                     |           | 2                     |           | 3                     |
| 2014 | 580                     |             | 9                     |           | 2                     |           | 3                     |
| 2015 | 592                     |             | 9                     |           | 2                     |           | 3<br>3                |
| 2016 | 604                     |             | 9                     |           | 2<br>2<br>2<br>2      |           |                       |
| 2017 | 616                     |             | 10                    |           | 2                     |           | 4                     |
| 2018 | 628                     |             | 10                    |           | 2                     |           | 4                     |
| 2019 | 641                     |             | 10                    |           | 2                     |           | 4                     |
| 2020 | 653                     |             | 10                    |           | 2                     |           | 4                     |
| 2021 | 666                     |             | 10                    |           | 2                     |           | 4                     |
| 2022 | 680                     |             | 11                    |           | 2<br>2                |           | 4                     |
| 2023 | 693                     |             | 11                    |           | 2                     |           | 4                     |
| 2024 | 707                     |             | 11                    |           | 2<br>2<br>2           |           | 4                     |
| 25ר  | 721                     |             | 11                    |           | 2                     |           | 4                     |
| 26 ر | 736                     |             | 11                    |           | 2                     |           | 4                     |
| 2027 | 751                     |             | 12                    |           | 2                     |           | 4                     |
| 2028 | 766                     |             | 12                    |           | 2                     |           | 4                     |
| 2029 | 781                     |             | 12                    |           | 2                     |           | 5                     |
| 2030 | 796                     |             | 12                    |           | 2<br>2                |           | 5                     |
| 2031 | 812                     |             | 13                    |           | 2                     |           | 5                     |
| 2032 | 829                     |             | 13                    |           | 2                     |           | 5                     |
| 2033 | 845                     |             | 13                    | 1         | 2                     |           | J                     |

#### Example calculation of SO<sub>2</sub> adder:

Using High Sulfur Coal = 6.2#SO<sub>2</sub>/MBtu

2004 SO<sub>2</sub> \$/Ton = \$172

Scrubber Removal Efficiency = 95% (for each coal burning technology)

 $\begin{array}{rcl} \textbf{2004 High Sulfur} & \underline{6.2\#SO_2} & (1-0.95) & \underline{172\$} & \underline{100 \text{ Cents}} & \underline{1 \text{ ton } SO_2} \\ \textbf{SO_2 Cost Adder} & = & \underline{MBtu} & \underline{Ton SO_2} & \underline{\$} & \underline{2000 \#} \\ \textbf{2004 High Sulfur} & \underline{2.7 \text{ cents/MBtu}} \end{array}$ 

# Exhibit 2(d)

ť

Ŷ,

;

ł

# Calculation of NOx Adder (\$/MWh)

| Trimble County 2 732 | MW Supercritical Coal-fired Unit Data |
|----------------------|---------------------------------------|
|                      |                                       |

| I TIMDINE COUNTY & 132 MAN      | Supercrucer coal-mi |
|---------------------------------|---------------------|
| Uncontrolled NOx Emission Rate: | 0.25 Jb/MBtu        |
| Controlled NOx Emission Rate:   | 0.07 tb/MBtu        |
| Base Heat Rate:                 | 8,900 Btu/kWh       |
| 2005 NOx Allowance Cost:        | \$3,125 /ton        |
|                                 |                     |

| NOx lbs/MWh | # | Controlled Emissic | on Rate | x I           | -leat Rate | ª _                    | 0.07 lb<br>MBtu | ×              | MBtu<br>1,000,000 Btu | x | 8,900 Btu<br>kWh | x | 1,000 kWh<br>MWh |
|-------------|---|--------------------|---------|---------------|------------|------------------------|-----------------|----------------|-----------------------|---|------------------|---|------------------|
|             | = | 0.623 lbs/         | MWh     |               |            |                        |                 |                |                       |   |                  |   |                  |
| V O&M Adder | a | NOx Ibs/MWh        | ×       |               | Ox Allowa  |                        |                 |                |                       |   |                  |   |                  |
|             | 2 | 0.623 lbs<br>MWh   | x       | \$3125<br>ton | ×          | <u>ton</u><br>2000 lbs | ar (            | <b>\$</b> 0.98 | /MWn                  |   |                  |   |                  |

1

### LEVELIZATION EQUATIONS USED IN TECHNOLOGY SCREENING

The total levelized cost of a particular technology in a specific year at a specific capacity factor is comprised of (at most) five separate components. The five possible components are levelized capital cost, levelized fixed cost, levelized variable cost, levelized fuel cost and levelized charging cost. The actual components utilized in calculating total levelized cost vary from technology to technology. For example, some technologies may exclude the charging component while others exclude the fuel component. Basically, technologies fall into four categories: Those that...

- I. Burn fuel only (i.e. Pulverized Coal, Gas Turbine)
- II. Burn no fuel and utilize no "grid" energy (i.e. Solar, Wind)
- III. Burn no fuel but utilize "grid" energy for charging (i.e. Battery, Pumped Hydro)
- IV. Burn fuel during generation and utilize "grid" energy for charging (i.e. CAES)

A levelization factor  $(L_n)$  converts a series of payments that are made over "n" periods and subject to a constant apparent escalation rate into an equivalent levelized payment stream and is calculated as follows:

| $L_n = \frac{k (1-k^n)}{a_n (1-k)}$                               | n = number of years = 30                                                                                          |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| $\mathbf{k} = \frac{1 + \mathbf{e}_{\mathbf{a}}}{1 + \mathbf{i}}$ | e <sub>a</sub> = apparent esc rate including inflation and real<br>escalation (i.e., VO&M = 2.0%). See Exhibit 5. |
| $a_n = \frac{(1+i)^n - 1}{i(1+i)^n}$                              | i = Discount Rate = Present Value Rate = 7.14%                                                                    |
| $Adj L_n = L_n / (1 + e_a)$                                       |                                                                                                                   |

The screening analysis utilizes the Adj.  $L_n$ . The Adj.  $L_n$  makes adjustments for beginning/ending year dollars to be consistent with the Companies' economic analysis methods. An Adj.  $L_n$  is calculated for the fixed, variable, fuel and charging costs only. The capital cost component does not utilize an Adj.  $L_n$  for levelization because it is levelized through a Fixed Charge Rate (FCR)

#### **Definition of Variables:**

| Variable                  |    | Definition (Units)                                | Source                    |
|---------------------------|----|---------------------------------------------------|---------------------------|
| Year                      | =  | Levelized Year - Base Year                        | Exhibit 5                 |
| Inst Cost                 |    | Installed Cost or Total Generic Unit Cost (\$/kW) | Exhibit 3                 |
| FCR%                      | =  | Fixed Charge Rate (%)                             | Exhibit 5                 |
| Cap Esc%                  | =  | Capital Escalation Rate (%)                       | Exhibit 5                 |
| FO&M                      | =  | Fixed O&M (\$/kW)                                 | Exhibit 3                 |
| VO&M                      | =  | Variable O&M (\$/MWh)                             | Exhibit 3                 |
| Fix Esc                   | =  | Fixed O&M Escalation Rate (%)                     | Exhibit 5                 |
| Var Esc                   | =  | Variable O&M Escalation Rate (%)                  | Exhibit 5                 |
| Fix Adj L <sub>n</sub>    |    | Fixed O&M Levelization Factor                     | Exhibit 5                 |
| Var Adj L <sub>n</sub>    | =  | Variable O&M Levelization Factor                  | Exhibit 5                 |
| Fuel Adj L <sub>n</sub>   | =  | Fuel Cost Levelization Factor                     | Base Fuel Only; Exhibit 5 |
| Charge Adj L <sub>n</sub> | =  | Charging Cost Levelization Factor                 | Exhibit 5                 |
| CF%                       | =  | Capacity Factor (%)                               | 0-100 %                   |
| MW                        | =  | Size of Technology (MW)                           | Exhibit 3                 |
| HR                        |    | Heat Rate (Btu/KWh)                               | Exhibit 3                 |
| FC                        | == | Fuel Cost (\$/MBtu)                               | Exhibit 2 (a)             |
| Avg Ld IO                 | =  | Average Load (kWh In/kWh Out)                     | Exhibit 3                 |
| Charge                    | =  | Charging Cost (\$/MWh)                            | Exhibit 5                 |
| SO2                       | =  | SO <sub>2</sub> Adder (Cents/MBtu)                | Exhibit 2(b)              |
| NOx                       | =  | NO <sub>x</sub> Adder (\$/MWh)                    | Exhibit 2(d)              |

Exhibit 5

# Adjusted L<sub>n</sub> and Other Miscellaneous Data

| 2.00%      | 2.00%                                                                                                                                                                                                                                                                                                        | 2.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wh) charging o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cumulative | Cumulative                                                                                                                                                                                                                                                                                                   | Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Charging Es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F O&M      | V O&M                                                                                                                                                                                                                                                                                                        | Capitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | High SO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low SO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Med SO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Esc        | Esc                                                                                                                                                                                                                                                                                                          | Esc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Charging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.15#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 000      | 1.000                                                                                                                                                                                                                                                                                                        | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Anton Na Ador Ano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 1.040                                                                                                                                                                                                                                                                                                        | 1.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 061      | 1.061                                                                                                                                                                                                                                                                                                        | 1.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.082      | 1.082                                                                                                                                                                                                                                                                                                        | 1 082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.104      | 1 104                                                                                                                                                                                                                                                                                                        | 1.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.126      | 1.126                                                                                                                                                                                                                                                                                                        | 1.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.149      | 1.149                                                                                                                                                                                                                                                                                                        | 1.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 172      | 1.172                                                                                                                                                                                                                                                                                                        | 1.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,195      | 1.195                                                                                                                                                                                                                                                                                                        | 1.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.219      | 1.219                                                                                                                                                                                                                                                                                                        | 1.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 243      |                                                                                                                                                                                                                                                                                                              | 1.243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 268      | 1.268                                                                                                                                                                                                                                                                                                        | 1.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 294      | 1.294                                                                                                                                                                                                                                                                                                        | 1.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.319      | 1.319                                                                                                                                                                                                                                                                                                        | 1.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.346      | 1.346                                                                                                                                                                                                                                                                                                        | 1.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.373      | 1.373                                                                                                                                                                                                                                                                                                        | 1.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.400      | 1.400                                                                                                                                                                                                                                                                                                        | 1.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 428      | 1.428                                                                                                                                                                                                                                                                                                        | 1.428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.457      | 1.457                                                                                                                                                                                                                                                                                                        | 1.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.486      | 1.486                                                                                                                                                                                                                                                                                                        | 1.486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.516      | 1.516                                                                                                                                                                                                                                                                                                        | 1.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.546      | 1.546                                                                                                                                                                                                                                                                                                        | 1.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.577      | 1.577                                                                                                                                                                                                                                                                                                        | 1.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 608      | 1.608                                                                                                                                                                                                                                                                                                        | 1.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.641      | 1.641                                                                                                                                                                                                                                                                                                        | 1.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.673      | 1.673                                                                                                                                                                                                                                                                                                        | 1.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.707      | 1 707                                                                                                                                                                                                                                                                                                        | 1.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.741      | 1.741                                                                                                                                                                                                                                                                                                        | 1,741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.776      | 1.776                                                                                                                                                                                                                                                                                                        | 1.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | F O&M<br>Esc<br>1.000<br>1.020<br>1.040<br>1.061<br>1.082<br>1.104<br>1.126<br>1.149<br>1.172<br>1.195<br>1.219<br>1.243<br>1.268<br>1.294<br>1.319<br>1.346<br>1.373<br>1.400<br>1.428<br>1.373<br>1.400<br>1.428<br>1.457<br>1.486<br>1.516<br>1.546<br>1.577<br>1.608<br>1.641<br>1.673<br>1.707<br>1.741 | F O&M<br>Esc         V O&M<br>Esc           1 000         1 000           1 020         1.020           1 040         1.040           1 061         1.061           1 082         1.082           1 104         1 044           1 105         1.126           1 149         1.149           1 172         1.172           1 195         1.219           1 243         1.243           1 268         1.268           1 294         1.219           1 319         1.319           1.346         1 346           1 373         1 373           1 400         1 400           1 428         1 428           1 457         1 457           1 486         1 546           1 546         1 546           1 577         1 577           1 608         1 608           1 641         1 641           1 673         1 673           1 707         1 707 | F O&M<br>Esc         V O&M<br>Esc         Capital<br>Esc           1.000         1.000         1.000           1.020         1.020         1.020           1.040         1.040         1.040           1.061         1.061         1.061           1.082         1.082         1.082           1.104         1.041         1.04           1.126         1.126         1.126           1.149         1.149         1.149           1.172         1.172         1.172           1.195         1.195         1.195           1.219         1.219         1.219           1.243         1.243         1.243           1.268         1.268         1.268           1.294         1.294         1.294           1.319         1.319         1.319           1.346         1.346         1.346           1.373         1.373         1.373           1.400         1.400         1.400           1.428         1.428         1.428           1.457         1.457         1.457           1.486         1.486         1.516           1.516         1.516         1.516 <tr< td=""><td>F O&amp;M<br/>Esc         V O&amp;M<br/>Esc         Capital<br/>Esc         High SO2<br/>6.2#           1 000         1 000         1 000         1 000           1 020         1 020         1 020           1 040         1 040         1 040           1 061         1 061         1 061           1 082         1 082         1 082           1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 149           1 172         1 172         1 172           1 195         1 195         1 195           1 243         1 243         1 243           1 268         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 373         1 373         1 373           1 400         1 400         1 400           1 428         1 428         1 428           1 457         1 457         1 457           1 486         1 486         1 486           1 546         1 546         1 546           1 577</td><td>F O&amp;M<br/>Esc         V O&amp;M<br/>Esc         Capital<br/>Esc         High SO2<br/>6.2#         Gas           1 000         1 000         1 000         1 000         1 000         1 000           1 040         1 040         1 040         1 040         1 040           1 061         1 061         1 061         1 061           1 062         1 082         1 082         1 082           1 104         1 104         1 104         1 040           1 126         1 126         1 126         1 126           1 149         1 149         1 149         1 49           1 172         1 172         1 172         1 172           1 195         1 195         1 195         1 95           1 219         1 219         1 219         1 219           1 243         1 243         1 243         1 243           1 268         1 268         1 268         1 294           1 319         1 319         1 319         1 319           1 319         1 319         1 319         1 319           1 346         1 346         1 346         1 400           1 428         1 428         1 428         1 428           1 486         1 4</td><td>F O&amp;M<br/>Esc         V O&amp;M<br/>Esc         Capital<br/>Esc         High SO2<br/>6.28         Cost<br/>Gas           1 000         1 000         1 000         1 000           1 020         1 020         1 020           1 040         1 040         1 040           1 061         1 061         1 061           1 082         1 082         1 082           1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 49           1 172         1 172         1 172           1 195         1 195         1 195           1 243         1 243         1 243           1 268         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 373         1 373         1 373           1 400         1 400         1 400           1 486         1 486         1 486           1 577         1 577         1 577           1 608         1 608         1 608           1 673         1 673         1 673</td><td>F O&amp;M<br/>Esc         V O&amp;M<br/>Esc         Capital<br/>Esc         High SO2<br/>6.2#         Cost<br/>Gas         Cost<br/>Charging         No Fuel           1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 014         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104</td><td>F Q&amp;M<br/>Esc         V Q&amp;M<br/>Esc         Capital<br/>Esc         High SO2<br/>6.2#         Cost<br/>Gas         Low SO2<br/>Charging           1 000         1 000         1 000         1 000         1 000           1 020         1 020         1 020         1 020           1 040         1 040         1 040         1 040           1 061         1 061         1 061         1 061           1 082         1 082         1 082         1 082           1 104         1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 149           1 172         1 172         1 172           1 185         1 284         1 243           1 286         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 457         1 457         1 457           1 486         1 546         1 546           1 577         1 577         1 577           1 608         1 608         1 608           1 641         1 641         1 641           &lt;</td></tr<> | F O&M<br>Esc         V O&M<br>Esc         Capital<br>Esc         High SO2<br>6.2#           1 000         1 000         1 000         1 000           1 020         1 020         1 020           1 040         1 040         1 040           1 061         1 061         1 061           1 082         1 082         1 082           1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 149           1 172         1 172         1 172           1 195         1 195         1 195           1 243         1 243         1 243           1 268         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 373         1 373         1 373           1 400         1 400         1 400           1 428         1 428         1 428           1 457         1 457         1 457           1 486         1 486         1 486           1 546         1 546         1 546           1 577 | F O&M<br>Esc         V O&M<br>Esc         Capital<br>Esc         High SO2<br>6.2#         Gas           1 000         1 000         1 000         1 000         1 000         1 000           1 040         1 040         1 040         1 040         1 040           1 061         1 061         1 061         1 061           1 062         1 082         1 082         1 082           1 104         1 104         1 104         1 040           1 126         1 126         1 126         1 126           1 149         1 149         1 149         1 49           1 172         1 172         1 172         1 172           1 195         1 195         1 195         1 95           1 219         1 219         1 219         1 219           1 243         1 243         1 243         1 243           1 268         1 268         1 268         1 294           1 319         1 319         1 319         1 319           1 319         1 319         1 319         1 319           1 346         1 346         1 346         1 400           1 428         1 428         1 428         1 428           1 486         1 4 | F O&M<br>Esc         V O&M<br>Esc         Capital<br>Esc         High SO2<br>6.28         Cost<br>Gas           1 000         1 000         1 000         1 000           1 020         1 020         1 020           1 040         1 040         1 040           1 061         1 061         1 061           1 082         1 082         1 082           1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 49           1 172         1 172         1 172           1 195         1 195         1 195           1 243         1 243         1 243           1 268         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 373         1 373         1 373           1 400         1 400         1 400           1 486         1 486         1 486           1 577         1 577         1 577           1 608         1 608         1 608           1 673         1 673         1 673 | F O&M<br>Esc         V O&M<br>Esc         Capital<br>Esc         High SO2<br>6.2#         Cost<br>Gas         Cost<br>Charging         No Fuel           1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 000         1 014         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104         1 104 | F Q&M<br>Esc         V Q&M<br>Esc         Capital<br>Esc         High SO2<br>6.2#         Cost<br>Gas         Low SO2<br>Charging           1 000         1 000         1 000         1 000         1 000           1 020         1 020         1 020         1 020           1 040         1 040         1 040         1 040           1 061         1 061         1 061         1 061           1 082         1 082         1 082         1 082           1 104         1 104         1 104         1 104           1 126         1 126         1 126           1 149         1 149         1 149           1 172         1 172         1 172           1 185         1 284         1 243           1 286         1 268         1 268           1 294         1 294         1 294           1 319         1 319         1 319           1 346         1 346         1 346           1 457         1 457         1 457           1 486         1 546         1 546           1 577         1 577         1 577           1 608         1 608         1 608           1 641         1 641         1 641           < |

(All Fuel prices are in Cents/MBtu)

#### Fuel Notes:

When utilized, SO 2 cost adder to High SO2, Low SO2 and Med SO2 Coal assumes 95% FGD removal efficiency. When utilized, the fuel cost adder representing Carbon Tax was applied to High, Low, & Med Sulfur coals, and Natural Gas. 6/29/04 Fuel Forecast Used. All fuel prices in cents per million Btu with the exception of charging which is in \$/MWh. Charging cost base upon average cost of off-peak generation.

|                      |         | Fixed  | Variable | Capital | High SO2 | Gas | Charging | No Fuel | Low SO2 | Med SO2 |
|----------------------|---------|--------|----------|---------|----------|-----|----------|---------|---------|---------|
| Base Year =          | 2004    |        |          |         |          |     |          |         |         |         |
| Levelized Year =     | 2004    |        |          |         |          |     |          |         |         |         |
| Ea =                 |         | 2.00%  | 2.00%    | 2.00%   |          |     |          |         |         |         |
| PV Rate (i) =        | 7 14%   |        |          |         | <u></u>  |     |          |         |         |         |
| k ≖                  |         | 0.9620 | 0.9520   | 0.9520  |          |     |          |         |         |         |
| n ==                 | I       |        |          |         |          |     |          |         |         |         |
| An =                 | 12,2385 |        |          |         |          |     |          |         |         |         |
| եր =                 |         | 1.251  | 1,251    | 1.251   |          |     |          |         |         |         |
| Adj L <sub>n</sub> = |         | 1.226  | 1.226    | 1 226   |          |     |          |         |         |         |

Input

Not an Input

Calculated

Change "Levelized Year" to year desired for "Snapshot" year analysis.

Change "n" to 1 for "Snapshot" year analysis and 30 for levelized analysis.

#### **Fixed Charge Rates by Technology**

| 9.09%  |
|--------|
| 10.52% |
| 9.19%  |
| 9.46%  |
| 10 48% |
|        |

### Exhibit 6

(

Ç.,

| Capital Cost-Base                                   | 2004 | Dollars (1 | i/kW yr) |      |        |                                                            |            |      |     |     |       |
|-----------------------------------------------------|------|------------|----------|------|--------|------------------------------------------------------------|------------|------|-----|-----|-------|
| Heat Rate- Base<br>Fuel Forecast- Base              |      |            |          |      | Canaci | ty Factor                                                  | 1          |      |     |     |       |
| Technology                                          | 0%   | 10%        | 20%      | 30%  | 40%    | 50%                                                        | 60%        | 70%  | 80% | 90% | 100%  |
| Pumped Hydro Energy Storage - 500 MW                | 195  | 226        |          |      |        | <b>میروان او بر بر بر بر بر بر بر بر بر بر</b><br>مربع میر |            |      |     |     |       |
| ead-Acid Battery Energy Storage - 5 MW              | 159  | 272        | 384      |      |        |                                                            |            |      |     |     |       |
| Compressed Air Energy Storage - 500 MW              | 101  | 152        | 203      |      |        |                                                            | -          |      |     |     |       |
| compressed Air Energy crorage - coc mitt            |      |            |          |      |        |                                                            |            |      |     |     |       |
| Simple Cycle GE LM6000 CT - 31 MW                   | 157  | 225        | 293      | 361  | 429    | 497                                                        | 565        | 633  | 701 | 769 | 83    |
| Simple Cycle GE 7EA CT - 73 MW                      | 108  | 192        | 277      | 362  | 447    | 531                                                        | 616        | 701  | 785 | 870 | 95    |
| Simple Cycle GE 7FA CT - 148 MW                     | 81   | 165        | 248      | 332  | 416    | 500                                                        | 584        | 667  | 751 | 835 | 91    |
| Combined Cycle GE 7EA CT - 119 MW                   | 145  | 198        | 251      | 304  | 357    | 409                                                        | 462        | 515  | 568 | 621 | 6     |
| Combined Cycle GE 7FA CT - 235 MW                   | 118  | 164        | 212      | 261  | 309    | 357                                                        | 405        | 453  | 502 | 550 | 59    |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 96   | 144        | 192      | 240  | 288    | 335                                                        | 383        | 431  | 479 | 527 | 57    |
| W 501F CC CT - 258 MW                               | 109  | 159        | 208      | 258  | 308    | 358                                                        | 408        | 457  | 507 | 557 | 60    |
| Spark Ignition Engine - 5 MW                        | 141  | 228        | 316      | 403  | 491    | 578                                                        |            |      |     |     |       |
| Compression Ignition Engine - 10 MW                 | 103  | 178        | 254      | 329  | 405    | 480                                                        |            |      |     |     |       |
| Wind Energy Conversion - 50 MW                      | 191  | 191        | 191      | 191  |        |                                                            |            |      |     |     |       |
| Solar Thermal, Parabolic Trough - 100 MW            | 494  | 523        | 553      | 582  | 612    |                                                            |            |      |     |     |       |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 384  | 400        | 418      |      |        |                                                            |            |      |     |     |       |
| Solar Thermal, Central Receiver - 50 MW             | 658  | 674        | 690      | 706  | 723    | 739                                                        | 755        | 771  |     |     |       |
| Solar Thermal, Solar Chimney - 200 MW               | 439  | 455        | 471      | 487  | 504    | 520                                                        | 536        | 552  |     |     | ••••• |
| Solar Photovoltaic - 50 kW                          | 958  | 982        | 1007     |      |        |                                                            |            |      |     |     |       |
| Biomass (Co-Fire) - 27.5MW                          | 321  | 329        | 338      | 346  | 355    | 364                                                        | 372        | 381  | 390 |     |       |
| Geothermal - 30 MW                                  | 664  | 664        | 664      | 664  | 664    | 664                                                        | 664        | 664  | 664 | -   |       |
| Hydroelectric - New - 30 MW                         | 402  | 407        | 412      | 416  | 421    | 425                                                        |            |      |     |     |       |
| WV Hydro                                            |      |            |          |      |        |                                                            |            |      | -   |     |       |
| MSW Mass Burn - 7 MW                                | 1026 | 1106       | 1187     | 1268 | 1348   | 1429                                                       | 1509       | 1590 |     |     |       |
| RDF Stoker-Fired - 7 MW                             | 1491 | 1577       | 1663     | 1749 | 1835   | 1921                                                       | 2007       | 2093 |     |     |       |
| Landfill Gas IC Engine - 5 MW                       | 219  | 264        | 309      | 353  | 398    | 443                                                        | 488        | 532  | 577 |     |       |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 345  | 350        | 355      | 360  | 365    | 370                                                        | 375        | 380  | 385 | 390 | 31    |
| Sewage Sludge & Anaerobic Digestion085 MW           | 335  | 351        | 387      | 383  | 400    | 418                                                        | 432        | 448  | 464 |     |       |
| Humid Air Turbine Cycle CT - 450 MW                 | 91   | 135        | 178      | 222  | 266    | 309                                                        | 353        | 397  |     |     |       |
| Kalina Cycle CC CT - 275 MW                         | 114  | 159        | 204      | 249  | 294    | 339                                                        | 384        | 429  |     |     |       |
| Cheng Cycle CT - 140 MW                             | 140  | 196        | 252      | 308  | 384    | 421                                                        | 477        | 533  |     |     |       |
| Pressurized Fluidized Bed Combustion - 250 MW       | 213  | 271        | 329      | 387  | 445    | 503                                                        | 581        | 619  |     |     |       |
| IGCC - 267 MW                                       | 237  | 269        | 301      | 333  | 384    | 396                                                        | 428<br>396 | 460  | 492 |     |       |
| IGCC - 534 MW                                       | 207  | 239        | 270      | 302  | 333    | 385<br>1691                                                | 390        | 427  | 459 |     |       |
| Fuel Cell - 0.2 MW                                  | 1394 | 1453       | 1512     | 1572 | 1631   | 1091                                                       |            |      |     |     |       |
| Peaking Microturbine - 0.03 MW                      | 122  | 217        |          |      |        |                                                            |            |      |     |     |       |
| Baseload Microturbine - 0.03 MW                     | 122  | 213        | 304      | 395  | 486    | 577                                                        | 668        | 759  |     |     |       |
| Supercritical Putverized Coal - 500 MW              | 167  | 189        | 211      | 233  | 255    | 277                                                        | 299        | 321  | 343 | 364 | 30    |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 177  | 198        | 215      | 234  | 253    | 272                                                        | 291        | 310  | 328 | 347 | 30    |
| Supercritical Pulverized Coal - 750 MW              | 150  | 172        | 193      | 215  | 236    | 258                                                        | 279        | 301  | 322 | 344 | 3     |
| Subcritical Pulverized Coal - 250 MW                | 206  | 228        | 251      | 274  | 297    | 320                                                        | 342        | 365  | 388 | 411 | 4     |
| Subcritical Pulverized Coal - 500 MW                | 163  | 185        | 208      | 230  | 252    | 274                                                        | 296        | 319  | 341 | 363 | 3     |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 173  | 192        | 211      | 230  | 250    | 269                                                        | 288        | 307  | 326 | 348 | 3     |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 159  | 178        | 196      | 215  | 234    | 252                                                        | 271        | 289  | 308 | 327 | 3     |
| Circulating Fluidized Bed - 250 MW                  | 215  | 238        | 262      | 285  | 308    | 331                                                        | 355        | 378  | 401 | 425 | 4     |
| Circulating Fluidized Bed - 500 MW                  | 164  | 186        | 209      | 232  | 255    | 278                                                        | 301        | 324  | 347 | 370 | 3     |
| Ohio Falls 9 and 10                                 | 144  | 144        | 144      | 144  |        |                                                            |            |      |     |     |       |
| TC2 732 MW Supercritical Pulverized Coal            | 129  | 144        | 159      | 174  | 190    | 205                                                        |            |      |     |     |       |
| Minimum Levelized \$/kW                             | 0    | 37         | 73       | 110  | 146    | 183                                                        | 220        | 235  | 250 | 268 | 2     |

#### Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

| Capital Cost-Low                                    | 2004 | Dollars ( | ⊌K₩ γr) |      |        |            |       |      |     |     |       |
|-----------------------------------------------------|------|-----------|---------|------|--------|------------|-------|------|-----|-----|-------|
| feat Rate-Low<br>Fuel Forecast- Base                |      |           |         |      | Canaci | ity Factor |       |      |     |     |       |
| Technology                                          | 0%   | 10%       | 20%     | 30%  | 40%    | 50%        | 60%   | 70%  | 80% | 90% | 100%  |
| Pumped Hydro Energy Storage - 500 MW                | 176  | 207       |         |      |        |            |       |      |     |     | 100 / |
| ead-Acid Battery Energy Storage - 5 MW              | 145  | 258       | 370     |      |        |            |       |      |     |     |       |
| Compressed Air Energy Storage - 500 MW              | 93   | 143       | 193     | **** |        |            |       |      |     |     |       |
|                                                     |      |           |         |      |        |            |       |      |     |     |       |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 213       | 277     | 342  | 407    | 472        | 537   | 601  | 666 | 731 | 796   |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 183       | 263     | 344  | 425    | 506        | 587   | 867  | 748 | 829 | 910   |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 157       | 238     | 318  | 398    | 479        | 559   | 640  | 720 | 800 | 88    |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 186       | 237     | 287  | 338    | 388        | 439   | 489  | 540 | 590 | 641   |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 154       | 200     | 246  | 292    | 338        | 384   | 430  | 478 | 522 | 56    |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 136       | 181     | 227  | 273    | 318        | 384   | 410  | 456 | 501 | 54    |
| N 501F CC CT - 258 MW                               | 102  | 149       | 197     | 244  | 292    | 339        | 387   | 434  | 482 | 529 | 57    |
| Spark Ignition Engine - 5 MW                        | 127  | 211       | 295     | 380  | 484    | 548        |       |      |     |     |       |
| Compression Ignition Engine - 10 MW                 | 92   | 165       | 238     | 311  | 384    | 457        |       |      |     |     |       |
| Nind Energy Conversion - 50 MW                      | 160  | 160       | 160     | 160  |        |            |       |      |     |     |       |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424       | 454     | 483  | 513    |            | ***** |      |     |     |       |
| Soler Thermal, Parabolic Dish - 1.2 MW              | 307  | 323       | 339     |      |        |            |       |      |     |     | -     |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543       | 559     | 575  | 592    | 608        | 624   | 640  |     |     |       |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 367       | 383     | 399  | 416    | 432        | 448   | 464  |     |     |       |
| Solar Photovołtajc - 50 kW                          | 771  | 795       | 820     |      |        |            |       |      |     |     |       |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280       | 289     | 297  | 306    | 315        | 323   | 332  | 341 |     |       |
| Geothermal - 30 MW                                  | 592  | 592       | 592     | 592  | 592    | 592        | 592   | 592  | 592 |     |       |
| Hydroelectric - New - 30 MW                         | 384  | 389       | 374     | 378  | 383    | 387        |       |      |     |     |       |
| WV Hydro                                            |      |           |         |      |        |            |       |      |     |     | -     |
| ISW Mass Burn - 7 MW                                | 895  | 975       | 1056    | 1137 | 1217   | 1298       | 1378  | 1459 |     |     |       |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401      | 1487    | 1573 | 1659   | 1745       | 1831  | 1917 |     |     |       |
| andfill Gas IC Engine - 5 MW                        | 176  | 219       | 263     | 306  | 349    | 392        | 436   | 479  | 522 |     | -     |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295       | 300     | 305  | 310    | 315        | 320   | 325  | 330 | 335 | 34    |
| Sewage Sludge & Anaerobic Digestion085 MW           | 268  | 284       | 300     | 316  | 333    | 349        | 365   | 381  | 397 |     |       |
| mid Air Turbine Cycle CT - 450 MW                   | 80   | 122       | 163     | 205  | 247    | 288        | 330   | 372  |     |     | -     |
| lina Cycle CC CT - 275 MW                           | 98   | 141       | 184     | 227  | 270    | 312        | 355   | 398  |     |     |       |
| Cheng Cycle CT - 140 MW                             | 119  | 172       | 226     | 280  | 333    | 387        | 440   | 494  |     |     |       |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 232       | 287     | 343  | 398    | 454        | 509   | 565  |     |     |       |
| GCC - 267 MW                                        | 201  | 231       | 262     | 293  | 323    | 354        | 384   | 415  | 448 |     |       |
| GCC - 534 MW                                        | 173  | 204       | 234     | 264  | 294    | 324        | 354   | 384  | 414 |     |       |
|                                                     | 1263 | 1319      | 1376    | 1433 | 1490   | 1547       | 004   | 304  | 414 |     |       |
| Fuel Cell - 0.2 MW                                  |      |           |         | 1433 | 1480   | 1047       |       |      |     |     |       |
| Peaking Microturbine - 0.03 MW                      | 97   | 188       |         |      |        |            |       |      |     |     |       |
| Baseload Microturbine - 0.03 MW                     | 97   | 184       | 272     | 359  | 446    | 533        | 621   | 708  |     |     |       |
| Supercritical Pulverized Coal - 500 MW              | 153  | 174       | 195     | 216  | 237    | 258        | 279   | 300  | 321 | 341 | 363   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 181       | 199     | 218  | 238    | 254        | 272   | 290  | 308 | 326 | 34    |
| Supercritical Pulverized Coal - 750 MW              | 137  | 158       | 178     | 199  | 219    | 240        | 260   | 281  | 301 | 322 | 34    |
| Subcritical Pulverized Coal - 250 MW                | 189  | 210       | 232     | 254  | 276    | 298        | 319   | 341  | 363 | 385 | 40    |
| Subcritical Pulverized Coal - 500 MW                | 149  | 170       | 192     | 213  | 234    | 255        | 276   | 298  | 319 | 340 | 36    |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 177       | 195     | 214  | 232    | 250        | 269   | 287  | 305 | 324 | 34    |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 164       | 182     | 200  | 218    | 236        | 254   | 272  | 289 | 307 | 32    |
| Circulating Fluidized Bed - 250 MW                  | 197  | 219       | 242     | 264  | 286    | 308        | 331   | 353  | 375 | 398 | 42    |
| Circulating Fluidized Bed - 500 MW                  | 150  | 171       | 193     | 215  | 237    | 259        | 280   | 302  | 324 | 346 | 38    |
| Ohio Falls 9 and 10                                 | 130  | 130       | 130     | 130  |        | -          |       |      |     |     |       |
| FC2 732 MW Supercritical Pulverized Coal            | 117  | 131       | 146     | 160  | 175    | 189        |       |      |     |     | -     |

.

(

ć

2004 Dollars (\$/kW yr) **Capital Cost-Low** Heat Rate-Base Fuel Forecast-Low **Capacity Factors** 40% 80% Technology 0% 10% 20% 30% 50% 60X 70% 90% 100% Pumped Hydro Energy Storage - 500 MW ead-Acid Battery Energy Storage - 5 MW -----Compressed Air Energy Storage - 500 MW Simple Cycle GE LM6000 CT - 31 MW Simple Cycle GE 7EA CT - 73 MW R15 Simple Cycle GE 7FA CT - 148 MW Combined Cycle GE 7EA CT - 119 MW 37B Combined Cycle GE 7FA CT - 235 MW Combined Cycle 2x1 GE 7FA CT - 484 MW W 501F CC CT - 258 MW Spark Ignition Engine - 5 MW Compression Ignition Engine - 10 MW Wind Energy Conversion - 50 MW Solar Thermal, Parabolic Trough - 100 MW -----Solar Thermal, Parabolic Dish - 1.2 MW Solar Thermal, Central Receiver - 50 MW Solar Thermal, Solar Chimney - 200 MW Solar Photovoltaic - 50 kW Biomass (Co-Fire) - 27.5MW Geothermal - 30 MW Hydroelectric - New - 30 MW WV Hydro -----MSW Mass Burn - 7 MW RDF Stoker-Fired - 7 MW Landfill Gas IC Engine - 5 MW TDF Multi-Fuel CFB (10% Co-fire) - 50 MW Sewage Sludge & Anaerobic Digestion - .085 MW \_\_\_\_ mid Air Turbine Cycle CT - 450 MW ----lina Cycle CC CT - 275 MW •----neng Cycle CT - 140 MW Pressurized Fluidized Bed Combustion - 250 MW IGCC - 287 MW IGCC - 534 MW \_\_\_\_ Fuel Cell - 0.2 MW -----Peaking Microturbine - 0.03 MW -----Baseload Microturbine - 0.03 MW Supercritical Pulverized Coal - 500 MW Supercritical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal - 750 MW Subcritical Pulverized Coal - 250 MW Subcritical Pulverized Coal - 500 MW Subcritical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal, High Sulfur - 750 MW Circulating Fluidized Bed - 250 MW Circulating Fluidized Bed - 500 MW Ohio Falls 9 and 10 TC2 732 MW Supercritical Pulverized Coal Minimum Levelized \$/kW 

#### Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

1

#### Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

| Capital Cost-Low                                    | 2004 | Dollars (\$ | VkW yr) |      |        |            |      |      |     |        |      |
|-----------------------------------------------------|------|-------------|---------|------|--------|------------|------|------|-----|--------|------|
| Heat Rate- Base<br>Fuel Forecast- High              |      |             |         |      | Canaci | ity Factor |      |      |     |        |      |
| Technology                                          | 0%   | 10%         | 20%     | 30%  | 40%    | 50%        | 60%  | 70%  | 80% | 90%    | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 176  | 207         |         |      |        |            |      |      |     |        |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 145  | 258         | 370     |      |        |            |      |      |     |        |      |
| Compressed Air Energy Storage - 500 MW              | 93   | 147         | 201     |      |        |            |      |      |     |        | _    |
| Compressed Air Energy Storage - 500 MVV             | 93   | 147         | 201     |      |        |            |      |      |     |        |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 222         | 297     | 371  | 446    | 520        | 595  | 669  | 744 | 818    | 893  |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 194         | 287     | 379  | 471    | 564        | 656  | 749  | 841 | 933    | 1026 |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 168         | 258     | 349  | 440    | 531        | 622  | 712  | 803 | 894    | 985  |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 194         | 251     | 309  | 367    | 424        | 482  | 540  | 598 | 655    | 713  |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 161         | 213     | 266  | 318    | 371        | 424  | 476  | 529 | 581    | 634  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 142         | 195     | 247  | 299    | 351        | 404  | 456  | 508 | 561    | 813  |
| W 501F CC CT - 258 MW                               | 102  | 158         | 211     | 265  | 319    | 374        | 428  | 483  | 537 | 591    | 646  |
| Spark Ignition Engine - 5 MW                        | 127  | 220         | 314     | 407  | 501    | 594        |      |      |     |        |      |
| Compression Ignition Engine - 10 MW                 | 92   | 172         | 253     | 333  | 414    | 494        |      |      |     |        | ~~~~ |
| Wind Energy Conversion - 50 MW                      | 160  | 160         | 160     | 160  |        |            |      |      |     |        |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424         | 454     | 483  | 513    |            | ***  |      |     |        |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 307  | 323         | 339     |      |        |            |      |      |     |        |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543         | 559     | 575  | 592    | 608        | 624  | 640  |     |        |      |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 367         | 383     | 399  | 416    | 432        | 448  | 484  |     |        |      |
| Solar Photovoltaic - 50 kW                          | 771  | 795         | 820     |      |        |            |      |      |     | -      |      |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280         | 289     | 297  | 306    | 315        | 323  | 332  | 341 |        |      |
| Geothermal - 30 MW                                  | 592  | 592         | 592     | 592  | 592    | 592        | 592  | 592  | 592 |        |      |
| Hydroelectric - New - 30 MW                         | 364  | 369         | 374     | 378  | 383    | 387        |      |      |     |        |      |
| WV Hydro                                            | 1.5  |             |         |      |        |            | -    |      |     |        |      |
| MSW Mass Burn - 7 MW                                | 895  | 975         | 1056    | 1137 | 1217   | 1298       | 1378 | 1459 |     |        |      |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401        | 1487    | 1573 | 1659   | 1745       | 1831 | 1917 |     |        |      |
| Landfill Gas IC Engine - 5 MW                       | 176  | 224         | 271     | 319  | 366    | 414        | 461  | 509  | 556 |        |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295         | 300     | 305  | 310    | 315        | 320  | 325  | 330 | 335    | 341  |
| Sewage Sludge & Anaerobic Digestion085 MW           | 268  | 284         | 300     | 316  | 333    | 349        | 365  | 381  | 397 |        |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 80   | 128         | 175     | 223  | 271    | 318        | 366  | 414  |     | -      |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 147         | 196     | 246  | 295    | 344        | 393  | 442  |     |        |      |
| Cheng Cycle CT - 140 MW                             | 119  | 180         | 242     | 303  | 365    | 426        | 487  | 549  |     |        |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 240         | 303     | 366  | 430    | 493        | 558  | 620  |     |        |      |
| IGCC - 267 MW                                       | 201  | 235         | 270     | 304  | 339    | 373        | 408  | 442  | 477 |        |      |
| IGCC - 534 MW                                       | 173  | 207         | 241     | 275  | 309    | 343        | 377  | 411  | 445 |        |      |
| Fuel Cell - 0.2 MW                                  | 1263 | 1327        | 1392    | 1456 | 1521   | 1586       |      |      |     |        |      |
| Peaking Microturbine - 0.03 MW                      | 97   | 200         |         |      |        | -          |      |      |     |        |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 195         | 294     | 392  | 491    | 589        | 688  | 786  |     | ****** |      |
| Supercritical Putverized Coal - 500 MW              | 153  | 177         | 201     | 224  | 248    | 272        | 296  | 319  | 343 | 367    | 390  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 185         | 207     | 229  | 251    | 273        | 295  | 317  | 338 | 360    | 382  |
| Supercritical Pulverized Coal - 750 MW              | 137  | 161         | 184     | 207  | 230    | 253        | 277  | 300  | 323 | 348    | 389  |
| Subcritical Pulverized Coal - 250 MW                | 189  | 213         | 238     | 262  | 287    | 312        | 336  | 361  | 385 | 410    | 435  |
| Subcritical Pulverized Coal - 500 MW                | 149  | 173         | 197     | 221  | 245    | 269        | 293  | 317  | 341 | 365    | 389  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 181         | 203     | 225  | 248    | 270        | 292  | 314  | 336 | 359    | 381  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 168         | 189     | 211  | 232    | 254        | 275  | 297  | 318 | 340    | 361  |
| Circulating Fluidized Bed - 250 MW                  | 197  | 222         | 247     | 273  | 298    | 323        | 348  | 373  | 399 | 424    | 449  |
| Circulating Fluidized Bed - 500 MW                  | 150  | 174         | 199     | 224  | 248    | 273        | 298  | 322  | 347 | 372    | 397  |
| Ohio Falls 9 and 10                                 | 130  | 130         | 130     | 130  |        |            |      |      |     |        |      |
| TC2 732 MW Supercritical Pulverized Coal            | 117  | 135         | 153     | 170  | 188    | 206        |      |      |     |        |      |
|                                                     |      |             |         |      |        |            |      |      |     |        |      |

••• Ć

(

## Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

Capital Cost-Low Heat Rate- High Fuel Forecast- Base 2004 Dollars (\$/kW yr) 104 204 404 647

| Fuel Forecast-Base                                  |      |      |      |      |      | ity Factor |       |      |     |     |      |
|-----------------------------------------------------|------|------|------|------|------|------------|-------|------|-----|-----|------|
| Technology                                          | 0%   | 10%  | 20%  | 30%  | 40%  | 50%        | 60%   | 70%  | 80% | 90% | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 176  | 207  |      |      |      |            |       |      |     |     |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 145  | 258  | 370  |      |      |            |       |      |     |     | -    |
| Compressed Air Energy Storage - 500 MW              | 93   | 145  | 197  |      |      |            |       |      |     |     |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 219  | 290  | 362  | 433  | 504        | 576   | 647  | 718 | 789 | 861  |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 190  | 279  | 368  | 456  | 545        | 633   | 722  | 811 | 899 | 988  |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 164  | 251  | 339  | 426  | 513        | 801   | 688  | 775 | 863 | 950  |
| Combined Cycle GE 7EA CT - 119 MW                   | 138  | 191  | 247  | 302  | 357  | 412        | 468   | 523  | 578 | 634 | 689  |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 158  | 209  | 259  | 310  | 360        | 410   | 461  | 511 | 582 | 612  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 140  | 190  | 240  | 290  | 340        | 391   | 441  | 401 | 541 | 591  |
| W 501F CC CT - 258 MW                               | 102  | 154  | 206  | 258  | 310  | 362        | 414   | 467  | 519 | 571 | 623  |
| Spark Ignition Engine - 5 MW                        | 127  | 217  | 308  | 398  | 489  | 579        |       | -    |     |     | -    |
| Compression Ignition Engine - 10 MW                 | 92   | 170  | 248  | 325  | 403  | 481        |       |      |     |     |      |
| Wind Energy Conversion - 50 MW                      | 160  | 160  | 160  | 160  |      |            |       |      |     |     |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424  | 454  | 483  | 513  |            |       |      |     |     |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 307  | 323  | 339  |      |      |            |       |      |     |     |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543  | 559  | 575  | 592  | 608        | 624   | 640  |     |     |      |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 367  | 383  | 399  | 418  | 432        | 448   | 484  |     |     |      |
| Solar Photovoltaic - 50 kW                          | 771  | 795  | 820  |      |      |            | ***** |      |     | -   |      |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280  | 289  | 297  | 306  | 315        | 323   | 332  | 341 | -   |      |
| Geothermal - 30 MW                                  | 592  | 592  | 592  | 592  | 592  | 592        | 592   | 592  | 592 |     |      |
| Hydroelectric - New - 30 MW                         | 364  | 389  | 374  | 378  | 383  | 387        |       |      | -   |     |      |
| WV Hvdro                                            |      |      |      |      |      |            |       | -    |     |     |      |
| MSW Mass Burn - 7 MW                                | 895  | 975  | 1058 | 1137 | 1217 | 1298       | 1378  | 1459 | -   |     |      |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401 | 1487 | 1573 | 1659 | 1745       | 1831  | 1917 |     |     |      |
| Landfill Gas IC Engine - 5 MW                       | 178  | 222  | 268  | 314  | 361  | 407        | 453   | 499  | 545 |     |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295  | 300  | 305  | 310  | 315        | 320   | 325  | 330 | 335 | 341  |
| Jewage Sludge & Anaerobic Digestion085 MW           | 268  | 284  | 300  | 318  | 333  | 349        | 365   | 381  | 397 |     |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 80   | 126  | 171  | 217  | 263  | 308        | 354   | 400  |     |     |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 145  | 192  | 239  | 288  | 333        | 380   | 427  |     |     |      |
| Cheng Cycle CT - 140 MW                             | 119  | 178  | 237  | 295  | 354  | 413        | 472   | 531  |     |     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 237  | 298  | 359  | 419  | 480        | 541   | 602  |     |     |      |
| IGCC - 267 MW                                       | 201  | 234  | 267  | 300  | 334  | 367        | 400   | 433  | 466 |     |      |
| IGCC - 534 MW                                       | 173  | 206  | 239  | 272  | 304  | 337        | 370   | 402  | 435 |     |      |
| Fuel Cell - 0.2 MW                                  | 1283 | 1325 | 1387 | 1449 | 1511 | 1573       |       |      |     |     |      |
| Peaking Microturbine - 0.03 MW                      | 97   | 196  |      |      |      |            |       | -    |     |     |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 192  | 286  | 381  | 476  | 571        | 665   | 760  |     |     |      |
| Supercritical Pulverized Coal - 500 MW              | 153  | 176  | 199  | 222  | 245  | 268        | 291   | 314  | 337 | 359 | 382  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 183  | 203  | 222  | 242  | 262        | 281   | 301  | 321 | 341 | 360  |
| Supercritical Pulverized Coal - 750 MW              | 137  | 160  | 182  | 205  | 227  | 250        | 272   | 295  | 317 | 340 | 362  |
| Subcritical Pulverized Coal - 250 MW                | 189  | 212  | 236  | 260  | 284  | 308        | 331   | 355  | 379 | 403 | 427  |
| Subcritical Pulverized Coal - 500 MW                | 149  | 172  | 196  | 219  | 242  | 265        | 288   | 312  | 335 | 358 | 381  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 179  | 199  | 219  | 238  | 258        | 278   | 298  | 318 | 338 | 358  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 166  | 185  | 204  | 223  | 243        | 262   | 281  | 301 | 320 | 339  |
| Circulating Fluidized Bed - 250 MW                  | 197  | 221  | 246  | 270  | 295  | 319        | 343   | 368  | 392 | 417 | 441  |
| Circulating Fluidized Bed - 500 MW                  | 150  | 173  | 197  | 221  | 245  | 269        | 293   | 317  | 341 | 365 | 389  |
| Ohio Falls 9 and 10                                 | 130  | 130  | 130  | 130  |      |            |       |      |     |     |      |
| TC2 732 MW Supercritical Pulverized Coal            | 117  | 133  | 149  | 164  | 180  | 196        |       |      |     |     |      |
| Minimum Levelized \$7kW                             |      | 37   | 73   | 110  | 148  | 183        | 212   | 228  | 244 | 260 | 276  |

1

i

| Capital Cost- Base<br>feat Rate-Low                             | 2004 | Dollars (1 | MATT YE |      |        |           |       |      |             |       |      |
|-----------------------------------------------------------------|------|------------|---------|------|--------|-----------|-------|------|-------------|-------|------|
| Fuel Forecast-Low                                               |      |            |         |      | Capaci | ty Factor |       |      |             |       |      |
| Technology                                                      | 0%   | 10%        | 20%     | 30%  | 40%    | 50%       | 60%   | 70%  | 80%         | 90%   | 100% |
| Pumped Hydro Energy Storage - 500 MW                            | 195  | 226        |         |      |        |           |       |      |             |       |      |
| .ead-Acid Battery Energy Storage - 5 MW                         | 159  | 272        | 384     |      |        | -         |       |      |             |       |      |
| Compressed Air Energy Storage - 500 MW                          | 101  | 148        | 196     |      |        |           |       |      |             |       |      |
| Simple Cycle GE LM6000 CT - 31 MW                               | 157  | 215        | 274     | 333  | 392    | 450       | 509   | 568  | 626         | 685   | 74   |
| Simple Cycle GE 7EA CT - 73 MW                                  | 108  | 181        | 255     | 328  | 401    | 475       | 548   | 622  | 695         | 768   | 84   |
| Simple Cycle GE 7FA CT - 148 MW                                 | 81   | 155        | 228     | 302  | 376    | 450       | 524   | 597  | 871         | 745   | 81   |
| Combined Cycle GE 7EA CT - 119 MW                               | 145  | 191        | 237     | 283  | 329    | 374       | 420   | 468  | 512         | 558   | 60   |
| Combined Cycle GE 7FA CT - 235 MW                               | 116  | 158        | 200     | 241  | 283    | 325       | 367   | 409  | 450         | 492   | 53   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW                           | 96   | 138        | 179     | 221  | 262    | 304       | 346   | 387  | 429         | 470   | 51   |
| N 501F CC CT - 258 MW                                           | 109  | 152        | 195     | 238  | 281    | 324       | 367   | 411  | 454         | 497   | 54   |
| Spark Ignition Engine - 5 MW                                    | 141  | 220        | 298     | 377  | 455    | 534       |       |      |             |       |      |
| Compression Ignition Engine - 10 MW                             | 103  | 171        | 240     | 308  | 377    | 445       |       |      |             |       |      |
| Wind Energy Conversion - 50 MW                                  | 191  | 191        | 191     | 191  |        | -         |       |      |             |       |      |
| Solar Thermal, Parabolic Trough - 100 MW                        | 494  | 523        | 553     | 582  | 612    |           |       |      |             |       |      |
| Solar Thermal, Parabolic Dish - 1.2 MW                          | 384  | 400        | 416     |      |        |           |       |      | <del></del> |       |      |
| Solar Thermal, Central Receiver - 50 MW                         | 658  | 674        | 690     | 706  | 723    | 739       | 755   | 771  |             |       |      |
| Solar Thermal, Solar Chimney - 200 MW                           | 439  | 455        | 471     | 487  | 504    | 520       | 536   | 552  |             |       |      |
| Solar Photovoltaic - 50 kW                                      | 958  | 982        | 1007    |      |        |           |       |      |             |       |      |
| Biomass (Co-Fire) - 27.5MW                                      | 321  | 329        | 338     | 346  | 355    | 364       | 372   | 381  | 390         |       |      |
| Seothermal - 30 MW                                              | 664  | 664        | 664     | 684  | 664    | 664       | 664   | 664  | 664         |       |      |
| tydroelectric - New - 30 MW                                     | 402  | 407        | 412     | 416  | 421    | 425       |       |      |             | ***** |      |
| NV Hydro                                                        |      |            |         |      |        |           |       |      |             |       |      |
| MSW Mass Burn - 7 MW                                            | 1026 | 1106       | 1187    | 1268 | 1348   | 1429      | 1509  | 1590 |             |       |      |
| RDF Stoker-Fired - 7 MW                                         | 1491 | 1577       | 1663    | 1749 | 1835   | 1921      | 2007  | 2093 |             |       |      |
| andfill Gas IC Engine - 5 MW                                    | 219  | 260        | 300     | 341  | 381    | 422       | 462   | 503  | 543         |       |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW                        | 345  | 350        | 355     | 360  | 365    | 370       | 375   | 380  | 385         | 390   | 36   |
| Sewage Sludge & Anaerobic Digestion085 MW                       | 335  | 351        | 367     | 383  | 400    | 416       | 432   | 448  | 464         |       |      |
| iumid Air Turbine Cycle CT - 450 MW                             | 91   | 129        | 167     | 204  | 242    | 280       | 318   | 356  |             |       |      |
| alina Cycle CC CT - 275 MW                                      | 114  | 153        | 192     | 231  | 270    | 308       | 347   | 386  |             |       | -    |
| Cheng Cycle CT - 140 MW                                         | 140  | 188        | 237     | 285  | 334    | 382       | 430   | 479  |             |       |      |
| Pressurized Fluidized Bed Combustion - 250 MW                   | 213  | 263        | 313     | 363  | 414    | 464       | 514   | 565  |             |       |      |
| GCC - 267 MW                                                    | 237  | 265        | 293     | 322  | 350    | 378       | 406   | 435  | 463         |       |      |
| GCC - 534 MW                                                    | 207  | 235        | 263     | 291  | 319    | 346       | 374   | 402  | 430         |       |      |
| Fuel Cell - 0.2 MW                                              | 1394 | 1446       | 1498    | 1550 | 1602   | 1654      |       |      |             | -     |      |
| Peaking Microturbine - 0.03 MW                                  | 122  | 206        |         |      |        |           |       |      |             | -     |      |
| Baseload Microturbine - 0.03 MW                                 | 122  | 202        | 282     | 362  | 443    | 523       | 603   | 683  |             |       |      |
| Supercritical Pulverized Coal - 500 MW                          | 167  | 185        | 203     | 220  | 238    | 256       | 274   | 291  | 309         | 327   | 34   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW             | 177  | 195        | 212     | 230  | 248    | 265       | 283   | 300  | 318         | 336   | 35   |
| Supercritical Pulverized Coal - 750 MW                          | 150  | 168        | 185     | 203  | 220    | 237       | 255   | 272  | 290         | 307   | 32   |
| Subcritical Pulverized Coal - 250 MW                            | 206  | 224        | 243     | 261  | 280    | 298       | 317   | 335  | 354         | 372   | 39   |
| Subcritical Pulverized Coal - 500 MW                            | 163  | 181        | 199     | 217  | 235    | 253       | 271   | 289  | 307         | 325   | 34   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW               | 173  | 191        | 208     | 226  | 244    | 262       | 280   | 297  | 315         | 333   | 35   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW             | 159  | 177        | 194     | 211  | 229    | 248       | 264   | 281  | 298         | 316   | 33   |
| Circulating Fluidized Bed - 250 MW                              | 215  | 234        | 253     | 272  | 291    | 310       | 329   | 348  | 367         | 386   | 40   |
| Circulating Fluidized Bed - 500 MW                              | 164  | 182        | 201     | 219  | 238    | 257       | 275   | 294  | 312         | 331   | 35   |
|                                                                 | 144  | 144        | 144     | 144  |        |           | ***** |      | -           | -     |      |
| Dhio Falls 9 and 10<br>FC2 732 MW Supercritical Pulverized Coal | 129  | 143        | 157     | 171  | 185    | 199       |       |      |             |       |      |

Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

| Capital Cost-Base                                               | 2004 | Dollars (S | i∕k₩ yr) |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|-----------------------------------------------------------------|------|------------|----------|------------|--------|-----------------|------|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Heat Rate-Low<br>Fuel Forecast- High                            |      |            |          |            | Canaci | ity Factor      |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Technology                                                      | 0%   | 10%        | 20%      | 30%        | 40%    | 50%             | 60%  | 70%  | 80% | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100% |
| Pumped Hydro Energy Storage - 500 MW                            | 195  | 226        |          |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Lead-Acid Battery Energy Storage - 5 MW                         | 159  | 272        | 384      |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Compressed Air Energy Storage - 500 MW                          | 101  | 153        | 205      |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Compressed Air Energy Storage - 500 min                         |      | 100        | 200      |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Simple Cycle GE LM6000 CT - 31 MW                               | 157  | 228        | 299      | 369        | 440    | 511             | 582  | 653  | 724 | 795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 868  |
| Simple Cycle GE 7EA CT - 73 MW                                  | 108  | 198        | 284      | 372        | 461    | 549             | 637  | 725  | 813 | 902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 990  |
| Simple Cycle GE 7FA CT - 148 MW                                 | 81   | 168        | 255      | 342        | 429    | 516             | 603  | 690  | 777 | 864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 951  |
| Combined Cycle GE 7EA CT - 119 MW                               | 145  | 200        | 255      | 310        | 365    | 420             | 478  | 531  | 586 | 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 696  |
| Combined Cycle GE 7FA CT - 235 MW                               | 118  | 166        | 216      | 268        | 316    | 367             | 417  | 467  | 517 | 567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 617  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW                           | 96   | 146        | 196      | 246        | 296    | 345             | 395  | 445  | 495 | 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 595  |
| W 501F CC CT - 258 MW                                           | 109  | 161        | 212      | 264        | 316    | 368             | 420  | 471  | 523 | 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 627  |
| Spark Ignition Engine - 5 MW                                    | 141  | 231        | 321      | 411        | 501    | 591             |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Compression Ignition Engine - 10 MW                             | 103  | 181        | 258      | 336        | 413    | 491             |      |      | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Wind Energy Conversion - 50 MW                                  | 191  | 191        | 191      | 191        |        | hand the second |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Solar Thermal, Parabolic Trough - 100 MW                        | 494  | 523        | 553      | 582        | 612    | Contractor of   |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Solar Thermal, Parabolic Dish - 1.2 MW                          | 384  | 400        | 418      | electronia |        |                 |      |      | ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Solar Thermal, Central Receiver - 50 MW                         | 658  | 674        | 690      | 706        | 723    | 739             | 755  | 771  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Solar Thermal, Solar Chimney - 200 MW                           | 439  | 455        | 471      | 487        | 504    | 520             | 536  | 552  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Solar Photovoltaic - 50 kW                                      | 958  | 982        | 1007     |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Biomass (Co-Fire) - 27.5MW                                      | 321  | 329        | 338      | 346        | 355    | 364             | 372  | 381  | 390 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |
| Geothermal - 30 MW                                              | 684  | 664        | 664      | 664        | 664    | 664             | 664  | 664  | 684 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Hydroelectric - New - 30 MW                                     | 402  | 407        | 412      | 418        | 421    | 425             |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| WV Hydro                                                        |      |            |          |            |        |                 |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| MSW Mass Burn - 7 MW                                            | 1026 | 1106       | 1187     | 1268       | 1348   | 1429            | 1509 | 1590 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| RDF Stoker-Fired - 7 MW                                         | 1491 | 1577       | 1663     | 1749       | 1835   | 1921            | 2007 | 2093 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |
| Landfill Gas IC Engine - 5 MW                                   | 219  | 265        | 311      | 357        | 403    | 449             | 495  | 541  | 587 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW                        | 345  | 350        | 355      | 360        | 385    | 370             | 375  | 380  | 385 | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 396  |
| Sewage Sludge & Anaerobic Digestion085 MW                       | 335  | 351        | 367      | 383        | 400    | 416             | 432  | 448  | 484 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |
| lumid Air Turbine Cycle CT - 450 MW                             | 91   | 136        | 182      | 228        | 273    | 319             | 364  | 410  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| alina Cycle CC CT - 275 MW                                      | 114  | 161        | 208      | 255        | 302    | 348             | 395  | 442  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Cheng Cycle CT - 140 MW                                         | 140  | 198        | 257      | 316        | 374    | 433             | 491  | 550  |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Pressurized Fluidized Bed Combustion - 250 MW                   | 213  | 273        | 333      | 394        | 454    | 515             | 575  | 636  |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| IGCC - 267 MW                                                   | 237  | 270        | 303      | 336        | 369    | 402             | 435  | 468  | 501 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| IGCC - 534 MW                                                   | 207  | 240        | 273      | 305        | 338    | 370             | 403  | 436  | 468 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Fuel Cell - 0.2 MW                                              | 1394 | 1455       | 1517     | 1579       | 1641   | 1703            |      |      | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Peaking Microturbine - 0.03 MW                                  | 122  | 221        |          |            |        |                 |      |      |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Baseload Microturbine - 0.03 MW                                 | 122  | 216        | 311      | 405        | 500    | 594             | 689  | 783  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| Supercritical Pulverized Coal - 500 MW                          | 187  | 190        | 212      | 235        | 257    | 280             | 302  | 325  | 347 | 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 392  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW             | 177  | 198        | 219      | 240        | 261    | 282             | 303  | 324  | 344 | 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 386  |
| Supercritical Pulverized Coal - 750 MW                          | 150  | 173        | 195      | 217        | 239    | 261             | 283  | 305  | 327 | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 371  |
| Subcritical Pulverized Coal - 750 MW                            | 206  | 229        | 253      | 276        | 300    | 323             | 347  | 370  | 394 | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 441  |
| Subcritical Pulverized Coal - 200 MW                            | 163  | 186        | 209      | 232        | 255    | 278             | 301  | 323  | 346 | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 392  |
| Subcritical Pulverized Coal - 500 MW                            | 173  | 194        | 215      | 238        | 258    | 279             | 300  | 321  | 342 | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 385  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW             | 159  | 180        | 200      | 230        | 242    | 262             | 283  | 303  | 324 | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 365  |
| Circulating Fluidized Bed - 250 MW                              | 215  | 239        | 263      | 287        | 311    | 335             | 360  | 384  | 408 | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 456  |
| Circulating Fluidized Bed - 200 MW                              | 164  | 187        | 203      | 234        | 258    | 281             | 305  | 328  | 352 | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 399  |
| •                                                               | 164  | 144        | 144      | 144        | 200    | 201             |      | 540  | 002 | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000  |
|                                                                 |      |            |          |            |        |                 |      |      |     | and the second se | -    |
| Ohio Falls 9 and 10<br>TC2 732 MW Supercritical Pulverized Coal | 129  | 146        | 163      | 180        | 197    | 214             |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |

ł

| Capital Cost- Base                                  | 2004 | Dollars ( | i∕k₩ yr) |      |        |           |      |      |     |                 |      |
|-----------------------------------------------------|------|-----------|----------|------|--------|-----------|------|------|-----|-----------------|------|
| Heat Rate- Base<br>Fuel Forecast- High              |      |           |          |      | Capaci | ty Factor | 6    |      |     |                 |      |
| Technology                                          | 0%   | 10%       | 20%      | 30%  | 40%    | 50%       | 60%  | 70%  | 80% | 90%             | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 195  | 226       |          |      |        |           |      |      | -   |                 |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 159  | 272       | 384      |      |        |           |      |      |     |                 |      |
| Compressed Air Energy Storage - 500 MW              | 101  | 155       | 209      |      |        |           |      |      |     |                 |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 157  | 231       | 306      | 380  | 455    | 529       | 604  | 678  | 753 | 827             | 90   |
| Simple Cycle GE 7EA CT - 73 MW                      | 108  | 200       | 293      | 385  | 477    | 570       | 662  | 755  | 847 | 93 <del>9</del> | 103  |
| Simple Cycle GE 7FA CT - 148 MW                     | 81   | 172       | 262      | 353  | 444    | 535       | 626  | 716  | 807 | 898             | 98   |
| Combined Cycle GE 7EA CT - 119 MW                   | 145  | 203       | 260      | 318  | 376    | 433       | 491  | 549  | 607 | 664             | 72   |
| Combined Cycle GE 7FA CT - 235 MW                   | 116  | 169       | 221      | 274  | 326    | 379       | 432  | 484  | 537 | 589             | 64   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 96   | 148       | 201      | 253  | 305    | 357       | 410  | 462  | 514 | 567             | 61   |
| N 501F CC CT - 258 MW                               | 109  | 163       | 218      | 272  | 326    | 381       | 435  | 490  | 544 | 598             | 65   |
| Spark Ignition Engine - 5 MW                        | 141  | 234       | 328      | 421  | 515    | 608       |      |      |     |                 |      |
| Compression Ignition Engine - 10 MW                 | 103  | 183       | 264      | 344  | 425    | 505       |      |      |     |                 |      |
| Wind Energy Conversion - 50 MW                      | 191  | 191       | 191      | 191  |        |           |      |      |     |                 |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 494  | 523       | 553      | 582  | 612    |           |      |      |     |                 |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 384  | 400       | 416      |      |        |           |      |      |     |                 |      |
| Solar Thermal, Central Receiver - 50 MW             | 658  | 674       | 690      | 706  | 723    | 739       | 755  | 771  |     |                 |      |
| Solar Thermal, Solar Chimney - 200 MW               | 439  | 455       | 471      | 487  | 504    | 520       | 536  | 552  |     |                 |      |
| Solar Photovoltaic - 50 kW                          | 958  | 982       | 1007     |      |        |           |      |      |     |                 |      |
| Biomass (Co-Fire) - 27.5MW                          | 321  | 329       | 338      | 346  | 355    | 364       | 372  | 381  | 390 |                 |      |
| Seothermal - 30 MW                                  | 664  | 664       | 664      | 664  | 664    | 664       | 664  | 664  | 664 |                 |      |
| -lydroelectric - New - 30 MW                        | 402  | 407       | 412      | 416  | 421    | 425       |      |      |     |                 |      |
| W Hydro                                             |      |           |          |      |        |           |      |      |     |                 |      |
| VISW Mass Burn - 7 MW                               | 1026 | 1106      | 1187     | 1268 | 1348   | 1429      | 1509 | 1590 |     |                 |      |
| RDF Stoker-Fired - 7 MW                             | 1491 | 1577      | 1663     | 1749 | 1835   | 1921      | 2007 | 2093 |     |                 |      |
| _andfill Gas IC Engine - 5 MW                       | 219  | 267       | 314      | 362  | 409    | 457       | 504  | 552  | 599 |                 |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 345  | 350       | 355      | 360  | 365    | 370       | 375  | 380  | 385 | 390             | 38   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 335  | 351       | 367      | 383  | 400    | 416       | 432  | 448  | 464 |                 |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 91   | 139       | 186      | 234  | 282    | 329       | 377  | 425  |     |                 |      |
| Talina Cycle CC CT - 275 MW                         | 114  | 163       | 212      | 262  | 311    | 360       | 409  | 458  |     |                 |      |
| Cheng Cycle CT - 140 MW                             | 140  | 201       | 263      | 324  | 386    | 447       | 508  | 570  |     |                 |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 213  | 276       | 339      | 402  | 466    | 529       | 592  | 656  |     |                 |      |
| GCC - 267 MW                                        | 237  | 271       | 306      | 340  | 375    | 409       | 444  | 478  | 513 |                 |      |
| GCC - 534 MW                                        | 207  | 241       | 275      | 309  | 343    | 377       | 411  | 445  | 479 |                 |      |
| Fuel Cell - 0.2 MW                                  | 1394 | 1458      | 1523     | 1587 | 1652   | 1717      |      |      |     |                 |      |
| Peaking Microturbine - 0.03 MW                      | 122  | 225       |          |      |        |           |      |      |     |                 |      |
| Baseload Microturbine - 0.03 MW                     | 122  | 220       | 319      | 417  | 516    | 614       | 713  | 811  |     |                 |      |
| Supercritical Pulverized Coal - 500 MW              | 167  | 191       | 215      | 238  | 262    | 286       | 310  | 333  | 357 | 381             | 40   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 177  | 199       | 221      | 243  | 265    | 287       | 309  | 331  | 352 | 374             | 39   |
| Supercritical Pulverized Coal - 750 MW              | 150  | 174       | 197      | 220  | 243    | 266       | 290  | 313  | 338 | 35 <del>9</del> | 38   |
| Subcritical Pulverized Coal - 250 MW                | 206  | 230       | 255      | 279  | 304    | 329       | 353  | 378  | 402 | 427             | 45   |
| Subcritical Pulverized Coal - 500 MW                | 163  | 187       | 211      | 235  | 259    | 283       | 307  | 331  | 355 | 379             | 40   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 173  | 195       | 217      | 239  | 262    | 284       | 306  | 328  | 350 | 373             | 38   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 159  | 181       | 202      | 224  | 245    | 267       | 288  | 310  | 331 | 353             | 37   |
| Circulating Fluidized Bed - 250 MW                  | 215  | 240       | 265      | 291  | 316    | 341       | 366  | 391  | 417 | 442             | 4    |
| Circulating Fluidized Bed - 500 MW                  | 164  | 188       | 213      | 238  | 262    | 287       | 312  | 336  | 361 | 386             | 41   |
| Ohio Falls 9 and 10                                 | 144  | 144       | 144      | 144  |        |           |      |      |     |                 |      |
| TC2 732 MW Supercritical Pulverized Coal            | 129  | 147       | 165      | 182  | 200    | 218       |      |      |     |                 |      |
| Minimum Levelized \$/kW                             | 0    | 37        | 73       | 110  | 146    | 183       | 236  | 254  | 272 | 290             | - 30 |

(

| Capital Cost- Base                                              | 2004       | Dollars (1 | нкаа де)   |            |                                    |            |      |      |     |                                             |      |
|-----------------------------------------------------------------|------------|------------|------------|------------|------------------------------------|------------|------|------|-----|---------------------------------------------|------|
| Heat Rate- High<br>Fuel Forecast- Base                          |            |            |            |            | Capaci                             | ity Factor |      |      |     |                                             |      |
| Technology                                                      | 0%         | 10%        | 20%        | 30%        | 40%                                | 50%        | 60%  | 70%  | 80% | 90%                                         | 100% |
| Pumped Hydro Energy Storage - 500 MW                            | 195        | 226        |            |            | امرو بین الکرانی الانین<br>ماهورین |            |      |      |     | والاعتمان المرافقاتين مع مرافق<br>معرافيندو |      |
| ead-Acid Battery Energy Storage - 5 MW                          | 159        | 272        | 384        |            |                                    |            |      |      |     |                                             |      |
| Compressed Air Energy Storage - 500 MW                          | 101        | 153        | 205        | -          |                                    |            |      |      |     |                                             |      |
| Simple Cycle GE LM6000 CT - 31 MW                               | 157        | 228        | 299        | 371        | 442                                | 513        | 585  | 656  | 727 | 798                                         | 87   |
| Simple Cycle GE 7EA CT - 73 MW                                  | 108        | 196        | 285        | 374        | 462                                | 551        | 639  | 728  | 817 | 905                                         | - 99 |
| Simple Cycle GE 7FA CT - 148 MW                                 | 81         | 168        | 255        | 343        | 430                                | 517        | 605  | 692  | 779 | 867                                         | 95   |
| Combined Cycle GE 7EA CT - 119 MW                               | 145        | 200        | 256        | 311        | 368                                | 421        | 477  | 532  | 587 | 643                                         | 69   |
| Combined Cycle GE 7FA CT - 235 MW                               | 116        | 166        | 217        | 267        | 318                                | 368        | 418  | 469  | 519 | 570                                         | 62   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW                           | 96         | 146        | 196        | 246        | 296                                | 348        | 397  | 447  | 497 | 547                                         | 59   |
| N 501F CC CT - 258 MW                                           | 109        | 161        | 213        | 265        | 317                                | 369        | 421  | 474  | 526 | 578                                         | 63   |
| Spark Ignition Engine - 5 MW                                    | 141        | 231        | 322        | 412        | 503                                | 593        |      |      |     |                                             |      |
| Compression Ignition Engine - 10 MW                             | 103        | 181        | 259        | 336        | 414                                | 492        |      |      |     |                                             |      |
| Wind Energy Conversion - 50 MW                                  | 191        | 191        | 191        | 191        |                                    |            |      |      | -   |                                             |      |
| Solar Thermal, Parabolic Trough - 100 MW                        | 494        | 523        | 553        | 582        | 612                                |            |      |      |     |                                             |      |
| Solar Thermal, Parabolic Dish - 1.2 MW                          | 384        | 400        | 416        |            |                                    |            |      |      |     |                                             |      |
| Solar Thermal, Central Receiver - 50 MW                         | 658        | 674        | 690        | 706        | 723                                | 739        | 755  | 771  |     |                                             |      |
| Solar Thermal, Solar Chimney - 200 MW                           | 439        | 455        | 471        | 487        | 504                                | 520        | 538  | 552  |     |                                             |      |
| Solar Photovoltaic - 50 kW                                      | 958        | 982        | 1007       |            |                                    |            |      |      |     |                                             |      |
| Biomass (Co-Fire) - 27.5MW                                      | 321        | 329        | 338        | 346        | 355                                | 364        | 372  | 381  | 390 | -                                           |      |
| Seothermal - 30 MW                                              | 664        | 664        | 664        | 664        | 664                                | 664        | 864  | 664  | 664 | -                                           |      |
| tydroelectric - New - 30 MW                                     | 402        | 407        | 412        | 416        | 421                                | 425        |      |      |     |                                             |      |
| W Hydro                                                         |            |            |            |            |                                    |            |      |      |     |                                             |      |
| MSW Mass Burn - 7 MW                                            | 1026       | 1108       | 1187       | 1268       | 1348                               | 1429       | 1509 | 1590 |     |                                             |      |
| RDF Stoker-Fired - 7 MW                                         | 1491       | 1577       | 1663       | 1749       | 1835                               | 1921       | 2007 | 2093 |     |                                             |      |
| andfill Gas IC Engine - 5 MW                                    | 219        | 265        | 311        | 357        | 404                                | 450        | 496  | 542  | 588 |                                             |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW                        | 345        | 350        | 355        | 360        | 365                                | 370        | 375  | 380  | 385 | 390                                         | 39   |
| Sewage Sludge & Anaerobic Digestion085 MW                       | 335        | 351        | 367        | 383        | 400                                | 418        | 432  | 448  | 484 |                                             |      |
| Humid Air Turbine Cycle CT - 450 MW                             | 91         | 137        | 182        | 228        | 274                                | 319        | 365  | 411  |     |                                             |      |
| Kalina Cycle CC CT - 275 MW                                     | 114        | 161        | 208        | 255        | 302                                | 349        | 396  | 443  |     |                                             |      |
| Cheng Cycle CT - 140 MW                                         | 140        | 199        | 258        | 316        | 375                                | 434        | 493  | 552  |     |                                             |      |
| Pressurized Fluidized Bed Combustion - 250 MW                   | 213        | 273        | 334        | 395        | 455                                | 516        | 577  | 638  |     |                                             |      |
| IGCC - 267 MW                                                   | 237        | 270        | 303        | 336        | 370                                | 403        | 436  | 469  | 502 |                                             |      |
| IGCC - 534 MW                                                   | 207        | 240        | 273        | 306        | 338                                | 371        | 404  | 436  | 469 | -                                           |      |
| Fuel Cell - 0.2 MW                                              | 1394       | 1458       | 1518       | 1580       | 1642                               | 1704       |      |      |     |                                             |      |
| Peaking Microturbine - 0.03 MW                                  | 122        | 221        |            |            |                                    |            |      |      |     |                                             |      |
| Baseload Microturbine - 0.03 MW                                 | 122        | 217        | 311        | 406        | 501                                | 596        | 690  | 785  |     |                                             |      |
| Supercritical Pulverized Coal - 500 MW                          | 167        | 190        | 213        | 236        | 259                                | 282        | 305  | 328  | 351 | 373                                         | 38   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW             | 177        | 197        | 217        | 236        | 256                                | 276        | 295  | 315  | 335 | 355                                         | 37   |
| Supercritical Pulverized Coal - 750 MW                          | 150        | 173        | 195        | 230        | 240                                | 283        | 285  | 308  | 330 | 353                                         | 37   |
| Subcritical Pulverized Coal - 750 MW                            | 206        | 229        | 253        | 277        | 301                                | 325        | 348  | 372  | 396 | 420                                         | 44   |
| Subcritical Pulverized Coal - 500 MW                            | 163        | 186        | 200        | 233        | 256                                | 279        | 302  | 326  | 349 | 372                                         | 39   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW               | 103        | 193        | 210        | 233        | 250                                | 272        | 292  | 312  | 332 | 352                                         | 37   |
| · •                                                             | 159        | 179        | 198        | 233        | 238                                | 256        | 275  | 294  | 314 | 333                                         | 35   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW             | 215        | 239        | 264        | 288        | 313                                | 337        | 361  | 386  | 410 | 435                                         | 45   |
| Circulating Fluidized Bed - 250 MW                              | 184        | 187        | 204        | 200        | 259                                | 283        | 307  | 331  | 355 | 379                                         | 40   |
| Circulating Fluidized Bed - 500 MW                              |            |            |            |            | 208                                | 200        | 507  | 501  | 000 |                                             | -+(  |
| Obio Folia O and 10                                             |            |            |            |            |                                    |            |      |      |     |                                             |      |
| Ohio Falls 9 and 10<br>TC2 732 MW Supercritical Pulverized Coal | 144<br>129 | 144<br>145 | 144<br>161 | 144<br>176 | 192                                | 208        |      |      |     |                                             |      |

Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

| Capital Cost- High<br>Teat Rate-Low                 | 2004 | Dollars ( | NKTT YT) |      |      |            |      |        |     |     |      |
|-----------------------------------------------------|------|-----------|----------|------|------|------------|------|--------|-----|-----|------|
| Fuel Forecast-Low                                   |      |           |          |      |      | ty Factori | 8    |        |     |     |      |
| Technology                                          | 0%   | 10%       | 20%      | 30%  | 40%  | 50%        | 60%  | 70%    | 80% | 90% | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263       |          |      |      |            |      | -      |     |     | -    |
| ead-Acid Battery Energy Storage - 5 MW              | 187  | 300       | 412      |      |      |            |      |        |     |     |      |
| Compressed Air Energy Storage - 500 MW              | 117  | 164       | 212      |      |      |            |      |        |     |     |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 224       | 283      | 342  | 401  | 459        | 518  | 577    | 635 | 694 | 75   |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 187       | 261      | 334  | 407  | 481        | 554  | 628    | 701 | 774 | 84   |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 160       | 233      | 307  | 381  | 455        | 529  | 602    | 676 | 750 | 82   |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 201       | 247      | 293  | 339  | 384        | 430  | 476    | 522 | 568 | 61   |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 165       | 207      | 248  | 290  | 332        | 374  | 416    | 457 | 499 | - 54 |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 143       | 184      | 226  | 267  | 309        | 351  | 392    | 434 | 475 | 51   |
| N 501F CC CT - 258 MW                               | 116  | 159       | 202      | 245  | 288  | 331        | 374  | 418    | 461 | 504 | - 54 |
| Spark Ignition Engine - 5 MW                        | 155  | 234       | 312      | 391  | 469  | 548        |      |        |     |     |      |
| Compression Ignition Engine - 10 MW                 | 113  | 181       | 250      | 318  | 387  | 455        |      |        |     |     |      |
| Wind Energy Conversion - 50 MW                      | 221  | 221       | 221      | 221  |      |            |      |        |     |     |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622       | 652      | 681  | 711  |            |      | •••••• |     |     |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461  | 477       | 493      |      |      |            |      | •••••  |     |     |      |
| Solar Thermal, Central Receiver - 50 MW             | 790  | 806       | 822      | 838  | 855  | 871        | 887  | 903    |     |     |      |
| Solar Thermal, Solar Chimney - 200 MW               | 527  | 543       | 559      | 575  | 592  | 608        | 624  | 640    |     |     |      |
| Solar Photovoltaic - 50 kW                          | 1144 | 1168      | 1193     |      |      |            |      |        |     |     |      |
| Biomass (Co-Fire) - 27.5MW                          | 370  | 378       | 387      | 395  | 404  | 413        | 421  | 430    | 439 | -   |      |
| Seothermal - 30 MW                                  | 735  | 735       | 735      | 735  | 735  | 735        | 735  | 735    | 735 |     |      |
| tydroelectric - New - 30 MW                         | 440  | 445       | 450      | 454  | 459  | 463        |      |        |     |     |      |
| W Hydro                                             |      |           |          |      |      |            |      |        |     |     |      |
| MSW Mass Burn - 7 MW                                | 1158 | 1238      | 1319     | 1400 | 1480 | 1561       | 1641 | 1722   |     |     |      |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752      | 1838     | 1924 | 2010 | 2096       | 2182 | 2268   |     |     |      |
| andfill Gas IC Engine - 5 MW                        | 263  | 304       | 344      | 385  | 425  | 466        | 506  | 547    | 587 |     |      |
| IDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405       | 410      | 415  | 420  | 425        | 430  | 435    | 440 | 445 | 45   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 402  | 418       | 434      | 450  | 467  | 483        | 499  | 515    | 531 |     |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 102  | 140       | 178      | 215  | 253  | 291        | 329  | 367    |     |     |      |
| Kalina Cycle CC CT - 275 MW                         | 131  | 170       | 209      | 248  | 287  | 325        | 364  | 403    |     |     |      |
| Cheng Cycle CT - 140 MW                             | 160  | 208       | 257      | 305  | 354  | 402        | 450  | 499    |     |     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 298       | 348      | 398  | 449  | 499        | 549  | 600    |     |     |      |
| GCC - 267 MW                                        | 273  | 301       | 329      | 358  | 386  | 414        | 442  | 471    | 499 |     |      |
| GCC - 534 MW                                        | 240  | 268       | 296      | 324  | 352  | 379        | 407  | 435    | 463 |     |      |
| Fuel Cell - 0.2 MW                                  | 1526 | 1578      | 1630     | 1682 | 1734 | 1786       |      |        |     |     |      |
| Peaking Microturbine - 0.03 MW                      | 146  | 230       |          |      |      |            |      |        |     |     |      |
| Baseload Microturbine - 0.03 MW                     | 146  | 226       | 306      | 386  | 467  | 547        | 627  | 707    |     |     |      |
| Supercritical Pulverized Coal - 500 MW              | 181  | 199       | 217      | 234  | 252  | 270        | 288  | 305    | 323 | 341 | 35   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 210       | 227      | 245  | 263  | 280        | 298  | 315    | 333 | 351 | 38   |
| Supercritical Pulverized Coal - 750 MW              | 162  | 180       | 197      | 215  | 232  | 249        | 267  | 284    | 302 | 319 | 33   |
| Subcritical Pulverized Coal - 250 MW                | 223  | 241       | 260      | 278  | 297  | 315        | 334  | 352    | 371 | 389 | 40   |
| Subcritical Pulverized Coal - 500 MW                | 176  | 194       | 212      | 230  | 248  | 266        | 284  | 302    | 320 | 338 | 35   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 187  | 205       | 212      | 240  | 258  | 276        | 294  | 311    | 329 | 347 | 36   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 173  | 191       | 208      | 225  | 243  | 260        | 278  | 295    | 312 | 330 | 34   |
| Circulating Fluidized Bed - 250 MW                  | 232  | 251       | 200      | 289  | 308  | 327        | 346  | 365    | 384 | 403 | 42   |
| Circulating Fluidized Bed - 200 MW                  | 178  | 196       | 215      | 233  | 252  | 271        | 289  | 308    | 326 | 345 | 36   |
| Ohio Falls 9 and 10                                 | 157  | 157       | 157      | 157  |      |            |      |        |     |     |      |
|                                                     |      |           |          |      |      |            |      |        | -   | _   |      |
| TC2 732 MW Supercritical Pulverized Coal            | 140  | 154       | 168      | 182  | 196  | 210        |      |        |     |     |      |

ĺ

(

ì

| Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders |
|--------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------|

| Capital Cost- High<br>Heat Rate-Low                 | 2004 | Dollars (\$ | NKW YI) |      |        |           |       |      |     |     |      |
|-----------------------------------------------------|------|-------------|---------|------|--------|-----------|-------|------|-----|-----|------|
| Fuel Forecast- High                                 |      |             |         |      | Capaci | ty Factor |       |      |     |     |      |
| Technology                                          | 0%   | 10%         | 20%     | 30%  | 40%    | 50%       | 60%   | 70%  | 80% | 90% | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263         |         |      |        |           |       | **** |     |     |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 187  | 300         | 412     |      |        |           |       |      |     |     |      |
| Compressed Air Energy Storage - 500 MW              | 117  | 169         | 221     |      |        |           |       |      |     |     |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 237         | 308     | 378  | 449    | 520       | 591   | 662  | 733 | 804 | 875  |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 202         | 290     | 378  | 467    | 555       | 643   | 731  | 819 | 908 | 996  |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 173         | 260     | 347  | 434    | 521       | 608   | 695  | 782 | 869 | 956  |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 210         | 265     | 320  | 375    | 430       | 488   | 541  | 596 | 651 | 706  |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 173         | 223     | 273  | 323    | 374       | 424   | 474  | 524 | 574 | 624  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 151         | 201     | 251  | 301    | 350       | 400   | 450  | 500 | 550 | 600  |
| W 501F CC CT - 258 MW                               | 116  | 168         | 219     | 271  | 323    | 375       | 427   | 478  | 530 | 582 | 634  |
| Spark Ignition Engine - 5 MW                        | 155  | 245         | 335     | 425  | 515    | 605       | -     |      |     |     |      |
| Compression Ignition Engine - 10 MW                 | 113  | 191         | 268     | 346  | 423    | 501       | -     |      |     |     |      |
| Wind Energy Conversion - 50 MW                      | 221  | 221         | 221     | 221  |        |           |       |      |     |     |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622         | 652     | 681  | 711    |           |       |      |     |     |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461  | 477         | 493     |      |        |           |       |      |     |     |      |
| Solar Thermal, Central Receiver - 50 MW             | 790  | 806         | 822     | 838  | 855    | 871       | 887   | 903  |     |     |      |
| Solar Thermal, Solar Chimney - 200 MW               | 527  | 543         | 559     | 575  | 592    | 608       | 624   | 640  |     |     |      |
| Solar Photovoltaic - 50 kW                          | 1144 | 1168        | 1193    |      |        |           |       |      |     |     |      |
| Biomass (Co-Fire) - 27.5MW                          | 370  | 378         | 387     | 395  | 404    | 413       | 421   | 430  | 439 |     |      |
| · · ·                                               | 735  | 735         | 735     | 735  | 735    | 735       | 735   | 735  | 735 |     |      |
| Geothermal - 30 MW                                  |      |             | 450     |      | 459    |           | 155   | 135  | 130 |     |      |
| Hydroelectric - New - 30 MW                         | 440  | 445         | 400     | 454  | 409    | 463       | ***** |      |     |     |      |
| WV Hydro                                            | 4480 | 1000        | 4940    | 1400 | 4.400  | 1561      |       | 4700 |     |     |      |
| MSW Mass Burn - 7 MW                                | 1158 | 1238        | 1319    |      | 1480   |           | 1641  | 1722 |     |     |      |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752        | 1838    | 1924 | 2010   | 2096      | 2182  | 2268 |     |     |      |
| Landfill Gas IC Engine - 5 MW                       | 263  | 309         | 355     | 401  | 447    | 493       | 539   | 585  | 631 |     |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405         | 410     | 415  | 420    | 425       | 430   | 435  | 440 | 445 | 451  |
| Sewage Sludge & Anaerobic Digestion085 MW           | 402  | 418         | 434     | 450  | 467    | 483       | 499   | 515  | 531 |     |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 102  | 147         | 193     | 239  | 284    | 330       | 375   | 421  |     |     |      |
| (alina Cycle CC CT - 275 MW                         | 131  | 178         | 225     | 272  | 319    | 365       | 412   | 459  |     |     |      |
| Cheng Cycle CT - 140 MW                             | 160  | 218         | 277     | 338  | 394    | 453       | 511   | 570  |     |     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 308         | 368     | 429  | 489    | 550       | 610   | 671  |     |     |      |
| IGCC - 287 MW                                       | 273  | 306         | 339     | 372  | 405    | 438       | 471   | 504  | 537 |     |      |
| IGCC - 534 MW                                       | 240  | 273         | 306     | 338  | 371    | 403       | 438   | 469  | 501 |     |      |
| Fuel Cell - 0.2 MW                                  | 1526 | 1587        | 1649    | 1711 | 1773   | 1835      |       |      |     |     |      |
| Peaking Microturbine - 0.03 MW                      | 146  | 245         |         |      |        |           |       |      |     |     |      |
| Baseload Microturbine - 0.03 MW                     | 146  | 240         | 335     | 429  | 524    | 618       | 713   | 807  |     |     |      |
| Supercritical Pulverized Coal - 500 MW              | 181  | 204         | 226     | 249  | 271    | 294       | 316   | 339  | 361 | 384 | 406  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 213         | 234     | 255  | 278    | 297       | 318   | 339  | 359 | 380 | 401  |
| Supercritical Pulverized Coal - 750 MW              | 162  | 185         | 207     | 229  | 251    | 273       | 295   | 317  | 339 | 361 | 383  |
| Subcritical Pulverized Coal - 250 MW                | 223  | 248         | 270     | 293  | 317    | 340       | 364   | 387  | 411 | 434 | 458  |
| Subcritical Pulverized Coal - 500 MW                | 176  | 199         | 222     | 245  | 268    | 291       | 314   | 338  | 359 | 382 | 405  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 187  | 208         | 229     | 250  | 272    | 293       | 314   | 335  | 356 | 378 | 399  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173  | 194         | 214     | 235  | 256    | 276       | 297   | 317  | 338 | 359 | 379  |
| Circulating Fluidized Bed - 250 MW                  | 232  | 256         | 280     | 304  | 328    | 352       | 377   | 401  | 425 | 449 | 473  |
| Circulating Fluidized Bed - 500 MW                  | 178  | 201         | 225     | 248  | 272    | 295       | 319   | 342  | 366 | 389 | 413  |
| Ohio Falls 9 and 10                                 | 157  | 157         | 157     | 157  |        |           |       |      |     |     |      |
| TC2 732 MW Supercritical Pulverized Coal            | 140  | 157         | 174     | 191  | 208    | 225       |       |      |     |     |      |
| Minimum Levelized \$/kW                             | D    | 37          | 73      | 110  | 146    | 183       | 242   | 259  | 277 | 294 | 311  |

| Capital Cost- High                                  | 2004       | Dollars ( | i/kW yr)   |      |            |             |      |      |       |              |        |
|-----------------------------------------------------|------------|-----------|------------|------|------------|-------------|------|------|-------|--------------|--------|
| Heat Rate- Base<br>Fuel Forecast- Base              |            |           |            |      | Canad      | ity Factori |      |      |       |              |        |
| Technology                                          | 0%         | 10%       | 20%        | 30%  | 40%        | 50%         | 60%  | 70%  | 80%   | 90%          | 100%   |
|                                                     | 232        | 263       | 20 7       | 20 2 | 40.70      | 00 /4       | 00.2 | 10 7 | 0078  | <b>30</b> 78 | 100 /4 |
| Pumped Hydro Energy Storage - 500 MW                | 232<br>187 | 203       | 412        |      | ~~~~       |             |      |      |       | -            |        |
| Lead-Acid Battery Energy Storage - 5 MW             |            |           | 219        |      | *****      |             |      |      |       |              |        |
| Compressed Air Energy Storage - 500 MW              | 117        | 168       | 219        |      |            |             | -    |      |       | -            |        |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166        | 234       | 302        | 370  | 438        | 506         | 574  | 642  | 710   | 778          | 846    |
| Simple Cycle GE 7EA CT - 73 MW                      | 114        | 198       | 283        | 368  | 453        | 537         | 622  | 707  | 791   | 876          | 961    |
| Simple Cycle GE 7FA CT - 148 MW                     | 86         | 170       | 253        | 337  | 421        | 505         | 589  | 672  | 758   | 840          | 924    |
| Combined Cycle GE 7EA CT - 119 MW                   | 155        | 208       | 261        | 314  | 367        | 419         | 472  | 525  | 578   | 631          | 68     |
| Combined Cycle GE 7FA CT - 235 MW                   | 123        | 171       | 219        | 268  | 316        | 364         | 412  | 460  | 509   | 557          | 60     |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101        | 149       | 197        | 245  | 293        | 340         | 388  | 436  | 484   | 532          | 58     |
| W 501F CC CT - 258 MW                               | 116        | 166       | 215        | 265  | 315        | 365         | 415  | 464  | 514   | 564          | 61     |
| Spark Ignition Engine - 5 MW                        | 155        | 242       | 330        | 417  | 505        | 592         |      |      |       |              |        |
| Compression Ignition Engine - 10 MW                 | 113        | 188       | 264        | 339  | 415        | 490         |      |      |       |              |        |
| Wind Energy Conversion - 50 MW                      | 221        | 221       | 221        | 221  |            |             | -    |      |       |              |        |
| Solar Thermal, Parabolic Trough - 100 MW            | 593        | 622       | 652        | 681  | 711        |             | -    |      |       |              |        |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461        | 477       | 493        |      |            |             |      |      |       |              |        |
| Solar Thermal, Central Receiver - 50 MW             | 790        | 808       | 822        | 838  | 855        | 871         | 887  | 903  |       |              |        |
| Solar Thermal, Solar Chimney - 200 MW               | 527        | 543       | 559        | 575  | 592        | 608         | 624  | 640  | -     |              |        |
| Solar Photovoltaic - 50 kW                          | 1144       | 1168      | 1193       |      |            |             |      |      |       |              |        |
| Biomass (Co-Fire) - 27.5MW                          | 370        | 378       | 387        | 395  | 404        | 413         | 421  | 430  | 439   |              |        |
| Geothermal - 30 MW                                  | 735        | 735       | 735        | 735  | 735        | 735         | 735  | 735  | 735   |              |        |
|                                                     | 440        | 445       | 450        |      | . 459      | 463         | 130  | 755  | 100   |              |        |
| Hydroelectric - New - 30 MW                         | 440        | 440       | 400        | 454  | . 408      | 403         |      |      |       |              |        |
| WV Hydro<br>MSW Mass Burn - 7 MW                    | 1158       | 1238      | 1319       | 1400 | 1480       | 1561        | 1641 | 1722 |       |              |        |
| RDF Stoker-Fired - 7 MW                             | 1666       | 1752      | 1838       | 1924 | 2010       | 2096        | 2182 | 2268 |       |              |        |
|                                                     | 263        | 308       | 353        | 397  | 442        | 487         | 532  | 576  | 621   |              |        |
| Landfill Gas IC Engine - 5 MW                       | 400        | 405       | 410        | 415  | 420        | 425         | 430  | 435  | 440   | 445          | 45     |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400        | 405       | 410        | 450  | 487        | 483         | 499  | 515  | 531   | 440          | 40     |
| Sewage Sludge & Anaerobic Digestion085 MW           | 102        | 148       | 189        | 233  | 277        | 320         | 364  | 408  | 557   |              |        |
| Humid Air Turbine Cycle CT - 450 MW                 |            |           |            |      |            | 356         | 401  | 400  |       |              |        |
| Kalina Cycle CC CT - 275 MW                         | 131        | 176       | 221<br>272 | 266  | 311<br>384 |             | 401  | 553  | ***** |              |        |
| Cheng Cycle CT - 140 MW                             | 160        | 216       |            | 328  |            | 441         |      |      |       |              |        |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248        | 306       | 364        | 422  | 480        | 538         | 596  | 654  |       |              |        |
| IGCC - 267 MW                                       | 273        | 305       | 337        | 369  | 400        | 432         | 484  | 496  | 528   |              | -      |
| IGCC - 534 MW                                       | 240        | 272       | 303        | 335  | 366        | 398         | 429  | 460  | 492   |              |        |
| Fuel Cell - 0.2 MW                                  | 1526       | 1585      | 1644       | 1704 | 1763       | 1823        |      |      |       |              |        |
| Peaking Microturbine - 0.03 MW                      | 148        | 241       |            | ·    |            |             |      |      |       |              |        |
| Baseload Microturbine - 0.03 MW                     | 146        | 237       | 328        | 419  | 510        | 601         | 692  | 783  |       |              |        |
| Supercritical Pulverized Coal - 500 MW              | 181        | 203       | 225        | 247  | 269        | 291         | 313  | 335  | 357   | 378          | 40     |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192        | 211       | 230        | 249  | 268        | 287         | 306  | 325  | 343   | 382          | 38     |
| Supercritical Pulverized Coal - 750 MW              | 182        | 184       | 205        | 227  | 248        | 270         | 291  | 313  | 334   | 356          | 37     |
| Subcritical Pulverized Coal - 250 MW                | 223        | 245       | 268        | 291  | 314        | 337         | 359  | 382  | 405   | 428          | 45     |
| Subcritical Pulverized Coal - 500 MW                | 176        | 198       | 221        | 243  | 285        | 287         | 309  | 332  | 354   | 378          | 39     |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 187        | 206       | 225        | 244  | 264        | 283         | 302  | 321  | 340   | 360          | 37     |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173        | 192       | 210        | 229  | 248        | 266         | 285  | 303  | 322   | 341          | 35     |
| Circulating Fluidized Bed - 250 MW                  | 232        | 255       | 279        | 302  | 325        | 348         | 372  | 395  | 418   | 442          | 46     |
| Circulating Fluidized Bed - 500 MW                  | 178        | 200       | 223        | 246  | 269        | 292         | 315  | 338  | 361   | 384          | 40     |
| Ohio Falls 9 and 10                                 | 157        | 157       | 157        | 157  |            |             | -    |      |       |              |        |
| TC2 732 MW Supercritical Pulverized Coal            | 140        | 155       | 170        | 405  | 004        | 040         |      |      |       |              |        |
| TOZ TOZ MINY Superchiscal Polyeitzes Coal           | 140        | 100       | 110        | 185  | 201        | 216         |      |      |       |              |        |

### Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

 $\left( \begin{array}{c} \\ \\ \\ \end{array} \right)$ 

٠,

 $\langle \hat{} \rangle$ 

{

Ĺ

Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

| Capital Cost- High                                  | 2004 | Dollars (\$ | i∕k₩ yr)                               |                                   |        |            |      |      |             |                                    |      |
|-----------------------------------------------------|------|-------------|----------------------------------------|-----------------------------------|--------|------------|------|------|-------------|------------------------------------|------|
| Heat Rate- High<br>Fuel Forecast-Low                |      |             |                                        |                                   | Capaci | ity Factor | 2    |      |             |                                    |      |
| Technology                                          | 0%   | 10%         | 20%                                    | 30%                               | 40%    | 50%        | 60%  | 70%  | 80%         | 90%                                | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263         | anna anna anna anna anna anna anna ann | المربوع المكون وي المربع<br>متصحف |        |            |      |      |             | <del>شمیری است. بین</del><br>هچنیه |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 187  | 300         | 412                                    |                                   | _      |            |      |      |             |                                    |      |
| Compressed Air Energy Storage - 500 MW              | 117  | 167         | 217                                    |                                   |        |            |      |      |             |                                    |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 230         | 295                                    | 359                               | 424    | 468        | 553  | 617  | 682         | 746                                | 81   |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 194         | 275                                    | 355                               | 435    | 516        | 598  | 677  | 757         | 837                                | 91   |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 166         | 246                                    | 326                               | 406    | 486        | 566  | 646  | 726         | 806                                | 88   |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 205         | 255                                    | 306                               | 356    | 406        | 456  | 506  | 557         | 607                                | 85   |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 169         | 215                                    | 260                               | 306    | 352        | 398  | 444  | 489         | 535                                | - 58 |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 146         | 192                                    | 237                               | 283    | 328        | 374  | 419  | 465         | 510                                | 5    |
| N 501F CC CT - 258 MW                               | 118  | 183         | 210                                    | 258                               | 305    | 352        | 400  | 447  | 494         | 542                                | 55   |
| Spark Ignition Engine - 5 MW                        | 155  | 239         | 323                                    | 407                               | 491    | 575        |      |      |             |                                    |      |
| Compression Ignition Engine - 10 MW                 | 113  | 186         | 259                                    | 331                               | 404    | 477        |      |      |             |                                    |      |
| Wind Energy Conversion - 50 MW                      | 221  | 221         | 221                                    | 221                               |        |            |      |      |             |                                    |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622         | 652                                    | 681                               | 711    |            |      |      |             |                                    |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461  | 477         | 493                                    |                                   |        |            |      |      |             |                                    |      |
| Solar Thermal, Central Receiver - 50 MW             | 790  | 806         | 822                                    | 838                               | 855    | 871        | 887  | 903  |             |                                    |      |
| Solar Thermal, Solar Chimney - 200 MW               | 527  | 543         | 559                                    | 575                               | 592    | 608        | 624  | 640  |             |                                    |      |
| Solar Photovoltaic - 50 kW                          | 1144 | 1168        | 1193                                   |                                   |        |            |      |      |             |                                    |      |
| Biomass (Co-Fire) - 27.5MW                          | 370  | 378         | 387                                    | 395                               | 404    | 413        | 421  | 430  | 439         |                                    |      |
| Geothermal - 30 MW                                  | 735  | 735         | 735                                    | 735                               | 735    | 735        | 735  | 735  | 735         |                                    |      |
| Hydroelectric - New - 30 MW                         | 440  | 445         | 450                                    | 454                               | 459    | 463        |      |      |             |                                    |      |
| WV Hydro                                            |      |             |                                        |                                   |        |            |      |      |             |                                    |      |
| MSW Mass Burn - 7 MW                                | 1158 | 1238        | 1319                                   | 1400                              | 1480   | 1561       | 1641 | 1722 |             |                                    |      |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752        | 1838                                   | 1924                              | 2010   | 2096       | 2182 | 2268 |             |                                    |      |
| andfill Gas IC Engine - 5 MW                        | 263  | 306         | 349                                    | 392                               | 436    | 479        | 522  | 565  | 608         |                                    |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405         | 410                                    | 415                               | 420    | 425        | 430  | 435  | 440         | 445                                | 45   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 402  | 418         | 434                                    | 450                               | 487    | 483        | 499  | 515  | 531         |                                    |      |
| Humid Alr Turbine Cycle CT - 450 MW                 | 102  | 143         | 185                                    | 226                               | 268    | 309        | 350  | 392  |             |                                    |      |
| Kalina Cycle CC CT - 275 MW                         | 131  | 174         | 217                                    | 259                               | 302    | 345        | 387  | 430  | -           |                                    |      |
| Cheng Cycle CT - 140 MW                             | 160  | 213         | 266                                    | 320                               | 373    | 426        | 480  | 533  | <del></del> |                                    |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 303         | 358                                    | 413                               | 468    | 523        | 578  | 634  | ·           |                                    |      |
| GCC - 267 MW                                        | 273  | 303         | 334                                    | 364                               | 395    | 425        | 456  | 486  | 517         |                                    |      |
| GCC - 534 MW                                        | 240  | 270         | 300                                    | 330                               | 360    | 390        | 420  | 450  | 480         | _                                  |      |
| Fuel Cell - 0.2 MW                                  | 1526 | 1582        | 1639                                   | 1695                              | 1752   | 1809       |      |      |             |                                    |      |
| Peaking Microturbine - 0.03 MW                      | 148  | 237         |                                        |                                   |        |            |      |      |             |                                    |      |
| Baseload Microturbine - 0.03 MW                     | 146  | 233         | 320                                    | 407                               | 493    | 580        | 667  | 754  |             |                                    |      |
| Supercritical Pulverized Coal - 500 MW              | 181  | 201         | 220                                    | 240                               | 259    | 278        | 298  | 317  | 337         | 356                                | 37   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 211         | 230                                    | 250                               | 269    | 288        | 307  | 326  | 345         | 384                                | 38   |
| Supercritical Pulverized Coal - 750 MW              | 162  | 182         | 201                                    | 220                               | 239    | 258        | 277  | 296  | 315         | 334                                | 35   |
| Subcritical Pulverized Coal - 250 MW                | 223  | 243         | 263                                    | 283                               | 303    | 324        | 344  | 364  | 384         | 404                                | 42   |
| Subcritical Pulverized Coal - 500 MW                | 176  | 196         | 216                                    | 235                               | 255    | 275        | 294  | 314  | 334         | 353                                | 37   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 187  | 206         | 225                                    | 245                               | 264    | 283        | 303  | 322  | 341         | 361                                | 38   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173  | 192         | 211                                    | 229                               | 248    | 267        | 285  | 304  | 323         | 342                                | 36   |
| Circulating FluidIzed Bed - 250 MW                  | 232  | 253         | 274                                    | 294                               | 315    | 336        | 357  | 378  | 398         | 419                                | 44   |
| Circulating Fluidized Bed - 500 MW                  | 178  | 198         | 218                                    | 238                               | 259    | 279        | 299  | 320  | 340         | 360                                | 38   |
| Dhio Falls 9 and 10                                 | 157  | 157         | 157                                    | 157                               |        |            |      |      |             |                                    |      |
| TC2 732 MW Supercritical Pulverized Coal            | 140  | 155         | 170                                    | 186                               | 201    | 216        |      |      |             | -                                  |      |
| Minimum Levelized \$/kW                             | 0    | 37          | 73                                     | 110                               | 146    | 183        | 232  | 247  | 262         | 277                                | 29   |

### Exhibit 6

(

4

| Capital Cost- High<br>Heat Rate- High               | 2004 | Dollars ( | ₩k₩ yr)         |      |                                                                                                                |            |      |          |                               |      |                         |
|-----------------------------------------------------|------|-----------|-----------------|------|----------------------------------------------------------------------------------------------------------------|------------|------|----------|-------------------------------|------|-------------------------|
| Fuel Forecast-High                                  |      |           |                 |      | Capaci                                                                                                         | ity Factor | 5    |          |                               |      |                         |
| Technology                                          | 0%   | 10%       | 20%             | 30%  | 40%                                                                                                            | 50%        | 80%  | 70%      | 80%                           | 90%  | 1009                    |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263       |                 |      | ing and a second se |            |      |          | مىرى المشير الميريكة<br>حسانة |      | يۇكىتىيىياتىن<br>سىرىيو |
| Lead-Acid Battery Energy Storage - 5 MW             | 187  | 300       | 412             | -    |                                                                                                                |            |      |          |                               |      |                         |
| Compressed Air Energy Storage - 500 MW              | 117  | 172       | 227             |      |                                                                                                                |            |      | <u> </u> |                               |      |                         |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 244       | 322             | 400  | 478                                                                                                            | 556        | 634  | 712      | 790                           | 868  | 94                      |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 210       | 307             | 404  | 501                                                                                                            | 597        | 694  | 791      | 887                           | 984  | 108                     |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 180       | 275             | 370  | 464                                                                                                            | 559        | 653  | 748      | 843                           | 937  | 103                     |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 215       | 276             | 336  | 397                                                                                                            | 457        | 517  | 578      | 638                           | 699  | 75                      |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 178       | 233             | 288  | 343                                                                                                            | 398        | 453  | 508      | 583                           | 618  | 67                      |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 156       | 210             | 265  | 320                                                                                                            | 374        | 429  | 484      | 539                           | 593  | 64                      |
| W 501F CC CT - 258 MW                               | 118  | 173       | 230             | 287  | 343                                                                                                            | 400        | 457  | 514      | 571                           | 628  | 68                      |
| Spark Ignition Engine - 5 MW                        | 155  | 252       | 348             | 445  | 541                                                                                                            | 638        |      |          |                               |      |                         |
| Compression Ignition Engine - 10 MW                 | 113  | 196       | 27 <del>9</del> | 362  | 445                                                                                                            | 528        |      |          |                               |      |                         |
| Wind Energy Conversion - 50 MW                      | 221  | 221       | 221             | 221  |                                                                                                                |            |      |          | -                             |      |                         |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622       | 652             | 681  | 711                                                                                                            | -          |      |          | -                             |      |                         |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461  | 477       | 493             |      |                                                                                                                |            |      |          |                               |      |                         |
| Solar Thermal, Central Receiver - 50 MW             | 790  | 806       | 822             | 838  | 855                                                                                                            | 871        | 887  | 903      |                               |      |                         |
| Solar Thermal, Solar Chimney - 200 MW               | 527  | 543       | 559             | 575  | 592                                                                                                            | 608        | 624  | 640      |                               |      | -                       |
| Solar Photovoltaic - 50 kW                          | 1144 | 1168      | 1193            |      |                                                                                                                |            |      |          | -                             | -    |                         |
| Biomass (Co-Fire) - 27.5MW                          | 370  | 378       | 387             | 395  | 404                                                                                                            | 413        | 421  | 430      | 439                           |      |                         |
| Geothermal - 30 MW                                  | 735  | 735       | 735             | 735  | 735                                                                                                            | 735        | 735  | 735      | 735                           |      |                         |
| Hydroelectric - New - 30 MW                         | 440  | 445       | 450             | 454  | 459                                                                                                            | 463        |      |          |                               |      |                         |
| WV Hydro                                            |      |           |                 |      |                                                                                                                |            |      |          |                               | -    |                         |
| MSW Mass Bum - 7 MW                                 | 1158 | 1238      | 1319            | 1400 | 1480                                                                                                           | 1561       | 1641 | 1722     |                               |      |                         |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752      | 1838            | 1924 | 2010                                                                                                           | 2096       | 2182 | 2268     |                               |      |                         |
| Landfill Gas IC Engine - 5 MW                       | 263  | 312       | 361             | 410  | 460                                                                                                            | 509        | 558  | 607      | 656                           | -    |                         |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405       | 410             | 415  | 420                                                                                                            | 425        | 430  | 435      | 440                           | 445  | 45                      |
| Sewage Sludge & Anaerobic Digestion085 MW           | 402  | 418       | 434             | 450  | 467                                                                                                            | 483        | 499  | 515      | 531                           |      |                         |
| Humid Air Turbine Cycle CT - 450 MW                 | 102  | 152       | 202             | 252  | 302                                                                                                            | 352        | 402  | 452      |                               |      |                         |
| Kalina Cycle CC CT - 275 MW                         | 131  | 183       | 234             | 285  | 337                                                                                                            | 388        | 440  | 491      |                               |      |                         |
| Cheng Cycle CT - 140 MW                             | 160  | 224       | 289             | 353  | 418                                                                                                            | 482        | 548  | 611      |                               |      |                         |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 314       | 380             | 446  | 513                                                                                                            | 579        | 645  | 712      |                               |      |                         |
| IGCC - 267 MW                                       | 273  | 309       | 345             | 381  | 416                                                                                                            | 452        | 488  | 524      | 560                           |      | -                       |
| IGCC - 534 MW                                       | 240  | 276       | 311             | 347  | 382                                                                                                            | 418        | 453  | 488      | 524                           |      |                         |
| Fuel Cell - 0,2 MW                                  | 1526 | 1593      | 1660            | 1728 | 1795                                                                                                           | 1863       |      |          |                               |      |                         |
| Peaking Microturbine - 0.03 MW                      | 146  | 254       |                 |      |                                                                                                                |            | -    |          |                               |      |                         |
| Baseload Microturbine - 0.03 MW                     | 148  | 249       | 351             | 454  | 556                                                                                                            | 659        | 761  | 864      |                               |      | -                       |
| Supercritical Pulverized Coal - 500 MW              | 181  | 206       | 231             | 255  | 280                                                                                                            | 305        | 330  | 354      | 379                           | 404  | 42                      |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 215       | 238             | 260  | 283                                                                                                            | 306        | 328  | 351      | 374                           | 397  | 41                      |
| Supercritical Pulverized Coal - 750 MW              | 162  | 187       | 211             | 235  | 260                                                                                                            | 284        | 308  | 333      | 357                           | 381  | 40                      |
| Subcritical Pulverized Coal - 250 MW                | 223  | 248       | 274             | 300  | 325                                                                                                            | 351        | 377  | 402      | 428                           | 454  | 48                      |
| Subcritical Pulverized Coal - 500 MW                | 176  | 201       | 226             | 251  | 277                                                                                                            | 302        | 327  | 352      | 377                           | 402  | 42                      |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 187  | 210       | 233             | 256  | 279                                                                                                            | 302        | 325  | 348      | 371                           | 394  | 41                      |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173  | 196       | 218             | 240  | 262                                                                                                            | 285        | 307  | 329      | 352                           | 374  | 39                      |
| Circulating Fluidized Bed - 250 MW                  | 232  | 258       | 285             | 311  | 338                                                                                                            | 364        | 390  | 417      | 443                           | 470  | 49                      |
| Circulating Fluidized Bed - 500 MW                  | 178  | 203       | 229             | 255  | 281                                                                                                            | 307        | 332  | 358      | 384                           | 410  | 43                      |
| Ohio Falls 9 and 10                                 | 157  | 157       | 157             | 157  |                                                                                                                |            |      |          |                               | **** |                         |
| TC2 732 MW Supercritical Pulverized Coal            | 140  | 159       | 177             | 196  | 215                                                                                                            | 234        |      |          |                               |      |                         |
|                                                     |      |           |                 |      |                                                                                                                |            |      |          |                               |      |                         |

Levelized Dollars at Various Capacity Factors With SO2 Adders, without CO2 Adders, and with NOx Adders

2005 Supply-side Screening Attachment\_1.xls

.

### Exhibit 8

30-Year Levelized Cost For All Technologies Over All Capacity Factors With CO<sub>2</sub> Emissions

٠.

### Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

2004 Dollars (\$/kW yr) Capital Cost-Low Heat Rate-Low Fuel Forecast-Low Capacity Factors Technology 16% 30% 66% 80% 100% Pumped Hydro Energy Storage - 500 MW ...... ead-Acid Battery Energy Storage - 5 MW ----------\_\_\_\_ \_ ---------------Compressed Air Energy Storage - 500 MW Simple Cycle GE LM6000 CT - 31 MW Simple Cycle GE 7EA CT - 73 MW Simple Cycle GE 7FA CT - 148 MW Combined Cycle GE 7EA CT - 119 MW Combined Cycle GE 7FA CT - 235 MW Combined Cycle 2x1 GE 7FA CT - 484 MW W 501F CC CT - 258 MW Spark Ignition Engine - 5 MW \_\_\_\_ Compression Ignition Engine - 10 MW \_ Wind Energy Conversion - 50 MW Solar Thermal, Parabolic Trough - 100 MW -----Solar Thermal, Parabolic Dish - 1.2 MW Solar Thermal, Central Receiver - 50 MW Solar Thermal, Solar Chimney - 200 MW Solar Photovoitaic - 50 kW Biomass (Co-Fire) - 27.5MW Geothermal - 30 MW Hydroelectric - New - 30 MW -----WV Hydro -----MSW Mass Burn - 7 MW ·----RDF Stoker-Fined - 7 MW Landfill Gas IC Engine - 5 MW TDF Multi-Fuel CFB (10% Co-fire) - 50 MW Sewage Skudge & Anaerobic Digestion - .085 MW Humid Air Turbine Cycle CT - 450 MW \_\_\_\_ Kalina Cycle CC CT - 275 MW Cheng Cycle CT - 140 MW Pressurized Fluidized Bed Combustion - 250 MW IGCC - 267 MW -----IGCC - 534 MW Fuel Cell - 0.2 MW Peaking Microturbine - 0.03 MW ...... \_ Baseload Microturbine - 0 03 MW Supercritical Pulverized Coal - 500 MW Supercritical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal - 750 MW Subcritical Pulverized Coal - 250 MW Subcritical Pulverized Coal - 500 MW Subcritical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal, High Sulfur - 750 MW Circulating Fluidized Bed - 250 MW Circulating Fluidized Bed - 500 MW Ohio Falis 9 and 10 TC2 732 MW Supercritical Pulverized Coal Minimum Levelized \$/kW 

### Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

| Capital Cost-Low                                    | 2004 | Dollars (1      | ₩К₩ ут) |      |        |           |          |      |        |       |      |
|-----------------------------------------------------|------|-----------------|---------|------|--------|-----------|----------|------|--------|-------|------|
| Heat Rate-Low<br>Fuel Forecast- High                |      |                 |         |      | Canaci | ty Factor | <b>b</b> |      |        |       |      |
| Technology                                          | 0%   | 10%             | 20%     | 30%  | 40%    | 50%       | 60%      | 70%  | 80%    | 90%   | 1005 |
| Pumped Hydro Energy Storage - 500 MW                | 178  | 207             |         |      |        |           |          |      |        |       |      |
| .ead-Acid Battery Energy Storage - 5 MW             | 145  | 258             | 370     |      |        |           |          |      |        |       |      |
| Compressed Air Energy Storage - 500 MW              | 93   | 146             | 198     |      |        |           |          |      |        |       |      |
| southerson of Finith analys - on unit               |      | 140             | 130     |      |        |           |          |      |        |       |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 220             | 292     | 365  | 437    | 509       | 582      | 654  | 726    | 798   | 87   |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 192             | 281     | 371  | 461    | 551       | 641      | 730  | 820    | 910   | 100  |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 165             | 254     | 342  | 430    | 519       | 607      | 696  | 784    | 872   | 96   |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 192             | 248     | 304  | 360    | 416       | 473      | 529  | 585    | 641   | 69   |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 15 <del>9</del> | 210     | 261  | 312    | 364       | 415      | 466  | 517    | 568   | 61   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 141             | 192     | 242  | 293    | 344       | 395      | 446  | 496    | 547   | 59   |
| W 501F CC CT - 258 MW                               | 102  | 155             | 207     | 260  | 313    | 366       | 419      | 471  | 524    | 577   | 63   |
| Spark Ignition Engine - 5 MW                        | 127  | 218             | 310     | 401  | 493    | 584       |          |      |        |       |      |
| Compression Ignition Engine - 10 MW                 | 92   | 171             | 249     | 328  | 406    | 485       |          |      | ****** |       |      |
| Wind Energy Conversion - 50 MW                      | 160  | 160             | 160     | 160  |        |           |          |      |        |       |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424             | 454     | 483  | 513    |           |          |      |        |       |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 307  | 323             | 339     |      |        | -         |          |      |        |       |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543             | 559     | 575  | 592    | 608       | 624      | 640  |        |       |      |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 387             | 383     | 399  | 416    | 432       | 448      | 464  |        |       |      |
| Solar Photovoltaic - 50 kW                          | 771  | 795             | 820     |      |        |           |          |      |        |       |      |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280             | 289     | 297  | 306    | 315       | 323      | 332  | 341    |       |      |
| Geothermal - 30 MW                                  | 592  | 592             | 592     | 592  | 592    | 592       | 592      | 592  | 592    |       | _    |
| Hydroelectric - New - 30 MW                         | 364  | 369             | 374     | 378  | 383    | 387       | 982      | 362  | 242    |       |      |
| AV Hydro                                            | 304  | 308             | 3/4     | 3/0  | 303    | 307       |          |      |        |       |      |
|                                                     | 895  | 975             | 1056    | 1137 | 1217   | 1298      | 1378     | 1459 |        |       |      |
| MSW Mass Burn - 7 MW                                | 1315 | 1401            |         |      |        | 1290      |          |      |        |       |      |
| RDF Stoker-Fired - 7 MW                             |      |                 | 1487    | 1573 | 1659   |           | 1831     | 1917 |        |       |      |
| Landfill Gas IC Engine - 5 MW                       | 176  | 224<br>295      | 273     | 321  | 370    | 418       | 466      | 515  | 563    |       |      |
| DF Multi-Fuel CFB (10% Co-fire) - 50 MW             | 290  |                 | 300     | 305  | 310    | 315       | 320      | 325  | 330    | 335   | 34   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 268  | 284             | 300     | 316  | 333    | 349       | 365      | 381  | 397    |       |      |
| fumid Air Turbine Cycle CT - 450 MW                 | 80   | 128             | 173     | 219  | 266    | 312       | 358      | 405  |        |       |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 148             | 194     | 241  | 289    | 337       | 384      | 432  |        |       |      |
| Cheng Cycle CT - 140 MW                             | 119  | 179             | 238     | 298  | 358    | 417       | 477      | 537  |        | -     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 238             | 300     | 361  | 423    | 484       | 546      | 608  |        | ***** |      |
| GCC - 287 MW                                        | 201  | 236             | 271     | 306  | 342    | 377       | 412      | 447  | 482    |       |      |
| GCC - 534 MW                                        | 173  | 208             | 243     | 278  | 312    | 347       | 382      | 418  | 451    |       |      |
| Fuel Cell - 0.2 MW                                  | 1263 | 1325            | 1388    | 1451 | 1514   | 1577      |          |      |        |       |      |
| <sup>3</sup> eaking Microturbine - 0.03 MW          | 97   | 197             | *****   |      |        |           |          |      | *****  |       |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 193             | 289     | 385  | 481    | 577       | 673      | 769  |        |       |      |
| Supercritical Pulverized Coal - 500 MW              | 153  | 178             | 204     | 229  | 254    | 279       | 304      | 329  | 354    | 379   | 40   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 187             | 210     | 234  | 257    | 281       | 304      | 328  | 351    | 375   | 39   |
| Supercritical Pulverized Coal - 750 MW              | 137  | 162             | 187     | 211  | 236    | 260       | 285      | 310  | 334    | 359   | 38   |
| Subcritical Pulverized Coal - 250 MW                | 189  | 215             | 241     | 267  | 293    | 320       | 346      | 372  | 398    | 424   | 45   |
| Subcritical Pulverized Coal - 500 MW                | 149  | 175             | 200     | 226  | 251    | 277       | 302      | 328  | 353    | 379   | 40   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 183             | 206     | 230  | 254    | 278       | 302      | 325  | 349    | 373   | 39   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 169             | 193     | 216  | 239    | 262       | 285      | 309  | 332    | 355   | 37   |
| Circulating Fluidized Bed - 250 MW                  | 197  | 224             | 250     | 277  | 304    | 330       | 357      | 384  | 411    | 437   | 46   |
| Circulating Fluidized Bed - 500 MW                  | 150  | 176             | 202     | 228  | 254    | 280       | 306      | 332  | 358    | 384   | 41   |
| Dhio Falls 9 and 10                                 | 130  | 130             | 130     | 130  |        |           |          |      |        |       |      |
| C2 732 MW Supercritical Pulverized Coal             | 117  | 136             | 156     | 176  | 195    | 215       |          |      |        |       |      |
| Minimum Levelized \$/kW                             | 0    | 37              | 73      | 110  | 148    | 183       | 234      | 254  | 274    | 293   | 31   |

· ·

÷

÷

.

### Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

| Capital Cost-Low                                    | 2004 | Dollars (  | i/kW yr)   |       |            |            |            |            |     |                |      |
|-----------------------------------------------------|------|------------|------------|-------|------------|------------|------------|------------|-----|----------------|------|
| Heat Rate-Base<br>Fuel Forecast-Base                |      |            |            |       | Canaci     | ity Factor |            |            |     |                |      |
| Technology                                          | 0%   | 10%        | 20%        | 30%   | 40%        | 50%        | 60%        | 70%        | 80% | 90%            | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 178  | 207        |            |       |            |            |            |            |     |                |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 145  | 258        | 370        |       |            |            |            |            |     |                |      |
| Compressed Air Energy Storage - 500 MW              | 93   | 145        | 197        |       |            |            |            |            |     |                |      |
| Confinessed Mil Energy Storage - 500 Maa            | 83   | 140        | 197        |       |            |            |            | _          |     |                |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 217        | 287        | 356   | 426        | 495        | 565        | 634        | 704 | 773            | 84   |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 188        | 275        | 361   | 447        | 534        | 620        | 707        | 793 | 879            | 96   |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 162        | 248        | 333   | 418        | 504        | 589        | 675        | 760 | 845            | 93   |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 190        | 244        | 298   | 352        | 406        | 460        | 514        | 568 | 622            | 67   |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 157        | 206        | 256   | 305        | 354        | 403        | 452        | 502 | 551            | 60   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 139        | 188        | 237   | 286        | 334        | 383        | 432        | 481 | 530            | 57   |
| W 501F CC CT - 258 MW                               | 102  | 153        | 203        | 254   | 305        | 356        | 407        | 457        | 508 | 559            | 61   |
| Spark Ignition Engine - 5 MW                        | 127  | 218        | 304        | 393   | 481        | 570        |            |            |     | -              |      |
| Compression Ignition Engine - 10 MW                 | 92   | 169        | 245        | 322   | 398        | 475        |            |            |     |                |      |
| Wind Energy Conversion - 50 MW                      | 160  | 160        | 160        | 160   |            | -          |            |            |     |                |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424        | 454        | 483   | 513        |            |            |            |     |                |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 307  | 323        | 339        |       |            |            |            |            |     |                |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543        | 559        | 575   | 592        | 608        | 624        | 640        |     | *****          |      |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 367        | 383        | 399   | 418        | 432        | 448        | 484        |     |                |      |
| Solar Photovoltaic - 50 kW                          | 771  | 795        | 820        |       |            |            |            |            |     |                |      |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280        | 289        | 297   | 306        | 315        | 323        | 332        | 341 |                |      |
| Geothermal - 30 MW                                  | 592  | 592        | 592        | 592   | 592        | 592        | 592        | 592        | 592 |                |      |
| Hydroelectric - New - 30 MW                         | 364  | 369        | 374        | 378   | 383        | 387        |            |            |     |                |      |
| W Hydro                                             |      |            |            |       |            |            |            |            |     |                |      |
| MSW Mass Burn - 7 MW                                | 895  | 975        | 1056       | 1137  | 1217       | 1298       | 1378       | 1459       |     |                |      |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401       | 1487       | 1573  | 1659       | 1745       | 1831       | 1917       |     |                |      |
| andfill Gas IC Engine - 5 MW                        | 176  | 223        | 270        | 317   | 385        | 412        | 459        | 508        | 553 | -              |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295        | 300        | 305   | 310        | 315        | 320        | 325        | 330 | 335            | 34   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 268  | 284        | 300        | 318   | 333        | 349        | 365        | 381        | 397 |                |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 80   | 124        | 169        | 214   | 258        | 303        | 347        | 392        |     |                |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 144        | 190        | 236   | 282        | 327        | 373        | 419        |     |                |      |
| Cheng Cycle CT - 140 MW                             | 119  | 178        | 234        | 291   | 349        | 406        | 463        | 521        |     |                | _    |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 236        | 295        | 354   | 414        | 473        | 532        | 592        |     |                |      |
| IGCC - 267 MW                                       | 201  | 235        | 269        | 303   | 337        | 371        | 406        | 440        | 474 |                |      |
| IGCC - 534 MW                                       | 173  | 207        | 241        | 274   | 308        | 342        | 375        | 409        | 443 |                |      |
| Fuel Cell - 0.2 MW                                  | 1263 | 1323       | 1384       | 1444  | 1505       | 1566       |            |            |     |                |      |
| Peaking Microturbine - 0.03 MW                      | 97   | 194        | 1004       | 14-14 | 1000       | 1000       |            |            |     |                |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 190        | 282        | 375   | 468        | 561        | 653        | 748        |     |                |      |
| Supercritical Pulverized Coal - 500 MW              | 153  | 178        | 202        | 227   | 251        | 276        | 300        | 325        | 349 | 374            |      |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 185        | 202        | 228   | 249        | 276        | 292        | 325        | 349 | 3/4<br>357     | 39   |
| Supercritical Pulverized Coal, High Sunur - 500 MW  | 137  | 162        | 200<br>188 | 220   | 248        | 258        | 282        | 314        | 335 | 357            | 37   |
| Subcritical Pulverized Coal - 250 MW                | 189  | 214        | 240        | 265   | 294        | ∡36<br>316 | 342        | 300        | 393 | - 304<br>- 418 |      |
|                                                     | 149  | 174        | 240<br>199 | 200   | 248        | 273        | 298        | 307        | 348 | 418<br>372     | 39   |
| Subcritical Pulverized Coal - 500 MW                | 149  | 1/4        | 202        | 224   | ∠48<br>246 | 273        | 290<br>290 | 323        | 346 | 372            | 38   |
| Subcritical Putverized Coal, High Sulfur - 500 MW   |      | 181        |            | 224   | 246        | 208        | 290        | 311<br>294 | 333 | 355            | 37   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  |            | 188        | 210   |            | 252        | 273        |            | 315 |                |      |
| Circulating Fluidized Bed - 250 MW                  | 197  | 223        | 249        |       | 301        |            |            | 379        |     | 431            | 45   |
| Circulating Fluidized Bed - 500 MW                  | 150  | 175        | 201        | 226   | 252        | 277        | 303        | 328        | 354 | 379            | 40   |
| Ohio Falis 9 and 10                                 | 130  | 130<br>134 | 130        | 130   |            |            |            |            |     |                |      |
| C2 732 MW Supercritical Pulverized Coal             | 117  |            | 152        | 170   | 187        | 205        |            |            |     |                |      |

( ~

| Capital Cost-Low                                    | 2004 | Dollars ( | nkw yr) |                                                                                                                 |        |                      |      |      |     |       |      |
|-----------------------------------------------------|------|-----------|---------|-----------------------------------------------------------------------------------------------------------------|--------|----------------------|------|------|-----|-------|------|
| Heat Rate- High<br>Fuel Forecast-Low                |      |           |         |                                                                                                                 | Canaci | ty Factor            |      |      |     |       |      |
| Technology                                          | 0%   | 10%       | 20%     | 30%                                                                                                             | 40%    | 50%                  | 60%  | 70%  | 80% | 90%   | 1009 |
| Pumped Hydro Energy Storage - 500 MW                | 176  | 207       |         | and the second secon |        | الاستىپارلىسى<br>مىر |      |      |     |       |      |
| ead-Acid Battery Energy Storage - 5 MW              | 145  | 258       | 370     | *****                                                                                                           |        |                      |      |      |     |       |      |
| Compressed Air Energy Storage - 500 MW              | 93   | 143       | 193     |                                                                                                                 |        |                      |      |      |     |       |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 214       | 280     | 346                                                                                                             | 412    | 478                  | 544  | 610  | 678 | 742   | 80   |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 184       | 266     | 348                                                                                                             | 431    | 513                  | 595  | 677  | 759 | 842   | 92   |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 159       | 240     | 322                                                                                                             | 404    | 485                  | 567  | 649  | 730 | 812   | 88   |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 187       | 239     | 290                                                                                                             | 342    | 393                  | 444  | 498  | 547 | 599   | 6    |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 155       | 202     | 248                                                                                                             | 295    | 342                  | 389  | 438  | 482 | 529   | 57   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 136       | 183     | 229                                                                                                             | 276    | 322                  | 369  | 415  | 462 | 508   | 55   |
| N 501F CC CT - 258 MW                               | 102  | 150       | 198     | 247                                                                                                             | 295    | 343                  | 392  | 440  | 488 | 537   | 58   |
| Spark Ignition Engine - 5 MW                        | 127  | 212       | 298     | 383                                                                                                             | 469    | 554                  |      |      |     |       |      |
| Compression Ignition Engine - 10 MW                 | 92   | 166       | 240     | 314                                                                                                             | 388    | 462                  |      |      | -   |       |      |
| Mind Energy Conversion - 50 MW                      | 160  | 160       | 160     | 160                                                                                                             |        |                      |      |      |     |       |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424       | 454     | 483                                                                                                             | 513    |                      |      |      |     |       |      |
|                                                     | 307  | 323       | 339     | 405                                                                                                             | 513    |                      |      |      |     |       |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 527  | 543       | 559     | 575                                                                                                             | 592    | 608                  | 624  |      |     |       |      |
| Solar Thermal, Central Receiver - 50 MW             | 351  | 367       | 383     |                                                                                                                 |        |                      |      | 840  |     |       |      |
| Solar Thermal, Solar Chimney - 200 MW               |      |           |         | 399                                                                                                             | 416    | 432                  | 448  | 484  | -   |       |      |
| Solar Photovoltaic - 50 kW                          | 771  | 795       | 820     |                                                                                                                 |        |                      |      |      |     |       |      |
| Biomass (Co-Fire) - 27.5MW                          | 272  | 280       | 289     | 297                                                                                                             | 306    | 315                  | 323  | 332  | 341 |       |      |
| Geothermal - 30 MW                                  | 592  | 592       | 592     | 592                                                                                                             | 592    | 592                  | 592  | 592  | 592 |       |      |
| lydroelectric - New - 30 MW                         | 384  | 369       | 374     | 378                                                                                                             | 383    | 387                  |      |      |     |       |      |
| AV Hydro                                            |      |           | 1080    | 1100                                                                                                            | 1047   |                      |      |      | -   |       |      |
| MSW Mass Bum - 7 MW                                 | 895  | 975       | 1056    | 1137                                                                                                            | 1217   | 1298                 | 1378 | 1459 |     |       |      |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401      | 1487    | 1573                                                                                                            | 1659   | 1745                 | 1831 | 1917 |     |       |      |
| andfill Gas IC Engine - 5 MW                        | 178  | 222       | 268     | 313                                                                                                             | 359    | 405                  | 451  | 496  | 542 |       |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295       | 300     | 305                                                                                                             | 310    | 315                  | 320  | 325  | 330 | 335   | 34   |
| Sewage Studge & Anaerobic Digestion085 MW           | 268  | 284       | 300     | 316                                                                                                             | 333    | 349                  | 365  | 381  | 397 |       |      |
| lumid Air Turbine Cycle CT - 450 MW                 | 80   | 122       | 165     | 207                                                                                                             | 250    | 292                  | 334  | 377  |     |       |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 142       | 185     | 229                                                                                                             | 272    | 316                  | 360  | 403  |     | -     |      |
| Chang Cycle CT - 140 MW                             | 119  | 173       | 228     | 282                                                                                                             | 337    | 391                  | 445  | 500  |     | ***** |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 233       | 289     | 345                                                                                                             | 402    | 458                  | 514  | 571  |     |       |      |
| GCC - 267 MW                                        | 201  | 234       | 267     | 299                                                                                                             | 332    | 365                  | 398  | 431  | 463 | -     |      |
| GCC - 534 MW                                        | 173  | 206       | 238     | 271                                                                                                             | 303    | 335                  | 368  | 400  | 432 |       |      |
| Fuel Cell - 0.2 MW                                  | 1263 | 1320      | 1378    | 1436                                                                                                            | 1494   | 1552                 |      |      |     |       |      |
| Peaking Microturbine - 0.03 MW                      | 97   | 190       |         | -                                                                                                               |        | -                    | **** |      |     |       |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 188       | 274     | 363                                                                                                             | 452    | 541                  | 629  | 718  |     |       |      |
| Supercritical Pulverized Coal - 500 MW              | 153  | 175       | 197     | 219                                                                                                             | 241    | 263                  | 285  | 307  | 329 | 351   | 37   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 185       | 207     | 228                                                                                                             | 250    | 272                  | 293  | 315  | 337 | 359   | 30   |
| Supercritical Pulverized Coal - 750 MW              | 137  | 159       | 181     | 202                                                                                                             | 224    | 245                  | 267  | 289  | 310 | 332   | 3    |
| Subcritical Pulverized Coal - 250 MW                | 189  | 211       | 234     | 257                                                                                                             | 280    | 303                  | 328  | 349  | 372 | 395   | 41   |
| Subcritical Pulverized Coal - 500 MW                | 149  | 172       | 194     | 218                                                                                                             | 239    | 281                  | 284  | 306  | 328 | 351   | 37   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 181       | 203     | 225                                                                                                             | 247    | 269                  | 291  | 313  | 335 | 357   | 37   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 168       | 189     | 210                                                                                                             | 232    | 253                  | 275  | 296  | 317 | 339   | 30   |
| Circulating Fluidized Bed - 250 MW                  | 197  | 220       | 244     | 267                                                                                                             | 291    | 314                  | 338  | 361  | 385 | 408   | 43   |
| Circulating Fluidized Bed - 500 MW                  | 150  | 173       | 196     | 219                                                                                                             | 242    | 265                  | 288  | 311  | 334 | 357   | 3    |
| Dhio Fails 9 and 10                                 | 130  | 130       | 130     | 130                                                                                                             |        |                      |      |      |     |       |      |
| TC2 732 MW Supercritical Pulverized Coal            | 117  | 135       | 152     | 170                                                                                                             | 188    | 206                  |      |      |     |       |      |
| LOW LOW MILL ON DOUGHINDER L. NIADURGO COM          |      |           | 73      | ,,,,                                                                                                            | 100    | 183                  | 224  | 241  | 259 |       | 25   |

Ć

### Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

| Capital Cost-Low<br>Heat Rate- High                 | 2004 | Dollars (i | ыкчт ут) |      |        |           |      |      |      |      |      |
|-----------------------------------------------------|------|------------|----------|------|--------|-----------|------|------|------|------|------|
| Fuel Forecast-High                                  |      |            |          |      | Capaci | ty Factor |      |      |      |      |      |
| Technology                                          | 0%   | 10%        | 20%      | 30%  | 40%    | 50%       | 60%  | 70%  | \$0% | 90%  | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 176  | 207        |          | **** |        |           |      |      |      |      |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 145  | 258        | 370      |      |        |           |      |      |      |      |      |
| Compressed Air Energy Storage - 500 MW              | 93   | 149        | 205      |      |        |           |      |      |      | **** |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 148  | 227        | 307      | 388  | 466    | 545       | 625  | 704  | 784  | 863  | 943  |
| Simple Cycle GE 7EA CT - 73 MW                      | 102  | 200        | 299      | 397  | 496    | 594       | 693  | 791  | 890  | 888  | 1087 |
| Simple Cycle GE 7FA CT - 148 MW                     | 77   | 173        | 269      | 365  | 462    | 558       | 854  | 750  | 846  | 943  | 103  |
| Combined Cycle GE 7EA CT - 119 MW                   | 136  | 197        | 259      | 320  | 382    | 443       | 505  | 566  | 628  | 689  | 75   |
| Combined Cycle GE 7FA CT - 235 MW                   | 108  | 164        | 220      | 276  | 332    | 388       | 444  | 500  | 556  | 612  | 66   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 90   | 148        | 201      | 257  | 313    | 368       | 424  | 480  | 530  | 591  | 64   |
| N 501F CC CT - 258 MW                               | 102  | 160        | 218      | 276  | 333    | 391       | 449  | 507  | 565  | 623  | 68   |
| Spark Ignition Engine - 5 MW                        | 127  | 225        | 323      | 422  | 520    | 618       |      |      |      |      |      |
| Compression Ignition Engine - 10 MW                 | 92   | 178        | 260      | 345  | 429    | 513       |      | -    |      | -    |      |
| Wind Energy Conversion - 50 MW                      | 160  | 160        | 160      | 160  | -      |           |      |      |      |      |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 395  | 424        | 454      | 483  | 513    |           |      |      |      |      |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 307  | 323        | 339      |      |        |           |      |      |      |      |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543        | 559      | 575  | 592    | 608       | 824  | 840  |      |      |      |
| Solar Thermal, Solar Chimney - 200 MW               | 351  | 367        | 383      | 399  | 416    | 432       | 448  | 464  |      |      |      |
| iolar Photovoltaic - 50 kW                          | 771  | 795        | 820      |      |        |           |      |      |      |      |      |
| Nomass (Co-Fire) - 27.5MW                           | 272  | 280        | 289      | 297  | 306    | 315       | 323  | 332  | 341  | ~~   |      |
| Seothermal - 30 MW                                  | 592  | 592        | 592      | 592  | 592    | 592       | 592  | 592  | 592  | -    |      |
| lydroelectric - New - 30 MW                         | 364  | 369        | 374      | 378  | 383    | 387       |      |      |      |      |      |
| W Hydro                                             |      |            |          |      |        |           |      |      |      |      |      |
| WSW Mass Burn - 7 MW                                | 895  | 975        | 1058     | 1137 | 1217   | 1298      | 1378 | 1459 |      | -    |      |
| RDF Stoker-Fired - 7 MW                             | 1315 | 1401       | 1487     | 1573 | 1659   | 1745      | 1831 | 1917 |      |      |      |
| andfill Gas IC Engine - 5 MW                        | 176  | 228        | 280      | 331  | 383    | 435       | 487  | 538  | 590  |      |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 290  | 295        | 300      | 305  | 310    | 315       | 320  | 325  | 330  | 335  | 34   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 268  | 284        | 300      | 316  | 333    | 349       | 365  | 381  | 397  |      |      |
| turnid Air Turbine Cycle CT - 450 MW                | 80   | 131        | 182      | 233  | 284    | 335       | 386  | 437  |      |      |      |
| Kalina Cycle CC CT - 275 MW                         | 98   | 151        | 203      | 255  | 308    | 360       | 413  | 465  |      | -    |      |
| Cheng Cycle CT - 140 MW                             | 119  | 184        | 250      | 318  | 381    | 447       | 512  | 578  | _    |      |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 177  | 244        | 311      | 379  | 448    | 514       | 581  | 649  |      |      |      |
| GCC - 267 MW                                        | 201  | 239        | 277      | 316  | 354    | 392       | 430  | 469  | 507  |      |      |
| GCC - 534 MW                                        | 173  | 211        | 249      | 287  | 325    | 362       | 400  | 438  | 476  |      |      |
| Fuel Cell - 0.2 MW                                  | 1263 | 1331       | 1400     | 1468 | 1537   | 1606      |      |      |      | ·    |      |
| Peaking Microturbine - 0.03 MW                      | 97   | 206        |          |      |        |           |      |      |      |      |      |
| Baseload Microturbine - 0.03 MW                     | 97   | 201        | 308      | 410  | 515    | 819       | 724  | 828  |      |      |      |
| Supercritical Pulverized Coal - 500 MW              | 153  | 181        | 209      | 236  | 264    | 291       | 319  | 347  | 374  | 402  | 42   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 163  | 189        | 214      | 240  | 266    | 291       | 317  | 342  | 368  | 394  | 41   |
| Supercritical Pulverized Coal - 750 MW              | 137  | 164        | 191      | 218  | 245    | 272       | 299  | 326  | 353  | 380  | 40   |
| Subcritical Pulverized Coal - 250 MW                | 189  | 217        | 248      | 275  | 303    | 332       | 361  | 389  | 418  | 447  | 47   |
| Subcritical Pulverized Coal - 500 MW                | 149  | 177        | 205      | 233  | 261    | 289       | 317  | 345  | 373  | 401  | 42   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 159  | 185        | 211      | 237  | 263    | 289       | 315  | 341  | 387  | 393  | 41   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 146  | 171        | 197      | 222  | 247    | 272       | 297  | 323  | 348  | 373  | 39   |
| Circulating Fluidized Bed - 250 MW                  | 197  | 226        | 256      | 285  | 314    | 343       | 373  | 402  | 431  | 461  | 49   |
| Circulating Fluidized Bed - 500 MW                  | 150  | 178        | 207      | 235  | 264    | 293       | 321  | 350  | 378  | 407  | 43   |
| Dhio Falis 9 and 10                                 | 130  | 130        | 130      | 130  |        |           |      |      |      |      |      |
| C2 732 MW Supercritical Pulverized Coal             | 117  | 138        | 160      | 181  | 203    | 224       |      |      |      |      |      |
|                                                     |      | 37         | 73       | 110  | 146    |           | 246  | 267  | 289  | 310  | 33   |

,

Ĺ

| Capital Cost-Base<br>Heat Rate-Low                  | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dollars (\$ | vkw yr) |      |        |            |      |      |     |     |      |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|------|--------|------------|------|------|-----|-----|------|
| Fuel Forecast- Base                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |         |      | Capaci | ty Factors | 3    |      |     |     |      |
| Technology                                          | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10%         | 20%     | 30%  | 40%    | 54%        | 60%  | 70%  | 80% | 80% | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 226         |         |      |        |            |      |      |     |     | **** |
| Lead-Acid Battery Energy Storage - 5 MW             | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 272         | 384     |      |        |            |      | -    | •   |     |      |
| Compressed Air Energy Storage - 500 MW              | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151         | 201     |      |        |            |      |      |     |     |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 223         | 289     | 355  | 422    | 488        | 554  | 620  | 686 | 753 | 819  |
| Simple Cycle GE 7EA CT - 73 MW                      | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190         | 273     | 355  | 438    | 520        | 603  | 685  | 768 | 850 | 933  |
| Simple Cycle GE 7FA CT - 148 MW                     | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 163         | 245     | 327  | 408    | 490        | 572  | 654  | 738 | 818 | 900  |
| Combined Cycle GE 7EA CT - 119 MW                   | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 196         | 248     | 299  | 351    | 402        | 454  | 505  | 557 | 608 | 660  |
| Combined Cycle GE 7FA CT - 235 MW                   | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 163         | 210     | 257  | 304    | 351        | 397  | 444  | 491 | 538 | 585  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 143         | 189     | 236  | 283    | 329        | 376  | 423  | 470 | 518 | 563  |
| W 501F CC CT - 258 MW                               | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 157         | 206     | 254  | 303    | 351        | 400  | 448  | 497 | 545 | 594  |
| Spark Ignition Engine - 5 MW                        | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227         | 312     | 398  | 483    | 569        |      | -    |     |     |      |
| Compression Ignition Engine - 10 MW                 | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177         | 251     | 325  | 399    | 473        |      |      |     |     |      |
| Wind Energy Conversion - 50 MW                      | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 191         | 191     | 191  |        |            |      |      |     |     |      |
| Solar Thermai, Parabolic Trough - 100 MW            | 494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 523         | 553     | 582  | 612    |            |      |      |     |     |      |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400         | 418     |      |        |            |      |      |     |     |      |
| Solar Thermal, Central Receiver - 50 MW             | 658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 674         | 690     | 706  | 723    | 739        | 755  | 771  |     |     |      |
| Solar Thermal, Solar Chimney - 200 MW               | 439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 455         | 471     | 487  | 504    | 520        | 536  | 552  |     |     |      |
| Solar Photovoltaic - 50 kW                          | 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 982         | 1007    |      |        |            |      |      |     |     |      |
| Biomass (Co-Fire) - 27.5MW                          | 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 329         | 338     | 346  | 355    | 364        | 372  | 381  | 390 |     |      |
|                                                     | 664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 664         | 664     | 664  | 664    | 664        | 664  | 664  | 664 |     |      |
| Geothermal - 30 MW                                  | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 407         |         | 418  | 421    | 425        | 004  | 004  | 004 |     |      |
| Hydroelectric - New - 30 MW                         | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 407         | 412     | 410  | 941    | 420        |      |      |     |     |      |
| WV Hydro                                            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1100        | 4447    | 1268 | 1348   | 1429       | 1509 | 1590 |     |     |      |
| MSW Mass Burn - 7 MW                                | 1026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1106        | 1187    |      |        |            |      |      |     |     |      |
| RDF Stoker-Fired - 7 MW                             | 1491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1577        | 1663    | 1749 | 1835   | 1921       | 2007 | 2093 |     |     |      |
| Landfill Gas IC Engine - 5 MW                       | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 265         | 310     | 356  | 402    | 447        | 493  | 538  | 584 |     |      |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 350         | 355     | 360  | 365    | 370        | 375  | 380  | 385 | 390 | 396  |
| Sewage Sludge & Anaerobic Digestion085 MW           | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 351         | 367     | 383  | 400    | 416        | 432  | 448  | 484 |     |      |
| Humid Air Turbine Cycle CT - 450 MW                 | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133         | 176     | 219  | 261    | 304        | 346  | 389  |     |     |      |
| Kalina Cycle CC CT - 275 MW                         | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158         | 202     | 245  | 289    | 333        | 376  | 420  |     |     |      |
| Cheng Cycle CT - 140 MW                             | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 195         | 249     | 304  | 359    | 413        | 468  | 523  |     |     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269         | 326     | 382  | 439    | 495        | 552  | 609  |     |     |      |
| IGCC - 287 MW                                       | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270         | 302     | 335  | 388    | 400        | 433  | 466  | 499 |     |      |
| IGCC - 534 MW                                       | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240         | 272     | 304  | 338    | 369        | 401  | 433  | 465 |     |      |
| Fuel Cell - 0.2 MW                                  | 1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1452        | 1510    | 1588 | 1626   | 1684       |      |      |     |     |      |
| Peaking Microturbine - 0.03 MW                      | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 215         |         |      |        |            |      |      |     |     |      |
| Baseload Microturbine - 0.03 MW                     | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 211         | 300     | 389  | 477    | 566        | 655  | 744  |     |     |      |
| Supercritical Pulverized Coal - 500 MW              | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 191         | 214     | 237  | 261    | 284        | 307  | 330  | 354 | 377 | 400  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 198         | 218     | 239  | 260    | 280        | 301  | 321  | 342 | 363 | 383  |
| Supercritical Pulverized Coal - 750 MW              | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 173         | 196     | 219  | 242    | 265        | 288  | 311  | 334 | 357 | 379  |
| Subcritical Pulverized Coal - 250 MW                | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 230         | 254     | 279  | 303    | 328        | 352  | 376  | 401 | 425 | 450  |
| Subcritical Pulverized Coal - 500 MW                | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 187         | 211     | 234  | 258    | 282        | 305  | 329  | 353 | 376 | 400  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 194         | 214     | 235  | 258    | 277        | 298  | 318  | 339 | 360 | 381  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180         | 200     | 220  | 240    | 261        | 261  | 301  | 322 | 342 | 362  |
| Circulating Fluidized Bed - 250 MW                  | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240         | 265     | 290  | 315    | 339        | 364  | 389  | 414 | 439 | 484  |
| Circulating Fluidized Bed - 500 MW                  | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188         | 212     | 238  | 261    | 285        | 309  | 334  | 358 | 382 | 407  |
| Ohio Fails 9 and 10                                 | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 144         | 144     | 144  |        | -          |      |      |     |     |      |
| TC2 732 MW Supercritical Pulverized Coal            | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 146         | 162     | 179  | 196    | 213        |      |      |     |     | -    |
|                                                     | and the second se | 37          | 73      | 110  | 146    | 183        |      | 246  | 263 | 280 | 297  |

1

(

| Capital Cost-Base                                   | 2004 Dollars (\$/kW yr) |            |            |      |        |           |            |                                    |      |      |                                 |  |
|-----------------------------------------------------|-------------------------|------------|------------|------|--------|-----------|------------|------------------------------------|------|------|---------------------------------|--|
| Heat Rate- Base<br>Fuel Forecast-Low                |                         |            |            |      | Capaci | ty Factor |            |                                    |      |      |                                 |  |
| Technology                                          | 0%                      | 10%        | 20%        | 30%  | 40%    | 50%       | 60%        | 70%                                | 80%  | \$0% | 100%                            |  |
| Pumped Hydro Energy Storage - 500 MW                | 195                     | 228        |            |      |        |           |            | الارزوبي الاقتصادية الات<br>معاددي |      |      | برا الاستخدار الاردان<br>مستحدي |  |
| Lead-Acid Battery Energy Storage - 5 MW             | 159                     | 272        | 384        |      |        |           |            | <u> </u>                           |      |      |                                 |  |
| Compressed Air Energy Storage - 500 MW              | 101                     | 150        | 199        |      |        |           |            |                                    |      |      |                                 |  |
| Simple Cycle GE LM6000 CT - 31 MW                   | 157                     | 220        | 283        | 346  | 409    | 472       | 535        | 598                                | 661  | 724  | 78                              |  |
| Simple Cycle GE 7EA CT - 73 MW                      | 108                     | 188        | 265        | 344  | 423    | 501       | 580        | 659                                | 737  | 816  | 89                              |  |
| Simple Cycle GE 7FA CT - 148 MW                     | 81                      | 159        | 238        | 318  | 395    | 473       | 552        | 630                                | 709  | 787  | 85                              |  |
| Combined Cycle GE 7EA CT - 119 MW                   | 145                     | 194        | 243        | 292  | 341    | 390       | 440        | 489                                | 538  | 587  | 63                              |  |
| Combined Cycle GE 7FA CT - 235 MW                   | 118                     | 181        | 206        | 250  | 295    | 340       | 385        | 430                                | 474  | 519  | 56                              |  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 96                      | 140        | 185        | 229  | 274    | 318       | 363        | 407                                | 452  | 498  | 54                              |  |
| N 501F CC CT - 258 MW                               | 109                     | 155        | 201        | 247  | 294    | 340       | 388        | 432                                | 478  | 525  | 57                              |  |
| Spark Ignition Engine - 5 MW                        | 141                     | 224        | 306        | 389  | 471    | 554       |            |                                    |      |      |                                 |  |
| Compression Ignition Engine - 10 MW                 | 103                     | 175        | 248        | 318  | 389    | 461       |            |                                    |      |      |                                 |  |
| Wind Energy Conversion - 50 MW                      | 191                     | 191        | 191        | 191  |        | 401       | -          |                                    |      |      |                                 |  |
|                                                     | 494                     | 523        | 553        | 582  | 612    |           |            |                                    |      |      |                                 |  |
| Solar Thermal, Parabolic Trough - 100 MW            |                         | 523<br>400 | 418        | 002  | 012    |           |            |                                    |      |      |                                 |  |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 384                     |            | 410<br>890 | 706  | 723    | 739       | 755        | 771                                |      |      |                                 |  |
| Solar Thermal, Central Receiver - 50 MW             | 658                     | 674        |            | 487  | 504    |           | 755<br>536 | 552                                |      |      |                                 |  |
| Solar Thermal, Solar Chimney - 200 MW               | 439                     | 455        | 471        | 40/  | 204    | 520       | 530        | 99Z                                |      |      |                                 |  |
| Solar Photovoltaic - 50 kW                          | 958                     | 982        | 1007       |      |        |           |            |                                    |      |      |                                 |  |
| Blomass (Co-Fire) - 27.5MW                          | 321                     | 329        | 338        | 348  | 355    | 364       | 372        | 381                                | 390  |      |                                 |  |
| Seothermal - 30 MW                                  | 664                     | 664        | 664        | 664  | 664    | 664       | 664        | 664                                | 664  |      |                                 |  |
| lydroelectric - New - 30 MW                         | 402                     | 407        | 412        | 418  | 421    | 425       |            | <b></b>                            | -    |      |                                 |  |
| WV Hydro                                            |                         |            |            |      |        |           |            |                                    |      |      |                                 |  |
| MSW Mass Burn - 7 MW                                | 1026                    | 1108       | 1187       | 1268 | 1348   | 1429      | 1509       | 1590                               |      |      |                                 |  |
| RDF Stoker-Fired - 7 MW                             | 1491                    | 1577       | 1663       | 1749 | 1835   | 1921      | 2007       | 2093                               |      |      |                                 |  |
| andfill Gas IC Engine - 5 MW                        | 219                     | 263        | 308        | 352  | 397    | 441       | 485        | 530                                | 574  |      |                                 |  |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 345                     | 350        | 355        | 360  | 365    | 370       | 375        | 380                                | 385  | 390  | 39                              |  |
| Sewage Sludge & Anaerobic Digestion085 MW           | 335                     | 351        | 367        | 383  | 400    | 418       | 432        | 448                                | 464  |      |                                 |  |
| Humid Air Turbine Cycle CT - 450 MW                 | 91                      | 131        | 172        | 213  | 253    | 294       | 334        | 375                                |      |      |                                 |  |
| Kalina Cycle CC CT - 275 MW                         | 114                     | 158        | 198        | 239  | 281    | 323       | 364        | 406                                | •    |      |                                 |  |
| Cheng Cycle CT - 140 MW                             | 140                     | 192        | 244        | 296  | 348    | 400       | 452        | 504                                |      |      |                                 |  |
| Pressurized Fluidized Bed Combustion - 250 MW       | 213                     | 266        | 320        | 374  | 428    | 482       | 536        | 590                                | **** |      |                                 |  |
| IGCC - 287 MW                                       | 237                     | 268        | 300        | 331  | 363    | 395       | 426        | 458                                | 489  |      |                                 |  |
| GCC - 534 MW                                        | 207                     | 239        | 270        | 301  | 332    | 363       | 394        | 425                                | 458  |      |                                 |  |
| Fuel Cell - 0.2 MW                                  | 1394                    | 1449       | 1504       | 1560 | 1615   | 1671      |            | -                                  | -    |      |                                 |  |
| Peaking Microturbine - 0.03 MW                      | 122                     | 211        |            |      |        |           |            |                                    |      |      |                                 |  |
| Baseload Microturbine - 0.03 MW                     | 122                     | 207        | 292        | 377  | 463    | 548       | 633        | 718                                |      |      |                                 |  |
| Supercritical Pulverized Coal - 500 MW              | 167                     | 188        | 210        | 231  | 252    | 273       | 294        | 315                                | 336  | 357  | 37                              |  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 177                     | 198        | 219        | 240  | 261    | 282       | 303        | 324                                | 344  | 365  | 38                              |  |
| Supercritical Pulverized Coal - 750 MW              | 150                     | 171        | 192        | 213  | 233    | 254       | 275        | 295                                | 316  | 337  | 35                              |  |
| Subcritical Pulverized Coal - 250 MW                | 206                     | 228        | 250        | 272  | 294    | 316       | 338        | 360                                | 382  | 404  | 42                              |  |
| Subcritical Pulverized Coal - 500 MW                | 163                     | 184        | 206        | 227  | 248    | 270       | 291        | 312                                | 334  | 355  | 37                              |  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 173                     | 194        | 215        | 236  | 258    | 279       | 300        | 321                                | 342  | 364  | 38                              |  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 159                     | 180        | 200        | 221  | 242    | 262       | 283        | 303                                | 324  | 345  | 36                              |  |
| Circulating Fluidized Bed - 250 MW                  | 215                     | 237        | 260        | 282  | 305    | 327       | 350        | 372                                | 395  | 417  | 44                              |  |
| Circulating Fluidized Bed - 500 MW                  | 164                     | 186        | 208        | 230  | 252    | 274       | 296        | 318                                | 340  | 362  | 32                              |  |
| Dhio Falls 9 and 10                                 | 144                     | 144        | 144        | 144  |        |           |            |                                    |      |      |                                 |  |
| C2 732 MW Supercritical Pulverized Coal             | 129                     | 148        | 163        | 180  | 197    | 214       |            |                                    |      |      |                                 |  |
| Ninimum Levelized S/kW                              | 0                       | 37         | 73         | 110  | 146    | 183       | 231        | 248                                | 265  | 282  | 29                              |  |

Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

**Capital Cost-Base** 2004 Dollars (\$/kW yr) Heat Rate-High Fuel Forecast-Low Capacity Factors Technology 10% 20% 30% 80% 70% 80% -100% umped Hydro Energy Storage - 500 MM ead-Acid Battery Energy Storage - 5 MW -----Compressed Air Energy Storage - 500 MW Simple Cycle GE LM6000 CT - 31 MW Simple Cycle GE 7EA CT - 73 MW Simple Cycle GE 7FA CT - 148 MW Combined Cycle GE 7EA CT - 119 MW Combined Cycle GE 7FA CT - 235 MW Combined Cycle 2x1 GE 7FA CT - 484 MW W 501F CC CT - 258 MW 103 Spark Ignition Engine - 5 MW ----------Compression Ignition Engine - 10 MW ...... \_\_\_\_ ----Wind Energy Conversion - 50 MW -----\_\_\_\_ Solar Thermal, Parabolic Trough - 100 MW ----\_\_\_\_ Solar Thermal, Parabolic Dish - 1.2 MW Solar Thermal, Central Receiver - 50 MW Solar Thermal, Solar Chimney - 200 MW Solar Photovoltaic - 50 kW Biomass (Co-Fire) - 27.5MW Geothermal - 30 MW Hydroelactric - Naw - 30 MW WV Hydro ..... MSW Mass Burn - 7 MW •----RDF Stoker-Fired - 7 MW Landfill Gas IC Engine - 5 MW TDF Multi-Fuel CFB (10% Co-fire) - 50 MW Sewage Studge & Anaerobic Digestion - .085 MW Humid Air Turbine Cycle CT - 450 MW Kalina Cycle CC CT - 275 MW \_\_\_\_ Cheng Cycle CT - 140 MW Pressurized Fluidized Bed Combustion - 250 MW IGCC - 267 MW -----IGCC - 534 MW Fuel Cell - 0.2 MW \_\_\_\_ <sup>2</sup>eaking Microturbine - 0.03 MW \_\_\_\_ -----Baseload Microturbine - 0.03 MW Supercritical Pulverized Coal - 500 MW Supercritical Pulverized Coal, High Sulfur - 500 MW 258 Supercritical Pulverized Cost - 750 MW Subcritical Pulverized Coal - 250 MW Subcritical Pulverized Coal - 500 MW Subcritical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal, High Sulfur - 750 MW Circulating Fluidized Bed - 250 MW Circulating Fluidized Bed - 500 MW Ohio Falis 9 and 10 TC2 732 MW Supercritical Pulverized Coal Minimum Levelized \$4W 

100%

1043

-

70%

66%

----

80%

\_\_\_\_

850

-----

----390 664

385

510

388 382

\_

••• 

Levelized Dollars at Various Capacity Factors With SO2 Adders, with CO2 Adders, and with NOx Adders

| Capital Cost- Base                                  | 2004 | Dollars (I | MW yr) |      |      |           |      |
|-----------------------------------------------------|------|------------|--------|------|------|-----------|------|
| Heat Rate-High                                      |      |            |        |      |      |           |      |
| Fuel Forecast- High                                 |      |            |        |      |      | ty Factor |      |
| Technology                                          | 0%   | 10%        | 20%    | 30%  | 40%  | 50%       | 60%  |
| Pumped Hydro Energy Storage - 500 MW                | 195  | 226        | -      |      |      |           |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 159  | 272        | 384    |      |      |           |      |
| Compressed Air Energy Stonage - 500 MW              | 101  | 157        | 213    |      |      |           |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 157  | 238        | 316    | 395  | 475  | 554       | 634  |
| Simple Cycle GE 7EA CT - 73 MW                      | 108  | 206        | 305    | 403  | 502  | 600       | 699  |
| Simple Cycle GE 7FA CT - 148 MW                     | 81   | 177        | 273    | 369  | 466  | 562       | 858  |
| Combined Cycle GE 7EA CT - 119 MW                   | 145  | 206        | 268    | 329  | 391  | 452       | 514  |
| Combined Cycle GE 7FA CT - 235 MW                   | 116  | 172        | 228    | 284  | 340  | 396       | 452  |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 96   | 152        | 207    | 263  | 319  | 374       | 430  |
| W 501F CC CT - 258 MW                               | 109  | 167        | 225    | 283  | 340  | 398       | 458  |
| Spark ignition Engine - 5 MW                        | 141  | 239        | 337    | 436  | 534  | 832       |      |
| Compression Ignition Engine - 10 MW                 | 103  | 187        | 271    | 356  | 440  | 524       |      |
| Wind Energy Conversion - 50 MW                      | 191  | 191        | 191    | 191  |      |           |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 494  | 523        | 553    | 582  | 612  |           | -    |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 384  | 400        | 416    |      | -    |           |      |
| Solar Thermal, Central Receiver - 50 MW             | 658  | 674        | 690    | 706  | 723  | 739       | 755  |
| Solar Thermal, Solar Chimney - 200 MW               | 439  | 455        | 471    | 487  | 504  | 520       | 538  |
| Solar Photovoltaic - 50 kW                          | 958  | 982        | 1007   |      |      | -         |      |
| Biomass (Co-Fire) - 27.5MW                          | 321  | 329        | 338    | 346  | 355  | 384       | 372  |
| Geothermal - 30 MW                                  | 664  | 664        | 664    | 664  | 664  | 884       | 664  |
| Hydroelectric - New - 30 MW                         | 402  | 407        | 412    | 416  | 421  | 425       |      |
| WV Hvdra                                            |      |            |        |      |      |           |      |
| MSW Mass Burn - 7 MW                                | 1028 | 1106       | 1187   | 1268 | 1348 | 1429      | 1509 |
| RDF Stoker-Fired - 7 MW                             | 1491 | 1577       | 1663   | 1749 | 1835 | 1921      | 2007 |
| Landfill Gas IC Engine - 5 MW                       | 219  | 271        | 323    | 374  | 428  | 478       | 530  |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 345  | 350        | 355    | 360  | 365  | 370       | 375  |
| Sewage Skudge & Anaerobic Digestion085 MW           | 335  | 351        | 367    | 383  | 400  | 416       | 432  |
| Humid Air Turbine Cycle CT - 450 MW                 | 91   | 142        | 193    | 244  | 295  | 346       | 397  |
| Kalina Cycle CC CT - 275 MW                         | 114  | 167        | 219    | 271  | 324  | 376       | 429  |
| Cheng Cycle CT - 140 MW                             | 140  | 205        | 271    | 337  | 402  | 468       | 533  |
| Pressurized Fluidized Bed Combustion - 250 MW       | 213  | 280        | 347    | 415  | 482  | 550       | 617  |
| IGCC - 287 MW                                       | 237  | 275        | 313    | 352  | 390  | 428       | 466  |
| IGCC - 534 MW                                       | 207  | 245        | 283    | 321  | 359  | 396       | 434  |
| Fuel Cell - 0.2 MW                                  | 1394 | 1462       | 1531   | 1599 | 1668 | 1737      |      |
| Peaking Microturbine - 0.03 MW                      | 122  | 231        |        |      |      |           |      |
| Baseload Microturbine - 0.03 MW                     | 122  | 226        | 331    | 435  | 540  | 644       | 749  |
| Supercritical Pulverized Coal - 500 MW              | 167  | 195        | 223    | 250  | 278  | 305       | 333  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 177  | 203        | 228    | 254  | 280  | 305       | 331  |
| Supercritical Pulverized Coal - 750 MW              | 150  | 177        | 204    | 231  | 258  | 285       | 312  |
| Subcritical Pulverized Coal - 250 MW                | 206  | 234        | 263    | 292  | 320  | 349       | 378  |
| Subcritical Pulverized Coal - 500 MW                | 163  | 191        | 219    | 247  | 275  | 303       | 331  |
| Subcritical Pulverized Coal, High Sulfur - 500 MW   | 173  | 199        | 225    | 251  | 277  | 303       | 329  |
|                                                     | 480  |            |        | 005  | 200  | OOF       | 240  |

C

172

193

150

Circulating Fluidized Bed - 250 MW

Circulating Fluidices and Ohio Falls 9 and 10 TC2 732 MW Supercritical Pulverized Coal Minimum Levelized \$/kW Circulating Fluidized Bed - 500 MW

Subertitical Pulverized Coal - 750 MW Subertitical Pulverized Coal - 250 MW Subertitical Pulverized Coal, High Sulfur - 500 MW Supercritical Pulverized Coal, High Sulfur - 750 MW

1

 $\left( \begin{array}{c} \cdot \\ \cdot \end{array} \right)$ 

| Capital Cost- High<br>leat Rata-Low                            | 2004       | Dollars (1 | ик <b>W</b> ут) |            |        |            |         |      |     |        |      |
|----------------------------------------------------------------|------------|------------|-----------------|------------|--------|------------|---------|------|-----|--------|------|
| fuel Forecast- Base                                            |            |            |                 |            | Capeci | ty Factori |         |      |     |        |      |
| Technology                                                     | 0%         | 10%        | 20%             | 30%        | 40%    | 50%        | 60%     | 70%  | 80% | 90%    | 100% |
| Pumped Hydro Energy Storage - 500 MW                           | 232        | 263        |                 | ,          |        |            |         |      |     |        |      |
| ead-Acid Battery Energy Storage - 5 MW                         | 187        | 300        | 412             |            |        |            |         |      |     |        |      |
| Compressed Air Energy Storage - 500 MW                         | 117        | 167        | 217             |            |        |            | •••••   |      |     |        |      |
| Simple Cycle GE LM6000 CT - 31 MW                              | 166        | 232        | 298             | 384        | 431    | 497        | 563     | 629  | 695 | 762    | 82   |
| Simple Cycle GE 7EA CT - 73 MW                                 | 114        | 196        | 279             | 361        | 444    | 526        | 609     | 691  | 774 | 856    | 93   |
| Simple Cycle GE 7FA CT - 148 MW                                | 86         | 168        | 250             | 332        | 413    | 495        | 577     | 659  | 741 | 823    | 90   |
| Combined Cycle GE 7EA CT - 119 MW                              | 155        | 206        | 258             | 309        | 361    | 412        | 464     | 515  | 567 | 618    | 67   |
| Combined Cycle GE 7FA CT - 235 MW                              | 123        | 170        | 217             | 264        | 311    | 358        | 404     | 451  | 498 | 545    | 59   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW                          | 101        | 148        | 194             | 241        | 288    | 334        | 381     | 428  | 475 | 521    | 56   |
| V 501F CC CT - 258 MW                                          | 116        | 164        | 213             | 261        | 310    | 358        | 407     | 455  | 504 | 552    | 60   |
| Spark ignition Engine - 5 MW                                   | 155        | 241        | 326             | 412        | 497    | 583        | <b></b> |      |     |        |      |
| Compression Ignition Engine - 10 MW                            | 113        | 187        | 261             | 335        | 409    | 483        |         | **** |     |        |      |
| Vind Energy Conversion - 50 MW                                 | 221        | 221        | 221             | 221        |        |            |         |      |     |        |      |
| Solar Thermal, Parabolic Trough - 100 MW                       | 593        | 622        | 652             | 681        | 711    |            |         |      |     |        |      |
| Solar Thermal, Parabolic Dish - 1.2 MW                         | 461        | 477        | 493             |            |        |            |         | •    |     |        |      |
| Solar Thermal, Central Receiver - 50 MW                        | 790        | 806        | 822             | 838        | 855    | 871        | 887     | 903  |     |        |      |
| iolar Thermal, Solar Chimney - 200 MW                          | 527        | 543        | 559             | 575        | 592    | 608        | 624     | 640  |     |        |      |
| Solar Photovoltaic - 50 kW                                     | 1144       | 1168       | 1193            |            |        |            |         |      |     |        |      |
| Biomass (Co-Fire) - 27.5MW                                     | 370        | 378        | 387             | 395        | 404    | 413        | 421     | 430  | 439 |        |      |
| Seothermal - 30 MW                                             | 735        | 735        | 735             | 735        | 735    | 735        | 735     | 735  | 735 | -      |      |
| tydroelectric - New - 30 MW                                    | 440        | 445        | 450             | 454        | 459    | 463        |         |      |     |        |      |
| W Hydro                                                        |            |            |                 |            |        |            |         | -    |     |        |      |
| ASW Mass Burn - 7 MW                                           | 1158       | 1238       | 1319            | 1400       | 1480   | 1561       | 1641    | 1722 |     |        |      |
| RDF Stoker-Fired - 7 MW                                        | 1668       | 1752       | 1838            | 1924       | 2010   | 2096       | 2182    | 2268 |     | ****** |      |
| andfill Gas IC Engine - 5 MW                                   | 263        | 309        | 354             | 400        | 448    | 491        | 537     | 582  | 628 | -      |      |
| DF Multi-Fuel CFB (10% Co-fine) - 50 MW                        | 400        | 405        | 410             | 415        | 420    | 425        | 430     | 435  | 440 | 445    | 45   |
| Sewage Sludge & Anaerobic Digestion085 MW                      | 402        | 418        | 434             | 450        | 467    | 483        | 499     | 515  | 531 |        |      |
| lumid Air Turbine Cycle CT - 450 MW                            | 102        | 144        | 187             | 230        | 272    | 315        | 357     | 400  |     | -      |      |
| Calina Cycle CC CT - 275 MW                                    | 131        | 175        | 219             | 262        | 306    | 350        | 393     | 437  |     |        |      |
| Cheng Cycle CT - 140 MW                                        | 160        | 215        | 269             | 324        | 379    | 433        | 488     | 543  |     |        | -    |
| Pressurized Fluidized Bed Combustion - 250 MW                  | 248        | 304        | 361             | 417        | 474    | 530        | 587     | 644  |     | -      |      |
| GCC - 287 MW                                                   | 273        | 306        | 338             | 371        | 404    | 436        | 469     | 502  | 535 |        |      |
| GCC - 534 MW                                                   | 240        | 273        | 305             | 337        | 369    | 402        | 434     | 468  | 498 |        |      |
| uel Cell - 0.2 MW                                              | 1526       | 1584       | 1842            | 1700       | 1758   | 1816       |         | •    |     |        |      |
| Peaking Microturbine - 0.03 MW                                 | 146        | 239        | <u> </u>        |            |        |            |         |      |     |        |      |
| Baseload Microturbine - 0.03 MW                                | 148        | 235        | 324             | 413        | 501    | 590        | 679     | 768  |     |        |      |
| Supercritical Pulverized Coal - 500 MW                         | 181        | 205        | 228             | 251        | 275    | 298        | 321     | 344  | 368 | 391    | 41   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW            | 192        | 213        | 233             | 254        | 275    | 295        | 316     | 336  | 357 | 378    | 39   |
| Supercritical Pulverized Coal - 750 MW                         | 162        | 185        | 208             | 231        | 254    | 277        | 300     | 323  | 346 | 369    | 39   |
| Subcritical Pulverized Coal - 250 MW                           | 223        | 247        | 271             | 296        | 320    | 345        | 389     | 393  | 418 | 442    | 46   |
| Subcritical Pulverized Cosi - 500 MW                           | 176        | 200        | 224             | 247        | 271    | 295        | 318     | 342  | 366 | 389    | 41   |
| Subcritical Pulverized Coal, High Sulfur - 500 MW              | 187        | 208        | 228             | 249        | 270    | 291        | 312     | 332  | 353 | 374    | 39   |
| Supercritical Pulverized Coal, High Sulfur - 750 MW            | 173        | 194        | 214             | 234        | 254    | 275        | 295     | 315  | 336 | 356    | 37   |
| Sinculating Fluidized Bed - 250 MW                             | 232        | 257        | 282             | 307        | 332    | 356        | 381     | 406  | 431 | 456    | 48   |
| Circulating Fluidized Bed - 500 MW                             | 178        | 202        | 226             | 250        | 275    | 299        | 323     | 348  | 372 | 396    | 42   |
|                                                                |            |            |                 |            |        |            |         |      |     |        |      |
| Chio Fails 9 and 10<br>C2 732 MW Supercritical Pulverized Coal | 157<br>140 | 157<br>157 | 157<br>173      | 157<br>190 | 207    | 224        |         |      |     |        |      |

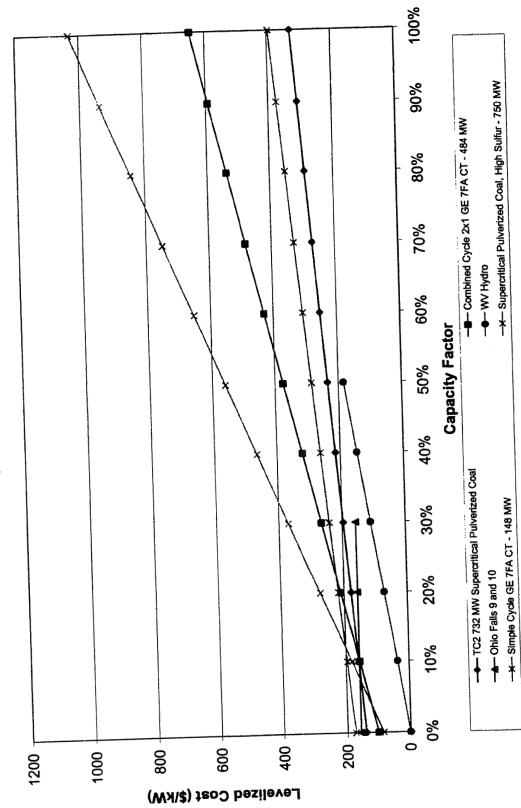
1 -

7

٠

| Capital Cost- High<br>Heat Rais- Base               | 2004       | Dollars (l | HKW yr)    |            |            |            |       |            |     |     |      |
|-----------------------------------------------------|------------|------------|------------|------------|------------|------------|-------|------------|-----|-----|------|
| Fuel Forecast-Low                                   |            |            |            |            | Capaci     | ty Factor  |       |            |     |     |      |
| Technology                                          | 0%         | 10%        | 20%        | 30%        | 40%        | 50%        | 60%   | 70%        | 80% | 90% | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 232        | 263        | ·          |            |            |            |       |            |     |     | -    |
| ead-Acid Battery Energy Storage - 5 MW              | 187        | 300        | 412        |            |            |            |       |            |     |     | -    |
| Compressed Air Energy Storage - 500 MW              | 117        | 166        | 215        |            |            |            |       |            |     |     |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 168        | 229        | 292        | 355        | 418        | 481        | 544   | 607        | 670 | 733 | 796  |
| Simple Cycle GE 7EA CT - 73 MW                      | 114        | 192        | 271        | 350        | 429        | 507        | 586   | 665        | 743 | 822 | 901  |
| Simple Cycle GE 7FA CT - 148 MW                     | 86         | 164        | 243        | 321        | 400        | 478        | 557   | 635        | 714 | 792 | 871  |
| Combined Cycle GE 7EA CT - 119 MW                   | 155        | 204        | 253        | 302        | 351        | 400        | 450   | 499        | 548 | 597 | 64   |
| Combined Cycle GE 7FA CT - 235 MW                   | 123        | 168        | 213        | 257        | 302        | 347        | 392   | 437        | 481 | 526 | 57   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101        | 145        | 190        | 234        | 279        | 323        | 368   | 412        | 457 | 501 | 540  |
| W 501F CC CT - 258 MW                               | 116        | 162        | 208        | 254        | 301        | 347        | 393   | 439        | 485 | 532 | 571  |
| Spark Ignition Engine - 5 MW                        | 155        | 238        | 320        | 403        | 485        | 568        |       |            |     | _   |      |
| Compression Ignition Engine - 10 MW                 | 113        | 185        | 256        | 328        | 399        | 471        |       |            |     |     | -    |
| Mind Energy Conversion - 50 MW                      | 221        | 221        | 221        | 221        |            |            |       |            |     |     | -    |
| Solar Thermal, Parabolic Trough - 100 MW            | 593        | 622        | 652        | 681        | 711        |            |       |            |     |     |      |
| Solar Thermai, Parabolic Dish - 1.2 MW              | 481        | 477        | 493        |            |            |            |       |            |     |     | -    |
| Solar Thermal, Central Receiver - 50 MW             | 790        | 806        | 822        | 838        | 855        | 871        | 887   | 903        |     |     |      |
| Solar Thermai, Solar Chimney - 200 MW               | 527        | 543        | 559        | 575        | 592        | 608        | 624   | 640        |     |     |      |
| Solar Photovoltaic - 50 kW                          | 1144       | 1168       | 1193       |            |            |            |       |            |     | -   |      |
| Biomass (Co-Fire) - 27.5MW                          | 370        | 378        | 387        | 395        | 404        | 413        | 421   | 430        | 439 |     | ÷    |
| Geothermal - 30 MW                                  | 735        | 735        | 735        | 735        | 735        | 735        | 735   | 735        | 735 |     |      |
| Hydroelectric - New - 30 MW                         | 440        | 445        | 450        | 454        | 459        | 463        |       |            |     |     |      |
| W Hydro                                             | 110        |            |            | 404        | 400        |            |       |            |     |     |      |
| MŚW Mass Burn - 7 MW                                | 1158       | 1238       | 1319       | 1400       | 1480       | 1561       | 1641  | 1722       |     |     |      |
| RDF Stoker-Fired - 7 MW                             | 1660       | 1752       | 1838       | 1924       | 2010       | 2096       | 2182  | 2268       |     |     |      |
| Landfill Gas IC Engine - 5 MW                       | 263        | 307        | 352        | 396        | 441        | 485        | 529   | 574        | 618 |     |      |
| · · · · · · · · · · · · · · · · · · ·               | 400        | 405        | 410        | 415        | 420        | 425        | 430   | 435        | 440 | 445 | 451  |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400        | 418        | 410        | 410        | 467        | 483        | 499   | 515        | 531 | 440 | 40   |
| Sewage Sludge & Anaerobic Digestion085 MW           | 102        | 142        | 434        | 450<br>224 | 264        | 305        | 345   | 386        | 551 |     | -    |
| Humid Air Turbine Cycle CT - 450 MW                 |            | 173        |            |            | 298        | 340        | 345   | 423        |     |     |      |
| Kalina Cycle CC CT - 275 MW                         | 131        |            | 215        | 256        |            | 420        | 472   | 423<br>524 |     |     |      |
| Cheng Cycle CT - 140 MW                             | 160<br>248 | 212<br>301 | 264<br>355 | 316<br>409 | 368<br>463 | 420<br>517 | 571   | 625        |     |     |      |
| Pressurized Fluidized Bed Combustion - 250 MW       |            |            |            |            |            |            | - • • |            |     |     |      |
| GCC - 287 MW                                        | 273        | 304        | 336        | 367        | 399        | 431<br>398 | 482   | 494<br>458 | 525 |     |      |
| GCC - 534 MW                                        | 240        | 272        | 303        | 334        | 365        |            | 427   | 400        | 489 |     |      |
| Fuel Cell - 0.2 MW                                  | 1526       | 1581       | 1636       | 1692       | 1747       | 1803       |       |            |     |     |      |
| Peaking Microturbine - 0.03 MW                      | 146        | 235        |            |            |            |            |       |            | _   |     |      |
| Baseload Microturbine - 0.03 MW                     | 146        | 231        | 316        | 401        | 487        | 572        | 657   | 742        |     |     | ~~~~ |
| Supercritical Pulverized Coal - 500 MW              | 181        | 202        | 224        | 245        | 266        | 287        | 308   | 329        | 350 | 371 | 392  |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192        | 213        | 234        | 255        | 276        | 297        | 318   | 339        | 359 | 380 | 401  |
| Supercritical Pulverized Coal - 750 MW              | 162        | 183        | 204        | 225        | 245        | 268        | 287   | 307        | 328 | 349 | 369  |
| Subcritical Pulverized Coal - 250 MW                | 223        | 245        | 267        | 289        | 311        | 333        | 355   | 377        | 399 | 421 | 443  |
| Subcritical Pulverized Coal - 500 MW                | 176        | 197        | 219        | 240        | 261        | 283        | 304   | 325        | 347 | 368 | 389  |
| Subcritical Pulvertzed Coal, High Sulfur - 500 MW   | 187        | 208        | 229        | 250        | 272        | 293        | 314   | 335        | 356 | 378 | 399  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173        | 194        | 214        | 235        | 258        | 276        | 297   | 317        | 338 | 359 | 379  |
| Circulating Fluidized Bed - 250 MW                  | 232        | 254        | 277        | 299        | 322        | 344        | 367   | 369        | 412 | 434 | 457  |
| Circulating Fluidized Bed - 500 MW                  | 178        | 200        | 222        | 244        | 266        | 288        | 310   | 332        | 354 | 376 | 398  |
| Ohio Falls 9 and 10                                 | 157        | 157        | 157        | 157        |            |            |       |            |     |     |      |
|                                                     | 140        | 157        | 174        | 191        | 208        | 225        |       |            |     |     |      |

. .


Ň

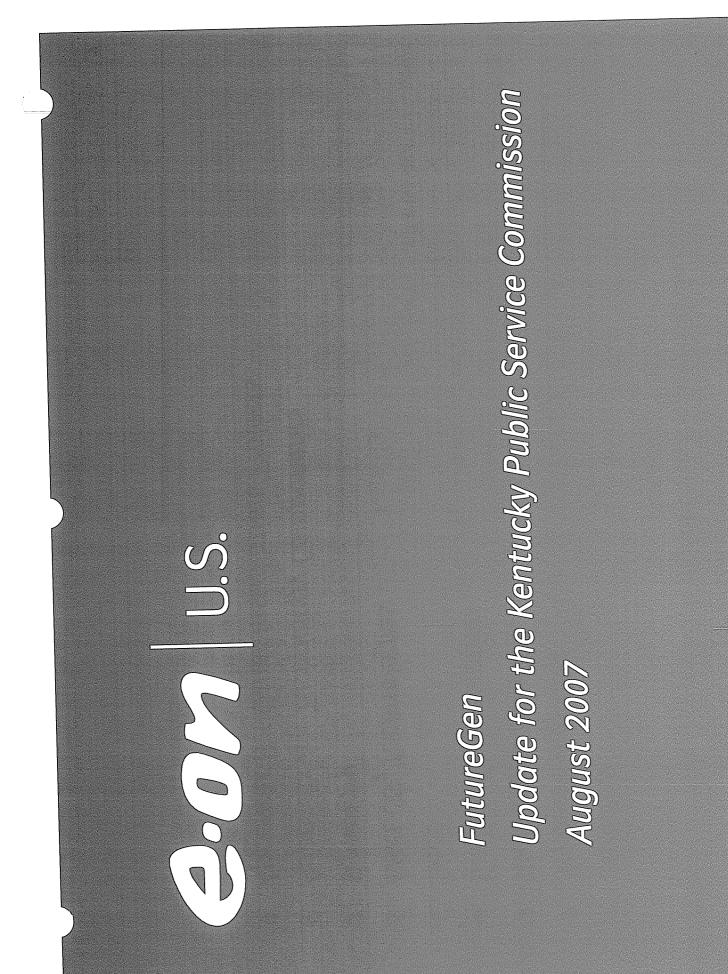
| Capital Cost- High                                  | 2004 | Dollars (\$ | /kW ут) |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
|-----------------------------------------------------|------|-------------|---------|------|--------|------------|------|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Heat Rate- Base<br>Fuel Forecast- High              |      |             |         |      | Canach | ty Factors |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Technology                                          | 0%   | 10%         | 20%     | 30%  | 40%    | 50%        | 60%  | 70%  | 80% | 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100%                      |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263         |         |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Lead-Acid Battery Energy Storage - 5 MW             | 187  | 300         | 412     |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Compressed Air Energy Storage - 500 MW              | 117  | 171         | 225     | -    |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                         |
| Compressed Fix Energy Giorage - 500 mm              |      |             |         |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 242         | 318     | 393  | 469    | 545        | 621  | 697  | 773 | 849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 925                       |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 208         | 302     | 396  | 491    | 585        | 679  | 773  | 867 | 962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1056                      |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 178         | 270     | 383  | 455    | 547        | 640  | 732  | 824 | 917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1009                      |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 214         | 273     | 331  | 390    | 449        | 508  | 567  | 625 | 684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74:                       |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 177         | 230     | 284  | 337    | 391        | 444  | 498  | 551 | 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65                        |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 154         | 207     | 261  | 314    | 367        | 420  | 473  | 527 | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 633                       |
| W 501F CC CT - 258 MW                               | 118  | 171         | 227     | 282  | 337    | 393        | 448  | 504  | 559 | 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87                        |
| Spark Ignition Engine - 5 MW                        | 155  | 250         | 345     | 439  | 534    | 629        |      | -    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Compression Ignition Engine - 10 MW                 | 113  | 194         | 276     | 357  | 439    | 520        |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Wind Energy Conversion - 50 MW                      | 221  | 221         | 221     | 221  |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622         | 652     | 681  | 711    |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Solar Thermal, Parabolic Dish - 1.2 MW              | 461  | 477         | 493     |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Solar Thermal, Central Receiver - 50 MW             | 790  | 806         | 822     | 838  | 855    | 871        | 887  | 903  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Solar Thermai, Solar Chimney - 200 MW               | 527  | 543         | 559     | 575  | 592    | 608        | 624  | 640  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Solar Photovoltaic - 50 kW                          | 1144 | 1168        | 1193    | 5/5  |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
|                                                     | 370  | 378         | 387     | 395  | 404    | 413        | 421  | 430  | 439 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Biomass (Co-Fire) - 27.5MW                          |      | 735         | 735     |      | 735    | 735        | 735  | 735  | 735 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Geothermai - 30 MW                                  | 735  |             |         | 735  |        |            | /35  | 130  | 735 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Hydroelectric - New - 30 MW                         | 440  | 445         | 450     | 454  | 459    | 483        |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| WV Hydro                                            |      | 1000        |         |      |        |            |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| MSW Mass Burn - 7 MW                                | 1158 | 1238        | 1319    | 1400 | 1480   | 1561       | 1641 | 1722 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752        | 1838    | 1924 | 2010   | 2096       | 2182 | 2268 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Landfill Gas IC Engine - 5 MW                       | 263  | 313         | 363     | 413  | 463    | 513        | 563  | 613  | 663 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| TDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405         | 410     | 415  | 420    | 425        | 430  | 435  | 440 | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 451                       |
| Sewage Sludge & Anaerobic Digestion085 MW           | 402  | 418         | 434     | 450  | 467    | 483        | 499  | 515  | 531 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Humid Air Turbine Cycle CT - 450 MW                 | 102  | 151         | 199     | 248  | 297    | 345        | 394  | 443  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Kalina Cycle CC CT - 275 MW                         | 131  | 181         | 231     | 281  | 331    | 381        | 431  | 481  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Cheng Cycle CT - 140 MW                             | 160  | 223         | 285     | 348  | 411    | 473        | 538  | 599  |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 312         | 377     | 441  | 506    | 570        | 635  | 700  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| IGCC - 267 MW                                       | 273  | 310         | 348     | 383  | 420    | 456        | 493  | 530  | 567 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| IGCC - 534 MW                                       | 240  | 277         | 313     | 349  | 385    | 422        | 458  | 494  | 530 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Fuel Cell - 0.2 MW                                  | 1526 | 1591        | 1657    | 1723 | 1789   | 1855       |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                         |
| Peaking Microturbine - 0.03 MW                      | 146  | 251         |         |      |        | -          |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Baseload Microturbine - 0.03 MW                     | 146  | 246         | 346     | 446  | 547    | 647        | 747  | 847  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| Supercritical Pulverized Coal - 500 MW              | 181  | 208         | 234     | 261  | 287    | 313        | 340  | 366  | 393 | 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 44                      |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 217         | 241     | 268  | 291    | 315        | 340  | 364  | 389 | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                        |
| Supercritical Pulverized Coal - 750 MW              | 162  | 188         | 214     | 240  | 268    | 292        | 318  | 344  | 370 | 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                        |
| Subcritical Pulverized Coal - 250 MW                | 223  | 250         | 277     | 305  | 332    | 360        | 387  | 414  | 442 | 469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                        |
| Subcritical Pulverized Coal - 500 MW                | 176  | 203         | 230     | 256  | 283    | 310        | 336  | 363  | 390 | 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44:                       |
| Subcritical Pulverized Cost, High Sulfur - 500 MW   | 187  | 212         | 237     | 262  | 287    | 312        | 337  | 382  | 387 | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                        |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173  | 197         | 222     | 246  | 270    | 294        | 318  | 343  | 367 | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41                        |
| Circulating Fluidized Bed - 250 MW                  | 232  | 260         | 288     | 316  | 344    | 372        | 400  | 428  | 456 | 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                        |
| Circulating Fluidized Bed - 500 MW                  | 178  | 205         | 232     | 260  | 287    | 315        | 342  | 369  | 397 | 424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                        |
| Ohio Fails 9 and 10                                 | 157  | 157         | 157     | 157  |        |            | -    | -    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
|                                                     |      |             |         |      |        |            |      |      |     | and the second se | and a survey of the state |
| TC2 732 MW Supercritical Pulverized Coal            | 140  | 160         | 181     | 201  | 222    | 242        |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |

(

· •. {

| Capital Cost-High                                   | 2004 | Dollars (1 | wkw yr)     |                                          |        |                         |           |      |       |      |      |
|-----------------------------------------------------|------|------------|-------------|------------------------------------------|--------|-------------------------|-----------|------|-------|------|------|
| Heat Rate- High<br>Fuel Forecast- Base              |      |            |             |                                          | Capaci | ty Factor               |           |      |       |      |      |
| Technology                                          | 0%   | 10%        | 20%         | 30%                                      | 40%    | 56%                     | 60%       | 76%  | 80%   | 50%  | 100% |
| Pumped Hydro Energy Storage - 500 MW                | 232  | 263        |             | an a |        | م <del>ستثنيتين .</del> |           | -    |       |      |      |
| Lead-Acid Battery Energy Storage - 5 MW             | 187  | 300        | 412         |                                          |        | -                       |           |      |       |      |      |
| Compressed Air Energy Storage - 500 MW              | 117  | 170        | 223         |                                          |        |                         |           |      |       |      |      |
| Simple Cycle GE LM6000 CT - 31 MW                   | 166  | 239        | 311         | 384                                      | 457    | 530                     | 803       | 875  | 748   | 821  | 894  |
| Simple Cycle GE 7EA CT - 73 MW                      | 114  | 204        | 295         | 385                                      | 475    | 586                     | 656       | 747  | 837   | 927  | 1018 |
| Simple Cycle GE 7FA CT - 148 MW                     | 86   | 175        | 264         | 353                                      | 442    | 531                     | 620       | 709  | 798   | 887  | 976  |
| Combined Cycle GE 7EA CT - 119 MW                   | 155  | 211        | 268         | 324                                      | 381    | 437                     | 493       | 550  | 606   | 663  | 71   |
| Combined Cycle GE 7FA CT - 235 MW                   | 123  | 174        | 226         | 277                                      | 329    | 380                     | 431       | 483  | 534   | 586  | 63   |
| Combined Cycle 2x1 GE 7FA CT - 484 MW               | 101  | 152        | 203         | 254                                      | 305    | 356                     | 408       | 459  | 510   | 561  | 61   |
| N 501F CC CT - 258 MW                               | 118  | 169        | 222         | 275                                      | 328    | 381                     | 434       | 488  | 541   | 594  | 64   |
| Spark Ignition Engine - 5 MW                        | 155  | 247        | 339         | 430                                      | 522    | 614                     |           |      |       |      |      |
| Compression Ignition Engine - 10 MW                 | 113  | 192        | 271         | 350                                      | 429    | 508                     | *****     |      |       |      |      |
| Wind Energy Conversion - 50 MW                      | 221  | 221        | 221         | 221                                      |        |                         |           |      |       |      |      |
| Solar Thermal, Parabolic Trough - 100 MW            | 593  | 622        | 652         | 681                                      | 711    |                         |           |      |       |      |      |
| Solar Thermal, Parabolic Dish - 1,2 MW              | 461  | 477        | 493         | 001                                      |        |                         |           |      |       |      |      |
|                                                     | 790  | 806        | 822         | 838                                      | 855    | 871                     | 887       | 903  |       |      |      |
| Solar Thermal, Central Receiver - 50 MW             | 527  | 543        | 622<br>559  | 575                                      | 592    | 608                     | 624       | 640  |       |      |      |
| Solar Thermal, Solar Chimney - 200 MW               | 1144 | 1168       |             | 5/5                                      | 392    | 000                     | 024       | 040  |       |      |      |
| Solar Photovoltaic - 50 kW                          | 370  | 378        | 1193<br>387 | 395                                      | 404    |                         |           | 430  |       |      |      |
| Biomass (Co-Fire) - 27.5MW                          |      |            |             |                                          |        | 413                     | 421       |      | 439   | ~~~~ |      |
| Seothermal - 30 MW                                  | 735  | 735        | 735         | 735                                      | 735    | 735                     | 735       | 735  | 735   |      |      |
| tydroelectric - New - 30 MW                         | 440  | 445        | 450         | 454                                      | 459    | 463                     | last-out- |      |       | **** |      |
| W Hydro                                             |      |            | 44.40       |                                          | 4480   |                         |           |      |       |      |      |
| MSW Mass Burn - 7 MW                                | 1158 | 1238       | 1319        | 1400                                     | 1480   | 1561                    | 1641      | 1722 |       |      | -    |
| RDF Stoker-Fired - 7 MW                             | 1666 | 1752       | 1838        | 1924                                     | 2010   | 2098                    | 2182      | 2268 |       |      |      |
| andfill Gas IC Engine - 5 MW                        | 283  | 312        | 361         | 409                                      | 458    | 507                     | 556       | 604  | 653   |      |      |
| IDF Multi-Fuel CFB (10% Co-fire) - 50 MW            | 400  | 405        | 410         | 415                                      | 420    | 425                     | 430       | 435  | 440   | 445  | 45   |
| Sewage Studge & Anaerobic Digestion085 MW           | 402  | 418        | 434         | 450                                      | 487    | 483                     | 499       | 515  | 531   |      |      |
| fumid Air Turbine Cycle CT - 450 MW                 | 102  | 149        | 195         | 242                                      | 289    | 335                     | 382       | 429  | -     |      |      |
| Kalina Cycle CC CT - 275 MW                         | 131  | 179        | 227         | 275                                      | 323    | 371                     | 419       | 487  | -     |      |      |
| Cheng Cycle CT - 140 MW                             | 160  | 220        | 280         | 340                                      | 400    | 460                     | 520       | 580  |       |      |      |
| Pressurized Fluidized Bed Combustion - 250 MW       | 248  | 309        | 371         | 433                                      | 495    | 557                     | 619       | 681  |       | —    |      |
| GCC - 267 MW                                        | 273  | 308        | 344         | 379                                      | 415    | 451                     | 488       | 522  | 557   |      |      |
| GCC - 534 MW                                        | 240  | 276        | 311         | 346                                      | 381    | 416                     | 451       | 486  | 521   |      | -    |
| Fuei Cell - 0.2 MW                                  | 1526 | 1589       | 1652        | 1715                                     | 1778   | 1842                    |           |      |       |      |      |
| Peaking Microturbine - 0.03 MW                      | 146  | 247        |             |                                          |        |                         |           |      | ***** |      |      |
| Baseload Microturbine - 0.03 MW                     | 146  | 243        | 339         | 436                                      | 532    | 629                     | 725       | 822  |       |      |      |
| Supercritical Pulverized Coal - 500 MW              | 181  | 207        | 233         | 258                                      | 284    | 309                     | 335       | 381  | 386   | 412  | 43   |
| Supercritical Pulverized Coal, High Sulfur - 500 MW | 192  | 215        | 237         | 259                                      | 282    | 304                     | 327       | 349  | 371   | 394  | 41   |
| Supercritical Pulverized Coal - 750 MW              | 162  | 188        | 213         | 238                                      | 263    | 288                     | 313       | 338  | 363   | 388  | 41   |
| Subcritical Pulverized Coal - 250 MW                | 223  | 249        | 278         | 302                                      | 329    | 356                     | 382       | 409  | 435   | 462  | 48   |
| Subcritical Pulverized Coal - 500 MW                | 178  | 202        | 228         | 254                                      | 280    | 306                     | 332       | 358  | 384   | 410  | 43   |
| Subcritical Putverized Coal, High Sulfur - 500 MW   | 187  | 210        | 232         | 255                                      | 278    | 300                     | 323       | 346  | 368   | 391  | 414  |
| Supercritical Pulverized Coal, High Sulfur - 750 MW | 173  | 195        | 217         | 239                                      | 261    | 283                     | 305       | 327  | 349   | 371  | 39   |
| Circulating Fluidized Bed - 250 MW                  | 232  | 259        | 287         | 314                                      | 341    | 368                     | 396       | 423  | 450   | 478  | 50   |
| Circulating Fluidized Bed - 500 MW                  | 178  | 204        | 231         | 258                                      | 284    | 311                     | 338       | 384  | 391   | 418  | 44   |
| Dhio Fails 9 and 10                                 | 157  | 157        | 157         | 157                                      |        |                         |           |      |       |      |      |
| C2 732 MW Supercritical Pulverized Coal             | 140  | 158        | 177         | 195                                      | 213    | 232                     |           |      |       |      |      |
| Minimum Leveland S/kW                               | 0    | 37         | 73          | 110                                      | 146    | 183                     | 250       | 289  | 287   | 305  | 32   |




Least Cost Technologies Considered For Further Analysis Base Capital, Base Heatrate, Base Fuel

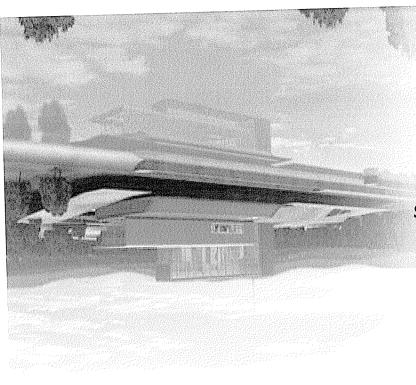
2005 Supply-side Screening Attachment\_1.xls

Generation Systems Planning

Ć

٢




### V ( 0 )0 Sn

### What is FutureGen?

- Commercial-scale 275-MW Plant ۲
- project doing this) sequestered (No other power generation ן שוןןיסה גסיאאפמר כ $O_2$  כמלנערפל מחל
- Co-production of Hydrogen and electricity
- "Γινιυα Ιαροιατοιλ" το ۲
- Public-private partnership (Cost Sharing ۲ test and validate cutting-edge technologies
- International participation Stakeholder involvement ۲
- 2ro2 to bns snil-nO Ø

(9*7*/*7*/

- Our purpose today: Provide KYPSC an overview of FutureGen and answer questions



<u>Μθίν</u>ΊθΜ

Е

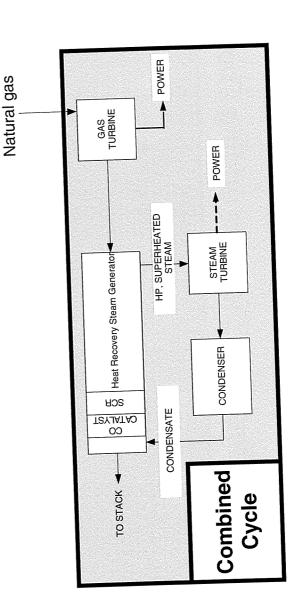
| Overview                                    |                                                                                                                                                    | coal technology                                                                                                                                              | FOUNDATION COAL<br>DEDUDION COAL                          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| O                                           | Industry<br>• Twelve leading companies with operations on six continents<br>• Investing \$250M° in project with no expectation of financial return | Governments<br>• United States, China, India, South Korea, and Japan<br>Uniquely positioned to build global acceptance of near-zero emission coal technology | <ul> <li>         ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</li></ul> |
| 2000 U.S.<br>EntireGen - the Right Partners | mpanies with operation<br>in project with no expec                                                                                                 | overnments<br>United States, China, India, South Korea, and Japan<br>niquely positioned to build global acceptance of nea                                    | E CON                                                     |
| EntureGen – the Rig                         | Industry<br>• Twelve leading companies with<br>• Investing \$250M <sup>°</sup> in project witl                                                     | Governments <ul> <li>United States, Ch</li> <li>Uniquely positioned</li> </ul>                                                                               | AMGRICAN AMERICAN                                         |

| t l                                           | to                                                                                                                                                                                                       |                                                                                                                                                                                                                      |                                                                                                                                                          |                                                             | ~                                                                                            |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| CoordSchedule and CostButueGen Current Status | <ul> <li>DOE working through the NEPA process to provide the site Record of Decision to the Alliance</li> <li>Final Site Selection scheduled for late 2007</li> <li>Begin Facility Permitting</li> </ul> | <ul> <li>Facility Design Work</li> <li>RFI's released for Gasifier, Turbine, Shift Catalyst and AGRU</li> <li>Developing RFP's for key equipment</li> <li>Plans to procure key equipment in the next year</li> </ul> | <ul> <li>Sequestration</li> <li>RFP's for drilling and seismic work prepared</li> <li>Revision of cost estimate as a result of work performed</li> </ul> | <ul> <li>Update Costing and Contracting Strategy</li> </ul> | <ul> <li>End of this contract period with the DOE is scheduled for September 2008</li> </ul> |

÷

### Schedule and Cost

## FutureGen Project Cost Estimate

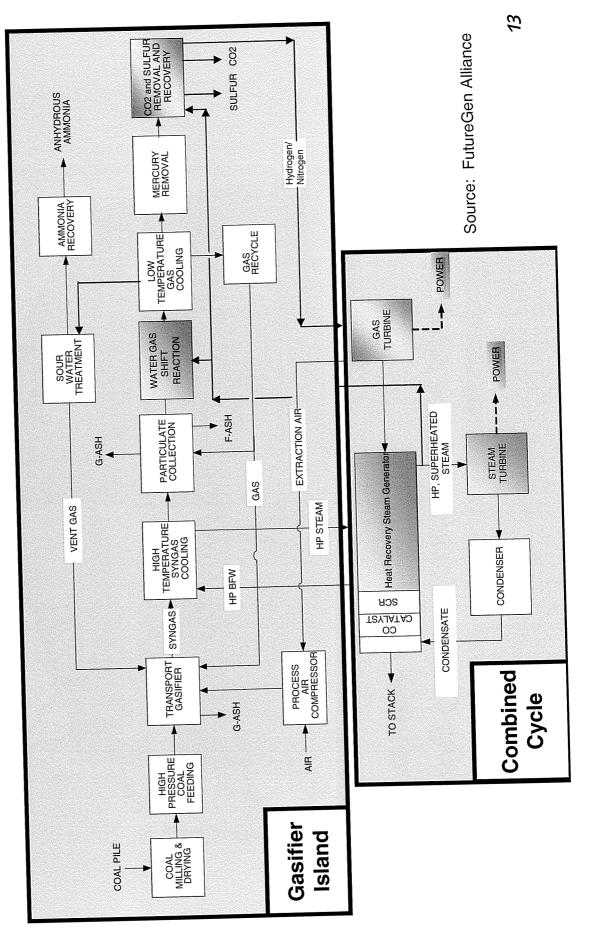

2.0 J U.S.

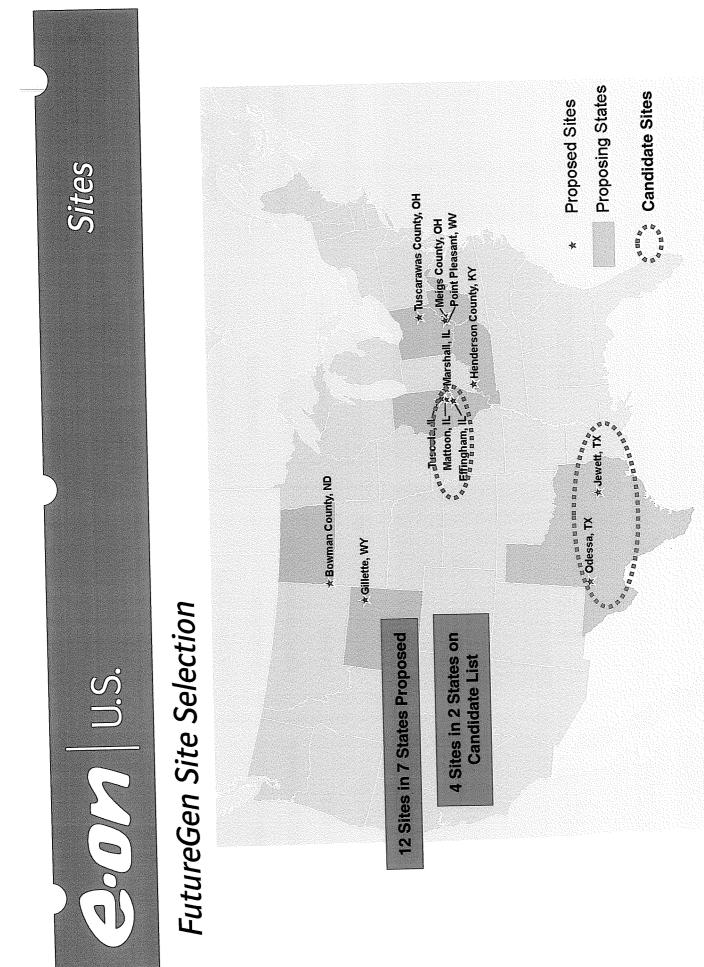
| Cost Estimate                 | Cost     | Basis                             |
|-------------------------------|----------|-----------------------------------|
| Alliance Cost Estimate        | \$1,187M | 3Q 2006 dollars                   |
|                               |          |                                   |
| Alliance Cost Estimate        | \$1,484M | future as-spent dollars (5.2%/yr) |
|                               |          |                                   |
| Alliance Cost Estimate        | \$954M   | de-escalated to 1Q 2004 dollars   |
|                               |          |                                   |
| DOE Report to Congress Budget | \$950M   | 1Q 2004 dollars                   |
|                               |          |                                   |

| Iecun | CVI Enclosed Concerned CVI |
|-------|----------------------------|
|       |                            |
|       |                            |

ology Overview

Transitioning from Natural Gas Combined Cycle to Integrated Gasification Combined Cycle (IGCC) Adds Cost and Complexity



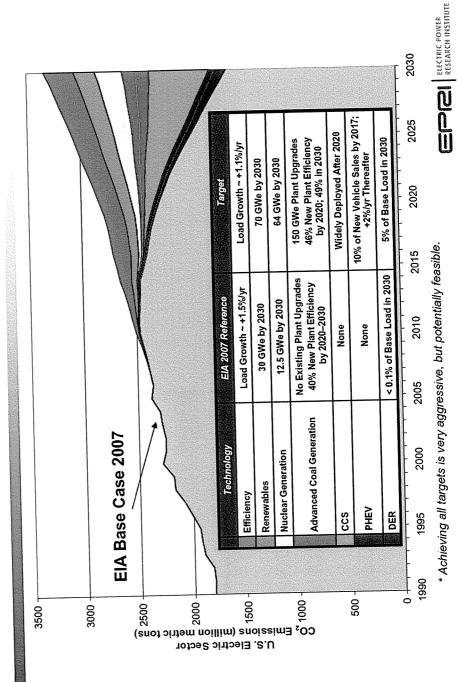


Technology Overview

# TRIG<sup>TM</sup> with Carbon Separation Technology Integrated

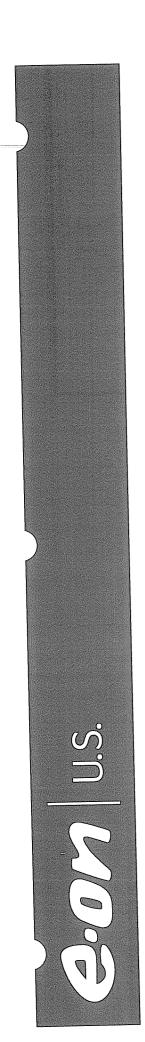
U.S.

٩ }









Cool N.S.

### EPRI CO<sub>2</sub> Technologies





 $\odot$  2007 Electric Power Research Institute, inc. All rights reserved. – 2'14'07

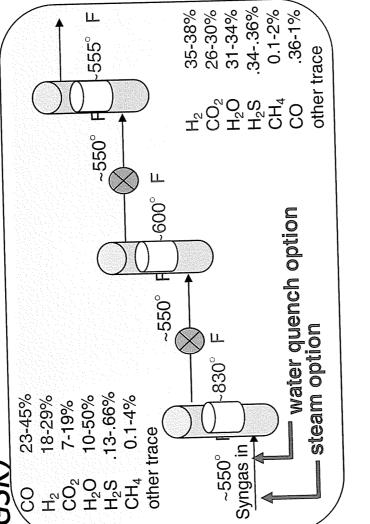


### Questions?

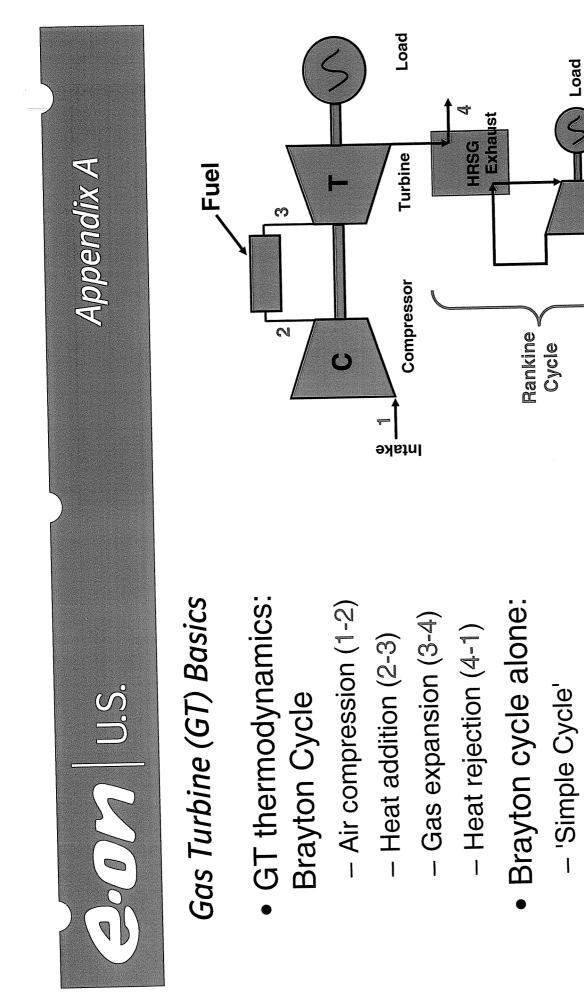
Appendix A

## Water Gas Shift Reaction (WGSR)

U.S.


0

- "Sour gas" or "raw gas" shift
- Place where energy content in CO
  - "shifted" to more H<sub>2</sub>
- Maximize H<sub>2</sub> in syngas
- Reaction is:
- Equilibrium


   Multiple steps required for
  - wmm.productorersion
    wmm.productorersion
    %H,0 must be added
    - Exothermic

Intermediate cooling required

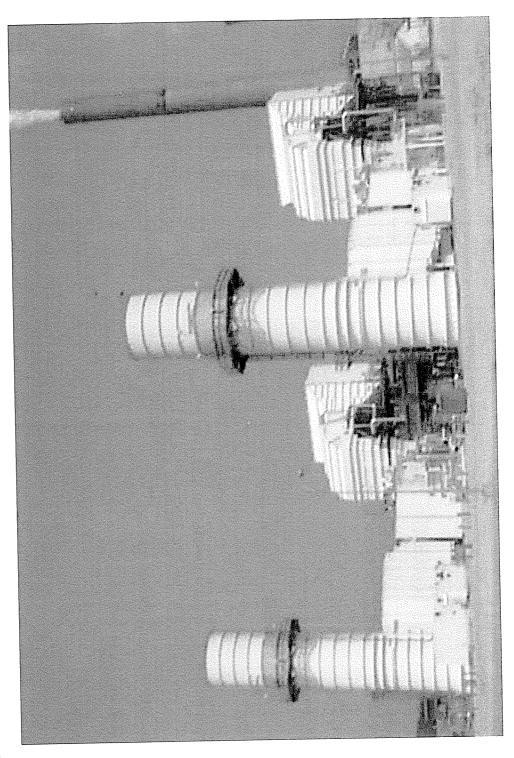
Catalytic



 $\mathbb{NH}_3$ C02  $CO_2$ 00 Û € Ĵ Р<sup>2</sup>О H<sub>2</sub>0 COS 00 HCN



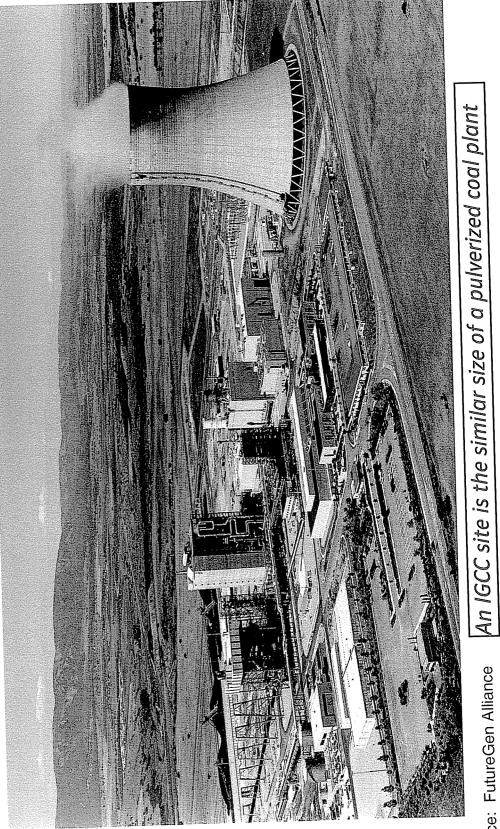
- Brayton cycle coupled with Rankine steam cycle:
  - Combined Cycle


N Load

Steam Turbine



### Appendix A

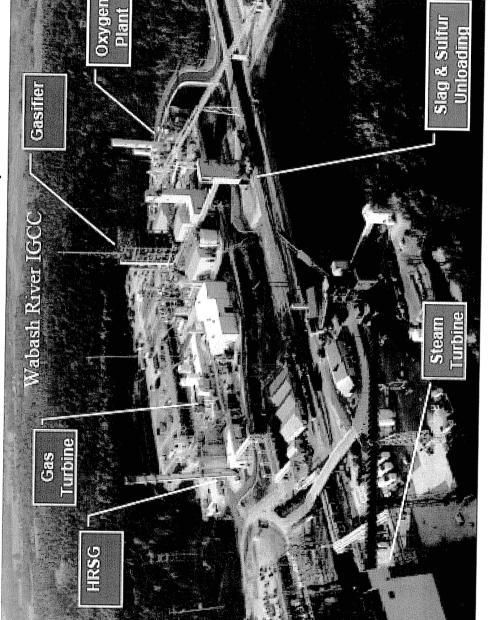

# Simple Cycle Combustion Turbines – Trimble County 5 & 6





### Appendix B

## IGCC located in Puertollano, Spain




Source: FutureGen Alliance



### Appendix B

# Wabash River IGCC plant in Terre Haute, Indiana



Source: ConocoPhillips

One of two U.S. IGCC plants for power generation