EXHIBIT 4

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF EAST KENTUCKY)
POWER COOPERATIVE, INC. FOR A CERTIFICATE)
OF PUBLIC CONVENIENCE AND NECESSITY FOR) CASE NO.
THE CONSTRUCTION OF A 345 kV ELECTRIC) 2006-00463
TRANSMISSION LINE IN CLARK, MADISON, AND)
GARRARD COUNTIES, KENTUCKY)

PREPARED TESTIMONY OF DARRIN ADAMS ON BEHALF OF EAST KENTUCKY POWER COOPERATIVE, INC.

- 1. Please state your name and business address.
- A. Darrin W. Adams, East Kentucky Power Cooperative (EKPC), 4775 Lexington
 Road, Winchester, Kentucky 40391
- 2. By whom are you employed and in what position?
- A. I am employed by East Kentucky Power Cooperative, Inc., as Manager of Transmission Planning in the Power Supply Business Unit.
- 3. As background for your testimony, please briefly describe your educational background and work experience?
- A. I am a graduate of Transylvania University with a Bachelor of Arts degree in Liberal Studies, and a graduate of the University of Kentucky with a Bachelor of Science degree in Electrical Engineering. I am a Licensed Professional Engineer in the Commonwealth of Kentucky. I have more than 13 years of experience in the electric utility industry. From May 1991 to August 1996, I was employed by Kentucky Utilities Company (KU) as an engineer responsible for planning of the

KU transmission system. From March 1999 to October 2001, I was employed by LG&E Energy as an engineer within the Operations Department, primarily responsible for transmission system operational analysis. From October 2001 through June 2004, I was employed as the Group Leader of Transmission Planning at LG&E Energy. I have been employed at EKPC as an engineer responsible for transmission planning since June of 2004, and have been the Supervisor of Transmission Planning since February of 2005.

- 4. What are your duties and responsibilities as Manager of Transmission Planning in EKPC's Power Supply Business Unit?
- A. My duties include both the direct performance and the supervision of planning studies for all additions and modifications to the EKPC transmission system.
- 5. Were the planning studies that provide the determination of need for transmission system modifications and the justification for the J.K. Smith-West Garrard electric transmission line that is the subject of this Case No. 2006-00463 performed directly by you or under your direct supervision?
- A. Yes.
- 6. What is the purpose of your testimony?
- A. My testimony will provide an explanation of the need for the J.K. Smith-West Garrard 345 kV electric transmission line and describe the studies that were performed to determine that need.
- 7. Why is EKPC proposing to construct the J.K. Smith to West Garrard Line?
- A. This line is needed to enable EKPC to reliably deliver energy from its existing and planned future generating resources to its member systems. EKPC has identified

the need for construction of additional generating units at the J.K. Smith Station. This site presently has seven Combustion Turbines (CTs) installed, with a total net capacity of 594 MW in the summer and 826 MW in the winter. EKPC's generation expansion plan includes the addition of five CTs and a coal-fired baseload unit, with a total net capacity added of 698 MW in the summer and 768 MW in the winter. The total net capacity installed at the site after these unit additions will be 1292 MW in the summer and 1594 MW in the winter. The capacity and performance of the existing transmission lines in the vicinity of the J.K. Smith Station are not adequate to deliver this generation to native load customers. The proposed J.K. Smith-West Garrard Line is necessary to accommodate the planned generation additions at J.K. Smith and to enable EKPC to continue providing reliable, low-cost energy to its member systems.

8. How did EKPC determine the need for the proposed Smith-West Garrard Line?

A. EKPC performed a System Impact Study (SIS) from October 2004 through May 2006 based on a request made by EKPC's resource planners for connection of the proposed generators to the EKPC transmission system at the J.K. Smith site. An ad hoc study group consisting of representatives from EKPC's neighboring utilities was formed to provide input and comments related to the SIS. EKPC's Transmission Planning staff performed and documented the SIS, including power flow, short-circuit, and transient stability analyses, incorporating input from the ad hoc study group. The SIS identified constraints on the EKPC and neighboring transmission systems that might limit the output of the J.K. Smith generators, and identified potential transmission system modifications to address these limitations.

3

A copy of the documentation for the SIS is attached as **Adams Exhibit I**, and incorporated herein by reference.

- 9. What were the results of the SIS performed by EKPC?
- A. The SIS identified 41 unique overloaded facilities in 2010 Summer and 36 unique overloaded facilities in 2010-11 Winter. The SIS also identified marginal transient stability for the generating units at J.K. Smith Station and Dale Station. As a result, the transmission system in the vicinity of the J.K. Smith Station is insufficient to accommodate the planned generation additions at J.K. Smith.
- Did EKPC evaluate whether any alternatives to the proposed Smith-West Garrard
 345 kV Line could address the transmission system requirements?
- A. Yes. In the SIS, 38 possible 345 kV or 138 kV outlets from the J.K. Smith Station were assessed singularly and in various combinations to address the transmission system problems. The analyses performed determined that most of the outlets considered did not provide adequate system performance. Ultimately, the analysis identified two possible 345 kV transmission outlets J.K. Smith-West Garrard or J.K. Smith-Tyner -- that provide a significant improvement in transmission system performance. These two outlets were the basis of three transmission Alternatives that were developed and compared to identify the recommended transmission Plan. The major components of these Alternatives are as follows:
 - Alternative 1 includes the J.K. Smith-West Garrard 345 kV line and associated substations as the major components. In addition, upgrades of nine existing facilities were identified for this Alternative.

- Alternative 2 includes a new 345 kV line from J.K. Smith to the Tyner Substation and a new 345-161 kV transformer at the Tyner Substation as the major components. In addition, upgrades of 18 existing transmission facilities were identified for this Alternative.
- Alternative 3 includes a new 345 kV line from J.K. Smith to the Tyner Substation, a new 345-161 kV transformer at Tyner, and a new 138 kV line from J.K. Smith to LGEE's Spencer Road Substation as the major components. In addition, upgrades of 15 existing transmission facilities were identified for this Alternative.
- 11. Why was the proposed Smith-West Garrard 345 kV Line chosen for implementation instead of another alternative?
- A. All three transmission Alternatives developed in the SIS eliminate the thermal overloads caused by the additional generation at J.K. Smith and provide improved generating-unit stability. The three Alternatives were compared using ten different categories, such as costs, future expansion possibility, local area support, power flow impacts, etc. Alternative 1 was determined to be the best Alternative based on this comparison. In particular, the present value costs of Alternative 1 (\$69,685,000) were approximately 27% lower than Alternative 2 (\$88,169,000) and 36% lower than Alternative 3 (\$94,963,000). In addition to these large cost differences, another important factor favoring Alternative 1 is the better future expansion possibilities for EKPC to address future system load growth in the central and western parts of its system. Another benefit identified is that the J.K. Smith-West Garrard 345 kV line will complete a 345 kV loop around the eastern side of

the Lexington area. The line will complete a 345 kV path that connects from southern Ohio through the Spurlock Station in Maysville, KY and then through the J.K. Smith Station to West Garrard. A connection from West Garrard to the Pineville 345/500 kV Substation provides a link to the TVA 500 kV system that stretches into Tennessee. Therefore, this line will complete a 345 kV path that will provide regional benefits related to power transfers.

- 12. Has EKPC conducted any other studies related to the proposed J.K. Smith-West Garrard Line?
- A. Yes. The original SIS and associated documentation were completed in May of 2006. In August of 2006, another study was conducted which compared the J.K. Smith-West Garrard Line to other electrical alternatives in the area. A copy of the documentation for this study is attached as Adams Exhibit II, and incorporated herein by reference. The conclusion from this study is that the J.K. Smith-West Garrard Line is a better electrical alternative than other possible lines that could be constructed in this area. The specific point of connection to LGEE's Brown-Pineville 345 kV line could vary somewhat without impacting electrical performance. However, one of the key factors in siting the substation that connects the new line from J.K. Smith to LGEE's Brown-Pineville line is the ability to build future lines out of the new substation to the western part of EKPC's system.
- 13. Have any other studies or coordination of planning activities been performed related to the proposed project?
- A. Yes. As discussed above, an ad hoc study group was formed for this SIS. This ad hoc study group included representatives from American Electric Power (AEP), Big

Rivers Electric Corporation (BREC), Cinergy (Duke Energy), Dayton Power & Light (DPL), LGEE, Midwest ISO (MISO), and the Tennessee Valley Authority (TVA). Input was solicited from the ad hoc study group throughout the study process. A meeting was held between AEP, CIN, DPL, and LGEE after the study was completed to discuss the results. Since the majority of the impacts on other utilities are in the LGEE system and since EKPC is requesting a new interconnection with LGEE at West Garrard, detailed coordination has taken place between EKPC and LGEE. LGEE and MISO as its Independent System Operator began a detailed review of the proposed Alternative in June of 2006. After LGEE's exit from the MISO on September 1, 2006, the SPP ITO began its own review on behalf of LGEE. EKPC, LGEE, and the SPP ITO are working to resolve the outstanding issues and to add the new interconnection to the existing Interconnection Agreement between EKPC and LGEE.

- 14. What is the impact on the J.K. Smith-West Garrard Project of the decision by the Warren Rural Electric Cooperative Corporation (WRECC) to remain with TVA for all of its power supply rather than obtaining its power supply from EKPC?
- A. The studies performed in the SIS assumed that EKPC would be serving the WRECC load. The decision by WRECC to remain with TVA for its power supply does not change the need for the Smith-West Garrard Project. This line is needed due to the planned addition of generation at the J.K. Smith site. Studies indicate that the addition of more than approximately 100 MW of generation at J.K. Smith will trigger the need for transmission modifications. EKPC's latest generation expansion plan still indicates the need for two CTs in 2009 and the J.K. Smith

baseload CFB unit in 2011, and the Commission, on May 5, 2007, affirmed the CPCN for these three units. Therefore, the need for additional transmission still exists. Furthermore, EKPC still expects to add additional CTs -- and possibly another baseload unit -- at J.K. Smith within the next ten years. This level of generation is consistent with the assumptions made in the SIS. Therefore, the study results are still valid.

EKPC has updated its original SIS and documented the analysis since WRECC announced its decision to continue its power supply arrangements with TVA in 2009 and beyond. For the reasons explained in the previous paragraph, this document confirms that the need for the Smith-West Garrard Line in 2009 still exists. A copy of this documentation is attached as **Adams Exhibit III**, and is incorporated herein by reference.

- 15. From an electrical planning perspective, will the J.K. Smith-West Garrard Line result in unnecessary duplication of facilities?
- A. No. EKPC assessed the ability of the existing transmission system to deliver the existing and proposed future generation from the J.K. Smith site to EKPC's customers. A large number of thermal overloads resulted. EKPC considered the possibility of upgrading these existing facilities to provide the needed capacity. However, this was not feasible for the following reasons:
 - More than 20 significant upgrades of existing facilities would be required.
 - System outages of the facilities to be upgraded would be required for long durations, and these outages would need to be taken prior to the generation

additions at J.K. Smith. These outages would be extremely difficult to schedule, and would create potential reliability issues and higher costs.

These upgrades would not provide the desired level of generating unit stability at J.K. Smith and Dale.

Therefore, use of existing electrical facilities to provide the needed transmission capacity is not possible.

- 16. Have you performed any analysis to determine the impacts on electrical system performance if existing transmission lines are rebuilt to accommodate the proposed line?
- A. Yes. In May of 2006, an analysis was performed to gather information regarding the viability of rebuilding existing lines in the study area to add the new Smith-West Garrard 345 kV line on the same structures. This analysis evaluated the system performance impacts due to extended outages on these existing lines to facilitate construction of the new Smith-West Garrard Line. The results of the analysis indicated that of the thirteen EKPC transmission facilities within the study area, five were viable candidates for rebuilding. This information was then incorporated into the routing process.

In January of 2007, the possibility of rebuilding the existing J.K. Smith-Fawkes 138 kV transmission line as a double-circuit line with the proposed Smith-West Garrard line was examined. This examination centered on the possibility of building a new double-circuit line beside the existing Smith-Fawkes 138 kV line, and then tearing down the existing line once the new construction is completed. This approach would avoid the system problems that would be caused by an extended construction

outage of the Smith-Fawkes 138 kV line. However, the analysis determined that placing the proposed Smith-West Garrard line on the same structures as the Smith-Fawkes line would create unacceptable reliability risks for the region's transmission grid. Therefore, this approach was excluded from further consideration. A copy of an EKPC memorandum summarizing this analysis is attached as **Adams Exhibit IV**, and incorporated herein by reference.

- 17. Why is the J.K. Smith-West Garrard Line required for public convenience and necessity?
- A. EKPC has an obligation to provide reliable, low-cost service to its member systems. EKPC has established a need for additional generation capacity at the J.K. Smith Station to meet its customers' electrical needs. The proposed line is necessary to transmit the EKPC generation capacity to its customers, and therefore is consistent with public convenience and necessity.
- 18. Do you have an opinion as to whether the J.K. Smith-West Garrard Line best addresses the transmission system needs that you have described?
- A. Yes.
- 19. What is that opinion?
- A. It is my opinion that the J.K. Smith-West Garrard Line is the best means to address the transmission system needs created by the addition of generation at J.K. Smith.
- 20. Does this conclude your testimony?
 - A. Yes, it does.

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF EAST KENTUCKY) **POWER COOPERATIVE, INC. FOR A CERTIFICATE**) **OF PUBLIC CONVENIENCE AND NECESSITY FOR**) CASE NO. THE CONSTRUCTION OF A 345 kV ELECTRIC) 2006-00463 TRANSMISSION LINE IN CLARK, MADISON, AND) **GARRARD COUNTIES, KENTUCKY**)

<u>AFFIDAVIT</u>

STATE OF KENTUCKY) **COUNTY OF CLARK**)

Darrin Adams, being duly sworn, states that he has read the foregoing prepared testimony and that he would respond in the same manner to the questions if so asked upon taking the stand, and that the matters and things set forth therein are true and correct to the best of his knowledge, information and belief.

ant Adam

Subscribed and sworn before me on this 21^{57} day of May 2007.

<u>Jerri K. Usaacs</u> (Combs) Notary Public My Commission expires: <u>12/20/</u>08

ADAMS EXHIBIT 1

SYSTEM IMPACT STUDY

GENERATION INTERCONNECTION REQUESTS #30-33

JK SMITH COMBUSTION TURBINES #8-12 AND CFB UNIT #1 PROJECT IN CLARK COUNTY, KENTUCKY

May 17, 2006

TABLE OF CONTENTS

Executive Summary	i
Section 1: Introduction and Project Description	1
Section 2: Criteria, Methodology, and Assumptions	3
2.1 Study Criteria	3
2.2 Transmission Planning Methodology	3
2.2.1 Power Flow Analysis	3
2.2.2 Transient-Stability Analysis	4
2.2.3 Short-Circuit Analysis	4
2.3 Modeling & Assumptions	4
2.3.1 Power Flow Models	4
2.3.2 Transient-Stability Model	6
2.3.3 Short-Circuit Model	6
2.4 Sensitivity Analysis	7
Section 3: Power Flow and Transient Stability Analyses With Propos Generators Added and Without Transmission Upgrades	ed . 10
3.1 Power Flow Analysis	. 10
3.2 I ransient-Stability Analysis	. 17
3.2.1 Approach	.1/
5.2.2 Results	. 18
Section 4: Alternatives Considered	. 30
4.1 Impact of J.K. Smith-North Clark Proposed Project on Alternatives to be	
Considered	. 30
4.2 Consideration of Upgrading Existing J.K. Smith Outlets	. 31
4.3 Screening of J.K. Smith Outlet Alternatives	. 32
4.3.1 Discussion of Results from the Screening Analysis	. 34
4.3.1.1 Discussion of 345 kV Outlets Considered	. 35
4.3.1.2 Discussion of 138 kV Outlets Considered	. 37
4.3.2 Discussion of Common Facilities Required	. 39
4.3.3 Discussion of Alternatives Developed	. 42
4.3.3.1 Construction Plan for J.K. Smith-West Garrard Alternative	. 42
4.3.2.2 Construction Plan for J.K. Smith-Tyner Alternatives	. 47
Section 5: Comparison of the Developed Alternatives	. 62
5.1 Power Flow Impacts	. 62
5.1.1 Impact on Normal-System Flows on Transmission Facilities in the Region	ı 62
5.1.2 Impact on Transmission-System Flows with North-South Transfers	. 65
5.2 Transmission System Losses	. 70
5.3 Transient-Stability Impacts	. 72

5.	.4 Short-Circuit Impacts	88
5.	.5 Physical Issues	93
	5.5.1 Alternative 1 Physical Issues	93
	5.5.2 Alternative 2 Physical Issues	94
	5.5.3 Alternative 3 Physical Issues	95
_	5.5.4 Relative Constructability of The Developed Alternatives	96
5.	.6 System Reliability	97
5.	.7 Future Expansion	98
5.	.8 Local Area Support	99
5.	.9 Costs	99
5.	.10 Performance for Double Contingencies	. 101
5.	.11 Results of Comparison of Developed Alternatives	. 112
5.	.12 Impact on Transmission Alternatives of Further Generation Development at	J.K.
Si	mith	. 113
	5.12.1 Alternative 1 Additions for J.K. Smith CFB Units 2 and 3	. 113
	5.12.2 Alternative 2 Additions for J.K. Smith CFB Units 2 and 3	. 115
	5.12.3 Alternative 3 Additions for J.K. Smith CFB Units 2 and 3	. 117
_		
Sect	tion 6: Sensitivity Analysis for Alternative 1	119
6.	.1 Sensitivity 1 – EKPC/TVA Proposed Interconnections in Bowling Green Are	а
0	Dpened	. 120
6.	.2 Sensitivity 2 – Adkins Generation at Maximum Output	. 122
6.	.3 Sensitivity 3 – Proposed Estill County Generator and Associated Transmissio	n
M	Iodeled	. 124
6.	.4 Sensitivity 4 – Proposed Thoroughbred Energy Generator and Associated	
T	ransmission Modeled	. 127
6.	.5 Sensitivity 5 – Modified Generation Redispatch at LGEE's Brown CT Generation	ition
P	lant	. 130
6.	.6 Sensitivity 6 – Trimble County Unit #2 and Associated Transmission Modele	d133
6.	.7 Sensitivity 7 – EKPC/TVA Proposed Interconnections in Bowling Green Are	а
0	Dened with Trimble County Unit #2 and Associated Transmission Modeled	. 135
6.	.8 Sensitivity 8 – Adkins Generation at Maximum Output With Trimble County	Unit
#2	2 Plus Associated Transmission Modeled	. 138
6.	.9 Sensitivity 9 – Proposed Estill County Generator and Associated Transmissio	n
P	lus Trimble County Unit #2 and Associated Transmission Modeled	. 141
6.	.10 Sensitivity 10 – Proposed Thoroughbred Energy Generator and Associated	
T	ransmission Plus Trimble County Unit #2 and Associated Transmission Modeled	1144
6.	.11 Sensitivity 11 – Modified Generation Redispatch at LGEE's Brown CT	
G	seneration Plant with Trimble County Unit #2 and Associated Transmission	. 147
6.	.12 Conclusions from Sensitivity Analyses	. 150
~		
Sect	tion 7: Conclusions and Recommendations	153
App	pendix A: EKPC Transmission System Maps	157

Appendix B:	EKPC Transmission System Planning Criteria161
Appendix C:	2010 Summer and 2010-11 Winter List of Overloads 170
Appendix D: Analysis	List of Transmission Elements for Double-Contingency 201

LIST OF FIGURES

Figure 3-1: J.K. Smith 138 kV Substation Existing Configuration Plus New Connections to J.K. Smith 345 kV CT Yard (One Line Diagram)

Figure 3-2: New J.K. Smith 345 kV CT Yard With J.K. Smith-North Clark Line Addition (One Line Diagram)

Figure 3-3: New J.K. Smith 345 kV CFB Yard (One Line Diagram)

Figure 3-4: J.K. Smith Expansion Overview (One Line Diagram)

Figure 3-5: J.K. Smith Generating Unit Responses, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 3-6: Dale Station Generating Unit Responses, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 3-7: J.K. Smith Generating Unit Responses, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 3-8: Dale Station Generating Unit Responses, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-1: J.K. Smith Generating Unit Responses for Alternative 1, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-2: Dale Station Generating Unit Responses for Alternative 1, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-3: J.K. Smith Generating Unit Responses for Alternative 1, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-4: Dale Station Generating Unit Responses for Alternative 1, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-5: J.K. Smith Generating Unit Responses for Alternative 2, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-6: Dale Station Generating Unit Responses for Alternative 2, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-7: J.K. Smith Generating Unit Responses for Alternative 2, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-8: Dale Station Generating Unit Responses for Alternative 2, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-9: J.K. Smith Generating Unit Responses for Alternative 3, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-10: Dale Station Generating Unit Responses for Alternative 3, Fault On J.K. Smith-Dale 138 kV Line With Stuck Breaker E63-91T, Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

Figure 5-11: J.K. Smith Generating Unit Responses for Alternative 3, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure 5-12: Dale Station Generating Unit Responses for Alternative 3, Fault On J.K. Smith-North Clark 345 kV Line With Stuck Breaker E112-153T, Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Figure A-1: EKPC Transmission System Map

Figure A-2: J.K. Smith Area Map

Figure A-3: Identification of Overloaded Facilities with J.K. Smith Proposed Generator Additions

Executive Summary

This report contains the System Impact Study (SIS) results for Generation Interconnection Requests (GIR) #30 through #33 in the East Kentucky Power Cooperative, Inc. (EKPC) queue. The purpose of this study is to evaluate the impact of the addition of the following generators at EKPC's existing J.K. Smith Power Plant:

- a) Five (5) combustion turbines, each with a net capacity of 84 MW in the summer and 98 MW in the winter. These units will be designated as J.K. Smith CTs #8, #9, #10, #11, and #12.
- b) One (1) Circulating Fluidized Bed (CFB) steam generator with a net capacity of 278 MW in both summer and winter. This unit will be designated as J.K. Smith CFB #1 throughout this report.

The existing four 138 kV transmission lines connected to the J.K. Smith Substation are insufficient to accommodate delivery of the total net output of the expanded J.K. Smith Power Plant. In fact, it was determined that the existing transmission outlets cannot accommodate any generation additions at the site. Therefore, this study identifies various transmission expansion plans needed to support the total expected output of the expanded J.K. Smith site.

Input was solicited from EKPC's neighboring utilities -- American Electric Power (AEP), Big Rivers Electric Corporation (BREC), Cinergy Corporation (CIN), Dayton Power & Light Company (DPL), LG&E Energy LLC (LGEE), the Tennessee Valley Authority (TVA), and the Midwest Independent System Operator (MISO) -- prior to beginning the SIS.

The thermal performance of the transmission systems of EKPC and its neighboring utilities was analyzed for both normal conditions (no transmission elements outaged) and for single-contingency conditions (one transmission element out in conjunction with the worst-case generating unit) for the 2010 time period. This analysis identified 41 overloaded facilities in 2010 Summer and 36 overloaded facilities in 2010-11 Winter due to the addition of the proposed generators. Nearly all of these overloaded facilities are either owned by EKPC or LGEE, or are EKPC-LGEE interconnections. Other than those facilities, one of the overloaded facilities is an AEP facility and one is an LGEE-AEP interconnection.

The problems identified with the proposed generators and without any transmission system additions are primarily concentrated in two areas:

- 1. The immediate area around the J.K. Smith, Dale, Fawkes, Lake Reba Tap, Powell County, and Clark County Substations.
- 2. Along the 161 kV system extending southeast from the Lake Reba Tap Substation to the Delvinta Substation and on the other 161 kV lines out of Delvinta.

i

Transient-stability analysis was also performed to determine the impacts of the proposed generator additions on system stability. The results of that analysis indicate that unit stability is decreased for the generating units at J.K. Smith and at Dale Station, but all of the units appear to remain stable. This analysis included the new J.K. Smith-North Clark 345 kV line and associated substation facilities, which are scheduled to be completed by June 2007.

Some common facilities are required at the J.K. Smith site to accommodate the proposed generator additions. These requirements are necessary regardless of the transmission system additions or upgrades needed to address thermal overloads. These common facilities are necessary to accommodate the connection of the proposed generators to EKPC's transmission network. The estimated installed costs of these common facilities are \$21,500,000.

In addition to the common facilities needed at J.K. Smith, transmission-system modifications are required to accommodate the generation additions at J.K. Smith due to the numerous thermal overloads that would occur. Upgrades of the overloaded facilities were considered. However, this is not a feasible or desirable alternative for the following reasons:

- The numerous outages required to upgrade all of the overloaded facilities would need to occur by March of 2010. Since many of these facilities are critical links in the existing transmission system, these outages would cause significant operational issues. Generation would need to be substantially restricted at J.K. Smith in particular.
- The scope, cost, and completion time of the numerous upgrades is unknown. Engineering evaluations would be required for each upgrade, further decreasing the time available for construction while increasing the risk of incurring higher costs.
- Upgrading existing facilities would not provide significant additional margin for multiple contingencies or large power transfers.
- Transmission-system losses would not be significantly reduced.

Thirty-eight possible 345 kV or 138 kV transmission outlets from the J.K. Smith Substation were evaluated to determine their impacts on the thermal overloads identified. The screening process eliminated most of these outlet options for one of the following two reasons:

- An outlet either singularly or in combination with other outlets did not eliminate a substantial number of the thermal overloads caused by the proposed generators
- An outlet did not provide any significant additional benefits when compared to the performance of another outlet that would be shorter and/or less expensive

As a result of the screening analysis, it was determined that one 138 kV outlet from the J.K. Smith site would not be adequate. Screening showed that at least three 138 kV outlets would be required to accommodate the added generation. Additionally, significant upgrades would still be required on the transmission system with these multiple 138 kV outlets. Furthermore, transmission-system losses will be higher with these 138 kV outlet options than with a 345 kV outlet option. For these reasons, no options were considered that only provided 138 kV outlets from J.K. Smith Substation. All transmission alternatives considered therefore included a new 345 kV outlet from the J.K. Smith site.

The screening analysis performed determined that two of the 345 kV outlet options considered have a greater impact on the transmission-system problems identified than did the remainder of the outlet options. These two outlet options are:

- ✓ The J.K. Smith-Tyner 345 kV line and the installation of a 345-161 kV transformer at Tyner
- ✓ The J.K. Smith-West Garrard 345 kV line and a new 345 kV switching station at West Garrard connecting this line with LGEE's Brown-Pineville 345 kV circuit

These two outlets substantially reduce the number and severity of overloads caused by the proposed generators. These options appear to provide these benefits for two primary reasons:

- Each is a 345 kV outlet providing a high outlet capacity from the J.K. Smith site
- Each provides a connection to the transmission system in the southern and southeastern parts of the Kentucky transmission system. A small amount of generation exists in this area. Therefore, a large amount of the power required by customers in this area presently flows into the area on the 138 kV and 161 kV interfaces in the Richmond, KY area (through the Fawkes and Lake Reba Tap substations). Either the J.K. Smith-Tyner or J.K. Smith-West Garrard 345 kV line would provide an EHV path bypassing these heavily loaded 138 and 161 kV interfaces.

The other outlet options screened either did not provide as much benefit as either of these two options or provided similar benefits at the expense of much more construction.

Three transmission alternatives were developed to address the thermal overloads identified with the proposed generators. One of these alternatives includes the J.K. Smith-West Garrard 345 kV project (Alternative 1). The other two alternatives include the J.K. Smith-Tyner 345 kV project. Of the two alternatives that include the J.K. Smith-Tyner 345 kV project, one includes a series reactor in the Dale-Boonesboro North 138 kV line (Alternative 2), whereas the other includes a new J.K. Smith-Spencer Road 138 kV line (Alternative 3). The estimated costs for the three Alternatives are as follows:

Cost Estimate Summary for J.K. Smith Transmission Outlet Alternatives				
Alternative	Planning Estimate Total (2006\$)	Inflated Cost (Install Year \$)	Present Worth (2006\$)	
Alternative 1	\$51,095,000	\$57,560,000	\$69,685,000	
Alternative 2	\$64,875,000	\$73,086,000	\$88,169,000	
Alternative 3	\$69,785,000	\$78,618,000	\$94,963,000	

The three transmission Alternatives were compared using the following categories:

- Power Flow Impacts
- Transmission System Losses
- Transient Stability Impacts
- Short Circuit Impacts
- Physical Issues
- System Reliability
- Future Expansion
- Local Area Support
- Costs
- Performance for Double Contingencies

Alternative 1 is considered the best of the three alternatives in five of the nine categories considered. Alternative 3 is considered the best in three of the categories considered. All three Alternatives are considered equal in one of the categories considered (short-circuit impacts). Based on the comparison of these nine categories, Alternative 1 is the preferred Alternative.

Although, official requests for interconnection to the transmission system and/or transmission service have not been made for a second and third CFB unit at J.K. Smith, an analysis of transmission requirements was undertaken as part of this study to ensure that the transmission plan developed for the proposed units would mesh with the ultimate requirements if further units are developed at J.K. Smith. A detailed analysis of the problems and requirements was not performed, since these units are not part of the official request. The focus of the analysis was to identify the significant problems, and potential modifications to the transmission system to address those problems.

The analysis determined that additional transmission facilities are required with Alternatives 1 and 2 to add a second and a third CFB unit at J.K. Smith. For Alternative 3, a second CFB unit can be added without any significant transmission upgrades. The third CFB unit would require construction of a major 345 kV circuit, however. Therefore, the ultimate transmission configuration necessary for three CFB units at J.K. Smith is similar regardless of which transmission Alternative is implemented for the first

CFB unit. As a result, implementation of any of the three Alternatives will be compatible with the ultimate requirements for continued generation expansion at J.K. Smith.

In addition to the base scenario evaluated, several sensitivities were also analyzed to identify the potential impacts of these sensitivities on the preferred transmission Alternative (Alternative 1) with the generator additions at J.K. Smith. The sensitivities analyzed were:

- 1. The planned interconnections with TVA in the Bowling Green area (at East Bowling Green, Memphis Junction, and Salmons) opened; Trimble County Unit #2 and associated transmission not modeled
- 2. The Adkins generators in DPL modeled at maximum output with the surplus generation exported to SERC; Trimble County Unit #2 and associated transmission not modeled
- 3. The proposed Estill County IPP generation station (and associated transmission facilities) modeled at maximum output with the surplus generation exported equally to northern ECAR and to SERC; Trimble County Unit #2 and associated transmission not modeled
- 4. The proposed Thoroughbred Energy IPP generation station (and associated transmission) modeled at maximum output with the output exported to AEP, CIN, MAIN, and SERC; Trimble County Unit #2 and associated transmission not modeled
- 5. The LGEE Brown CT generation reduced in the summer with the required generation increased at Trimble County and in northern ECAR. The LGEE Brown CT generation increased in the winter with the surplus generation exported equally to northern ECAR and to SERC; Trimble County Unit #2 and associated transmission not modeled
- 6. The LGEE Trimble County Unit #2 and associated transmission modeled
- 7. The planned interconnections with TVA in the Bowling Green area (at East Bowling Green, Memphis Junction, and Salmons) opened; Trimble County Unit #2 and associated transmission modeled
- 8. The Adkins generators in DPL modeled at maximum output with the surplus generation exported to SERC; Trimble County Unit #2 and associated transmission modeled
- 9. The proposed Estill County IPP generation station (and associated transmission facilities) modeled at maximum output with the surplus generation exported equally to northern ECAR and to SERC; Trimble County Unit #2 and associated transmission modeled
- 10. The proposed Thoroughbred Energy IPP generation station (and associated transmission) modeled at maximum output with the output exported to AEP, CIN, MAIN, and SERC; Trimble County Unit #2 and associated transmission modeled
- 11. The LGEE Brown CT generation reduced in the summer with the required generation increased at Trimble County and in northern ECAR. The LGEE Brown CT generation increased in the winter with the surplus generation exported equally to northern ECAR and to SERC; Trimble County Unit #2 and associated transmission modeled

The sensitivity analyses that were performed identified several overloads created by the change in conditions modeled for each sensitivity. The sensitivity that opened the future EKPC-TVA 161 kV interconnections in the Bowling Green area is not a valid operating scenario. Therefore, the problems identified for that sensitivity do not need to be addressed. Also, the sensitivities that include the proposed Estill County generators or the proposed Thoroughbred Energy generators are scenarios that may not materialize. Therefore, until these units are constructed, there is no need to address the problems identified for those scenarios. Other scenarios involve the existing Adkins and Brown CT units. Since the Adkins and Brown CT units are existing units currently operating on the transmission grid, the possibility of these units operating at either maximum or minimum levels during peak load periods exists. Therefore, the problems identified for those sensitivities could occur, which could impact the dispatch of the proposed J.K. Smith units. Addressing these problems may therefore be desired. Finally, LGEE's Trimble County Unit #2 is proceeding on schedule as planned. This unit will be a baseload unit connected to the LGEE transmission system, and will be a network resource for LGEE native load customers. Therefore, this unit is highly likely to be built, and to operate at a very high capacity factor. As a result, problems identified with the Trimble County Unit #2 have a high likelihood of occurring. Addressing these problems may be desired to avoid frequent generation reduction at J.K. Smith. The expected timeframe between the completion of J.K. Smith CFB Unit #1 and Trimble County Unit #2 is a few months. Therefore, the need to address problems created by sensitivities without Trimble County Unit #2 is minimized. Consequently, the sensitivities for which resulting problems should potentially be addressed are #6, #8, and #11.

Twenty-nine ratings increases for twenty-one separate facilities are identified for these three sensitivities. Nine of these are facilities that are already specified for ratings increases as part of the proposed transmission plan. These ratings increases can be expanded by relatively small amounts to provide the required ratings. Furthermore, the upgrades necessary to provide the ratings for these facilities that are specified as needed as part of the recommended transmission plan may result in sufficient ratings for these sensitivities. Therefore, no additional cost may be incurred to provide the higher ratings for these sensitivities. The other twelve facilities identified were not overloaded without the three sensitivity scenarios under consideration. These remaining facilities should be evaluated to determine the scope of work necessary to provide the ratings specified. After the scope of work and cost estimates are provided, a decision on performing these additional upgrades can be made.

The following recommendations are made based on the analysis performed for the proposed generator additions at J.K. Smith:

- 1. The following common transmission facilities should be completed for connection of the proposed J.K. Smith units to the transmission network:
 - a) Install a second 345-138 kV, 450 MVA autotransformer at J.K. Smith CT Substation by June 1, 2007.

- b) Add 138 kV terminal facilities at the J.K. Smith CT Substation to connect J.K. Smith CT #8 by June 30, 2008.
- c) Add 345 kV terminal facilities at the J.K. Smith CT Substation to connect CTs #9 and #10 by April 30, 2008.
- d) Add 345 kV terminal facilities at the J.K. Smith CT Substation to connect CTs #11 and #12 by September 30, 2007.
- e) Construct a second 345 kV Substation at J.K. Smith for the CFB Unit #1 (J.K. Smith CFB Substation) by March 1, 2009.
- f) Construct two 345 kV lines between the J.K. Smith CT 345 kV Substation and the J.K. Smith CFB Substation (using bundled 954 MCM ACSR conductor) and associated terminal facilities by March 1, 2009.
- 2. The following transmission system additions and upgrades should be completed to provide sufficient capacity for delivery of the additional generation at J.K. Smith:
 - a) Construct a 345 kV line from J.K. Smith to LGEE's Brown-Pineville doublecircuit 345 kV line (using bundled 954 MCM ACSR conductor) and associated terminal facilities at the J.K. Smith CFB Substation by June 30, 2009.
 - b) Add 345 kV terminal facilities at LGEE's Brown Substation and Pineville Substation to energize the existing Brown-Pineville 345 kV circuit by June 30, 2009.
 - c) Construct a 345 kV switching substation (West Garrard) to connect the new 345 kV line from J.K. Smith to LGEE's Brown-Pineville 345 kV circuit by June 30, 2009.
 - d) Increase the Hyden Tap-Wooten 161 kV LGEE-AEP interconnection rating to at least 203 MVA summer emergency and 252 MVA winter emergency by June 30, 2009.
 - e) Increase the ratings of LGEE's Fawkes-Clark County 138 kV line to at least 187 MVA summer emergency by June 30, 2009.
 - f) Increase the ratings of LGEE's Boonesboro North-Winchester Water Works 69 kV line to at least 146 MVA summer emergency by June 30, 2009.
 - g) Increase the ratings of LGEE's Boonesboro North 138-69 kV transformer to at least 164 MVA summer emergency by June 30, 2009.
 - h) Increase the ratings of LGEE's Lake Reba-Waco 69 kV line to at least 63 MVA summer emergency by June 30, 2009.
 - i) Increase the ratings of LGEE's Parker Seal-Winchester 69 kV line to at least 75 MVA summer emergency by June 30, 2009.
 - j) Increase the limits of LGEE's Alcalde-Elihu 161 kV line to at least 230 MVA summer emergency and 292 MVA winter emergency by June 30, 2009.
 - k) Replace EKPC's Dale 138-69 kV, 82.5 MVA transformer with a 100 MVA transformer, and increase the ratings of the associated terminal facilities to at least 147 MVA winter emergency by November 30, 2009.
 - 1) Increase the limits of AEP's Leslie 161-69 kV transformer to at least 134 MVA winter emergency by November 30, 2009.

EKPC will coordinate with AEP and with LGEE to determine the scope, cost, and schedule of the required upgrades on their respective systems.

- 3. The following transmission system upgrades should be evaluated to determine the scope and cost to avoid potential generation limitations at J.K. Smith and other area generating plants due to planned generation additions at J.K. Smith with modified generation dispatches at LGEE's Brown Power Plant and/or the Adkins Generation Station in the DPL control area:
 - a) An increase of the ratings of EKPC's J.K. Smith-Union City 138 kV line to at least 258 MVA/343 MVA summer normal/emergency and 397 MVA winter emergency by March 1, 2010.
 - b) An increase of the ratings of the EKPC-LGEE Union City-Lake Reba Tap 138 kV line to at least 246 MVA/322 MVA summer normal/emergency and 290/373 MVA winter normal/emergency by March 1, 2010.
 - c) An increase of the ratings of the DPL-AEP Adkins-Beatty 345 kV line to at least 1048 MVA summer emergency by March 1, 2010.
 - d) An increase of the ratings of the Fawkes EKPC-Fawkes LGEE 138 kV line to at least 323 MVA summer emergency by March 1, 2010.
 - e) An increase of the ratings of LGEE's Fawkes Tap-Fawkes LGEE 138 kV line to at least 321 MVA summer emergency and 328 MVA winter emergency by March 1, 2010.
 - f) An increase of the ratings of EKPC's J.K. Smith-Dale 138 kV line to at least 312 MVA summer emergency by March 1, 2010.
 - g) An increase of the ratings of the EKPC-LGEE Fawkes EKPC-Fawkes Tap 138 kV line to at least 297 MVA summer emergency and 317 MVA winter emergency by March 1, 2010.
 - h) An increase of the ratings of EKPC's Three Forks Jct.-Fawkes EKPC 138 kV line to at least 227 MVA summer emergency by March 1, 2010.
 - i) An increase of the ratings of LGEE's Pineville 345-161 kV transformer to at least 658 MVA winter emergency by November 30, 2010.
 - j) An increase of the ratings of AEP's Hazard 161-138 kV transformer to at least 226 MVA winter emergency by November 30, 2010.
 - k) An increase of the ratings of EKPC's Powell County 138-69 kV transformer to at least 145 MVA winter emergency by November 30, 2010.
 - An increase of the ratings of AEP's Leslie-Hazard 69 kV line to at least 66 MVA winter emergency by November 30, 2010.
 - m) An increase of the ratings of AEP's Morehead-Hayward 69 kV line to at least 49 MVA winter emergency by November 30, 2010.

EKPC will coordinate with AEP, DPL and LGEE to determine the scope and cost of these potential upgrades. Once this information is gathered, a decision can be made regarding whether to implement the upgrades.

Section 1: Introduction and Project Description

This report contains the System Impact Study (SIS) results for Generation Interconnection Requests (GIR) #30 through #33 in the East Kentucky Power Cooperative, Inc. (EKPC) queue. The purpose of this study is to evaluate the impact of the addition of the following generators at EKPC's existing J.K. Smith Power Plant site:

- a) Five (5) combustion turbines, each with a net capacity of 84 MW in the summer and 98 MW in the winter. These units will be designated as J.K. Smith CTs #8, #9, #10, #11, and #12.
- b) One (1) Circulating Fluidized Bed (CFB) steam generator with a net capacity of 278 MW in both summer and winter. This unit will be designated as J.K. Smith CFB #1 throughout this report.

Additionally, two more CFB units identical to the CFB unit described above were considered in the study for transmission planning purposes. This was done since the J.K Smith site has the capability to allow construction of additional baseload units. The transmission plan developed for this request should be compatible with the ultimate plan that would be needed if a total of three CFB units are constructed at J.K. Smith. The timeframes in which these second and third units would be added are not known, so for purposes of this study, they were included at the end of EKPC's transmission planning horizon, which is presently 2015.

The existing four 138 kV transmission lines connected to the J.K. Smith Substation are insufficient to accommodate delivery of the total net output of the expanded J.K. Smith Power Plant. In fact, it was determined that the existing transmission outlets cannot accommodate any generation additions at the site. Therefore, this study identifies various transmission expansion plans needed to support the total expected output of the expanded J.K. Smith site. The timeframe in which each project in a plan is needed is determined as well based on the expected timing of generation additions at J.K. Smith.

See Appendix A for maps of the EKPC transmission system. Figure A-1 is a map of the EKPC transmission system. Figure A-2 is a map of the transmission system around the J.K. Smith Generating Station.

The initial request submitted to EKPC was for connection of a total of six General Electric (GE) 7EA CTs at J.K. Smith, each with net output of 75 MW summer and 100 MW winter, plus the single CFB unit at J.K. Smith. However, the request was later modified for connection of five GE LMS100 CTs with net output of 84 MW summer and 98 MW winter instead of the six 7EA CTs. Also, the expected commercial operation dates (COD) have been modified from those included in the original generation request. Table 1-1 shows the generation addition schedule that was used for this study.

Table 1-1 J.K. Smith Planned Generation Additions				
Requested Project	Commercial Operation Date	Summer Net Capacity (MW)	Winter Net Capacity (MW)	
JK Smith #12	March 2008	84	98	
JK Smith #11	April 2008	84	98	
JK Smith #10	October 2008	84	98	
JK Smith #9	November 2008	84	98	
JK Smith #8	December 2008	84	98	
JK Smith CFB #1	March 2010	278	278	

Section 2: Criteria, Methodology, and Assumptions

2.1 Study Criteria

The EKPC Transmission System Planning Criteria related to thermal loadability and transient stability were applied for this analysis. These criteria are consistent with North American Electric Reliability Council (NERC), East Central Area Reliability Coordination Agreement (ECAR), and Southeastern Reliability Council (SERC) planning standards and guidelines. (EKPC was a member of ECAR from the commencement of this study until January 1, 2006. At that time, EKPC became a member of SERC.) EKPC's Transmission System Planning Criteria are attached as Appendix B.

Additionally, input was solicited from EKPC's neighboring utilities prior to beginning the SIS. A study scope was developed and provided for input to representatives from American Electric Power (AEP), Big Rivers Electric Corporation (BREC), Cinergy Corporation (CIN), Dayton Power & Light Company (DPL), LG&E Energy LLC (LGEE), the Tennessee Valley Authority (TVA), and the Midwest Independent System Operator (MISO). Two conference calls were also held among these representatives and representatives of EKPC to discuss issues related to the study scope prior to EKPC beginning the study.

2.2 Transmission Planning Methodology

Steady-state power flow analysis, short-circuit analysis, and transient-stability analysis were performed for this SIS.

2.2.1 Power Flow Analysis

The performance of the transmission systems of EKPC and its neighboring utilities was analyzed for both normal conditions (no transmission elements outaged) and for single-contingency conditions (one transmission element out in conjunction with the worst-case generating unit) for the 2010 time period. Furthermore, an n-2 analysis of 345 kV and selected lower-voltage facilities was also performed to identify potential overloads that could limit the output of the J.K. Smith Power Plant due to transmission maintenance outages, common-tower outages, simultaneous forced outages, etc.

A list of thermal loading problems due to the addition of the queued generators was developed. Then, transmission alternatives were developed to integrate the proposed generators into the EKPC transmission system and to address associated thermal limitations on neighboring transmission systems. Next, conceptual plans to accommodate two additional CFB units at the J.K. Smith site were developed from the transmission alternatives identified for the queued generators.

All thermal loading problems that were identified due to the addition of the proposed generators were also evaluated without the proposed units to determine if the overloads would occur in the 2010 time period. All the normal-system overloads with a 3% response to J.K. Smith generation and the contingency overloads with a 5% response to J.K. Smith generation that were not pre-existing without the proposed units are attributed in this study to the addition of the units.

2.2.2 Transient-Stability Analysis

The performance of the transmission system both with and without the requested generating units was analyzed with and without appropriate system disturbances. The types of disturbances selected for the stability analysis were:

- a) with all transmission facilities and equipment in service, a sustained threephase fault on a bus or line followed by either a three-phase or, where appropriate, single-pole circuit-breaker failure with appropriate operation of backup circuit breakers
- b) with one transmission facility out of service, a sustained single-phase-toground fault with normal fault clearing by appropriate circuit breakers

2.2.3 Short-Circuit Analysis

The fault current levels at selected buses with and without the requested generating units were determined to evaluate the adequacy of existing circuit breakers. The fault analysis included 3-phase and single-phase line-to-ground faults.

2.3 Modeling & Assumptions

2.3.1 Power Flow Models

The models used for the power flow analysis were from EKPC's internal model library. The models used were the following peak-load representations:

2005 Summer	2005/06 Winter
2010 Summer	2010/11 Winter
2015 Summer	2015/16 Winter

These models were jointly developed by EKPC and LGEE in early 2004, and therefore include a detailed representation of both the EKPC and LGEE transmission systems. The representation of EKPC's other neighboring utilities (AEP, BREC, CIN, DPL, and TVA) is the representation submitted by these utilities for the NERC MMWG 2003 Series Model Development. The remainder of the "outside world" is a reduced representation from that NERC MMWG 2003 Series. In order to develop the EKPC/LGEE 2015 Summer case, the outside world representation from the NERC MMWG 2012 Summer case was used. In order to develop the 2015/16 Winter case, the outside world representation from the NERC MMWG 2010/11 Winter case was used.

For all utilities other than EKPC and LGEE, the analysis used the loads included in the base NERC MMWG cases for the appropriate year. For these utilities, the loads in the 2015 Summer case are identical to those in the NERC MMWG 2012 Summer model. Likewise, the loads modeled in the 2015/16 Winter models for these utilities are identical to those modeled in the NERC MMWG 2010/11 Winter models. For EKPC and LGEE, the loads in the models are based on forecast data available to the two companies at the time these models were developed in March of 2004.

As with the loads modeled, the analysis used the future transmission projects that each utility had included in the NERC MMWG 2003 series of cases for all utilities other than EKPC and LGEE. For EKPC and LGEE, the future transmission projects in the models are those that were included by each company during development of the joint base cases. Any projects that were expected to be attributable to the J.K. Smith generation additions were removed, since the need for these projects will be addressed as part of this SIS.

EKPC and the Warren Rural Electric Cooperative Corporation (WRECC) have an agreement that stipulates that EKPC will become WRECC's generation and transmission supplier beginning on April 1, 2008. Therefore, the WRECC load has been included in EKPC's control area in models representing time periods beyond this date. Additionally, the proposed transmission plan that has been developed to connect EKPC to the WRECC system and to connect EKPC to BREC has been included in these models. A fourth generating unit at Spurlock has also been included in those same models.

For the purposes of this study, the proposed units were modeled at maximum output in the analyses. If this resulted in excess generation (beyond EKPC's load requirements), the surplus generation was exported equally to "virtual" generators that were connected to AEP's Cook 765 kV bus and to the Bowen 500 kV bus in SERC. This effectively simulates equal exports to the north and south. This is necessary to ensure adequate transmission capacity for maximum output at the J.K. Smith Plant. All other EKPC units, including the future Spurlock #4, were modeled at maximum output. The Laurel Dam Hydro units were not dispatched in the models. Table 2-1 summarizes the generation output of the existing and future EKPC units dispatched for this study.

Table 2-1						
EKPC Base Case Generation						
Summer Winter						
	Commercial	Net	Net			
	Operation	Capacity	Capacity			
Unit	Date	(MW)	(MW)			
Cooper #1	existing	116	116			
Cooper #2	existing	225	225			
Dale #1	existing	24	24			
Dale #2	existing	24	24			
Dale #3	existing	80	80			
Dale #4	existing	80	80			
Spurlock #1	existing	325	325			
Spurlock #2	existing	535	535			
Gilbert #3	existing	268	268			
Spurlock #4	February 2009	278	278			
JK Smith CT #1	existing	98	142			
JK Smith CT #2	existing	98	142			
JK Smith CT #3	existing	98	142			
JK Smith CT #4	existing	75	100			
JK Smith CT #5	existing	75	100			
JK Smith CT #6	existing	75	100			
JK Smith CT #7	existing	75	100			
JK Smith CT #8	December 2008	84	98			
JK Smith CT #9	November 2008	84	98			
JK Smith CT #10	October 2008	84	98			
JK Smith CT #11	April 2008	84	98			
JK Smith CT #12	March 2008	84	98			
JK Smith CFB #1	March 2010	278	278			

2.3.2 Transient-Stability Model

The model used for this analysis is the ECAR 2009 Summer Dynamic Case developed in early 2003 by General Electric for ECAR from the NERC MMWG 2009 Summer Dynamic Case (2002 Series). The associated NERC MMWG 2009 Summer Power Flow Case was used for initialization of the transient-stability model. Loads were modeled as constant current for real power (kW) and constant impedance for reactive power (kVAR) components.

2.3.3 Short-Circuit Model

The model used for this analysis is a modified 2005 Summer power flow model. This model was developed from EKPC's 2005 Summer model that was described in subsection 2.3.1. The model was modified to make it suitable for fault analysis. The modifications made included the following:

- Removed all control areas except EKPC, LGEE, AEP, OVEC, CIN, BREC, TVA, and the OHIO EQUIVALENT
- Included actual zero-sequence impedances for EKPC facilities
- Assumed zero-sequence impedance equals three times the positive-sequence impedance for all transmission lines outside of EKPC
- Assumed zero-sequence impedance equals positive sequence impedance for all transformers outside of EKPC
- Assumed zero-sequence generator impedance equals 999.0 per-unit for all generators outside of EKPC

Faults were run at neighboring utility buses to which EKPC are connected. The fault levels from this analysis were provided to the neighboring utilities for input and to validate the accuracy of EKPC's model.

2.4 Sensitivity Analysis

Several sensitivities were identified for evaluation in the SIS. These sensitivities are discussed below.

- a. EKPC-TVA Interconnections for WRECC Service As mentioned earlier, EKPC will become WRECC's generation and transmission supplier on April 1, 2008. EKPC has developed a transmission plan to serve WRECC that includes three 161 kV interconnections with TVA in the Bowling Green, KY area. These interconnections are at East Bowling Green, Memphis Junction, and Salmons. A sensitivity analysis with these three interconnections opened was performed at TVA's request.
- b. Adkins IPP Project A 480 MW IPP-owned generation station has been constructed in southern Ohio. These generators are located in the DP&L control area. EKPC now has 345 kV connections to the DP&L and Cinergy systems at Spurlock. Therefore, a sensitivity analysis was performed with the six units at Adkins at maximum output, with the excess output exported to SERC.
- c. Estill County IPP Project A 120 MW IPP-owned generating station has been proposed in Estill County, KY. The timeframe for construction of this unit is unknown. A Generation Interconnection Study has been performed by the MISO for this project. The MISO study identified transmission upgrades necessary to connect this generator to the LGEE transmission system. These were a new 161 kV line from the new generating station to LGEE's West Irvine Substation, a new 161 kV line from LGEE's West Irvine Substation to the existing Lake Reba Tap-Delvinta 161 kV line to loop this line through West Irvine, and enlargement of LGEE's West Irvine 161-69 kV autotransformer. A sensitivity analysis with this new generating unit and the associated transmission upgrades was performed in this SIS. The output of this unit was exported equally to northern ECAR and to SERC (60 MW in each direction).

- **d.** Thoroughbred Energy IPP Project A 1500 MW IPP-owned generation station is planned in Muhlenberg County, KY. The timeframe for construction of this unit is unknown. Generation Interconnection Studies have been performed by BREC and by TVA. These studies identified several transmission upgrades to be made to the BREC, LGEE, and TVA systems. In particular, the study recommended a project to connect BREC's existing Wilson-Coleman 345 kV line to LGEE's existing Smith-Hardin County 345 kV line by constructing a 345 kV breaker station. This project is expected to increase power flows from western Kentucky into central Kentucky. Therefore, a sensitivity analysis with the new Thoroughbred units and the associated transmission projects was performed in this SIS. The output from the two 750 MW units was exported to AEP (250 MW), CIN (250 MW), southern MAIN (250 MW), and SERC (750 MW).
- e. Reduced Generation at LGEE's Brown CT Station A sensitivity analysis was desired to determine the impacts of reduced generation at LGEE's Brown CT Station with maximum output at JK Smith. The purpose of this sensitivity is to identify problems that may occur when LGEE's CTs are not fully dispatched while EKPC's CTs are fully dispatched for summer peak-load conditions. This analysis was conducted for 2010 Summer conditions.
- f. Maximum Generation at LGEE's Brown CT Station A sensitivity analysis was conducted to determine the impacts of full output of the coal-fired and CT generation at LGEE's Brown Station. This dispatch was modeled in the primary cases for the 2010 Summer period. However, LGEE's forecasted winter peak load in the 2010-11 Winter model does not require any CT generation at the Brown CT site. Therefore, the Brown CT generation was increased to maximum, and the surplus generation was exported equally to northern ECAR and to SERC. The purpose of this sensitivity is to identify problems that may occur when both LGEE's and EKPC's CTs in central Kentucky are dispatched simultaneously at full output during winter peak-load conditions.
- g. Trimble County Unit #2 LGEE plans to construct a 732 MW (summer net) baseload unit at its existing Trimble County Power Plant in the 2010 timeframe. Several major transmission lines are planned to support this unit's integration into the transmission network. These lines are a 345 kV line between the Mill Creek and Hardin County substations, a 345 kV double-circuit from Trimble County to the existing Ghent-Speed 345 kV line to loop the line through Trimble County, a 138 kV line between the Tyrone and West Frankfort substations, and a 138 kV line between the Higby Mill and West Lexington substations. A sensitivity analysis was performed in this SIS with these projects and the Trimble County #2 Unit in the 2010 Summer and 2010/11 Winter models.

In addition to the seven sensitivities identified above, all of the sensitivities listed as items a through f above were also tested with the Trimble County Unit #2 and associated transmission improvements modeled. This resulted in a total of 13 sensitivities being evaluated.

These sensitivity analyses were performed on the recommended transmission alternative developed from this study, using the 2010 Summer and 2010/11 Winter models to identify any potential issues. The discussion of the results of these sensitivity analyses is contained in Section 6 of this report.

Section 3: Power Flow and Transient Stability Analyses With Proposed Generators Added and Without Transmission Upgrades

3.1 Power Flow Analysis

The power flow analysis was conducted to identify and address critical contingencies and overloads on the EKPC and neighboring systems. The initial power flow analysis identified the overloads, including the magnitudes, with the proposed generators at J.K. Smith in 2010 Summer and 2010/11 Winter, and with no new transmission outlets modeled. Tables 3-1 and 3-2 show the major problems (for the worst-case contingency only) identified in 2010 Summer and 2010/11 Winter, respectively, with the proposed generating units and no transmission additions. These results are sorted by the severity of the overload. Appendix B contains the complete listing of overloads identified in 2010 Summer and 2010/11 Winter.

Table 3-1						
2010 Summer Identified Problems with Proposed Generators and with no						
		Additional Trans	mission		r	
			Worst-Case		MVA	0/0
Limiting Facility	Company	Contingency	Dispatch	Rating	Flow	Overload
		Fawkes EKPC-	Brown #3			
Fawkes Tap-Fawkes		Fawkes LGEE 138	off, import			
LGEE 138 kV Line	LGEE	kV Line	from AEP	219	398.7	182.1%
			Dale #4 off,			
JK Smith-Dale 138		JK Smith-Union City	import from			
kV Line	EKPC	138 kV Line (EKPC)	AEP	311	539.4	173.4%
			Brown #3			
JK Smith-Union		JK Smith-Dale 138	off, import			
City 138 kV Line	EKPC	kV Line (EKPC)	from AEP	311	518.7	166.8%
Union City-Lake			Brown #3			
Reba Tap 138 kV	EKPC-	JK Smith-Dale 138	off, import			
Line	LGEE	kV Line (EKPC)	from AEP	302	488.2	161.7%
Fawkes LGEE-		Dale-Boonesboro	Spurlock #2			
Clark County 138		North-Avon 138 kV	off, import			
kV Line	LGEE	Line (EKPC)	from TVA	172	258.2	150.1%
Fawkes EKPC-		Dale-Boonesboro	Brown #3			
Fawkes LGEE 138	EKPC-	North-Avon 138 kV	off, import			
kV Line	LGEE	Line (EKPC)	from AEP	287	429.6	149.7%
West Irvine Tap-		JK Smith-Powell	Cooper #2			
Delvinta 161 kV		County 138 kV Line	off, import			
Line	LGEE	(EKPC)	from AEP	162	241.6	149.1%
			Brown #3			
JK Smith-Fawkes		JK Smith-Dale 138	off, import			
EKPC 138 kV Line	EKPC	kV Line (EKPC)	from AEP	311	461.9	148.5%
JK Smith-Dale 138			_			
kV Line	EKPC	None	Base	251	372.1	148.2%
	Table 3-1					
----------------------	-------------	----------------------	--------------	-----------	---------	----------------
2010 Summ	er Identifi	ed Problems with P	roposed Gen	erators a	and wit	h no
		Additional Trans	mission		1	
			Worst Coso		MVA	9/
Limiting Facility	Company	Contingency	Disnatch	Rating	Flow	70 Overload
IK Smith-Union	Company	Contingency	Dispaten	Trating	11011	Overioad
City 138 kV Line	EKPC	None	Base	251	363.7	144.9%
		Lake Reba Tap-West	Cooper #2			
Rice Tap-West		Irvine Tap 161 kV	off, import			
Irvine 69 kV Line	LGEE	Line (LGEE)	from AEP	41	58.9	143.7%
Union City-Lake						
Reba Tap 138 kV	EKPC-					
Line	LGEE	None	Base	243	345	142.0%
		Lake Reba Tap-West	Cooper #2			
Lake Reba-Waco 69	T OPP	Irvine Tap 161 kV	off, import	57	707	140 50/
kV Line	LGEE	Line (LGEE)	from AEP	30	/8./	140.5%
D.I. Thurs Fault		Dale-Boonesboro	Brown #3			
Lat 128 LV Line	EVDC	Line (EKDC)	from A FP	222	304.1	137 0%
JCI. 138 KV LIIIe	EKPC	IK Smith Powell	Cooper #2		504.1	137.070
West Invine Tap 161		County 138 kV Line	off import			
kV Line	LGFF	(EKPC)	from AEP	190	259.4	136.5%
	LULL	Lake Reha Tap-West	Cooper #2	170		150.570
Waco-Rice Tap 69		Irvine Tap 161 kV	off. import			
kV Line	LGEE	Line (LGEE)	from AEP	52	70.6	135.8%
Three Forks Jct		Dale-Boonesboro	Brown #3		1	
Fawkes EKPC 138		North-Avon 138 kV	off, import			
kV Line	EKPC	Line (EKPC)	from AEP	222	292.3	131.7%
		Lake Reba Tap-West	Cooper #2			
Beattyville-Delvinta	EKPC-	Irvine Tap-Delvinta	off, import			
161 kV Line	LGEE	161 kV Line (LGEE)	from AEP	167	205.9	123.3%
		Powell County-	Dale #3 off,			
Powell County 138-		Beattyville 161 kV	import from	100	1.550	100.40/
69 kV Transformer	EKPC	Line (EKPC)	AEP	129	157.9	122.4%
		TTZ 0	Cooper #2			
JK Smith-Powell	EVDC	JK Smith-Dale 138	from AED	287	3156	120.4%
County 138 KV Line	ENFC	West Invine Tap	Cooper #2	207	545.0	120.470
Wast Iraina Dark		Delvinta 161 kV Line	off import			
Hollow 69 kV Line	LGFF	(LGFF)	from AEP	49	58.9	120.2%
Fawkes EKPC-		Fawkes EKPC-	Brown #3			120.270
Fawkes Tap 138 kV	EKPC-	Fawkes LGEE 138	off. import			
Line	LGEE	kV Line	from AEP	287	343	119.5%
Boonesboro North-	-	Fawkes LGEE-Clark	Ghent #1			
Winchester Water		County 138 kV Line	off, import			
Works 69 kV Line	LGEE	(LGEE)	from TVA	143	170.4	119.2%
		Beattyville-Delvinta	Cooper #2			
Beattyville 161-69	EKPC-	161 kV Line (EKPC-	off, import			
kV Transformer	LGEE	LGEE)	from AEP	64	75.9	118.6%
D 1 100 (01)		JK Smith-Powell	Dale #3 off,			
Dale 138-69 kV	FVDC	County 138 kV Line	import from	111	121 4	110 40/
I ransformer	I EKPC	EKPC)	AEP	111	1 131.4	110.4%

		Table 3-1				
2010 Summ	er Identifi	ed Problems with P	roposed Gen	erators a	and wit	h no
		Additional Trans	nission		r	
			Worst-Case		MVA	%
Limiting Facility	Company	Contingency	Dispatch	Rating	Flow	Overload
JK Smith-Fawkes						
EKPC 138 kV Line	EKPC	None	Base	251	293.4	116.9%
Winchester South-		Fawkes LGEE-Clark	Ghent #1			
Winchester 69 kV		County 138 kV Line	off, import	. 10	100 7	115.00/
Line	LGEE	(LGEE)	from TVA	112	129.7	115.8%
Boonesboro North		Fawkes LGEE-Clark	Ghent #1			
138-69 KV	LOFF	(LCEE)	off, import	160	1822	112.0%
1 ransformer	LUEE	(LUEE)	Cooper #2	100	102.5	115.970
Laka Daha Tan 129		County 138 kV Line	off import			
161 kV Transformer	LGEE	(FKPC)	from AFP	230	259.4	112.8%
		IK Smith-Powell	Cooper #2	250	257.4	112.070
Dale-Hunt #2 69 kV		County 138 kV Line	off import			
Line	EKPC	(EKPC)	from AEP	69	77.7	112.6%
Eawkes LGEE-		Dale-Boonesboro	Brown #3		1	
North Madison Jct.		North-Avon 138 kV	off, import			
69 kV Line	LGEE	Line (EKPC)	from AEP	57	64.1	112.5%
		Lake Reba Tap-West	Cooper #2			
Powell County 138-		Irvine Tap-Delvinta	off, import			
161 kV Transformer	EKPC	161 kV Line (LGEE)	from AEP	193	214.5	111.1%
Powell County 138-						
69 kV Transformer	EKPC	None	Base	96	105.7	110.1%
		Brown North-Brown	Brown #3			
Brown North-Brown		Tap #1 138 kV Line	off, import			
Tap #2 138 kV Line	LGEE	(LGEE)	from AEP	426	467.2	109.7%
		Dale-Boonesboro	Brown #3			
Clark County-	T OPP	North-Avon 138 kV	off, import	117	107.0	100.20/
Sylvania 69 kV Line	LGEE	Line (EKPC)	from AEP	11/	127.9	109.3%
Hyden Tap-Wooten	LGEE-	Pineville-Stinnett 101	Dece	100	207.4	100.20/
161 KV Line	AEP	KV Line (IVA-AEP)	Dase	190	207.4	109.270
Powell County 138-	EKDC	Nono	Base	145	158 3	109.2%
	EKIC	IV Smith Powell	Cooper #2	145	150.5	107.270
Hunt #2-IK Smith		County 138 kV Line	off import			
69 kV Line	EKPC	(EKPC)	from AEP	69	74.6	108.1%
Fawkes LGEE-	+	()			1	
Clark County 138						
kV Line	LGEE	None	Base	146	157.5	107.9%
Lake Reba Tap-						
West Irvine Tap 161					1	
kV Line	LGEE	None	Base	167	178.3	106.8%
Richmond South-		Lake Reba 138-69	Cooper #2			
Richmond #3 69 kV		kV Transformer	off, import			
Line	LGEE	(LGEE)	from AEP	69	73.3	106.2%
Clark County-		Clark County-	Spurlock #2			
Mount Sterling 69		Spencer Road 138 kV	off, import			100.000
kV Line	LGEE	Line (LGEE)	trom TVA	53	56.3	106.2%

Table 3-1						
2010 Summ	2010 Summer Identified Problems with Proposed Generators and with no					
		Additional Trans	mission		r	
			Worst-Case		MVA	%
Limiting Facility	Company	Contingency	Dispatch	Rating	Flow	Overload
		Delvinta-Green Hall				
Delvinta-Hyden Tap		Jct. 161 kV Line			ļ	
161 kV Line	LGEE	(LGEE-EKPC)	Base	190	201.7	106.2%
			Cooper #2			
Delvinta-Green Hall	LGEE-	Delvinta-Hyden Tap	off, import			
Jct. 161 kV Line	EKPC	161 kV Line (LGEE)	from AEP	201	213	106.0%
Winchester Water	ester Water Fawkes LGEE-Clark		Ghent #1			
Works-Boone		County 138 kV Line	off, import			
Avenue 69 kV Line	LGEE	(LGEE)	from TVA	152	160.8	105.8%
		JK Smith-Powell	Cooper #2			
JK Smith-Trapp 69		County 138 kV Line	off, import			
kV Line	EKPC	(EKPC)	from AEP	69	72.7	105.4%
Fawkes EKPC-						
Fawkes LGEE 138	EKPC-					
kV Line	LGEE	None	Base	259	270	104.2%
Powell County-			Spurlock #2			(
Jeffersonville 69 kV		Goddard-Hillsboro	off, import			
Line	EKPC	69 kV Line (EKPC)	from TVA	69	70.6	102.3%
Dale-Boonesboro		Fawkes LGEE-Clark	Spurlock #2			
North Tap 138 kV		County 138 kV Line	off, import			
Line	EKPC	(LGEE)	from TVA	383	390.4	101.9%
		JK Smith-Powell				
Trapp-Hargett Jct.		County 138 kV Line				
69 kV Line	EKPC	(EKPC)	Base	69	69.8	101.2%

	Table 3-2					
2010-11 Win	ter Identif	ied Problems with I	Proposed Ge	nerators	and wi	th no
	•	Additional Trans	mission		••••••••••••••••••••••••••••••••••••••	
			W IC		N. W.Y.A	0/
Limiting Facility	Commoney	Contingonou	Worst-Case	Dating		% Overlaged
Limiting Facility	Company	Equivos EVDC	Dispaten	Kaung	Flow	Overload
		Fawkes ERFC-	Brown #3			
Fawkes Tan-Fawkes		kV Line (FKPC-	off import			
I GEF 138 kV Line	IGEE	I GFF)	from AFP	283	505	178 4%
Fawkes FKPC-		Dale-Boonesboro	Brown #3	205	- 303	170.170
Fawkes LGEE 138	EKPC-	North-Avon 138 kV	off. import			
kV Line	LGEE	Line (EKPC)	from AEP	287	498.2	173.6%
			Dale #4 off.			
JK Smith-Dale 138		JK Smith-Union City	import from			
kV Line	EKPC	138 kV Line (EKPC)	AEP	389	656.8	168.8%
			Brown #3			
JK Smith-Union	[JK Smith-Dale 138	off, import			
City 138 kV Line	EKPC	kV Line (EKPC)	from AEP	389	646.3	166.1%
Union City-Lake			Brown #3			
Reba Tap 138 kV	EKPC-	JK Smith-Dale 138	off, import			
Line	LGEE	kV Line (EKPC)	from AEP	371	595.3	160.5%
		Lake Reba Tap-West	Cooper #2			
Beattyville-Delvinta	EKPC-	Irvine Tap-Delvinta	off, import			
161 kV Line	LGEE	161 kV Line (LGEE)	from AEP	167	266.1	159.3%
Union City-Lake						
Reba Tap 138 kV	EKPC-		_			
Line	LGEE	None	Base	277	424.8	153.4%
Fawkes EKPC-	EVDO	Fawkes EKPC-	Brown #3			
Fawkes Tap 138 kV	EKPC-	Fawkes LGEE 138	off, import	207	422.0	1.51.10/
Line	LGEE	KV Line	Trom AEP	287	433.8	151.1%
IV Smith Down11		IV Smith Dala 129	Dale #3 off,			
County 128 ItV Line	EVDC	JK Slinth-Date 156		207	126.0	148 70/
County 150 KV Line	ENIC	KV LIIIE (EKFC)	Brown #3	207	420.9	140.770
IK Smith-Fawkes		IK Smith-Union City	off import			
EKPC 138 kV Line	EKPC	138 kV Line (EKPC)	from AEP	389	576	148.1%
West Irvine Tan-		IK Smith-Powell	Cooper #2	505	- 570	1 10.170
Delvinta 161 kV		County 138 kV Line	off, import			
Line	LGEE	(EKPC)	from AEP	218	303.9	139.4%
Lake Reba Tap-					1	
West Irvine Tap 161						
kV Line	LGEE	None	Base	167	228	136.5%
Lake Reba Tap-		JK Smith-Powell	Cooper #2			
West Irvine Tap 161		County 138 kV Line	off, import		1	
kV Line	LGEE	(EKPC)	from AEP	237	323.1	136.3%
		Powell County-	Dale #3 off,			
Powell County 138-		Beattyville 161 kV	import from			
69 kV Transformer	EKPC	Line (EKPC)	AEP	143	186.4	130.3%
		Beattyville-Delvinta	Cooper #2		}	
Beattyville 161-69	EKPC-	161 kV Line (EKPC-	off, import			
kV Transformer	LGEE	LGEE)	from AEP	72	93.8	130.3%

	Table 3-2					
2010-11 Win	ter Identif	ied Problems with I	Proposed Ge	nerators	and wi	th no
		Additional Trans	mission			
			Worst-Case		MVA	%
Limiting Facility	Company	Contingency	Dispatch	Rating	Flow	Overload
JK Smith-Union						
City 138 kV Line	EKPC	None	Base	349	451.7	129.4%
		Lake Reba Tap-West	Cooper #2			
Lake Reba-Waco 69		Irvine Tap 161 kV	off, import			
kV Line	LGEE	Line (LGEE)	from AEP	80	103.1	128.9%
		JK Smith-Powell	Dale #3 off,			
Dale 138-69 kV	DUDG	County 138 kV Line	import from	120	175	100 70/
Transformer	EKPC	(EKPC)	AEP	136	1/5	128.7%
JK Smith-Dale 138	FURC	Nore	Dece	240	1171	120 10/
KV Line	EKPU	INOILE	Dase Cooper #2		447.1	120.170
Deluinte Creen Hell	LCEE	Delvinto Uvden Tan	off import			
Let 161 kV Line	EKPC	161 kV Line (LGEF)	$from \Delta FP$	218	277	127.1%
Jet. IOI KV Lille		Lake Reha Tan-West	Cooper #2		2//	127.170
Waco-Rice Tap 69		Irvine Tan 161 kV	off import			
kV Line	LGEE	Line (LGEE)	from AEP	72	90.1	125.1%
		Dale-Boonesboro	Brown #3			
Dale-Three Forks		North-Avon 138 kV	off, import			
Jct. 138 kV Line	EKPC	Line (EKPC)	from AEP	278	345.6	124.3%
		JK Smith-Powell	Cooper #2			
Lake Reba Tap 138-		County 138 kV Line	off, import			
161 kV Transformer	LGEE	(EKPC)	from AEP	260	323.1	124.3%
Fawkes LGEE-		Dale-Boonesboro	Spurlock #2			
Clark County 138		North-Avon 138 kV	off, import			
kV Line	LGEE	Line (EKPC)	from TVA	186	229.5	123.4%
		Lake Reba Tap-West	Cooper #2			
Powell County 138-		Irvine Tap-Delvinta	off, import			
161 kV Transformer	EKPC	161 kV Line (LGEE)	from AEP	220	269.3	122.4%
Fawkes EKPC-	-					
Fawkes LGEE 138	EKPC-	Num	Data	207	250.5	122 10/
KV Line	LGEE	inone	Base	207	530.5	122.170
JK Smith-Powell	EVDC	Nona	Paga	297	3/30	110.8%
Three Forks Lat	EKPC	Dala Rooneshoro	Brown #3	207	545.9	119.070
Forwheel FURS JCL-		North-Avon 138 kV	off import			
kV Line	FKPC	Line (FKPC)	from AEP	278	328 5	118.2%
Powell County 161-				210	520.0	110.270
138 kV Transformer	EKPC	None	Base	178	203.2	114.2%
Delvinta-Green Hall	LGEE-					
Jct. 161 kV Line	EKPC	None	Base	167	189	113.2%
Boonesboro North-		Fawkes LGEE-Clark	Ghent #1	· · · ·	<u> </u>	
Winchester Water		County 138 kV Line	off, import			
Works 69 kV Line	LGEE	(LGEE)	from TVA	143	160.3	112.1%
·		Lake Reba Tap-West	Cooper #2			
Rice Tap-West		Irvine Tap 161 kV	off, import			
Irvine 69 kV Line	LGEE	Line (LGEE)	from AEP	66	73.8	111.8%
West Berea Jct	EKPC	Delvinta-Green Hall	Cooper #2	101	112.9	111.8%

	Table 3-2						
2010-11 Win	ter Identif	ied Problems with l	Proposed Ge	nerators	and wi	th no	
	Additional Transmission						
	_		Worst-Case		MVA	%	
Limiting Facility	Company	Contingency	Dispatch	Rating	Flow	Overload	
Three Links Jct. 69		Junction 161 kV Line	off, import				
kV Line		(LGEE-EKPC)	from AEP				
West Berea-West		Delvinta-Green Hall	Cooper #2				
Berea Jct. 69 KV	EVDC	Junction 161 KV Line	from AED	101	1117	110 (0/	
	EKIC	(LUEE-ENFC)		101	111./	110.070	
Morehead Hannvard		Skagge 138 kV Line					
60 kV Line	ΔΕΡ	(FKPC)	Base	48	52.1	108 5%	
O KV LIIC		Dale-Booneshoro	Brown #3		<u> </u>	100.576	
Clark County-		North-Avon 138 kV	off. import				
Svlvania 69 kV Line	LGEE	Line (EKPC)	from AEP	117	124.6	106.5%	
JK Smith-Fawkes						1000070	
EKPC 138 kV Line	EKPC	None	Base	349	367	105.2%	
Beattyville-Delvinta	EKPC-						
161 kV Line	LGEE	None	Base	167	174.7	104.6%	
		West Irvine Tap-	Cooper #2				
West Irvine 161-69		Delvinta 161 kV Line	off, import				
kV Transformer	LGEE	(LGEE)	from AEP	62	64.3	103.7%	
		JK Smith-Powell	Cooper #2				
Dale-Hunt #2 69 kV		County 138 kV Line	off, import				
Line	EKPC	(EKPC)	from AEP	87	90.1	103.6%	
		Avon-Loudon	Brown #3				
Davis-Nicholasville		Avenue 138 kV Line	off, import		0.0.6		
69 kV Line	EKPC	(EKPC-LGEE)	from AEP	87	89.6	103.0%	
D-1 No.1 (11.00		Dale-Boonesboro	Cooper #2				
Dale-Newby #1 69	EVDC	North-Avon 138 KV	from AED	07	00	102.20/	
KV Line	EKPC	Line (EKPC)	Georger #2	8/	89	102.3%	
Lake Reba Tap-		Lake Reba Tap-west	cooper #2				
Lake Reba 150 KV	IGEE	Line (LGEE)	$from \Delta FP$	101	105 1	102.1%	
		Fawkes I GEE			195.1	102.170	
		Crooksville Ict 69	Cooper #2				
West Berea 138-69		kV Line (LGEE-	off. import				
kV Transformer	EKPC	EKPC)	from AEP	143	145.8	102.0%	
		West Irvine Tap-	Cooper #2		1		
West Irvine-Dark		Delvinta 161 kV Line	off, import				
Hollow 69 kV Line	LGEE	(LGEE)	from AEP	70	71	101.4%	
West Irvine Tap-					1		
Delvinta 161 kV							
Line	LGEE	None	Base	209	211.2	101.1%	
Avon-Loudon		Ghent-West	Brown #3				
Avenue 138 kV	EKPC-	Lexington 345 kV	off, import				
Line	LGEE	Line (LGEE)	from AEP	287	288.1	100.4%	
Powell County 138-							
69 kV Transformer	EKPC	None	Base	119	119.4	100.3%	

The power flow results contained in Tables 3-1 and 3-2 indicate that a total of 41 unique facilities are overloaded in 2010 Summer and 36 facilities are overloaded in 2010-11 Winter. A breakdown of the ownership of these facilities is provided in Table 3-3.

Table 3-3Summary of Ownership of Overloaded Facilities					
Ownership	Number of Facilities Overloaded in 2010 Summer	Number of Facilities Overloaded in 2010-11 Winter			
AEP	0	1			
EKPC	15	15			
EKPC-LGEE	6	7			
LGEE	19	13			
LGEE-AEP	1	0			
Total	41	36			

These power flow results indicate that substantial thermal overloading of the existing transmission system will be created by the addition of the proposed generators at the J.K. Smith site.

See Figure A-3 in Appendix A for an overview of the overloaded lines identified in Tables 3-1 and 3-2. The overloaded lines are highlighted in red on this figure.

3.2 Transient-Stability Analysis

Transient-stability analysis was performed to determine if problems would exist with the addition of the proposed generators.

3.2.1 Approach

The models utilized for the transient-stability analysis were derived from the 2002 Series ECAR 2009 Summer power flow and dynamics data obtained in GE PSLF format from ECAR. EKPC's and LGEE's areas were updated for major changes in planned facilities between the time the cases were initially developed and the present.

The same additions were made to the ECAR dynamic model for future generation and associated facilities in the area of interest as were included in the power flow model. Loads were modeled as constant current for real power (kW) and constant impedance for reactive power (kVAR) components.

An initial transient-stability analysis was performed to characterize overall system needs. The analysis consisted of determining system responses with all facilities in-service and a three-phase fault accompanied by breaker failure followed by operation of backup circuit breakers. Both single-pole and total breaker-failure scenarios were analyzed. Breakerfailure schemes were assumed to operate in a specified time period to clear a fault.

Base models were allowed to operate without faults for 10 seconds and all units were examined to validate the modeling and determine that the various components were stable and operating correctly prior to faults being applied. Three-phase faults were applied for a specified period of time followed by a single line-to-ground fault to simulate a stuck pole or a continued three-phase fault for a stuck breaker.

Fault values were computed using a GE PSLF model derived from fault cases provided by EKPC and LGEE.

3.2.2 Results

The proposed J.K. Smith generators were added to the base model to create the stability model for testing of system performance. The following modifications were made to the transmission system for this model:

- o the addition of a new 345 kV line from J.K. Smith to the Spurlock-Avon 345 kV line at a point called North Clark
- o the addition of a new J.K. Smith 345 kV CT Substation yard with a 345-138 kV tie to the existing J.K. Smith 138 kV CT Substation yard
- o the addition of a new J.K. Smith 345 kV CFB Substation yard with 345 kV ties to the J.K. Smith 345 kV CT Substation yard

Refer to Figures 3-1 through 3-3 for one-line diagrams of each of the three substation yards at J.K. Smith. Refer to Figure 3-4 for a one-line showing the three connected yards.

The transient stability studies began with simulation of system reactions to both 138 kV and 345 kV bus faults in the J.K. Smith Generating Station Substation (J.K. Smith). Refer to Figures 3-1 and 3-2 for the layouts of the expanded J.K. Smith 138 kV CT Substation yard and the new J.K. Smith 345 kV CT Substation yard after the addition of the J.K. Smith-North Clark 345 kV line and associated facilities.

The existing JK Smith 138 kV relaying utilizes solid-state relays with breaker failure ("BF") implemented with timers. The existing relay settings combined with equipment characteristics result in the clearance of a "close-in" three-phase fault in not less than 5 cycles. The existing BF scheme requires an additional 7.75 cycles in total backup-clearing time. The total clearing time is currently 12.75 cycles.

The assumed normal clearing time for the new J.K. Smith-North Clark 345 kV line is 3.75 cycles. For the breaker failure scheme, an additional 6.0 cycles of clearing time is assumed.

A "stuck pole" ("SP") is the failure of one pole (phase) of a circuit breaker to open when the power circuit breaker is required to open all three phases. A "stuck breaker" ("SB") is defined as all three poles of a circuit breaker failing to open when the power circuit breaker is required to open.

The 138 kV faults of concern are "close-in" faults on the lines from J.K. Smith to Dale, Fawkes, or Lake Reba Tap. The worst case identified is a fault on the J.K. Smith-Dale 138 kV line. As shown on Figure 3-1, this fault would trip breakers E63-834 and E63-91T. Then, for a failure (either SP or SB) of breaker E63-91T, breaker E63-844 would trip. This would de-energize the J.K. Smith-Fawkes 138 kV line, resulting in both the J.K. Smith-Dale and J.K. Smith-Fawkes 138 kV lines being simultaneously disconnected from the transmission system.

Another fault of concern is a "close-in" fault on the new J.K. Smith-North Clark 345 kV line. As shown on Figure 3-2, this fault would trip breakers E112-1474 and E112-153T. Then, for a failure of breaker E112-153T, breaker E112-1424 would trip. This would disconnect one of the two new 345 kV ties between the J.K. Smith 345 kV CT yard and the J.K. Smith 345 kV CFB yard.

Faults were simulated with the total clearing times specified above. Case results are summarized in Table 3-4. Table 3-4 also lists the figure numbers showing time plots of the performance for these fault scenarios. Case B1 indicates that the JK Smith generating units are likely to remain stable for a fault on the JK Smith-Dale 138 kV line with breaker failure (see Figure 3-5). Figure 3-5 shows a large swing after the disturbance for J.K. Smith CT Units 3 and 4 (Units 1-3 are identical as are Units 4-7). However, the oscillations for these units appear to damp out acceptably. Therefore, the units appear to be stable for this disturbance. Yet, the first swing is large enough to be of some concern.

TABLE 3-4 SUMMARY OF STABILITY ANALYSIS WITH PROPOSED LK, SMITH GENERATORS					
System Reactions to F	System Reactions to Faults at JK Smith Generating Station				
Maximum Peak	to Peak Ro	tor Angle Changes			
Case Designation		B1	B2		
Transmission Configuration		Base System (J.K. Smith-North Clark 345 kV Plus Expansion at J.K. Smith)	Base System (J.K. Smith-North Clark 345 kV Plus Expansion at J.K. Smith)		
Reference Figure		3-5, 3-6	3-7, 3-8		
Fault Clearing Type		138 kV SB ¹	345 kV SB ²		
Normal Clearing Time (cycles)		5	3.75		
Additional Clearing Time for Breaker Failure (cycles)		7.75	6		
Damping Time		Less than 5 sec.	Less than 5 sec.		
Dale	#1	43	47		
Dale	#2	43	47		
Dale	#3	54	54		
Dale	#4	61	59		
JK Smith	CT #1	164	104		
JK Smith	CT #2	164	104		
JK Smith	CT #3	164	104		
JK Smith	CT #4	161	102		
JK Smith	CT #5	161	102		
JK Smith	CT #6	161	102		
JK Smith	CT #7	161	102		
JK Smith	CT #8	91	78		
JK Smith	CT #9	79	85		
JK Smith	CT #10	79	85		
JK Smith	CT #11	79	85		
JK Smith	CT #12	79	85		
JK Smith	CFB #1	121	122		

Notes:

¹ Fault on J.K. Smith-Dale 138 kV line with breaker failure; trip J.K. Smith-Fawkes 138 kV line

² Fault on J.K. Smith-North Clark 345 kV line with breaker failure; trip one J.K. Smith 345 kV CT-J.K. Smith 345 kV CFB tie

In summary, the results in Cases B1 and B2 indicate that the additions of the proposed generators at J.K. Smith decrease the level of generating unit stability at J.K. Smith and at Dale, but do not create instability.

Based on the power flow analysis performed, the transmission system requires modifications to address thermal overloads that will be created by the addition of the proposed units. Furthermore, transmission system modifications are desired to improve the generating unit stability profile at J.K. Smith and at Dale. Therefore, the next step is to identify potential transmission alternatives to address these issues.

12.75 Eycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE + 12.75 Eycles JK-DALE+SBJK-FAWKES.p

2009/10 WINTER EKPE STABILITY BASE CASE JANUARY 2006 JKSMITH EFB1+ET'S 8-12:JK-SIDEVIEW 345:JK 345/138(2-450 MVA XFMRS)

REFERENCE CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

Figure 3-5

J.K. Smith Generating Unit Responses Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

12.75 Eycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE # 12.75 Eycles JK-DALE+SBJK-FAWKES.P

2009/10 WINTER EKPC STABILITY BASE CASE JANUARY 2006 JKSMITH CFB1+CT'S 8-12;JK-SIDEVIEW 345;JK 345/138(2-450 MVA XFMRS)

REFERENCE CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

> Figure 3-6 Dale Station Generating Unit Responses Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

9.75 Cycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB +1 LINE + 9.75 Cycles JK-SIDEV_SBJKSMITH345.p

2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMMG BASE CASES

Figure 3-7

J.K. Smith Generating Unit Responses Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB #1 LINE # 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009 WINTER PEAK LOAD EASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE EASES

Figure 3-8

Dale Station Generating Unit Responses Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

Section 4: Alternatives Considered

Alternatives are desired that eliminate the overloads of the facilities identified in Tables 3-1 and 3-2. Furthermore, since all four of the existing 138 kV outlets from the J.K. Smith Station are overloaded, the alternatives developed must either upgrade all four of these outlets or establish at least one new outlet from the J.K. Smith Station.

<u>4.1 Impact of J.K. Smith-North Clark Proposed Project on</u> <u>Alternatives to be Considered</u>

Concurrently with this J.K. Smith SIS, EKPC conducted a parallel study to identify a solution for existing transmission-system problems. These problems are:

- Frequent overloading of the Avon 345-138 kV, 450 MVA autotransformer in the June-August 2005 time period, and expected future overloading
- Potential instability of the existing combustion turbines (CTs) at J.K. Smith
- Economic impacts of generation re-dispatch due to a potential failure of the Avon 345-138 kV transformer

The results of that parallel study are documented in a document developed by EKPC titled *Justification of J.K. Smith-Sideview 345 kV Line*, dated October 31, 2005. [Note that the Sideview endpoint was later re-named North Clark]. The recommended solution from that study was to:

- o Construct a new 345 kV breaker substation (to be named North Clark) in the Sideview area with three line exits. Loop the existing Spurlock-Avon 345 kV line through this substation.
- o Install 345 kV facilities at the J.K Smith Substation to accommodate a new line exit
- o Install a new 345-138 kV, 450 MVA autotransformer at the J.K. Smith Substation
- o Construct 18 miles of 345 kV line using bundled 954 MCM ACSR conductor between the J.K. Smith Substation and the new North Clark Substation

This recommended construction addresses the problems of the existing transmission system. It also provides some benefits for the proposed generators that are the subject of this SIS. However, power flow analysis with the J.K. Smith-North Clark Project added to the models indicates that transmission-system overloads would still exist with the proposed generators. While the proposed J.K. Smith-North Clark Project does help reduce the severity of many of the overloads identified in Tables 3-1 and 3-2, it does not eliminate them. In particular, all of the existing 138 kV lines from the J.K. Smith Substation would still be overloaded with the proposed Project. Therefore, alternatives must be developed that incorporate the planned J.K. Smith-North Clark Project while still addressing the overloads identified in Tables 3-1 and 3-2. Therefore, as stated above, the alternatives developed must either include capacity upgrades for the four existing 138 kV outlets from the J.K. Smith Station or the construction of at least one additional new outlet from J.K. Smith.

4.2 Consideration of Upgrading Existing J.K. Smith Outlets

Increasing the capacity of the existing four 138 kV outlets from the J.K. Smith Station was considered. These four outlets are:

- ▶ J.K. Smith-Dale 138 kV Line (9.5 miles)
- > J.K. Smith-Fawkes 138 kV Line (14.3 miles)
- ▶ J.K. Smith-Union City-Lake Reba Tap 138 kV Line (11.6 miles)
- > J.K. Smith-Powell County 138 kV Line (16.3 miles)

The conductor presently installed for each of these lines is 954 MCM ACSR (Aluminum Conductor Steel Reinforced) operated at a maximum operating temperature of 212 °F. In order to increase the capacity of each line, the conductor would have to be replaced with either bundled conductor or with ACSS (Aluminum Conductor Steel Supported) conductor. ACSS can be operated at conductor operating temperatures above 212 °F without damaging or annealing the conductor provided that adequate

In addition to replacement of the conductors in the four 138 kV outlets from J.K. Smith, several other upgrades would be required to eliminate all overloads. The most significant of these facilities to be upgraded are:

- ➤ Fawkes LGEE-Clark County 138 kV LGEE Line (18.3 miles)
- Clark County-Mount Sterling 69 kV LGEE Line (12.2 miles)
- Lake Reba-Waco-Rice Tap 69 kV LGEE Line (11.8 miles)
- > Dale-Hunt-J.K. Smith-Trapp 69 kV EKPC Line (11.2 miles)
- > Dale-Newby #1 69 kV EKPC Line (11.1 miles)
- > Powell County-Jeffersonville 69 kV EKPC Line (8.5 miles)
- > Dale-Three Forks-Fawkes 138 kV EKPC Line (7.3 miles)
- Boonesboro North-Winchester Water Works-Boone Avenue 69 kV LGEE Line (5.9 miles)
- > Davis-Nicholasville 69 kV EKPC Line (3.8 miles)
- Lake Reba Tap 161-138 kV, 200 MVA LGEE Transformer
- ▶ Boonesboro North 138-69 kV, 150 MVA LGEE Transformer
- > Powell County 161-138 kV, 150 MVA EKPC Transformer
- > Powell County 138-69 kV, 100 MVA EKPC Transformer
- Dale 138-69 kV, 82.5 MVA EKPC Transformer
- ▶ Beattyville 161-69 kV, 56 MVA LGEE Transformer
- ▶ West Irvine 161-69 kV, 50 MVA LGEE Transformer

Each of the facilities to be upgraded would need to be removed from service for construction at some point during the period from June 2006 through March 2010. This would require multiple simultaneous outages in the area, which would create significant reliability and operational concerns. Furthermore, it is not known if all of the upgrades can be completed by their needed dates, since there are more than 20 facilities requiring significant upgrades.

Another disadvantage of upgrading the overloaded facilities as opposed to building one or more new outlets is higher transmission-system losses. The transmission-system losses will be much higher if the existing facilities are upgraded instead of another outlet – especially a 345 kV outlet – from J.K. Smith being constructed.

Another disadvantage is that upgrading of existing transmission facilities does not provide additional margin to allow multiple simultaneous outages in the area for maintenance. Generation reductions would probably be required to allow simultaneous transmission outages.

Another disadvantage is the uncertainty in the scope, cost, and completion time of the numerous upgrades that would be required. The expected cost to upgrade all problem facilities is at least \$30 million (2006 dollars). This cost could be much higher depending on the scope of work required for each upgrade, which in many cases can only be determined through a detailed field review of the facility. The expectation is that the cost of upgrading facilities will be comparable to the cost of alternatives that construct new facilities, particularly when transmission-system losses are factored in.

For the reasons discussed above, an alternative to upgrade all of the overloaded facilities identified in Tables 3-1 and 3-2 was not evaluated. Only alternatives that include construction of a new outlet from the J.K. Smith Station were developed and evaluated.

4.3 Screening of J.K. Smith Outlet Alternatives

An exhaustive set of new outlets for the J.K. Smith Station were screened singularly and in various combinations to evaluate the performance with the proposed generators added at J.K. Smith. Table 4-1 lists all of the potential J.K. Smith outlets that were screened, along with estimated mileages for line construction.

Table 4-1					
List of J.K. Smith Outlet Alternatives Screened					
	Estimated				
Screened Outlet	Mileage	Other Required Facilities			
J.K. Smith-Cooper 345 kV	73.2	Cooper 345-161 kV			
J.K. Smith-Marion County 345 kV	72.2	Marion County 345-161 kV			
		Maggard 345-138 kV; convert			
		Maggard-Skaggs 69 kV to 138 kV;			
J.K. Smith-Maggard 345 kV	61.5	Maggard 138-69 kV			
J.K. Smith-Rowan County 345 kV	48.3	Rowan County 345-138 kV			
J.K. Smith-Goddard 345 kV	47.4	Goddard 345-138 kV			
J.K. Smith-Tyner 345 kV	43.5	Tyner 345-161 kV			
		Brodhead 345-161 kV; new 161 kV			
		outlet from Brodhead; Brodhead			
J.K. Smith-Brodhead 345 kV	40.6	161-69 kV			
		Maytown Jct. 345-138 kV; Powell			
		County-Maytown Jct. 138 kV;			
J.K. Smith-Maytown Jct. 345 kV	37.9	Maytown Jct. 138-69 kV			

J.K. Smith-Brown North LGEE 345		
kV	37.5	None
		New 345 kV switching station at
		West Garrard connecting to LGEE's
		Brown-Pineville 345 kV line; 345
		kV terminal facilities at Brown and
J.K. Smith-West Garrard 345 kV	35.5	Pineville
J.K. Smith-Delvinta LGEE 345 kV	34.2	Delvinta 345-161 kV
J.K. Smith-Beattyville 345 kV	32.1	Beattyville 345-161 kV
		Three Links Jct. 345-138 kV; Three
J.K. Smith-Three Links Jct. 345 kV	31.7	Links Jct. 138-69 kV
J.K. Smith-West Berea 345 kV	25.5	West Berea 345-138 kV
		New 345 kV switching station at
		West Irvine Tap connecting to
		LGEE's Lake Reba Tap-Delvinta
		161 kV line; West Irvine Tap 345-
J.K. Smith-West Irvine Tap 345 kV	17.3	161 kV
Convert J.K. Smith-Powell County		
138 kV line to 345 kV	16.4	Powell County 345-161 kV
J.K. Smith-Fawkes 345 kV	16.1	Fawkes 345-138 kV
		West Irvine 345-161 kV; Loop
		LGEE's Lake Reba Tap-Delvinta
J.K. Smith-West Irvine LGEE 345		161 kV through West Irvine
kV	14.8	Substation
J.K. Smith-Powell County 345 kV	14.2	Powell County 345-161 kV
J.K. Smith-Lake Reba Tap LGEE		
345 kV	11.9	Lake Reba Tap 345-161 kV
Convert J.K. Smith-Dale 138 kV		
line to 345 kV	9.4	Dale 345-138 kV
J.K. Smith-Rowan County 138 kV	48.3	None
J.K. Smith-Goddard 138 kV	47.5	None
J.K. Smith-Three Links Jct. 138 kV	31.7	Three Links Jct. 138-69 kV
J.K. Smith-Baker Lane 138 kV	28.7	None
J.K. Smith-Higby Mill LGEE 138		
kV	27.2	None
J.K. Smith-Loudon Avenue LGEE		
138 kV	26.1	None
J.K. Smith-West Berea 138 kV	25.5	None
J.K. Smith-Fayette 138 kV	22.5	None
		Convert Dale-Newby 69 kV to 138
J.K. Smith-Newby 138 kV	20.1	kV; Newby 138-69 kV
J.K. Smith-Spencer Road LGEE		
138 kV	17.9	None
J.K. Smith-Avon 138 kV	17.2	None
J.K. Smith-Fawkes 138 kV	16.1	None

J.K. Smith-Powell County 138 kV	14.2	None
J.K. Smith-Lake Reba Tap LGEE		
138 kV	11.9	None
J.K. Smith-Boonesboro North		
LGEE 138 kV	10.0	None
J.K. Smith-Dale 138 kV	9.7	None
J.K. Smith-Clark County LGEE		
138 kV	9.1	None

These outlets were developed by evaluating potential line construction from the J.K. Smith Station to other stations throughout the area. At that point in the process, no consideration of the constructability of an outlet option was given. It was assumed that all of these outlet options could be constructed.

The screening process eliminated most of these outlet options for one of the following two reasons:

- An outlet either singularly or in combination with other outlets did not eliminate a substantial number of the thermal overloads caused by the proposed generators
- An outlet did not provide any significant additional benefits when compared to the performance of another outlet that would be shorter and/or less expensive

4.3.1 Discussion of Results from the Screening Analysis

As shown in Figure A-3 in Appendix A, the problems identified with the proposed generators and without any transmission system additions are primarily concentrated in two areas:

- 1. The immediate area around the J.K. Smith, Dale, Fawkes, Lake Reba Tap, Powell County, and Clark County Substations.
- 2. Along the 161 kV system extending southeast from the Lake Reba Tap Substation to the Delvinta Substation and on the other 161 kV lines out of Delvinta.

Other isolated problems (Avon-Loudon Avenue LGEE 138 kV, Davis-Nicholasville 69 kV, Morehead AEP-Hayward AEP 69 kV, West Berea-Three Links Jct. 69 kV) were identified outside of the two primarily impacted areas.

The screening analysis determined that two of the outlet options considered have a greater impact on the transmission-system problems identified than did the remainder of the outlet options. These two outlet options are:

- ✓ The J.K. Smith-Tyner 345 kV line and the installation of a 345-161 kV transformer at Tyner
- ✓ The J.K. Smith-West Garrard 345 kV line and a new 345 kV switching station at West Garrard connecting this line with LGEE's Brown-Pineville 345 kV circuit

These two outlets substantially reduce the number and severity of overloads caused by the proposed generators. These options appear to provide these benefits for two primary reasons:

- Each is a 345 kV outlet providing a high outlet capacity from the J.K. Smith site
- Each provides a connection to the transmission system in the southern and southeastern parts of the Kentucky transmission system. A small amount of generation exists in this area. Therefore, a large amount of the power required by customers in this area presently flows into the area on the 138 kV and 161 kV interfaces in the Richmond, KY area (through the Fawkes and Lake Reba Tap substations). Either the J.K. Smith-Tyner or J.K. Smith-West Garrard 345 kV line would provide an EHV path bypassing these heavily loaded 138 and 161 kV interfaces.

The other outlet options listed in Table 4-1 either did not provide as much benefit as either of these two options or provided similar benefits at the expense of much more construction. The performance of these other outlet options will be discussed briefly, beginning with the 345 kV outlet alternatives.

4.3.1.1 Discussion of 345 kV Outlets Considered

> J.K. Smith-Cooper 345 kV

This line provides many of the same benefits as the J.K. Smith-Tyner or J.K. Smith-West Garrard 345 kV lines. However, it requires a substantial amount of additional 345 kV line construction.

➢ J.K. Smith-Marion County 345 kV

This line provides some reduction in the number and severity of overloads caused by the proposed generators. However, it does not perform as well as the J.K. Smith-Tyner or J.K. Smith-West Garrard 345 kV lines. Furthermore, it requires a substantial amount of additional 345 kV line construction.

J.K. Smith-Maggard 345 kV; J.K. Smith-Rowan County 345 kV; J.K. Smith-Goddard 345 kV

Each of these lines provides a 345 kV path between J.K. Smith and the northeastern part of the EKPC system. These lines do not provide great benefits, primarily because they build into an area that already has a generation surplus due to the presence of the Spurlock Units. Furthermore, each of these lines is longer than either the J.K. Smith-Tyner or J.K. Smith-West Garrard 345 kV line.

> J.K. Smith-Brodhead 345 kV; J.K. Smith-Three Links Jct. 345 kV

These two options involve construction of 345 kV line into an area where only 69 kV facilities currently exist. Therefore, in addition to the 345 kV line construction, at least one new 161 kV or 138 kV line is required. In reality, multiple new 161 kV or 138 kV lines would be required for either option to obtain reasonable performance, although the

performance is still inferior to that provided by either J.K. Smith-Tyner or J.K. Smith-West Garrard.

➢ J.K. Smith-Maytown Jct. 345 kV

This option involves construction of 345 kV line into an area where only 69 kV facilities currently exist. EKPC does have included in its long-range plan a new 138 kV line from Powell County to Maytown Junction. Therefore, this line plus new 138 kV facilities connecting Maytown Junction to the 138 kV system to the east (Rowan County-Skaggs-Maggard) would be needed to obtain reasonable performance. However, this performance is still inferior to the performance of either the J.K. Smith-Tyner or J.K. Smith-West Garrard line, even with all of these modifications to the transmission system.

> J.K. Smith-Brown North LGEE 345 kV

This option performs similarly to the J.K. Smith-West Garrard 345 kV line. However, it requires slightly more new 345 kV line construction. Furthermore, the West Garrard option is preferred, since it would establish a new EKPC 345 kV substation in the central portion of the EKPC transmission system.

J.K. Smith-Delvinta LGEE 345 kV; J.K. Smith-Beattyville 345 kV; J.K. Smith-West Irvine Tap 345 kV; J.K. Smith-West Irvine LGEE 345 kV

These options all perform similarly. Each constructs a new 345 kV line to either Delvinta or a neighboring transmission substation/junction, which would then be connected to the existing 161 kV system that connects at Delvinta. Each of these options provides some reduction of the overloads in the immediate vicinity of the J.K. Smith and Fawkes Substations. However, each of these options results in a significant increase in the number and severity of overloads in the Delvinta/West Irvine area. Therefore, to make these outlet options work, significant upgrades would be required of the 161 and 69 kV systems in the Delvinta/West Irvine area. In addition, overloads in other areas of the system would also need to be addressed. For these reasons, these outlet options were eliminated from further consideration.

J.K. Smith-West Berea 345 kV; J.K. Smith-Fawkes 345 kV; J.K. Smith-Lake Reba Tap LGEE 345 kV

These options each provide a new 345 kV outlet into the Richmond/Berea area. However, this still results in severe overloads of the underlying 138 and 161 kV transmission system in the area. None of these options provide an outlet of sufficient distance to "get beyond" the area where system overloads occur.

Convert J.K. Smith-Powell County 138 kV to 345 kV; Convert J.K. Smith-Dale 138 kV to 345 kV

These conversion options do not provide substantial benefits for system loadings for three primary reasons. First, the new 345 kV line terminating at either Dale or Powell County would terminate into a 345-138 kV or 345-161 kV transformer, since no other 345 kV outlets would be in place at those stations. Therefore, the system impedances at those stations would restrict the flow on either of these new 345 kV outlets from J.K. Smith. Second, while a new 345 kV outlet is created for the J.K. Smith Substation, an existing

138 kV line is eliminated. Therefore, the net gain in outlet capability is relatively small. Finally, the new 345 kV lines would be connected to substations adjacent to J.K. Smith. This results in a number of overloads still occurring in the vicinity of the J.K. Smith substation.

> J.K. Smith-Powell County 345 kV

This option connects a new 345 kV line to a substation adjacent to J.K. Smith. This results in a number of overloads still occurring in the vicinity of the J.K. Smith Substation. Furthermore, additional overloads are created on the transmission lines connected to the Powell County Substation.

4.3.1.2 Discussion of 138 kV Outlets Considered

> J.K. Smith-Rowan County 138 kV; J.K. Smith-Goddard 138 kV

Either of these lines provides a 138 kV path between J.K. Smith and the northeastern part of the EKPC system. These lines do not provide great benefits, primarily because they build into an area that already has a generation surplus due to the presence of the Spurlock Units. Furthermore, each of these lines is a particularly long 138 kV line. The screening analysis indicates that these potential lines would not transmit a significant amount of power.

▶ J.K. Smith-Three Links Jct. 138 kV

This option involves construction of 138 kV line into an area where only 69 kV facilities currently exist. Therefore, at least one more new 161 kV or 138 kV line connected to the Three Links Jct. Substation is needed for this option to perform reasonably well. However, even with these additions, several significant overloads would still exist on the transmission system due to the proposed generators at J.K. Smith.

J.K. Smith-Baker Lane 138 kV; J.K. Smith-Higby Mill LGEE 138 kV; J.K. Smith-Loudon Avenue 138 kV; J.K. Smith-Fayette 138 kV

These four outlet options provide outlets from the J.K. Smith Substation to the west to the Lexington area. However, this provides limited benefits. The Lexington area already has several strong sources encircling it. The addition of a 138 kV line into the area does not result in a substantial flow increase into the area. Therefore, these outlets do not transmit a large amount of power out of the J.K. Smith area.

J.K. Smith-West Berea 138 kV; J.K. Smith-Fawkes 138 kV; J.K. Smith-Lake Reba Tap LGEE 138 kV

These options each provide a new 138 kV outlet into the Richmond/Berea area, which does help to reduce loadings on the 138 kV lines from J.K. Smith into the Richmond area. However, none of the options significantly impact several of the severe overloads caused by the proposed generators at J.K. Smith, particularly the overloads on the 161 kV system connected to Delvinta.

▶ J.K. Smith-Newby 138 kV

This option involves construction of 138 kV line into an area where only 69 kV facilities currently exist. Therefore, at least one more new 161 kV or 138 kV line connected to the

Newby Substation would be needed for this option to perform reasonably well. A new 138 kV line from Dale-Newby was tested in conjunction with this option. However, even with this addition, several significant overloads would still exist on the transmission system due to the proposed generators at J.K. Smith.

> J.K. Smith-Spencer Road LGEE 138 kV

This option provides a new 138 kV connection into LGEE's existing two-way feed 138 kV system that stretches from Fawkes to Rodburn. The screening analysis indicates that this line would carry a considerable amount of power. Therefore, it would provide some significant benefits. However, as a stand-alone option, it would not be sufficient to address many of the problems caused by the proposed generators.

> J.K. Smith-Avon 138 kV

This option provides a new 138 kV connection to EKPC's Avon 345-138 kV Substation. However, this has limited value with the addition of the J.K. Smith-North Clark 345 kV line, which will connect to the Spurlock-Avon 345 kV line. Therefore, much of the power flow between J.K. Smith and Avon will occur on this new 345 kV line.

➢ J.K. Smith-Powell County 138 kV

This option connects a new 138 kV line to a substation adjacent to J.K. Smith. This results in a large number of overloads still occurring in the vicinity of the J.K. Smith Substation. Furthermore, additional overloads are created on the transmission lines connected to the Powell County Substation. Finally, the power flows are not substantial enough on this new line to have a significant impact on the overloads caused by the proposed generators.

> J.K. Smith-Boonesboro North LGEE 138 kV; J.K. Smith-Dale 138 kV

These options provide a new 138 kV connection to the west of J.K. Smith. The construction of the J.K. Smith-North Clark 345 kV line will limit the usefulness of these lines in helping reduce loadings on facilities in the area between the Avon and Dale Substations. Furthermore, these outlets would not provide significant loading relief for the 138 and 161 kV facilities in the Fawkes and Delvinta areas, respectively.

> J.K. Smith-Clark County LGEE 138 kV

This option provides a new 138 kV connection into LGEE's existing two-way feed 138 kV system that stretches from Fawkes to Rodburn. The screening analysis indicates that this line would carry a considerable amount of power. In fact, due to its close proximity to the J.K. Smith Substation, the amount of power flow into the Clark County Substation would result in the introduction of severe loadings in the immediate vicinity. The J.K. Smith-Spencer Road 138 kV line provides similar flows and system benefits without creating the same number or magnitude of new loading issues in the area.

As a result of the screening analysis, it was determined that one 138 kV outlet from the J.K. Smith site would not be adequate. Screening showed that at least three 138 kV outlets would be required to accommodate the added generation. Additionally, significant upgrades would still be required on the transmission system with these

multiple 138 kV outlets. Furthermore, transmission-system losses will be higher with these 138 kV outlet options than with a 345 kV outlet option. For these reasons, no options were considered that only provided 138 kV outlets from J.K. Smith Substation. All transmission alternatives considered therefore included a new 345 kV outlet from the J.K. Smith site.

4.3.2 Discussion of Common Facilities Required

Some common facilities are required at the J.K. Smith site to accommodate the proposed generator additions. These requirements are necessary regardless of the new outlet or outlets to be built. These system additions/modifications are necessary to accommodate the connection of the proposed generators to EKPC's transmission network. Table 4-2 lists these proposed system additions, the reason for which each is needed, and the date needed based on the latest schedule that has been provided for the generation additions.

[Table 4-2					
Common Transmission Facilities Required to Connect the Proposed J.K. Smith Units						
Install	Project Description	Reason for Need				
Date						
		Addition of CTs #11 & #12 at JK				
		Smith; needed for desired				
		redundancy for this critical				
September	Install a second 345-138 kV, 450 MVA	connection between the 345 kV				
2007	transformer at JK Smith CT Substation	and 138 kV buses at J.K. Smith				
September	Add 345 kV Terminal Facilities at JK Smith	Addition of CTs #11 & #12 at JK				
2007	CT Substation for CTs #11 & #12	Smith				
	Add 345 kV Terminal Facilities at JK Smith	Addition of CTs #9 & #10 at JK				
April 2008	CT Substation for CTs #9 & #10	Smith				
1	Add 138 kV Terminal Facilities at JK Smith	Addition of CT 49 of UZ Conith				
June 2008		Addition of CEP Unit #1 at IV				
March 2000	Construct a second 345 KV substation at JK	Smith				
IVIAICIT 2009		Addition of CEB Unit #1 at IK				
March 2000	CEB Substation for CEB Unit #1	Smith				
March 2009	Construct two 345 kV lines (0.8 miles each)	Shild				
	between the JK Smith CT 345 kV substation					
	and the JK Smith CFB 345 kV substation	Addition of CFB Unit #1 at JK				
March 2009	using bundled 954 MCM ACSR conductor	Smith				
	Add 345 kV Terminal Facilities at JK Smith					
	CT Substation for the two 345 kV lines to	Addition of CFB Unit #1 at JK				
March 2009	the JK Smith CFB Substation	Smith				
	Add 345 KV Terminal Facilities at JK Smith	Addition of CEB Unit #1 at IK				
March 2009	the JK Smith CT Substation	Smith				

The facilities listed in Table 4-2 include the following:

• Terminal facilities to connect J.K. Smith CT #8 to the existing 138 kV bus at J.K. Smith

- Terminal facilities to connect J.K. Smith CTs #9 through #12 to a new 345 kV switchyard to be constructed at the J.K. Smith CT Substation
- A new 345 kV switchyard near the J.K. Smith CFB Unit #1 with terminal facilities to connect J.K. Smith CFB Unit #1
- Construction of a two 345 kV lines connecting the J.K. Smith 345 kV CT Substation and the J.K. Smith 345 kV CFB Substation

Table 4-3 provides the planning estimates for costs of the projects listed in Table 4-2. Cost information is provided for the expected costs in 2006 dollars, install year dollars, and present worth dollars.

Table 4-3						
Estimated Costs of Common Transmission Facilities Required to Connect the						
	Pr	oposed J.K. Smit	h Units	T		
T (11	Planning					
Install	Project	Estimate	Inflated Cost	Present Worth		
Date	Description	(2006\$)	(Install Year 5)	(2006\$)		
	138 kV 450 MVA					
September	transformer at JK					
2007	Smith CT Substation	2,850,000	3,064,000	4,363,000		
	Add 345 kV					
	Terminal Facilities at					
Quality	JK Smith CT					
September	Substation for CIS	2 160 000	2 322 000	3 307 000		
2007	Construct a second	2,100,000	2,322,000	5,507,000		
	345 kV substation at					
March	JK Smith for the	l				
2009	CFB Unit #1	2,160,000	2,433,000	2,952,000		
	Add 345 kV	l				
	Terminal Facilities at	l I				
	Substation for CTs					
April 2008	#9 & #10	2.160,000	2.376,000	3.122.000		
- 1	Add 138 kV			······		
	Terminal Facilities at	I				
	JK Smith CT	270.000	207.000	200.000		
June 2008	Substation for C1 #8	270,000	297,000	390,000		
	V/ lines (0.8 miles	l .				
	each) between the	ł				
	JK Smith CT 345 kV	Ì				
	substation and the	ł				
	JK Smith CFB 345	l				
March	kV substation using	ł				
2009	ACSR conductor	1.150,000	1.296,000	1.572.000		
	Add 345 kV					
	Terminal Facilities at	I				
	JK Smith CT	ł				
	Substation for the	ł				
March	two 345 KV lines to	ł				
2009	Substation	4.310.000	4.856.000	5.891.000		
<u> </u>	Add 345 kV					
	Terminal Facilities at	l				
	JK Smith CFB	I				
	Substation for the	l				
March	two 345 KV lines to	ł				
2009	Substation	4 310.000	4.856.000	5 891.000		
2000	Total	\$19 370 000	\$21,500,000	\$27 488 000		
1	10.01	Ψ19,570,000	Ψ 2 1,200,000	ψ_{μ} , 100,000		

4.3.3 Discussion of Alternatives Developed

As discussed earlier, the screening analysis determined that two 345 kV outlets in particular – the J.K. Smith-West Garrard and J.K. Smith-Tyner lines – have a greater impact on the transmission-system overloads than the other outlets considered. Therefore, construction alternatives were developed that included these outlet options along with other transmission-system additions and modifications necessary to eliminate all thermal overloads caused by the proposed generators. One alternative that included the J.K. Smith-West Garrard 345 kV line was ultimately developed to address all system problems. Two other alternatives that included the J.K. Smith-Tyner 345 kV line were also developed to address all system problems. These two alternatives that included J.K. Smith-Tyner were similar, but did differ with respect to some of the 138 kV projects included.

4.3.3.1 Construction Plan for J.K. Smith-West Garrard Alternative

Table 4-4 shows the construction plan that was developed to include a new 345 kV line from EKPC's J.K. Smith Substation to LGEE's Brown-Pineville 345 kV double-circuit line. It should be noted that the original assumption for the planning studies was that the new 345 kV line would actually connect to the LGEE Brown-Pineville 345 kV line near Stanford, KY. However, subsequent preliminary review of potential line routes indicated that the line routing process would more likely result in a recommended route that connected to LGEE's Brown-Pineville line in the western portion of Garrard County, approximately 12 miles north of the previously assumed connection point in the Stanford area. This change resulted in a significantly shorter line length from the J.K. Smith site (35.5 miles versus 48.3 miles). However, this change in the new line's length (and its impedance), as well as the change in the distance of the new 345 kV switching station from LGEE's Brown North Substation, did not result in a significant change in system power flows. The models were modified to account for these changes along with some other model changes provided during the course of the study.

42

	Alte	-1 Table 4 rnative 1 – Proiect Descrinti	•4 ons and Reaso	ns for Need	
Install	Project		Reason for	Critical	Unit
Date	Ref #	Project Description	Need	Contingency	Outage
		Construct 35.5 miles of 345 kV line	Numerous	Numerous	
		Pineville double-circuit line at West Garrard using bundled 954 MCM	Overloads (See Tables 3-1, 3-2,	Contingencies (See Tables 3-1, 3-	
June 2009	1.1	ACSR conductor	C-1, & C-2)	2, C-1, & C-2) Numerous	
June 2009	1.2	Add 345 kV Terminal Facilities at JK Smith CFB Substation for the West Garrard line.	Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)	
June 2009	1.3	Add terminal facilities at LGEE's Brown and Pineville Substations to energize the Brown-Pineville 345 kV circuit	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)	
lune 2000	14	Construct a 345 kV breaker station at West Garrard with three line exits. Loop the Brown-Pineville 345 kV line through the station and terminate the new line from JK	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3-	
June 2009	1.5	Ensure that the Hyden Tap-Wooten 161 kV LGEE-AEP interconnection has minimum ratings of 198/198 MVA summer and 252/252 MVA winter	Overload of the 190 MVA summer emergency rating and the 223 MVA winter emergency rating of the Hyden Tap- Wooten 161 kV LGEE-AEP interconnection	Pineville TVA- Stinnett 161 kV Line	Base
June 2009	1.6	Increase the terminal limits at LGEE's Fawkes and Clark County stations and the conductor limits associated with the Fawkes-Clark County 138 kV circuit to at least 775A (185 MVA) summer emergency.	Overload of the 172 MVA summer emergency rating of the Fawkes-Clark County 138 kV line	Avon-Boonesboro North-Dale 138 kV Line	Ghent #1
lune 2009	17	Increase the terminal limits at LGEE's Boonesboro North associated with the Boonesboro North-Winchester Water Works 69 kV circuit to at least 1225A (146 MVA) summer emergency	Overload of the 143 MVA summer emergency rating of the Boonesboro North- Winchester Water Works 69 kV line	Fawkes-Clark County 138 kV	Ghent #1

Table 4-4					
Install	Project	Inative I – I Toject Descripti	Reason for	Critical	Unit
Date	Ref #	Project Description	Need	Contingency	Outage
			Overload of the		
			160 MVA		
		Increase the terminal limits at	summer		
		LGEE's Boonesboro North	emergency		
		associated with the Boonesboro	rating of the	Fourteen Clark	
		North 138-69 KV transformer to at	Boonesporo	Fawkes-Clark	
lune 2000	10	ieast 1350A (161 MVA) summer	transformer		Ghent #1
June 2009	1.0	emergency.	Overload of the		
			56 MVA summer		
			emergency		
		Increase the limits of LGEE's Lake	rating of the	Lake Reba Tap	
		Reba-Waco 69 kV line to at least	Lake Reba-	138-161 kV	
June 2009	1.9	515A (62 MVA) summer emergency.	Waco 69 kV line	Transformer	Cooper #2
			Overload of the		
			72 MVA summer		
			emergency		
		Increase the limits of LGEE's Parker	rating of the		
		Seal-Winchester 69 kV line to at	Parker Seal-	Avon-Boonesboro	
lune 0000	1 10	least 630A (75 MVA) summer	Winchester 69	lino	Brown #2
June 2009	1.10	emergency.	Overload of the		DIOWIT#3
			summer		
			emergency		
			rating and the		
		Increase the limits of LGEE's	268 MVA winter		
		Alcalde-Elihu 161 kV line to at least	emergency	Wolf Creek TVA-	
		805A (224 MVA) summer	rating of the	Russell County	
		emergency and 1015A (283 MVA)	Alcalde-Elihu	Junction 161 kV	0 10
June 2009	1.11	winter emergency.	161 kV line	Line	Cooper #2
		D I II D. I. 400.00 IV. 00.5	Overload of the	IIC Oscilla Devicell	
N		Replace the Dale 138-69 KV, 82.5	Dale 138-69 KV,	JK Smith-Powell	
November	1 1 2	WVA transformer with a 100 WVA	transformer		Dala #3
2009	1.12	uansionnei	Overload of the		
			120 MVA winter		
			emergency		
		Increase the limits of AEP's Leslie	rating of AEP's		
November		161-69 kV transformer to at least	Leslie 161-69 kV	Wooten-Hazard	
2000	1 1 1 3	124 MVA winter emergency	transformer	161 kV/ Line	Base

Projects 1.1 through 1.4 in Table 4-4 are the projects necessary to establish a 345 kV line from J.K. Smith to West Garrard. Project 1.5 represents a need to increase the ratings of an interconnection between LGEE and AEP at Hyden to accommodate increased flows across the interconnection caused by the proposed generators. Project 1.6 specifies a required upgrade of terminal limits and/or conductor clearance limits on LGEE's Fawkes-Clark County 138 kV line. Projects 1.7 and 1.8 are needed to increase the ratings of the Boonesboro North 138-69 kV transformer (1.7) and the Boonesboro North-

Winchester Water Works 69 kV line (1.8). Projects 1.9 and 1.10 identify required upgrades of 69 kV lines on the LGEE system. Project 1.11 identifies a needed upgrade on LGEE's Alcalde-Elihu 161 kV line. This upgrade is needed due to the increased power flows on the LGEE 345 kV system between Brown and Pineville caused by the connection of the proposed 345 kV line from J.K. Smith to LGEE's 345 kV line. Project 1.12 specifies a required transformer replacement at EKPC's Dale Station to accommodate increased power flows from the 138 kV bus to the 69 kV bus. The summer emergency rating of the existing transformer is not exceeded with the addition of the proposed generators, while the winter emergency rating is exceeded. Therefore, this project is not needed until the winter period when the J.K. Smith CFB Unit will be connected to the grid and being dispatched for unit testing (2009/10 Winter). Project 1.13 is an upgrade identified on the AEP transmission system in the Hyden/Hazard area.

Table 4-4 indicates that this alternative results in the need for one major project that includes EKPC's construction of the 345 kV line from J.K. Smith to LGEE's 345 kV line, construction of a 345 kV switching station at the connection point, and 345 kV terminal additions at J.K. Smith, Brown, and Pineville. Only one other EKPC project is required with this Alternative -- replacement of the Dale 138-69 kV transformer. Most of the remaining projects identified for this alternative are expected to be terminal equipment replacements and/or increases of line conductor clearances on the LGEE transmission system. An upgrade may also be required by AEP for its portion of the Hyden interconnection with LGEE, and for its Leslie 161-69 kV transformer. Therefore, the construction of the new 345 kV line from J.K. Smith to the LGEE 345 kV line is effective in eliminating most or all of the significant problems. Some relatively minor problems remain that will need to be addressed, and the scope of the work required to address these problems on the LGEE and AEP system is unknown. However, based on the information that is available to EKPC, the conclusion is that the required upgrades for LGEE and AEP are likely to be relatively minor in scope and cost.

The planning cost estimates for this Alternative are listed by project in Table 4-5. Costs are provided in 2006 dollars, install year dollars, and present worth dollars.

Table 4-5							
Estimated Costs for Alternative 1							
		Planning	Inflated Cost				
Install		Fstimate	(Install Vear	Present			
Data	Duciest Description	(2006\$)	(Instan I cui	Worth (2006\$)			
Date	Construct 25.5 miles of 24.5 kV	(2000\$)		WOITH (2000\$)			
	line from IK Smith to I GEE's						
	Brown-Pineville double-circuit						
	line at West Garrard using						
	bundled 954 MCM ACSR						
June 2009	conductor	41,750,000	47,035,000	57,062,000			
	Add 345 kV Terminal Facilities						
	at JK Smith CFB Substation for						
June 2009	the West Garrard line.	1,080,000	1,217,000	1,476,000			
	Add terminal facilities at LGEE's						
	Brown and Pineville Substations						
	to energize the Brown-Pineville	0 400 000	0 400 000	2.052.000			
June 2009	345 KV CIFCUIt	2,160,000	2,433,000	2,952,000			
	construct a 345 KV breaker						
	three line exits I oon the						
	Brown-Pineville 345 kV line						
	through the station and						
	terminate the new line from JK						
June 2009	Smith	3,235,000	3,644,000	4,421,000			
	Ensure that the Hyden Tap-						
	Wooten 161 kV LGEE-AEP						
	interconnection has minimum						
	ratings of 198/198 MVA summer	400.000	110.000	145.000			
June 2009	and 252/252 MVA winter	100,000	110,000	145,000			
	Increase the terminal limits at						
	County stations and the						
	conductor limits associated with						
	the Fawkes-Clark County 138						
	kV circuit to at least 775A (185						
June 2009	MVA) summer emergency.	350,000	394,000	478,000			
	Increase the terminal limits at						
	LGEE's Boonesboro North						
	associated with the Boonesboro						
	North-Winchester Water Works						
	69 kV circuit to at least 1225A	440.000	404.000	150.000			
June 2009	(146 MVA) summer emergency.	110,000	124,000	150,000			
	associated with the Boonesboro						
	North 138-69 kV transformer to						
	at least 1350A (161 MVA)						
June 2009	summer emergency.	140,000	158,000	191,000			
	Increase the limits of LGEE's	· · · · · · · · · · · · · · · · · · ·	······				
	Lake Reba-Waco 69 kV line to						
	at least 515A (62 MVA) summer						
June 2009	emergency.	110,000	124,000	150,000			
Table 4-5							
-----------	--	--------------	---------------	----------------	--	--	--
	Estimated Costs for Alternative 1						
		Planning	Inflated Cost				
Install		Estimate	(Install Year	Present			
Date	Project Description	(2006\$)	\$)	Worth (2006\$)			
	Increase the limits of LGEE's						
	Parker Seal-Winchester 69 kV						
	line to at least 630A (75 MVA)	40.000	10.000	44.000			
June 2009	summer emergency.	10,000	12,000	14,000			
	Increase the limits of LGEE's						
	Alcalde-Elihu 161 kV line to at						
	least 805A (224 MVA) summer						
	emergency and to at least						
	1015A (283 MVA) winter						
June 2009	emergency.	50,000	56,000	65,000			
	Replace the Dale 138-69 kV,						
November	82.5 MVA transformer with a						
2009	100 MVA transformer	920,000	1,036,000	1,187,000			
	Increase the limits of AEP's						
	Leslie 161-69 kV transformer to						
November	at least 124 MVA winter						
2009	emergency	1,080,000	1,217,000	1,394,000			
	Total	\$51,095,000	\$57,560,000	\$69,685,000			

4.3.2.2 Construction Plan for J.K. Smith-Tyner Alternatives

Two construction plans were developed that included a new 345 kV line from EKPC's J.K. Smith Substation to EKPC's Tyner Substation. These two Alternatives are presented below.

<u>Alternative 2: J.K. Smith-Tyner 345 kV Line; Dale-Boonesboro North 138 kV Reactor</u> <u>Addition</u>

This Alternative specifies the construction of a 345 kV line from J.K. Smith to Tyner and the addition of a 345-161 kV autotransformer at Tyner. Additionally, the installation of a 5% series reactor is included in the Dale-Boonesboro North 138 kV line. Several other transmission system modifications are included in this Alternative, as shown in Table 4-6.

	A 140	Table 4-	6 ons and Reaso	ns for Need	
Install	Project	mauve 2 – rroject Descripti	Reason for	Critical	Unit
Date	Ref #	Project Description	Need	Contingency	Outage
			Numerous	Numerous	
		Construct 43.5 miles of 345 kV line	Overloads (See	Contingencies	
	_	from JK Smith to Tyner using	Tables 3-1, 3-2,	(See Tables 3-1, 3-	
June 2009	2.1	bundled 954 MCM ACSR conductor	<u>U-1, & U-2)</u>	2, 0-1, & 0-2)	
		Add 345 kV Terminal Facilities at IK	Overloads (See	Contingencies	
		Smith CFB Substation for the Typer	Tables 3-1. 3-2	(See Tables 3-1. 3-	
June 2009	22		C-1, & C-2)	2, C-1, & C-2)	
34110 2000	Bas / Am		Numerous	Numerous	
			Overloads (See	Contingencies	
		Install a 345-161 kV, 450 MVA	Tables 3-1, 3-2,	(See Tables 3-1, 3-	
June 2009	2.3	transformer at Tyner	C-1, & C-2)	2, C-1, & C-2)	
			Overload of the		
			954 MCM ACSR		
			Boonesboro		
			North-		
		Install a 138 kV, 5% series reactor	Winchester	Fawkes-Clark	
		at Dale in the Dale-Boonesboro	Water Works 69	County 138 kV	
June 2009	2.4	North 138 kV line	kV line	Line	Ghent #1
		· · · ·	Overload of the		
			190 MVA		
			summer		
			rating and the		
			223 MVA winter		
			emergency		
		Ensure that the Hyden Tap-Wooten	rating of the		
		161 kV LGEE-AEP interconnection	Hyden Tap-		
		has minimum ratings of 194/194	Wooten 161 kV	Pineville TVA-	
		MVA summer and 252/252 MVA	LGEE-AEP	Stinnett 161 KV	Base
June 2009	2.5	winter	Interconnection		Dase
		Replace the Typer 161-60 kV 65	Typer 161-69	Typer-Pittsburg-	
		MVA transformer with a 93 MVA	kV. 65 MVA	London 161 kV	
June 2009	2.6	transformer	transformer	Line	Cooper #2
	1		Overload of the		
			266 MCM ACSR		
			conductor in the		
		Reconductor LGEE's Pittsburg-East	Pittsburg-East	Difference 161.00	
	0.7	Bernstadt 69 kV line (2.1 miles)	Bernstadt 69 KV	PillSDUIG 101-09	Cooper #2
Lune 2009	1 2.1	I USING 397 IVICIVI ACSK CONQUCTOR			

	Table 4-6						
Install	Alte	rnative 2 – Project Descripti	Peacon for	Critical	Unit		
Doto	Project	Project Description	Nood	Contingency	Outage		
Date		Project Description	Overload of the 426 MVA summer	Contailgency	Culligo		
.lune 2009	2.8	Increase the terminal limits at LGEE's Brown North associated with the Brown North-Brown Plant- Brown CT 138 kV circuit #2 to at least 1855A (443 MVA) summer emergency	emergency rating of the Brown North- Brown Tap #2 138 kV line section	Brown North- Brown Tap #1 138 kV Line	Brown #3		
	2.0	Unorgonoy	Overload of the 190 MVA summer emergency rating and 218 MVA winter				
.lune 2009	2.9	Increase the terminal and conductor limits of LGEE's Delvinta-Hyden Tap 161 kV line section to at least 765A (213 MVA) summer emergency and 1005A (280 MVA) winter emergency	emergency rating of the Delvinta-Hyden Tap 161 kV line section	J.K. Smith-North Clark 345 kV Line or Tyner-Pittsburg- London 161 kV Line	Cooper #2		
June 2009	2.10	Increase the terminal limits of LGEE's Clark County-Sylvania 69 kV line section to at least 1140A (136 MVA) summer emergency	Overload of the 124 MVA summer emergency rating of the Clark County- Sylvania 69 kV line section	Avon-Boonesboro North-Dale 138 kV Line	Brown #3		
June 2009	2.11	Increase the terminal limits of LGEE's Hopewell-Sweet Hollow 69 kV line to at least 630A (75 MVA) summer emergency and 745A (89 MVA) winter emergency	Overload of the 72 MVA summer and winter emergency ratings of LGEE's Hopewell-Sweet Hollow 69 kV line section	Pittsburg-London 69 kV Line	Base		
June 2009	2.12	Increase the limits of AEP's Hazard 161-138 kV transformer to at least 175/203 MVA summer normal/emergency	Overload of the 174 MVA summer normal rating and the 202 MVA summer emergency rating of AEP's Hazard 161-138 kV transformer	Normal Conditions or an outage of Clinch River- Dorton 138 kV	Base		

Table 4-6						
Install Date	Alter Project Ref #	rnative 2 – Project Descripti Project Description	ons and Reaso Reason for Need	ns for Need Critical Contingency	Unit Outage	
November 2009	2.13	Increase the limits of the North London 69 kV EKPC-LGEE interconnection to at least 815A (97 MVA) winter emergency	Overload of the 93 MVA winter emergency rating of the North London EKPC-LGEE 69 kV interconnection	Pittsburg 161-69 kV Transformer	Brown #3	
November 2009	2.14	Increase the limits of the LGEE's Fawkes Tap-Fawkes LGEE 138 kV line to at least 1645A (393 MVA) winter emergency	283 MVA winter emergency rating of the Fawkes Tap- Fawkes LGEE 138 kV line	Fawkes EKPC- Fawkes LGEE 138 kV Line	Brown #3	
November 2009	2.15	Increase the terminal limits at Fawkes LGEE for the Fawkes EKPC-Fawkes LGEE 138 kV interconnection to at least 1655A (396 MVA) winter emergency	Overload of the 370 MVA winter emergency rating of the Fawkes EKPC- Fawkes LGEE 138 kV interconnection	Fawkes Tap- Fawkes LGEE 138 kV Line	Brown #3	
November 2009	2.16	Replace the 1200A switch at Fawkes EKPC for the Fawkes EKPC-Fawkes LGEE 138 kV interconnection with a 2000A switch	Overload of the 373 MVA winter emergency rating of the 1200A switch at Fawkes EKPC associated with the Fawkes EKPC-Fawkes LGEE 138 kV interconnection	Fawkes Tap- Fawkes LGEE 138 kV Line	Brown #3	
November 2009	2.17	Replace the 600A high-side and 1200A low-side terminal equipment at Powell County associated with the Powell County 138-69 kV transformer	Overload of the 143 MVA winter emergency rating of the terminal equipment at Powell County associated with the Powell County 138-69 kV transformer	Dale 138-69 kV Transformer	Dale #3	
November 2009	2.18	Increase the limits of AEP's Leslie 161-69 kV transformer to at least 128 MVA winter emergency	Overload of the 120 MVA winter emergency rating of AEP's Leslie 161-69 kV transformer	Wooten-Hazard 161 kV Line	Base	

	Table 4-6					
	Alte	rnative 2 – Project Descripti	ons and Reaso	ns for Need		
Install	Project		Reason for	Critical	Unit	
Date	Ref #	Project Description	Need	Contingency	Outage	
			Overload of the 59 MVA winter			
		Increase the limits of AFD's Leslie.	emergency rating of AEP's			
November		Hazard 69 kV line to at least 520A	Leslie-Hazard	Wooten-Hazard		
2009	2.19	(62 MVA) winter emergency	69 kV line	161 kV Line	Base	
			Overload of the			
		Replace the Dale 138-69 kV, 82.5	Dale 138-69 kV,	JK Smith-Powell		
November		MVA transformer with a 100 MVA	82.5 MVA	County 138 kV		
2009	2.20	transformer	transformer.	Line	Dale #3	
			Overload of the			
			48 MVA winter			
			emergency			
		Increase the terminal limits of AEP's	rating of AEP's			
		Morehead-Hayward 69 kV line to at	Morehead-	Rowan County-		
November		least 475A (57 MVA) winter	Hayward 69 kV	Skaggs 138 kV		
2009	2.21	emergency	line	Line	Base	

Projects 2.1 through 2.3 in Table 4-6 are the projects necessary to establish a 345 kV line from J.K. Smith to the Tyner Substation and a connection to the existing Tyner 161 kV Project 2.4 is needed to restrict the flow into LGEE's 69 kV system in the bus. Boonesboro North area that would be caused by the proposed generators. Project 2.5 specifies a required increase of the summer and winter ratings identified in the power flow models for the Hyden Tap-Hyden 161 kV interconnection between LGEE and AEP. Project 2.6 is a required replacement of the existing Tyner 161-69 kV transformer with a larger unit due to increased power flows into the Tyner Substation with this Alternative. Project 2.7 is a required reconductor of an LGEE 69 kV line in the vicinity of the Tyner Substation, again due to the increased power flows caused by the J.K. Smith-Tyner 345 kV line addition. Project 2.8 is an upgrade of an LGEE 138 kV facility in the vicinity of the Brown Power Plant. Project 2.9 is an upgrade of an LGEE 161 kV facility in the Delvinta area. Project 2.10 is an upgrade of an LGEE 69 kV facility in the Clark County area. Project 2.11 is an upgrade of an LGEE 69 kV line in the area near Tyner. Projects 2.12, 2.18, and 2.19 are upgrades identified on the AEP transmission system in the Hyden/Hazard area. Project 2.13 is an upgrade of a recently energized new 69 kV interconnection between EKPC and LGEE in the area near Tyner. Projects 2.14 and 2.15 are upgrades of LGEE 138 kV facilities in the area near Fawkes. Project 2.16 is an upgrade of an EKPC 138 kV facility in the Fawkes area. Project 2.17 is a terminal upgrade of the Powell County 138-69 kV transformer to accommodate increased power flows from the 138 kV bus to the 69 kV bus. Project 2.20 specifies a required transformer replacement at EKPC's Dale Station to accommodate increased power flows from the 138 kV bus to the 69 kV bus. Finally Project 2.21 is an upgrade of an AEP 69 kV facility in the Morehead area.

Table 4-6 indicates that this Alternative results in the need for one major project that includes EKPC's construction of the 345 kV line from J.K. Smith to Tyner, addition of a

345-161 kV transformer and associated terminals at Tyner, and a 345 kV terminal addition at J.K. Smith. The other projects identified in Table 4-6 indicate that the addition of the J.K. Smith-Tyner 345 kV line creates several overload issues on the 69 kV system at Tyner and in the surrounding area. Also, loadings are increased on LGEE's 161 kV line section from Delvinta to Hyden Tap, and on the AEP transmission system from Hyden Tap to Hazard, resulting in several overloads in this area. As with Alternative 1, this plan also requires the replacement of the 138-69 kV transformer at Dale due to the increased power flows caused by the proposed generators. The remaining upgrades needed for Alternative 2 are expected to be relatively minor projects.

The planning cost estimates for this Alternative are listed by project in Table 4-7. Costs are provided in 2006 dollars, install year dollars, and present worth dollars.

52

Table 4-7						
Estimated Costs for Alternative 2						
Install	Duciest Description	Planning Estimate	Inflated Cost (Install Year	Present		
Date	Project Description	(20005)	<u>ک)</u>	worth (2005)		
lune 2009	Line from JK Smith to Tyner using bundled 954 MCM ACSR	51 155 000	57 630 000	69 917 000		
Julie 2003	Add 345 kV Terminal Facilities	01,100,000	01,000,000	03,317,000		
June 2009	at JK Smith CFB Substation for the Tyner line	1,080,000	1,217,000	1,476,000		
	Install a 345-161 kV, 450 MVA					
June 2009	transformer at Tyner	4,300,000	4,844,000	5,877,000		
June 2009	Install a 138 KV, 5% series reactor at Dale in the Dale- Boonesboro North 138 kV line	645,000	727,000	882,000		
.lune 2009	Ensure that the Hyden Tap- Wooten 161 kV LGEE-AEP interconnection has minimum ratings of 194/194 MVA summer and 252/252 MVA winter	100.000	110.000	145.000		
	Replace the Tyner 161-69 kV.					
June 2009	65 MVA transformer with a 93 MVA transformer	915,000	1,031,000	1,251,000		
lupe 2009	East Bernstadt 69 kV line (2.1 miles) using 397 MCM ACSR	170 000	192.000	219 000		
lune 2009	Increase the terminal limits at LGEE's Brown North associated with the Brown North-Brown Plant-Brown CT 138 kV circuit #2 to at least 1855A (443 MVA)	10,000	11.000	13,000		
June 2003	Increase the terminal and conductor limits of LGEE's Delvinta-Hyden Tap 161 kV line section to at least 765A (213 MVA) summer emergency and 1005A (280 MVA) winter	10,000		10,000		
June 2009	emergency	645,000	727,000	832,000		
June 2009	Increase the terminal limits of LGEE's Clark County-Sylvania 69 kV line section to at least 1140A (136 MVA) summer emergency	20,000	23,000	26,000		
June 2009	Increase the terminal limits of LGEE's Hopewell-Sweet Hollow 69 kV line to at least 630A (75 MVA) summer emergency and 745A (89 MVA) winter emergency	85,000	96,000	110,000		

Table 4-7						
	Estimated	Costs for Altern	native 2			
Install		Planning Estimate	Inflated Cost	Present		
Data	Project Description	(2006g)	(Instan Year	Worth (20068)		
Date	Increase the limits of AFP's	(2000\$)	\$ <u>)</u>	WOITH (2000\$)		
	Hazard 161-138 kV transformer					
	to at least 175/203 MVA					
June 2009	summer normal/emergency	2,155,000	2,428,000	2,781,000		
	Increase the limits of the North					
	London 69 kV EKPC-LGEE					
November	interconnection to at least 815A	20.000	00.000	26.000		
2009	(97 MVA) Winter emergency	20,000	23,000	26,000		
	I GEE's Fawkes Tan-Fawkes					
	LGEE 138 kV line to at least					
November	1645A (393 MVA) winter					
2009	emergency	225,000	253,000	290,000		
	Increase the terminal limits at					
	Fawkes LGEE for the Fawkes					
	EKPC-Fawkes LGEE 138 kV					
Nevember	Interconnection to at least					
	emergency	200.000	225.000	258 000		
2000	Replace the 1200A switch at	200,000		200,000		
	Fawkes EKPC for the Fawkes					
	EKPC-Fawkes LGEE 138 kV					
November	interconnection with a 2000A					
2009	switch	30,000	34,000	39,000		
	Replace the 600A high-side and					
	1200A low-side terminal					
November	associated with the Powell					
2009	County 138-69 kV transformer	110,000	124,000	142,000		
	Increase the limits of AEP's					
	Leslie 161-69 kV transformer to					
November	at least 128 MVA winter					
2009	emergency	1,080,000	1,217,000	1,394,000		
	Increase the limits of AEP's					
November	Lesile-Hazard 09 KV life to at					
2009	emergency	900.000	1.014.000	1,162,000		
	Replace the Dale 138-69 kV.					
November	82.5 MVA transformer with a					
2009	100 MVA transformer	920,000	1,036,000	1,187,000		
	Increase the terminal limits of					
	AEP's Morehead-Hayward 69					
November	KV line to at least 4/5A (5/	110.000	124 000	1/12 000		
2009		\$64 875 000	\$73 086 000	\$88,160,000		
	iulai	ψυτιυιυμυυ	φιοιούοιοο	φυυ, ιυσ, υυν		

Alternative 3: J.K. Smith-Tyner 345 kV Line; J.K. Smith-Spencer Road 138 kV Line

This Alternative specifies the construction of a 138 kV line from the J.K. Smith Substation to LGEE's Spencer Road Substation, as well as the 345 kV line from J.K. Smith to Tyner and the addition of a 345-161 kV autotransformer at Tyner. Several other transmission system modifications are included in this Alternative, as shown in Table 4-8.

Table 4-8						
Install	Alte	rnative 3 – Project Descripti	Reason for	Critical	Unit	
Date	Ref #	Project Description	Need	Contingency	Outage	
June 2009	3.1	Construct 43.5 miles of 345 kV line from JK Smith to Tyner using bundled 954 MCM ACSR conductor	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
June 2009	3.2	Add 345 kV Terminal Facilities at JK Smith CFB Substation for the Tyner line	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
June 2009	3.3	Install a 345-161 kV, 450 MVA transformer at Tyner	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
June 2009	3.4	Replace the Tyner 161-69 kV, 65 MVA transformer with a 93 MVA transformer	Overload of the Tyner 161-69 kV, 65 MVA transformer	Tyner-Pittsburg- London 161 kV Line	Cooper #2	
June 2009	3.5	Ensure that the Hyden Tap-Wooten 161 kV LGEE-AEP interconnection has minimum ratings of 221/221 MVA summer and 260/260 MVA winter	Overload of the 190 MVA summer emergency rating and the 223 MVA winter emergency rating of the Hyden Tap- Wooten 161 kV LGEE-AEP interconnection	Pineville TVA- Stinnett 161 kV Line	Base	
June 2009	3.6	Reconductor LGEE's Pittsburg-East Bernstadt 69 kV line (2.1 miles) using 397 MCM ACSR conductor	Overload of the 266 MCM ACSR conductor in the Pittsburg-East Bernstadt 69 kV line	Pittsburg 161-69 kV Transformer	Cooper #2	
June 2009	3.7	Increase the terminal limits at LGEE's Brown North associated with the Brown North-Brown Plant- Brown CT 138 kV circuit #2 to at least 1790A (428 MVA) summer emergency	Overload of the 426 MVA summer emergency rating of the Brown North- Brown Tap #2 138 kV line section	Brown North- Brown Tap #1 138 kV Line	Brown #3	

Table 4-8						
Inctall	Alter	rnative 3 – Project Description	Reason for	Critical	Unit	
Date	Ref #	Project Description	Need	Contingency	Outage	
Date			Overload of the 190 MVA			
			summer emergency rating and 218 MVA winter			
		Increase the terminal limits of LGEE's Delvinta-Hyden Tap 161 kV line section to at least 730A (204 MVA) summer emergency and 980A	emergency rating of the Delvinta-Hyden Tap 161 kV line	Tyner-Pittsburg- London 161 kV		
June 2009	3.8	(273 MVA) winter emergency	section	Line	Cooper #2	
June 2009	3.9	Construct 17.9 miles of 138 kV line from J.K. Smith to LGEE's Spencer Road using 954 MCM ACSR conductor	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
June 2009	3.10	Add 138 kV Terminal Facilities at J.K. Smith CT Substation for the Spencer Road Line	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
June 2009	3.11	Add 138 kV Terminal Facilities at LGEE's Spencer Road Substation for the J K. Smith Line	Numerous Overloads (See Tables 3-1, 3-2, C-1, & C-2)	Numerous Contingencies (See Tables 3-1, 3- 2, C-1, & C-2)		
lune 2009	3.12	Replace LGEE's Clark County 138- 69 kV, 93 MVA transformer with a 150 MVA transformer	Overload of LGEE's Clark County 138-69 kV, 93 MVA transformer	Avon-Boonesboro North-Dale 138 kV Line	Brown #3	
June 2009	3 13	Reconductor LGEE's Clark County- Sylvania-Parker Seal 69 kV line (0.8 miles) using 1272 MCM ACSR	Overload of the 795 MCM ACSR conductor in the Clark County- Sylvania-Parker Seal 69 kV line section	Avon-Boonesboro North-Dale 138 kV Line	Brown #3	
luno 2000	3.14	Increase the terminal limits of LGEE's Clark County-Sylvania 69 kV line section to at least 1200/1505A (143/180 MVA)	Overload of the 96 MVA summer normal rating and the 124 MVA summer emergency rating of the Clark County- Sylvania 69 kV line section	Normal Conditions or Avon- Boonesboro North- Dale 138 kV Line	Brown #3	

	Table 4-8					
Install	Project	rnative 3 – Project Descripti	Reason for	Critical	Unit	
Date	Ref #	Project Description	Need	Contingency	Outage	
			Overload of the 72 MVA summer and winter emergency			
June 2009	3.15	Increase the terminal limits of LGEE's Hopewell-Sweet Hollow 69 kV line to at least 615A (73 MVA) summer emergency and 735A (88 MVA) winter emergency	ratings of LGEE's Hopewell-Sweet Hollow 69 kV line section	Pittsburg-London 69 kV Line	Base	
June 2009	3.16	Replace LGEE's Spencer Road 138-69 kV, 56 MVA transformer with a 93 MVA transformer (use the 93 MVA transformer removed from Clark County)	Overload of the Spencer Road 138-69 kV, 56 MVA transformer	Spencer Road 138-69 kV, 33 MVA Transformer	Base	
June 2009	3.17	Replace LGEE's Spencer Road 138-69 kV, 33 MVA transformer with a 90 MVA transformer	Overload of the Spencer Road 138-69 kV, 33 MVA transformer	Spencer Road 138-69 kV, 56 MVA Transformer	Base	
June 2009	3.18	Reconductor LGEE's Spencer Road-AO Smith Tap-Camargo 69 kV line (2.8 miles) using 556 MCM ACSR conductor	Overload of the 266 MCM ACSR conductor in the Spencer Road- AO Smith Tap- Camargo 69 kV line section	Clark County 138- 69 kV Transformer	Base	
November 2009	3.19	Increase the limits of AEP's Leslie 161-69 kV transformer to at least 128 MVA winter emergency	Overload of the 120 MVA winter emergency rating of AEP's Leslie 161-69 kV transformer	Wooten-Hazard 161 kV Line	Base	
November 2009	3.20	Increase the limits of AEP's Leslie- Hazard 69 kV line to at least 520A (62 MVA) winter emergency	Overload of the 59 MVA winter emergency rating of AEP's Leslie-Hazard 69 kV line	Wooten-Hazard 161 kV Line	Base	
November 2009	3.21	Increase the terminal limits of AEP's Morehead-Hayward 69 kV line to at least 475A (57 MVA) winter emergency	Overload of the 48 MVA winter emergency rating of AEP's Morehead- Hayward 69 kV line	Rowan County- Skaggs 138 kV Line	Base	

Projects 3.1 through 3.3 in Table 4-8 are the projects necessary to establish a 345 kV line from J.K. Smith to the Tyner Substation and a connection to the existing Tyner 161 kV bus. Project 3.4 is a required replacement of the existing Tyner 161-69 kV transformer with a larger unit due to increased power flows into the Tyner Substation with this

Alternative. Project 3.5 specifies a required increase of the summer and winter ratings specified in the power flow models for the Hyden Tap-Hyden 161 kV interconnection between LGEE and AEP. Project 3.6 is a required reconductor of an LGEE 69 kV line in the vicinity of the Tyner Substation, again due to the increased power flows caused by the J.K. Smith-Tyner 345 kV line addition. Project 3.7 is an upgrade of an LGEE 138 kV facility in the vicinity of the Brown Power Plant. Project 3.8 is an upgrade of an LGEE 161 kV facility in the Delvinta area. Projects 3.9 through 3.11 specify the addition of a 138 kV line between J.K. Smith and Spencer Road as an additional outlet for the J.K. Smith generation. Projects 3.12 through 3.14 are upgrades required on the LGEE system in the vicinity of its Clark County Substation as a result of the addition of the J.K. Smith-Spencer Road 138 kV line. Project 3.15 is an upgrade of an LGEE 69 kV line in the area near Tyner. Projects 3.16 through 3.18 are upgrades required on the LGEE system in the vicinity of the Spencer Road Substation attributable to the addition of the J.K. Smith-Spencer Road 138 kV line. Projects 3.19, and 3.20 are upgrades identified on the AEP transmission system in the Hyden/Hazard area. Finally, Project 3.21 is an upgrade of an AEP 69 kV facility in the Morehead area.

Table 4-8 indicates that this Alternative results in the need for two major projects --EKPC's construction of the 345 kV line from J.K. Smith to Tyner and associated terminal facilities, and the construction of the J.K. Smith-Spencer Road 138 kV line. The other projects identified in Table 4-8 indicate that the addition of these two lines creates several overload issues on the 69 kV systems in the Tyner, Clark County, and Spencer Road areas. Also, loadings are increased on LGEE's 161 kV line section from Delvinta to Hyden Tap, and on the AEP transmission system from Hyden Tap to Hazard, resulting in several overloads in this area. The remaining upgrades needed for Alternative 3 are expected to be relatively minor projects.

The planning cost estimates for this Alternative are listed by project in Table 4-9. Costs are provided in 2006 dollars, install year dollars, and present worth dollars.

59

Table 4-9						
Estimated Costs for Alternative 3						
		Planning	Inflated Cost			
Install		Estimate	(Install Year	Present		
Date	Project Description	(2006\$)	\$)	Worth (2006\$)		
	Construct 43.5 miles of 345 kV					
	line from JK Smith to Tyner					
	using bundled 954 MCM ACSR					
June 2009	conductor	51,155,000	57,630,000	69,917,000		
	Add 345 kV Terminal Facilities					
hun e 0000	at JK Smith CFB Substation for	4 000 000	1 017 000	1 476 000		
June 2009		1,080,000	1,217,000	1,470,000		
luna 2000	Install a 345-161 KV, 450 MVA	4 300 000	4 844 000	5 877 000		
June 2009	Replace the Typer 161-69 kV	4,300,000	4,044,000	0,011,000		
	65 MVA transformer with a 93					
June 2009	MVA transformer	915.000	1.031.000	1.251.000		
	Ensure that the Hyden Tap-					
	Wooten 161 kV LGEE-AEP					
	interconnection has minimum					
	ratings of 221/221 MVA summer					
June 2009	and 260/260 MVA winter	100,000	110,000	145,000		
	Reconductor LGEE's Pittsburg-					
	East Bernstadt 69 kV line (2.1					
h	miles) using 397 MCM ACSR	170 000	102.000	210,000		
June 2009	conductor	170,000	192,000	219,000		
	I GEE's Brown North associated					
	with the Brown North-Brown					
	Plant-Brown CT 138 kV circuit					
	#2 to at least 1790A (428 MVA)					
June 2009	summer emergency	10,000	11,000	13,000		
	Increase the terminal limits of					
	LGEE's Delvinta-Hyden Tap					
	161 kV line section to at least					
	730A (204 MVA) summer					
luno 2000	MV(A) winter emergency	20,000	23.000	26,000		
Julie 2009	Construct 17.9 miles of 138 kV	20,000	20,000	20,000		
	line from J.K. Smith to LGEE's					
	Spencer Road using 954 MCM					
June 2009	ACSR conductor	6,370,000	7,176,000	8,706,000		
	Add 138 kV Terminal Facilities					
	at J.K. Smith CT Substation for					
June 2009	the Spencer Road Line	270,000	304,000	369,000		
	Add 138 kV Terminal Facilities					
	at LGEE's Spencer Road					
lune 2000		270 000	304 000	348 000		
June 2009	Replace GEE's Clark County	210,000				
	138-69 kV. 93 MVA transformer					
June 2009	with a 150 MVA transformer	1,120,000	1,262,000	1,446,000		

Table 4-9						
Estimated Costs for Alternative 3						
Install Date	Project Description	Planning Estimate (2006\$)	Inflated Cost (Install Year \$)	Present Worth (2006\$)		
June 2009	Reconductor LGEE's Clark County-Sylvania-Parker Seal 69 kV line (0.8 miles) using 1272 MCM ACSR conductor	150,000	169,000	194,000		
June 2009	Increase the terminal limits of LGEE's Clark County-Sylvania 69 kV line section to at least 1200/1505A (143/180 MVA) summer normal/emergency	110,000	124,000	142,000		
	Increase the terminal limits of LGEE's Hopewell-Sweet Hollow 69 kV line to at least 615A (73 MVA) summer emergency and 735A (88 MVA) winter			440.000		
June 2009	emergency Replace LGEE's Spencer Road 138-69 kV, 56 MVA transformer with a 93 MVA transformer (use the 93 MVA transformer romound from Clark County)	265,000	296,000	342,000		
June 2009	Replace LGEE's Spencer Road 138-69 kV, 33 MVA transformer with a 90 MVA transformer	905.000	1.020.000	1,168.000		
June 2009	Reconductor LGEE's Spencer Road-AO Smith Tap-Camargo 69 kV line (2.8 miles) using 556 MCM ACSR conductor	400,000	451,000	516,000		
November 2009	Increase the limits of AEP's Leslie 161-69 kV transformer to at least 128 MVA winter emergency	1,080,000	1,217,000	1,394,000		
November 2009	Increase the limits of AEP's Leslie-Hazard 69 kV line to at least 520A (62 MVA) winter emergency	900,000	1,014,000	1,162,000		
November 2009	Increase the terminal limits of AEP's Morehead-Hayward 69 kV line to at least 475A (57 MVA) winter emergency	110,000	124,000 \$78,618,000	142,000 \$94,963,000		

Section 5: Comparison of the Developed Alternatives

The following issues were considered in comparing the three Alternatives, and are discussed in this section:

- Power Flow Impacts
- Transmission System Losses
- Transient Stability Impacts
- Short Circuit Impacts
- Physical Issues
- System Reliability
- Future Expansion
- Local Area Support
- Costs
- Performance for Double Contingencies

5.1 Power Flow Impacts

Details of the required system additions and modifications for each of the three Alternatives that were developed were provided in subsection 4.3.3. As shown, Alternative 1 requires a substantially smaller number of projects than does either Alternative 2 or Alternative 3. This indicates that Alternative 1 reduces the power flow impacts on the 161 kV, 138 kV, and 69 kV facilities in the region. The large number of upgrades required in specific areas for either Alternative 2 or Alternative 3 indicates that transmission bottlenecks remain with these two Alternatives that must be mitigated.

To further compare the impacts of the three Alternatives, two other comparisons were performed. First, a comparison of normal-system flows on a number of transmission facilities in the region was developed. Next, a comparison of system flows with an incremental 4000 MW north-south transfer was developed.

5.1.1 Impact on Normal-System Flows on Transmission Facilities in the Region

Table 5-1 lists the flows on various facilities in the region with the proposed generation additions at J.K. Smith for both 2010 Summer and 2010-11 Winter peak conditions. The flows are provided for each of the three developed Alternatives, as well as for the scenario without any added transmission or the proposed J.K. Smith generator additions.

Table 5-1								
MVA Flows on Transmission Facilities in the Region with the Proposed Generation								
Additions at J.K.	Additions at J.K. Smith for the Developed Transmission Alternatives						- l-	
	201	0 Sumn	ner Pea	k.	2010-11 Winter Peak			
	No Added				ON hebbA			
	Transmis				Transmis			1
Transmission Facility	sion*	Alt. 1	Alt. 2	Alt. 3	sion*	Alt. 1	Alt. 2	Alt. 3
Pineville-Pocket North 500 kV	(37)	73	(15)	(15)	(29)	129	26	25
Pocket North-Phipps Bend							(170)	((00)
500 kV	(212)	(115)	(169)	(173)	(239)	(88)	(179)	(183)
Pocket North 500-161 kV	179	167	160	161	223	207	198	199
Ghent-West Lexington 345 kV	468	431	452	453	625	561	602	603
West Lexington-Brown 345								
kV	280	218	250	254	440	322	399	404
Smith-Hardin County 345 kV	174	171	173	173	236	229	235	235
Hardin County-Brown 345 kV	(117)	(134)	(120)	(121)	(37)	(60)	(41)	(41)
Brown-Alcalde 345 kV	382	312	331	336	498	413	431	435
Alcalde-Pineville 345 kV	256	154	249	250	327	198	320	320
Brown-West Garrard 345 kV	0	(88)	0	0	0	(167)	0	0
West Garrard-Pineville 345			_	-				•
kV	0	307	0	0	0	414	0	0
Spurlock-North Clark 345 kV	35	197	144	185	127	383	284	329
North Clark-Avon 345 kV	377	315	352	305	472	374	421	3/8
J.K. Smith-North Clark 345 kV	347	112	201	115	343	(29)	136	49
J.K. Smith-West Garrard 345			-					•
kV	0	393	0	0	0	589	0	0
J.K. Smith-Tyner 345 kV	0	0	382	372	0	0	509	498
Alcalde 345-161 kV	123	156	80	84	164	211	107	110
Pineville 345-161 kV	291	391	258	260	345	4/8	301	303
Brown 345-138 kV	(233)	(167)	(217)	(217)	(116)	5/	(94)	(94)
Hardin County 345-138 kV	291	303	292	292	260	2/9	262	262
West Lexington 345-138 kV	233	271	249	244	204	262	225	222
Delvinta-Hyden Tap 161 kV	128	102	185	178	173	138	250	243
Hyden Tap-Wooten 161 kV	144	132	182	177	168	150	218	213
Wooten-Leslie 161 kV	(8)	(29)	8	6	6	(24)	24	22
Wooten-Hazard 161 kV	151	159	176	172	162	174	195	191
Pineville-Stinnett 161 kV	80	104	69	70	85	117	71	12
Wolf Creek-Russell Co. Jct.							100	407
161 kV	107	99	91	92	149	136	126	127
Tyner-Pittsburg 161 kV	67	46	179	172	102	72	253	246
Pittsburg-London 161 kV	28	(22)	104	98	45	(27)	155	149
Alcalde-Elihu 161 kV	28	62	(7)	(5)	53	104	14	
Lake Reba Tap 161-138 kV	(159)	(136)	(82)	(80)	(209)	(177)	(107)	(106)
Hazard 161-138 kV	151	160	176	172	163	175	195	192
Leslie 161-69 kV	48	50	51	50	66	69	69	69
Tyner 161-69 kV	26	26	62	61	33	34	83	82
Pittsburg 161-69 kV	53	48	76	75	68	62	99	98

Table 5-1								
MVA Flows on Transmission Facilities in the Region with the Proposed Generation								
Auumons at J.K.	Sintin 10	OF the D	evelop		2010	Alteri	iatives	alt
	201	<u>u Suinn</u>	ner Pea	ĸ	2011	J-11 W	inter Pe	ak
	Added				Added			
	Transmis	÷			Transmis			
Transmission Facility	sion*	Alt. 1	Alt. 2	Alt. 3	sion*	Alt. 1	Alt. 2	Alt. 3
J.K. Smith-Dale 138 kV	225	180	164	150	310	233	233	210
J.K. Smith-Fawkes 138 kV	215	177	172	144	289	230	233	201
J.K. Smith-Powell County 138	000	004	400	450	000	054	004	400
kV	232	201	162	150	298	251	204	192
J.K. Smith-Union City 138 kV	283	240	217	190	372	305	284	254
J.K. Smith-Spencer Road 138		0	~	404	0	0		404
KV	0	0	0	181	0	0	0	194
Avon-Boonesboro North 138	(05)	(05)	04	(44)	20	44	20	(00)
KV	(20)	(25)	24	(41)	29	41	- 39	(33)
Dale-Boonesboro North 138	117	124	06	106	101	101	02	107
KV Fourkoo Clark County 129 KV	147	104	90	67	121	101	02	20
Prove North Prove Tap 129	152	125	142	07	109	99	110	- 39
	(10/1)	(164)	(100)	(193)	(25)	33	(26)	(22)
Rrown North Brown Tap 138	(104)	(104)	(190)	(103)	(00)	55	(30)	(00)
	(184)	(164)	(190)	(183)	(35)	33	(36)	(33)
$\frac{138 \text{ kV}}{138 \text{ kV}}$	121	121	115	115	121	122	114	114
Fawkes EKPC-Fawkes LGEF	121	121	110	110	12)	117	117
138 kV	215	174	199	141	296	230	266	206
Fawkes EKPC-Eawkes Tap								
138 kV	63	57	48	42	80	70	57	51
Fawkes Tap-Fawkes LGEE								
138 kV	57	39	63	37	88	59	94	67
Rowan County-Skaggs 138								
kV	74	71	69	80	106	101	99	111
Boonesboro North 138-69 kV	128	122	112	91	124	113	108	85
Dale 138-69 kV	74	73	74	70	97	91	92	87
Powell County 138-69 kV	89	82	88	82	103	93	102	96
Clark County 138-69 kV	48	47	56	82	40	39	48	74
Spencer Road 138-69 kV #1	39	39	40	52	33	33	34	49
Spencer Road 138-69 kV #2	31	31	32	41	26	26	27	39
Boonesboro North-								
Winchester Water 69 kV	114	108	99	78	110	99	94	71
Lake Reba-Waco 69 kV	34	30	18	18	47	41	25	25
Dix Dam-Buena Vista 69 kV	55	53	45	46	67	65	54	54
Boyle County-Vaksdahl 69 kV	43	43	38	38	48	47	41	41
Pittsburg-North London 69 kV	(16)	(13)	(21)	(21)	(12)	(9)	(20)	(20)
Clark County-Sylvania 69 kV	32	32	42	80	27	27	37	77
Laurel County-Hopewell 69								
kV	42	38	54	53	44	38	59	59
Pittsburg-London 69 kV	65	56	94	92	78	65	116	115

Table 5-1MVA Flows on Transmission Facilities in the Region with the Proposed Generation Additions at J.K. Smith for the Developed Transmission Alternatives									
	201	0 Sumr	ner Pea	ık	201	0-11 W	inter Po	eak	
Transmission Facility	No Added Transmis sion*	Alt. 1	Alt. 2	Alt. 3	No Added Transmis sion*	Alt. 1	Alt. 2	Alt. 3	
North London EKPC-North						_			
London LGEE 69 kV	23	24	30	30	15	17	33	32	
Leslie-Hazard 69 kV	(8)	8	8	8	19	21	21	21	
Morehead-Hayward 69 kV	28	26	27	35	35	31	33	41	
Spencer Road-AO Smith Tap 69 kV	24	25	26	37	15	17	18	34	

*Does not include the proposed generators at J.K. Smith

Table 5-1 shows that the power flows are similar on many facilities when comparing Alternative 2 with Alternative 3. The primary differences are in the Boonesboro North/Fawkes/Clark County/Spencer Road areas due the addition of the J.K. Smith-Spencer Road 138 kV line in Alternative 3 versus the addition of a 5% series reactor in the Dale-Boonesboro North 138 kV line in Alternative 2.

A comparison of the power flows on facilities for Alternative 1 versus Alternatives 2 and 3 shows that the flows are higher on the 345 kV and 500 kV system south of the Brown area with Alternative 1. Alternatives 2 and 3 result in increased power flows in the Delvinta/Tyner/Pittsburg area, since the J.K. Smith-Tyner 345 kV line terminates into the Tyner 161 kV bus through a 345-161 kV transformer. This is the primary reason significantly more upgrades are required with Alternatives 2 and 3. Therefore, Alternative 1 appears to provide some advantages compared to Alternatives 2 and 3, since the 345 and 500 kV bulk systems are utilized more for power transmission.

5.1.2 Impact on Transmission-System Flows with North-South Transfers

An incremental power transfer of 4000 MW from the region north of Kentucky to the region south of Kentucky was simulated through power flow analysis to determine the relative performance of the three developed Alternatives. Generation was increased in the region north of Kentucky as follows:

- A generation increase of 2000 MW in the Michigan Electric Coordinated Systems (MECS) control area
- A generation increase of 1000 MW in the First Energy (FE) control area
- A generation increase of 1000 MW in the northern MAIN area (which includes Commonwealth Edison and Illinois Power)

Generation was decreased in the region south of Kentucky as follows:

• A generation decrease of 2000 MW in the TVA control area

• A generation decrease of 2000 MW in the remainder of the SERC region (which includes Southern Company)

These generation changes were simulated by scaling generation up proportionally in the sending areas and scaling generation down proportionally in the receiving areas.

A contingency analysis was performed with a 4000 MW incremental transfer for 2010 Summer and 2010-11 Winter peak conditions. Tables 5-2 and 5-3 list the flows on the potentially overloaded facilities for 2010 Summer and 2010-11 Winter, respectively. The flows are provided for each of the three developed Alternatives with the proposed generation additions at J.K. Smith, as well as for the scenario without the proposed generators and without any added transmission.

Table 5-2									
2010 Summer Normal and/or Cont	2010 Summer Normal and/or Contingency MVA Flows on Potentially Limiting								
Transmission Facilities with an Incremental 4000 MW North-South Transfer with									
the Proposed Generation Additions at J.K. Smith for the Developed Transmission									
Alternatives									
Eacility No Added									
Transmission Facility	Rating	Transmission [#]	Alt. 1	Alt. 2	Alt. 3				
Typer 345-138 kV	434	*	*	445.2	436.4				
LK Smith-Union City 138 kV	311	*	329.3	326	*				
West Frankfort-Frankfort Fast 138 kV	303	313.5	*	290.3	289.7				
Union City-Lake Reba Tap 138 kV	302	*	312.9	310	*				
Fawkes-Fawkes Tap 138 kV	287	*	*	289	*				
Fawkes-Fawkes LGEE 138 kV	287	*	*	329.5	*				
Spurlock-Maysville Jct. 138 kV	280	290.6	271.3	266.3	*				
Maysville JctPlumville 138 kV	280	281.3	*	*	*				
Ghent-Owen County Tap 138 kV	277	287.5	266.8	269	268.2				
J.K. Smith-Union City 138 kV	251	*	255.6	*	*				
Union City-Lake Reba Tap 138 kV	243	*	243.6	*	*				
Blue Lick-Bullitt County 161 kV	235	274.9	257.5	261.5	261.5				
Blue Lick-Bullitt County 161 kV	235	239.9	229.3	230.6	230.6				
Dale-Three Forks Jct. 138 kV	222	234.6	233.4	239.7	*				
Three Forks JctFawkes 138 kV	222	226.3	225.1	231.1	*				
Fawkes Tap-Fawkes LGEE 138 kV	220	*	*	327.3	*				
Mercer County-Lebanon 138 kV	220	231.4	225.8	236.7	237.7				
Lake Reba Tap-West Irvine Tap 161 kV	211	200.6	211.1	*	*				
Clifty Creek-Carrollton 138 kV	210	218.4	203	204.6	204				
Hyden Tap-Wooten 161 kV	194	*	*	207.4	*				
Delvinta-Hyden Tap 161 kV	190	*	*	258	250.7				
Alcalde-Elihu 161 kV	190	248.9	266.7	216.8	219.7				
Mercer County-Lebanon 138 kV	179	*	177.2	178.8	179.6				
Fawkes LGEE-Clark County 138 kV	172	*	*	190.3	*				
Delvinta-Hyden Tap 161 kV	167	*	*	222.2	216.1				
Marion County 161-138 kV	167	184.3	171.3	176.8	177.7				
Boonesboro North 138-69 kV	143	146.4	*	152.7	150.1				
Stanley Parker 138-69 kV	143	143.5	140.6	140.8	140				
Sylvania-Parker Seal 69 kV	138	*	*	*	140.3				
Paddys Run 138-161 kV #1	131	137.9	130.5	131.1	131.3				

Table 5-2									
2010 Summer Normal and/or Cont	ingency I	MVA Flows on 1	Potentia	ally Lin	niting				
Transmission Facilities with an Incre	emental 4	1000 MW North	-South	Transf	er with				
the Proposed Generation Additions at J.K. Smith for the Developed Transmission									
Alternatives									
	Facility	No Added							
Transmission Facility	Rating	Transmission#	Alt. 1	Alt. 2	Alt. 3				
Paddys Run 138-161 kV #2	131	137.9	130.5	131.1	131.3				
Pittsburg 161-69 kV	129	*	*	163.5	160.1				
Boone County 138-69 kV	129	138.1	135.1	135.2	134.5				
Clark County-Sylvania 69 kV	117	111.6	115	*	155.1				
North London EKPC-LGEE 69 kV	86	*	*	86.7	85				
Leitchfield 138-69 kV	86	89.8	85.1	85.7	85.7				
Middletown-Mid Valley Simpsonville 69									
kV	82	85.8	77.9	78.5	78.3				
Marion County-Casey County 161 kV	78	108.6	88.3	84.4	85.4				
Casey County-Liberty Junction 161 kV	78	83.8	*	*	*				
Hopewell-Sweet Hollow 69 kV	75	*	*	88.9	87.8				
North London EKPC-London EKPC 69					1				
kV	69	*	*	71.6	69.2				
Laurel Industrial JctWest London 69 kV	69	*	*	73.3	72.4				
Dale-Newby #1 69 kV	69	*	68	70.9	69.8				
Rodburn 138-69 kV	69	78.6	71	70.8	*				
Goddard-Plummers Jct. 69 kV	69	73.2	69.5	69.3	*				
Woosley-Boston KU 69 kV	69	73	74.2	73.4	73.6				
Plumville-Murphysville 69 kV	69	72	69.6	71.3	70.3				
Dale-Hunt #2 69 kV	69	66.6	69.2	*	<u>*</u>				
Loudon Avenue-Haley 69 kV	67	69.1	*	*	*				
Dale-Newby #1 69 kV	57	*	*	57.9	56.5				
Carrollton-Metal&Thermit 69 kV	56	63.6	61	60.8	60.5				
Waco-Rice Tap 69 kV	56	58.4	61.8		*				
Shelby City Tap-Stanford 69 kV	54	59.7	57.7	*	*				
Farmers 138-69 kV	48	53.1	53.8	54.6	54.7				
Hitchins-Leon 69 kV	48	50.4	*	+	*				
Simpsonville-Shelbyville 69 kV	46	55.2	49.9	50.4	50.3				
Shelbyville-Shelbyville East 69 kV	44	50.7	45.5	45.6	45.2				
Rodburn-Morehead East 69 kV	37	55.6	45.2	43.9	*				
Springfield-North Springfield 69 kV	36	38.4	39.8	40.2	40.2				
Morehead East-Morehead 69 kV	33	43.8	33.2	31.9	35.1				
Woodlawn-Fredricksburg Jct. 69 kV	23	33.1	31.3	29.5	29.9				
Fredricksburg JctNorth Springfield 69	1								
kV	23	29.5	27.7	25.8	26.3				
North Springfield-South Springfield Jct.									
69 kV	19	20	21.4	21.8	21.8				

#Does not include the proposed generators at J.K. Smith *MVA Flow is less than 95% of the facility rating

1

Table 5-3									
2010-11 Winter Normal and/or Contingency MVA Flows on Potentially Limiting									
Transmission Facilities with an Incremental 4000 MW North-South Transfer with									
the Proposed Generation Additions	at IK S	mith for the Dev	hanolov	Transi	nission				
Alternatives									
Transmission Easility	Pacility	NO Added	A 14 4	44.0	A 14 O				
	Rating			Alt. Z	Alt. 3				
AVON 345-136 KV	662	681.9	054.0						
Turner 245-101 KV	500	*	654.8						
Aven 245-130 KV	530			570.1					
AV011 343-130 KV	530	546.9	405 7	500.0	400.7				
Vest Lexington 345-138 KV	478	550.9	495.7	500.8	499.7				
J.K. Smith-Union City 138 KV	389	*	418.7	421.5	386.1				
	3/1	÷	393.4	394.2	361.8				
Tyner-Pittsburg 161 KV	335	007.0	0117	388.4	381.5				
Dive Lick 345-101 KV	312	337.8	314.7	322.8	321.9				
	288	292.1	2/8./	279.6	2/9./				
Fawkes-Fawkes LGEE 138 KV	287	309.3	338.8	429.1	348.1				
Fawkes-rawkes Tap 138 KV	287	307.2	334	362.8	304.3				
J.K. Smith-Powell County 138 KV	287	307.1	328.6	333.6	318				
Avon-Loudon Avenue 138 KV	287	300.1	0447	298.1	299.7				
Blue Lick-Builitt County 161 KV	279	337.8	314.7	322.8	321.9				
Blue Lick-Builitt County 161 KV	279	292.1	278.7	279.6	279.7				
Dale-Infee Forks Jct. 138 KV	278	311.7	298.3	301.4	<u> </u>				
Inree Forks JctFawkes 138 KV	278	297.6	284.5	287.6	*				
Union City-Lake Reba Tap 138 KV	2//	005.4	305.5	289.8					
Frankfort East-Tyrone 138 KV	269	305.1		266.2	266.9				
Alastas Flibu 404 W/	269	272.3	335.2	426.4	345.5				
	268	298.1	316.6	256.5	258.8				
Lake Reba Tap 101-136 KV	260	203.5	200.0	000.0	057.5				
Hyden Tap-woolen for Kv	252	000 5	000 0	262.9	257.5				
Lake Reba Tap-west Irvine Tap 161 kV	237	263.5	266.6	244.9	242.5				
Paddys Run-Summershade 161 KV	223	243		0111	* *				
Powell County 101-138 KV	220	216.9	224.3	211.4	000.4				
Most Invine Tap Dolvinte 161 W	210	046.0	208.3	332.8	326.1				
Delvinte Croon Hell let 161 kV	210	240.2	248.8	229.4	227.0				
Poettuville Delvinte 161 kV	210	232.1	235	219.0	210.5				
Clifty Crook Corrollton 129 kV	210	210.4	223.0	135.2	134.5				
Haefling American Avenue 128 kV	101	230	102	220.9	220.5				
Mont Levington Disage 128 W	191	243.7	193	212.0	214				
Delvinte Huden Ten 161 W	191	214.0	*	187	188.5				
Marian County 161 129 W/	107	010.0	100	201.0	281.9				
Lake Data Tan West Invine Tan 161 W	107	210.0	190	198.1	202				
Lake Reba Tap-west Ifvine Tap 161 KV	107	190.6	198.4		*				
Page County 138-09 KV	150	150.5	154 4	4547	454				
Boone County 130-69 KV	147	152.8	151.4	151.7	151				
Boonesboro North 138-69 KV	143	*	*	141.8	143.2				
Pitteburg 161 60 kV	143	*	*	10/.4	100.0				
Coddard 138 60 W	143	444.0	*	209.3	200.2				
Dala 138 60 kV	140	144.0	155.0	150.0	1110				
Daddye Dun 129 161 1/1 #1	100	140.4	100.9	100.0	144.0				
rauuys rull 130-101 KV #1	131	190.3	104	1 105.0	100				

Г

Table 5-3
2010-11 Winter Normal and/or Contingency MVA Flows on Potentially Limiting
Transmission Facilities with an Incremental 4000 MW North-South Transfer with
the Proposed Generation Additions at J.K. Smith for the Developed Transmission

A	Iternativ	es			
	Facility	No Added		ļ	
Transmission Facility	Rating	Transmission#	Alt. 1	Alt. 2	Alt. 3
Paddys Run 138-161 kV #2	131	195.3	184	185.8	186
Fawkes-Richmond 69 kV	117	123.3	123.2	112.3	112.7
Skaggs 138-69 kV	111	106.8	105.3	103.8	114.5
Elihu-Ferguson South	109	*	114.9	*	*
West Berea-West Berea Jct. 69 kV	101	105.3	107.2	99.1	99
West Berea JctThree Links Jct. 69 kV	101	105.3	104.7	100.4	100.2
North London EKPC-LGEE 69 kV	97	*	*	107.9	106.3
Middletown-Mid Vallev Simpsonville 69					1
kV	93	122.1	110.6	112.2	112.1
Bonds Mill-Bonds Mill Junction 69 kV	93	111.2	107.1	108.1	108.3
Bardstown-Bardstown Industrial Tap 69					1
kV	93	96.6	96.1	94.2	94.5
Bullitt County-Beam Junction 69 kV	93	95.3	89.1	89.4	89.4
Thelma 138-69 kV	92	106.5	101	93.6	93.1
Middletown-Mid Vallev Simpsonville 69					
kV	90	97.4	88.4	89.1	89.1
Hopewell-Sweet Hollow 69 kV	88	*	*	103.8	102.7
North London EKPC-London EKPC 69					
kV	87	*	*	89.9	87.8
Laurel Industrial JctWest London 69 kV	87	*	*	89.7	88.9
Liberty JctMt. Olive Jct. 69 kV	87	*	92.3	*	*
Davis-Nicholasville 69 kV	87	92.9	*	93	92.5
Dale-Newby #1 69 kV	87	86	87.8	92.3	90.8
Dale-Newby #1 69 kV	78	*	74.6	80.4	78.8
Waco-Rice Tap 69 kV	75	77.7	79.1	*	*
Shelbyville-Shelbyville South 69 kV	72	76.1	70	71	71.2
Tyrone-Florida Tile Tap #2 69 kV	72	75.8	74.7	72.7	73.8
Beattyville 161-69 kV	72	74.7	78.8	63.8	61.4
Toms Creek Tap-Bond 69 kV	72	73.1	*	*	*
Frankfort-Versailles West Tap 69 kV	70	74.3	*	*	*
Three Links JctBrodhead 69 kV	68	*	*	70.3	70.1
Leon EKPC-AEP 69 kV	68	69.3	66.9	64.8	65.2
Simpsonville-Shelbyville 69 kV	60	80.6	73.2	74.2	74.1
London-Campground Jct. 69 kV	59	*	*	62.7	62.1
Shelbyville-Shelbyville East 69 kV	58	66.3	60.1	60.2	60.3
Rodburn-Morehead East 69 kV	53	53.9	*	*	*
Morehead-Hayward 69 kV	48	*	*	47.3	55.6
London-Campground Jct. 69 kV	48	*	*	49.1	48.4
Hitchins-Leon 69 kV	48	57.5	52	47.8	*
Springfield-North Springfield 69 kV	36	41.1	42.6	42.8	42.4

#Does not include the proposed generators at J.K. Smith *MVA Flow is less than 95% of the facility rating

Tables 5-2 and 5-3 show that potential overloads are present for the existing system and for each of the alternatives considered. A count of the potential facilities loaded at 95% or greater indicates the following:

Alternative	2010 Summer Number of Overloaded Facilities	2010-11 Winter Number of Overloaded Facilities
Without Proposed Generators and		
Associated Transmission	42	58
Alternative 1	42	54
Alternative 2	51	67
Alternative 3	40	62

These statistics indicate that Alternatives 1 and 3 provide better system performance during periods of north-south transfers than does Alternative 3. Also, Alternative 1 is the only Alternative of the three considered that does not result in more overloaded facilities after the proposed generators are added to the system for both 2010 Summer and 2010-11 Winter.

Based on these results, Alternative 1 appears to have an advantage over Alternatives 2 and 3 in terms of impacts on transmission-system power flows during periods of significant north-south transfers.

5.2 Transmission System Losses

The transmission system losses for EKPC, LGEE, AEP, BREC, CIN, DP&L, and TVA were compared for 2010 Summer and 2010-11 Winter for the base system without any of the proposed generators and for the three developed transmission Alternatives. These losses were compared for both a peak case with all generation dispatched at J.K. Smith and for a shoulder peak case with all CT generation off-line at J.K. Smith. For the shoulder-peak case, both the EKPC and LGEE system loads were scaled to 80% of the peak loads. Additionally, any CT generation still required by EKPC at this load level was displaced by equal purchases from northern ECAR and southern SERC. Therefore, in the 80% load case, the only generation dispatched at J.K. Smith was the CFB unit. Table 5-3 shows the comparison of transmission-system losses.

Table 5-3							
Comparison of Transmission System MW Losses for Base System without the							
Proposed	Proposed J.K. Smith Generators and for the Three Transmission Alternatives						
	Developed wit	th the Proposed (Generators				
	Without Proposed						
	Generators	With	Proposed Gener	ators			
Company	Base System	Alternative 1	Alternative 2	Alternative 3			
MW Losses for 2010 Summer Peak Case							

		Table 5-3								
Comparis	on of Transmission Sys	stem MW Losses	for Base System	without the						
Proposed	Proposed J.K. Smith Generators and for the Three Transmission Alternatives									
	Developed with the Proposed Generators									
	Without Proposed									
	Generators	With	Proposed Gener	ators						
Company	Base System	Alternative 1	Alternative 2	Alternative 3						
EKPC	123.3	130.9	130.2	126.0						
LGEE	243.7	241.7	239.5	234.0						
AEP	866.9	875.4	873.8	873.8						
BREC	8.7	8.3	8.3	8.3						
CIN	591.5	596.8	596.8	596.7						
DPL	134.8	140.9	140.9	140.8						
TVA	684.8	675.6	675.6	675.7						
	MW Losses for 2	2010 Summer 80	% Load Case							
EKPC	96.5	95.6	93.0	92.2						
LGEE	176.1	171.9	169.9	167.6						
AEP	864.0	866.2	865.3	865.2						
BREC	8.6	8.5	8.5	8.5						
CIN	591.9	593.4	593.8	593.8						
DPL	132.1	133.7	133.5	133.4						
TVA	682.8	678.0	678.3	678.4						
	MW Losses for	r 2010-11 Winter	· Peak Case							
EKPC	173.0	176.8	177.1	171.7						
LGEE	232.3	227.2	226.4	222.9						
AEP	740.6	744.9	744.1	744.3						
BREC	7.4	7.0	7.1	7.1						
CIN	385.4	390.5	390.5	390.4						
DPL	110.1	114.8	116.1	116.0						
TVA	629.5	616.0	617.5	617.6						
	MW Losses for 2	010-11 Winter 8	% Load Case	A						
EKPC	125.6	125.6	119.6	119.3						
LGEE	171.5	168.3	162.6	160.9						
AEP	733.1	732.7	730.8	730.9						
BREC	7.7	7.7	7.6	7.6						
CIN	384.1	385.1	385.2	385.1						
DPL	106.9	108.2	107.6	107.5						
TVA	626.4	619.4	620.0	620.1						

The conclusions drawn from Table 5-3 are as follows:

- o Whichever transmission alternative is chosen will have no impact on the system losses for BREC and for CIN.
- o The choice of transmission alternative has relatively small potential impacts on the system losses for AEP, DPL, and TVA.

- o The biggest impacts by far are seen on the EKPC and LGEE systems.
- o In all cases, the system losses for LGEE are lower with the proposed generators and with any of the three transmission alternatives implemented when compared to the case without any of the proposed generators and associated transmission.
- o In all cases the largest reduction in LGEE system losses is accomplished with Alternative 3. Likewise, Alternative 1 provides the smallest reduction in LGEE system losses.
- o For EKPC, the results are more varied. At peak load levels, the addition of the proposed generators and associated transmission results in increased losses. For the shoulder peak case however, the EKPC losses are either the same or lower with the proposed generators and associated transmission when compared to the scenario without any of the proposed generators and associated transmission. Of the three transmission Alternatives evaluated, Alternative 3 results in the lowest losses on the EKPC system.

The conclusion based on this loss analysis is that Alternative 3 has an advantage over the other two Alternatives with regard to impact on transmission system losses. Also, Alternative 2 has an advantage compared to Alternative 1.

5.3 Transient-Stability Impacts

Transient-stability analysis was performed for the three Alternatives to determine their impacts on unit stability at J.K. Smith and Dale.

Faults were simulated with the total clearing times that were discussed earlier in subsection 3.2. The results of the stability analysis for the three alternatives are summarized in Table 5-4. Table 5-4 also lists the figure numbers showing time plots of the performance for these fault scenarios. The addition of another 345 kV outlet from J.K. Smith provides increased unit stability for the generating units located there.

	FOR	<u>THE THRE</u>	<u>= TRANSM</u>	SSION ALT	ERNATIVE	<u>S</u>			
System Reactions to Faults at JK Smith Generating Station									
Maximum Peak to Peak Rotor Angle Changes									
Case Designation		A1-1	A1-2	A2-1	A2-2	A3-1	A3-2		
Transmission Configuration		Alternative 1	Alternative 1	Alternative 2	Alternative 2	Alternative 3	Alternative 3		
Reference Figure		5-1, 5-2	5-3, 5-4	5-5, 5-6	5-7, 5-8	5-9, 5-10	5-11, 5-12		
Fault Clearing Type		138 kV SB ¹	345 kV SB ²	138 kV SB ¹	345 kV SB ²	138 kV SB ¹	345 kV SB ²		
Normal Clearing Time (cycles)		5	3.75	5	3.75	5	3.75		
Additional Clearing Time for Breaker									
Failure (cycles)		7.75	6	1.15	6	1.15	6		
Damping Time		Less than	Less than	Less than	Less than	Less than 5 sec	Less than 5 sec		
Dalo	#1	44	41	49	52	49	44		
Dale	#1	44	<u>41</u>	49	52	49	44		
Dale	#3	51	45	60	63	59	51		
Dale	#4	55	47	67	68	65	55		
IK Smith	CT #1	145	79	163	107	156	92		
JK Smith	CT #2	145	79	163	107	156	92		
JK Smith	CT #3	145	79	163	107	156	92		
JK Smith	CT #4	153	93	164	110	160	100		
JK Smith	CT #5	153	93	164	110	160	100		
JK Smith	CT #6	153	93	164	110	160	100		
JK Smith	CT #7	153	93	164	110	160	100		
JK Smith	CT #8	77	52	86	75	83	61		
JK Smith	CT #9	50	59	69	77	65	70		
JK Smith	CT #10	50	59	69	77	65	70		
JK Smith	CT #11	50	59	69	77	65	70		
JK Smith	CT #12	50	59	69	77	65	70		
JK Smith	CFB #1	70	87	94	109	92	100		
N1-4									

TABLE 5-4 COMPARISON OF STABILITY ANALYSIS WITH PROPOSED J.K. SMITH GENERATORS

Notes:

line

² Fault on J.K. Smith-North Clark 345 kV line with breaker failure; trip one J.K. Smith 345 kV CT-J.K. Smith 345 kV CFB tie

As shown in Table 5-4, none of the transmission alternatives change the swing of the Dale units during disturbances by an appreciable amount. The three alternatives do provide to varying degrees changes in the swing of the J.K. Smith CTs and the CFB unit. Of the three alternatives, Alternative 1 provides the greatest reduction in the swing seen by each of the 12 CTs and the CFB unit at J.K. Smith. Also, a comparison of the plots of the rotor swings during the simulated disturbances shows that the swings damp out more quickly at both J.K. Smith and at Dale Station for Alternative 1 than for the other two Alternatives. Therefore, this transmission alternative provides the best improvement in unit stability.

Figure 5-1

J.K. Smith Generating Unit Responses for Alternative 1 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

12.75 Cycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on BALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE @ 12.75 Cycles JK-DALE+SBJK-FAWKES.p

2009-10 WINTER EKPE STABILITY BASE CASE JANUARY 2006 JK CFB1+CT'S 8-12; JK-BRYANTSVILLE+SIDEVIEW 345; JK 345/138(2-450 MVA XFMR)

REFERENCE CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERE/MMWB BASE CASES

Figure 5-2

Dale Station Generating Unit Responses for Alternative 1 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB #1 LINE # 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 JKSMITH CFB1+CT'S 8-12; JK-SIDEVIEW+BRYANTSVL345; JK345/138(2-450 MVA XFMR)

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMW6 BASE CASES

Figure 5-3

J.K. Smith Generating Unit Responses for Alternative 1 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB *1 LINE • 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 JKSMITH CFB1+CT'S 8-12; JK-SIDEVIEW+BRYANTSVL345; JK345/138(2-450 MVA XFMR)

REF CASE:2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

Figure 5-4

Dale Station Generating Unit Responses for Alternative 1 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

12.75 Eycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE e 12.75 Eycles JK-DALE+SBJK-FAWKES.p

2009/10 WINTER EKPE STABILITY BASE EASE JAN 2006 ALT2:JKSMITH EFB1+ET'S 8-12:JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) 5% REAETOR IN DALE-BOONESBORD TAP 138 KV LINE

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMMG BASE CASES

Figure 5-5

J.K. Smith Generating Unit Responses for Alternative 2 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

12.75 Eycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE # 12.75 Eycles JK-DALE+SBJK-FAWKES.p

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 ALT2:JKSMITH EFB1+ET'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) 5% REACTOR IN DALE-BOONESBORD TAP 138 KV LINE

REF CASE:2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

Figure 5-6

Dale Station Generating Unit Responses for Alternative 2 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB #1 LINE # 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 ALT2:JKSMITH EFB1+ET*S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) 5% REAETOR IN DALE-BOONESBORO TAP 138 KV LINE

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERL/MMM5 BASE CASES

Figure 5-7

J.K. Smith Generating Unit Responses for Alternative 2 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

9.75 Cycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB #1 LINE # 9.75 Cycles JK-SIDEV_SBJKSMITH345.P

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 ALT2:JKSMITH EFB1+CT'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) 5% REACTOR IN DALE-BOONESBORO TAP 138 KV LINE

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERE/MMW6 BASE CASES

Figure 5-8

Dale Station Generating Unit Responses for Alternative 2 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

12.75 Eycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE • 12.75 Eycles JK-DALE+SBJK-FAWKES.p

2009/10 WINTER EKPE STABILITY BASE EASE JAN 2006 ALT3:JKSMITH EFB1+ET'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) JKSMITH-SPENEER ROAD 138 KV ADDED

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

Figure 5-9

J.K. Smith Generating Unit Responses for Alternative 3 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

12.75 Lycle clearing time (5.00 Normal + 7.75 Backup) Stuck Breaker at JKSMITH 138 KV on DALE Line 3 Phase Fault at JKSMITH 138 kV on DALE Line Trip JKSMITH-FAWKES LINE # 12.75 Eycles JK-DALE+SBJK-FAWKES.p

2009/10 WINTER EKPE STABILITY BASE EASE JAN 2006 ALT3:JKSMITH EFB1+ET'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) JKSMITH-SPENEER ROAD 138 KV ADDED

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERE/MMM5 BASE CASES

Figure 5-10

Dale Station Generating Unit Responses for Alternative 3 Fault on J.K. Smith-Dale 138 kV Line with Stuck Breaker E63-91T Subsequent Trip of J.K. Smith-Fawkes 138 kV Line

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB +1 LINE + 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009/10 WINTER EKPE STABILITY BASE EASE JAN 2006 ALT3:JKSMITH EFB1+CT'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) JKSMITH-SPENEER ROAD 138 KV ADDED

REF CASE: 2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMMB BASE CASES

Figure 5-11

J.K. Smith Generating Unit Responses for Alternative 3 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

9.75 Eycle clearing time (3.75 Normal + 6.00 Backup) 3 Phase Fault at JK Smith 345 kV on Sideview Line Stuck Breaker at JK Smith 345 kV Trip JKSMITH2-JKEFB #1 LINE • 9.75 Eycles JK-SIDEV_SBJKSMITH345.p

2009/10 WINTER EKPE STABILITY BASE CASE JAN 2006 ALT3:JKSMITH EFB1+ET'S 8-12;JK-SIDEVIEW+TYNER345;JK345/138(2-450 MVA XFMR) JKSMITH-SPENEER ROAD 138 KV ADDED

REF CASE:2009 WINTER PEAK LOAD CASE EQUIVALIZED FOR ECAR APPLICATIONS REDUCED FROM 2004 SERIES NERC/MMWG BASE CASES

Figure 5-12

Dale Station Generating Unit Responses for Alternative 3 Fault on J.K. Smith-North Clark 345 kV Line with Stuck Breaker E112-153T Subsequent Trip of One J.K. Smith CT-J.K. Smith CFB 345 kV Circuit

5.4 Short-Circuit Impacts

The fault current levels at J.K. Smith and all nearby electrical buses were assessed for three-phase-to-ground and single-phase-to-ground faults without any new facilities, with the proposed generators only (no transmission modifications), and with the three transmission alternatives implemented. Table 5-5 shows the results for this analysis. The columns titled **3-phase** show the fault currents (in amperes) at the respective bus for a three-phase fault at that bus. The columns titled **1-phase** show the fault currents at the respective bus for a single-phase-to-ground fault at that bus. The columns titled **1-phase** show the fault currents at the proposed generators added only and for each of the proposed alternatives when compared to the case with no new facilities constructed.

		6	Ienme	ison of F	ault (, Irren	Tabl ts (in /	le 5-5 Amner	es) fo	r Prefe	erred A	Iterna	tives					
	With N Facil	o New ities	With	Proposed Ger	nerators	Only	Alternati	ve 1 (Smi 345	th-West «V)	Garrard	Alterna	ttive 2 (Sr kV	nith-Tyn	er 345	Alterna kV, Sn	tive 3 (Sı nith-Sper kV	nith-Tyn cer Roa)	er 345 1 138
	3-ph	1-ph	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff
JK Smith 345 kV	N/A	N/A	15587	#######	17204	######	19765	########	20888	######	16699	######	18619	#######	16835	######	18753 #	#####
JK Smith CFB 345 kV	A/A	N/A	15417	#######	16946	######	19639	#######	20667	#####	16544	######	18402	#######	16677	#####	18531 #	#####
West Garrard 345 kV	N/A	N/A	N/A	#######	N/A	######	15630	#######	12022	######	N/A	######	N/A	#######	N/A	######	N/A #	#####
Tyner 345 kV	N/A	N/A	N/A	#######	N/A	######	N/A	#######	N/A	######	7190	######	9057	#######	7217	######	9091 #	#####
North Clark 345 kV	11473	8453	14749	28.6%	1111	31.4%	16269	41.8%	11737	38.9%	15122	31.8%	11307	33.8%	15243	32.9%	11399	34.9%
Brown North 345 kV	12537	12236	12638	0.8%	12333	0.8%	17623	40.6%	16446	34.4%	12713	1.4%	12464	1.9%	12763	1.8%	12718	3.9%
JK Smith 138 kV	29862	33152	38249	28.1%	43681	31.8%	41099	37.6%	46297	39.7%	38206	27.9%	43813	32.2%	39689	32.9%	45367	36.8%
Avon 345 kV	9128	6993	10667	16.9%	8102	15.9%	11279	23.6%	8368	19.7%	10675	16.9%	8074	15.5%	10885	19.2%	8230	17.7%
Pineville 345 kV	12037	9199	12103	0.5%	9251	0.6%	14483	20.3%	11526	25.3%	12243	1.7%	10699	16.3%	12261	1.9%	7322	-20.4%
West Lexington 345 kV	11207	14779	11300	0.8%	14907	0.9%	13160	17.4%	17164	16.1%	11353	1.3%	15013	1.6%	11403	1.7%	15103	2.2%
Brown North 138 kV	29896	36262	30169	0.9%	36586	0.9%	33943	13.5%	40897	12.8%	30323	1.4%	36852	1.6%	30459	1.9%	36966	1.9%
Brown CT 138 kV	29230	25363	29492	0.9%	25550	0.7%	33076	13.2%	27610	8.9%	29645	1.4%	25735	1.5%	29779	1.9%	36061	42.2%
Brown Plant 138 kV	29194	33192	29459	0.9%	33479	%6.0	32963	12.9%	36901	11.2%	29614	1.4%	33712	1.6%	29748	1.9%	27515	-17.1%
Avon 138 kV	20132	16270	21454	6.6%	17429	7.1%	21911	8.8%	17728	9.0%	19914	-1.1%	16547	1.7%	21667	7.6%	17628	8.3%
Hardin County 345 kV	6158	5508	6200	0.7%	5552	0.8%	6656	8.1%	5964	8.3%	6235	1.3%	5647	2.5%	6259	1.6%	6640	20.6%
Union City 138 kV	15647	16040	16618	6.2%	16720	4.2%	16902	8.0%	16673	3.9%	16597	6.1%	16446	2.5%	16789	7.3%	12857	-19.8%
Fawkes EKPC 138 kV	20796	22003	22126	6.4%	23004	4.5%	22434	7.9%	23148	5.2%	21836	5.0%	22656	3.0%	22343	7,4%	21136	-3.9%
Fawkes LGEE 138 kV	20765	21980	22089	6.4%	22975	4.5%	22394	7.8%	23125	5.2%	21805	5.0%	22639	3.0%	22309	7.4%	21147	-3.8%
Alcalde 345 kV	9751	6023	9809	0.6%	6058	0.6%	10502	7.7%	6391	6.1%	9934	1.9%	8026	33.3%	9962	2.2%	7648	27.0%
Pineville 161 kV	18049	14597	18139	0.5%	14672	0.5%	19429	7.6%	16428	12.5%	18455	2.2%	16430	12.6%	18484	2.4%	12294	-15.8%
Lake Reba Tap 138 kV	16499	17151	17475	5.9%	17852	4.1%	17756	7.6%	17767	3.6%	17455	5.8%	17531	2.2%	17671	7.1%	13404	-21.8%
Pineville Switching 161 kV	17927	14450	18016	0.5%	14525	0.5%	19280	7.5%	16243	12.4%	18331	2.3%	9418	-34.8%	18361	2.4%	7704	-46.7%
West Lexington 138 kV	20675	20829	20864	0.9%	21010	%6.0	22219	7.5%	22153	6.4%	20928	1.2%	21125	1.4%	21076	1.9%	21115	1.4%
Dale 138 kV	20817	19668	22215	6.7%	20570	4.6%	22345	7.3%	20166	2.5%	19770	-5.0%	18073	-8.1%	22068	6.0%	19990	1.6%
Pisgah 138 kV	16381	20613	16517	0.8%	20789	%6.0	17441	6.5%	21996	6.7%	16585	1.2%	20908	1.4%	16704	2.0%	15997	-22.4%

89

East Kentucky Power Cooperative

				ricon of E	Tault C	lirren	Tabl	e 5-5 Amner	ec) fo	r Prefe	rred <u>A</u>	Iterns	tives					
	With N Facil	o New ities	With V	Proposed Ge	nerators	Only	Alternativ	ve 1 (Sm)	th-West kV)	Garrard	Alterna	tive 2 (Si kV	nith-Tyn	er 345	Alterna kV, Sm	tive 3 (Si hth-Sper kV	nith-Tyn Icer Roa)	er 345 d 138
	3-ph	1-ph	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff
Higby Mill 138 kV	19179	18487	19360	0.9%	18644	0.8%	20388	6.3%	19551	5.8%	19419	1.3%	18753	1.4%	19568	2.0%	25161	36.1%
Hardin County 138 kV	13668	12413	13760	0.7%	12517	0.8%	14516	6.2%	13373	7.7%	13837	1.2%	12781	3.0%	13889	1.6%	15048	21.2%
Lake Reba 138 kV	13519	14419	14143	4.6%	14892	3.3%	14349	6.1%	14863	3.1%	14158	4.7%	14703	2.0%	14318	5.9%	9323	-35.3%
Boonesboro North 138 kV	17401	15098	18270	5.0%	15599	3.3%	18451	6.0%	15593	3.3%	12364	-28.9%	10911	-27.7%	18295	5.1%	15596	3.3%
Pineville 500 kV	13095	8664	13164	0.5%	8712	0.6%	13881	6.0%	10551	21.8%	13237	1.1%	10834	25.0%	13245	1.1%	5503	-36.5%
Three Forks 138 kV	15604	1977	16346	4.8%	1982	0.3%	16514	5.8%	1997	1.0%	15810	1.3%	1987	0.5%	16436	5.3%	1998	1.1%
Clays Mill 138 kV	15693	16171	15826	0.8%	16299	0.8%	16604	5.8%	17062	5.5%	15891	1.3%	16401	1.4%	16013	2.0%	21093	30.4%
Haefling 138 kV	20817	17763	21039	1.1%	17925	0.9%	22023	5.8%	18650	5.0%	21054	1.1%	18005	1.4%	21248	2.1%	18421	3.7%
Baker Lane 138 kV	14548	19274	14669	0.8%	19439	0.9%	15380	5.7%	20478	6.2%	14732	1.3%	19552	1.4%	14848	2.1%	18909	-1.9%
IBM North 138 kV	17345	5392	17530	1.1%	5430	0.7%	18206	5.0%	5585	3.6%	17537	1.1%	5462	1.3%	17724	2.2%	5551	2.9%
Smith 345 kV	4027	4067	4056	0.7%	4099	0.8%	4208	4.5%	4266	4.9%	4078	1.3%	4138	1.7%	4092	1.6%	3457	-15.0%
Powell County 138 kV	8647	7662	8888	2.8%	7806	1.9%	9019	4.3%	7884	2.9%	6906	4.9%	7930	3.5%	9130	5.6%	7964	3.9%
Loudon Avenue 138 kV	15775	11106	15974	1.3%	11204	0.9%	16431	4.2%	11521	3.7%	15922	0.9%	11231	1.1%	16159	2.4%	11622	4.6%
Tyrone 138 kV	12208	16448	12293	0.7%	16572	0.8%	12708	4.1%	17216	4.7%	12359	1.2%	16679	1.4%	12435	1.9%	12823	-22.0%
Fawkes KU 69 kV	21815	25314	22432	2.8%	25860	2.2%	22699	4.1%	26131	3.2%	22420	2.8%	25847	2.1%	22720	4.1%	26110	3.1%
Alcalde 161 kV	16055	11192	16138	0.5%	11250	0.5%	16701	4.0%	11648	4.1%	16446	2.4%	13155	17.5%	16490	2.7%	11983	7.1%
Loudon Avenue #618 69 kV	28796	20594	29084	1.0%	20752	0.8%	29939	4.0%	21370	3.8%	29068	0.9%	20838	1.2%	29446	2.3%	21343	3.6%
Loudon Avenue #628 69 kV	28772	19008	29060	1.0%	19148	0.7%	29914	4.0%	19711	3.7%	29044	0.9%	19232	1.2%	29422	2.3%	20174	6.1%
Pineville 69 kV	19367	16940	19455	0.5%	17023	0.5%	20131	3.9%	18001	6.3%	19764	2.0%	17852	5.4%	19802	2.2%	15851	-6.4%
Goddard 138 kV	8694	7082	8993	3.4%	7095	0.2%	9033	3.9%	7129	0.7%	9017	3.7%	7118	0.5%	9305	7.0%	7305	3.1%
Fayette 138 kV	7829	5279	8006	2.3%	5376	1.8%	8128	3.8%	5455	3.3%	7823	-0.1%	5311	0.6%	8091	3.3%	5437	3.0%
Howards Branch 161 kV	8985	4643	9027	0.5%	4665	0.5%	9325	3.8%	4847	4.4%	9144	1.8%	5926	27.6%	9160	1.9%	3864	-16.8%
Lake Reba Tap 161 kV	8711	9372	8931	2.5%	9538	1.8%	9040	3.8%	9300	-0.8%	9058	4.0%	9292	-0.9%	9134	4.9%	8486	-9.5%
Ghent 345 kV	16422	21026	16505	0.5%	21140	0.5%	17003	3.5%	21807	3.7%	16544	0.7%	21240	1.0%	16586	1.0%	21337	1.5%
Spurlock 345 kV	35872	32707	36845	2.7%	33267	1.7%	37137	3.5%	33127	1.3%	36909	2.9%	32560	-0.4%	36920	2.9%	32979	0.8%

90

East Kentucky Power Cooperative

			mnar	ison of F	ault C	urren	Tabl ts (in /	le 5-5 Amner	es) fo	r Prefe	erred A	Vlterna	tives					
	With N Facil	o New lities	With F	Proposed Ge	nerators	Only	Alternati	ve 1 (Smi 345 I	th-West	Garrard	Alterna	ltive 2 (Si kV	mith-Tyn	er 345	Alterna kV, Sm	tive 3 (Sr nith-Sper kV	nith-Tyn cer Road	er 345 I 138
	3-ph	1-ph	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff
Harlan Y 161 kV	10705	7918	10750	0.4%	7953	0.4%	11069	3.4%	8451	6.7%	10891	1.7%	11280	42.5%	10908	1.9%	7698	-2.8%
Lake Reba 69 kV	16352	17720	16707	2.2%	17990	1.5%	16898	3.3%	18109	2.2%	16792	2.7%	18013	1.7%	16954	3.7%	17961	1.4%
Pocket North 500 kV	12767	10579	12827	0.5%	10631	0.5%	13193	3.3%	10597	0.2%	12884	%6.0	12982	22.7%	12890	1.0%	9857	-6.8%
Fayette 69 kV	9454	7139	9573	1.3%	7228	1.2%	9718	2.8%	7345	2.9%	9484	0.3%	7191	0.7%	9681	2.4%	7317	2.5%
Powell County 161 kV	5943	5304	6026	1.4%	5352	0.9%	6104	2.7%	5398	1.8%	6273	5.6%	5502	3.7%	6307	6.1%	5516	4.0%
West Berea 138 kV	6468	8544	6561	1.4%	8656	1.3%	6640	2.7%	8741	2.3%	6594	1.9%	8681	1.6%	6673	3.2%	8484	-0.7%
Paris 138 kV	7339	6578	7427	1.2%	6636	0.9%	7533	2.6%	6737	2.4%	7369	0.4%	6612	0.5%	7511	2.3%	6719	2.1%
París 69 kV	12138	13132	12261	1.0%	13251	0.9%	12443	2.5%	13466	2.5%	12222	0.7%	13236	0.8%	12402	2.2%	13425	2.2%
Boonesboro North 69 kV	13170	14507	13361	1.5%	14670	1.1%	13485	2.4%	14788	1.9%	12067	-8.4%	13243	-8.7%	13651	3.7%	15123	4.2%
West Irvine 161 kV	8236	9619	8321	1.0%	9685	0.7%	8427	2.3%	8523	-11.4%	8809	7.0%	8737	-9.2%	8862	7.6%	8926	-7.2%
Jacksonville 138 kV	7681	3758	7769	1.1%	3783	0.7%	7859	2.3%	3828	1.9%	7713	0.4%	3777	0.5%	7843	2.1%	3822	1.7%
Clark County 138 kV	7592	7473	7677	1.1%	7522	0.7%	7762	2.2%	7613	1.9%	7692	1.3%	7543	0.9%	9211	21.3%	9517	27.4%
West Berea 69 kV	8972	10575	9048	0.8%	10643	0.6%	9155	2.0%	10771	1.9%	9132	1.8%	10748	1.6%	9218	2.7%	10768	1.8%
Laurel County 161 kV	6865	6535	6884	0.3%	6550	0.2%	7005	2.0%	6674	2.1%	7817	13.9%	7196	10.1%	7841	14.2%	7235	10.7%
Clark County 69 kV	12122	13345	12235	0.9%	13433	0.7%	12368	2.0%	13598	1.9%	12160	0.3%	13387	0.3%	13678	12.8%	15277	14.5%
Beattyville 161 kV	7384	6738	7426	0.6%	6744	0.1%	7530	2.0%	6621	-1.7%	8505	15.2%	7187	6.7%	8546	15.7%	7028	4.3%
Delvinta 161 kV	8959	9371	9006	0.5%	9387	0.2%	9133	1.9%	8788	-6.2%	11156	24.5%	10177	8.6%	11208	25.1%	9420	0.5%
Pittsburg 161 kV	6424	6080	6434	0.2%	6083	0.0%	6543	1.9%	6190	1.8%	8217	27.9%	7328	20.5%	8244	28.3%	7371	21.2%
Renaker 138 kV	8513	9248	8582	0.8%	9312	0.7%	8660	1.7%	9400	1.6%	8559	0.5%	9297	0.5%	8652	1.6%	9395	1.6%
Green Hall 161 kV	7129	4942	7143	0.2%	4930	-0.2%	7251	1.7%	4900	-0.8%	10069	41.2%	6110	23.6%	10109	41.8%	6023	21.9%
Tyner 161 kV	6930	6859	6938	0.1%	6851	-0.1%	7048	1.7%	6904	0.7%	13147	89.7%	14621	113.2%	13195	90.4%	14639	113.4%
Tyner 69 kV	10380	12237	10368	-0.1%	12209	-0.2%	10545	1.6%	12414	1.4%	10874	4.8%	12415	1.5%	10914	5.1%	12462	1.8%
Spencer Road 138 kV	5720	6097	5750	0.5%	6117	0.3%	5805	1.5%	6183	1.4%	5764	0.8%	6137	0.7%	10470	83.0%	9970	63.5%
Fall Rock 69 kV	5674	6494	5658	-0.3%	6470	-0.4%	5757	1.5%	6591	1.5%	6632	16.9%	7411	14.1%	6653	17.3%	7436	14.5%
Spurlock 138 kV	41255	44040	41684	1.0%	44379	0.8%	41840	1.4%	44414	0.8%	41713	1.1%	44232	0.4%	41940	1.7%	44609	1.3%

16

East Kentucky Power Cooperative

							Tab	le 5-5										
		Ŭ	ompar	ison of F	ault C	urren	ts (in <i>i</i>	Amper	es) fo	or Prefe	srred /	Alterna	itives					
	With N Facil	o New lities	With	Proposed Ge	nerators	Only	Alternati	ive 1 (Sm) 345	ith-West kV)	Garrard	Alterné	ative 2 (S k/	mith-Tyn)	er 345	Alterna kV, Sr	ttive 3 (Si nith-Sper kV	nith-Tyn icer Roa	er 345 1 138
	3-ph	1-ph	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff	3-ph	% diff	1-ph	% diff
Spencer Road 69 kV	8570	10236	8604	0.4%	10265	0.3%	8686	1.4%	10376	1.4%	8625	0.6%	10298	0.6%	12333	43.9%	14135	38.1%
Iniand CT 138 kV	35395	33168	35713	0.9%	33364	0.6%	35836	1.2%	33398	0.7%	35738	1.0%	33288	0.4%	35923	1.5%	33529	1.1%
Farmers 138 kV	5622	4562	5637	0.3%	4568	0.1%	5678	1.0%	4608	1.0%	5656	0.6%	4586	0.5%	6640	18.1%	5846	28.1%
Sharkey 138 kV	5305	2206	5319	0.3%	2208	0.1%	5357	1.0%	2226	%6.0	5337	0.6%	2217	0.5%	6157	16.1%	2542	15.2%
Stuart 345 kV	52952	20271	53345	0.7%	20313	0.2%	53449	0.9%	14710	-27,4%	53367	0.8%	9919	-51.1%	53372	0.8%	13676	-32.5%
Rodburn 138 kV	7793	6899	7817	0.3%	6910	0.2%	7865	0.9%	7009	1.6%	7842	0.6%	6932	0.5%	8701	11.7%	7788	12.9%
Rowan County 138 kV	7777	7060	7780	0.0%	7071	0.2%	7847	0.9%	7148	1.2%	7826	0.6%	7077	0.2%	8592	10.5%	7755	9.8%
Farmers 69 kV	6304	6604	6310	0.1%	6606	0.0%	6359	0.9%	6663	0.9%	6333	0.5%	6633	0.4%	7003	11.1%	7472	13.1%
Maysville Industrial 138 kV	18152	5231	18242	0.5%	5238	0.1%	18296	0.8%	5249	0.3%	18261	0.6%	5246	0.3%	18400	1.4%	5278	0.9%
Goddard KU 138 kV	5688	4788	5702	0.2%	4796	0.2%	5733	0.8%	4824	0.8%	5719	0.5%	4833	0.9%	5986	5.2%	5698	19.0%
Rodburn 69 kV	7040	7382	7045	0.1%	7384	0.0%	7091	0.7%	7572	2.6%	7070	0.4%	7406	0.3%	7547	7.2%	7678	4.0%
Plumville 138 kV	10252	7643	10286	0.3%	7658	0.2%	10322	0.7%	7681	0.5%	10304	0.5%	7678	0.5%	10452	2.0%	7776	1.7%
Flemingsburg 138 kV	8061	5453	8084	0.3%	5463	0.2%	8115	0.7%	5484	0.6%	8102	0.5%	5476	0.4%	8270	2.6%	5572	2.2%
Kenton 138 kV	11083	8821	11113	0.3%	8837	0.2%	11157	0.7%	8637	-2.1%	11130	0.4%	9254	4.9%	11287	1.8%	9796	11.1%
Stanley Parker 138 kV	8354	7288	8369	0.2%	7299	0.2%	8407	0.6%	7366	1.1%	8380	0.3%	7344	0.8%	8408	0.6%	7357	0.9%
Zimmer 345 kV	28090	29959	28124	0.1%	29971	%0.0	28174	0.3%	29544	-1.4%	28145	0.2%	29733	-0.8%	28152	0.2%	29496	-1.5%
Dale 69 kV	18085	22121	18358	1.5%	22401	1.3%	15549	-14.0%	18836	-14.9%	15310	-15.3%	18558	-16.1%	15517	-14.2%	18803	-15.0%

East Kentucky Power Cooperative

92

Table 5-5 shows that large changes in fault current levels are expected at the J.K. Smith, Avon, and North Clark Substations with the addition of the proposed generators. Additional large changes are seen at several substations, depending on the transmission alternative implemented. For instance, the proposed alternative (Alternative 1) increases the three-phase fault current seen at LGEE's Brown North 345 kV bus by more than 40%. Likewise, Alternatives 2 and 3 both result in large increases in fault current level at EKPC's Tyner Substation, as well as at other substations in the vicinity of Tyner.

The fault current levels at EKPC buses for the proposed alternatives are within the interrupting-capability of the circuit breakers installed at all locations except J.K. Smith and Dale. At J.K. Smith, eight of the existing 138 kV circuit breakers (rated 40 kA) will need to be replaced due to inadequate interrupting capability. At Dale, three 138 kV circuit breakers (rated 21 kA) will need to be replaced. The replacements at Dale could possibly be avoided if Alternative 2 is implemented. However, the expected fault currents are marginally close to the 21 kA rating of the breakers. Therefore, replacement of these breakers would still be recommended with Alternative 2.

The foreign-owned buses significantly impacted by the addition of the proposed generators and/or the transmission modifications are all in the LGEE system. A review of these results by LGEE will be needed to ascertain whether any circuit-breaker interrupting capabilities will be exceeded.

Based on these results, the conclusion is that none of the alternatives have any significant advantage over the other alternatives in terms of short-circuit impacts.

5.5 Physical Issues

The physical issues for these alternatives are related to the constructability of the transmission lines and the substation terminals. The facilities required at J.K. Smith are identical for either Alternative 1 or Alternative 2. Alternative 3 requires an additional 138 kV line exit at J.K. Smith that is not needed for either of the other two alternatives. These substation facilities at J.K. Smith can be constructed without significant difficulty. The relative constructability of the other facilities will be discussed for each alternative.

5.5.1 Alternative 1 Physical Issues

This alternative includes the construction of a new 345 kV substation in the Garrard County area. This substation needs to be located near LGEE's existing Brown-Pineville double-circuit 345 kV line to minimize the amount of 345 kV line construction required to connect one of the circuits with the new 345 kV line from J.K. Smith. There is a large area in Garrard and Lincoln counties where a new substation could be located; it is expected that sufficient land is available in the vicinity to obtain for construction of the new 345 kV substation.

This alternative also calls for the construction of a new 345 kV line between the J.K. Smith Substation and the new substation in the Garrard County area. (The approximate length of the new line is 35 to 45 miles depending on line routing and the location of the new 345 kV switching substation). The city of Richmond is generally located between

these two endpoints. Furthermore, the area surrounding Richmond has become highly developed. Therefore, the routing of the new 345 kV line may be difficult through this area. However, EKPC has several existing 69 and 138 kV transmission line corridors in the area, which may be able to be utilized for rebuild and/or co-location. A preliminary evaluation of potential line routes to ascertain the expected length of the new 345 kV transmission line indicates that these existing corridors can possibly be utilized to reduce the need to acquire new rights-of-way and to address the difficulty of constructing the line through the congested areas in the region. In particular, EKPC has two 138 kV lines exiting the J.K. Smith Substation to the west or southwest – J.K. Smith-Dale and J.K. Smith-Fawkes. These corridors could potentially be used for co-location of the new 345 kV line. Rebuilding of either of these 138 kV lines as a double-circuit 345/138 kV line was eliminated as a viable option for two primary reasons:

- The time required to rebuild either of these existing 138 kV lines as a 345/138 kV double-circuit line would be a minimum of six months. This means that the 138 kV circuit to be rebuilt would be out of service for this duration. Major operational problems and generation restrictions would be created due to an outage of either of these critical circuits for this period.
- 2. The reduced reliability of placing two critical circuits out of the J.K. Smith Generating Station on common structures is undesirable. The probability of simultaneous outages of these two circuits would be much higher than for a "Greenfield" route or even for a parallel route.

In addition to the new 345 kV line and the new 345 kV switching substation, 345 kV terminal additions are required at LGEE's Brown and Pineville Substations. Additionally, several upgrades of existing facilities are required with this alternative. In particular, this alternative requires the following:

- Replacement of an existing EKPC 138-69 kV transformer
- Upgrades of terminal facilities at five LGEE substations associated with four LGEE facilities
- Operating temperature upgrades for two LGEE facilities
- An unknown upgrade of one AEP facility

At this time, no significant issues are apparent that would make these terminal additions and upgrades substantially difficult. Input from AEP and LGEE will be required on these projects to identify any significant issues.

5.5.2 Alternative 2 Physical Issues

This alternative includes addition of all facilities required at the existing Tyner Substation to terminate the proposed J.K. Smith-Tyner 345 kV line and to add a new 345-161 kV autotransformer. The substation does not have adequate space to allow these additions. Additional land would be needed in the area to construct the new 345-161 kV substation, and to connect it to the existing Tyner Substation. This could involve additional transmission lines between the two substations, depending on the location and availability of suitable land in the vicinity.

This alternative also includes the construction of a new 345 kV line between the J.K. Smith Substation and the Tyner Substation. (The approximate length of the new line is 40 to 50 miles, depending on line routing). The area in a straight-line approximation between these two endpoints does not appear to have any large areas that are densely populated or highly developed. However, the Daniel Boone National Forest is located in a large area between these endpoints. Therefore, the routing of the new 345 kV line may require working with the United States Forest Service (USFS) to identify and select the preferred route through the USFS lands. Past experience indicates that this could add 2 to 3 years to the expected time necessary to design, permit, and construct this line. Furthermore, EKPC does not have any existing transmission line corridors in the majority of the area to the south and southeast of J.K. Smith. Therefore, there are limited opportunities for rebuild and/or co-location for this line in that area. In the area closer to the Tyner Substation, EKPC does have an existing 161 kV line and a 69 kV line that could potentially be used for rebuild and/or co-location with the new 345 kV line.

In addition to the new 345 kV line and the new 345 kV switching substation, the addition of a 138 kV series reactor at EKPC's Dale Station is required. The ability to expand the Dale Substation is restricted due to it being bounded by the Kentucky River, the Dale Station power plant and coal yard, and Kentucky Route #1924. This will make expansion for the reactor addition difficult.

Additionally, several upgrades of existing facilities are required with this alternative. In particular, this alternative requires the following:

- Replacement of an existing EKPC 138-69 kV transformer
- Reconductors or rebuilds of an existing LGEE 138 kV line and an existing LGEE 69 kV transmission line
- Upgrades of terminal facilities at two EKPC substations associated with two transmission facilities
- Upgrades of terminal facilities and/or line switches associated with six LGEE facilities
- An operating temperature upgrade for one LGEE facility
- Unknown upgrades of four AEP facilities

At this time, no significant issues are apparent that would make these upgrades substantially difficult. Input from AEP and LGEE would be required on the projects identified for their respective systems to determine if there are any significant issues.

5.5.3 Alternative 3 Physical Issues

This alternative has many of the same physical issues as Alternative 2. The primary difference is that this alternative includes construction of a new 17.9-mile 138 kV line between J.K. Smith and LGEE's Spencer Road Substation in lieu of the addition of a series reactor at Dale Station. The new line between J.K. Smith and Spencer Road also creates several additional projects on the LGEE system in the Spencer Road area. All of the issues discussed above in subsection 5.5.2 related to the Tyner Substation expansion

95

and the new 345 kV line between J.K. Smith and Tyner are also applicable for this alternative.

The area between the J.K. Smith and Spencer Road Substations does not appear to have significant development or dense population, based on review of area maps. EKPC does have an existing 138 kV line from J.K. Smith to its Powell County Substation that is routed in the same general direction out of the J.K. Smith site. However, it turns in the opposite direction after a few miles. Other than this line, there are limited existing facilities located in the area between the two substations. Therefore, there are some opportunities available for rebuild and/or co-location, but these opportunities are somewhat limited.

This alternative would require expansion of LGEE's Spencer Road Substation and replacement of both 138-69 kV transformers at Spencer Road with larger units. Therefore, a significant amount of work would be required at this site to implement this alternative.

Additionally, several upgrades of existing facilities are required with this alternative. In particular, this alternative requires the following:

- Replacement of an existing EKPC 138-69 kV transformer
- Reconductors or rebuilds of three existing LGEE 69 kV transmission lines
- Upgrades of terminal facilities and/or line switches associated with four LGEE facilities
- Replacement of another existing LGEE 138-69 kV transformer
- Unknown upgrades of three AEP facilities

At this time, no significant issues are apparent that would make these upgrades substantially difficult. Input from AEP and LGEE would be required on the projects identified for their respective systems to determine if there are any significant issues.

5.5.4 Relative Constructability of The Developed Alternatives

The discussion above indicates that Alternative 1 requires a new substation site, whereas Alternatives 2 and 3 do not. However, acquisition of a new substation site in the Garrard County area is expected to be feasible. Alternatives 2 and 3 both require significant expansion of existing substations within the EKPC and/or LGEE systems that is expected to present some difficulty.

All three Alternatives require significant new 345 kV line construction. Alternative 1 includes a new 345 kV line from J.K. Smith to the Garrard County area and is expected to be 35 to 45 miles in length. Alternatives 2 and 3 both require a new 345 kV line from J.K. Smith to the existing Tyner Substation. This line is expected to be 40 to 50 miles long. This line is expected to be more difficult to construct, since the Daniel Boone National Forest is between the two endpoints. Furthermore, it is expected to have more potential impact, since it is likely to be longer and since there are less opportunities for co-location with existing lines. Also, Alternative 3 requires additional construction of