CASE NUMBER:

99.430

LOUISVILLE GAS AND ELECTRIC COMPANY/ KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to First Data Request of AG Dated January 25, 2000

Responding Witness: Lonnie E. Bellar

- Q23. In Volume III, Section V, Exhibits 9 and 10 show the capacity options with lowest costs at different capacity factors, and without the CO2 adders. Please provide the results of these same two exhibits with the scenario of including the CO2 adders.
- A23. The requested information is attached.

Capital Cost- Base Heat Rate- Base

Heat Rate- Base											
Fuel Forecast- Base						ty Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	- 141									
Advanced Battery (3 hr)-20MW	75	107					_=_				
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	100	131	161							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	91	j≅ 122 ·	153		_=					
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128			_=_		***				
Pulverized Coal (LSFO)-500MW	176	198	220	242	264	286	309	331	353	375	397
Pulverized Coal (LSFO)-400MW	196	218	240	262	285	307	329	351	373	395	417
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW	201 245	226 268	251 291	276 314	301 336	327 359	352 382	377 405	402 428	427 451	452
Pulverized Coal (LSFO)-200MW X 2	180	202	225	247	269	291	314	336	358	381	474 403
Pulverized Coal Compliance (LSD)- 300MW	190	215	241	266	291	316	341	367	392	417	442
Pulverized Coal Supercritical (LSD)- 300MW	228	254	280	306	332	357	383	409	435	461	487
Pulverized Coal (Advanced LSFO)- 400MW	203	224	245	266	286	307	328	349	369	390	411
Atmosph Fluidized Bed (Circulating)-200MW	251	279	307	335	362	390	418	446	474	502	530
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	299	323	346	369	393	416	440	463	486	510
Press Fluidized Bed (Bubbling)-350MW	192	214	237	259	281	303	325	347	369	392	414
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	211	233	254	276	297	319	341	362	384	405
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	257	280	302	325	347	369	392	414	437	459
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	199	222	244	266	288	311	333	355	378	400
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	196	218	239	261	282	304	325	347	368	390
Foster Wheeler Advanced PFB (Circulating)-688MW	163	185	208	231	254	276	299	322	345	367	390
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	265	285 266	304 287	324 307	344 328	363 349	383 369	403 390	423 411	442 431
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	225 251	246 275	299	322	346	370	393	417	441	464	488
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	359	381	403	424	446	468	490	511	533	555
Advanced Int. Coal Gas-460MW	177	198	219	239	260	281	302	322	343	364	385
Combustion Turbine Heavy Duty-80MW	70	114	158	202	246	290	334	378	422	466	510
Combustion Turbine Heavy Duty-110MW	61	108	155	202	249	296	343	390	437	484	531
Combustion Turbine Heavy Duty-160MW	56	98	136	176	216	256	296	336	376	416	456
Compustion Turbine Aero- 45MW	114	150	186	222	258	294	330	366	402	438	474
CT Combined Cycle 2on1 - 330MW	87	113	140	167	194	221	247	274	301	328	354
CT Combined Cycle 2on1 - 470MW	76	100	125	150	175	199	224	. 249	274	299	323
CT Combined Cycle - 345MW	79	104	128	152	177	201	225	250	274	298	322
CT with Cascaded Humidified Advanced Turbine-300MW	72	99	126	153	180	207	234	261	287	314	341
Phosphoric Acid Fuel Cell-2.5MW	1203	1238	1272	1307	1342	1376	1411	1446	1480	1515	1550
Molten Carbonate Fuel Cell-100MW	373	395	416	438	460	481	503	525	546	568	590
Solid Oxide Fuel Cell-100MW	187	208	229	249	270	291	311	332	353	373	394
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	318	415	513	611	709	806	904	1002	1100	1198
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623		_						
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	188			_		_		_
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145				_		_	
Municipal Solid Waste; Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	403	447	491	535	579	623	666	710	754	798
Bio Mass: Whole Tree-100MW	276	301	326	351	376	401	426	450	475	500	525
Cane Run 3 Rehab w/ AFBC	170	194	218	242	266	290	315	339	363	387	411
Cane Run 3 Rehab w/ Natural Gas	127	164	201	239	276	314	351	388	426	463	501
Brown 5 CT 110MW	54	96	138	180	222	264	306	348	390	432	474
Brown 5 CT 164MW	55	91	127	163	199	235	271	307	343	379	415
Brown 5 CT 102MW	57	100	143	186	229	272	315	358	401	444	487
Brown 5 CT 159MW	51	88	125	162	199	236	273	310	347	384	421
Brown 5 CT 149MW	52	90	128	166	204	242	280	318	356	394	432
IPP Hydro	134	134	134	134	134	134	, 134	Γ		T —	
Aeroderivative CT	52	92	132	172	212	252	292	332	372	412	452
Ohio Falls 9&10	149	149	149	149							T —
Trimble County 2	153	175	198	220	242	264	286	308	331	353	375
IAC at Brown 8-11	21	70					_	T		_	
Minimum Levelized \$/kW		70	122	134	134	134	134	249	274	298	322
· · · · · · · · · · · · · · · · · · ·		. •									

Capital Cost-Low Heat Rate-Low

Heat Rate-Low											
Fuel Forecast-Low					Capac	ity Factor	3				
Technology	Ō	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132	_	·`							
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106	_								
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228	_						
Compressed Air Energy (Salt Cavern) -350MW	67	96	124	153							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	78	107	135							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106				_					
Pulverized Coal (LSFO)-500MW	165	185	205	226	246	266	287	307	327	347	368
Pulverized Coal (LSFO)-400MW	184	204	225	245	265	285	306	326	346	367	387
Pulverized Coal (LSFO)-300MW	189	212	235	257	280	303	326	349	371	394	417
Pulverized Coal (LSFO)-200MW	231	252	273	294	314	335	356	377	398	419	440
Pulverized Coal (LSFO)-300MW X 2	169	189	210	230	251	271	292	312	333	353	374
Pulverized Coal Compliance (LSD)- 300MW	178	201	224	246	269	292	315	337	360	383	406
Pulverized Coal Supercritical (LSD)- 300MW	214	238	261	284	308	331	354	378	401	425	448
Pulverized Coal (Advanced LSFO)- 400MW	191	210	229	249	268	287	306	325	344	363	382
Atmosph Fluidized Bed (Circulating)-200MW	228	253	279	304	330	355	380	406	431	457	482
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	266	287	309	331	352	374	396	417	439	. 461
Press Fluidized Bed (Bubbling)-350MW	163	184	204	225	245	266	286	306	327	347	368
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	181	200	220	240	260	280	300	320	339	359
Press Fluidized Bed (Circulating, with Reheat)-180MW	209	229	250	271	291	312	332	353	374	394	415
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	172	193	213	234	254	275	295	316	336	357
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	169	189	209	229	249	269	289	308	328	348
Foster Wheeler Advanced PFB (Circulating)-688MW	139	160	181	202	223	245	266	287	308	330	351
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	226	244	262	280	298	316	334	352	370	388
int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	211	230	249	268	287	306	324	343	362	381
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	243	265	286	308	330	351	373	395	416	438
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	307	327	348	368	388	409	429	449	469	490
Advanced Int. Coal Gas-460MW	151	171	190	209	229	248	267	287	306	326	345
Combustion Turbine Heavy Duty-80MW	65	103	141.	179	217	255	293	331	369	407	445
Combustion Turbine Heavy Duty-110MW	56	97	138	179	220	261	302	343	384	425	466
Combustion Turbine Heavy Duty-160MW	52	86	120	154	188	222	256	290	324	358	392
Combustion Turbine Aero- 45MW	105	137	169	201	233	265	297	329	361	393	425
CT Combined Cycle 2on1 - 330MW	81	104	127	150	173	196	219	242	265	288	311
CT Combined Cycle 2on1 - 470MW	71	92	113	135	156	178	199	220	242	263	284
CT Combined Cycle - 345MW	69 64	90	112	133 135	154 159	175 183	196	217 230	238 254	259	280
CT with Cascaded Humidified Advanced Turbine-300MW Phosphoric Acid Fuel Cell-2.5MW	1115	1145	111 1176	1206	1236	1267	206 1297	1327	1358	277	301
Molten Carbonate Fuel Cell-100MW	332	351	370	389	408	427	446	465	484	1388 503	1418 522
Solid Oxide Fuel Cell-100MW	169	187	205	223	241	259	277	295	313	331	349
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	275	359	444	528	612	697	781	865	950	1034
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416	444	320	- 012		701	605	930	1034
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461			_=-					
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367				-, .				
Wind Turbines-Variable Speed-50x750kw	139	139	139	139		_					
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155		_					
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste; Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	734
Bio Mass: Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cane Run 3 Rehab w/ AFBC	159	181	203	225	247	269	292	314	336	358	380
Cane Run 3 Rehab w/ Natural Gas	120	152	184	216	248	280	313	345	377	409	441
Brown 5 CT 110MW	52	89	126	163	200	237	274	311	348	385	422
Brown 5 CT 164MW	52	83	114	145	176	207	238	269	300	331	362
Brown 5 CT 102MW	55	92	129	166	203	240	. 277	314	351	388	425
Brown 5 CT 159MW	49	81	113	145	177	209	241	273	305	337	369
Brown 5 CT 149MW	50	83	116	149	182	215	248	281	314	347	380
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	85	120	155	190	225	260	295	330	365	400
Ohio Falls 9&10	142	142	142	142				_			
Trimble County 2	148	168	189	209	229	249	269	289	310	330	350
IAC at Brown 8-11	- 20	.64			L <u> — </u>	L					لييت
Minimum Levelized \$/kW	20	64	107	119	134	134	134	217	238	259	280

Capital Cost-Low Heat Rate-Low

Heat Rate-Low											•
Fuel Forecast- Base					Сарас	ity Facto	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132			_						
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106					,				-
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	97	126	156							-
Compressed Air Energy w/ Humid Air Turbine-350MW	50	80	110	140					_=_		
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
Pulsariand Cont (LDCO) COOMM	405	400			2.0						
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW	165	186	207	228	249	270	291	312	333	354	375
	184	205	226	247	268	289	310	331	353	374	395
Pulverized Coat (LSFO)-300MW Pulverized Coat (LSFO)-200MW	189 231	213 253	237	261	285	308 340	332	356	380	404	428
Pulverized Coal (LSFO)-300MW X 2	169	190	274 211	296 233	318 254	275	362 296	384	406	427	449
Pulverized Coal Compliance (LSD)- 300MW	178	202	226	250	274	275	322	318 346	339	360	381
Pulverized Coal Supercritical (LSD)-300MW	214	239	263	288	313	337	362	386	370	394	418
Pulverized Coal (Advanced LSFO)- 400MW	191	211	231	251	271	291	310	330	411 350	436 370	460
Atmosph Fluidized Bed (Circulating)-200MW	228	255	281	308	335	361	388	414	441	468	390 494
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	266	289	311	334	356	379	401	424	446	468
Press Fluidized Bed (Bubbling)-350MW	163	184	206	227	248	269	291	312	333	354	376
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	181	202	223	243	264	284	305	326	346	367
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	230	251	273	294	316	337	358	380	401	423
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	173	195	216	237	259	280	302	323	344	366
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	170	191	211	232	253	273	294	315	335	356
Foster Wheeler Advanced PFB (Circulating)-688MW	139	160	182	204	226	248	270	291	313	335	357
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	227	246	265	283	302	321	340	358	377	396
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	212	231	251	271	290	310	330	350	369	389
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	244	266	288	311	333	355	378	400	422	445
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	308	329	349	370	391	412	433	454	475	496
Advanced Int. Coal Gas-460MW	151	171	191	211	231	251	271	291	311	331	351
Combustion Turbine Heavy Duty-80MW	65	107	149	191	233	275	317	359	401	443	485
Combustion Turbine Heavy Duty-110MW	56	101	146	191	236	281	326	371	416	461	506
Combustion Turbine Heavy Duty-160MW	52	90	128	166	204	242	280	318	356	394	432
Combustion Turbine Aero- 45MW	105	140	175	210	245	280	315	350	385	420	455
CT Combined Cycle 2on1 - 330MW	81	106	131	157	182	208	233	258	284	309	335
CT Combined Cycle 2on1 - 470MW	71	94	118	141	165	188	212	235	259	282	306
CT Combined Cycle - 345MW	69	93	116	139	162	186	209	232	255	278	302
CT with Cascaded Humidified Advanced Turbine-300MW	64	90	115	141	167	193	218	244	270	295	321
Phosphoric Acid Fuel Cell-2.5MW	1115	1148	1182	1215	1248	1282	1315	1348	1382	1415	1448
Molten Carbonate Fuel Cell-100MW	332	353	373	394	415	435	456	477	497	518	539
Solid Oxide Fuel Cell-100MW	169	189	209	228	248	268	287	307	327	346	386
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	284	377	470	563	655	748	841	934	1027	1120
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416		_		-	-	_	_	
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnet Lens High Concen10x5MW	440	440	440	_				_			1
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367	-				_			-
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155			_				_
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	734
Bio Mass: Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cene Run 3 Rehab w/ AFBC	159	182	205	228	251	274	297	320	343	366	389
Cane Run 3 Rehab w/ Natural Gas	120	155	191	226	262	297	333	368	404	440	475
Brown 5 CT 110MW	52	92	132	172	212	252	292	332	372	412	452
Brown 5 CT 164MW	52	87	122	157	192	227	262	297	332	367	402
Brown 5 CT 102MW	55	96	137	178	219	260	301	342	383	424	465
Brown 5 CT 159MW	49	85	121	157	193	229	265	301	337	373	409
Brown 5 CT 149MW	50	87	124	161	198	235	272	309	346	383	420
IPP Hydro Aeroderivative CT	134	134	134	134	134	134	134				400
	50 142	88 142	126 142	164 142	202	240	278	316	354	392	430
			147						_ '		
Ohio Falls 9&10					722	254		200	247	220	350
Onlo Palis 9&10 Trimble County 2 IAC at Brown 8-11	148	169	190	212	233	254	275	296	317	338	359

Capital Cost-Low Heat Rate-Low

Heat Rate-Low											
Fuel Forecast- High					Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132				-					10070
Advanced Battery (3 hr)-20MW	55	87									
		106									
Advanced Battery (5 hr)-20MW	77										****
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228	_						
Compressed Air Energy (Salt Cavern) -350MW	67	98	129	160				_			
Compressed Air Energy w/ Humid Air Turbine-350MW	50	82	114	145		_	-		1	_	
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106	_						-		
Pulverized Coal (LSFO)-500MW	165	187	209	232	254	276	299	321	343	365	
Pulverized Coal (LSFO)-400MW	184	206	229	251	273	295	318	340			388
									362	385	407
Pulverized Coal (LSFO)-300MW	189	215	240	266	291	317	342	368	393	419	445
Pulverized Coal (LSFO)-200MW	231	254	277	300	323	346	369	392	415	438	462
Pulverized Coal (LSFO)-300MW X 2	169	192	214	237	259	282	305	327	350	372	395
Pulverized Coal Compliance (LSD)- 300MW	178	204	230	256	281	307	333	359	385	411	437
Pulverized Coal Supercritical (LSD)- 300MW	214	241	267	294	320	346	373	399	426	452	479
Pulverized Coal (Advanced LSFO)- 400MW	191	212	233	254	275	296	317	338	359	380	401
Atmosph Fluidized Bed (Circulating)-200MW	228	257	285	313	342	370	399	427			
									456	484	513
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	268	291	315	339	362	386	410	433	457	481
Press Fluidized Bed (Bubbling)-350MW	163	186	208	231	253	276	298	320	343	365	388
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	182	204	226	248	269	291	313	334	356	378
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	231	254	277	299	322	344	367	390	412	435
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	174	197	219	242	264	287	309	332	354	377
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	171	193	215	236	258	280	301	323	345	367
Foster Wheeler Advanced PFB (Circulating)-688MW	139	161	184	207	230	253	276	299	322	345	368
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	228	248	268	288	308	327	347	367	387	
											407
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	213	234	254	275	296	317	337	358	379	400
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	245	269	292	316	340	363	387	411	434	458
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	308	330	352	373	395	417	439	460	482	504
Advanced Int. Coal Gas-460MW	151	172	193	214	235	256	277	298	319	340	361
Combustion Turbine Heavy Duty-80MW	65	111	157	203	249	295	341	387	433	479	525
Combustion Turbine Heavy Duty-110MW	56	105	154	203	252	301	350	399	448	497	546
Combustion Turbine Heavy Duty-160MW	52	93	134	175	216	257	298	339	380	421	462
Combustion Turbine Aero- 45MW	105	143	181	219	257	295	333	371	409	447	485
CT Combined Cycle 2on1 - 330MW	81	108	136	163	191	218	246	273	301	329	356
CT Combined Cycle 2on1 - 470MW	71	96	122	147	173	198	224	249	275	300	326
CT Combined Cycle - 345MW	69	94	120	145	170	195	220	245	270	295	320
CT with Cascaded Humidified Advanced Turbine-300MW	64	92	119	147	175	203	230	258	286	313	341
Phosphoric Acid Fuel Cell-2.5MW	1115	1151	1187	1223	1259	1295	1331	1367	1403	1439	1475
Molten Carbonate Fuel Cell-100MW	332	354	376	398	420	442	464	486	508	530	552
								319			
Solid Oxide Fuel Cell-100MW	169	191	212	233	255	276	297		340	361	383
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	292	393	494	595	696	797	898	999	1100	1201
Solar Photovoltaic:Flat Plate-10x5MW	416	416	418		_				_		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461		-	_	-	-	-	_	
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440							****	
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367			****					
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155						= -	
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119		4044			444=		
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	734
Bio Mass; Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cane Run 3 Rehab w/ AFBC	159	183	208	232	257	281	305	330	354	379	403
Cane Run 3 Rehab w/ Natural Gas	120	158	197	236	274	313	351	390	429	467	506
Brown 5 CT 110MW	52	96	140	184	228	272	316	360	404	448	492
Brown 5 CT 164MW	52	90	128	166	204	242	280	318	356	394	432
Brown 5 CT 102MW	55	99	143	187	231	275	319	363	407	451	495
Brown 5 CT 159MW	49	88	127	166	205	244	283	322	361	400	439
Brown 5 CT 149MW	50	90	130	170	210	250	290	330	370	410	450
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	91	132	173	214	255	296	337	378	419	460
Ohio Falls 9&10									3/0	710	
	142	142	142	142							
Trimble County 2	148	171	193	215	238	260	282	304	327	349	371
IAC at Brown 8-11	20	71									
Minimum Levelized \$/kW	20	71	114	119	134	134	134	245	270	295	320

Capital Cost-Low Heat Rate- Base

Heat Rate- Base											
Fuel Forecast-Low					Capac	ity Factor	S				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106									
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	96	126	155							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	79	108	137							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
Pulverized Coal (LSFO)-500MW	.165	186	207	229	250	272	293	314	336	357	379
Pulverized Coal (LSFO)-400MW	184	205	227	248	269	291	312	334	355	376	398
Pulverized Coal (LSFO)-300MW	189	213	237	261	285	308	332	356	380	404	428
Pulverized Coal (LSFO)-200MW	231	253	275	297	319	341	363	385	407	429	451
Pulverized Coal (LSFO)-300MW X 2	169	190	212	234	255	277	298	320	341	363	
		202			273	297	321				384
Pulverized Coal Compliance (LSD)- 300MW	178		226	250				345	369	393	417
Pulverized Coal Supercritical (LSD)- 300MW	214	239	263	288	313	337	362	386	411	436	460
Pulverized Coal (Advanced LSFO)- 400MW	191	211	231	251	271	291	311	331	351	371	391
Atmosph Fluidized Bed (Circulating)-200MW	228	255	281	308	335	361	388	414	441	468	494
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	266	289	312	334	357	380	402	425	447	470
Press Fluidized Bed (Bubbling)-350MW	163	185	206	227	249	270	292	313	334	356	377
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	182	202	223	244	265	285	306	327	348	368
	209	230	252	273	295	316	338	359	381		
Press Fluidized Bed (Circulating, with Reheat)-160MW										403	424
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	173	195	217	238	260	281	303	324	346	367
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	170	191	212	233	253	274	295	316	337	357
Foster Wheeler Advanced PFB (Circulating)-688MW	139	161	183	205	227	249	271	293	315	337	359
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	227	246	265	284	303	322	341	360	379	398
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	212	232	252	271	291	311	331	351	371	390
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	244	267	289	312	335	357	380	403	425	448
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW		308			370	391	412	433		-	
	287		329	349					454	475	496
Advanced Int. Coal Gas-460MW	151	171	191	212	232	252	272	292	312	332	352
Combustion Turbine Heavy Duty-80MW	65	105	145	185	225	265	305	345	385	425	465
Combustion Turbine Heavy Duty-110MW	56	99	142	185	228	271	314	357	400	443	486
Combustion Turbine Heavy Duty-160MW	52	88	124	160	196	232	268	304	340	376	412
Combustion Turbine Aero- 45MW	105	138	171	204	237	270	303	336	369	402	435
CT Combined Cycle 2on1 - 330MW	81	105	129	154	178	202	227	251	275	299	324
	71	93		138	160	183	205	228	250	273	295
CT Combined Cycle 2on1 - 470MW			116								
CT Combined Cycle - 345MW	69	92	114	136	158	180	202	224	247	269	291
CT with Cascaded Humidified Advanced Turbine-300MW	64	89	114	138	163	188	213	237	262	287	312
Phosphoric Acid Fuel Cell-2.5MW	1115	1147	1179	1211	1243	1275	1307	1339	1371	1403	1435
Molten Carbonate Fuel Cell-100MW	332	352	371	391	411	430	450	470	489	509	529
Solid Oxide Fuel Cell-100MW	169	188	207	226	245	264	283	302	321	340	359
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	279	368	457	546	634	723	812	901	989	1078
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
											
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440				***				
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367	_							
Wind Turbines-Variable Speed-50x750kw	139	139	, .139	139	_					_	
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155			1		1		_
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119		1					-
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
								563	567	572	577
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558				
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449	493	537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159	182	205	228	252	275	298	321	345	368	391
Cane Run 3 Rehab w/ Natural Gas	120	154	187	221	255	289	323	357	390	424	458
Brown 5 CT 110MW	52	91	130	169	208	247	286	325	364	403	442
Brown 5 CT 164MW	52	85	118	151	184	217	250	283	316	349	382
						250	289	328	367	406	445
Brown 5 CT 102MW	55	94	133	172	211						
Brown 5 CT 159MW	49	83	117	151	185	219	253	287	321	355	389
Brown 5 CT 149MW	50	85	120	155	190	225	260	295	330	365	400
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	87	124	161	198	235	272	309	346	383	420
Ohio Falls 9&10	142	142	142	142			_				
Trimble County 2	148	170	191	212	233	254	276	297	318	339	361
			101								
IAC at Brown 8-11	20	66				L	407				291
Minimum Levelized \$/kW	20	66	108	119	134	134	134	224	247	269	291

Capital Cost-Low Heat Rate- Base

Heat Rate- Base											
Fuel Forecast- Base					Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87						_			
Advanced Battery (5 hr)-20MW	77	106									
		162	195								
Pumped Hydro Energy Storage-350MW X 3	129			228							
Compressed Air Energy (Salt Cavern) -350MW	67	97	128	158							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	81	112	143							_
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106						_			
Pulverized Coal (LSFO)-500MW	165	187	209	231	253	275	298	320	342	364	386
Pulverized Coal (LSFO)-400MW	184	206	228	250	273	295	317	339	361	383	405
Pulverized Coal (LSFO)-300MW	189	214	239	264	289	315	340	365	390		
										415	440
Pulverized Coal (LSFO)-200MW	231	254	277	300	322	345	368	391	414	437	460
Pulverized Coal (LSFO)-300MW X 2	169	191	214	236	258	280	303	325	347	370	392
Pulverized Coal Compliance (LSD)- 300MW	178	203	229	254	279	304	329	355	380	405	430
Pulverized Coal Supercritical (LSD)- 300MW	214	240	266	292	318	343	369	395	421	447	473
Pulverized Coal (Advanced LSFO)- 400MW	191	212	233	254	274	295	316	337	357	378	399
Atmosph Fluidized Bed (Circulating)-200MW	228	256	284	312	339	367	395	423	451	479	507
					337	361	384	408			
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	267	291	314					431	454	478
Press Fluidized Bed (Bubbling)-350MW	163	185	208	230	252	274	296	318	340	363	385
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	182	204	225	247	268	290	312	333	355	376
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	231	254	276	299	321	343	366	388	411	433
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	174	197	219	241	263	286	308	330	353	375
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	171	193	214	236	257	279	300	322	343	365
Foster Wheeler Advanced PFB (Circulating)-688MW	139	161	184	207	230	252	275	298	321	343	366
								_			
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	228	248	267	287	307	326	346	366	386	405
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	213	233	254	274	295	316	336	357	378	398
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	245	269	292	316	340	363	387	411	434	458
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	308	330	352	373	395	417	439	460	482	504
Advanced Int. Coal Gas-460MW	151	172	193	213	234	255	276	296	317	338	359
Combustion Turbine Heavy Duty-80MW	65	109	153	197	241	285	329	373	417	461	505
Combustion Turbine Heavy Duty-110MW	56	103	150	197	244	291	338	385	432	479	526
	52	92	132	172	212	252	292	332	372	412	452
Combustion Turbine Heavy Duty-160MW											
Combustion Turbine Aero- 45MW	105	141	177	213	249	285	321	357	393	429	465
CT Combined Cycle 2on1 - 330MW	81	107	134	161	188	215	241	268	295	322	348
CT Combined Cycle 2on1 - 470MW	71	95	120	145	170	194	219	244	269	294	318
CT Combined Cycle - 345MW	69	94	118	142	167	191	215	240	264	288	312
CT with Cascaded Humidified Advanced Turbine-300MW	64	91	118	145	172	199	226	253	279	306	333
Phosphoric Acid Fuel Cell-2.5MW	1115	1150	1184	1219	1254	1288	1323	1358	1392	1427	1462
Molten Carbonate Fuel Cell-100MW	332	354	375	397	419	440	462	484	505	527	549
Solid Oxide Fuel Celi-100MW	169	190	211	231	252	273	293	314	335	355	376
	191	289	386	484	582	680	777	875	973	1071	1169
Geothermal: Dual Flash Brine, Air Cooled-24MW				404							
Solar Photovoltaic:Flat Plate-10x5MW	416	416_	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440	-							_
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367		_		-			_	
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Mass Burn-40MW									1205	1240	1274
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171			
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449	493	537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159	183	207	231	255	279	304	328	352	376	400
Cane Run 3 Rehab w/ Natural Gas	120	157	194	232	269	307	344	381	419	456	494
Brown 5 CT 110MW	52	94	136	178	220	262	304	346	388	430	472
Brown 5 CT 164MW	52	88	124	160	196	232	268	304	340	376	412
	55	98	141	184	227	270	313	356	399	442	485
Brown 5 CT 102MW							271	308	345	382	419
Brown 5 CT 159MW	49	86	123	160	197	234					
Brown 5 CT 149MW	50	88	126	164	202	240	278	316	354	392	430
IPP Hydro	134	134	134	134	134	134	134	L=_	<u> </u>	L=_	
Aeroderivative CT	50	90	130	170	210	250	290	330	370	410	450
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	170	193	215	237	259	281	303	326	348	370
IAC at Brown 8-11	20	89		T				<u> </u>			
Minimum Levelized \$/kW		69	112	119	134	134	134	240	264	288	312
Minimum Levelized \$/KV	, 20	69	112	119	134	134	134	240	204	200	512

Capital Cost-Low Heat Rate- Base

Fuel Forecast- High Technology Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-80MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas / Gaes-460MW Advanced Int, Coal Gas-460MW	95 555 77 129 67 50 79 165 184 189 231 189 231 191 228 244 163 161 209 152 150 139 208 192 221 287 151 65	10% 132 87 106 162 99 83 108 207 218 225 193 205 242 213 258 269 187 184 232 175 162 229 214 249 217 239 249 259 269 27 289 299 299 299 299 299 299 299 299 299	20%	30%	259 278 297 284 286 325 279 343 267 252 303 303 248 240 234 291 279 321	### Factor ### F	60%	70%	80% ————————————————————————————————————	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy (Salt Cavern) -350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas / Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	95 55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 227 151	132 87 106 162 99 83 106 188 207 216 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 309		228 162 149 235 255 270 303 240 259 297 257 318 318 233 229 280 223 217 210 271 210 271 258 296	259 278 297 286 297 286 325 279 347 257 252 303 246 240 234 291 279		306 325 351 376 311 341 341 342 407 392 407 392 304 297 351 293 285 285 283 333	329 349 378 400 335 368 408 344 417 327 320 375 317 305 305	353 372 405 424 358 395 436 366 467 442 350 343 398 340 329 329		400 419 458 472 406 449 491 410 527 492 397 388 446 387 376
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Guptience (LSD)-300MW Pulverized Coal Gental (LSPO)-300MW Press Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Girculating, with Reheat)-180MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-380MW Press Fluidized Bed (Circulating, Supercritical)-380MW Press Fluidized Bed (Circulating, Supercritical)-380MW Press Fluidized Bed (Circulating, Supercritical)-601MW Int Coal Gas W/ Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas / Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221 227	87 106 162 99 83 106 188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 239 244 309		228 182 149 235 255 270 303 240 259 297 257 318 318 233 229 280 223 217 210 271 258 296	259 278 297 327 284 286 325 279 347 343 257 252 303 246 240 234 291	282 302 324 325 287 313 353 301 377 368 280 275 327 270 283 263 252 270 263 275	306 325 351 376 371 341 380 322 407 392 304 297 304 297 351 293 285 285 282 333 323	329 349 379 378 400 335 368 408 344 437 417 327 320 375 317 308 305 354		377 396 431 448 382 422 463 388 497 366 422 368 422 363 353 353	400 419 458 472 408 449 491 410 527 492 397 388 446 387 376
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Press Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic-340MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Fress Fluidized Bed (Circulating, Supercritical)-360MW Fress Fluidized Bed (Circulating, Supercritical)-681MW Fress Fluidized Bed (Circulating, Supercritical)-680MW Fress Fluidized Bed (Circulating, Su	77 129 67 50 79 185 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 227	106 162 99 83 108 108 207 218 205 242 213 258 269 187 184 232 175 172 162 229 214 63 309	195 130 116 212 231 243 279 216 232 270 235 288 293 210 206 199 195 186 250 236 271 332	228 162 149 — 235 255 270 303 240 257 257 318 318 233 229 280 223 217 210 271 258 298	259 278 297 327 284 286 325 279 347 343 257 252 303 246 240 221 291	282 302 324 352 287 313 353 301 377 368 280 275 327 270 263 253 253 270 263 253 270 270 270 270 270 270 271 272 273 273 274 275 275 275 275 275 275 275 275 275 275	306 325 351 376 311 341 380 322 407 392 304 297 351 293 285 285 283 333 323	329 349 378 400 335 368 408 344 437 327 320 375 317 305 305	353 372 405 424 358 395 436 368 467 442 350 343 398 340 331 329 374	377 396 431 448 382 422 463 388 497 366 422 368 422 363 353 353	400 419 458 472 406 449 491 410 527 397 388 446 387 376 377
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Froster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine 410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221 221	162 99 83 106 188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 246 309	195 130 116 212 231 243 279 216 232 270 235 288 293 210 206 199 195 186 250 236 271 332	228 162 149 — 235 255 270 303 240 257 257 318 318 233 229 280 223 217 210 271 258 298	259 278 297 327 284 286 325 279 347 343 257 252 303 246 240 221 291	282 302 324 352 287 313 353 301 377 368 280 275 327 270 263 253 253 270 263 253 270 270 270 270 270 270 271 272 273 273 274 275 275 275 275 275 275 275 275 275 275	306 325 351 376 311 341 380 322 407 392 304 297 351 293 285 285 283 333 323	329 349 378 400 335 368 408 344 437 417 327 320 375 317 308 305		377 396 431 448 382 422 463 388 497 366 422 368 422 363 353 353	400 419 458 472 408 449 491 410 527 492 397 388 446 387 376
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, with Reheat)-360MW Fress Fluidized Bed (Circulating, Supercritical)-360MW Fress Fluidized Bed (Circulating, Supercritical)-360MW Fress Fluidized Bed (Circulating, Supercritical)-601MW Int Coal Gas W/ Humid Air Turbine (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	67 50 78 185 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221 221 221 221 221 221	99 83 108 188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 309	130 116 — 212 231 243 279 216 232 270 235 288 293 210 206 256 199 195 186 250 237 237 237 248 258 258 258 258 258 258 258 25	162 149 	259 278 297 327 284 286 325 279 347 343 257 252 303 246 240 221 291	282 302 324 352 287 313 353 301 377 368 280 275 327 270 263 253 253 270 263 253 270 270 270 270 270 270 271 272 273 273 274 275 275 275 275 275 275 275 275 275 275	306 325 351 376 311 341 380 322 407 392 304 297 351 293 285 285 283 333 323	329 349 378 400 335 368 408 344 437 417 327 320 375 317 308 305	353 372 405 424 358 395 436 467 442 350 343 398 340 331 329 374	377 396 431 448 382 422 463 388 497 366 422 368 422 363 353 353	400 419 458 472 408 449 491 410 527 492 397 388 446 387 376
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine Flow)-600MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	50 79 185 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221	83 106 207 216 255 193 205 242 213 258 269 187 184 232 2175 172 162 229 214 309	212 231 243 279 216 232 270 235 288 293 210 206 256 259 195 186 250 233 271 332	149	259 278 297 327 284 286 325 279 343 257 252 303 246 240 234 291	282 302 324 352 287 313 353 301 377 388 280 275 327 270 283 258 258 312	306 325 351 376 311 341 380 322 407 392 304 297 351 293 285 282 333 323	329 349 378 400 335 368 408 344 437 417 327 320 375 317 308 305 354	353 372 405 424 358 395 436 366 467 442 350 343 398 340 331 329 374		400 419 458 472 408 449 491 410 527 492 397 388 446 387 376
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine Flow)-600MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	79 165 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 287	108 188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 246 309	212 231 243 279 216 232 270 235 288 293 210 206 256 199 195 186 250 231 332	235 255 270 303 240 259 297 257 318 318 323 229 280 223 217 211 258 296	259 278 297 327 264 286 325 279 343 257 252 303 246 240 234 291 279	282 302 324 352 287 313 353 301 377 368 280 275 327 270 283 258 312 301	306 325 351 376 311 341 380 322 407 392 304 297 351 293 285 282 333 323	329 349 378 400 335 368 408 344 437 417 327 320 375 317 305 305	353 372 405 424 358 395 436 366 467 442 350 343 398 340 329 329	377 396 431 448 382 422 483 388 497 374 366 422 364 353 353	400 419 458 472 406 449 491 410 527 492 397 388 446 387 376
Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas/ Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	185 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221 227	188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 246 309	212 231 243 279 216 232 270 235 288 293 210 206 256 199 195 186 250 231 332	255 270 303 240 259 297 257 318 318 239 280 223 217 210 210 258 296	259 278 297 327 264 286 325 279 347 343 257 252 303 246 240 234 291	302 324 352 287 313 353 301 377 368 280 287 270 263 253 253 271 270 283 253 253 271 270 283 293 293 293 293 293 293 293 293 293 29	325 351 376 311 341 380 322 407 392 304 297 351 283 285 285 283 333 323	329 349 378 400 335 368 408 344 437 417 327 320 375 317 305 305	353 372 405 424 358 395 436 366 467 442 350 343 398 340 329 329	377 396 431 448 382 422 483 388 497 374 366 422 364 353 353	400 419 458 472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW 3 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW 2 Press Fluidized Bed (Bubbling, Non-Reheat)-80MW 7 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas/ Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	185 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221 227	188 207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 246 309	231 243 279 216 232 270 235 288 293 210 206 199 195 186 256 256 271 332	255 270 303 240 259 297 257 318 318 239 280 223 217 210 210 258 296	259 278 297 327 264 286 325 279 347 343 257 252 303 246 240 234 291	302 324 352 287 313 353 301 377 368 280 287 270 263 253 253 271 270 283 253 253 271 270 283 293 293 293 293 293 293 293 293 293 29	325 351 376 311 341 380 322 407 392 304 297 351 283 285 285 283 333 323	349 378 400 335 368 408 344 437 417 327 320 375 317 308 308	353 372 405 424 338 395 436 368 467 442 350 343 398 340 329 329	396 431 448 382 422 483 388 497 467 374 366 422 364 422 353 353	419 458 472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bibbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221	207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 234 309	231 243 279 216 232 270 235 288 293 210 206 199 195 186 256 256 271 332	255 270 303 240 259 297 257 318 318 239 280 223 217 210 210 258 296	278 297 327 264 286 325 279 347 343 257 252 303 246 240 234 291	302 324 352 287 313 353 301 377 368 280 287 270 263 253 253 253 253 253 253 253 253 253 25	325 351 376 311 341 380 322 407 392 304 297 351 283 285 285 283 333 323	349 378 400 335 368 408 344 437 417 327 320 375 317 308 308	372 405 424 358 395 436 467 442 350 343 398 340 331 329	396 431 448 382 422 483 388 497 467 374 366 422 364 422 353 353	419 458 472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bibbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	184 189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 221	207 218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 234 309	231 243 279 216 232 270 235 288 293 210 206 199 195 186 256 256 271 332	255 270 303 240 259 297 257 318 318 239 280 223 217 210 210 258 296	278 297 327 264 286 325 279 347 343 257 252 303 246 240 234 291	302 324 352 287 313 353 301 377 368 280 287 270 263 253 253 253 253 253 253 253 253 253 25	325 351 376 311 341 380 322 407 392 304 297 351 283 285 285 283 333 323	349 378 400 335 368 408 344 437 417 327 320 375 317 308 308 305	372 405 424 358 395 436 467 442 350 343 398 340 331 329	396 431 448 382 422 483 388 497 467 374 366 422 364 422 353 353	419 458 472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	189 231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 227	218 255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 246 309	243 279 216 232 270 235 288 293 210 206 256 199 195 186 250 236 271 332	270 303 240 259 257 318 318 233 229 280 223 217 210 271 258 296	297 327 264 286 325 279 347 343 257 252 303 248 240 234 291	324 352 287 313 353 301 377 368 280 275 327 270 263 312 301	351 376 311 341 380 322 407 392 304 297 351 293 285 282 333 323	378 400 335 368 408 344 437 417 327 320 375 317 308 305	405 424 358 395 436 368 467 442 350 343 398 343 343 329 374	431 448 382 422 483 388 497 467 374 366 422 364 353 353	458 472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	231 169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 287 151	255 193 205 242 213 258 269 187 184 232 175 172 162 229 214 309	279 216 232 270 235 288 293 210 206 256 199 195 186 250 238 271 332	303 240 259 297 257 318 318 223 229 280 223 217 210 271 258 296	327 284 286 325 279 347 343 257 252 303 246 240 234 291	352 287 313 353 301 377 368 280 275 327 270 283 312 301	376 311 341 380 322 407 392 304 297 351 293 285 282 333 323	400 335 368 408 344 437 417 327 320 375 317 308 305	424 358 395 436 366 467 442 350 343 398 340 331 329	448 382 422 483 388 497 467 374 366 422 364 353 353 395	472 406 449 491 410 527 492 397 388 446 387 376
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	169 178 214 191 228 244 163 161 209 152 150 139 208 192 221 227 151	193 205 242 213 258 269 187 184 232 175 172 162 229 214 246 309	216 232 270 235 288 293 210 206 256 199 195 186 250 238 271 332	240 259 297 257 318 318 223 229 280 223 217 210 271 258 296	264 286 325 279 347 343 257 252 303 246 240 234 291	287 313 353 301 377 368 280 275 327 270 263 258 312 301	311 341 380 322 407 392 304 297 351 293 285 282 333 323	335 368 408 344 437 417 327 320 375 317 308 305	358 395 436 366 467 442 350 343 398 340 331 329	382 422 483 388 497 467 374 366 422 364 353 353 395	406 449 491 410 527 492 397 388 446 387 376 377
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas/ Motten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	178 214 191 228 244 163 161 209 152 150 139 208 192 221 287	205 242 213 258 269 187 184 232 175 175 176 229 214 246 309	232 270 235 288 293 210 206 256 199 195 186 250 236 271 332	259 297 257 318 318 233 229 280 223 217 210 271 258 296	286 325 279 347 343 257 252 303 246 240 234 291	313 353 301 377 368 280 275 327 270 263 258 312 301	341 380 322 407 392 304 297 351 293 285 282 333 323	368 408 344 437 417 327 320 375 317 308 305 354	395 436 366 467 442 350 343 398 340 331 329 374	422 463 388 497 467 374 366 422 364 353 353 395	449 491 410 527 492 397 388 446 387 376
Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	214 191 228 244 163 161 209 152 150 139 208 192 221 287	242 213 258 269 187 184 232 175 172 162 229 214 246 309	270 235 288 293 210 206 256 199 195 186 250 236 271 332	297 257 318 318 233 229 280 223 217 210 271 258 296	325 279 347 343 257 252 303 246 240 234 291	353 301 377 368 280 275 327 270 283 258 312 301	380 322 407 392 304 297 351 293 285 282 333 323	408 344 437 417 327 320 375 317 308 305 354	436 366 467 442 350 343 398 340 331 329 374	463 388 497 467 374 366 422 364 353 353 395	491 410 527 492 397 388 446 387 376 377
Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas/ CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	191 228 244 163 161 209 152 150 139 208 192 221 221 287	213 258 269 187 184 232 175 172 162 229 214 246 309	235 288 293 210 206 256 199 195 186 250 236 271	257 318 318 233 229 280 223 217 210 271 258 296	279 347 343 257 252 303 246 240 234 291 279	301 377 368 280 275 327 270 263 258 312 301	322 407 392 304 297 351 293 285 282 333 323	344 437 417 327 320 375 317 308 305 354	366 467 442 350 343 398 340 331 329 374	388 497 467 374 366 422 364 353 353 395	410 527 492 397 388 446 387 376 377
Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-888MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	228 244 163 161 209 152 150 139 208 192 221 227 151	258 269 187 184 232 175 172 162 229 214 246 309	288 293 210 206 256 199 195 186 250 236 271	318 318 233 229 280 223 217 210 271 258 296	347 343 257 252 303 246 240 234 291 279	377 368 280 275 327 270 263 258 312 301	407 392 304 297 351 293 285 282 333 323	437 417 327 320 375 317 308 305 354	467 442 350 343 398 340 331 329 374	497 487 374 366 422 364 353 353 395	527 492 397 388 446 387 376 377
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Motten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	244 163 161 209 152 150 139 208 192 221 287	269 187 184 232 175 172 162 229 214 246 309	293 210 206 256 199 195 186 250 236 271 332	318 233 229 280 223 217 210 271 258 296	343 257 252 303 246 240 234 291	368 280 275 327 270 263 258 312 301	392 304 297 351 293 285 282 333 323	417 327 320 375 317 308 305 354	442 350 343 398 340 331 329 374	487 374 368 422 364 353 353 395	492 397 388 446 387 376 377
Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Motten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	163 161 209 152 150 139 208 192 221 287 151	187 184 232 175 172 162 229 214 246 309	210 208 256 199 195 186 250 236 271 332	233 229 280 223 217 210 271 258 296	257 252 303 246 240 234 291 279	280 275 327 270 263 258 312 301	304 297 351 293 285 282 333 323	327 320 375 317 308 305 354	350 343 398 340 331 329 374	374 366 422 364 353 353 395	397 388 446 387 376 377
Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Motten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	161 209 152 150 139 208 192 221 287 151	184 232 175 172 162 229 214 246 309	208 256 199 195 186 250 236 271 332	229 280 223 217 210 271 258 296	252 303 246 240 234 291 279	275 327 270 263 258 312 301	297 351 293 285 282 333 323	320 375 317 308 305 354	343 398 340 331 329 374	366 422 364 353 353 395	388 446 387 376 377
Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-380MW Press Fluidized Bed (Circulating, Supercritical)-380MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	161 209 152 150 139 208 192 221 287 151	184 232 175 172 162 229 214 246 309	208 256 199 195 186 250 236 271 332	229 280 223 217 210 271 258 296	252 303 246 240 234 291 279	275 327 270 263 258 312 301	297 351 293 285 282 333 323	320 375 317 308 305 354	343 398 340 331 329 374	366 422 364 353 353 395	388 446 387 376 377
Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	209 152 150 139 208 192 221 287 151	232 175 172 162 229 214 246 309	256 199 195 186 250 236 271 332	280 223 217 210 271 258 296	303 246 240 234 291 279	327 270 263 258 312 301	351 293 285 282 333 323	375 317 308 305 354	398 340 331 329 374	422 364 353 353 395	446 387 376 377
Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	152 150 139 208 192 221 287 151	175 172 162 229 214 246 309	199 195 186 250 236 271 332	223 217 210 271 258 296	246 240 234 291 279	270 263 258 312 301	293 285 282 333 323	317 308 305 354	340 331 329 374	364 353 353 395	387 376 377
Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW Advanced Int. Coal Gas-460MW	150 139 208 192 221 287 151	172 162 229 214 246 309	195 186 250 236 271 332	217 210 271 258 296	240 234 291 279	263 258 312 301	285 282 333 323	308 305 354	331 329 374	353 353 395	376 377
Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Motten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	139 208 192 221 287 151	162 229 214 246 309	186 250 236 271 332	210 271 258 296	234 291 279	258 312 301	282 333 323	305 354	329 374	353 395	377
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	208 192 221 287 151	229 214 246 309	250 236 271 332	271 258 296	291 279	312 301	333 323	354	374	395	
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-800MW Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas / Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	192 221 287 151	214 246 309	236 271 332	258 296	279	301	323				410
Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	221 287 151	246 309	271 332	296				345	1 367		
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	287 151	309	332		321					389	410
Advanced Int. Coal Gas-460MW	151						371	396	421	446	471
		173			377	400	422	445	468	490	513
	65		195	216	238	260	282	303	325	347	369
Combustion Turbine Heavy Duty-80MW		113	161	209	257	305	353	401	449	497	545
Combustion Turbine Heavy Duty-110MW	56	107	158	209	260	311	362	413	464	515	566
Combustion Turbine Heavy Duty-160MW	52	95	138	181	224	267	310	353	396	439	482
Combustion Turbine Aero- 45MW	105	145	185	225	265	305	345	385	425	485	505
CT Combined Cycle 2on1 - 330MW	81	110	139	167	196	225	254	283	312	341	370
CT Combined Cycle 2on1 - 470MW	71	97	124	151	178	204	231	258	285	312	338
CT Combined Cycle - 345MW	69	.96	122	148	175	201	227	254	280	306	332
CT with Cascaded Humidified Advanced Turbine-300MW	64	93	122	151	180	209	239	268	297	326	355
Phosphoric Acid Fuel Cell-2.5MW	1115	1153	1190	1228	1266	1303	1341	1379	1416	1454	1492
Molten Carbonate Fuel Cell-100MW	332	355	378	401	424	447	470	493	516	539	562
Solid Oxide Fuel Cell-100MW	169	192	215	237	260	283	305	328	351	373	396
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	297	403	510	616	722	829	935	1041	1148	1254
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416	310	010	122		933	1041	1140	
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367							_=	
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449	493	537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159	184	210	236	261	287	313	339	364	390	416
Cane Run 3 Rehab w/ Natural Gas	120	160	201	242	282	323	363	404	445	485	526
Brown 5 CT 110MW	52	98	144	190	236	282	328	374	420	466	512
Brown 5 CT 164MW	52	91	130	169	208	247	286	325	364	403	442
Brown 5 CT 102MW	55	101	147	193	239	285	331	377	423	469	515
Brown 5 CT 159MW	49	90	131	172	213	254	295	336	377	418	459
Brown 5 CT 149MW	50	92	134	176	218	260	302	344	386	428	470
IPP Hydro	134	134	134	134	134	134	134			720	
l- '	50	93		179	222	265	308	351	394	437	480
Aeroderivative CT			136					331	384	437	460
Ohio Falls 9&10	142	142	142	142	242	200	200	240	222	200	204
Trimble County 2	148	172	195	219	242	266	290	313	337	360	384
IAC at Brown 8-11	20	73				1		<u></u>			
Minimum Levelized \$/I	W 20	73	116	119	134	134	134	254	280	306	332

Capital Cost-Low Heat Rate- High

Heat Rate- High											
Fuel Forecast-Low					Capac	ity Facto	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132								3076	10076
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106		-	_=_						
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	97	126	156				-		-	
Compressed Air Energy w/ Humid Air Turbine-350MW	50	80	. 110	140							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106		-							
Pulverized Coal (LSFO)-500MW	165	187	209	232	254	276					
Pulverized Coal (LSFO)-400MW							299	321	343	365	388
	184	206	229	251	273	295	318	340	362	385	407
Pulverized Coal (LSFO)-300MW	189	214	239	264	289	314	339	364	389	413	438
Pulverized Coal (LSFO)-200MW	231	254	277	300	323	346	369	392	415	438	462
Pulverized Coal (LSFO)-300MW X 2	169	191	214	236	259	281	304	326	349	371	394
Pulverized Coal Compliance (LSD)- 300MW	178	203	228	253	278	303	329	354	379	404	429
Pulverized Coal Supercritical (LSD)- 300MW	214	240	266	291	317	343	368	394	420	445	471
Pulverized Coal (Advanced LSFO)- 400MW	191	212	233	254	275	296	317	338			
Atmosph Fluidized Bed (Circulating)-200MW	228	256							359	380	401
			284	312	339	367	395	423	451	479	507
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	267	291	314	338	362	385	409	432	456	479
Press Fluidized Bed (Bubbling)-350MW	163	186	208	230	252	275	297	319	342	364	386
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	182	204	226	248	269	291	313	334	356	378
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	231	254	276	299	321	343	366	388	411	433
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	174	197	219	242	264	287	309	332	354	377
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	171	193	215	236	258	280	301	323	345	367
Foster Wheeler Advanced PFB (Circulating)-688MW	139	161	184	207	230	252	275	298	323		
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	228								343	366
			248	268	288	308	327	347	367	387	407
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	213	234	254	275	296	317	337	358	379	400
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	245	269	292	316	340	363	387	411	434	458
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	308	330	352	373	395	417	439	460	482	504
Advanced Int. Coal Gas-460MW	151	172	193	214	235	256	276	297	318	339	360
Combustion Turbine Heavy Duty-80MW	65	107	149	191	233	275	317	359	401	443	485
Combustion Turbine Heavy Duty-110MW	56	101	146	191	236	281	326	371	416	461	506
Combustion Turbine Heavy Duty-160MW	52	90	128	166	204	242	280	318	356		
Combustion Turbine Aero- 45MW	105	140								394	432
			175	210	245	280	315	350	385	420	455
CT Combined Cycle 2on1 - 330MW	81	106	132	157	183	208	234	259	285	311	336
CT Combined Cycle 2on1 - 470MW	71	94	118	141	165	188	212	235	259	282	306
CT Combined Cycle - 345MW	69	93	116	139	162	186	209	232	255	278	302
CT with Cascaded Humidified Advanced Turbine-300MW	64	90	116	142	167	193	219	245	271	297	323
Phosphoric Acid Fuel Cell-2.5MW	1115	1148	1182	1215	1248	1282	1315	1348	1382	1415	1448
Molten Carbonate Fuel Cell-100MW	332	353	373	394	415	435	456	477	497	518	539
Solid Oxide Fuel Cell-100MW	169	189	209	228	248	268	287	307	327	346	366
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	284	377	470	563	657	750	843	936		
Solar Photovoltaic:Flat Plate-10x5MW					363		/30	043		1029	1122
	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367	_			1		-		
Wind Turbines-Variable Speed-50x750kw	139	139	139	139		-				_	
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solld Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205		
Municipal Solid Waste: Tire-30MW		534								1240	1274
	529		539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	363	409	455	501	547	593	638	684	730	776
Bio Mass: Whole Tree-100MW	227	253	279	305	331	357	383	409	435	461	487
Cane Run 3 Rehab w/ AFBC	159	183	207	232	256	280	305	329	353	377	402
Cane Run 3 Rehab w/ Natural Gas	120	155	191	226	262	297	333	368	404	440	475
Brown 5 CT 110MW	52	92	132	172	212	252	292	332	372	412	452
Brown 5 CT 164MW	52	87	122	157	192	227	262	297	332	367	402
Brown 5 CT 102MW	55	96	137	178	219	260	301	342	383	424	465
Brown 5 CT 159MW											
	49	85	121	157	193	229	265	301	337	373	409
Brown 5 CT 149MW	50	87	124	161	198	235	272	309	346	383	420
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	88	126	164	202	240	278	316	354	392	430
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	171	193	215	238	260	282	304	327	349	371
IAC at Brown 8-11	20	67									
Minimum Levelized \$/kW	20	67	110	119	134	134	134	232	255	278	302
MINIMUM COVERED WATE	20	٠,	110	110	104	1.57		707		210	J02

Capital Cost-Low Heat Rate- High

Fuel Foreiast Bases	Heat Rate- High											
International Distance Statement Proceedings 1996 1997 1998 1999	Fuel Forecast- Base					Capac	ity Factor	s				
Lind And Battery (Strongert In Psp 200W)	Technology	0	10%	20%	30%				70%	202/	000/	4000
Advanced Battery (3 In) 20MW 77 7 100									70%		30%	100%
Absenced Battery (6 In Py-20MAY 77 100 -												
Purpose Lydro Energy Soloway Soloway Soloway Soloway 129 160				-								
Compressed AF Energy (Start Cowert) - 350NW											- 1	
Compressed AF Energy will Fund Air Turbins-300MW				195	228							
Compressed AF Energy with Fund AIT Turbine-300MW		67	98	129	160							
Pulverfized Cost (LEPO)-800MV	Compressed Air Energy w/ Humid Air Turbine-350MW	50	82	.114	146							
Pulvertand Coal (LSFO)-600MW	Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
Pulverted Coal (LSFO)-400MY												
Pulverted Coal (LSFO)-400MY	Pulvedzed Coal (LSEO), 500MM	105	100	244	004	250	004	004				
Pulvertact Coat (LSFO)-300MW												
Pulverized Coat (LSPC)-300MW 231 295 779 303 327 331 335 336 423 447 477											393	416
Pulverized Coart (LSPC)-300MW X 2			215	242	268	294	321	347	373	400	426	452
Pluvieract Coal (LSFO)-300MW X 2		231	255	279	303	327	351	375	399	423	447	471
Pulveritad Coad Compliance (LSD)- 300MW	Pulverized Coal (LSFO)-300MW X 2	169	192	216	239	262	286	309	333	356		
Pulverted Coal Supercritical (LSD)- 300MW	Pulverized Coal Compliance (LSD)- 300MW	178	204	231	257	283	310					
Pulverted Coal (Advanced LSFO)-600HW	Pulverized Coal Supercritical (LSD)- 300MW											
Amosph Fluidized Bed (Circulating)-200MW												
Press Fulidized Bed (Bubbling), Non-Rehealy-SDMWY 163 189 210 233 256 279 303 226 349 372 396 Press Fulidized Bed (Bubbling), Supercriticg-340MWY 161 189 206 228 251 273 299 318 340 363 385 387 398 381 415 440 454 458 279 389 318 340 369 381 345 340 369 381 340 381 340												
Press Fulidized Bed (Bubbling)-S50MV												
Press Fulidized Bed (Bubbling, Supercritic)-3040MV 161									415	440	464	488
Press Fulidized Bed (Bubbling, Supercritic)-340MW			186	210	233	256	279	303	326	349	372	396
Press Fulidized Bed (Circulating, with Reheal)-160MW	Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	183	206	228	251	273	296	318			
Press Fulidized Bedr (Circulaling, with Reheart)-360MW 150 172 195 217 295 292 294 977 329 329 331 334 391 394 Press Fulidized Bedr (Circulaling, Superriclea)-360MW 150 172 195 217 295 292 294 977 329 352 374 Poster Wheeler Advanced PFB (Circulating)-868MW 130 162 196 290 270 291 311 332 353 373 394 414 Int Coal Gas Archive Coal Gasa/Comb (Cyc (Entralerd)-961MW 200 229 250 270 291 311 332 355 373 394 414 Int Coal Gas With Humid Art Turbine (Entrained Flow)-900MW 192 214 235 257 276 300 321 343 396 396 396 419 Int Coal Gas With Humid Art Turbine (Entrained Flow)-900MW 221 246 271 295 320 303 321 343 396 396 396 419 Int Coal Gas Mollen Carbonate Fuel Cell 400MW 228 276 309 331 354 376 398 421 443 465 465 487 510 Advanced Int. Coal Gas-460MW 151 173 194 216 239 259 291 303 394 498 396 497 Combusion Turbine Heavy Duty-10MW 152 173 194 216 239 259 291 303 394 496 397 Combusion Turbine Heavy Duty-10MW 153 194 203 252 300 350 350 396 448 596 Combusion Turbine Heavy Duty-10MW 152 94 138 178 220 282 304 396 388 497 Combusion Turbine Heavy Duty-10MW 152 94 138 178 220 282 304 396 388 497 Combusion Turbine Heavy Duty-10MW 153 194 219 257 295 333 371 409 386 497 Combusion Turbine Heavy Duty-10MW 154 195 195 296 296 293 304 396 388 497 Combusion Turbine Heavy Duty-10MW 155 195 195 296 297 309 397 498 397 398 441 488 535 Combusion Turbine Heavy Duty-10MW 153 195 294 138 178 220 282 304 396 388 497 Combusion Turbine Heavy Duty-10MW 154 196 197 219 259 282 304 396 386 490 477 Combusion Turbine Heavy Duty-10MW 155 197 197 229 282 304 396 386 490 477 Combusion Turbine Heavy Duty-10MW 156 107 197 197 229 282 304 396 397 397 398 441 498 397 Combusion Turbine Heavy Duty-10MW 157 196 122 197 197 229 298 331 371 409 387 Combusion Turbine Heavy Duty-10MW 158 197 197 197 197 197 197 197 197 197 197	Press Fluidized Bed (Circulating, with Reheat)-160MW	209	232	255								
Press Fulidized Bed (Circulating, Supercritical)-360MW	Press Fluidized Bed (Circulating with Reheat)-360MW											
Foster Wheeler Advanced PFB (Circulating)-688MW	Press Fluidized Red (Circulating Supersition) 300MM											
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW												
Int Coal Gas w/ Humid AF Turbine (Entrained Flow)-600MW												374
Int Coal Gas / CAES with Humid Air Turbine-410MW		208	229	250	270	291	311	332	353	373	394	414
Int Coal Gast Mother Carbonate Fuel Cell 400MW	Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	214	235	257	278	300	321	343	364	386	407
Int Coal Gast Molten Carbonate Fuel Cell 400MW	Int Coal Gas / CAES with Humid Air Turbine-410MW	221	246	271	295	320	345	369	394	419	443	468
Advanced Int. Coal Gas-460MW	Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	309									
Combustion Turbine Heavy Duty-10MW												
Combustion Turbine Heavy Duly-110MW												
Combustion Turbine Helewy Duty-160MW	Combustion Full III D 4 440000											
Combustion Turbine Aero- 45MW											497	546
CT Combined Cycle 2on1 - 330MW				136	178	220	262	304	346	388	430	472
CT Combined Cycle 20n1 - 470MW	Combustion Turbine Aero- 45MW	105	143	181	219	257	295	333	371	409	447	485
CT Combined Cycle 2-470MW 69 95 120 148 174 200 226 252 277 303 329 CT Combined Cycle 3-48MW 69 95 120 146 172 197 223 248 274 299 325 CT with Cascaded Humidified Advanced Turbine-300MW 64 92 120 149 177 205 233 261 289 317 346 Phosphoric Acid Fuel Cell-2.5MW 1115 1151 1188 1224 1260 1297 1333 1369 1408 1442 1478 Molten Carbonate Fuel Cell-100MW 332 354 377 399 421 444 486 488 511 533 555 Solid Oxide Fuel Cell-100MW 169 191 213 234 258 278 299 321 343 384 386 Geothermal: Dual Flash Brine, Air Cocled-24MW 191 293 398 602 704 807 910 1013 1115 1218 Solar Photovoltaic:Flar Plate-10x5MW 416 461 461 461 — — — — — — — — — — — — — — — — — — —	CT Combined Cycle 2on1 - 330MW	81	109	137	165	193	221	249	277	305	333	361
CT Combined Cycle - 345MW 69 95 120 146 172 197 223 248 274 299 325 CT with Cascaded Humidified Advanced Turbine-300MW 64 92 120 149 177 205 23 261 269 317 348 Phosphoric Acid Fuel Cell-2.5MW 1115 1151 1188 1224 1260 1297 1333 1369 1406 1442 1478 Molten Carbonate Fuel Cell-100MW 332 354 377 399 421 444 466 488 511 533 555 Solid Oxide Fuel Cell-100MW 189 191 213 234 256 278 299 321 343 364 386 Geothermal: Dual Flash Brine, Air Cooled-24MW 191 293 396 499 602 704 807 910 1013 1115 1218 Solar Photovoltaic-Flaer Plate-10x5MW 416 416 416 — — — — — — — — — — — — — — — — — — —	CT Combined Cycle 2on1 - 470MW	71	96	122	148	174	200	226				
CT with Cascaded Humidified Advanced Turbine-300MW												
Phosphoric Acid Fuel Cell-Z.SMW												
Molten Carbonate Fuel Cell-100MW 332 354 377 399 421 444 466 488 511 533 555 536												
Solid Oxide Fuel Cell-100MW 168 191 213 234 256 278 299 321 343 384 385 386 385 386												
Geothermal: Dual Flash Brine, Air Cooled-24MW												
Solar Photovoltaic:Flat Plate-10x5MW		169	191	213	234	256	278	299	321	343	364	386
Solar Photovoltaic:Flat Plate-10x5MW	Geothermal: Dual Flash Brine, Air Cooled-24MW	191	293	396	499	602	704	807	910	1013	1115	1218
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW 340 440 440	Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW											
Solar Thermal Trough/Gas Hybrid-200MW 359 363 367												
Wind Turbines-Variable Speed-50x750kw 139 139 139 139				7.14								
Wind Turbines-High Prod Volume-143x350kw 155 155 155 155 155												
Wind Turbines-Class 4 Speed-50x750kw 119 110 1108 1183 1117 1152 1187 Municipal Solid Waste: Refuse Der -40MW 929 964 998 1033 1067 1102 1136 1171 1205 1240 1274 Municipal Solid Waste: Tire-30MW 529 534 539 544 548 553 558 563 567 572 577 Bio Mass: Wood-Fired Stoker Boiler-50MW 317 363 409 455 501 547 593 638 664 730 776 Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487 Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 387 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394 434 473 512 Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 102MW 550 90 130 170 210 250 290 330 370 410 450 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 Brown 5 CT 149MW 50 92 134 176 218 260 302 344 386 428 470 Ohio Falls 9&10 142												
Municipal Solid Waste: Mass Burn-40MW 840 875 910 944 979 1014 1048 1083 1117 1152 1187 Municipal Solid Waste: Refuse Der40MW 929 964 998 1033 1067 1102 1136 1171 1205 1240 1274 Municipal Solid Waste: Tire-30MW 529 534 539 544 548 553 558 563 567 572 577 Bio Mass: Wood-Fired Stoker Boiler-50MW 317 363 409 455 501 547 593 638 684 730 776 Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487 Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 367 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394	Wind Turbines-High Prod Volume-143x350kw		155	155	155			-				_
Municipal Solid Waste: Refuse Der40MW 929 964 998 1033 1067 1102 1136 1171 1205 1240 1274 Municipal Solid Waste: Tire-30MW 529 534 539 544 548 553 558 563 567 572 577 Bio Mass: Wood-Fired Stoker Boiler-SOMW 317 363 409 455 501 547 593 638 684 730 776 Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487 Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 387 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 365 394 434 473 512 Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404	Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119						_	
Municipal Solid Waste: Refuse Der40MW 929 964 998 1033 1087 1102 1136 1171 1205 1240 1274 Municipal Solid Waste: Tire-30MW 529 534 539 544 548 553 558 563 567 572 577 Bio Mass: Wood-Fired Stoker Boiler-50MW 317 363 409 455 501 547 593 638 684 730 776 Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487 Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 387 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394 434 473 512 Brown 5 CT 164MW 52 96 140 184 228 272 316 360 404	Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Tire-30MW 529 534 539 544 548 553 558 563 567 572 577 Bio Mass: Wood-Fired Stoker Boiler-50MW 317 363 409 455 501 547 593 638 684 730 778 Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487 Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 387 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394 434 473 512 Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 <td>Municipal Solid Waste: Refuse Der40MW</td> <td></td>	Municipal Solid Waste: Refuse Der40MW											
Bio Mass: Wood-Fired Stoker Boiler-50MW 317 363 409 455 501 547 593 638 684 730 776												
Bio Mass: Whole Tree-100MW 227 253 279 305 331 357 383 409 435 461 487												
Cane Run 3 Rehab w/ AFBC 159 184 209 235 260 286 311 336 362 367 413 Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394 434 473 512 Brown 5 CT 10MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 305 Brown 5 CT 159MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW												
Cane Run 3 Rehab w/ Natural Gas 120 159 198 237 277 316 355 394 434 473 512 Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 169MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 134 134 134 134 134 134 134 134 134 134 134 134 134												
Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 159MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 134 134 134 134 134 134 134 34				209	235	260	286	311	336	362	387	413
Brown 5 CT 110MW 52 96 140 184 228 272 316 360 404 448 492 Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 159MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 134 134 134 134 134 134 134 34	Cane Run 3 Rehab w/ Natural Gas	120	159	198	237	277	316	355	394	434	473	512
Brown 5 CT 164MW 52 90 128 166 204 242 280 318 356 394 432 Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 159MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 <td></td> <td>52</td> <td>96</td> <td></td> <td></td> <td></td> <td>272</td> <td>316</td> <td>360</td> <td>404</td> <td></td> <td></td>		52	96				272	316	360	404		
Brown 5 CT 102MW 55 100 145 190 235 280 325 370 415 460 505 Brown 5 CT 159MW 49 88 127 166 205 244 283 322 361 400 439 Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 50 92 134 176 218 260 302 344 386 428 470 Ohio Falls 98:10 142 142 142 142	Brown 5 CT 164MW											
Brown 5 CT 159MW												
Brown 5 CT 149MW 50 90 130 170 210 250 290 330 370 410 450 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 50 92 134 176 218 260 302 344 386 428 470 Ohio Falls 9&10 142 142 142												
IPP Hydro 134 134 134 134 134 134 134 134 134 Aeroderivative CT 50 92 134 176 218 260 302 344 386 428 470 Ohio Falls 9&10 142 142 142 Trimble County 2 148 172 195 218 241 264 288 311 334 357 381 IAC at Brown 8-11 20 71												
Aeroderivative CT 50 92 134 176 218 260 302 344 386 428 470 Ohio Falls 9&10 142 142 142 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>330</td> <td>370</td> <td>410</td> <td>450</td>									330	370	410	450
Ohio Falls 9&10 142 142 142 142					134							
Trimble County 2 148 172 195 218 241 264 288 311 334 357 381 IAC at Brown 8-11 20 71 —		50	92	134	176	218	260	302	344	386	428	470
Trimble County 2 148 172 195 218 241 264 288 311 334 357 381 IAC at Brown 8-11 20 71 —		142	142	142	142							_
IAC at Brown 8-11 20 71	Trimble County 2						264	288	311	334	357	381
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												
					440	424	424	424	240	274	200	225

Capital Cost-Low Heat Rate- High

Heat Rate- High											
Fuel Forecast- High					Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132							I		
Advanced Battery (3 hr)-20MW	55	87						_	1	_	
Advanced Battery (5 hr)-20MW	77	106	-					-	1		
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228		_		1	1	-	
Compressed Air Energy (Salt Cavern) -350MW	67	99	132	164			-	-	-		
Compressed Air Energy w/ Humid Air Turbine-350MW	50	84	118	152			ļ	-	ļ		_
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106	_		****		-				
Pulverized Coal (LSFO)-500MW	165	189	214	239	263	288	312	337	362	386	411
Pulverized Coal (LSFO)-400MW	184	209	233	258	282	307	332	356	381	405	430
Pulverized Coal (LSFO)-300MW	189	217	245	274	302	330	358	386	414	443	471
Pulverized Coal (LSFO)-200MW	231	256	282	307	332	358	383	408	434	459	485
Pulverized Coal (LSFO)-300MW X 2	169	194	218	243	268	293	318	342	367	392	417
Pulverized Coal Compliance (LSD)- 300MW	178	206	235	263	291	320	348	376	405	433	461
Pulverized Coal Supercritical (LSD)- 300MW	214	243	272	301	330	360	389	418	447	476	505
Pulverized Coal (Advanced LSFO)- 400MW	191	214	237	260	283	306	329	352	375	398	421
Atmosph Fluidized Bed (Circulating)-200MW	228	259	290	321	352	383	415	446	477	508	539
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	270	296	321	347	373	399	425	451	476	502
Press Fluidized Bed (Bubbling)-350MW	163	188	212	237	261	286	310	334	359	383	408
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	184	208	232	256	279	303	327	350	374	398
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	233	258	283	308	333	357	382	407	432	456
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	177	201	226	250	275	300	324	349	373	398
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	173	197	221	244	268	292	315	339	363	387
Foster Wheeler Advanced PFB (Circulating)-688MW	139	163	188	212	237	262	286	311	335	360	385
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	230	252	274	296	318	339	361	383	405	427
Int Coal Gas w/ Hurnid Air Turbine (Entrained Flow)-600MW	192	215	238	260	283	306	329	351	374	397	420
	221	248	274	300	327	353	379	406	432	458	485
Int Coal Gas / CAES with Humid Air Turbine-410MW	287	310	333	357	380	404	427	450	474	497	521
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW		174	196		242	264	287	310	332	355	
Advanced Int. Coal Gas-460MW	151			219		320					377
Combustion Turbine Heavy Duty-80MW	65	116	167	218	269		371	422	473	524	575
Combustion Turbine Heavy Duty-110MW	56	110	164	218	272	326	380	434	488	542	596
Combustion Turbine Heavy Duty-160MW	52	97	142	187	232	277	322	367	412	457	502
Combustion Turbine Aero- 45MW	105	146	187	228	269	310	351	392	433	474	515
CT Combined Cycle 2on1 - 330MW	81	111	142	. 172	203	233	263	294	324	355	385
CT Combined Cycle 2on1 - 470MW	71	99	127_	155	183	211	240	268	296	324	352
CT Combined Cycle - 345MW	69	97	125	152	180	208	236	: 263	291	319	346
CT with Cascaded Humidified Advanced Turbine-300MW	64	94	125	155	185	216	246	276	307	337	367
Phosphoric Acid Fuel Cell-2.5MW	1115	1154	1194	1233	1272	1312	1351	1390	1430	1469	1508
Molten Carbonate Fuel Cell-100MW	332	356	381	405	429	454	478	502	527	551	575
Solid Oxide Fuel Cell-100MW	169	193	217	240	264	288	311	335	359	382	406
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	302	414	526	637	749	861	973	1084	1196	1308
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367		-						
Wind Turbines-Variable Speed-50x750kw	139	139	139	139	+						
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155	-						
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119	1				1	_	
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boller-50MW	317	363	409	455	501	547	593	638	684	730	776
Bio Mass: Whole Tree-100MW	227	253	279	305	331	357	383	409	435	461	487
Cane Run 3 Rehab w/ AFBC	159	186	213	239	266	293	320	347	374	401	428
Cane Run 3 Rehab w/ Natural Gas	120	162	205	248	290	333	375	418	461	503	546
Brown 5 CT 110MW	52	100	148	196	244	292	340	388	436	484	532
Brown 5 CT 164MW	52	93	134	175	216	257	298	339	380	421	462
Brown 5 CT 102MW	55	104	153	202	251	300	349	398	447	496	545
Brown 5 CT 159MW	49	92	135	178	221	264	307	350	393	436	479
Brown 5 CT 149MW	50	94	138	182	226	270	314	358	402	446	490
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	95	140	185	230	275	320	365	410	455	500
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	173	198	222	247	271	296	321	345	370	394
IAC at Brown 8-11	20	75									
Minimum Levelized \$/kW		75	118	119	134	134	134	263	291	319	346
Intitudes: Poscistor AK11	20	, ,			,0-7						

Capital Cost- Base Heat Rate-Low

Heat Rate-Low											
Fuel Forecast-Low					Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141									
Advanced Battery (3 hr)-20MW	75	107	_								
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	99	127	156	-			_		_	-
Compressed Air Energy w/ Humid Air Turbine-350MW	60	88	117	145				-			
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
Pulverized Coal (LSFO)-500MW	176	196	216	237	257	277	298	318	338	- 050	070
Pulverized Coal (LSFO)-400MW	196	216	237	257		297				358	379
			$\overline{}$		277		318	338	358	379	399
Pulverized Coal (LSFO)-300MW	201	224	247	269	292	315	338	361	383	406	429
Pulverized Coal (LSFO)-200MW	245	266	287	308	328	349	370	391	412	433	454
Pulverized Coal (LSFO)-300MW X 2	180	200	221	241	262	282	303	323	344	364	385
Pulverized Coal Compliance (LSD)- 300MW	190	213	236	258	281	304	327	349	372	395	418
Pulverized Coal Supercritical (LSD)- 300MW	228	252	275	298	322	345	368	392	415	439	462
Pulverized Coal (Advanced LSFO)- 400MW	203	222	241	261	280	299	318	337	356		
		-								375	394
Atmosph Fluidized Bed (Circulating)-200MW	251	276	302	327	353	378	403	429	454	480	505
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	298	319	341	363	384	406	428	449	471	493
Press Fluidized Bed (Bubbling)-350MW	192	213	233	254	274	295	315	335	356	376	397
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	210	229	249	269	289	309	329	349	368	388
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	255	276	297	317	338	358	379	400	420	441
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	197	218	238	259	279	300	320	341	361	382
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	194	214	234	254	274	294	314	333	353	373
Foster Wheeler Advanced PFB (Circulating)-688MW	163	184	205	226	247	269	290	311	332	354	375
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	263	281	299	317	335	353	371	389	407	425
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	244	263	282	301	320	339	357	376	395	414
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	273	295	316	338	360	381	403	425	446	468
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	358	378	399	419	439	460	480	500	520	541
Advanced Int. Coal Gas-460MW	177	197	216	235	255	274	293		332		
								313		352	371
Combustion Turbine Heavy Duty-80MW	70	108	146	184	222	260	298	336	374	412	450
Combustion Turbine Heavy Duty-110MW	61	102	143	184	225	266	307	348	389	430	471
Combustion Turbine Heavy Duty-160MW	56	90	124	158	192	226	260	294	328	362	396
Combustion Turbine Aero- 45MW	114	146	178	210	242	274	306	338	370	402	434
CT Combined Cycle 2on1 - 330MW	87	110	133	156	179	202	225	248	271	294	317
CT Combined Cycle 2on1 - 470MW	76	97	118	140	161	183	204	225	247	268	289
CT Combined Cycle - 345MW	79	100	122	143	164	185	206	227	248	269	290
CT with Cascaded Humidified Advanced Turbine-300MW	72	96	119	143	167	191	214	238	262	285	309
Phosphoric Acid Fuel Cell-2.5MW	1203	1233	1264	1294	1324	1355	1385	1415	1446	1476	1506
Molten Carbonate Fuel Cell-100MW	373	392	411	430	449	468	487	506	525	544	563
Solid Oxide Fuel Cell-100MW	187	205	223	241	259	277	295	313	331	349	367
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	304	388	473	557	641	726	810	894	979	1063
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623								
		$\overline{}$									
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171	-						_
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610		619	624	629	633	638	643
					614						
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	401	443	485	526	568	610	651	693	735	776
Bio Mass: Whole Tree-100MW	276	300	324	348	371	395	419	443	466	490	514
Cane Run 3 Rehab w/ AFBC	170	192	214	236	258	280	303	325	347	369	391
Cane Run 3 Rehab w/ Natural Gas	127	159	191	223	255	287	320	352	384	418	448
Brown 5 CT 110MW	54	91	128	165	202	239	276	313	350	387	424
Brown 5 CT 164MW	55	86	117	148	179	210	241	272	303	334	365
Brown 5 CT 102MW	57	94		168	205	242	279	316	353	390	427
			131								
Brown 5 CT 159MW	51	83	115	147	179	211	243	275	307	339	371
Brown 5 CT 149MW	52	85	118	151	184	217	250	283	316	349	382
IPP Hydro	134	134	134	134	134	134	134			<u> </u>	
Aeroderivative CT	52	87	122	157	192	227	262	297	332	367	402
Ohio Falls 9&10	149	149	149	149							
Trimble County 2	153	173	194	214	234	254	274	294	315	335	355
			194	214	234	204	214	254	313	333	333
IAC at Brown 8-11	21	65									
Minimum Levelized \$/kW	21	65	115	134	134	134	134	225	247	268	289

Capital Cost- Base Heat Rate-Low

1999 Dollars (\$/kW yr)

Heat Rate-Low											
Fuel Forecast- Base					Capac	ity Factor	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141				0070				8076	100%
Advanced Battery (3 hr)-20MW	75	107									
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233				-			
Compressed Air Energy (Salt Cavern) -350MW	70	100	129	159							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	90	120	150	_						
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
37 - 37 \- 17	1,4,										
Pulverized Coal (LSFO)-500MW	176	197	240	220	200	204	200				
			218	239	260	281	302	323	344	365	386
Pulverized Coal (LSFO)-400MW	196	217	238	259	280	301	322	343	365	386	407
Pulverized Coal (LSFO)-300MW	201	225	249	273	297	320	344	368	392	416	440
Pulverized Coal (LSFO)-200MW	245	267	288	310	332	354	376	398	420	441	463
Pulverized Coal (LSFO)-300MW X 2	180	201	222	244	265	286	307	329	350	371	392
Pulverized Coal Compliance (LSD)- 300MW	190	214	238	262	286	310	334	358	382	406	430
Pulverized Coal Supercritical (LSD)- 300MW	228	253	277	302	327	351	376	400	425	450	474
Pulverized Coal (Advanced LSFO)- 400MW	203	223	243	263	283	303	322	342	362	382	
Atmosph Fluidized Bed (Circulating)-200MW	251	278									402
			304	331	358	384	411	437	464	491	517
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	298	321	343	366	388	411	433	456	478	500
Press Fluidized Bed (Bubbling)-350MW	192	213	235	256	277	298	320	341	362	383	405
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	210	231	252	272	293	313	334	355	375	396
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	256	277	299	320	342	363	384	406	427	449
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	198	220	241	262	284	305	327	348	369	391
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	195	216	236	257	278	298	319	340	360	381
Foster Wheeler Advanced PFB (Circulating)-688MW	163	184	206	228	250	272					
							294	315	337	359	381
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	264	283	302	320	339	358	377	395	414	433
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	245	264	284	304	323	343	363	383	402	422
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	274	296	318	341	363	385	408	430	452	475
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	359	380	400	421	442	463	484	505	526	547
Advanced Int. Coal Gas-460MW	177	197	217	237	257	277	297	317	337	357	377
Combustion Turbine Heavy Duty-80MW	70	112	154	196	238	280	322	364	406	448	490
Combustion Turbine Heavy Duty-110MW	61	106	151	196	241	286	331	376	421	466	
	56										511
Combustion Turbine Heavy Duty-160MW	_	94	132	170	208	246	284	322	360	398	436
Combustion Turbine Aero- 45MW	114	149	184	219	254	289	324	359	394	429	464
CT Combined Cycle 2on1 - 330MW	87	112	137	163	188	214	239	264	290	315	341
CT Combined Cycle 2on1 - 470MW	76	99	123	146	170	193	217	240	264	287	311
CT Combined Cycle - 345MW	79	103	126	149	172	196	219	242	265	288	312
CT with Cascaded Humidified Advanced Turbine-300MW	72	98	123	149	175	201	226	252	278	303	329
Phosphoric Acid Fuel Cell-2.5MW	1203	1236	1270	1303	1336	1370	1403	1436	1470	1503	1536
Molten Carbonate Fuel Cell-100MW	373	394	414	435	456	476	497	518	538	559	
											580
Solid Oxide Fuel Cell-100MW	187	207	227	246	266	286	305	325	345	364	384
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	313	406	499	592	684	777	870	963	1056	1149
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563	_							
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623		-		1		_		1
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186		=		_=			
					_=_						
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	401	443	485	526	568	610	651	693	735	776
Bio Mass: Whole Tree-100MW	276	300	324	348	371	395	419	443	468	490	514
Cane Run 3 Rehab w/ AFBC	170	193				285	308	331	354		
			216	239	262					377	400
Cane Run 3 Rehab w/ Natural Gas	127	162	198	233	269	304	340	375	411	447	482
Brown 5 CT 110MW	54	94	134	174	214	254	294	334	374	414	454
Brown 5 CT 164MW	55	90	125	160	195	230	265	300	335	370	405
Brown 5 CT 102MW	57	98	139	180	221	262	303	344	385	426	467
Brown 5 CT 159MW	51	87	123	159	195	231	267	303	339	375	411
Brown 5 CT 149MW	52	89	126	163	200	237	274	311	348	385	422
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT								210	250	204	422
	52	90	128	166	204	242	280	318	356	394	432
Ohio Falls 9&10	149	149	149	149							_=
Trimble County 2	153	174	195	217	238	259	280	301	322	343	364
IAC at Brown 8-11	21	68									
Minimum Levelized \$/kW	21	68	120	134	134	134	134	240	264	287	311

Capital Cost- Base Heat Rate-Low

Heat Rate-Low											
Fuel Forecast- High	,	_			Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141	_			_		-			
Advanced Battery (3 hr)-20MW	75	107									
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	101	132	163							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	92	124	155							
)	101	128									
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
Pulverized Coal (LSFO)-500MW	176	198	220	243	265	287	310	332	354	376	399
Pulverized Coal (LSFO)-400MW	196	218	241	263	285	307	330	352	374	397	419
Pulverized Coal (LSFO)-300MW	201	227	252	278	303	329	354	380	405	431	457
Pulverized Coal (LSFO)-200MW	245	268	291	314	337	360	383	406	429	452	476
Pulverized Coal (LSFO)-300MW X 2	180	203	225	248	270	293	316	338	361	383	406
Pulverized Coal Compliance (LSD)- 300MW	190	216	242	268	293	319	345	371	397	423	449
Pulverized Coal Supercritical (LSD)- 300MW	228	255	281	. 308	334	360	387	413	440	466	493
	203	224	245	266	287	308	329	350	371	392	413
Pulverized Coal (Advanced LSFO)- 400MW			308	336	365	393	422	450	479	507	536
Atmosph Fluidized Bed (Circulating)-200MW	251	280									
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	300	323	347	371	394	418	442	465	489	513
Press Fluidized Bed (Bubbling)-350MW	192	215	237	260	282	305	327	349	372	394	417
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	211	233	255	277	298	320	342	363	385	407
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	257	280	303	325	348	370	393	416	438	461
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	199	222	244	267	289	312	334	357	379	402
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	196	218	240	261	283	305	326	348	370	392
Foster Wheeler Advanced PFB (Circulating)-688MW	163	185	208	231	254	277	300	323	346	369	392
	245	265	285	305	325	345	364	384	404	424	444
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW				287	308	329	350	370	391	412	433
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-800MW	225	246	267								
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	275	299	322	346	370	393	417	441	464	488
Int Coal Gas/ Molten Carbonate Fuel Ceil 400MW	338	359	381	403	424	446	468	490	511	533	555
Advanced Int. Coal Gas-460MW	177	198	219	240	261	282	303	324	345	366	387
Combustion Turbine Heavy Duty-80MW	70	116	162	208	254	300	346	392	438	484	530
Combustion Turbine Heavy Duty-110MW	61	110	159	208	257	306	355	404	453	502	551
Combustion Turbine Heavy Duty-160MW	56	97	138	179	220	261	302	343	384	425	466
Combustion Turbine Aero- 45MW	114	152	190	228	266	304	342	380	418	456	494
CT Combined Cycle 2on1 - 330MW	87	114	142	169	197	224	252	279	307	335	362
CT Combined Cycle 2on1 - 470MW	76	101	127	152	178	203	229	254	280	305	331
				155	180	205	230	255	280	305	330
CT Combined Cycle - 345MW	79	104	130								
CT with Cascaded Humidified Advanced Turbine-300MW	72	100	127	155	183	211	238	266	294	321	349
Phosphoric Acid Fuel Cell-2.5MW	1203	1239	1275	1311	1347	1383	1419	1455	1491	1527	1563
Molten Carbonate Fuel Cell-100MW	373	395	417	439	461	483	505	527	549	571	593
Solid Oxide Fuel Cell-100MW	187	209	230	251	273	294	315	337	358	379	401
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	321	422	523	624	725	826	927	1028	1129	1230
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623	_							
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398							<del></del>	
Wind Turbines-Variable Speed-50x750kw	171	171	171	171	<u> </u>						
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste; Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	401	443	485	526	568	610	651	693	735	776
Bio Mass: Whole Tree-100MW	276	300	324	348	371	395	419	443	466	490	514
Cane Run 3 Rehab w/ AFBC	170	194	219	243	268	292	316	341	365	390	414
Cane Run 3 Rehab w/ Natural Gas	127	165	204	243	281	320	358	397	436	474	513
						274	318	362	406	450	494
Brown 5 CT 110MW	54	98	142	186	230					397	435
Brown 5 CT 164MW	55	93	131	169	207	245	283	321	359		
Brown 5 CT 102MW	57	101	145	189	233	277	321	365	409	453	497
Brown 5 CT 159MW	51	90	129	168	207	246	285	324	363	402	441
Brown 5 CT 149MW	52	92	132	172	212	252	292	332	372	412	452
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	52	93	134	175	216	257	298	339	380	421	462
Ohio Falls 9&10	149	149	149	149	<del> </del>				_		
Trimble County 2	153	176	198	220	243	265	287	309	332	354	376
			190	- 220						<del> </del>	<del></del>
IAC at Brown 8-11 Minimum Levelized \$/kW	21	72 72	124	134	134	134	134	254	280	305	330
Minimim i evelized S/kW	21	12									

Capital Cost- Base Heat Rate- Base

Description	Heat Rate- Base											
Land And Ballery (b. 17, 204W   75   107	Fuel Forecast-Low					Capac	ity Facto	rs				
Advanced Battery (5 hr)-2004W	Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Advanced Safetiny (5 In 9-) 200   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1	Lead Acid Battery Storage(1 hr)-20MW	104	141									
Purposed Pythos Energy (Ser Geown)   550MW   70   60   230   158	Advanced Battery (3 hr)-20MW	75	107					-				
Purpose   Purpose   Source	Advanced Battery (5 hr)-20MW	104	133			_						
Compressed AF, Energy (Sett Cowen) - SSONW	Pumped Hydro Energy Storage-350MW X 3	134	167	200	233			_		<del></del>		
Compressed AF Energy of Humber AF Turbine 350MW   60   88   118   147	Compressed Air Energy (Salt Cavern) -350MW	70	99	129						<del></del>		
Super-Conducting Magnetic Energy Stronge (2 hr)-500MW		60				-						
Pulverfized Coal (LSFO)-SOURW 178   197   219   240   261   283   304   328   347   388   389   389   241   442   442   443   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485   485												
Pulmetract Coal (LSFO)-400MW	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	1	- 120				<del></del>					
Pulmetract Coal (LSFO)-400MW	Pulverized Coal (LSEO)-500MW	178	107	218	240	281	202	304	225	047		
Pulverized Coal (LSFO)-SOOMY												
Pulvertard Coar (LSPO)-200MW 2												
Pulverized Coal (LSFO)-300MWY X   180   201   223   245   266   388   309   331   352   374   365												
Pulversed Coal Campliance (LSD)- 300MW 190 214 238 282 285 309 333 357 381 405 229 Pulversed Coal (Advanced LSPO)- 400MW 203 229 281 277 302 277 351 360 403 438 383 383 403 403 400 400 400 400 400 400 400 40						_						
Pulveristed Coal Supercritical (JSD)- 300MW												
Pulvettred Coall (Arbanead LSFO)- 400MW												
Almosph Fluidized Bed (Circulating)-200MW										425	450	474
Press Fulicized Bod (Bubbing), Non-Reheeth/SelMW X 2					263	283	303	323	343	363	383	403
Press Fluidzed Bed (Bubbling)-S50MV 192 214 235 256 278 299 321 342 363 395 407 377 397 197 197 211 231 252 273 294 314 335 395 395 377 397 197 197 214 231 252 273 294 314 335 395 395 377 397 197 197 197 197 197 197 197 197 197 1		251	278	304	331	358	384	411	. 437	464	491	517
Press Fulidzed Bed (Bubbling, Supercritic)-340MW	Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	298	321	344	366	389	412	434	457	479	502
Prass Fluidzeed Bed (Bubbling, Supercritic)-340M/W Prass Fluidzeed Bed (Circulating, Mit Reheet)-160M/W 235 266 278 299 321 329 321 364 335 336 377 397 397 397 397 397 397 397 397 397		192	214	235	256	278	299	321	342	363	385	406
Press Fluitized Bed (Circulating, with Reheat)-600MW 177   198   220   242   253   256   305   335   407   428   456   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   438   4	Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	211	231	252	273	294	314	335	356		
Press Fulidized Bed (Circulating, with Rehealty-360MW 177 198 220 242 283 285 306 328 349 371 392 Press Fulidized Bed (Circulating, Supercritical)-360MW 175 195 216 237 258 289 320 341 392 391 393 196 197 197 197 217 227 285 317 339 391 393 197 397 416 435 116 201 201 201 201 201 201 201 201 201 201	Press Fluidized Bed (Circulating, with Reheat)-160MW	235	256	278	299	321	342	364	385			450
Press Fluidized Bed (Circulating, Superatrices)-360MW 175 195 216 237 258 278 299 320 341 392 392 Foster Wheeler Advanced PEB (Circulating)-888MW 163 185 207 229 251 273 295 317 339 391 393 981 398 slighty Integrated Coal Gan/Comb Cyc (Entrained)-601MW 245 264 283 302 321 340 399 378 397 416 435 110 201 201 201 201 201 201 201 201 201		177	198	220	242	263	285	306				
Foster Wheeler Advanced PFB (Circulating)-888MW   163   185   207   229   251   273   295   317   339   391   331   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181   181												
Highly thegrated Coal Gas/Comb Cyc (Entrained)-901MW 245 264 283 302 321 340 359 378 397 416 432 and ICoal Gas w Humid Ar Turbine (Entrained Flow)-9600MW 252 245 285 285 380 304 324 344 364 364 364 442 241 11 Coal Gas / CAES with Humid Air Turbine 410MW 251 274 297 319 342 365 397 410 433 485 485 578 391 11 Coal Gas / Allen Carbonate Fuel Ceil 400MW 338 359 390 400 421 442 442 443 443 344 364 364 365 556 558 578 478 11 Coal Gas / Allen Carbonate Fuel Ceil 400MW 370 1170 150 160 230 270 310 330 380 380 430 450 470 470 470 470 470 470 470 470 470 47												
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW 259 245 265 286 304 324 344 394 394 384 404 422 11 Coal Gas ACAES with Humid Air Turbine-AllowW 251 274 297 319 342 324 385 387 410 433 455 457 11 Coal Gas ACAES with Humid Air Turbine-AllowW 338 359 380 400 421 442 483 484 505 55 526 547 11 Coal Gas ACAES with Humid Air Turbine-AllowW 338 359 380 400 421 442 483 484 505 55 526 547 11 Coal Gas Acae Acae Acae Acae Acae Acae Acae Acae												
Int Coel Gas / CAES with Humid Air Turbine-410MW  251 274 297 319 342 385 397 410 433 455 478  Int Coel Gas / Advanced Fuel Cell 400MW  393 539 380 400 421 442 493 448 595 556 547  Advanced Int. Coel Gas - 450NW  177 197 217 238 259 278 298 318 338 358 378  Combustion Turbine Heavy Duly-10MW  181 104 147 190 233 270 310 350 380 405 448 491  Combustion Turbine Heavy Duly-110MW  181 104 147 190 233 276 319 382 405 348 381 498 479  Combustion Turbine Heavy Duly-110MW  185 92 128 164 200 238 272 308 344 380 416  Combustion Turbine Heavy Duly-110MW  186 92 128 164 200 238 272 308 344 380 416  Combustion Turbine Heavy Duly-110MW  187 110 111 110 110 110 110 110 110 110 11												
Int Coal Gast Mollen Carbonate Fuel Cell 400MW												
Advanced Int. Coal Gas450NW 70 110 150 180 230 278 298 318 338 358 376 Combustion Turbine Heavy Duly-50MW 70 110 150 180 230 270 310 350 380 430 430 470 170 170 170 170 170 170 170 170 170 1												
Combustion Turbine Heavy Duty-BOMW												
Combustion Turbine Heavy Duty-110MW												
Combustion Turbine Heavy Duty-160MW												
Combustion Turbine Aero- 45MW												
CT Combined Cycle 2on1 - 330MW												
CT Combined Cycle 20n1 - 470MW 76 98 121 143 165 188 210 233 255 278 300 CT Combined Cycle - 345MW 79 102 124 146 168 190 212 234 257 279 301 CT with Cascaded Humidified Advanced Turbine-300MW 72 97 122 146 171 196 221 245 270 295 320 Phosphoric Acid Fuel Cell-2.5MW 1203 1235 1287 1299 1331 1393 1395 1427 1459 1491 1512 333 33 412 432 452 471 491 511 530 555 570 S016 Oxide Fuel Cell-100MW 187 206 225 244 283 282 301 320 339 356 377 S016 Oxide Fuel Cell-100MW 220 308 397 486 575 663 752 641 930 1018 1107 S016 Photovoltaic: Plat Plate-10x5MW 563 563 563												
CT Combined Cycle - 345MW 79 102 124 146 188 190 212 234 257 279 301 CT with Cascaded Humidified Advanced Turbine-300MW 72 97 122 146 171 196 221 245 270 295 320 Phosphoric Add Fuel Cell-2.5MW 1203 1235 1287 1299 1331 3833 1395 1427 1459 1491 1523 Molten Carbonate Fuel Cell-100MW 373 393 412 432 452 471 491 511 530 550 570 570 570 570 570 570 570 570 57												
CT with Cascaded Humidified Advanced Turbine-300MW         72         97         122         146         171         196         221         245         270         295         320           Phosphoric Acid Fuel Cell-2.5MW         1203         1235         1287         1289         1331         1363         1395         1427         1459         1491         1523           Mollen Carbonate Fuel Cell-100MW         187         208         225         244         482         471         491         511         530         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         558         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578												
Phosphoric Acid Fuel Cell-2.5MW									234	257	279	301
Molten Carbonate Fuel Cell-100MW								221	245	270	295	320
Solid Oxide Fuel Cell-IODMW		1203	1235	1267	1299	1331	1363	1395	1427	1459	1491	1523
Geothermal: Dual Flash Brine, Air Cooled-24MW   220   308   397   486   575   663   752   841   930   1018   1107	Molten Carbonate Fuel Cell-100MW	373	393	412	432	452	471	491	511	530	550	570
Solar Photovoltaic:Flat Plate-10x5MW   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   5	Solid Oxide Fuel Cell-100MW	187	206	225	244	263	282	301	320	339	358	377
Solar Photovoltaic:Plat Plate-10x5MW   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   5	Geothermal: Dual Flash Brine, Air Cooled-24MW	220	308	397	486	575	663	752	841	930	1018	
Solar Photovoltaic:Fresnel Lens High Concen10x5MW   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578	Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:Fresnel Lens High Concen:-10x5MW   390   394   398	Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623										
Solar Thermal Trough/Gas Hybrid-200MW   390   394   398												
Wind Turbines-Variable Speed-50x750kw         171         171         171         171         171         171												
Wind Turbines-High Prod Volume-143x350kw         186         188         186         188												
Wind Turbines-Class 4 Speed-50x750kw         145         145         145         145         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         — <td></td>												
Municipal Solid Waste: Mass Burn-40MW         945         980         1015         1049         1084         1119         1153         1188         1222         1257         1292           Municipal Solid Waste: Refuse Der -40MW         1040         1075         1109         1144         1178         1213         1247         1282         1316         1351         1385           Municipal Solid Waste: Tire-30MW         595         600         605         610         614         619         624         629         633         688         643           Bio Mass: Wood-Fired Stoker Boiler-50MW         359         403         447         491         535         579         623         668         710         754         798           Bio Mass: Whole Tree-100MW         276         301         326         351         376         401         426         450         475         500         525           Cane Run 3 Rehab w/ AFBC         170         193         216         239         263         286         309         332         356         379         402           Cane Run 3 Rehab w/ Natural Gas         127         161         194         228         262         296         330         36								_				
Municipal Solid Waste: Refuse Der. 40MW         1040         1075         1109         1144         1178         1213         1247         1282         1316         1351         1385           Municipal Solid Waste: Tire-30MW         595         600         605         610         614         619         624         629         633         638         643           Blo Mass: Wood-Fired Stoker Boiler-50MW         359         403         447         491         535         579         623         668         710         754         798           Bio Mass: Whole Tree-100MW         276         301         326         351         376         401         428         450         475         500         525           Cane Run 3 Rehab w/ AFBC         170         193         216         239         263         286         309         332         356         379         402           Brown 5 CT 110MW         54         93         132         171         210         249         288         327         366         405         444           Brown 5 CT 110MW         55         88         121         154         187         220         253         286         319         352						4004	4440	4450		4000	4057	4000
Municipal Solld Waste: Tire-30MW         595         600         605         610         614         619         624         629         633         638         643           Bio Mass: Wood-Fired Stoker Boiler-50MW         359         403         447         491         535         579         623         668         710         754         798           Bio Mass: Whole Tree-100MW         276         301         326         351         376         401         428         450         475         500         525           Cane Run 3 Rehab w/ AFBC         170         193         216         239         263         286         309         332         356         379         402           Cane Run 3 Rehab w/ Natural Gas         127         161         194         228         262         296         330         364         397         431         485           Brown 5 CT 110MW         54         93         132         171         210         249         288         327         366         405         444           Brown 5 CT 164MW         55         88         121         154         187         220         253         286         319         352         385 <td></td>												
Bio Mass: Wood-Fired Stoker Boiler-50MW       359       403       447       491       535       579       623       668       710       754       798         Bio Mass: Whole Tree-100MW       276       301       328       351       376       401       428       450       475       500       525         Cane Run 3 Rehab w/ AFBC       170       193       216       239       263       286       309       332       356       379       402         Cane Run 3 Rehab w/ Natural Gas       127       161       194       228       262       296       330       364       397       431       485         Brown 5 CT 110MW       54       93       132       171       210       249       288       327       366       405       445         Brown 5 CT 164MW       55       88       121       154       187       220       253       286       319       352       385         Brown 5 CT 102MW       57       98       135       174       213       252       291       330       369       408       447         Brown 5 CT 159MW       51       85       119       153       187       221       2												
Bic Mass: Whole Tree-100MW       276       301       328       351       376       401       428       450       475       500       525         Cane Run 3 Rehab w/ AFBC       170       193       216       239       263       286       309       332       356       379       402         Cane Run 3 Rehab w/ Natural Gas       127       161       194       228       262       296       330       364       397       431       465         Brown 5 CT 110MW       54       93       132       171       210       249       288       327       366       405       444         Brown 5 CT 164MW       55       88       121       154       187       220       253       286       319       352       385         Brown 5 CT 102MW       57       96       135       174       213       252       291       330       368       444         Brown 5 CT 159MW       51       85       119       153       187       221       255       289       323       357       391         Brown 5 CT 149MW       52       87       122       157       192       227       262       297       332 <td></td>												
Cane Run 3 Rehab w/ AFBC         170         193         216         239         263         286         309         332         356         379         402           Cane Run 3 Rehab w/ Natural Gas         127         161         194         228         262         296         330         364         397         431         485           Brown 5 CT 110MW         54         93         132         171         210         249         288         327         366         405         444           Brown 5 CT 104MW         55         88         121         154         187         220         253         286         319         352         385           Brown 5 CT 102MW         57         96         135         174         213         252         291         330         368         408         447           Brown 5 CT 159MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro												
Cane Run 3 Rehab w/ Natural Gas         127         161         194         228         262         296         330         364         397         431         485           Brown 5 CT 110MW         54         93         132         171         210         249         288         327         366         405         444           Brown 5 CT 164MW         55         88         121         154         187         220         253         286         319         352         385           Brown 5 CT 102MW         57         96         135         174         213         252         291         330         369         408         447           Brown 5 CT 159MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134         134         134         134         134         134         134         134												
Brown 5 CT 110MW         54         93         132         171         210         249         288         327         366         405         444           Brown 5 CT 164MW         55         88         121         154         187         220         253         286         319         352         385           Brown 5 CT 102MW         57         96         135         174         213         252         291         330         369         408         447           Brown 5 CT 169MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Brown 5 CT 164MW         55         88         121         154         187         220         253         266         319         352         385           Brown 5 CT 102MW         57         96         135         174         213         252         291         330         369         408         447           Brown 5 CT 159MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134                                             -		<del></del>										
Brown 5 CT 102MW         57         98         135         174         213         252         291         330         369         408         447           Brown 5 CT 159MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134               Aeroderivative CT         52         89         126         163         200         237         274         311         348         385         422           Ohio Falls 9&10         149         149         149 <td></td> <td>444</td>												444
Brown 5 CT 159MW         51         85         119         153         187         221         255         289         323         357         391           Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —	<del></del>						$\overline{}$					385
Brown 5 CT 149MW         52         87         122         157         192         227         262         297         332         367         402           IPP Hydro         134         134         134         134         134         134         134         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —		57	96	135	174	213	252	291	330	369	408	447
IPP Hydro     134     134     134     134     134     134     134     134	Brown 5 CT 159MW	51	85	119	153	187	221	255	289	323	357	391
IPP Hydro     134     134     134     134     134     134     134     134	Brown 5 CT 149MW							262			367	
Aeroderivative CT         52         89         126         163         200         237         274         311         348         385         422           Ohio Falls 9&10         149         149         149         149                                                                                         <												
Ohio Falls 9&10         149         149         149         149 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>311</td> <td>348</td> <td>385</td> <td></td>									311	348	385	
Trimble County 2         153         175         196         217         238         259         281         302         323         344         366           IAC at Brown 8-11         21         67         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —												
IAC at Brown 8-11 21 67 — — — — — — — — —						238	250	281	302	323	344	366
<del></del>				190	211	230	238		302	323		300
									222	755	270	

Capital Cost- Base Heat Rate- Base

Fuel Forecast- High					Canac	ity Facto	~				<del></del>
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	4000
Lead Acid Battery Storage(1 hr)-20MW	104	141	2078	3078	4078	3078			80%		100%
Advanced Battery (3 hr)-20MW	75	107					=			_=_	
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233	=		=	=			
Compressed Air Energy (Salt Cavern) -350MW	70	102	133	165		=			<u> </u>		
Compressed Air Energy w/ Humid Air Turbine-350MW	60	93	126	159							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128	120		<del></del>			<del></del> -		<u> </u>	
g and a second control of the second control	<del>                                     </del>	- 120									
Pulverized Coal (LSFO)-500MW	176	199	223	246	270	293	317	340	364	200	444
Pulverized Coal (LSFO)-400MW	196	219	243	267	290	314	337	361	384	388 408	411
Pulverized Coal (LSFO)-300MW	201	228	255	282	309	336	363	390	417	443	431 470
Pulverized Coal (LSFO)-200MW	245	269	293	317	341	366	390	414	438	462	486
Pulverized Coal (LSFO)-300MW X 2	180	204	227	251	275	298	322	346	369	393	417
Pulverized Coal Compliance (LSD)- 300MW	190	217	244	271	298	325	353	380	407	434	461
Pulverized Coal Supercritical (LSD)- 300MW	228	256	284	311	339	367	394	422	450	477	505
Pulverized Coal (Advanced LSFO)- 400MW	203	225	247	269	291	313	334	356	378	400	422
Atmosph Fluidized Bed (Circulating)-200MW	251	281	311	341	370	400	430	460	490	520	550
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	301	325	350	375	400	424	449	474	499	524
Press Fluidized Bed (Bubbling)-350MW	192	216	239	262	286	309	333	356	379	403	426
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	213	235	258	281	304	326	349	379	395	417
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	258	282	306	329	353	377	401	424	448	472
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	200	224	248	271	295	318	342	365	389	412
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	197	220	242	265	288	310	333	356	378	401
Foster Wheeler Advanced PFB (Circulating)-688MW	163	186	210	234	258	282	306.	329	353	377	401
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	266	287	308	328	349	370	391	411	432	453
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	247	269	291	312	334	356	378	400	422	443
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	276	301	326	351	376	401	426	451	476	501
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	360	383	406	428	451	473	496	519	541	564
Advanced Int. Coal Gas-460MW	177	199	221	242	264	286	308	329	351	373	395
Combustion Turbine Heavy Duty-80MW	70	118	166	214	262	310	358	406	454	502	550
Combustion Turbine Heavy Duty-110MW	61	112	163	214	265	316	367	418	469	520	571
Combustion Turbine Heavy Duty-160MW	56	99	142	185	228	271	314	357	400	443	486
Combustion Turbine Aero- 45MW	114	154	194	234	274	314	354	394	434	474	514
CT Combined Cycle 2on1 - 330MW	87	116	145	173	202	231	260	289	318	347	376
CT Combined Cycle 2on1 - 470MW	76	102	129	156	183	209	236	263	290	317	343
CT Combined Cycle - 345MW	79	106	132	158	185	211	237	264	290	316	342
CT with Cascaded Humidified Advanced Turbine-300MW	72	101	130	159	188	217	247	276	305	334	363
Phosphoric Acid Fuel Cell-2,5MW	1203	1241	1278	1316	1354	1391	1429	1467	1504	1542	1580
Molten Carbonate Fuel Cell-100MW	373	396	419	442	465	488	511	534	557	580	603
Solid Oxide Fuel Cell-100MW	187	210	233	255	278	301	323	346	369	391	414
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	326	432	539	645	751	858	964	1070	1177	1283
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563	****		ı	ı		_		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623				_				
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578	-	_	-	-	-	ļ		_
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398	-	-	-	-	-	-		
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	403	447	491	535	579	623	666	710	754	798
Bio Mass: Whole Tree-100MW	276	301	326	351	376	401	426	450	475	500	525
Cane Run 3 Rehab w/ AFBC	170	195	221	247	272	298	324	350	375	401	427
Cane Run 3 Rehab w/ Natural Gas	127	167	208	249	289	330	370	411	452	492	533
Brown 5 CT 110MW	54	100	146	192	238	284	330	376	422	468	514
Brown 5 CT 164MW	55	94	133	172	211	250	289	328	367	406	445
Brown 5 CT 102MW	57.	103	149	195	241	287	333	379	425	471	517
Brown 5 CT 159MW	51	92	133	174	215	256	297	338	379	420	461
Brown 5 CT 149MW	52	94	136	178	220	262	304	346	388	430	472
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	52	95	138	181	224	267	310	353	396	439	482
Ohio Falls 9&10	149	149	149	149							
Trimble County 2	153	177	200	224	247	271	295	318	342	365	389
IAC at Brown 8-11	21	74									
Minimum Levelized \$/kW	21	74	126	134	134	134	134	263	290	316	342

Capital Cost- Base

Heat Rate- High											
Fuel Forecast-Low						ity Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141									
Advanced Battery (3 hr)-20MW	75	107									
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	100	129	159							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	90	120	150					]	<u></u>	
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
Pulverized Coal (LSFO)-500MW	176	198	220	243	265	287	310	332	354	376	399
Pulverized Coal (LSFO)-400MW	196	218	241	263	285	307	330	352	374	397	419
Pulverized Coal (LSFO)-300MW	201	226	251	276	301	326	351	376	401	425	<b>45</b> 0
Pulverized Coal (LSFO)-200MW	245	268	291	314	337	360	383	406	429	452	476
Pulverized Coal (LSFO)-300MW X 2	180	202	225	247	270	292	315	337	360	382	405
Pulverized Coal Compliance (LSD)- 300MW	190	215	240	265	290	315	341	366	391	416	441
Pulverized Coal Supercritical (LSD)- 300MW	228	254	280	305	331	357	382	408	434	459	485
Pulverized Coal (Advanced LSFO)- 400MW	203	224	245	266	287	308	329	350	371	392	413
Atmosph Fluidized Bed (Circulating)-200MW	251	279	307	335	362	390	418	446	474	502	530
Press Fluidized Bed (Circulating)-200MWV  Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	299	323	346	370	394	417	441	464	488	511
	192	215	237	259	281	304	326	348	371	393	415
Press Fluidized Bed (Bubbling)-350MW	192	211	233	255	277	298	320	342	363	385	407
Press Fluidized Bed (Bubbling, Supercritic)-340MW	235	257	280	302	325	347	369	392	414	437	459
Press Fluidized Bed (Circulating, with Reheat)-160MW							312	334	357	379	402
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	199	222	244	267	289 283	305	334	357	379	392
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	196	218	240	261						
Foster Wheeler Advanced PFB (Circulating)-688MW	163	185	208	231	254	276	299	322	345	367	390
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	265	285	305	325	345	364	384	404	424	444
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	246	267	287	308	329	350	370	391	412	433
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	275	299	322	346	370	393	417	441	464	488
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	359	381	403	424	446	468	490	511	533	555
Advanced Int. Coal Gas-460MW	177	198	219	240	261	282	302	323	344	365	386
Combustion Turbine Heavy Duty-80MW	70	112	154	196	238	280	322	364	406	448	490
Combustion Turbine Heavy Duty-110MW	61	106	151	196	241	286	331	376	421	466	511
Combustion Turbine Heavy Duty-160MW	56	94	132	170	208	246	284	322	360	398	436
Combustion Turbine Aero- 45MW	114	149	184	219	254	289	324	359	394	429	464
CT Combined Cycle 2on1 - 330MW	87	112	138	163	189	214	240	265	291	317	342
CT Combined Cycle 2on1 - 470MW	76	99	123	146	170	193	217	240	264	287	311
CT Combined Cycle - 345MW	79	103	126	149	172	196	219	242	265	288	312
CT with Cascaded Humidified Advanced Turbine-300MW	72	98	124	150	175	201	227	253	279	305	331
Phosphoric Acid Fuel Cell-2.5MW	1203	1236	1270	1303	1336	1370	1403	1436	1470	1503	1536
Molten Carbonate Fuel Cell-100MW	373	394	414	435	456	476	497	518	538	559	580
Solid Oxide Fuel Cell-100MW	187	207	227	246	266	286	305	325	345	364	384
	220	313	406	499	592	686	779	872	965	1058	1151
Geothermal: Dual Flash Brine, Air Cooled-24MW	563	563	563							_	
Solar Photovoltaic:Flat Plate-10x5MW	623	623	623			<del></del>					
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW						<del>                                     </del>					
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578		<del>  _</del>	+=-					=
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398			<del> </del>		=	=		<del></del>
Wind Turbines-Variable Speed-50x750kw	171	171	171	171		<del> </del> -	-			=	=
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186	_=_	<u> </u>					+=
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145	<del></del>		4450	4400	4000	1257	
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084		1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600		610	614		624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543		635	680	726	772	813
Bio Mass: Whole Tree-100MW	276	302	328	354	380			458	484	510	538
Cane Run 3 Rehab w/ AFBC	170	194	218	243	267		316	340	364	388	413
Cane Run 3 Rehab w/ Natural Gas	127	162	198	233	269		340	375	411	447	482
Brown 5 CT 110MW	54	94	134	174	214	254	294	334	374	414	454
Brown 5 CT 164MW	55	90	125	160	195	230	265	300	335	370	405
Brown 5 CT 102MW	57	98		180	221	262	303	344	385	426	467
Brown 5 CT 159MW	51	87	123	159	195		. 267	303	339	375	411
	52	89		163	200		274	311	348	385	422
				134	134		134	Γ			_
Brown 5 CT 149MW	134	134									T
Brown 5 CT 149MW IPP Hydro	134	134 90				242	280	318	356	394	432
Brown 5 CT 149MW IPP Hydro Aeroderivative CT	52	90	128	166		242	280	318	356	394	432
Brown 5 CT 149MW IPP Hydro Aeroderivative CT Ohio Falls 9&10	52 149	90 149	128 149	166 149	204			318  309	356  332	394 — 354	
Brown 5 CT 149MW IPP Hydro Aeroderivative CT	52	90	128 149 198	166	204						376

Capital Cost- Base

Fuel Forecast- Base  Technology  Lead Acid Battery Storage(1 hr)-20MW  Advanced Battery (3 hr)-20MW  Advanced Battery (5 hr)-20MW  Pumped Hydro Energy Storage-350MW X 3  Compressed Air Energy (Salt Cavern) -350MW  Compressed Air Energy w Humid Air Turbine-350MW  Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW  Pulverized Coal (LSFO)-400MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW 2  Pulverized Coal (LSFO)-300MW 2  Pulverized Coal (LSFO)-300MW 2  Pulverized Coal (LSFO)-300MW 7  Pulverized Coal (LSFO)-300MW 7  Pulverized Coal Supercritical (LSD)-300MW  Pulverized Coal Supercritical (LSD)-300MW	0   104   75   104   134   70   60   101   176   196   201   245   180   180	10% 141 107 133 167 101 92 128 199 219 227	20% 200 132 124	30% 	Capac 40%	ty Factor 50% — — — — — — — — — — — — — — — — — — —	60% 	70%  	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW 2	104 75 104 134 70 60 101 176 196 201 245	141 107 133 167 101 92 128 199 219	200 132 124		   		=		_		100%
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	75 104 134 70 60 101 176 196 201 245	107 133 167 101 92 128 199 219	200 132 124	233 163 156			_				
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy (Salt Cavern) -350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW 2	104 134 70 60 101 176 196 201 245	133 167 101 92 128 199 219	200 132 124	233 163 156			_				=
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	134 70 60 101 176 196 201 245	167 101 92 128 199 219	200 132 124	163 156		=					
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	70 60 101 176 198 201 245	101 92 128 199 219	132 124	163 156					(		
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	101 176 196 201 245	92 128 199 219	124	156							
Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW  Pulverized Coal (LSFO)-400MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-200MW  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal Compliance (LSD)-300MW	101 176 196 201 245	128 199 219									
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	176 196 201 245	199 219									
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	196 201 245	219	222		_=_						
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	196 201 245	219	222								
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	201 245			245	269	292	315	338	362	385	408
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	245		242	266	289	312	335	359	382	405	428
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW			254	280	306	333	359	385	412	438	464
Pulverized Coal Compliance (LSD)- 300MW	1 18D I	269	293	317	341	365	389	413	437	461	485
		203	227	250	273	297	320	344	367	390	414
Pulverized Coal Supercritical (LSD), 200MM	190	216	243	269	295	322	348	374	401	427	453
	228	255	282	309	336	364	391	418	445	472	499
Pulverized Coal (Advanced LSFO)- 400MW	203	225	247	268	290	312	333	355	377	399	420
Atmosph Fluidized Bed (Circulating)-200MW	251	280	309	338	367	396 398	426 423	455	484	513	542
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276 192	300	325 239	349 262	374 285	308	332	447 355	472 378	496 401	520
Press Fluidized Bed (Bubbling)-350MW	192	215 212	239	257	285	308	325	355	369	392	425 414
Press Fluidized Bed (Bubbling, Supercritic)-340MW	235	258	235	305	328	352	375	398	422	392 445	469
Press Fluidized Bed (Circulating, with Reheat)-160MW	177	200	281	247	270	293	316	340	363	386	409
Press Fluidized Bed (Circulating, with Reheat)-360MW	175	197	220	242	264	287	309	332	354	377	399
Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW	163	186	210	233	257	280	309	327	351	374	398
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	266	287	307	328	348	369	390	410	431	451
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	247	268	290	311	333	354	376	397	419	440
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	276	301	325	350	375	399	424	449	473	498
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	360	382	405	427	449	472	494	516	538	561
Advanced Int. Coal Gas-460MW	177	199	220	242	264	285	307	329	350	372	393
Combustion Turbine Heavy Duty-80MW	70	117	164	211	258	305	352	399	446	493	540
Combustion Turbine Heavy Duty-110MW	61	110	159	208	257	306	355	404	453	502	551
Combustion Turbine Heavy Duty-160MW	56	98	140	182	224	266	308	350	392	434	476
Combustion Turbine Aero- 45MW	114	152	190	228	266	304	342	380	418	456	494
CT Combined Cycle 2on1 - 330MW	87	115	143	171	199	227	255	283	311	339	367
CT Combined Cycle 2on1 - 470MW	76	101	127	153	179	205	231	257	282	308	334
CT Combined Cycle - 345MW	79	105	130	156	182	207	233	258	284	309	335
CT with Cascaded Humidified Advanced Turbine-300MW	72	100	128	157	185	213	241	269	297	325	354
Phosphoric Acid Fuel Cell-2.5MW	1203	1239	1276	1312	1348	1385	1421	1457	1494	1530	1566
Molten Carbonate Fuel Cell-100MW	373	395	418	440	462	485	507	529	552	574	596
Solid Oxide Fuel Cell-100MW	187	209	231	252	274	296	317	339	361	382	404
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	322	425	528	631	733	836	939	1042	1144	1247
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623							-	
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578	_						1	***
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398	_		-	-		-		
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Bum-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der,-40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543	589	635	680	726	772	818
Bio Mass: Whole Tree-100MW	276	302	328	354	380	406	432	458	484	510	536
Cane Run 3 Rehab w/ AFBC	170	195	220	246	271	297	322	347	373	398	424
Cane Run 3 Rehab w/ Natural Gas	127	166	205	244	284	323	362	401	441	480	519
Brown 5 CT 110MW	54	98	142	186	230	274	318	362	406	450	494
Brown 5 CT 164MW	55	93	131	169	207	245	283	321	359	397	435
Brown 5 CT 102MW	57	102	147	192	237	282	327	372	417	462	507
Brown 5 CT 159MW	51	90	129	168	207	246	285	324	363	402	441
Brown 5 CT 149MW	52	92	132	172	212	252	292	332	372	412	452
IPP Hydro	134	134	134	134	134	134	134		200	420	472
Aeroderivative CT	52	94	136	178	220	262	304	346	388	430	412
Ohio Falls 9&10	149	149	149	149				245	220	362	386
Trimble County 2	153	177	200	223	246	269	293	316	339	302	300
IAC at Brown 8-11 Minimum Levelized \$/kW	21	72	124	134	134	134	134	257	282	308	334

Capital Cost- Base Heat Rate- High

Linest Acta Bathery Storage (Thiry-20MW   75   107	Heat Rate- High											
Liear Acad Eathery Storage ( The 7200W   75   107	Fuel Forecast- High					Capac	ity Factor	3				
Advanced Battery (5 Hy-20WW   75   107	Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Advanced Satistry (Chr) 2000W	Lead Acid Battery Storage(1 hr)-20MW	104	141			-	-			-		
Advanced Setting (Co In)-200MY		75	107									
Purposed Pythor Energy (Sel Camery) 350MW		104	133									
Compressed AV Entry (State Covern) - 550MV					233							
Compressed AVE Entry With Winter STOMMY   60   94   128   1162												
Super Conducting Magnetic Energy Storage (2 hy-500MW												
Pulverized Coal (LSFC)-SCOMW				120	102							
Pulverized Coat (LSFO)-400MV	Super Conducting Wagnetic Energy Storage (2 III)-Soomv	101	120									
Fliventrized Coal (LSFO)_AGOMY	0.1 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1	470	200	205	050	074	200	200	040	070		
Pulverized Cost (LSFO)-300MW												422
Full-willand Coal (SFO)-200MW   245   270   298   321   346   372   397   422   448   473   Pulvenized Coal (SFO)-300MW   190   218   247   275   303   332   335   379   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   403   40	<u> </u>											442
Fluvingted Coal (LSFO)-300MW 2   180   205   228   254   279   304   329   353   378   403   Pluvingted Coal Supercritical (LSD)-300MW   228   257   288   315   344   374   403   432   461   490   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191   191												483
Fluented Coal Compliance (LSD): 300MW												499
Pulverlated Coal Supercritical (LSD)- 300MW	Pulverized Coal (LSFO)-300MW X 2	180	205	229	254	279	304	329	353	378	403	428
Pluvetred Coal (Advanced LSFO)- 400MW	Pulverized Coal Compliance (LSD)- 300MW	190	218	247	275	303	332	360	388	417	445	473
Pluvetred Coal (Advanced LSFO)- 400MW	Pulverized Coal Supercritical (LSD)- 300MW	228	257	286	315	344	374	403	432	461	490	519
Almosph Fluidized Best (Circulating)-200MW		203	226	249	272	295	318	341	364	387	410	433
Press Fulidized Bed (Bubbling), Ston-Rehealy-SOMW 1 2 276 302 329 353 379 405 431 457 443 508 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						375	406	438	469	500		562
Press Fluidized Bed (Bubbling)-SSDMW							405					534
Press Fluidized Bed (Plubling, Supercritic)-340MW												437
Press Fluidized Bed (Circulating, with Reheal)-180MW 177 202 229 251 275 300 335 49 374 399 197 349 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 399 197 39												427
Press Fluidized Bot (Circulating), with Fehrenty-Se0MW 177 202 226 251 275 300 325 349 374 389 Press Fluidized Bot (Circulating), Supercritical-), Supercritica												
Press Fluidzed Bed (Circutaling), Supercritical)-960MW												482
Foster Wheeler Advanced FFB (Circulating)-888MW												423
Highly Integrated Coal GowComb Cyre (Entrained)-801MW	<del></del>											412
Int Caol Gas wil Humid Air Turbine (Entrained Flow)+600MW	Foster Wheeler Advanced PFB (Circulating)-688MW	163			236							409
Int Coal Gas / CAES with Humid Air Turtina-410MW	Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	267	289	311	333	355	376	398	420	442	464
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW  339 391 394 406 431 455 476 501 525 548 4 Advanced Int. Coal Gas-460MW  177 200 222 245 286 290 313 336 359 391 1 Combustion Turbine Heavy Duty-DMW  70 121 172 223 274 325 376 427 478 520 1 Combustion Turbine Heavy Duty-DMW  61 115 169 223 277 331 355 439 439 449 459 477 478 520 1 Combustion Turbine Heavy Duty-DMW  65 101 146 191 236 281 326 371 416 461 1 Combustion Turbine Heavy Duty-DMW  66 101 146 191 236 281 326 371 416 461 1 Combustion Turbine Heavy Duty-HoMW  70 121 172 223 277 331 355 439 439 449 35 547 1 Combustion Turbine Heavy Duty-HoMW  71 117 148 173 209 239 269 300 330 330 361 1 CT Combined Cycle 201 - 330MW  72 117 148 173 209 239 269 300 330 361 1 CT Combined Cycle 201 - 470MW  73 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  74 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  75 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  76 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  78 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  79 107 135 162 190 218 246 273 301 329 1 CT with Cascaded Humidified Advanced Turbine-300MW  79 107 135 162 190 218 240 245 284 315 345 1 Molten Carbonate Fuel Cell-100MW  373 387 422 446 470 495 519 543 568 592 1 Solid Photovoltaic-Flat Flate-10x5MW  583 683 583 653 — — — — — — — — — — — — — — — — — — —	Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	248	271	293	316	339	362	384	407	430	453
Int Coal Gast Molten Carbonate Fuel Cell 400MW  177 200 222 245 288 290 313 336 358 381  Combustion Turbine Heavy Duy-10MW  177 200 222 245 288 290 313 336 358 381  Combustion Turbine Heavy Duy-10MW  181 115 169 223 277 325 376 427 478 529  Combustion Turbine Heavy Duy-10MW  181 115 169 223 277 331 355 439 493 547 478  Combustion Turbine Heavy Duy-10MW  181 115 169 223 277 331 356 439 493 547 478 529  Combustion Turbine Heavy Duy-10MW  181 115 169 223 277 331 326 371 416 461 178  Combustion Turbine Heavy Duy-10MW  182 182 182 182 182 182 182 182 182 182		251	278	304	330	357	383	409	436	462	488	515
Advanced Int. Coal Gas-460MW				384	408	431	455	478	501	525	548	572
Combustion Turbine Heavy Duty-B0MW												403
Combustion Turbine Heavy Duty-10MW	The state of the s											580
Combustion Turbine Heavy Duty-160MW	The state of the s											601
Combustion Turbine Aero-45MW												506
CT Combined Cycle 2on1 - 330MW												
CT Combined Cycle 20n1 - 470MW												524
CT Combined Cycle - 345MW 79 107 135 182 190 218 246 273 301 329 CT with Cascaded Humidified Advanced Turbine-300MW 72 102 133 183 183 224 224 284 284 315 345 Phosphoric Add Fuel Cell-25MW 1203 1242 1282 1321 1380 1400 1439 1478 1518 1557 11 Molten Carbonate Fuel Cell-100MW 373 397 422 446 470 495 519 543 568 592 Solid Oxide Fuel Cell-100MW 187 211 235 258 282 306 329 353 377 400 Ceothermal: Dual Flash Brine, Air Cooled-24MW 220 331 443 555 666 778 690 1002 1113 1225 1 Solar Photovoltaic-Cip Abai Tracking Flat Plate-10x5MW 563 563 563									<del></del>			391
CT with Cascaded Humidified Advanced Turbine-300MW	CT Combined Cycle 2on1 - 470MW	76		132	160							357
Phosphoric Acid Fuel Cell-2.SMW	CT Combined Cycle - 345MW	79	107	135	162	190	218					356
Molten Carbonate Fuel Cell-100MW	CT with Cascaded Humidified Advanced Turbine-300MW	72	102	133	163	193	224	254	284	315	345	375
Solid Oxide Fuel Cell-100MW	Phosphoric Acid Fuel Cell-2.5MW	1203	1242	1282	1321	1360	1400	1439	1478	1518	1557	1596
Solid Oxide Fuel Cell-100MW	Molten Carbonate Fuel Cell-100MW	373	397	422	446	470	495	519	543	568	592	616
Geothermal: Dual Flash Brine, Air Cooled-24MW   220   331   443   555   666   778   890   1002   1113   1225   13   50alar Photovoltaic::Flat Plate-10x5MW   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563		187	211	235	258	282	306	329	353	377	400	424
Solar Photovoltaic:Flat Plate-10x5MW   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   563   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   564   5						666	778	890	1002	1113	1225	1337
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   578   5												
Solar Photovoltalic:Fresnel Lens High Concen10x5MW   390 394 398												
Solar Thermal Trough/Gas Hybrid-200MW   390   394   398												
Wind Turbines-Variable Speed-50x750kw	The same that th	4									_	_
Wind Turbines-High Prod Volume-143x350kw         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         186         180         1149         1144         1178         1247												
Wind Turbines-Class 4 Speed-50x750kw         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         145         148         1222         1257         1           Municipal Solid Waste: Refuse Der40MW         1040         1075         1109         1144         1178         1213         1247         1282         1316         1351         1           Municipal Solid Waste: Refuse Der40MW         595         600         605         610         614         619         624         629         633         638         1           Bio Mass: Wood-Fired Stoker Boiler-50MW         359         405         451         497         543         589         635         680         726         772         1         60         635         680         726         772         1         60         432         458         484         510         50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Municipal Solid Waste: Mass Burn-40MW         945         980         1015         1049         1084         1119         1153         1188         1222         1257         1           Municipal Solid Waste: Refuse Der40MW         1040         1075         1109         1144         1178         1213         1247         1282         1316         1351         1           Municipal Solid Waste: Refuse Der40MW         595         600         605         610         614         619         624         629         633         638         638         638         638         635         680         726         772         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672         672									_=	_		
Municipal Solid Waste: Refuse Der40MW         1040         1075         1109         1144         1178         1213         1247         1282         1316         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351         1351 <td>Wind Turbines-Class 4 Speed-50x750kw</td> <td>1</td> <td></td>	Wind Turbines-Class 4 Speed-50x750kw	1										
Municipal Solid Waste: Tire-30MW         595         600         605         610         614         619         624         629         633         638           Bio Mass: Wood-Fired Stoker Boiler-50MW         359         405         451         497         543         589         635         680         728         772           Bio Mass: Whole Tree-100MW         276         302         328         354         380         406         432         458         484         510           Cane Run 3 Rehab w/ AFBC         170         197         224         250         277         304         331         358         385         412           Cane Run 3 Rehab w/ AFBC         170         197         224         250         277         304         331         358         385         412           Cane Run 3 Rehab w/ AFBC         170         197         224         250         277         304         331         358         385         412           Cane Run 3 Rehab w/ AFBC         170         197         224         250         297         340         382         425         468         510           Brown 5 CT 110MW         54         102         150         198 </td <td>Municipal Solid Waste: Mass Burn-40MW</td> <td>945</td> <td>980</td> <td>1015</td> <td>1049</td> <td>1084</td> <td>1119</td> <td></td> <td></td> <td></td> <td></td> <td>1292</td>	Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119					1292
Bio Mass: Wood-Fired Stoker Boiler-50MW 359 405 451 497 543 559 635 680 726 772 Bio Mass: Whole Tree-100MW 276 302 328 354 380 406 432 458 484 510 Cane Run 3 Rehab w/ AFBC 170 197 224 250 277 304 331 358 385 412 Cane Run 3 Rehab w/ Natural Gas 127 169 212 255 297 340 382 425 468 510 Brown 5 CT 110MW 54 102 150 198 246 294 342 390 438 486 510 Brown 5 CT 164MW 55 96 137 178 219 260 301 342 383 424 Brown 5 CT 102MW 57 106 155 204 253 302 351 400 449 498 Brown 5 CT 159MW 51 94 137 180 223 266 309 352 395 438 Brown 5 CT 149MW 52 96 140 184 228 272 316 360 404 448 IPP Hydro 134 134 134 134 134 134 134 134 134 134	Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Bio Mass: Wood-Fired Stoker Boiler-50MW   359   405   451   497   543   589   635   680   726   772		595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Whole Tree-100MW   276   302   328   354   380   406   432   458   484   510   Cane Run 3 Rehab w/ AFBC   170   197   224   250   277   304   331   358   385   412   228   227   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   328   32	Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543	589	635	680	726	772	818
Cane Run 3 Rehab w/ AFBC         170         197         224         250         277         304         331         358         385         412           Cane Run 3 Rehab w/ Natural Gas         127         169         212         255         297         340         382         425         468         510           Brown 5 CT 110MW         54         102         150         198         246         294         342         390         438         486           Brown 5 CT 164MW         55         96         137         178         219         260         301         342         383         424           Brown 5 CT 102MW         57         106         155         204         253         302         351         400         449         498           Brown 5 CT 159MW         51         94         137         180         223         268         309         352         395         438           Brown 5 CT 149MW         52         96         140         184         228         272         316         360         404         448           IPP Hydro         134         134         134         134         134         134         134								432	458	484	510	536
Cane Run 3 Rehab w/ Natural Gas   127   169   212   255   297   340   382   425   468   510										1		439
Brown 5 CT 110MW         54         102         150         198         246         294         342         390         438         486           Brown 5 CT 164MW         55         96         137         178         219         260         301         342         383         424           Brown 5 CT 102MW         57         106         155         204         253         302         351         400         449         498           Brown 5 CT 159MW         51         94         137         180         223         266         309         352         395         438           Brown 5 CT 149MW         52         96         140         184         228         272         316         360         404         448           IPP Hydro         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134         134												553
Brown 5 CT 184MW         55         96         137         178         219         260         301         342         383         424           Brown 5 CT 102MW         57         106         155         204         253         302         351         400         449         498           Brown 5 CT 159MW         51         94         137         180         223         266         309         352         395         438           Brown 5 CT 149MW         52         96         140         184         228         272         316         360         404         448           IPP Hydro         134         134         134         134         134         134         134 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>534</td>		-										534
Brown 5 CT 102MW   57   106   155   204   253   302   351   400   449   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498   498		<del>}</del>		<del></del>								465
Brown 5 CT 159MW   51 94 137 180 223 266 309 352 395 438												
Brown 5 CT 149MW   52 96 140 184 228 272 316 360 404 448   IPP Hydro   134 134 134 134 134 134 134 134 134   134 134   134 134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   134   1	The state of the s									<u> </u>		547
IPP Hydro         134         134         134         134         134         134         134         134         134         134 <td></td> <td><u> </u></td> <td>481</td>											<u> </u>	481
Aeroderivative CT     52     97     142     187     232     277     322     367     412     457       Ohio Falls 9&10     149     149     149     149            Trimble County 2     153     178     203     227     252     276     301     326     350     375       IAC at Brown 8-11     21     76									360	404	448	492
Ohio Falls 9810     149     149     149     149	IPP Hydro		134						<u> </u>			<u> </u>
Trimble County 2         153         178         203         227         252         276         301         326         350         375           IAC at Brown 8-11         21         76         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —	Aeroderivative CT	52	97	142	187	232	277	322	367	412	457	502
Trimble County 2         153         178         203         227         252         276         301         326         350         375           IAC at Brown 8-11         21         76         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —	Ohio Falls 9&10	149	149	149	149				<u></u>			
IAC at Brown 8-11 21 76		153	178	203	227	252	276	301	326	350	375	399
				_							_	L == "
MINIMUM Levelized 5/kW 21 76 128 134 134 134 134 273 301 329	Minimum Levelized \$/kW		76	128	134	134	134	134	273	301	329	356

Capital Cost- High Heat Rate-Low

Heat Rate-Low											
Fuel Forecast-Low					Capac	ity Factor	\$				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	175									
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	101	129	158						1	
Compressed Air Energy w/ Humid Air Turbine-350MW	72	100	129	157	_		_		-		
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202	_								
	1										
Pulverized Coal (LSFO)-500MW	187	207	227	248	268	288	309	329	349	369	
Pulverized Coal (LSFO)-400MW	207	227	248	268	288	308	329	349			390
)									369	390	410
Pulverized Coal (LSFO)-300MW	214	237	260	282	305	328	351	374	396	419	442
Pulverized Coal (LSFO)-200MW	260	281	302	323	343	364	385	406	427	448	469
Pulverized Coal (LSFO)-300MW X 2	191	211	232	252	273	293	314	334	355	375	396
Pulverized Coal Compliance (LSD)- 300MW	202	225	248	270	293	316	339	361	384	407	430
Pulverized Coal Supercritical (LSD)- 300MW	242	266	289	312	336	359	382	406	429	453	476
Pulverized Coal (Advanced LSFO)- 400MW	215	234	253	273	292	311	330	349	368	387	406
	275	300		351	377	402	427				
Atmosph Fluidized Bed (Circulating)-200MW			326					453	478	504	529
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	330	351	373	395	416	438	460	481	503	525
Press Fluidized Bed (Bubbling)-350MW	227	248	268	289	309	330	350	370	391	. 411	432
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	244	263	283	303	323	343	363	383	402	422
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	281	302	323	343	364	384	405	426	446	467
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	227	248	268	289	309	330	350	371	391	412
Press Fluidized Bed (Circulating, With Reneat)-360MW	207	224	244	264	284	304	324	344	363	383	403
Foster Wheeler Advanced PFB (Circulating)-688MW	193	214	235	256	277	299	320	341	362	384	405
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	300	318	336	354	372	390	408	426	444	462
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	277	296	315	334	353	372	390	409	428	447
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	304	326	347	369	391	412	434	456	477	499
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	408	428	449	469	489	510	530	550	570	591
Advanced Int. Coal Gas-460MW	208	228	247	266	286	305	324	344	363	383	402
	75	113	151	189	227	265	303	341	379	417	
Combustion Turbine Heavy Duty-80MW											455
Combustion Turbine Heavy Duty-110MW	66	107	148	189	230	271	312	353	394	435	476
Combustion Turbine Heavy Duty-160MW	60	94	128	162	196	230	264	298	332	366	400
Combustion Turbine Aero- 45MW	122	154	186	218	250	282	314	346	378	410	442
CT Combined Cycle 2on1 - 330MW	92	115	138	161	184	207	230	253	276	299	322
CT Combined Cycle 2on1 - 470MW	81	102	123	145	166	188	209	230	252	273	294
CT Combined Cycle - 345MW	89	110	132	153	174	195	216	237	258	279	300
					175		222	246			
CT with Cascaded Humidified Advanced Turbine-300MW	80	104	127	151		199			270	293	317
Phosphoric Acid Fuel Cell-2.5MW	1291	1321	1352	1382	1412	1443	1473	1503	1534	1564	1594
Molten Carbonate Fuel Cell-100MW	415	434	453	472	491	510	529	548	567	586	605
Solid Oxide Fuel Cell-100MW	206	224	242	260	278	296	314	332	350	368	386
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	333	417	502	586	670	755	839	923	1008	1092
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
	1166	1166								-	
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW			1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								_=_
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430				· —				
Wind Turbines-Variable Speed-50x750kw	204	204	204	204	1				+		
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217	_		_				
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
								1394			
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359		1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	443	485	527	568	610	652	693	735	777	818
Bio Mass: Whole Tree-100MW	440	464	488	512	535	559	583	607	630	654	678
Cane Run 3 Rehab w/ AFBC	181	203	225	247	269	291	314	336	358	380	402
Cane Run 3 Rehab w/ Natural Gas	133	165	197	229	261	293	326	358	390	422	454
Brown 5 CT 110MW	56	93	130	167	204	241	278	315	352	389	426
							243	274	305	336	367
Brown 5 CT 164MW	57	88	119	150	181	212					
Brown 5 CT 102MW	59	96	133	170	207	244	281	318	355	392	429
Brown 5 CT 159MW	53	85	117	149	181	213	245	277	309	341	373
Brown 5 CT 149MW	54	87	120	153	186	219	252	285	318	351	384
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	55	90	125	160	195	230	265	300	335	370	405
Ohio Falls 9&10	156	156	156	156							
						200		300	321	341	361
Trimble County 2	159	179	200	220	240	260	280	300	321	341	301
IAC at Brown 8-11	22	66				لـــــا				272	204
					404	404	494				

Capital Cost- High

Heat Rate-Low											
Fuel Forecast- Base						ity Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	175									
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	102	131	161							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	102	132	162							_
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Pulverized Coal (LSFO)-500MW	187	208	229	250	271	292	313	334	355	376	397
Pulverized Coal (LSFO)-400MW	207	228	249	270	291	312	333	354	376	397	418
Pulverized Coal (LSFO)-300MW	214	238	262	286	310	333	357	381	405	429	453
Pulverized Coal (LSFO)-200MW	260	282	303	325	347	369	391	413	435	456	478
Pulverized Coal (LSFO)-300MW X 2	191	212	233	255	276	297	318	340	361	382	403
Pulverized Coal Compliance (LSD)- 300MW	202	226	250	274	298	322	346	370	394	418	442
Pulverized Coal Supercritical (LSD)- 300MW	242	267	291	316	341	365	390	414	439	464	488
Pulverized Coal (Advanced LSFO)- 400MW	215	235	255	275	295	315	334	354	374	394	414
Atmosph Fluidized Bed (Circulating)-200MW	275	302	328	355	382	408	435	461	488	515	541
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	330	353	375	398	420	443	465	488	510	532
Press Fluidized Bed (Bubbling)-350MW	227	248	270	291	312	333	355	376	397	418	440
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	244	265	286	306	327 368	347	368 410	389	409	430
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	282	303 250	325	346 292	314	389 335	357	432 378	453 399	475 421
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	228		271							
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	225	246	266 258	287 280	308 302	328 324	349 345	370 367	390 389	411
Foster Wheeler Advanced PFB (Circulating)-688MW	193 282	214 · 301	236 320	339	357	376	395	414	432	451	470
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	282	278	297	339	337	356	376	396	432	435	470
	282	305	327	349	372	394	416	439	461	483	506
Int Coal Gas / CAES with Humid Air Turbine-410MW	388	409	430	450	471	492	513	534	555	576	597
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	208	228	248	268	288	308	328	348	368	388	408
Combustion Turbine Heavy Duty-80MW	75	117	159	201	243	285	327	369	411	453	495
Combustion Turbine Heavy Duty-110MW	66	111	156	201	246	291	336	381	426	471	516
Combustion Turbine Heavy Duty-110MW	60	98	136	174	212	250	288	326	364	402	440
Combustion Turbine Aero- 45MW	122	157	192	227	262	297	332	367	402	437	472
CT Combined Cycle 2on1 - 330MW	92	117	142	168	193	219	244	269	295	320	346
CT Combined Cycle 2011 - 330MV	81	104	128	151	175	198	222	245	269	292	316
CT Combined Cycle - 345MW	89	113	136	159	182	206	229	252	275	298	322
CT with Cascaded Humidified Advanced Turbine-300MW	80	106	131	157	183	209	234	260	286	311	337
Phosphoric Acid Fuel Cell-2.5MW	1291	1324	1358	1391	1424	1458	1491	1524	1558	1591	1624
Molten Carbonate Fuel Cell-100MW	415	436	456	477	498	518	539	560	580	601	622
Solid Oxide Fuel Cell-100MW	206	226	246	265	285	305	324	344	364	383	403
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	342	435	528	621	713	806	899	992	1085	1178
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052				_				
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166	_							_
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037					_		_	
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								_
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Bum-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680		690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	443	485	527	568	610	652	693	735	777	818
Bio Mass: Whole Tree-100MW	440	464	488	512	535	559	583	607	630	654	678
Cane Run 3 Rehab w/ AFBC	181	204	227	250	273	296	319	342	365	388	411
Cane Run 3 Rehab w/ Natural Gas	133	168	204	239	275	310	346	381	417	453	488
Brown 5 CT 110MW	56	96	136	176	216	256	296	336	376	416	456
Brown 5 CT 164MW	57	92	127	162	197	232	267	302	337	372	407
Brown 5 CT 102MW	59	100	141	182	223	264	305	346	387	428	469
Brown 5 CT 159MW	53	89	125	161	197	233	269	305	341	377	413
Brown 5 CT 149MW	54	91	128	165	202	239	276	313	350	387	424
IPP Hydro	134	134	134	134	134	134	134				425
Aeroderivative CT	55	93	131	169	207	245	283	321	359	397	435
Ohio Falls 9&10	156	156	156	156	<del></del>					340	370
Trimble County 2	159	180	201	223	244	265	286	307	328	349	-310
IAC at Brown 8-11	22	69	L.=:_	<u> </u>	L==		<u> </u>				316
Minimum Levelized \$/kW	22	69	125	134	134	134	134	245	269	292	31

Capital Cost- High Heat Rate-Low

Heat Rate-Low											
Fuel Forecast- High					Capac	ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151					-			_	
Advanced Battery (3 hr)-20MW	143	175									
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
	72	103	134	165							
Compressed Air Energy (Salt Cavern) -350MW						=					
Compressed Air Energy w/ Humid Air Turbine-350MW	72	104	136	167							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Pulverized Coal (LSFO)-500MW	187	209	231	254	276	298	321	343	365	387	410
Pulverized Coal (LSFO)-400MW	207	229	252	274	296	318	341	363	385	408	430
Pulverized Coal (LSFO)-300MW	214	240	265	291	316	342	367	393	418	444	470
Pulverized Coal (LSFO)-200MW	260	283	306	329	. 352	375	398	421	444	467	491
Pulverized Coal (LSFO)-300MW X 2	191	214	236	259	281	304	327	349	372	394	417
Pulverized Coal Compliance (LSD)- 300MW	202	228	254	280	305	331	357	383	409	435	461
Pulverized Coal Supercritical (LSD)- 300MW	242	269	295	322	348	374	401	427	454	480	507
Pulverized Coal (Advanced LSFO)- 400MW	215	236	257	278	299	320	341	362	383	404	425
	275	304	332	360	389	417	446	474	503	531	560
Atmosph Fluidized Bed (Circulating)-200MW											
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	332	355	379	403	426	450	474	497	521	545
Press Fluidized Bed (Bubbling)-350MW	227	250	272	295	317	340	362	384	407	429	452
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	245	267	289	311	332	354	376	397	419	441
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	283	306	329	351	374	396	419	442	464	487
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	229	252	274	297	319	342	364	387	409	432
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	226	248	270	291	313	335	356	378	400	422
Foster Wheeler Advanced PFB (Circulating)-688MW	193	215	238	261	284	307	330	353	376	399	422
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	302	322	342	362	382	401	421	441	461	481
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	279	300	320	341	362	383	403	424	445	466
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	306	330	353	377	401	424	448	472	495	519
	388	409	431	453	474	496	518	540	561	583	605
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW											
Advanced Int. Coal Gas-460MW	208	229	250	271	292	313	334	355	376	397	418
Combustion Turbine Heavy Duty-80MW	75	121	167	213	259	305	351	397	443	489	535
Combustion Turbine Heavy Duty-110MW	66	115	164	213	262	311	360	409	458	507	556
Combustion Turbine Heavy Duty-160MW	60	101	142	183	224	265	306	347	388	429	470
Combustion Turbine Aero- 45MW	122	160	198	236	274	312	350	388	426	464	502
CT Combined Cycle 2on1 - 330MW	92	119	147	174	202	229	257	284	312	340	367
CT Combined Cycle 2on1 - 470MW	81	106	132	157	183	208	234	259	285	310	336
CT Combined Cycle - 345MW	89	114	140	165	190	215	240	265	290	315	340
CT with Cascaded Humidified Advanced Turbine-300MW	80	108	135	163	191	219	246	274	302	329	357
Phosphoric Acid Fuel Cell-2.5MW	1291	1327	1363	1399	1435	1471	1507	1543	1579	1615	1651
Molten Carbonate Fuel Cell-100MW	415	437	459	481	503	525	547	569	591	613	635
Solid Oxide Fuel Cell-100MW	206	228	249	270	292	313	334	356	377	398	420
——————————————————————————————————————	249	350	451	552	653	754	855	956	1057	1158	1259
Geothermal: Dual Flash Brine, Air Cooled-24MW					000		000	<del>\ \</del>			1238
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037				_=_				
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430			<del></del>					
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	443	485	527	568	610	652	693	735	777	818
Bio Mass: Whole Tree-100MW	440	464	488	512	535	559	583	607	630	654	678
Cane Run 3 Rehab w/ AFBC	181	205	230	254	279	303	327	352	376	401	425
		171	210	249	287	326	364	403	442	480	519
Cane Run 3 Rehab w/ Natural Gas	133						320	364	408	452	496
Brown 5 CT 110MW	56	100	144	188	232	276					
Brown 5 CT 164MW	57	95	133	171	209	247	285	.323	361	399	437
Brown 5 CT 102MW	59	103	147	191	235	279	323	367	411	455	499
Brown 5 CT 159MW	53	92	131	170	209	248	287	326	365	404	443
Brown 5 CT 149MW	54	94	134	174	214	254	294	334	374	414	454
IPP Hydro	134	134	134	134	134	134	134		****		
Aeroderivative CT	55	96	137	178	219	260	301	342	383	424	465
Ohio Falls 9&10	156	156	156	156			T				
Trimble County 2	159	182	204	226	249	271	293	315	338	360	382
IAC at Brown 8-11	22	73				<del> </del>					



Capital Cost- High Heat Rate- Base

Fuel Forecast-Low  Technology  Lead Acid Battery Storage(1 hr)-20MW  Advanced Battery (3 hr)-20MW  Advanced Battery (5 hr)-20MW  Pumped Hydro Energy Storage-350MW X 3  Compressed Air Energy (Salt Cavern)-350MW  Compressed Air Energy (Salt Cavern)-350MW  Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW  Pulverized Coal (LSFO)-400MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal (Advanced LSFO)-400MW  Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	0 114 143 198 140 72 72 175 187 207 214 260 191 202 202 202 242 215	10% 151 175 227 173 101 101 202 208 228 238 282 212	20%	30% 239 180 159 251	40%	50%	60%	70%	80%   	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Gompliance (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	114 143 198 140 72 72 175 187 207 214 260 290 292 242	151 175 227 173 101 101 202 208 228 238 282 212	206 131 130  229 250	239 180 159				   			100% —— ——
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Gompliance (LSD)-300MW	143 198 140 72 72 175 187 207 214 260 191 202 242	175 227 173 101 101 202 208 228 238 282 212	206 131 130  229 250	239 160 159 —				<u>-</u>			=
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	198 140 72 72 175 187 207 214 260 191 202 242	227 173 101 101 202 208 228 238 282 212	206 131 130  229 250	239 160 159 —				_			
Pumped Hydro Energy Storage-350MW X 3  Compressed Air Energy (Salt Cavern) -350MW  Compressed Air Energy w/ Humid Air Turbine-350MW  Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW  Pulverized Coal (LSFO)-400MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal Compliance (LSD)-300MW  Pulverized Coal Supercritical (LSD)-300MW  Pulverized Coal (Advanced LSFO)-400MW  Atmosph Fluidized Bed (Circulating)-200MW	140 72 72 175 187 207 214 260 191 202 242	173 101 101 202 208 228 238 282 212	206 131 130  229 250	239 160 159 — 251				_			
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Gompliance (LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	72 72 175 187 207 214 260 191 202 242	101 101 202 208 228 238 282 212	131 130  229 250	160 159 — 251							
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	72 175 187 207 214 260 191 202 242	208 208 228 238 282 212	130  229 250	159 — 251	=						
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	72 175 187 207 214 260 191 202 242	202 208 228 238 282 212	130  229 250	251		=					
Super Conducting Magnetic Energy Storage (2 hr)-500MW  Pulverized Coal (LSFO)-500MW  Pulverized Coal (LSFO)-400MW  Pulverized Coal (LSFO)-300MW  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal (LSFO)-300MW X 2  Pulverized Coal Compliance (LSD)-300MW  Pulverized Coal Supercritical (LSD)-300MW  Pulverized Coal Supercritical (LSD)-300MW  Pulverized Coal (Advanced LSFO)-400MW  Atmosph Fluidized Bed (Circulating)-200MW	175 187 207 214 260 191 202 242	202 208 228 238 282 212	229 250	251							
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	187 207 214 260 191 202 242	208 228 238 282 212	250								
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	207 214 260 191 202 242	228 238 282 212	250								
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	207 214 260 191 202 242	228 238 282 212	250			204	045				
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	214 260 191 202 242	238 282 212			272	294	315	336	358	379	401
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	260 191 202 242	282 212	262	271	292	314	335	357	378	399	421
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW	191 202 242	212		286	310	333	357	381	405	429	453
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	202 242		304	326	348	370	392	414	436	458	480
Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	242	000	234	256	277	299	320	342	363	385	406
Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW		226	250	274	297	321	345	369	393	417	441
Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	215	267	291	316	341	365	390	414	439	464	488
Atmosph Fluidized Bed (Circulating)-200MW		235	255	275	295	315	335	355	375	395	415
	275	302	328	355	382	408	435	461	488	515	
Fress Fluidized Bed (Bubbling, Noti-Refreat)-60MVV X 2	308	330	353	376	398	421					541
Proce Stuiding Dod (Dubblica) 250444							444	466	489	511	534
Press Fluidized Bed (Bubbling)-350MW	227	249	270	291	313	334	356	377	398	420	441
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	245	265	286	307	328	348	369	390	411	431
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	282	304	325	347	368	390	411	433	455	476
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	228	250	272	293	315	336	358	379	401	422
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	225	246	267	288	308	329	350	371	392	412
Foster Wheeler Advanced PFB (Circulating)-688MW	193	215	237	259	281	303	325	347	369	391	413
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	301	320	339	358	377	396	415	434	453	472
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	278	298	318	337	357	377	397	417	437	456
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	305	328	350	373	396	418	441	464	486	509
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	409	430	450	471	492	513	534	555	576	597
Advanced Int. Coal Gas-460MW		228									
<del></del>	208		248	269	289	309	329	349	369	389	409
Combustion Turbine Heavy Duty-80MW	75	115	155	195	235	275	315	355	395	435	475
Combustion Turbine Heavy Duty-110MW	66	109	152	195	238	281	324	367	410	453	496
Combustion Turbine Heavy Duty-160MW	60	96	132	168	204	240	276	312	348	384	420
Combustion Turbine Aero- 45MW	122	155	188	221	254	287	320	353	386	419	452
CT Combined Cycle 2on1 - 330MW	92	116	140	165	189	213	238	262	286	310	335
CT Combined Cycle 2on1 - 470MW	81	103	126	148	170	193	215	238	260	283	305
CT Combined Cycle - 345MW	89	112	134	156	178	200	222	244	267	289	311
CT with Cascaded Humidified Advanced Turbine-300MW	80	105	130	154	179	204	229	253	278	303	328
Phosphoric Acid Fuel Cell-2.5MW	1291	1323	1355	1387	1419	1451	1483	1515	1547	1579	1611
Molten Carbonate Fuel Cell-100MW	415	435	454	474	494	513	533	553	572	592	612
Solid Oxide Fuel Cell-100MW	206	225	244	263	282	301	320	339	358	377	396
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	337	426	515	604	692	781	870	959	1047	1136
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166	_						_	-
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037			ţ				_	
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217				_			
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206	_=					=	
<u> </u>	1050	1085		1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Mass Burn-40MW			1120								
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	445	489	533	577	621	665	708	752	796	840
Bio Mass: Whole Tree-100MW	440	465	490	515	540	565	590	614	639	664	689
Cane Run 3 Rehab w/ AFBC	181	204	227	250	274	297	320	343	367	390	413
Cane Run 3 Rehab w/ Natural Gas	133	167	200	234	268	302	336	370	403	437	471
Brown 5 CT 110MW	56	95	134	173	212	251	290	329	368	407	446
Brown 5 CT 164MW	57	90	123	156	189	222	255	288	321	354	387
Brown 5 CT 102MW	59	98	137	176	215	254	293	332	371	410	449
Brown 5 CT 159MW	53	87	121	155	189	223	257	291	325	359	393
Brown 5 CT 149MW							264	299	334	369	404
	54	89	124	159	194	229			334	308	
IPP Hydro	134	134	134	134	134	134	134				405
Aeroderivative CT	55	92	129	166	203	240	277	314	351	388	425
Ohio Falls 9&10	156	156	156	156							
Trimble County 2	159	181	202	223	244	265	287	308	329	350	372
IAC at Brown 8-11	22	. 68									
Minimum Levelized \$/kV		68	121	134	134	134	134	238	260	283	305

Capital Cost-High

Heat Rate- Base											
Fuel Forecast- Base						ty Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	175									
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	102	133	163							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	103	134	165							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Pulverized Coal (LSFO)-500MW	187	209	231	253	275	297	320	342	364	386	408
Pulverized Coal (LSFO)-400MW	207	229	251	273	296	318	340	362	384	406	428
Pulverized Coal (LSFO)-300MW	214	239	264	289	314	340	365	390	415	440	465
Pulverized Coal (LSFO)-200MW	260	283	306	329	351	374	397	420	443	466	489
Pulverized Coal (LSFO)-300MW X 2	191	213	236	258	280	302	325	347	369	392	414
Pulverized Coal Compliance (LSD)- 300MW	202	227	253	278	303	328	353	379	404	429	454
Pulverized Coal Supercritical (LSD)- 300MW	242	268	294	320	346	371	397	423	449	475	501
Pulverized Coal (Advanced LSFO)- 400MW	215	236	257	278	298	319	340	361	381	402	423
Atmosph Fluidized Bed (Circulating)-200MW	275	303	331	359	386	414	442	470	498	526	554
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	331	355	378	401	425	448	472	495	518	542
Press Fluidized Bed (Bubbling)-350MW	227	249	272	294	316	338	360	382	404	427	449
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	245	267	288	310	331	353	375	396	418	439
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	283	306	328	351	373	395	418	440	463	485
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	229	252	274	296	318	341	363	385	408	430
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	226	248	269	291	312	334	355	377	398	420
Foster Wheeler Advanced PFB (Circulating)-688MW	193	215	238	261	284	306	329	352	375	397	420
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	302	322	341	361	381	400	420	440	460	479
	258	279	299	320	340	361	382	402	423	444	464
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	282	306	330	353	377	401	424	448	472	495	519
Int Coal Gas / CAES with Humid Air Turbine-410MW Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	409	431	453	474	496	518	540	561	583	605
	208	229	250	270	291	312	333	353	374	395	416
Advanced Int. Coal Gas-460MW	75		163	207	251	295	339	383	427	471	515
Combustion Turbine Heavy Duty-80MW		119	160	207	254	301	348	395	442	489	536
Combustion Turbine Heavy Duty-110MW	66			180	220	260	300	340	380	420	460
Combustion Turbine Heavy Duty-160MW	60 122	100 158	140 194	230	266	302	338	374	410	446	482
Combustion Turbine Aero- 45MW				172	199	226	252	279	306	333	359
CT Combined Cycle 2on1 - 330MW	92	118	145	155	180	204	229	254	279	304	328
CT Combined Cycle 2on1 - 470MW	81	105	130				235	260	284	308	332
CT Combined Cycle - 345MW	89	114	138	162	187	211	242	269	295	322	349
CT with Cascaded Humidified Advanced Turbine-300MW	80	107	134	161	188	215		1534		1603	1638
Phosphoric Acid Fuel Cell-2.5MW	1291	1326	1360	1395	1430	1464	1499		1568		
Molten Carbonate Fuel Cell-100MW	415	437	458	480	502	523	545	567	588	610	632
Solid Oxide Fuel Cell-100MW	206	227	. 248	268	289	310	330	351	372	392	413
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	347	444	542	640	738	835	933	1031	1129	1227
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430				L=_				
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							4007
Municipal Solid Waste: Mass Bum-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	445	489	533	577	621	665	708	752	796	840
Bio Mass: Whole Tree-100MW	440	465	490	515	540	565	590	614	639	664	689
Cane Run 3 Rehab w/ AFBC	181	205	229	253	277	301	326	350	374	398	422
Cane Run 3 Rehab w/ Natural Gas	133	170	207	245	282	320	357	394	432	469	507
Brown 5 CT 110MW	56	98	140	182	224	266	308	350	392	434	476
Brown 5 CT 164MW	57	93	129	165	201	237	273	309	345	381	417
Brown 5 CT 102MW	59	102	145	188	231	274		360	403	446	489
Brown 5 CT 159MW	53	90	127	164	201	238	275	312	349	386	423
Brown 5 CT 149MW	54	92	130	168	206	244	282	320	358	396	434
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	55	95	135	175		255	295	335	375	415	455
Ohio Falls 9&10	156	156	156	156		T					
1					249	270	292	314	337	359	381
Trimble County 2	159	181	204	226	248	270	292		331	300	
Trimble County 2 IAC at Brown 8-11	159	181 71	204								

Capital Cost- High Heat Rate- Base

Heat Rate- Base											
Fuel Forecast- High						ity Factor	3				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151						_		-	
Advanced Battery (3 hr)-20MW	143	175						****	_	_	
Advanced Battery (5 hr)-20MW	198	227							-		
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							****
Compressed Air Energy (Sait Cavern) -350MW	72	104	135	167							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	105	138	171							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202								_	
Pulverized Coal (LSFO)-500MW	187	210	234	257	281	304	328	351	375	399	422
Pulverized Coal (LSFO)-400MW	207	230	254	278	301	325	348	372	395	419	442
Pulverized Coal (LSFO)-300MW	214	241	268	295	322	349	376	403	430	456	483
Pulverized Coal (LSFO)-200MW	260	284	308	332	356	381	405	429	453	477	501
Pulverized Coal (LSFO)-300MW X 2	191	215	238	262	286	309	333	357	380	404	428
Pulverized Coal Compliance (LSD)- 300MW	202	229	256	283	310	337	365	392	419	446	473
Pulverized Coal Supercritical (LSD)- 300MW	242	270	298	325	353	381	408	436	464	491	519
Pulverized Coal (Advanced LSFO)- 400MW	215	237	259	281	303	325	346	368	390	412	434
Atmosph Fluidized Bed (Circulating)-200MW	275	305	335	365	394	424	454	484	514	544	574
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	333	357	382	407	432	456	481	506	531	556
Press Fluidized Bed (Bubbling)-350MW	227	251	274	297	321	344	368	391	414	438	461
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224 281	247	269	292 .	315	338	360	383	406	429	451
Press Fluidized Bed (Circulating, with Reheat)-160MW	207	284	308	332	355	379	403	427	450	474	498
Press Fluidized Bed (Circulating, with Reheat)-360MW  Press Fluidized Bed (Circulating, Supercritical)-360MW	207	230 227	254 250	278 272	301 295	325 318	348 340	372 363	395 386	419	442
	193			264	295	318	336			408	431
Foster Wheeler Advanced PFB (Circulating)-688MW		216	240					359	383	407	431
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282 258	303 280	324	345 324	365 345	386 367	407 389	428	448	469	490
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	282	307	302	357	382	407	432	411 457	433 482	455 507	476
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	410	433	456	478	501	523	546	569	591	532 614
Advanced Int. Coal Gas-460MW	208	230	252	273	295	317	339	360	382	404	426
Combustion Turbine Heavy Duty-80MW	75	123	171	219	267	315	363	411	459	507	555
Combustion Turbine Heavy Duty-110MW	66	117	168	219	270	321	372	423	474	525	576
Combustion Turbine Heavy Duty-160MW	60	103	146	189	232	275	318	361	404	447	490
Combustion Turbine Aero- 45MW	122	162	202	242	282	322	362	402	442	482	522
CT Combined Cycle 2on1 - 330MW	92	121	150	178	207	236	265	294	323	352	381
CT Combined Cycle 2on1 - 470MW	81	107	134	161	188	214	241	268	295	322	348
CT Combined Cycle - 345MW	89	116	142	168	195	221	247	274	300	326	352
CT with Cascaded Humidified Advanced Turbine-300MW	80	109	138	167	196	225	255	284	313	342	371
Phosphoric Acid Fuel Cell-2.5MW	1291	1329	1366	1404	1442	1479	1517	1555	1592	1630	1668
Molten Carbonate Fuel Cell-100MW	415	438	461	484	507	530	553	576	599	622	645
Solid Oxide Fuel Cell-100MW	206	229	252	274	297	320	342	365	388	410	433
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	355	461	568	674	780	887	993	1099	1206	1312
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052	_					_		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166					_			_
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037		_						
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								-
Wind Turbines-Variable Speed-50x750kw	204	204	204	204	_						
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	445	489	533	577	621	665	708	752	796	840
Bio Mass: Whole Tree-100MW	440	465	490	515	540	565	590	614	639	664	689
Cane Run 3 Rehab w/ AFBC	181	206	232	258	283	309	335	361	386	412	438
Cane Run 3 Rehab w/ Natural Gas	133	173	214	255	295	336	376	417	458	498	539
Brown 5 CT 110MW	56	102	148	194	240	286	332	378	424	470	516
Brown 5 CT 184MW	57	98	135	174	213	252	291	330	369	408	447
Brown 5 CT 102MW	59	105	151	197	243	289	335	381	427	473	519
Brown 5 CT 159MW	53	94	135	176	217	258	299	340	381	422	463
Brown 5 CT 149MW	54	96	138	180	222	264	306	348	390	432	474
IPP Hydro	134	134	134	134	134	134	. 134				405
Aeroderivative CT	55	98	141	184	227	270	313	356	399	442	485
Ohio Falls 9&10	156	156	156	156	252		204	324	- 240	274	305
Trimble County 2 IAC at Brown 8-11	159	183	206	230	253	277	301	324	348	371	395
Minimum Levelized S/kW	22	75 75	424	134	134	134	134	268	295	322	348
Minimum reveized 2/km	22	75	134	134	134	134	134	200	200	322	340

Capital Cost-High Heat Rate-High

Heat Rate- High											
Fuel Forecast-Low		<u>.                                    </u>				ity Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	.175									
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	102	131	161							
Compressed Air Energy w/ Hurnid Air Turbine-350MW	72	102	132	162							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202						****			
Pulverized Coal (LSFO)-500MW	187	209	231	254	276	298	321	343	365	387	410
Pulverized Coal (LSFO)-400MW	207	229	252	274	296	- 318	341	363	385	408	430
Pulverized Coal (LSFO)-300MW	214	239	264	289	314	339	364	389	414	438	463
Pulverized Coal (LSFO)-200MW	260	283	306	329	352	375	398	421	444	467	491
Pulverized Coal (LSFO)-300MW X 2	191	213	236	258	281	303	326	348	371	393	416
Pulverized Coal Compliance (LSD)- 300MW	202	227	252	277	302	327	353	378	403	428	453
Pulverized Coal Supercritical (LSD)- 300MW	242	268	294	319	345	371	396	422	448	473	499
Pulverized Coal (Advanced LSFO)- 400MW	215	236	257	278	299	320	341	362	383	404	425
Atmosph Fluidized Bed (Circulating)-200MW	275	303	331	359	386	414	442	470	498	526	554
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	331	355	378	402	426	449	473	496	520	543
Press Fluidized Bed (Bubbling)-350MW	227	250	272	294	316	339	361	383	406	428	450
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	245	267	289	.311	332	354	376	397	419	441
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	283	306	328	351	373	395	418	440	463	485
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	229	252	274	297	319	342	364	387	409	432
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	226	248	270	291	313	335	356	378	400	422
Foster Wheeler Advanced PFB (Circulating)-688MW	193	215	238	261	284	306	329	352	375	397	420
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	302	322	342	362	382	401	421	441	461	481
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	279	300	320	341	362	383	403	424	445	466
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	306	330	353	377	401	424	448	472	495	519
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	409	431	453	474	496	518	540	561	583	605
Advanced Int. Coal Gas-480MW	208	229	250	271	292	313	333	354	375	396	417
Combustion Turbine Heavy Duty-80MW	75	117	159	201	243	285	327	369	411	453	495
Combustion Turbine Heavy Duty-110MW	66	111	156	201	246	291	336	381	426	471	516
Combustion Turbine Heavy Duty-160MW	60	. 98	136	174	212	250	288	326	364	402	440
Combustion Turbine Aero- 45MW	122	157	192	227	262	297	332	367	402	437	472
CT Combined Cycle 2on1 - 330MW	92	117	143	168	194	219	245	270	296	322	347
CT Combined Cycle 2on1 - 470MW	81	104	128	151	175	198	222	245	269	292	316
CT Combined Cycle - 345MW	89	113	136	159	182	206	229	252	275	298	322
CT with Cascaded Humidified Advanced Turbine-300MW	80	106	132	158	183	209	235	261	287	313	339
Phosphoric Acid Fuel Cell-2.5MW	1291	1324	1358	1391	1424	1458	1491	1524	1558	1591	1624
Molten Carbonate Fuel Cell-100MW	415	436	458	477	498	518	539	560	580	601	622
Solid Oxide Fuel Cell-100MW	206	226	246	265	285	305	324	344	364	383	403
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	342	435	528	621	715	808	901	994	1087	1180
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037					_			
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430			<u> </u>					
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	208	206	206	4400	4004	4000	4000	4007	1362	4207
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327		1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394 695	1428 699	1463 704	1497 709
Municipal Solid Waste: Tire-30MW	661	666	671	676	680		690				
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	447	493	539	585	631	677	722	768	814	860
Bio Mass: Whole Tree-100MW	440	466	492	518	544	570	596	622	648	674	700
Cane Run 3 Rehab w/ AFBC	181	205	229	254	278	302	327	351	375	399	424
Cane Run 3 Rehab w/ Natural Gas	133	168	204	239	275	310	346	381	417	453	488
Brown 5 CT 110MW	56	96	136	176	216	256	296	336	376	416	456
Brown 5 CT 164MW	57	92	127	162	197	232	267	302	337	372	407
Brown 5 CT 102MW	59	100	141	182	223	264	305	346	387	428	469
Brown 5 CT 159MW	53	89	125	161	197	233	269	305	341	377	413
Brown 5 CT 149MW	54	91	128	165	202	239	276	313	350	387	424
IPP Hydro	134	134	134	134	134	134	134	224	250	207	425
Aeroderivative CT	55	93	131	169	207	245	283	321	359	397	435
Ohio Falls 9&10	156	156	156	156				245	220	360	202
Trimble County 2	159	182	204	226	249	271	293	315	338	360	382
IAC at Brown 8-11	22	69		L	12:		400		200	202	316
Minimum Levelized \$/kW	22	69	125	134	134	134	134	245	269	292	316

Capital Cost- High Heat Rate- High

Heat Rate- High											
Fuel Forecast- Base					Capac	ity Factor	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151	-							-	
Advanced Battery (3 hr)-20MW	143	175		_					_	_	
Advanced Battery (5 hr)-20MW	198	227	-		_		-	-			
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							`
Compressed Air Energy (Salt Cavern) -350MW	72	103	134	165							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	104	136	168			-			_	
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202		_		_					
Pulverized Coal (LSFO)-500MW	187	210	233	256	280	303	326	349	373	396	419
Pulverized Coal (LSFO)-400MW	207	230	253	277	300	323	346	370	393	416	439
Pulverized Coal (LSFO)-300MW	214	240	267	293	319	346	372	398	425	451	477
Pulverized Coal (LSFO)-200MW	260	284	308	332	356	380	404	428	452	476	500
Pulverized Coal (LSFO)-300MW X 2	191	214	238	261	284	308	331	355	378	401	425
Pulverized Coal Compliance (LSD)- 300MW	202	228	255	281	307	334	360	386	413	439	465
Pulverized Coal Supercritical (LSD)- 300MW	242	269	296	323	350	378	405	432	459	486	513
Pulverized Coal (Advanced LSFO)- 400MW	215	237	259	280	302	324	345	367	389	411	432
Atmosph Fluidized Bed (Circulating)-200MW	275	304	333	362	391	420	450	479	508	537	566
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	332	357	381	406	430	455	479	504	528	552
Press Fluidized Bed (Bubbling)-350MW	227	250	274	297	320	343	367	390	413	436	460
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	246	269	291	314	336	359	381	403	436	448
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	284	307	331	354	378	401	424	448	471	495
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	230	253	277	300	323	346	370	393	416	439
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	227	250	272	294	317	339	362	384	407	
Foster Wheeler Advanced PFB (Circulating)-688MW	193	216	240	263	287	310	334	357			429
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	303	324	344	365	385	406		381	404	428
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	280						427	. 447	468	488
Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MVV	282	307	301	323	344	366	387	409	430	452	473
			332	356	381	406	430	455	480	504	529
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	388	410	432	455	477	499	522	544	566	588	611
	208	230	251	273	295	316	338	360	381	403	424
Combustion Turbine Heavy Duty-80MW	75	122	169	216	263	310	357	404	451	498	545
Combustion Turbine Heavy Duty-110MW	66	115	164	213	262	311	360	409	458	507	556
Combustion Turbine Heavy Duty-160MW	60	102	144	186	228	270	312	354	396	438	480
Combustion Turbine Aero- 45MW	122	160	198	236	274	312	350	388	426	464	502
CT Combined Cycle 2on1 - 330MW	92	120	148	176	204	232	260	288	316	344	372
CT Combined Cycle 2on1 - 470MW	81	106	132	158	184	210	236	262	287	313	339
CT Combined Cycle - 345MW	89	115	140	166	192	217	243	268	294	319	345
CT with Cascaded Humidified Advanced Turbine-300MW	80	108	136	165	193	221	249	277	305	333	362
Phosphoric Acid Fuel Cell-2.5MW	1291	1327	1364	1400	1436	1473	1509	1545	1582	1618	1654
Molten Carbonate Fuel Cell-100MW	415	437	460	482	504	527	549	571	594	616	638
Solid Oxide Fuel Cell-100MW	206	228	250	271	293	315	336	358	380	401	423
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	351	454	557	660	762	865	968	1071	1173	1276
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052			-	_		-		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166	-							
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037		-				_		
Solar Thermal Trough/Gas Hybrid-200MW	. 422	426	430					_			
Wind Turbines-Variable Speed-50x750kw	204	204	204	204					_		
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206						_	
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	447	493	539	585	631	677	722	768	814	860
Bio Mass: Whole Tree-100MW	440	466	492	518	544	570	596	622	648	674	700
Cane Run 3 Rehab w/ AFBC	181	206	231	257	282	308	333	358	384	409	435
Cane Run 3 Rehab w/ Natural Gas	133	172	211	250	290	329	368	407	447	486	525
Brown 5 CT 110MW	56	100	144	188	232	276	320	364	408	452	496
Brown 5 CT 164MW	57	95	133	171	209	247	285	323	361	399	437
Brown 5 CT 102MW	59	104	149	194	239	284	329	374	419	464	509
Brown 5 CT 159MW	53	92	131	170	209	248	287	326	365	404	443
Brown 5 CT 149MW	54	94	134	174	214	254	294	334	374	414	454
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	55	97	139	181	223	265	307	349	391	433	475
Ohio Falls 9&10	156	156	156	158		203					
			100						, <del>-</del>		
					252	275	200	322	345	388	302
Trimble County 2 IAC at Brown 8-11	159	183	206	229	252	275	299	322	345	368	392

Capital Cost- High Heat Rate- High

Fumped Hydro Energy Sitroga-SidMWX 3	Rate- High		•									
Liead Acid Baltery Storage (1 ht-20MW	orecast- High					Capac	ity Facto	rs				
Advanced Battery (5 In)-20MW	Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Advanced Battery (Enry-20MM   198   227	cid Battery Storage(1 hr)-20MW	114	151		_		-	-				
Pumped Hydro Energy SelTosepa-SSOMW 3		143				-	ı		-			
Compressed AF Energy A Hundrid AT Unibna SOMW									-			
Compressed Air Energy w Humid Air Turtine-SSOAW				1	239	-	1		ı			_
Pulverized Coef (LSFO)-500MW	ressed Air Energy (Salt Cavern) -350MW	72	104	137	169	-	ļ		-			
Pulverized Coal (LSFO)-GOMW	essed Air Energy w/ Humid Air Turbine-350MW	72	106	140	174		1				_	_
Fulverized Coal (LSFO)-400MW	Conducting Magnetic Energy Storage (2 hr)-500MW	175	202					_		_		
Fulverized Coal (LSFO)-400MW			L									
Pulverized Coel (LSFO)-300MW	ized Coal (LSFO)-500MW	187	211	236	261	285	310	334	359	384	408	433
Pulverized Coal (LSFO)-200MW   280   285   311   338   381   387   412   437   483	ized Coal (LSFO)-400MW	207	232	256	281	305	330	355	379	404	428	453
Pulverized Coal ClasFig-)-300MW X 2	ized Coal (LSFO)-300MW	214	242	270	299	327	355	383	411	439	468	496
Pulverized Coal Compliance (LSD) 300MW		260	285	311	336	361	387	412	437	463	488	514
Pulverted Coal Guyercritical (LSD)- 300MW   242   277   300   329   358   388   417   448   475	ized Coal (LSFO)-300MW X 2	191	216	240	265	290	315	340	364	389	414	439
Pulverfized Coal (Advanced LSFO) - 400MW	ized Coal Compliance (LSD)- 300MW	202	230	259	287	315	344	372	400	429	457	485
Almosph Fluidized Bed (Circulating)-200MW	ized Coal Supercritical (LSD)- 300MW	242	271	300	329	358	388	417	448	475	504	533
Press Fluidized Bod (Bubbling, Non-Reheat)-60MW X 2 306 334 300 385 411 437 483 489 515	ized Coal (Advanced LSFO)- 400MW	215	238	261	284	307	330	353	376	399	422	445
Press Fluidized Bed (Bubbling)-350MW	ph Fluidized Bed (Circulating)-200MW	275	306	337	368	399	430	462	493	524	555	586
Press Fluidized Bed (glubbling)-350MW 224 247 271 295 310 325 350 374 398 423 Press Fluidized Bed (glubbling), Supercitio)-40MW 261 285 310 335 380 365 409 434 459 Press Fluidized Bed (Circulating, with Reheat)-160MW 261 285 310 335 380 365 409 434 459 Press Fluidized Bed (Circulating, with Reheat)-160MW 267 232 256 281 306 330 355 379 404 Press Fluidized Bed (Circulating, Supercitical)-360MW 207 232 256 281 306 330 355 379 404 Press Fluidized Bed (Circulating), Supercitical)-360MW 207 232 252 276 289 323 347 377 394 404 Press Fluidized Bed (Circulating)-BBIMW 193 217 242 286 291 316 340 365 389 Highly Integrated Coal Gasz-Ormb Cyc (Entrained)-801MW 282 304 326 348 370 392 413 435 457 Int Coal Gas will Humid Air Turbine (Entrained Flow)-600MW 258 281 304 326 348 370 392 413 443 545 457 Int Coal Gas will Air Turbine (Entrained Flow)-600MW 282 309 335 381 388 414 440 467 493 Int Coal Gas / CAES with Humid Air Turbine How) Will Air Turbine (Entrained Flow)-600MW 288 411 434 459 481 505 528 551 575 Advanced Int Coal Gas -460MW 208 231 253 276 299 321 344 397 399 Combustion Turbine Heavy Duty-80MW 75 126 177 228 279 330 381 432 483 Combustion Turbine Heavy Duty-10MW 86 120 1774 228 282 338 390 444 498 Combustion Turbine Heavy Duty-10MW 86 100 105 150 150 240 285 330 375 420 Combustion Turbine Heavy Duty-10MW 86 100 174 228 280 337 386 449 449 88 Combustion Turbine Heavy Duty-10MW 86 100 174 228 282 283 380 380 444 498 Combustion Turbine Heavy Duty-10MW 87 127 183 204 245 288 327 386 496 450 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 100 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 100 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 100 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 100 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 100 CT Combined Cycle 20n1 -370MW 89 117 145 172 200 228 282 292 233 396 Milled Carbonate Fuel Cell-100MW 89 117 145 172 200 228 285 283 311 396 896 110 111 141 11 11 11 11 11 11 11 11 11 11 1	Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	334	360	385	411	437	463	489		540	566
Press Fluidized Bed ([bubling, Wiff Rehaet]-160MW		227	252	276	301	325	350	374	398		447	472
Press Fluidized Bed (Circulating, with Reheat)-160MW	Fluidized Bed (Bubbling, Supercritic)-340MW	224	247	271	295	319	342	366	390	413	437	461
Press Fluidized Bed (Circulating, with Reheat)-360MW		261	285	310	335	360	385	409	434	459	484	508
Foster Wheeler Advanced PFB (Circulating)-68BMW		207	232	256	281	305	330	355	379		428	453
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	Fluidized Bed (Circulating, Supercritical)-360MW	205	228	252	276	299	323	347	370	394	418	442
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW		193	217	242	266	291	316	340	365		414	439
Int Coal Gas / CAES with Humid Air Turbine-410MW   282   309   335   381   388   414   440   467   493   Int Coal Gas / Molten Carbonate Fuel Cell 400MW   388   411   434   456   481   505   528   551   575   Advanced Int. Coal Gas-460MW   208   231   253   276   299   321   344   367   389   Combustion Turbine Heavy Duty-40MW   75   126   177   228   279   330   381   432   483   Combustion Turbine Heavy Duty-100MW   66   120   174   228   228   238   390   444   4498   Combustion Turbine Heavy Duty-100MW   60   105   150   195   240   285   330   375   420   Combustion Turbine Heavy Duty-160MW   60   105   150   195   240   285   330   375   420   Combustion Turbine Aero-45MW   122   163   204   245   286   327   388   409   450   CT Combined Cycle 2on1 - 300MW   92   122   153   183   214   244   274   305   335   CT Combined Cycle 2on1 - 470MW   81   109   137   165   193   221   250   278   306   CT Combined Cycle 2on1 - 470MW   88   117   145   172   200   228   256   283   311   CT with Cascaded Humidified Advanced Turbine-300MW   80   110   141   171   201   232   262   292   233   Phosphoric Acid Fuel Cell-100MW   415   439   464   488   512   537   561   585   610   Solid Oxide Fuel Cell-100MW   206   230   254   277   301   325   348   372   396   Geothermatic Dual Flash Brine, Air Cooled-24MW   249   380   472   594   695   807   619   6105   Solar Photovoltaic: Flee Plate-10x5MW   1052   1052   1052     Solar Photovoltaic: Geode Attracting Flat Plate-10x5MW   1057   1037   1037     Wind Turbines-Variable Speed-50x750kw   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   20	Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	304	326	348	370	392	413	435	457	479	501
Int Coal Gas / CAES with Humid Air Turbine-410MW   282   309   335   381   388   414   440   467   493   Int Coal Gas / Molten Carbonate Fuel Cell 400MW   388   411   434   456   481   505   528   551   575   Advanced Int. Coal Gas-460MW   208   231   253   276   299   321   344   367   389   Combustion Turbine Heavy Duty-40MW   75   126   177   228   279   330   381   432   483   Combustion Turbine Heavy Duty-100MW   66   120   174   228   228   238   390   444   4498   Combustion Turbine Heavy Duty-100MW   60   105   150   195   240   285   330   375   420   Combustion Turbine Heavy Duty-160MW   60   105   150   195   240   285   330   375   420   Combustion Turbine Aero-45MW   122   163   204   245   286   327   388   409   450   CT Combined Cycle 2on1 - 300MW   92   122   153   183   214   244   274   305   335   CT Combined Cycle 2on1 - 470MW   81   109   137   165   193   221   250   278   306   CT Combined Cycle 2on1 - 470MW   88   117   145   172   200   228   256   283   311   CT with Cascaded Humidified Advanced Turbine-300MW   80   110   141   171   201   232   262   292   233   Phosphoric Acid Fuel Cell-100MW   415   439   464   488   512   537   561   585   610   Solid Oxide Fuel Cell-100MW   206   230   254   277   301   325   348   372   396   Geothermatic Dual Flash Brine, Air Cooled-24MW   249   380   472   594   695   807   619   6105   Solar Photovoltaic: Flee Plate-10x5MW   1052   1052   1052     Solar Photovoltaic: Geode Attracting Flat Plate-10x5MW   1057   1037   1037     Wind Turbines-Variable Speed-50x750kw   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   206   20	al Gas w/ Humid Air Turbine (Entrained Flow)-600M	258	281	304	326	349	372	395	417	440	463	486
Advanced Int. Coal Gas-460MW   208   231   253   276   299   321   344   367   389   Combustion Turbine Heavy Duty-BOMW   75   126   177   228   279   330   381   432   483   483   483   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600   600		282	309	335	361	388	414	440	467	493	519	546
Combustion Turbine Heavy Duty-10MW	al Gas/ Molten Carbonate Fuel Cell 400MW	388	411	434	458	481	505	528	551	575	598	622
Combustion Turbine Heavy Duty-110MW	ced Int. Coal Gas-460MW	208	231	253	276	299	321	344	367	389	412	434
Combustion Turbine Heavy Duty-160MW	ustion Turbine Heavy Duty-80MW	75	126	177	228	279	330	381	432	483	534	585
Combustion Turbine Aero- 45MW	ustion Turbine Heavy Duty-110MW	66	120	174	228	282	336	390	444	498	552	606
CT Combined Cycle 2on1 - 330MW	ustion Turbine Heavy Duty-160MW	60	105	150	195	240	285	330	375	420	465	510
CT Combined Cycle 2on1 - 470MW	ustion Turbine Aero- 45MW	122	163	204	245	286	327	368	409	450	491	532
CT Combined Cycle - 345MW	mbined Cycle 2on1 - 330MW	92	122	153	183	214	244	274	305	335	366	396
CT with Cascaded Humidified Advanced Turbine-300MW	mbined Cycle 2on1 - 470MW	B1	109	137	165	193	221	. 250	278	306	334	362
Phosphoric Acid Fuel Cell-12.5MW	mbined Cycle - 345MW	89	117	145	172	200	228	256	283	311	339	366
Molten Carbonate Fuel Cell-100MW	h Cascaded Humidified Advanced Turbine-300MW	80	110	141	171	201	232	262	292	323	353	383
Solid Oxide Fuel Cell-100MW   208   230   254   277   301   325   348   372   398	horic Acid Fuel Cell-2.5MW	1291	1330	1370	1409	1448	1488	1527	1566	1606	1645	1684
Geothermal: Dual Flash Brine, Air Cooled-24MW   249   360   472   584   695   807   919   1031   1142	Carbonate Fuel Cell-100MW	415	439	464	488	512	537	561	585	610	634	658
Solar Photovoltaic:Flat Plate-10x5MW	Oxide Fuel Cell-100MW	208	230	254	. 277	301	325	348	372	396	419	443
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	ermal: Dual Flash Brine, Air Cooled-24MW	249	360	472	584	695	807	919	1031	1142	1254	1366
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	Photovoltaic:Flat Plate-10x5MW	1052	1052	1052							_	
Solar Thermal Trough/Gas Hybrid-200MW	Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166		_						
Wind Turbines-Variable Speed-50x750kw         204         204         204         204         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         — </td <td>Photovoltaic:Fresnel Lens High Concen10x5MW</td> <td>1037</td> <td>1037</td> <td>1037</td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037		_	_		_			
Wind Turbines-High Prod Volume-143x350kw         217         217         217         217         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —	hermal Trough/Gas Hybrid-200MW	422	426	430			_	_				
Wind Turbines-Class 4 Speed-50x750kw         208         206         206         206         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         — <td>urbines-Variable Speed-50x750kw</td> <td>204</td> <td>204</td> <td>204</td> <td>204</td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>	urbines-Variable Speed-50x750kw	204	204	204	204	_				_		_
Municipal Solid Waste: Mass Burn-40MW         1050         1085         1120         1154         1189         1224         1258         1293         1327           Municipal Solid Waste: Refuse Der40MW         1152         1187         1221         1256         1290         1325         1359         1394         1428           Municipal Solid Waste: Tire-30MW         681         686         671         676         680         685         690         695         699           Bio Mass: Wood-Fired Stoker Boiler-50MW         401         447         493         539         585         631         677         722         788           Bio Mass: Whole Tree-100MW         440         486         492         518         544         570         596         622         648           Cane Run 3 Rehab w/ AFBC         181         208         235         281         288         315         342         369         396           Cane Run 3 Rehab w/ Natural Gas         133         175         218         261         303         346         388         431         474           Brown 5 CT 110MW         56         104         152         200         248         296         344         392		217	217	217	217				_			
Municipal Solid Waste: Refuse Der40MW         1152         1187         1221         1256         1290         1325         1359         1394         1428           Municipal Solid Waste: Tire-30MW         681         668         671         676         680         685         690         695         699           Bio Mass: Wood-Fired Stoker Boiler-50MW         401         447         493         539         585         631         677         722         768           Bio Mass: Whole Tree-100MW         440         486         492         518         544         570         596         622         648           Cane Run 3 Rehab w/ AFBC         181         208         235         261         288         315         342         369         398           Cane Run 3 Rehab w/ Natural Gas         133         175         218         261         288         315         342         369         398           Brown 5 CT 110MW         56         104         152         200         248         296         344         392         440           Brown 5 CT 164MW         59         108         157         206         255         304         353         402         451 <t< td=""><td>urbines-Class 4 Speed-50x750kw</td><td>206</td><td>206</td><td>206</td><td>206</td><td></td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td></t<>	urbines-Class 4 Speed-50x750kw	206	206	206	206			_	_	_		
Municipal Solid Waste: Tire-30MW         681         686         671         676         680         685         690         695         699           Bio Mass: Wood-Fired Stoker Boiler-50MW         401         447         493         539         585         631         677         722         788           Blo Mass: Whole Tree-100MW         440         486         492         518         544         570         596         622         648           Cane Run 3 Rehab w/ AFBC         181         208         235         261         288         315         342         369         396           Cane Run 3 Rehab w/ Natural Gas         133         175         218         261         303         346         388         431         474           Brown 5 CT 110MW         56         104         152         200         248         296         344         392         440           Brown 5 CT 164MW         57         98         139         180         221         262         303         344         385           Brown 5 CT 102MW         59         108         157         206         255         304         353         402         451           Brown 5 CT 159MW <td>· _ · _ · _ · _ · · · · · · · · · · · ·</td> <td>1050</td> <td>1085</td> <td>1120</td> <td>1154</td> <td></td> <td>1224</td> <td></td> <td></td> <td>1327</td> <td>1362</td> <td>1397</td>	· _ · _ · _ · _ · · · · · · · · · · · ·	1050	1085	1120	1154		1224			1327	1362	1397
Bio Mass: Wood-Fired Stoker Boiler-50MW     401     447     493     539     585     631     677     722     788       Bio Mass: Whole Tree-100MW     440     466     492     518     544     570     596     622     648       Cane Run 3 Rehab w/ AFBC     181     208     235     261     288     315     342     369     396       Cane Run 3 Rehab w/ Natural Gas     133     175     218     261     303     346     388     431     474       Brown 5 CT 110MW     56     104     152     200     248     296     344     392     440       Brown 5 CT 164MW     57     98     139     180     221     262     303     344     385       Brown 5 CT 102MW     59     108     157     206     255     304     353     402     451       Brown 5 CT 159MW     53     96     139     182     225     268     311     354     397	pal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Bio Mass: Whole Tree-100MW         440         486         492         518         544         570         596         622         648           Cane Run 3 Rehab w/ AFBC         181         208         235         281         288         315         342         369         396           Cane Run 3 Rehab w/ Natural Gas         133         175         218         261         303         346         388         431         474           Brown 5 CT 110MW         56         104         152         200         248         296         344         392         440           Brown 5 CT 164MW         57         98         139         180         221         262         303         344         385           Brown 5 CT 102MW         59         108         157         206         255         304         353         402         451           Brown 5 CT 159MW         53         96         139         182         225         268         311         354         397	· · · · · · · · · · · · · · · · · · ·	661	666	671	676						704	709
Cane Run 3 Rehab w/ AFBC     181     208     235     261     288     315     342     369     398       Cane Run 3 Rehab w/ Natural Gas     133     175     218     261     303     346     388     431     474       Brown 5 CT 110MW     56     104     152     200     248     296     344     392     440       Brown 5 CT 164MW     57     98     139     180     221     262     303     344     385       Brown 5 CT 102MW     59     108     157     206     255     304     353     402     451       Brown 5 CT 159MW     53     96     139     182     225     268     311     354     397		401	447	493	539	585	631			768	814	860
Cane Run 3 Rehab w/ Natural Gas     133     175     218     261     303     346     388     431     474       Brown 5 CT 110MW     56     104     152     200     248     296     344     392     440       Brown 5 CT 164MW     57     98     139     180     221     262     303     344     385       Brown 5 CT 102MW     59     108     157     206     255     304     353     402     451       Brown 5 CT 159MW     53     96     139     182     225     268     311     354     397		440	466	492	518	544	570			648	674	700
Brown 5 CT 110MW         56         104         152         200         248         296         344         392         440           Brown 5 CT 164MW         57         98         139         180         221         262         303         344         385           Brown 5 CT 102MW         59         108         157         206         255         304         353         402         451           Brown 5 CT 159MW         53         96         139         182         225         268         311         354         397		181			261						423	450
Brown 5 CT 164MW         57         98         139         180         221         262         303         344         385           Brown 5 CT 102MW         59         108         157         206         255         304         353         402         451           Brown 5 CT 159MW         53         96         139         182         225         268         311         354         397									$\overline{}$		516	559
Brown 5 CT 102MW         59         108         157         208         255         304         353         402         451           Brown 5 CT 159MW         53         96         139         182         225         268         311         354         397											488	536
Brown 5 CT 159MW 53 96 139 182 225 268 311 354 397											426	467
											500	549
				1							440	483
		54	98	142	186	230	274	318	362	406	450	494
IPP Hydro 134 134 134 134 134 134 134												
Aeroderivative CT 55 100 145 190 235 280 325 370 415						235	280	325	370	415	460	505
Ohio Falls 9&10 156 156 156										-		
Trimble County 2 159 184 209 233 258 282 307 332 358				209	233	258	282	307	332	356	381	405
IAC at Brown 8-11 22 77											L —	
Minimum Levelized \$/kW 22 77 134 134 134 134 134 278 306	Minimu	evelized \$/kW 22	77	134	134	134	134	134	278	306	334	362

100% %06 80% %02 Least Costly Technologies
Base Capital, Base Heatrate, Base Fuel %09 Capacity Factor 20% 40% 30% -IAC at Brown 8-11 -IPP Hydro -CT Combined Cycle - 345MW 20% 10% % 20 100 150 350 300 250 200 Levelized Cost \$/kw

### LOUISVILLE GAS AND ELECTRIC COMPANY/ KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to First Data Request of AG Dated January 25, 2000

Responding Witness: Lonnie E. Bellar

- Q24. In Volume III, Section VII, the optimal IRP analysis is outlined. Please explain why it includes a sensitivity analysis for load and fuel prices, but fails to include the possibility of future environmental regulations such as carbon dioxide emission limitations?
- A24. A sensitivity analysis to evaluate the potential impact of carbon dioxide emission limits was included as part of the supply-side screening analysis. As discussed in Volume III, Section V of the IRP, this sensitivity analysis did not change the selection of supply-side alternatives to be included in the integrated analysis. Therefore, this type of sensitivity analysis was not included in the integrated analysis.

### LOUISVILLE GAS AND ELECTRIC COMPANY/ KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to First Data Request of AG Dated January 25, 2000

Responding Witness: H. Bruce Sauer

- Q25. In Volume III, Section IX, on page PSC-6, the PSC said KU should incorporate potential environmental costs into forecasts and uncertainty analysis. The response in the IRP does not address the PSC's concern. Please explain why potential environmental costs were not included in the forecasts and uncertainty analysis in the 1999 IRP.
- A25. The response offered by the Company in Volume III, Section IX, page PSC-6 states in the last sentence that KU's internal price forecast reflects expected environmental costs. In the years 2001-2003, environmental cost recovery charges are assumed due to NOx recovery expenditures. No additional increases are assumed thereafter.

RECEIVED

### COMMONWEALTH OF KENTUCKY

FEB 2 3 2000

# BEFORE THE PUBLIC SERVICE COMMISSION OF KENTUCKRUBLIC SERVICE COMMISSION

In the Matter of:

THE JOINT INTEGRATED RESOURCE PLAN )
OF LOUISVILLE GAS AND ELECTRIC COMPANY ) CASE NO. 99-430
AND KENTUCKY UTILITIES COMPANY )

RESPONSES OF
LOUISVILLE GAS AND ELECTRIC COMPANY
AND KENTUCKY UTILITIES COMPANY
TO THE KENTUCKY DIVISION OF ENERGY'S (DOE)
FIRST SET OF INTERROGATORIES
DATED JANUARY 18, 2000

FILED: FEBRUARY 23, 2000

### LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

- Q1. From where did the "long list" of DSM alternatives come (Volume III, Section IV, Exhibit DSM-l)?
- A1. The long list of DSM alternatives were developed by the inter-departmental DSM team.

### LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

- Q2. Has either the Louisville Gas and Electric Company or Kentucky Utilities Company (hereinafter "the Companies") availed itself of information from organizations such as ESource, which is a source of comprehensive information on energy efficiency technologies and programs? To what extent, if any, was information from such sources used in developing the IRP?
- A2. Information from a wide variety of sources was used to access demand-side technologies and programs in the development of the IRP, including ESource, the Electric Power Research Institute (EPRI), manufacturers, consultants, and other utilities. The information included program and technology descriptions and specifications, results of program implementation, including costs, energy impacts and customer acceptance.

### LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY UTILITIES COMPANY CASE NO. 99-430

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

- Q3. a. In developing the IRP, did the Companies perform a study to estimate the quantity of demand-side energy efficiency and load-shifting measures that would be available within the joint service area (i.e., a Technical Potential study), the cost of implementing such measures, and the revenue requirements that would be needed to acquire various portions of these potential resources through DSM programs?
  - b. If so, what is the size of these potential DSM resources?
  - c. If a Technical Potential study was done and was not included in the submittal, please provide it.
  - d. If a Technical Potential study was not done, why not?
- A3. a. A Technical Potential study was not performed.
  - b. n/a
  - c. n/a
  - d. A Technical Potential study would be at best costly and time consuming, and by definition would result in a list of technologies that would be "technically feasible", without regard to cost, energy impacts, or customer acceptance. As part of the screening process used in the development of the IRP, the maturity of the technology and the reliability of the data related to the technology, were used as a screening criteria, in addition to customer cost, customer acceptance, and load shape objectives.

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

Q4. Did the Companies estimate the square footage of residential, commercial, and industrial floor space that is being newly constructed each year in their combined service area? If so, what are the estimated square footage figures?

A4. No.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q5. Did the Companies survey the energy efficiency of the range of types of new buildings being constructed in their combined service area? If so, please provide the results of this analysis.
- A5. No.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q6. Please describe the following programs from Exhibit DSM-1 in more detail:
  - a. House Doctor energy audit (#16)
  - b. Energy efficient products (#20)
  - c. Smart thermostats (special rate) (#28)
  - d. Demand subscription (#31)
  - e. Efficient construction, residential (#32)
  - f. Education (#33, 60, 81)
  - g. Polarized refrigerant oxidant agent (#51)
  - h. Interruptible rates (#58, 79)
  - i. Construction building standards (#61)
  - j. Process and energy audit (#71)
  - k. Variable speed motors (#73)
  - 1. High efficiency motor and adjustable speed drives (#74)
- A6. a. House Doctor is a residential energy audit program designed to improve the energy efficiency of residences.
  - b. Energy Efficiency Products is a program that promotes various energy efficient products by various means including education, improving availability by means such as selling the products via catalog, and direct installation.
  - c. Smart thermostats are used in conjunction with a TOU or real time rate, giving customers a more accurate price signal of the cost of service in order to change the usage pattern of the customer.
  - d. Demand subscription is a program where customers subscribe to a minimum level of service, which will satisfy their minimum energy needs during critical system peak periods. The utility installs a demand-limiting device in conjunction with the customer's metering equipment.
  - e. Residential Efficient Construction is a program that promotes energy efficiency in new residential construction by encouraging and educating homebuilders, buyers, and realtors on the advantages of energy efficient products and measures in the home.
  - f. Education programs provide information to customers regarding energy conservation and efficiency improvements.

- A6.
- g. Polarized refrigerant oxidant agent is an additive to refrigerant oil that displaces clumps of oil collected on the metal surfaces of evaporator and condenser coils.
- h. Interruptible rate programs ask customers to declare a portion of their demand to be either interruptible or firm. The interruptible demand portion is available for curtailment by the utility.
- i. Construction building standards would work to implement new building standards that require energy efficient building practices and measures.
- j. Process and energy audit is an energy and process audit program for industrial customers.
- k. Variable speed motors program promotes variable speed motors to industrial customers.
- 1. High efficiency motor and adjustable speed drives promotes high efficiency motor and adjustable speed drives to industrial customers.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q7. "Efficient Construction" was included in the long list of residential programs (#32). In view of the emphasis placed on new commercial construction programs in the LG&E DSM Collaborative's 1996 DSM Program Plan, filed on December 1, 1995, and in the Collaborative's Joint Application, filed on February 18, 1997, why wasn't "Efficient Construction" included in the long list as a possible program for the commercial or industrial sectors?
- A7. Commercial Construction Building Standards (# 61) was a consideration of commercial "Efficient Construction". Industrial "Efficient Construction" was not considered as a "package" due to several factors, including the vast diversity of industrial construction building types and the fact that the majority of energy use in the industrial segment is process related. In both the commercial and industrial segments, energy-using technologies were screened, including HVAC, lighting, thermal storage, energy management systems, and motors and drives.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q8. Approximately what fraction of the windows being sold in the Companies' service area are "low-e?" Please document the response.
- A8. The percent of windows sold in the Companies' service territory that are "low-e", was not determined.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q9. What is the incremental cost of "low-e" windows compared to "non-low-e" windows? Please document the response.
- A9. Calls made to window suppliers indicated an estimated incremental cost of \$30 per "low-e" window compared to a "non-low-e" window.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q10. The last sentence of the paragraph after Exhibit DSM-2 (Volume III, Section IV) states, "The selected cutoff will be determined from any obvious breakpoints between the sorted weighted average scores of the measures." The decision to set the breakpoint at 3.0 caused 66 of the 82 items from the long list (i.e., 80% of the items) to be screened out. Why didn't the Companies set the breakpoint lower and thereby screen out fewer items?
- A10. The purpose of screening the DSM options was two-fold: 1) to learn more about the DSM technologies available, 2) to narrow the number of alternatives to a manageable level before competing with the alternatives that passed the supply-side screening.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q11. Did the Companies consider the possibility that some of the items in the long list might not be ranked high when considered individually, but might be cost-effective if included in a package along with other complementary items? Please explain the response.
- A11. The first level of screening of demand-side options was generally at the technology level and included the 82 options contained on the long list. This first qualitative screening resulted in 16 options to consider more closely, which were screened in the first phase of the quantitative screening, with zero administrative or programming costs. The 66 options were eliminated based on the criteria used in the qualitative screening which may or may not have been due to cost effectiveness.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q12. In Exhibit DSM-3, please explain why commercial thermal energy storage is rated 3,3,4,4 while industrial thermal energy storage is rated 2,3,3,3.
- A12. The customer cost of thermal energy storage (TES) for commercial customers is less (compared to industrial customers) based on the larger diversity of load which allows for more off-peak time to generate and store ice or cold water which lowers capital cost. The maturity of technology and the data confidence of TES are greater for commercial customers based on the experience of sales of ice storage equipment to commercial size customers compared to industrial customers. The lower rating for meeting the load shape objective for the industrial TES is because of the flatter load curve or higher load factor for most industrial customers.

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

Q13. Isn't it true that customer cost is a function of the design of a DSM program? In other words, if the utility pays 80% of the cost of installing a demand-side technology, wouldn't the customer cost be lower than if the utility pays only 10% of the cost?

A13. Yes.

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

- A14. Exhibit DSM-2 defines "Customer Acceptance" to mean, "Are there an acceptable number of customers willing to participate to create a successful program?" What was the number of customers that was considered necessary for a program to earn a rating of 1,2,3, or 4, respectively? If the interdepartmental DSM team did not actually think in terms of the number of customers, please provide a more accurate and complete definition for the criterion "Customer Acceptance."
- A14. The number of customers that was considered necessary for a program to earn a rating of 1,2,3,or 4 for "Customer Acceptance" is relative to the other characteristics of the technology and program involved. A program such as residential air conditioning load control has high head-end costs related to controllers, software and a transmission function that would not make the program viable for a small number of customers such as 100. On the other hand, a program such as stand-by generation does not have large head-end costs and could be viable with 10 to 20 customers.

The number of customers that would be willing to accept a given technology is effected by numerous factors including cost, esthetics, availability, reliability, comfort, convenience, and etc. As an example, an interruptible rate for commercial customers might be very cost-effective to the customer, but due to reliability, safety, comfort, and convenience concerns, would result in an extremely low level of participation.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q15. Isn't it true that customer acceptance is a function of the design of a DSM program? In other words, if the utility pays a residential customer \$100 a year to sign an interruptible service agreement, for example, wouldn't he or she be more likely to accept it than if the utility pays only \$10 a year for the same agreement?
- A15. Yes, to a large degree the design of a DSM program affects customer acceptance; however, other factors such as appearance, noise, safety, comfort and convenience also play a major role.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- A16. Please explain, providing as much detail as possible, why the criteria of "Maturity of Technology" and "Data Confidence" are combined.
- A16. Originally these two criterion were separate but when the team began to try to develop weightings for each criterion it was determined that the two were very similar and the overlap was considerable. If a technology is very mature there is usually a lot of data available and the confidence of the data is usually higher than that of less mature technologies.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q17. Please explain, providing as much detail as possible, precisely what is meant by the criterion "Maturity of Technology (Is the technology commercially available?)".
- A17. The higher the rating for the Maturity of Technology/Data Confidence criterion, the more likely the technology is commercially available and proven, and there is reliable load and market data available. The selected criteria used for the qualitative screening process is not intended to be precise, but rather provide a basis to reduce the number of technologies down to a reasonable number before designing DSM programs to be evaluated for implementation feasibility.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q18. Please explain, providing as much detail as possible, precisely what is meant by the criterion "Data Confidence (Is the necessary data available to evaluate this measure?)".
- A18. See response to Question 17.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q19. Consider two hypothetical DSM programs that are identical in all respects (including total implementation costs) except for the following projected impacts: Company analysts are 95% confident that Program A will reduce demand uniformly throughout the year by an amount somewhere between 500 kW and 1,500 kW; while the analysts are 95% confident that Program B will reduce demand uniformly throughout the year by an amount somewhere between 399.99 kW and 400.01 kW. Which program should receive a higher priority for implementation? Please explain the response.
- A19. Program A would receive a higher priority. In the example given, <u>all</u> factors of both programs are identical with the exception of the amount of demand reduction. Assuming normal distribution, there is a 97.5% probability that the minimum demand reduction would be greater than or equal to 500 kW for program A. Whereas, there is a 97.5% probability that the maximum demand reduction would be less than or equal to 400.01 kW for Program B. It is intuitive that Program A has greater benefits with all other factors, including cost, being equal.

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: Gregory B. Fergason

- Q20. Consider the following three hypothetical commercial DSM programs:
  - a. Program A reduces demand by 1 kW uniformly throughout the year.
  - b. Program B reduces demand by 5kW on weekday afternoons from 1:00 pm to 6:00 pm during the months of May through September inclusive (i.e., a peak-shaving program with zero impact at other times).
  - c. Program C reduces demand by 6kW from 1:00 pm to 6:00 pm, and increases demand by 3kW from midnight to 5:00 am on weekdays during the months of May through September inclusive (i.e., some energy use is shifted from on-peak to off-peak hours; zero impact at other times).

Each program costs \$1,000 to implement (including all program costs), 90% of which is paid by the utility (i.e., the cost to the participating commercial customer = \$100). Assume that the measure life is 20 years and that there are no free riders. Please use DSManager to provide the present value dollar amounts of the benefits, costs, and benefit/cost ratios for each program using the following five standard "California" tests:

- a. Participant
- b. Utility Cost
- c. RIM
- d. TRC
- e. Societal Cost

In the alternative, please provide the necessary information, software and methodology to allow the Division of Energy to do the calculations.

A20. This exercise is not relevant to the development of the IRP, which is fundamentally designed to determine which options result in the lowest present-value revenue requirements. The standard "California" tests were used only to screen the DSM programs that passed the qualitative screening process.

The Company is unable to provide copies of DSManager since it is proprietary software covered by copyright laws and licensing agreements.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q21. When deciding on the set of DSM programs to recommend for pilot-scale implementation, did the Companies consider "the extent to which the plan provides programs which are available, affordable, and useful to all customers" [Reference KRS 278.285 (l)(g)]? Please discuss the degree to which the set of recommended DSM programs meets this statutory criterion.
- A21. Yes. The portion of KRS 278.285 quoted in the question is one of several factors to be considered when deciding on the reasonableness of DSM plans. Utilization of the screening and evaluation tools as described in the IRP fully provides an appropriate and reasonable basis for collective consideration of each of the factors.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q22. Section VIII in Volume III lists 53 transmission construction projects the Companies are planning to complete between 2000 and 2009 to maintain the adequacy of its transmission system to meet projected customer demands. The method of local integrated resource planning (LIRP), as described in the strategic issues paper titled, "Local Integrated Resource Planning: A New Tool for a Competitive Era" (E-Source, 1995) is designed to determine if costs could be reduced by deferring transmission and distribution upgrades through the use of geographically-focused demand-side programs. [Other names for LIRP include "targeted area planning," "local area investment planning," "distributed resources planning," or "area wide asset and customer service."]
  - a. Did the Companies use the LIRP approach to determine whether any planned transmission or distribution projects could economically be deferred? If so, please provide the results of the studies.
  - b. Do the Companies plan to use the LIRP approach in the future?
- A22. a. No.
  - b. The Companies will evaluate all projects in the contexts of least cost planning. To the extent that transmission and distribution projects can be deferred by the implementation of planned DSM programs the Companies will certainly evaluate this alternative.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q23. Section 8.(3)(e)(4) (Volume I, page 8-83) refers to the NPV costs of certain demand-side programs. What discount rate was used to calculate the net present value (NPV)? What was the basis for the particular discount rate used?
- A23. The discount rate used to calculate the NPV is 9.78% and is reported in Section 9 (Volume I, page 9-1). This value is the combined Company before-tax incremental weighted average cost of capital. The discount rate is based on the following table.

	Capitalization	Annual
	Component	Cost
	Ratios	Rate
Debt	45.35%	7.27%
Preferred Stock	5.23%	5.75%
Common Equity	49.42%	12.5%

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q24. The first sentence on page 8-84 reads, "The difference between the PVRR with and without the direct load control program is \$32.1 million." Does this statement mean that the Companies' present value of revenue requirements (PVRR) would be reduced by \$32.1 million if the direct load control program were to be implemented as projected? If this interpretation is incorrect, please explain.
- A24. The comparison is between the NPV of revenue requirements of two future expansion plans. One with a direct load control program and the other without the direct load control program. Neither of the NPV of revenue requirement values reflect the Companies true or expected revenue requirement. These values are used to compare future expenditures required to meet the growing demand for electricity in our service territories with the continued level of reliable service.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q25. The first paragraph on page 8-121 states: "The plans developed utilizing PROSCREEN II, both in the supply-side optimization and the optimizations with DSM included, are rank-ordered based upon the plans PVRR. The plan with the lowest PVRR is considered the optimal integrated resource plan." Does the plan with the lowest PVRR have the minimum total resource cost (TRC)? Please explain the response.
- A25. The TRC is not calculated in the optimal integrated resource plan analysis. The main criteria used to determine a cost-effective plan is the PVRR. TRC is usually reserved for screening of DSM options.

Response to DOE First Set of Interrogatories Dated January 18, 2000

Responding Witness: William A. Bosta

- Q26. Please provide a detailed description of the method the Companies use to determine how much to charge a new residential, commercial, or industrial customer to hook up their building to the grid. Please explain why this particular method or formula was chosen.
- A26. Both LG&E and KU adhere to 807 KAR 5.041, Section 10, Service Connections, which indicates that the utility shall pay for all costs of a service drop or an initial connection to its line with the customer's service outlet, except the attachment of the wire support to customer premises. In addition, 807 KAR 5:041, Sections 11,12 and 21 outline the requirements followed by LG&E and KU with regard to all aspects of distribution line extensions. LG&E's and KU's Tariffs contain specific reference to the extension of service requirements. Please see Pages 27-31 of LG&E's PSC of Kentucky Tariff No.4, and Pages 25.3, 25.4, 29 and 29A of KU's PSC of Kentucky Tariff No.11.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q27. The section on biomass energy (Volume III, Section V) discusses only technologies that are fueled 100% by biomass. Did the Companies evaluate the cofiring of coal with sawdust at low percentages (e.g., less than 2 or 3 percent sawdust by weight) at existing coal-fired plants, which would provide a valuable service for the sawmill operations located in or near the Companies' service territory and also would reduce SO₂ emissions? Please explain the response.
- A27. No. The Companies have not identified any cost effective proposals for co-firing with sawdust to evaluate. The Companies would evaluate such proposals consistent with applicable federal and state laws and regulations.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q28. Do the Companies intend to file proposed net metering pilot program tariffs with the PSC, which, if approved, would make net metering service available to small-scale customer-generators who produce electricity using renewables, fuel cells, or microturbines. If yes, when? If yes, do the Companies believe that net metered customer-generators will have a measurable impact on the system load during the planning period covered by the IRP? If so, what is the estimated impact during each future year? Please explain the response. If the Companies do not intend to file proposed net metering pilot program tariffs with the PSC, why not?
- A28. No, not at the present time. The Companies will continue to monitor final federal rules and regulations that would effect Kentucky as well as proposed state rules and regulations that may become law, and take appropriate future action that is in the best interests of the Companies and their customers.

Response to DOE First Set of Interrogatories Dated January 18, 2000

- Q29. To what extent have the Companies encouraged the installation of combined heat and power (cogeneration) systems by industrial firms in its service area? Please provide quantitative information if available.
- A29. The Companies have on file with the Public Service Commission rate schedules for small power production and co-generation facilities. These rate schedules are available to any customer in the Companies service territory that qualifies for such a rate. To the extent that an industrial firm wants to install a combined heat and power (co-generation) system, the Companies will evaluate the use of such facility as a resource pursuant to applicable authority.

### LOUISVILLE RESOURCE CONSERVATION COUNCIL

P.O. Box 4174 • Louisville, Kentucky 40204-0174 • (502) 574-5351

December 20, 1999

PECEIVED
DEC 2 1 1999
PUBLIC SERVICE
CONSUBSIONS

Helen C. Helton
Executive Director
Public Service Commission
PO Box 615
Frankfort, Kentucky 40602
via mail and FAX 502-564-3460

RE: The Joint Integrated Resource Plan of Louisville Gas and Electric Company

and Kentucky Utilities Company

Case No. 99-430

Dear Ms. Helton:

Attached please find the Motion for Full Intervention by the Louisville Resource Conservation Council in the above referenced case. An original and ten copies of the motion, plus cover letter, follow this facsimile via US Mail.

Based on my conversation with Mr. Shaw today, it is my understanding that it is not necessary to send copies of this motion to the present parties to this case. If I am in error, please advise me as to who is presently on the service list for this case, and I will send copies immediately.

Sincerely,

Walter F. Bell

**Executive Director** 

Walle J. Bell

### COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

REC	76
DECO	1 1999
P/n	1.40v
CONTUNE SE	PVICE CAV

In the Matter of:

THE JOINT INTEGRATED RESOURCE PLAN OF LOUISVILLE GAS AND ELECTRIC COMPANY	)	Case No. 99-430
AND KENTUCKY UTILITIES COMPANY	Ś	0000110.99 150

#### MOTION FOR FULL INTERVENTION

COMES NOW the Louisville Resource Conservation Council (LRCC), and moves, pursuant to 807 KAR 5:001 Section 3(8), for full intervention in the above-captioned proceeding. In support of this Motion for Full Intervention, LRCC states as follows:

- 1. LRCC is a 501(c)(3) non-profit agency established in 1990 and incorporated under the laws of the Commonwealth of Kentucky to promote and support conservation of energy, water, and other consumable natural resources. LRCC provides direct technical assistance in management of energy use and cost to public and private non-profit building operators served by Louisville 3as and Electric Company (LG&E), and has worked to develop utility and non-utility resources in support of energy conservation. LRCC's staff of two has 27 years experience in residential and commercial energy management and related service delivery programs.
- 2. LRCC was a party to the joint settlement agreement in Case No. 93-150, which led to demand-side management (DSM) programming for LG&E customers. As a member of the LG&E DSM Collaborative since its inception, LRCC has been an active participant in the design and implementation of LG&E's DSM programs. For two years LRCC operated LG&E's DSM program for non-profit community service agencies.
- 3. The agencies served by LRCC and other similarly situated energy users will be affected by the matters under consideration, and LRCC has a special interest in this regard that is not otherwise adequately represented by the parties to this proceeding. Full intervention status for LRCC will likely result in the presentation of issues and/or the development of facts that will assist the Commission in fully considering the matter without unduly complicating or disrupting the proceeding.

WHEREFORE, LRCC asks that this Motion for Full Intervention be granted, and that LRCC be provided with all pleadings, orders, testimony, or other documents that have been or will be filed in this matter.

Respectfully Submitted,

Walter F Bell

**Executive Director** 

Louisville Resource Conservation Council

PO Box 4174

Louisville, Kentucky 40204-0174



A SUBSIDIARY OF LG&**ENERGY** 



ASUBSIDIARY OF LG&**ENERGY** 

NOV 2 2 1999
ONE STORY OF

#### COMMONWEALTH OF KENTUCKY

#### BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE JOINT INTEGRATED RESOURCE PLAN OF LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY UTILITIES COMPANY

CASE NO. 99-430

# Volume II Integrated Resource Plan

November 22, 1999

Technical Appendix

## **TECHNICAL APPENDIX 1**

Louisville Gas and Electric Co.

## Section A

## HISTORICAL DATA USED FOR THE 1999 IRP FORECASTING MODEL DEVELOPMENT

TABLE A1 History of MWh Usage by Customer Class

1		Residential		Gen	General Service		Lg Comm	Lg Comm Lg Power St Light		Gene	ΙŽ		2	-	Total	Total	Fort
	op neat		rotar	эр неат	Otner	lotal			ച	Sp Heat Other		Total	Tota	Total	Pub Auth	UICOUS	X X X
Jan-81	81,868	145,133	227.001	10.237	59.888	70.125	93.975	215.818	5.545	1 779	8 143	9 922	37 157	48 7738	63 118	A75.380	200
Feb-81	68,332	124,848	193,180	8,531	56,275	805	86,006	215,384	4,716	1,782	8,017	9,798	35,339	15,587	60,724	624.815	10,036
Mar-81	49,536	115,537	165,073	5,390	52,781	58,171	77,481	220,392	4,733	1,076	6.939	8.015	33.446	15.781	57,222	583,072	10.490
Apr-81	32,107	107,989	140,098	2,205	48,485	20,690	77,091	221,656	4,217	498	5,754	6,250	30,116	15,298	51,664	545,413	9.370
May-81	26,078	112,334	138,410	1,548	51,178	52,725	79,663	216,198	3,988	82	5,432	5,882	30,550	15,023	51,235	542,219	9,648
Jun-81	31,420	171,701	203,122	28	62,438	62,494	180'96	239,807	3,758	0	5,535	5,535	36,872	18,181	80,588	685,854	13,650
Jel-81	40,951	261,681	302,632	(1)	79,328	79,311	109,845	229,168	3,865	0	6,289	6,289	43,646	17,872	808,78	792,628	18,474
4ug-81	37,223	249,157	286,380	0	78,255	78,255	106,287	232,522	4,145	0	5,921	5,921	42,541	15,731	64,193	769,781	14,858
Sep-81	33,395	204,020	237,414	0	72,053	72,053	100,787	228,782	4,456	0	6,310	6,310	39,510	16,342	62,162	705,655	11,770
Oct-81	26,493	127,947	154,441	1,449	55,997	57,448	85,641	227,454	5,020	82	6,249	6,479	33,291	13,752	53,522	583,523	9,952
Nov-81	32,129	114,530	146,658	2,183	51,549	53,732	80,510	206,967	5,247	319	6,156	6,475	32,867	13,779	53,122	548,238	9.884
Dec-81	54,835	127,847	182,482	8,508	55,577	62,083	83,558	174,917	5,580	980	6,567	7,427	35,189	14,254	56,870	565,490	10,894
Jan-82	83.737	140 464	224.200	10.805	58 545	RO 350	01 068	108 852	5 5.45	1 452		E 503	070 06	48.044	84 650	064 200	44 744
Feb. B3	42,42	434.408	245,540	20,00	80,507	20,00	91,900	196,032	2 6	204,1	7.141	260,0	8 to 00	5,0	01,330	607,150	44/12
Mar-82	54013	118 928	172 941	5,443	53.241	2,42	84 141	212.754	477	- 4 - 4 - 4 - 4 - 4 - 4		0,1/0, <b>a</b>	36,55	10,10	60 624	600,787	40,01 40,04
Apr-82	42 973	113 781	158 755	3 750	50.817	5.4 5.87	70 335	203 288	26.7	2.5		0770	32,408	45 PA 4	54.073	550,207	10,823
Mav-82	31.284	127.651	158.915	1 970	55,520	57,50	88,803	108 708	4 054	2 6 4 8		0,034	35,480	15,041	27,876	555,176	10,133
Jun-82	30,568	163,135	193,701	197	65.354	65.551	97.381	228.424	3.758	3 =		6,478	38.085	18 80 E	2000	649.213	10,01
Jul-82	37,589	219,659	257.248	00	72,578	72.588	106,199	181,356	3,919		5.781	5.781	42,682	17.618	68.082	687.371	18 712
Aug-82	39,889	256,012	295,900	0	78,177	78,177	109,679	188,117	4,178			5,733	43.735	17,309	68.777	740,828	15,007
Sep-82	31,776	178,896	210,672	9	67,988	87,988	102,913	187,205	4.474	0		6.358	41 296	15,527	63.179	636.429	12.401
Oct-82	27,385	132,579	159,964	1,572	57,012	58,584	90,937	195,282	4,980	163		6,683	36,606	14,314	57,602	567,329	10,738
Nov-82	34,145	114,749	148,894	2,316	51,728	54,044	83,665	188,006	5,201	326	5,953	6,279	34,647	14,538	55,465	535,275	10,679
Dec-82	45,901	125,368	171,269	4,768	54,435	59,201	86,429	171,371	5,601	268		7,165	35,868	15,104	58,138	552,007	10,877
Jan-83	59,853	131,551	191,404	6,450	54,775	61,225	87,573	197,042	5,490	993	6.198	7.191	38,050	15.934	59.174	801.908	11.655
Feb-83	68,456	130,296	198,753	7,254	58,192	65,448	90,377	191,221	4,785	1,070	7,433	8,502	37,001	15,102	80,605	611,186	10,558
Mar-83	50,848	120,402	171,251	5,518	54,796	60,312	87,045	208,894	4,781	943	6,832	7,775	36,890	15,725	80,390	592,673	11,458
Apr-83	47,601	118,313	165,914	4,132	52,978	57,110	85,338	190,128	4,249	694	6,328	7,022	33,678	15,532	56,233	558,971	10,473
May-83	31,397	110,450	141,847	1,605	50,602	52,207	85,491	200,572	3,986	304	5,908	6,212	33,011	17,244	56,466	540,569	9,878
Jun-83	29,583	137,914	167,497	ጼ	60,259	80,354	94,961	207,746	3,732	4	5,969	5,973	35,417	18,000	29,390	593,678	11,723
Jul-83	44,320	261,898	306,218	0	79,772	79,772	117,385	190,489	3,895	0	9,10	6,104	45,828	18,404	70,337	768,075	17,498
Aug-63	711,10	330,744	196,186	933	89,784	55,703	286,921	090,412	4,211	15/	6,733	6,891	50,944	20,481	78,295	898,122	18,243
200	5 5	07/107	327,902	2,112	02,830	70,'00	110,010	188,000	6, 4 0 0	75	785	679'	97,180	17,14	888'L/	808,393	13,381
No. 83	120,82	143,705	1/2,/89	799,	799,19	4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C)C'/A	900,012	690,0	98.	7,132	818,7	37,697	15,078	90,080	609,543	6, 5 8 1
	46.00	580,011	131,466	4,204	797,40	0,00	4,40	204,303	2 6	315	C, 1, 0	0,43/	99,56	14,5/5	24,772	022,800	10,477
28-09-0 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	OCT, FB	808'08L	192,109	890's	07 28 28 28	64,289	91,244	194,855	5,622	<del>-</del>	6,472	7,213	37,450	15,840	50 50 50 50 50 50 50 50 50 50 50 50 50 5	608,623	11,587
Jan-84	91,458	153,647	245,104	8,568	61,999	70,568	104,188	202,720	5,545	1,481	7,214	8,675	40,724	17,058	66,455	694,580	11,812
Feb-84	82,183	128,583	210,747	12,045	63,462	75,507	96,139	209,113	4,763	1,459	7,324	8,783	38,914	15,903	63,600	629,869	10,791
Mar-84	53,54	123,983	187,528	6,065	59,991	<b>8</b> 8,058	92,388	211,711	4,787	88	7,138	8,138	36,784	15,804	60,704	623,174	10,084
Apr-84	47,580	117,583	165,124	3,782	56,141	59,923	86,640	214,245	4,280	742	6,361	7,104	35,540	16,172	58,816	589,027	11,632
May-84	33,844	116,828	150,672	<b>1</b> ,605	55,458	57,061	90,684	210,372	4,013	388	5,942	6,331	33,876	17,125	57,332	570,132	10,141
E-1	37,249	179,852	217,100	2,351	68,393	70,744	108,73	225,780	3,734	8	6,687	6,892	40,688	17,974	65,555	691,628	14,822
	42,827	246,833	289,681	2,868	81,259	84,127	119,005	216,698	3,892	144	6,100	6,244	44,928	18,008	12,12	782,561	15,921
Aug-84	43,491	245,017	288,508	2,695	81,999	84,693	120,887	214,193	72,7	<u>ද</u>	6,255	6,405	48,011	17,982	72,378	784,845	16,288
eb-de	86,86	200,633	237,441	2,198	75,197	77,395	113,448	215,559	4,521	<b>8</b>	8,988	7,174	42,019	12 084	66,288	714,853	1,030
5	29,213	130,621	160,034	1,473	60,915	62,388	95,384	219,021	5,038	8	6,577	9,788	38,998	15,428	59,189	801,051	10,524
Nov-	816,18	120,999	158,518	2,565	58,124	069,09	84,342	209,613	5,318	<b>2</b>	6,259	6,521	36,987	15,138	58,628	587,108	10,80
D80-64	960,030	UTB,EET	184,440	DC / 'C	61,633	Ue'/9	87,024	200,390	5,691	824	2,003	7,927	39,127	15,392	62,445	627,368	10,869

Note: Fort Knox sales are included in the sales to the Public Authority LC Class.

TABLE A1 (Continued.) History of MWh Usage by Customer Class

											ŀ	ŀ	ŀ	-	_		,
Date	Sp Heat	Other	Total	Sp Heat	Other	Total				Sp Heat Other Total	Other	_	1 to	Total	Pub Auth	CR Cors	Koox
10		202.077	276 476		, ,	2	907 80			Ş					0.00	950	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Pah 45	100,40	140,702	240 947	7 20	68.85	78.157	104 939	20,102	2,302	202	0,0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30,3/6 41 981	10,734	87,078	704 364	12,04
M 26.85		127,625	180.050	167	60,00	65 574	860,90	206,730	4,704	2 6	2000	2,4	100,14	10,230	20,10	647 344	3 2
Anyon		140 642	161 204	2.472	KB 243	50,20	02,740	212 487	7.0		1000		35.046	47,706	0000	100.00	40 64
May 85		124 404	454 940	1	81 055	2 2 2	402 159	200 624	5 0 0	£ 5	8 503	9 9	27.764	48.760	50,00	504 A14	40.04
Jun 85		164.453	199 075	1 897	69 759	74 657	113.388	214 031	3 749	47	8 A74	7.67	41 881	12.6	85 800	R87 896	13 703
J14-85		229 151	272.653	2.654	79.184	81.837	122 904	198 777	3 908	2	8 219	8.374	46.363	18.291	71 028	751 108	18.728
Aug-85		281,417	308,375	3,146	85,467	88,613	130,818	218,953	4,233	55	6.443	6.601	49.357	18.104	74.061	825,052	16,001
Sep-85		220,702	262,505	2.100	80.170	82,270	121,182	221,803	4.608	195	7.357	7.552	46.879	17.767	72,198	764,567	12.901
Oct-85		138,721	171,394	1,604	65,734	67,338	106,190	217,782	5.106	171	6,790	8,968	39,368	16.648	62,984	630,794	10,859
Nov-85		120,524	155,707	1,830	59,632	61,462	96,634	210,841	5,357	238	6,305	145	37,426	14,816	58,783	588,785	10,952
Dec-85		136,532	202,911	6,486	63,887	70,374	101,850	189,972	5,732	712	7,096	7,808	40,649	17,129	65,585	636,424	11,995
8	970 90	113 003	333 400	.004	000	74 607	406 803	102 674	200		1	5	74 974	76 90	****	200 040	5
100	24 540	706'64	206,133	9,007	00,000	74 000	103,332	192,261	0,00	54.	201,7	170'0	170,14	10,000	176,00	0/0/00	27,2
	0.040	132,321	196,961	85.7	10/40	600,7	103,932	202,783	0,0	991,1	7,455	0,0	30,0	20,0	52,130	000,000	191'L
00-10-4	44 466	132,336	00,000	5,50	60,749	771,17	103,065	0/6,212	976	3 5	20,4	0,403	504,14	26,5	966,79	976,769	בי'נו פרינו
200	90,14	222,021	8/9/291	2,307	788,18	90,50	108,101	206,002	4,372	462	6,368	8	37,723	16,200	50,474	599,815	ופו'פו
May-86	35,435	133,143	168,577	1,842	64,449	66,291	103,367	217,975	6.083	52	6,759	7,018	33,103	16,818	61,941	622,235	11,195
98	41,414	193,727	235,141	2,432	76,153	78,585	119,276	216,184	3,815	g	7,116	7,349	43,474	18,826	69,649	722,631	13,880
3448	54,453	293,454	347,908	3,882	91,490	95,372	137,560	209,929	<b>4</b> ,023	162	7,335	7,497	51,884	19,491	78,872	873,665	18,323
Aug-86	49,968	276,747	326,714	2,498	88,297	90,794	130,644	202,006	<b>4</b> ,31	189	7.15	<b>3</b> 8,	49,745	18,317	75,367	829,835	15,653
Sep-88	40,428	196,589	237,017	2,939	77,567	80,508	122,073	223,565	<b>4</b> ,586	187	7,762	7,949	46,646	17,651	72,247	739,995	12,823
Oct-86	40,542	179,393	219,935	1,421	76,038	77,457	119,798	221,553	5,195	<b>3</b> 12	8,391	8,603	43,852	15,165	67,620	711,559	11,737
Nov-86	42,687	123,027	165,714	2,538	61,056	63,594	97,978	214,532	5,387	391	7,068	7,459	37,863	16,111	61,433	608,637	11,417
Dec-88	69,578	140,229	209,808	6,199	65,722	71,921	104,228	189,144	5,777	928	7,824	8,752	41,131	16,061	65,944	646,618	11,892
Isn 97		143 BG3	225 860	7.474	84 048	72 470	401 782	104 154	8 68.5	404	7 440	9 664	40.648	48.743	64 017	FEE 933	42.470
Feb. 57		138 678	221 744	7 171	67 148	74.318	106 743	207 620	4 9 1 4	2.5	7 96.8	185	970	18 447	66.578	681 913	11 198
Mar-87		134 285	199 681	4 680	68.384	71.064	106.910	210.721	4 966	956	7.811	8 767	42 078	16.886	87.729	661.071	12,050
Apr-87		121.462	170,537	2,929	61.489	64.418	102.468	201,068	4.388	653	6.874	7.527	37.403	16.295	61.225	604,105	11,371
May-87		150,841	189,468	1,981	69,676	71,657	114,295	217,165	4 158	255	7,378	7,633	41,466	19,891	68,991	665,734	13,046
Jun-87		240,750	290,498	2,775	85,761	88,536	133,834	217,343	3.872	267	8.205	8.472	49.607	19,259	77.338	811.421	16,891
Jul-87		285,140	338,972	3,223	91,625	94,849	141,323	205,191	4,058	210	7,469	7,679	52,083	19,610	78,572	863,964	18,448
Aug-87		317,572	375,665	3,379	94,004	97,383	141,197	224,192	4,351	254	7,670	7,924	53,674	19,706	81,305	924,093	18,703
Sep-87		234,458	281,821	2,645	85,240	87,885	133,109	214,978	4.666	569	8,320	8,589	50,123	19,471	78,182	800,641	14,544
00447		145,564	184,668	1,914	69,951	71,864	115,282	218,543	5,224	278	7,287	7,563	42,605	16,484	66,633	662,212	11,899
Nov-87	45,254	124,097	169,351	2,709	62,785	65,494	105,168	217,071	5,429	£ ;	7,113	7,548	38,540	16,077	62,165	624,677	11,553
Dec-87		137,504	203,312	5,039	192,561	70,599	107,773	195,736	5,813	163	7,685	8,450	41,168	14,796	414.	647,668	12,228
Jan-88		154,131	250.842	8.413	69.653	78.267	115,697	202,604	5.727	1274	8.022	95.28	43.164	16.693	69.153	722.290	13.070
Feb-88		142,875	232,706	7,634	70,568	78,200	114,167	216,690	4.921	1213	8,650	9,863	43,505	17,363	70,732	717,415	12,248
Mar-88		138,207	214,964	5,664	69,924	75,588	114,542	218,056	5,038	1,027	8,532	9,559	43,311	16,759	69,628	697,816	12,658
Apr-88		128,972	178,491	2,628	66,201	68,828	112,708	215,249	4,457	488	7,501	7,988	39,454	17,032	64,475	642,208	10,757
May-88		129,380	167,200	1,803	65,454	67,258	110,759	217,404	4,186	23	1,008	7,244	38,509	17,824	63,576	630,382	<b>1</b>
88-61		205,259	250,277	2,609	82,860	85,469	133,122	782,537	3,936	22	8,261	8,488	47,168	780'S	6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	772,140	16,217
		300,015	476.006	5,25	20,73	7/8/88	46.346	20,012	2	è	117'0	600	20,00	16,05	02,020	187'07R	9,50
September		247 924	285,390	2,000	88 745	91,310	141 737	92,022	7.7	3 8	0,136 8,727	90.0	50.00	17.7M	7,52	825 347	13.759
0048		147.458	188,214	1.883	71.266	73.149	118,990	220.468	5,313	2	8331	8.565	42.255	16.145	88.965	671.099	12.025
Nov-88		128.763	179.382	2,992	65,332	68,325	109.342	230.278	5,575	516	7,680	96.196	40.558	15,792	25.	657.447	11.948
Dec-88	73,965	148,755	220,720	5,357	71,095	78,453	118,892	208,732	6,000	778	6,547	9,323	43,909	16,444	69,676	700,472	12,310
1				į						;		į			1	i	
200	281,18 80 803	134,033	62,65	4,5,8 4,5,6	70,961	7 27	116,381	711,712	9,9/6	1,031	0,420	9,451	42,665	17,066	202,69	708 404	12,784
Mar-89		141.851	220,188	6.081	71.938	78,019	121.058	220,865	5.153	£ 5	200	10,739	45.511	17,830	74.080	719.342	12,950
Apr-89		130,969	183,411	2,870	67,045	69,914	113,950	222,852	4,525	574	8,036	8,610	41,065	17,730	67.405	862,058	11,977
May-89		134,495	175,469	1,819	67,345	69,164	116,285	219,032	4,321	228	7,740	7,998	40,931	17,860	68,789	651,060	12,345
		202,438	248,978	2,557	88,328	68,883	142,803	233,496	4,087	ន្ត	8,789	9,019	49,854	20,933	79,806	788,054	16,649
Jul-89		280,316	335,998	3,016	94,045	97,061	151,202	228,158	4,229	ន្ត	980'8	8,318	55,041	20,623	086,58	900,628	19,298
Aug-88		278,351	332,013	9,130 190	93,631	19,79	146,682	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4,528	È S	8,215	500	55,512	18,992	82,956	060,090	19,271
200		507,705 610,011	107 704	4,600	74 047	40,404	700,641	20,972	9 6	ě	90,0	C66.	199,00	19,700	20,00	606 604	20,530
May 499		133 140	182.418	27.5	68 103	70.857	118.240	1 2 2	5.07	3 5	, E	200	19767	18.838	88.89	667 674	13.028
Dec-89		158,153	251.479	6.448	74.860	81308	127.195	197,342	80.9	32	9.218	10.151	47.225	17,508	74.881	738,301	13,858
				•	•	•	•	•						·			

. . . . . .

<b>L.</b>		2000	ľ	ľ						ŀ				ŀ			
D SE	Sp Heat	Other	Total	Sp Heat	neral Service Other	Total	Lg Comm	Lg Power		General Sp Heat C	meral Service Other Total	Te de	그 를	를 기	Pub Auth	Total UR Cons	For Gook
8	404 930	468.007	374 613		100.00	92.	, ,	į			,			١.			
	60,003	440.406	770,172	4,754	10,0	9//8	127,931	869,122	6,031			009'0	47,113	17,971	75,684	787,968	13,591
1	09,00	100,000	205,502	5,4	10,7	11,50	116,661	213,476	012,0			2 4 6	42,939	162,1	69,673	690,940	12,145
	100,00	120'07'	404,270	2,042	200	7,560	117,998	224,269	5,248			8,313	45,332	1,484	72,108	696,480	13,502
	25,55	4/0/051	100,938	2,763	10,69	11,818	117,114	229,813	4.661		_	8,878	42,969	17,188	69,031	681,432	12,958
May-30	27.0	997'95	850'8/L	1,937	70,636	72,573	122,396	227,549	406			8,44	44,435	18,423	71,300	677,262	13,633
	13.831	188,613	232,244	2,130	80.84	82,974	135,529	230,985	4,147			9,322	50,134	8 5.	79,619	765,498	17,978
	36,6/3	302,433	301,128	3,232	100,542	103,774	155,143	231,785	762,4			8,808	58,405	20,838	88,048	944,175	20,548
	22,007	140,807	322,140	500,0	/77'08	96,280	148,033	217,835	9			8,713	26,396	18,138	83,244	674,182	20,019
Do de o	/09'50	282,182	335,898	2,788	98,251	101,038	154,691	232,124	976	•	-	1,285	59,808	18,887	89,981	918,707	17,316
	36,463	160,198	198,663	1,772	76,481	78,253	127,833	235,148	5,539			9,410	47,761	17,028	74,198	719,634	13,634
Der-90	281,16 64.419	147,798	192,360	2,43	74 464	75,088	124,102	226,381	906,0	<b>4</b> 24	9,482	906'6	45,944	18,124	73,974	697,794	12,564
	<u>.</u>	064,14	21.7	C/2's	5	174'01	10,040	20,012	107'0			19C'A	99,000	10,/42	7,984 7	694,280	13,288
Jang	96,524	168,516	265,040	6,982	75,544	82,526	128,853	220,476	6,135		•	0.976	48.425	18.367	77.768	780.797	14,299
Feb-91	169,78	151,610	239,301	6,250	75,329	81.579	125,610	210.493	5.289		•	1,249	48 909	18.578	78.734	739.008	13.024
Mar-91	72,372	146,340	218,712	4.477	72,641	77.118	121.762	210,639	5,348		•	0.422	47,793	19 800	77 515	711 095	5
Apr-91	47,615	134,831	182,446	2,128	71.941	74.067	122,683	215.582	4.742			9.085	43.639	18.559	71 284	670.804	12,665
May-91	40,918	157,939	198,855	1,901	75,059	78,960	130,164	215,012	4.477			9.381	49,595	19.795	78.77	704.238	18.754
Jun-91	55,464	283,474	338,938	2,869	97,810	100,679	155,448	228,507	4,182		Ī	0,612	59,274	21.572	91.458	919,212	19.231
34.91	64,974	350,589	415,563	3,457	107,541	110,998	166,947	218,340	4,383		•	0,659	64,829	21,893	97.381	1.013,611	22.341
Aug-91	57,919	317,289	375,208	3,137	100,978	104,115	156,941	209,523	4,727		•	0,385	62,395	18,947	91,708	942,220	20,922
Sep-9	57,048	298,594	355,642	2,829	100,351	103,180	157,449	234,087	5,070		•	1,842	63,197	19,655	94,69	950,121	17,630
50	41,012	167.447	208,459	1,840	76,495	78,334	129,263	229,787	5,615	309	9,965	10,274	48,689	17,730	76,693	728,152	13,601
Nove1	27,73	147,718	204,951	3,238	76,011	79,249	129,777	227,761	5,965			9,737	47,104	18,969	73,810	721,514	13,109
	185'57	5/8/901	732,384	¥69' <b>¥</b>	72,192	76,886	127,803	206,705	6,382		•	0,128	47,826	17,398	75,351	725,491	13,205
Jan-92	90,952	167,942	258,894	6,649	76,762	83,410	129,424	217,339	6.278			0.236	48.363	17.637	78.238	771.582	13.954
Feb-92	85,430	154,280	239,710	5,778	75,418	81,197	124,090	227,645	5,403			0,685	47,848	17,245	75,777	753,821	12,888
Mar-92	64,337	143,265	207,602	3,754	72,841	76,595	122,226	217,037	5,451			0,178	47,654	16,903	74,733	703,644	13,579
April 2	977'8C	141,239	199,467	3,089	212,27	75,361	121,456	212,900	838			009'6	44,742	17,655	71,997	686,018	12,891
Am.92	42,000	182319	725 114	2004	84 541	000,07	138,086	27,622	4,092 4,058			0,/41	67,47	18,421	55.5	710,395	900'61
Jul-92	55,355	284.254	339.608	3.040	98.722	101 762	160 337	224 003	4 473			100	60,00	20,07	80 544	010,267	24 887
Aug-92	53,719	286,861	340,581	2,920	100,617	103,537	157,215	233,855	4,850			9,257	59.844	20,481	89.582	929.619	19.172
Sep-92	47,913	230,878	278,789	2,207	91,078	93,285	150,487	226,170	5,144			9,930	58,922	16,138	84,988	838,863	16,933
Oct-92	38,637	153,813	192,449	1,617	74,208	75,825	131,508	228,885	5,842			9,800	48,201	22,814	79,815	712,322	13,243
Nov-92	49,847	141,781	191,629	2,432	71,219	73,651	123,497	228,784	6,030		7,808	8,174	46,459	14,727	69,360	690,932	12,936
78000	60,00	100/100	240,143	, v.	6,6/9/	82,222	130,141	176'/02	106,9			B,492	49,5Z3	17,946	76,961	749,288	13,702
Jan-93	89,033	174,942	263,975	5,903	77,287	83,170	134,630	212,671	8,419		8,843	9,728	49,406	18,824	77,957	778,821	14,027
Feb-93	67,853	157,830	245,683	5,879	74,161	80,041	128,864	225,718	5,497		_	7,409	51,094	18,878	77,382	763,185	12,841
E& 20	94,140	159,482	253,622	4.4	77,459	83,893	130,042	221,884	5,538			9,592	51,003	19,505	80,099	775,078	13,978
F 10 10 10 10 10 10 10 10 10 10 10 10 10	970,96	142,638	196,666	2,804	72,775	75,580	126,458	220,128	6,933			8,278	6,306	67.2	75,363	701,128	12,890
Jun-83	45,438	208,503	254 941	000,1	27.78	70,033 R0 A58	799 051	235,374 278 378	4,55.4 4,36.8			407,8 602,8	4,084	79,513	13,351	713,385	13,723
Jul-93	63,814	364,191	428,005	3,378	110,726	114,104	174,399	224,688	1,591			9.778	88,140	23.074	98,992	1.044.779	23.472
Aug-93	56,483	338,246	396,729	3,044	106,690	109,734	164,581	238,222	4,898		_	9,044	85,296	20,938	95,278	1,009,442	21,799
Sep-93	<b>56</b> ,189	302,331	358,520	2,748	102,879	105,627	165,265	239,262	5,270	_		0,682	65,043	21,397	97,122	971,065	16,502
500	37,782	153,553	191,335	1,529	76,683	78,212	134,184	232,161	5,862			8,598	69,272	18,340	78,209	717,984	13,282
Dec-93	75.436	150,041	246,002	2,/36 4 804	70 07	76,208	125,638	23,72	6,163 6,23			7,874	55.55	19,458	7,684	714,577	13,621
	3		201014	Š	966	Š	200'5	016,022	170'0			200	7/6'00	010'81	<b>\$</b> (8)	*C*	900,51
18 - C	113,092	189,768	302,860	8,494	81,503	166,68	143,093	215,521	6,557	, 9,	8,729	9,776	52,966	20,757	83,499	841,527	14,549
	78 708	1/6,386	150,182	9,144	23,263	98,407	136,620	234,755	5,588	750	٠.	0,328	50,541	21,003	61,872	837,792	12,982
4	54,638	148,021	202,660	252	74,038	76.561	130,787	235,128	4.922	7	_	8.868	17,232	2,52	72,782	777 839	12,817
May 94	40,412	148,899	189,311	1,688	75,618	77,304	132,131	238,300	1,72,	ē	_	7,804	961,61	20,838	77,837	717,605	14,096
<b>FER-94</b>	49,823	244,741	294,564	2,596	95,048	97,643	157,916	251,227	4,409	212	_	9,054	80,438	22,919	92,409	898,168	20,848
3	61,742	354,444	416,185	3,335	110,639	113,974	174,978	235,051	629	2	_	9,875	57,332	23,724	100,932	1,045,747	2,24
	25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00 25,00	313,986	3/0,525	90,0	107,697	110,701	169,428	262,814	5,015	243		9,352	35,629 23,629	2 2 2 3	98,616	1,017,099	20,656
8	37,915	165,078	202,993	1,600	80.875	82,477	135,761	244 630	5.97	5 5		233	51,358	2,5	20. EZ	751 540	13,617
Nov-9	43,430	144,398	187,827	2,057	74.665	76.72	130,185	248.828	6.237	8		7.500	7.715	20,349	75,584	25.363	12,718
Dec-94	64,737	161,522	228,258	3,757	75,697	79,454	129,629	728,237	9,656	60		8,117	18,027	19,22	75,365	745,599	13,115
							•		;			•		!			

TABLE A1 (Continued)
History of MWh Usage by Customer Class

Dane A.A

TABLE A1 (Continued.) History of MWh Usage by Customer Class

L										ŀ	-			r		;	,
Date	Sp Heat	Kesidential	Total	Sp Heat	General Service	Total		Lg Power	St Light	Sp Heat	General Service eat Other T	Total	1 E	Total	Total Pub Auth	Total Ult Cons	Fort Knox
Jan-95	91.888	188,259	280.147	6.116	82.923	89.038	140.400	251 603	6 684	816	8.278	608	50,635	21.447	81 175	849 048	14 073
Feb-95	100,130	172,031	272,161	6,985	82,720	89,706	137,931	248,187	5.672	88	8,732	9,616	20,860	20,705	81.182	834,839	12,948
Mar-95	68,774	156,186	224,959	3,881	78,432	82,313	134,133	245,365	5,812	620	8,567	9,187	51,776	20,923	81,886	774,468	14,377
Apr-95	48,019	146,424	194,443	2,092	74,673	76,765	133,551	254,972	5,163	306	6,983	7,289	46,797	21,328	75,414	740,307	12,034
May-95	41,454	155,833	197,286	1,591	77,228	78,819	137,591	248,341	4,844	<del>2</del>	7,463	7,629	49,719	20,801	78,149	745,031	13,961
Jun-95	48,273	242,331	290,604	2,346	94,788	97,134	160,098	252,055	4,540	528	8,615	8,844	59,619	22,926	91,389	895,820	19,139
Jul-95	59,881	339,297	399,177	3,038	108,328	111,366	175,198	254,891	4,727	273	8,977	9,250	67,175	24,659	101,084	1,046,443	22,458
Aug-95	66,284	401,649	467,933	3,528	117,331	120,858	180,977	263,972	5,046	327	9,546	9,873	73,712	24,611	108,196	1,146,982	24,539
Sep-95	56,438	330,988	387,426	2,966	110,042	113,008	175,432	262,308	5,446	333	10,696	11,029	68,583	23,104	102,716	1,046,336	15,578
Oct-95	37,569	165,835	203,403	1,674	81,340	83,013	139,966	258,189	6,059	203	8,206	8,409	53,999	20,501	82,910	773,540	14,627
Nov-95	55,882	155,482	211,364	3,167	77,149	80,316	135,165	251,267	6,342	297	7,681	7,979	50,225	20,765	78,968	763,422	12,971
Dec.95	79,070	174,004	253,074	5,018	78,313	83,331	138,198	230,058	6,791	735	7,974	8,709	52,286	20,079	81,074	792,527	13,389
Jan-96	108,760	203,627	312,387	7,635	87,396	95,031	150,383	249,803	6.764	1.067	9.047	10,114	54,945	21.571	86,630	900.998	14.080
Feb-96	105,254	179,893	285,147	7,158	84.129	91.287	145,178	256,739	5776	1.046	9.263	10,308	53,759	20.134	84.201	868,329	13,250
Mar-96	78,788	166,589	245,377	5,073	81,278	86,350	141,453	247,576	5,812	747	9,107	9,854	53,198	20,195	83.247	809,815	13.930
Apr-96	64,552	159,123	223,675	3,287	77,952	81,239	138,662	260,120	5.205	582	7.881	8,463	50.629	21,421	80,513	789.414	12,712
May-96	44,857	169,435	214,292	2,062	79,847	81,909	144,776	252,872	4,883	273	7,587	7,859	51,483	22,076	81,418	780,150	15,268
Jun-96	47,696	243,614	291,309	2,381	95,359	97,741	163,359	260,390	4,619	234	9,418	9,652	60,452	22,870	92,975	910,393	19,032
Jul-96	59,845	347,508	407,353	3,240	111,834	115,073	183,135	247,744	4,730	526	9,483	9,740	66,206	24,141	100,086	1,058,122	20,447
Aug-96	55,800	320,916	376,716	2,951	108,207	111,158	170,781	255,618	5,101	222	9,474	969'6	66,865	22,397	98,958	1,018,333	21,157
Sep-96	52,671	300,865	353,537	2,672	107,768	110,439	176,000	264,864	5,549	281	10,669	10,950	66,548	21,401	98,898	1,009,286	16,023
Oct-96	37,421	170,386	207,807	1,630	86,864	88,494	146,760	259,493	6,107	199	8,440	8,640	53,673	19,319	81,632	790,293	13,845
Nov-96	53,025	161,077	214,102	2,312	80,101	82,413	144,167	255,682	6,491	283	1,908	8,201	51,415	19,892	79,508	782,363	13,014
Dec-96	78,233	187,955	266,188	5,238	85,229	90,466	148,895	247,084	7,018	748	8,646	9,394	53,891	21,497	84,782	844,433	13,270
									;	;	;						!
Jan-97	100,429	201,739	302,168	6,703	86,768	93,470	156,171	247,899	7,083	893	9,198	10,091	55,535	19,724	85,350	892,143	14,143
760-67	92,637	161,408	24,0472 204,060	0,010	20,362	285,18	146,840	200,746	6 6 6 6 7	776	0,5,0	10,297	22,23	778'61	63,4/3	457,302	12,488
Mar-97	200,00	160,337	202,100	2,0,0	76,942	70 568	147,607	245,500	2,022	9 6	7 2 2 2	10,209 2,45	160,04	20,00	27,466	757.750	13,434
May 67	42 405	400.04	101 301	1,576	76 407	27,77	430 000	250,052	5 9	666	1,01	7 754	47.204	20,50	75 450	742 455	12,400
Jun-97	41.853	191 726	233 579	000	85.245	87.338	157 700	258 511	4734	3 5	7.398	7.556	55,535	2,28	85.978	825,835	16,659
76-Jur	59.398	342,406	401.804	3,214	112,187	115.401	188 208	268901	4.867	25.	9.401	9696	67,394	24 129	101.178	1 078 360	27.73
Aug-97	57,695	351,656	409,350	2,981	110,844	113,825	183,714	264,699	5,211	29	9,715	896'6	67,838	22,153	89,959	1.076.758	20,069
Sep-97	50,471	283,892	334,364	2,493	105,359	107,852	177,320	258,460	5,592	231	10,297	10,529	66,749	22,036	99,313	982,901	16,753
Oct-97	40,642	191,672	232,314	2,035	88,558	90,594	155,373	255,686	6,189	<b>185</b>	9,004	9,189	55,768	19,771	84,728	824,883	14,247
Nov-97	54,968	165,394	220,361	2,616	79,399	82,015	143,854	271,447	6,457	313	7,953	8,267	50,518	18,925	77,709	801,843	12,806
Dec-97	77,316	190,787	268,103	5,043	85,420	90,463	151,103	234,836	6,938	200	8,535	9,131	54,967	19,971	<b>84</b> ,069	835,512	13,376
Jan-98	83,700	201,748	285,446	4,872	86,364	91,236	156,535	249,625	6,899	701	8,538	9,239	54,421	19,873	83,534	873,275	13,361
Feb-98	76,784	177,626	254,411	4,600	81,951	86,551	145,549	257,847	5,917	299	8,628	8,293	51,391	19,888	80,572	830,847	12,061
Mar-98	70,441	169,161	239,602	3,868	81,269	85,137	146,069	246,392	5,921	519	8,202	8,720	52,759	17,810	79,289	802,410	13,572
Apr-98	49,774		211,144	2,314	80,854	83,168	151,663	251,548	5,297	337	8,261	8,597	51,015	22,848	82,460	785,280	12,586
May-98	42,455		231,181	2,086	85,210	87,296	156,575	269,442	4,975	173	8,223	8,396	55,250	22,282	82,928	835,397	16,227
7an-98	51,876		336,349	2,699	103,999	106,698	179,565	261,742	4,636	8	9,518	9,753	64,745	22,016	96,514	985,503	19,550
86-In-	61,811	385,324	447,135	3,390	119,608	122,998	198,247	269,303	4,877	270	10,409	10,679	71,437	23,853	105,969	1,148,528	21,679
Aug-98	58,520	364,163	422,682	3,280	114,708	117,988	193,385	280,812	5,181	96 27	10,019	10,315	72,442	22,322	105,080	1,125,129	21,752
Sep-98	58,790	357,222	416,012	3,396	117,128	120,522	192,496	264,939	5,629	8	12,687	12,981	75,275	23,74	111,970	1,111,569	19,057
Oct-38	43,797	238,487	282,285	2,176	96,769	98,945	172,611	255,859	6,257	<u>8</u>	10,013	10,206	29,999	19,642	89,846	905,803	13,923
86-you	45,632	165,240	210,872	2,020	81,186	83,208	148,198	253,734	6,503	217	8,180	8,398 0,437	52,263	19,857	80,517	783,030	12,455
2000	N76'60	100,010	445,U30	201,0	04,000	00'70	411,101	244,000	95,	4	Ç / G	g, 15,	02,430	760'AI	207'10	176'079	13,140

TABLE A2 HISTORY OF SUMMER PEAK DEMAND (MW) (1969 - 1998)

	CDD224					9.4	15.4	16.0	17.3	17.6	14.8	22.6	16.8	16.0	20.5	9.8	15.8	20.4	16.9	20.8	19.0	24.6	20.5	16.0	16.3					
	24AvgTHI 224AvgTm CDD224					74.4	80.4	81.0	82.3	82.6	79.8	9.78	81.8	81.0	85.5	74.8	80.8	85.4	81.9	82.8	84.0	9.68	85.5	81.0	81.3					
	24AvgTHI					72.6	9.77	8.77	80.0	9'9'	78.7	79.8	78.1	76.9	82.0	78.8	78.2	79.2	6.97	80.9	79.1	80.5	79.7	78.3	78.3	78.4	80.2	78.1	77.4	78.1
	표 2.2	84.8	8.77	82.9	81.5	78.2	82.5	83.4	84.0	79.2	83.5	84.2	84.4	82.3	86.9	82.9	82.7	84.0	81.9	86.2	82.2	82.7	84.6	82.7	83.4	83.0	<b>8</b> .	82.9	82.7	83.5
	CDD24 18.0	20.0	18.0	20.0	19.0	1.5	18.4	18.1	21.8	17.3	19.1	22.0	18.9	17.5	25.4	20.5	18.8	20.5	18.1	23.4	20.3	23.6	22.5	19.9	18.9	19.5	20.9	18.5	19.5	19.3
	4AvgTmp 83.0	85.0	83.0	85.0	84.0	76.5	83.4	83.1	86.8	82.3	84.1	87.0	83.9	82.5	90.4	85.5	83.8	85.5	83.1	88.4	85.3	88.6	87.5	84.9	83.9	84.5	85.9	83.5	84.5	84.3
	DewTemPK 24AvgTmp 68 83.0	75	73	7	29	29	69	7	7	69	74	22	92	71	72	7	73	71	99	7	73	73	99	2	7	99	11	7	2	22
	양	ଚ୍ଚ	18	78	27	7	88	ଷ	၉	2	8	၉	ස	27	32	8	27	ଚ	28	怒	<b>5</b> 8	27	8	88	ଷ	၉	28	88	88	8
	TempPK 91	ጽ	83	8	35	98	8	94	જ	87	93	92	94	95	9	93	95	92	93	66	9	92	86	93	94	92	93	69	69	<b>2</b> 0
MW	5	1,230	1,271	1,379	1,531	1,473	1,543	1,583	1,705	1,699	1,752	1,815	1,784	1,662	1,885	1,749	1,812	1,913	1,851	2,141	2,022	2,149	2,125	2,107	2,239	2,219	2,406	2,331	2,463	2,476
	1.107	1,230	1,271	1,379	1,531	1,473	1,543	1,583	1,705	1,699	1,752	1,815	1,784	1,662	1,885	1,749	1,812	1,913	1,851	2,141	2,022	2,149	2,125	2,107	2,239	2,219	2,357	2,282	2,414	2,427
	Day	돧	쮼	MON	呈	MON	MON	FR	FR	FRI	WED	MON	MON	WED	표	TUE	TUE	쮼	FR	TUE	TUE	TUE	MOM	WOM	WOM	WED	王	WED	WOM	TUE
Hour	Ending* 1500	1400	1500	1400	1700	1500	1600	1500	1600	1500	1700	1700	1700	1700	1500	1700	1600	1600	1600	1700	1500	1600	1700	1700	1700	1700	1600	1600	1500	1600
	Date 17	7	တ	<b>5</b> 4	ස	56	52	83	5	22	80	Ξ	13	4	77	5	13	18	24	16	7	5	22	13	90	15	17	7	21	52
	Month 7	7	7	7	80	ထ	60	7	7	۵	æ	80	7	80	7	7	80	7	7	80	7	7	7	7	œ	9	8	80	7	ω
	<u>Year</u> 1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

^{*}The peak-demand hour was recorded as the "Eastern Standard" time.

20-Yr. Avg. (1979-1998)

78.9

83.5

20.4

85.4

71.3

29.1

94.1

TABLE A3

# HISTORY OF WINTER PEAK DEMAND (MW) (1969 - 1998)

WindPK	(Knot or MPH) 8	12	9	2	12	7	10	10	15	15	9	က	က	17	∞	9	12	16	7	2	4	ω	17	∞	∞	9	ო	<b>o</b>	12	10
	HDD24 30	33	-	4	34	40	47	44	4	22	24	54	53	65	47	24	73	20	47	26	2	44	42	49	51	62	51	61	25	43
	24AvgTmp 35	26	64	24	31	25	18	21	24	ω	∞	7	12	0	18	7	ထု	15	18	တ	ά	22	23	17	4	ო	4	4	œ	22
	WchillPK 1,540.8	2,691.7	412.0	1,127.5	2,545.1	1,604.9	2,345.7	2,219.6	3,702.0	3,702.0	1,631.5	1,033.1	1,100.7	4,081.5	2,147.6	1,668.8	3,315.2	4,104.4	1,795.4	1,594.1	1,664.2	1,831.0	3,932.9	2,279.5	2,279.5	2,881.6	1,055.9	2,291.5	2,786.4	1,954.1
WindPK	(meter/sec.)	9	က	က	9	4	2	2	80	ω	က	7	2	6	4	ო	9	80	4	ო	7	4	O	4	4	ις.	-	4	S.	4
	H 32 37	47	-7	34	43	41	48	44	22	22	61	20	22	26	22	63	64	61	49	29	7.7	43	23	9	9	65	28	62	29	43
	TempPK 33	18	72	31	22	24	17	21	ω	80	4	15	10	6	10	7	<b></b>	4	16	9	-12	22	12	2	5	0	7	ო	9	22
	MW 789	851	806	686	970	979	1,068	1,087	1,243	1,247	1,288	1,209	1,310	1,370	1,235	1,311	1,415	1,387	1,358	1,443	1,616	1,379	1,493	1,525	1,549	1,538	1,593	1,696	1,720	1,586
Hour	Ending 1100	1900	1900	1900	1900	1900	1900	1900	1900	1900	006	006	006	1200	1100	006	1000	1100	900	1000	1100	1000	1000	800	006	2000	800	800	800	1900
	Date 15	23	-	=======================================	9	တ	18	53	ဖ	တ	15	က	12	-	19	19	24	27	27	9	22	<b>5</b> 6	15	16	48	15	ĸ	2	17	=
	Month 12	=	7	12	12	12	12	11	12	-	-	က	-	τ-	12	-	-	_	-	~-	12	7	7	-	2	-	-	7	-	ო
	<u>Year</u> 1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

54.2

10.8

2271.4

4.3

57.7

7.4

20-Yr. Avg. (1979-1998)

									Ц	Public Authority	Ш			
	Sp Heat	Residential Other	Total	General Service So Heat Total	Service	Lg Com Total	Lg Power Total	Lg Power Street Light Total	General Service Sp Heat Total	Service	Lg Con Total	Lg Power Total	Total Pub Auth	Total CR Cons
-				MEMO					MEMO					
Jan At	73 757	240 168	263 925	1 072	26 479	1.374	295	2.216	110	1.475	158	27	1.660	295.949
Feb-81	24,047	240,562	264,609	1,069	26,456	1,383	<b>58</b>	2,236	5	1,467	159	23	1,653	296,633
Mar-81	24,130	240,086	264,216	1,055	26,427	1,390	294	2,243	<b>109</b>	1,471	3	22	1,658	296,228
Apr-81	24,360	239,870	264,230	1,063	26,514	1,391	294	2,253	107	1,473	<u>≅</u>	23	1,660	296,342
May-81	24,460	239,966	264,426	1,059	26,551	1,397	232	2,254	90	1,479	159	27	1,665	296,588
Jun-81	24,764	240,399	265,163	1,059	26,614	1,401	382	2,261	106	1,477	<b>≅</b>	27	1,664	297,398
<u> </u>	24,942	240,121	265,063	1,059	26,772	1,402	<b>38</b>	2,255	106	1,480	<del>6</del>	27	1,667	297,455
Aug-81	24,947	239,957	264,904	1,059	26,771	1,405	96Z	2,253	106	1,456	<del>5</del>	27	1,643	297,272
Sep-81	25,071	240,068	265,139	1,059	26,751	1,407	296	2,275	<u>ş</u>	1,474	<u>\$</u>	27	1,661	297,529
ਲ ਹ	25,312	239,850	265,162	1,071	26,861	1,410	£6.	2,273	Ē :	1,471	60,	72	1,65,	909'/67
No.	25,371	239,869	265,240	1,076	26,858	1,415	82	2,272	86	1,462	<u>\$</u>	27	1,649	297,729
Dece	25,250	238,657	263,907	1,071	26,905	1,414	98 73 73 73	2,278	86	1,452	191	27	1,640	296,440
Jan-82	25,351	238,839	264,190	1,080	26,997	1,415	596	2,293	86	1,448	161	27	1,636	296,827
Feb-82		239,830	265,462	1,087	27,033	1,420	296	2,302	98	1,451	161	23	1,639	298,152
Mar-82		239,766	265,469	1,088	26,976	1,409	238	2,301	86	1,460	161	78	1,649	298,102
Apr-82		239,948	265,707	1,078	27,034	1,417	8	2,311	86	1,472	161	27	1,660	298,430
May-82		239,547	265,328	1,076	27,039	1,414	30	2,320	97	1,464	161	27	1,652	298,054
Jun-82		239,923	265,750	1,076	27,026	1,415	ğ	2,351	97	1,467	162	23	1,656	298,499
Jul-82		239,138	265,038	1,076	27,006	1,423	305	2,371	97	1,475	161	27	1,663	297,803
Aug-83	25,995	239,628	265,623	1,076	26,925	1,421	<del>စ</del> ္တ	2,380	97	1,465	191	27	1,653	298,302
Sep-82		239,084	265,035	1,076	26,937	1,426	238	2,392	97	1,469	162	27	1,658	297,746
Oct-85		238,389	264,285	1,074	26,980	1,423	297	2,391	6	1,474	163	27	1,664	297,040
NOV-82		238,553	264,510	690'1	950'77	1,426	<b>R</b> 8	2,404	<u>s</u> s	1,489	2 5	8 8	0,0,1	100,182
Dec-82	26,009	238,444	264,453	6CO'L	27,139	454	ÇŞ.	7,41/	3	1,469	3	7	Eco'L	/RC' /RZ
Jan-83		238,193	264,191	1,073	27,113	1,439	295	2,427	88	1,464	<u> </u>	27	1,654	297,119
Feb-83		239,469	265,834	1,074	27,239	1,448	294	2,433	8	1,465	163	27	1,655	298,903
Mar-83	26,340	238,862	265,202	1,065	27,323	1,454	292	2,455	8	1,463	£3	27	1,653	298,379
Apr-83		239,159	265,646	1,078	27,232	1,457	292	2,426	8	1,461	<b>163</b>	27	1,651	298,704
May-83		239,312	265,985	1,063	27,319	1,464	83	2,434	8	1,460	163	. 21	1,650	299, 145
Jun-83		239,383	266,219	1,063	27,357	1,468	292	2,435	æ	1,457	<b>4</b>	27	1,648	299,419
Jul-83	27,063	239,072	266,135	1,063	27,404	1,471	294	2,454	8	1,461	\$	21	1,652	299,410
Aug-83		239,558	267,116	1,067	27,408	1,471	292	2,451	<del>.</del>	1,450	99	22	1,643	300,381
Sep-83	27,434	238,985	266,419	46.	27,406	1,469	Ē 8	2,455	5 t	000	₹ £	R 8	. 643	239,663
		230,704	107'007	20,0	77 445	707	767	2,455	<b>?</b>	44	8 4	9 8	2 2	200,569
20.00		230,030	200,330	5 5	27.450		8 8	2,469	2 2	24.	3 4	3 8	45.5	208 850
2000		23/,835	05,007	<u>§</u>	604,13	1,490	ř,	7,400	ŧ	2	8	8	8	000'067
Jan-84		238,419	266,059	1,082	27,607	1,489	294	2,470	E	1,450	59	58	1,643	299,562
Feb 84		238,875	266,849	1,085	27,638	1,492	蒸	2,469	23	1,452	<b>165</b>	78	1,645	300,387
Mar-84		238,697	266,730	1,078	27,623	1,496	<b>2</b> 8	2,486	73	1,441	<b>165</b>	28	<u>+</u>	300,263
Apr-84		239,779	268,070	1,085	27,753	1,500	238	2,484	73	1,435	166	8	- 629	301,732
May-84		238,934	267,185	1,092	27,794	1,506	297	2,488	23	1,440	166	82	- - - - - - - - - - - - - - - - - - -	300,904
Jun-84		239,200	267,867	1,080	27,690	1,500	စ္က	2,497	23	1,449	<del>8</del>	<b>58</b>	1,643	301,497
Jul-84		238,797	267,745	1,080	27,830	1,50	ဓ္တ	2,504	73	1,457	167	78	1,652	301,532
Aug-84		238,951	267,819	1,080	27,797	1,507	ğ	2,513	72	1,450	169	78	1,647	301,587
Sep-84		238,093	267,118	1,077	27,784	1,518	8	2,515	22	1,457	<del>2</del>	78	8	300,894
4 to 0	29,280	238,034	267,314	1,082	27,817	1,522	8	2,521	21	1,462	<u>ක</u> ද	8 8	629	301,139
Nov-BA		238,401	267,850	1,078	27,888	1,53	) E	2,546	2 1	1,447	2	2 2	46.	90/108
200		238,425	268,025	1,107	27,977	3,	8	2,557	72	1,453	<u>\$</u>	8	3	302,046

TABLE AA HISTORY OF NUMBER OF CUSTOMERS BY CLASS

Page A-8

TABLE A4 (Confinued.) HISTORY OF NUMBER OF CUSTOMERS BY CLASS

•	_	2		General	General Service	ر ا	Lg Power	Street Light		General Service	ال ال	=	Total	Total
	Sp Heat	Other	Total	Sp Heat	Total	Total	Total		Sp Heat	Total	Total	Total	Pub Auth	UR Cons
•														
Jan-85		238,081	267,997	1,088	27,989	1,543	306	2,560	22	1,451	170	27	1,648	302,043
Feb-85	30, 183	239,062	269,245	1,075	27,983	1,545	308	2,575	7	1,459	171	92	1,656	303,312
Mar-85	30,396	239,251	269,647	1,088	27,922	1,548	306	2,565	7	1,469	171	52	1,665	303,653
Apr-85		239,700	270.253	1.074	28.019	1,550	307	2.566	7	1.467	171	52	1,663	304.358
May-85		238,442	269,000	1.079	28,005	1.553	302	2.564	2	1.462	171	56	1.659	303,086
Jun-85	30.865	239,166	270.031	1.092	28,113	1,550	302	2,560	2	1.466	172	8	1,664	304.223
Jul-85	31,054	238,939	269,993	1,090	28,360	1.552	ğ	2,563	2	1,464	172	26	1,662	304,434
99-07	31.519	239,384	270,903	1 096	28.188	1.557	305	2.558	20	1.460	172	38	1.658	305 169
60 83		239,352	271.131	1.103	28.223	1.552	307	2,569	69	1.459	173	8	1.658	305,440
2ct-85		239.645	271 790	600	28.347	1,555	308	2 575	6	1.462	173	8	1,661	306 236
Nov-85	32.496	239.569	272 065	1.098	28 389	1,555	6	2.578	8 8	1.463	173	8	1,662	306,558
3		228 778	268,203	200,1	20,02	4 662	8 8	20,4	8 8	460	2 2	2 %	1,650	302,000
		011'007	500,503	960,1	766'07	36.	200	7,090	ò	704'	2	8	600'I	307,100
Jan-86	32,613	238,824	271,437	1,107	28,525	1,562	309	2,601	98	1,458	173	36	1,657	306,091
eb-88		240,083	273,051	1,097	28,597	1,574	308	2,609	67	1,455	173	56	1,654	307,793
Mar-86		241,117	274,551	1,109	28,666	1,571	307	2,630	89	1,461	173	92	1,660	309,385
Apr-88		239,838	273,051	1,112	28,569	1.574	307	2,626	89	1,448	173	56	1,647	307 774
1ay-88		240,033	273,706	1,107	28,670	1,574	306	2,627	88	1,448	173	92	1,647	308,530
Jun-88		240,094	274,118	1,104	28,711	1,580	300	2,624	8	1,455	173	92	1,654	308,993
Jul-88		239,426	273,309	1,098	28,749	1,585	305	2,627	69	1,458	173	92	1,657	308,232
Aug-88		240,214	274,541	1,101	28,745	1,584	307	2,629	69	1,461	173	58	1,662	309,468
sep-88		240,376	274,767	1,093	28,801	1,591	310	2,640	8	1,470	174	28	1,672	309,781
Oct-88		240,054	274,351	1,096	28,820	1,592	312	2,675	69	1,471	173	28	1,672	309,422
10v-88	34,766	241,165	275,931	1,103	28,982	1,601	31	2,669	7	1,508	173	36	1,717	311,211
Dec-88	34,602	239,831	274,433	1,108	28,919	1,605	303	2,676	7	1,509	£73	37	1,719	309,655
an-87	34.645	240,297	274.942	1.108	29.048	1,612	303	2.700	7.	1,508	173	37	1.718	310,323
eb-87	35,270	241,657	276,927	1,107	29.144	1.629	306	2.705	72	1,519	173	37	1,729	312,440
Mar-87	35,329	241,390	276,719	1,116	29,098	1.637	308	2,713	69	1,516	174	35	1,725	312,200
Apr-87	35,418	241,158	276,576	1,098	29,063	1,643	308	2,729	69	1,523	174	33	1,732	312,051
Tay-87		241,628	277,299	1,095	29,185	1,642	308	2,726	8	1,528	174	32	1,737	312,897
Jun-87		241,803	277,607	1,092	29,243	1,653	308	2,732	69	1,530	174	35	1,739	313,282
Jul-87		241,399	277,065	1,105	29,221	1,655	88	2,736	2	1,546	174	35	1,755	312,741
'ug-87		242,046	277,954	1,103	29,336	1,660	806	2,737	8	1,546	174	36	1,756	313,751
3ep-87	35,905	242,204	278,109	1,097	29,371	1,662	310	2,739	8	1,547	174	8	1,757	313,948
Oct-87		242,000	278,036	1,1 1	29,460	1,677	311	2,740	69	1,553	174	36	1,763	313,987
lov-87	••	242,749	279,257	1,11	29,629	1,681	310	2,736	67	1,565	174	S	1,774	315,387
Jec-87	36,384	241,190	277,574	1,105	29,534	1,684	311	2,744	67	1,548	174	જ	1,757	313,604
Jan-88		241,698	278,151	1,105	29,664	1,690	308		Ī	1,561	174	×	1,770	314,338
eb-88	36,789	242,939	279,728	1,102	29,624	1,689	306			1,567	174	ક્ષ	1,776	315,900
Mar-88		242,983	279,717	1,108	29,595	1,697	307			1,578	175	S	1,788	315,896
Apr-88		243,231	280,244	1,109	29,603	1,695	307			1,569	175	જ	1,779	316,420
Aay-88		243,058	279,945	1,094	29,706	1,697	306			1,569	175	8	1,779	316,246
Jun-88	36,913	243,273	280,186	1,090	29,746	1,701	33	2,810	8	1,577	175	88	1,788	316,536
3ei-88		243,804	281,224	1,092	29,853	1,717	308			1,575	178	8	1,789	317,720
10g-88		244,069	281,442	1,093	29,813	1,723	800			1,585	178	8	1,799	317,919
3ep-88		244,127	281,442	1,092	29,954	1,721	350			1,601	179	37	1,817	318,081
001		243,689	281,054	1,096	29,948	1,722	310			1,592	179	8	1,810	317,704
40v-88		243,890	281,299	1,081	29,945	173	310			- 68	Ę	ő	4 R28	247 060
						-	!:			-	3	3	?	3

•					-	Ì				Public Authority	uthority			
	So Heat	Residential Other	Total	General Service Sp Heat Total		Lg Com Total	Lg Power Total	Street Light	General Service Sp Heat Total	Total	Lg Com Total	Lg Power Total	Total Pub Auth	Total UR Cons
-														
Jan-89	37,375	••	281,042	1, 40,	30,253	1,733	312	2,871	3	1,63	179	39	1,849	318,060
Feb-89			282,504	1,097	30,193	1,737	313	2,868	8	<u>1</u> ,64	<b>₹</b>	39	1,860	319,475
Mar-89			282,116	1,103	30,136	1,736	313	2,878	2	1,646	182	88	1,866	319,045
Apr-89	37,834	244,859	282,693	1,104	30,251	1,736	312	2,889	2	1,646	181	88	1,865	319,746
May-89			282,820	1,100	30,312	1,740	313	2,887	2	1,644	183	37	1,864	319,936
Jun-89			283,857	1,104	30,392	1,747	314	2,908	88	1,636	184	37	1,857	321,075
Jul-89		•	284,305	1,106	30,334	1,747	316	2,914	62	1,631	<del>1</del> 8	35	1,850	321,466
Aug-88			283,229	1,097	30,338	1,759	314	2,925	ន	1,648	184	38	1,867	320,432
Sep-89		245,367	283,494	1,107	30,397	1,762	315	2,931	61	1,647	<del>1</del> 8	S	1,866	320,765
Oct-89			283,446	1,094	30,435	1,764	317	2,935	8	1,652	184	જ્ઞ	1,871	320,768
Nov-89		245,616	283,965	1,093	30,491	1,772	320	2,923	8	1,668	184	88	1,887	321,358
Dec-88		•	283,156	1,105	30,523	1,770	319	2,913	8	1,668	\$	x	1,887	320,568
							3		;	į	;	;	,	
Jan-80	38,393	245,675	284,068	/01,1	30,604	/9/'L	324	2,929	3	1,67	186	3 :	068,	321,582
Feb-90			285,411	1,106	30,617	1,761	325	2,934	62	1,686	<del>1</del> 83	ક્ષ	1,904	322,952
Mar-90		•	284,687	1,109	30,714	1,758	326	2,954	61	1,669	183	ક્ષ	1,888	322,327
Apr-90	38,739	246,873	285,612	1,105	30,806	1,755	329	2,963	62	1,675	183	38	1,894	323,359
May-90			285,173	1,098	30,740	1,756	329	2,967	62	1,674	183	98	1,893	322,858
Jun-80			285,615	1,108	30,815	1,755	330	2,976	62	1,678	183	8	1,897	323,388
741-80	39,224	247,815	287,039	1,106	30,899	1,760	332	2,989	æ	1,706	183	98	1,925	324,944
Aug-80			286,299	1,106	30,885	1,764	332	2,988	61	1,673	183	ક્ષ	1,891	324,159
Sep-90	39,003	•	286,714	1,103	30,937	1,765	333	2,987	62	1,687	184	x	1,906	324,642
Oct-80		•	286,155	1,107	30,855	1,769	332	2,976	2	1,69,1	184	8	1,910	323,997
Nov-90		``	286,767	1,104	30,957	1,773	333	3,000	3	1,700	185	37	1,922	324,752
Dec-90	38,979	247,594	286,573	1,108	30,920	1,780	333	2,994	63	1,707	185	37	1,929	324,529
3			107	9	000	. 101	ć		(	,	707	5	•	444
La La	30,000	247,318	101,002	91.	90.00	100	9 6	3,002	2 5	2 :	6 6	8 8	26.	324,133
Leo-Gal	39,224		287,830	1,113	20,00	1,790	255	2,070	2 6		9	8 8	000	326,002
	29,472		500,002	9.7.	96.00	467,	3 8	80,5	ò	27.	0 9	8 8	n	604'076
April 1	39,432		/66/197	00.	620,16	96/1	335	3,102	8 8	9	186	3 9	8	326,213
May-01	56.65	240,730	200,213	3 3	01,10	67.	8 8	5,5	2 8	9 5	9 5	3 3	4 000	320,025
	40,023	-	290,014	5 6	51,175	100'	676	er i	8 3	8 6	2 5	7 :	3 5	919,026
	39,826		160,687	., 103	27,200	408,	9 6	3,152	3 3	5 5	8 5	;	7,8,1	328,000
La-Boy	39,780	100,692	209,447	,030	0,70	10.4	335	2,130	8 8	70/	20,	7 3	006,	956,126
o to	30,400	•	288.876	2 -	21,213	2 6	3 5	3, 13,	6	10/1	8 5	; <b>;</b>		326,030
Nova	39 752		289.993		31.427	1805	25	3,155	8 %	25.	187	4	1 986	328,707
9	30 451		288 847	1 128	31 374	1812	338	3 168	8 8	768	187	. 14	1 984	327.520
	2	200		1	· •	!	}	5	3	<u>;</u>	•	•		
Jan-92			289,401	1,110	31,442	1,817	335	3,220	8	1,755	187	4	1,983	328,198
Feb-82		•••	290,763	1,107	31,434	1,824	338	3,229	89	1,762	193	4	1,996	329,584
Mar-92			290,349	1,096	31,443	1,818	338	3,264	8	1,769	192	ŧ	2,002	329,214
Apr-92			291,642	<u>+</u> ,	31,561	1,820	343	3,233	8	1,776	193	45	2,011	330,610
May-82			291,719	1,094	31,644	1,845	345	3,245	8	1,768	<b>508</b>	8	2,033	330,831
Jun-82			292,726	1,093	31,604	1,848	344	3,232	8	1,742	201	8	2,011	331,765
7r -67			292,116	1,092	31,727	1,848	344	3,237	8	1,747	204	2	2,016	331,288
Aug-82		••	293,826	1,085	31,662	1,827	341	3,247	8	1,746	204	\$	2,016	332,919
Sep-82		•	292,690	<del>1</del> , 18	31,754	1,833	335	3,239	22	1,750	210	8	2,022	331,873
001-82	39,538	•	292,492	1,073	31,746	1,840	38	3,254	22	1,746	210	8	2,021	331,696
Nov-82		254,238	294,235	1,081	31,820	1,869	¥ ;	3,264	8	1.75	213	2 3	2,029	333,558
Dec-83			293,053	1,080	31,785	1,873	338	3,262	8	1,744	214	\$	2,022	332,333

TABLE A4 (Continued.)
HISTORY OF NUMBER OF CUSTOMERS BY CLASS

TABLE A4 (Continued.)
HISTORY OF NUMBER OF CUSTOMERS BY CLASS

١			-			1			_	1			1	
	Sp Heat	Residental Other	Total	General Service Sp Heat Total	Service	Lg Com Total	Total	Street Light	8	D Heat Total	Total	Lg Power Total	Pub Auth	UR Cons
Jan-03	39.652	253.072	292 724	1 080	31,829	1876	347	3.293	8	1.743	220	8	2.028	332 097
Feb-63	39,818	254.577	294 395	1.078	31.919	1.876	8.	3,315	8	1.741	22	8 8	2 027	333,872
Mar-83	39,497	253,926	293.423	1.082	31.783	1.892	346	3,304	99	1.744	222	8	2,035	332,783
Apr-83	39,677	254,855	294,532	1,083	31,882	1,892	358	3,314	8	1,741	224	7	2,036	334,011
May-03	39,973	254,803	294,776	1,075	31,942	1,900	320	3,333	99	1,742	225	2	2,037	334,338
8	40,179	255,778	295,957	1,075	31,994	1,899	353	3,331	29	1,756	224	88	2,048	335,582
Jules	40,161	255,948	296, 109	1,078	32,054	1,899	356	3,351	8	1,738	223	89	2,029	335,798
-B	40, 198	256,359	296,557	1,080	32,084	1,903	358	3,343	8	1,787	727	7	2,085	336,330
Sep-93	39,920	256,251	296,171	1,075	32,140	1,913	356	3,360	65	1,778	226	7	2,075	336,015
Oct-93	39,780	256,053	295,833	1,075	32,218	1,907	359	3,349	98	1,782	229	72	2,083	335,749
Nov-83	40,013	257,100	297,113	1,070	32,290	1,923	361	3,379	8	1,767	229	52	2,069	337,135
Dec-83	39,904	256,278	296, 182	1,071	32,217	1,914	351	3,379	29	1,767	727	74	2,068	336,111
Jan-94	39,637	255,955	295,592	1,071	32,292	1,931	357	3,412	88	1,779	229	75	2.083	335,667
Feb-94	39,906	257,709	297,615	1.069	32.411	1.920	329	3,402	8	1,784	228	2	2,083	337.790
Mar-94	39 820	257,237	297.057	1.070	32.456	1,941	336	3,397	29	1,790	224	5	2.084	337.271
Apr-84	39,910	257,254	297, 164	1,061	32,379	1,940	358	3,418	19	1,773	229	75	2,077	337,336
ş	40,215	258,760	298,975	1,055	31,921	1,929	361	3,425	8	1,755	229	74	2,055	338,666
Jun-84	40,192	259,094	299,286	1,122	31,851	1,930	88	3,420	29	1,725	228	7	2,024	338,874
ģ	40,688	261,035	301,723	1,144	32,251	1,916	373	3,426	89	1,748	228	74	2,050	341,739
Aug-84	40,501	260,727	301,228	1,111	32,226	1,932	378	3,420	67	1,746	232	74	2,052	341,236
ğ	40,303	260,759	301,062	1,124	32,169	1,941	383	3,429	72	1,758	233	75	2,066	341,050
ģ	40,115	261,226	301,341	1,130	32,172	1,941	383	3,434	89	1,742	232	. 73	2,047	341,318
Nov-84	40,191	261,644	301,835	1,049	32,205	1,941	384	3,434	69	1,765	233	76	2,074	341,873
ģ	39,946	260,833	300,779	1,043	32,210	1,935	384	3,423	69	1,758	231	22	2,064	340,795
Jan-95	40,092	262,175	302,267	1,059	32,343	1,943	380	3,463	99	1,772	231	7.4	2,077	342,473
8	40,113	262,832	302,945	1,075	32,450	1,944	388	3,462	65	1,77.1	232	74	2,077	343,266
Mar-95	39,898	262,169	302,067	1,061	32,433	1,943	390	3,492	65	1,782	234	74	2,090	342,415
9	40,363	263,925	304,288	1,043	32,445	1,959	394	3,499	62	1,771	233	73	2,077	344,662
May-85		263,238	303,312	1,070	32,406	1,961	395	3,511	8	1,768	233	75	2,076	343,661
ě		264,492	304,845	1,055	32,645	1,962	395	3,511	22	1,776	236	73	2,085	345,443
<u>-</u> 98		265,460	306,116	1,036	32,725	1,983	399	3,498	B	1,756	239	69	2,064	346,785
8		265,396	305,831	1,031	32,486	1,969	8	3,533	8	1,733	236	8	2,037	346,256
Sep-85	40,471	265,341	305,812	1,068	32,587	1,964	394	3,557	2	1,746	247	8	2,061	346,375
-98		265,332	305,578	1,033	32,658	1,948	394	3,567	3	1,739	240	8	2,045	346,180
20×95	40,236	265,654	305,890	1,014	32,600	1,989	399	3,568	83	1,746	249	8	2,063	346,509
Dec-85	40,139	265,080	305,219	1,020	32,845	1,993	391	3,569	8	1,748	249	8	2,063	346,080
8	40.035	264.840	304.875	1.040	32.949	2.010	397	3.585	98	1,755	245	8	2.068	345.882
Feb-98	40,177	265,639	305.816	1.035	33,088	2.024	400	3,607	99	1.785	248	3	2,097	347.032
9	40.221	265,924	306,145	1.038	33,138	2,012	504	3,610	2	1.799	251	89	2.116	347.426
98-	40,520	266,920	307.440	9	33,416	2,021	385	3,643	8	1,798	248	19	2,113	349,025
8	40,359	267,051	307,410	1,027	33,513	2,031	402	3,645	99	1,795	252	8	2,113	349,114
Jun-98	40,716	267,823	308,539	1,042	33,631	2,027	406	3,647	8	1,783	254	æ	2,100	350,350
\$	40,565	267,833	308,398	1,055	33,829	2,062	403	3,626	98	1,791	252	67	2,110	350,428
ş	40,689	268,938	309,627	1,033	33,904	1,992	402	3,639	8	1,793	252	19	2,112	351,676
Sep-86	40,572	268,804	309,376	1,042	34,091	2,015	411	3,668	8	<u>1</u>	248	8	2,118	351,679
\$	40,569	268,715	309,284	1,022	34,101	2,008	412	3,643	89	1,814	251	88	2,133	351,581
96-VOK	40,527	269,626	310,153	975	34,285	2,025	423	3,655	2	1.802	247	8	2,115	352,656
;														

TABLE A4 (Continued.)
HISTORY OF NUMBER OF CUSTOMERS BY CLASS

										Public A	Public Authority			
		Residential		General Service	Service	Lg Com	Lg Power	Street Light	General Service	Service	Lg Com	Lg Power	Total	Total
	Sp Heat	Other	Total	Sp Heat	Total	Total	Total		Sp Heat	Total	Total	Total	Pub Auth	Ult Cons
100	, VO 250	260 240	309 460	1 042	24 561	1 992	417	3.578	8	1.817	251	89	2.136	352,153
מפווים ל	40,430	200,270	240,400	4 	34.755	200,0	418	2 581	: £	1 827	255	99	2,148	353,800
76-09-	40,001	270,202	310,003	1,023	34 686	6,000 0,000 0,000	2,5	2,553	1 2	1,00	250	2	2 132	354 347
Mar-87		270,633	210,010	5 5	34,000	2,042	422	3,579	. Y	1 820	256	9	2,140	353,838
Apr-97		271 041	311,942	1018	34,655	2,030	422	3,576	62	1.830	220	99	2,146	354,525
Inay-57		270.671	311,342	1.027	34.692	2,042	418	3,564	62	1,823	250	8	2,138	354,196
76-Inl.		272.288	313,277	1,030	34.681	2,048	417	3,563	64	1,810	243	64	2,117	356,103
Aug-97		271.901	312,585	1,026	34,754	2,064	421	3,564	99	1,817	245	29	2,129	355,517
Sep-97		272,233	313,065	1,007	34,742	2,061	424	3,553	09	1,812	251	99	2,129	355,974
Oct-97		271,539	312,162	1,033	34,672	2,054	420	3,549	57	1,806	253	29	2,126	354,983
Nov-97		272,765	313,368	896	34,731	2,054	423	3,548	9	1,809	246	89	2,123	356,247
Dec-97	40,388	272,747	313,135	1,056	34,752	2,052	420	3,555	29	1,816	245	99	2,127	356,041
Jan-98		273,378	313,992		35,102	2,082	426	3,562	28	1,833	252	29	2,152	357,316
Feb-98		273,335	313,813		35,044	2,037	425	3,561	25	1,849	254	8	2,163	357,043
Mar-98	40,668	273,541	314,209		35,143	2,090	425	3,576	25	1,841	257	65	2,163	357,606
Apr-98		274,193	314,861		35,186	2,080	426	3,579	28	1,855	261	99	2,182	358,314
May-98		275,360	316,293		35,232	2,113	427	3,560	55	1,844	260	65	2,169	359,794
Jun-98		275,615	316,515		35,307	2,079	425	3,571	56	1,851	246	61	2,158	360,055
Jul-98		275,597	316,476		35,286	2,030	416	3,563	47	1,839	241	62	2,142	359,913
Aug-98	Ċ	275,346	316,270		35,223	1,923	417	3,548	9	1,802	233	61	2,096	359,477
Sep-98		275,634	316,367		35,224	2,039	425	3,563	29	1,831	243	29	2,133	359,751
Oct-98		275,823	316,414		35,195	2,080	425	3,559	26	1,818	255	29	2,132	359,805
Nov-98		278,026	318,902	955	35,328	2,073	427	3,563	29	1,826	260	25	2,143	362,436
Dec-98		276,112	316,524	1,041	35,284	2,105	422	3,537	92	1,807	246	92	2,108	359,980

## TABLE A6 BREAKDOWNS OF ANNUAL KWH SALES BY BASE AND WEATHER-SENSITIVE LOAD (1981 - 1998)

_	_	_																	
	Total	1,507,454,669	1,561,315,724	1,631,645,285	1,693,398,990	1.784.178.573	1,863,212,882	1,942,192,236	2,034,457,736	2,104,764,628	2,153,386,828	2,281,874,505	2,230,607,523	2.341.647.280	2,385,775,577	2,464,026,818	2,536,610,311	2.561.020.771	2 711 459 163
nmercial	Base	286,482,356	341,971,112	418,568,948	466,158,584	542,297,168	630,087,248	,678,455,732	791,207,444	,860,179,160	920,995,076	995,868,020	994,377,008	2,073,165,996	2,131,865,640	164,177,692	2,271,489,660	2,248,335,252	
Large Commercial	Air Cond.	161,479,098 1	161,510,366 1	181,501,657	161,560,360	186,580,956	191,380,612	229,371,156 1	199,606,476	199,723,340 1	200,065,981 1	246,256,549 1	197,995,980 1	228.107.420 2	219,821,244 2	268	214,290,856 2		890
:	HS	59,493,215	57,834,246	31,574,680	65,680,046	55,300,449	41,745,022	34,365,348	43,643,816	44,862,128	32,325,771	39,749,936	38,234,535	40,373,864	34,088,693	39,866,858	50,829,795	73,892,401	37 789 869
	Total	843,971,544	852,380,122	883,005,972	923,478,606	949.221.140	001,194,388	028,426,108	,071,403,514	,084,338,100	107,991,050	170,421,318	118,948,076	163,826,176	183,374,869	,212,576,018	244,474,497	,222,461,158	287 314 847
	Base	650,865,804	684,449,040	678,117,492	736,771,932	775,652,676	817,497,372	820,362,696	869,552,652	900,965,340	927,972,960 1	942,829,524	948,331,296	966,907,836	983,172,084	979,864,908	993,989,892	996,250,572	033,378,884
General Service	Air Cond.	109,267,680	93,510,888	133,823,892	105,840,554	106,887,163	123,877,972	147,615,721	134,704,147	120,785,097	126,665,731	163,812,829	111,832,319	143,294,226	142,397,177	167,543,911	162,022,734	146,799,845	197.828.647
	Reg. SH	40,696,872	28,527,415	32,778,763	34,263,201	24,685,356	19,914,623	23,032,453	27,127,482	24,806,416	19,394,060	29,094,035	24,914,203	19,394,887	22,370,300	32,491,428	50,941,365	47,639,573	30,220,695
	SH-Rate SH	43,141,188	45,892,779	38,285,825	46,602,919	41,995,945	39,904,421	37,415,238	40,019,233	37,781,247	33,958,299	34,684,930	33,870,258	34,229,227	35,435,308	32,675,771	37,520,506	31,771,168	25.886.621
	Total	,376,888,548	,366,000,357	2,569,031,994	,504,881,383	525,087,293	2,711,287,647	,851,575,237	,935,395,256	,882,176,244	,906,279,388	3,235,479,442	2,913,581,377	,229,738,584	,219,259,269	,381,978,774	,397,889,312	,306,204,298	580.217.114
	Base	1,608,774,732 2,376,888,54	1,693,995,660 2,366,000,3	1,673,650,656 2	,752,494,472 2,504,881,3	1,802,182,968 2,525,087,2	1,879,876,224 2	1,921,062,288 2,851,575,237	1,999,233,348 2,935,395,256	567,622,919 2,038,005,108 2,882,176,2	593,978,813 2,065,668,600 2,906,279,30	,108,964,768 3		736,142,878 2,165,043,360 3,229,738,5	680,323,858 2,187,752,112 3,219,259,20	2,207,917,344 3,381,978,7	664,311,722 2,358,533,568 3,397,889,3	662,175,494 2,278,164,264 3,306,204,2	911,356,073 2,445,891,888 3,580,217,1
Residential	Air-Cond.	518,011,616 1	425,523,859 1	658,912,099 1	462,538,178 1	467,851,597 1	595,353,729 1	700,558,657 1	660,673,129 1	567,622,919 2	593,978,813 2	838,182,656 2,108,964,768	486,912,188 2,158,508,496	736,142,878 2	680,323,858 2	837,986,812 2	664,311,722 2	662,175,494 2	911,356,073 2
	Comb. SH	87,750,654	65,007,384	84,715,201	77,697,050	63,085,102	65,989,056	71,117,696	67,127,533	72,270,671	64,793,392	096'600'66	66,832,147	95,484,105	109,109,701	113,840,698	103,525,415	164,280,512	90,603,957
	All-Elec. SH	162,351,546	181,473,454	151,754,038	212,151,683	191,967,626	170,068,638	158,836,596	208,361,246	204,277,546	181,838,583	189,328,658	201,328,546	233,068,241	242,073,598	222,233,920	271,518,607	201,584,028	132,365,196
	Year	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

	Total	967,092	986,977	1,000,702	1,011,085	1,035,056	1,061,156	1,063,195	1,079,097	1,088,859	1,105,908	1,148,257	1,092,498	1,102,384	1,103,079	1,119,291	1,117,983	1,116,319	1,172,988
ımercial	Base	825,329	848,320	870,021	875,406	894,734	928,384	918,821	950,075	962,328	986,559	1,004,337	976,798	975,990	985,682	983,084	1,001,134	980,023	1,022,366
Large Con	Air Cond,	103,595	102,098	111,317	96,464	108,241	108,997	125,562	105,873	103,323	102,747	123,918	96,974	107,387	101,636	118,098	94,446	104,087	134,274
	띪	38,167	36,560	19,365	39,216	32,081	23,775	18,812	23,149	23,209	16,601	20,002	18,726	19,007	15,761	18,110	22,403	32,209	16,348
	Total	29,999	29,930	30,659	31,609	32,039	33,156	33,376	34,143	33,902	34,095	35,572	33,512	34,446	34,834	35,341	35,074	33,477	34,749
	Base	23,135	24,033	23,545	25,218	26,181	27,073	26,624	27,710	28,169	28,556	28,655	28,402	28,618	28,941	28,559	28,015	27,282	27,895
neral Service	Vir Cond,	3,884	3,283	4,646	3,623	3,608	4,102	4,791	4,293	3,776	3,898	4,979	3,349	4,241	4,192	4,883	4,566	4,020	5,340
e9	Reg. SH	1,509	1,045	1,185	1,221	867	989	777	868	805	619	917	773	594	682	979	1,482	1,345	840
	SH-Rate SH	36,894	39,124	33,472	40,299	36,203	34,063	31,897	34,457	32,463	29,080	29,551	29,152	29,947	30,675	29,418	34,055	29,242	24,328
	Total	8,981	8,926	ω	9,368	9,351	9,897	10,282	10,467	10,182	10,167	11,203	9,975	10,937	10,750	11,106	11,032	10,598	11,334
	Base	6,079	6,391	6,294	6,554	6,674	6,862	6,927	7,129	7,200	7,227	7,302	7,390	7,331	7,305	7,251	7,658	7,303	7,743
Residential	Air-Cond.	1,957	1,605	2,478	1,730	1,733	2,173	2,526	2,356	2,005	2,078	2,902	1,667	2,493	2,272	2,752	2,157	2,123	2,885
	Comb, SH	366	272	355	325	264	275	294	276	295	262	397	265	374	421	431	387	909	329
	All-Elec. SH	6,573	7,030	5,628	7,400	6,211	5,024	4,448	5,619	5,376	4,686	4,785	5,066	5,842	6,034	5,520	6,715	4,960	3,250
<b></b>	)	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

TABLE A6 ANNUAL PER CUSTOMER KWH SALES BY BASE AND WEATHER-SENSITIVE LOAD (1981 - 1998)

TABLE A7
POPULATION BY COUNTY AND NUMBER OF ELECTRIC RESIDENTIAL CUSTOMERS

					LG&E Area		Electric		
	<u>Bullitt</u>	<u>Jefferson</u>	<u>Meade</u>	<u>Oldham</u>	<b>Population</b>	G.R.(%)	Customers	G.R.(%)	Pop/RsCust
1970	26,500	696,200	18,600	14,700	721,132		217,486		3.3158
1971	28,300	705,600	18,100	14,800	731,162	1.39%	223,617	2.82%	3.2697
1972	30,200	703,300	18,000	14,900	729,595	-0.21%	232,375	3.92%	3.1397
1973	31,100	709,600	18,100	16,000	737,162	1.04%	242,351	4.29%	3.0417
1974	33,200	711,600	18,700	16,700	740,594	0.47%	248,446	2.51%	2.9809
1975	34,600	708,200	19,000	18,200	739,010	-0.21%	251,707	1.31%	2.9360
1976	36,700	704,900	19,900	19,900	738,043	-0.13%	253,709	0.80%	2.9090
1977	39,000	698,300	21,000	22,100	734,305	0.51%	255,731	0.80%	2.8714
1978	41,200	695,600	21,600	24,100	734,177	-0.02%	258,043	0.90%	2.8452
1979	42,700	692,100	22,000	26,300	733,140	-0.14%	261,305	1.26%	2.8057
1980	43,500	684,300	22,900	27,900	727,133	-0.82%	263,044	0.67%	2.7643
1981	44,000	681,500	22,900	28,100	724,678	-0.34%	264,665	0.62%	2.7381
1982	43,900	683,000	22,300	28,700	726,551	0.26%	265,071	0.15%	2.7410
1983	43,800	681,300	22,500	29,100	725,190	-0.19%	265,904	0.31%	2.7273
1984	44,200	678,600	22,800	29,600	723,106	-0.29%	267,386	0.56%	2.7044
1985	45,000	675,000	22,600	29,500	719,667	-0.48%	270,022	0.99%	2.6652
1986	45,300	674,100	23,300	30,100	718,815	-0.12%	273,937	1.45%	2.6240
1987	45,800	672,700	23,300	31,000	718,350	-0.06%	277,339	1.24%	2.5902
1988	46,600	667,600	23,600	31,500	713,995	-0.61%	280,433	1.12%	2.5460
1989	47,100	665,000	23,900	32,500	712,463	-0.21%	283,052	0.93%	2.5171
1990	47,914	665,331	24,313	33,569	714,045	0.22%	285,843	0.99%	2.4980
1991	49,214	666,706	23,773	35,106	716,845	0.39%	288,804	1.04%	2.4821
1992	50,930	669,133	24,135	36,361	720,976	0.58%	292,084	1.14%	2.4684
1993	53,013	670,011	25,367	38,123	724,245	0.45%	295,314	1.11%	2.4525
1994	54,730	670,590	25,994	39,826	726,695	0.34%	299,471	1.41%	2.4266
1995	55,968	671,336	26,969	41,010	729,004	0.32%	304,514	1.68%	2.3940
1996	57,154	670,711	27,485	42,114	730,719	0.24%	307,994	1.14%	2.3725
1997	57,874	671,735	28,217	43,237	733,061	0.32%	311,952	1.29%	2.3499
1998	58,988	674,102	28,702	44,326	736,970	0.53%	315,886	1.26%	2.3330

Notes: 1) The annual population figures are as of July of each year, while numbers of residential customers are annual average figures.

- 2) The estimates of county population in 1991-1998 are based on the population estimates released by the Kentucky State Data Center in January, 1999.
- 3) Proportions of the county population served by LG&E were:

	<u> 1970-85</u>	<u> 1986-90</u>	<u> 1991-93</u>	<u> 1994-95</u>	<u> 1996-97</u>	<u>1998</u>
Bullitt	35.0%	34.0%	34.0%	34.5%	35.0%	35.5%
Jefferson	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Meade	17.0%	16.0%	15.0%	14.5%	15.0%	14.5%
Oldham	85.0%	85.0%	85.0%	84.0%	85.2%	85.2%

4) Pop/RsCust = Number of Persons per Residential Customer Count

TABLE A8 LG&E ELECTRIC SERVICE AREA POPULATION AND GENERAL SERVICE CUSTOMERS, 1970 - 1998

LGE Area	Population 721,132	731,162	729,595	737,162	740,594	739,010	738,043	734,305	734,177	733,140	727,133	724,678	726,551	725,190	723,106	719,667	718,815	718,350	713,995	712,463	714,045	716,845	720,976	724,245	726,695	729,004	730,719	733,061	736,970
Increase in	Total GS	497	568	803	612	414	339	291	511	310	168	455	346	322	415	411	570	617	999	605	512	406	487	396	186	339	1,170	1,035	530
	<u>6</u>																											2.92%	
Total GS	Customers 23,165	23,662	24,230	25,033	25,645	26,059	26,398	26,689	27,200	27,510	27,678	28,133	28,479	28,801	29,216	29,627	30,197	30,814	31,380	31,985	32,497	32,903	33,390	33,786	33,972	34,311	35,481	36,516	37,046
	Pop/Cust 622.74	628.15	617.25	611.75	580.40	560.28	546.70	529.42	513.05	510.19	503.21	492.98	495.26	497.73	499.04	492.25	489.99	467.68	450.75	432.58	423.77	411.03	410.81	412.21	412.89	414.44	407.31	403.37	402.06
Increase in	GS P.A.	9	18	23	71	43	31	37	44	9	æ	25	ကု	-10	ထု	13	ις.	69	48	63	38	29	<del>-</del>	8	ო	7	35	23	16
	<u>G.R.</u>	0.52%	1.55%	1.95%	5.89%	3.37%	2.35%	2.74%	3.17%	0.42%	0.56%	1.73%	-0.20%	-0.68%	-0.55%	0.90%	0.34%	4.70%	3.13%	3.98%	2.31%	3.50%	0.63%	0.11%	0.17%	<b>%90</b> .0-	1.99%	1.30%	0.86%
GS P.A.	Customers 1,158	1,164	1,182	1,205	1,276	1,319	1,350	1,387	1,431	1,437	1,445	1,470	1,467	1,457	1,449	1,462	1,467	1,536	1,584	1,647	1,685	1,744	1,755	1,757	1,760	1,759	1,794	1,817	1,833
	Pop/Cust 32.77	32.50	31.66	30.94	30.39	29.87	29.47	29.02	28.49	28.12	27.72	27.18	26.90	26.52	26.04	25.55	25.02	24.54	23.96	23.48	23.17	23.01	22.79	22.61	22.56	22.40	21.69	21.13	20.93
Increase in	GS Comm.	491	550	780	541	371	308	254	467	304	160	430	349	332	423	398	565	548	518	542	474	347	476	394	183	340	1,135	1,012	514
	<u>ର</u> ଆ ର	2.23%	2.44%	3.38%	2.27%	1.52%	1.24%	1.01%	1.85%	1.18%	0.61%	1.64%	1.31%	1.23%	1.55%	1.43%	2.01%	1.91%	1.77%	1.82%	1.56%	1.13%	1.53%	1.25%	0.57%	1.06%	3.49%	3.00%	1.48%
GS Comm.	Customers 22,007	22,498	23,048	23,828	24,369	24,740	25,048	25,302	25,769	26,073	26,233	26,663	27,012	27,344	27,767	28,165	28,730	29,278	29,796	30,338	30,812	31,159	31,635	32,029	32,212	32,552	33,687	34,699	35,213
•	<u>Year</u> 1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

Note: The numbers of customers shown above are annual average figures while the service area population figures are for July of each years.

TABLE A9
HISTORY OF ELCTRICITY PRICE BY CLASS

		Non	ninal Price	-		1		Real Price			1
		Small	Large			J	Small	Large			001
<u>Year</u>	Residential	Commercial	Commercial	Lg. Power	Total	Residential		Commercial	Lg. Power	Tetal	CPI
1981	\$47.60	\$54.03	\$40.10	\$31.99	\$41.00	\$52.37	\$59.44	\$44.11	\$35.20	<u>Total</u> \$45.10	<u>'82-'84=100</u>
1982	\$52.93	\$60.22	\$45.04	\$37.22	\$46.65	\$54.85	\$62.40	\$46.67	\$38.57	\$48.34	90.9 96.5
1983	\$58.98	\$64.67	\$49.44	\$40.02	\$51.18	\$59.22	\$64.93	\$49.64	\$40.18	\$51.38	99.6
1984	\$62.55	\$67.59	\$52.71	\$42.58	\$54.05	\$60.21	\$65.05	\$50.73	\$40.99	\$52.02	103.9
1985	\$64.70	\$69.45	\$54.13	\$43.72	\$55.76	\$60.13	\$64.54	\$50.31	\$40.63	\$51.82	107.6
1986	\$64.09	\$69.05	\$53.44	\$43.20	\$55.46	\$58.48	\$63.01	\$48.76	\$39.42	\$50.60	109.6
1987	\$62.50	\$67.51	\$51.34	\$41.24	\$53.78	\$55.02	\$59.43	\$45.19	\$36.30	\$47.34	113.6
1988 1989	\$61.89	\$67.06	\$50.72	\$40.28	\$53.06	\$52.31	\$56.68	\$42.88	\$34.05	\$44.85	118.3
1990	\$61.23 \$60.74	\$66.66 *********************************	\$50.14	\$39.68	\$52.35	\$49.38	\$53.75	\$40.43	\$32.00	\$42.22	124.0
1991	\$60.10	\$66.02 \$65.44	\$49.55 \$48.40	\$39.41	\$51.88	\$46.47	\$50.51	\$37.91	\$30.15	\$39.69	130.7
1992	\$59.63	\$65.44 \$65.18	\$48.40 \$48.40	\$39.12	\$51.68	\$44.13	\$48.05	\$35.54	\$28.72	\$37.94	136.2
1993	\$60.43	\$66.12	\$48.46 \$48.04	\$38.17	\$50.81	\$42.50	\$46.46	\$34.54	\$27.20	\$36.21	140.3
1994	\$60.15	\$65.95	\$48.94 \$48.48	\$38.26	\$51.54	\$41.82	\$45.76	\$33.87	\$26.48	\$35.67	144.5
1995	\$60.10	\$65.51	\$47.75	\$37.74	\$50.96	\$40.59	\$44.50	\$32.71	\$25.46	\$34.39	148.2
1996	\$58.18	\$64.96	\$47.75 \$47.08	\$36.83 \$36.37	\$50.40	\$39.41	\$42.96	\$31.31	\$24.15	\$33.05	152.5
1997	\$59.00	\$65.06	\$46.92	\$36.27	\$49.38	\$37.08	\$41.40	\$30.01	\$23.12	\$31.47	156.9
1998	\$61.18	\$65.34	\$46.77	\$36.21	\$49.49	\$36.76	\$40.54	\$29.23	\$22.56	\$30.83	160.5
,,,,,	401.10	405.54	\$40.77	\$36.53	\$50.53	\$37.51	\$40.06	\$28.67	\$22.40	\$30.98	163.1
	Nominal Price,	Summer Mon	ths (June-Se	ptember)		Real Price, S	ummer Mon	ths (June-Sep	tember)		
1981	\$49.13	\$58.41	\$43.37	-		\$54.05	\$64.26	\$47.72			
1982	\$57.78	\$66.05	\$48.29			\$59.88	\$68.45	\$50.05			
1983	\$64.96	\$71.38	<b>\$54.35</b>			\$65.22	\$71.67	\$54.57			
1984	\$70.08	\$75.19	\$58.09			\$67.45	\$72.37	\$55.91			
1985	\$69.51	\$74.59	\$57.29			\$64.61	\$69.33	\$53.24			
1986	\$69.19	\$74.28	\$56.86			\$63.13	\$67.77	\$51.88			
1987	\$66.78	\$72.26	\$54.04			\$58.79	\$63.60	\$47.57			
1988	\$67.02	\$72.49	\$54.29			\$56.65	\$61.28	\$45.89			
1989 1990	\$65.85	\$71.31	\$52.90			\$53.11	\$57.51	\$42.66			
1991	\$65.99 \$64.72	\$71.38	\$53.32			\$50.49	\$54.61	\$40.79			
1992	\$65.31	\$70.28 \$70.63	\$51.16			\$47.52	\$51.60	\$37.56			
1993	\$65.37	\$70.63 \$70.97	\$52.41 \$52.20			\$46.55	\$50.34	\$37.35			
1994	\$65.72	\$70.97 \$71.20	\$52.38 \$52.03			\$45.24	\$49.12	\$36.25			
1995	\$65.50	\$70.77	\$52.03 \$51.16			\$44.34	\$48.04	\$35.10			
1996	\$63.64	\$70.21	\$50.95			\$42.95	\$46.41	\$33.55			
1997	\$64.97	\$70.25	\$50.33 \$50.78			\$40.56	\$44.75	\$32.47			
1998	\$66.76	\$70.22	\$50.19			\$40.48	\$43.77	\$31.64			
	***************************************	4,0.22	400.10			\$40.93	\$43.05	\$30.77			
	Nominal Price, V		(October-Ma	ay)		Real Price, W	inter Months	(October-May	Λ		
1981	\$46.44	\$51.43	\$38.07			\$51.09	\$56.58	\$41.88	,,		
1982	\$49.63	\$56.90	\$43.10			\$51.43	\$58.96	\$44.67			
1983	\$53.88	\$60.35	\$46.30			\$54.09	\$60.59	\$46.49			
1984	\$57.27	\$63.08	\$49.45			\$55.12	\$60.71	\$47.60			
1985	\$61.31	\$66.42	\$52.22			\$56.98	\$61.73	\$48.53			
1986	\$60.36	\$65.92	\$51.38			\$55.07	\$60.15	\$46.88			
1987	\$58.99	\$64.47	\$49.62			\$51.92	\$56.75	\$43.68			
1988 1989	\$57.76	\$63.61	\$48.48			\$48.83	\$53.77	\$40.98			
1990	\$57.80 \$56.77	\$63.78	\$48.42			\$46.62	\$51.44	\$39.05			
1991	\$56.77 \$56.19	\$62.70 \$62.28	\$47.24			\$43.44	\$47.97	\$36.14			
1992	\$55.74	\$62.28 \$61.02	\$46.64 \$46.00			\$41.25	\$45.72	\$34.25			
1993	\$56.46	\$61.92 \$62.98	\$46.09 \$46.79			\$39.73	\$44.13	\$32.85			
1994	\$55.95	\$62.98 \$62.61	\$46.78 \$46.26			\$39.07	\$43.59	\$32.37			
1995	\$55.55	\$62.05	\$46.26 \$45.56			\$37.76	\$42.25	\$31.22			
1996	\$54.22	\$61.72	\$45.56 \$44.75			\$36.43	\$40.69	\$29.88			
1997	\$54.72	\$61.72 \$61.92	\$44.75 \$44.58			\$34.56 \$34.00	\$39.34	\$28.52			
1998	\$56.56	\$62.12	\$44.61			\$34.09	\$38.58	\$27.78			
	•		+ 77.0 I			\$34.68	\$38.09	\$27.35			

TABLE A10 HISTORY OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1981-1998

				•	Res. SH		Res. NSH			GS SH	GS SH/ GS
Year	Population	S. R.	Res. Cust.	S. R.	Cust.	G.R.	Cust.	GS Cust.	ල ප	Cust.	Total Cust.
1981	724,678		264,665		24,701		239,964	28,133		1,169	4.16%
1982	726,551	0.26%	265,071	0.15%	25,813		239,258	28,479	1.23%	1,173	4.12%
1983	725,190	-0.19%	265,904	0.31%	26,963		238,941	28,801	1.13%	1,144	3.97%
1984	723,106	-0.29%	267,386	0.56%	28,669		238,717	29,216	1.44%	1,156	3.96%
1985	719,667	-0.48%	270,022	%66.0	30,908		239,114	29,627	1.41%	1,160	3.92%
1986	718,815	-0.12%	273,937	1.45%	33,849		240,088	30,196	1.92%	1,172	3.88%
1987	718,350	-0.06%	277,339	1.24%	35,712		241,627	30,813	2.04%	1,173	3.81%
1988	713,995	-0.61%	280,433	1.12%	37,084		243,349	31,380	1.84%	1,161	3.70%
1989	712,463	-0.21%	283,052	0.93%	37,998		245,054	31,984	1.93%	1,164	3.64%
1990	714,045	0.22%	285,843	%66.0	38,803		247,040	32,497	1.60%	1,168	3.59%
1991	716,845	0.39%	288,804	1.04%	39,571		249,233	32,903	1.25%	1,174	3.57%
1992	720,976	0.58%	292,084	1.14%	39,739		252,346	33,390	1.48%	1,162	3.48%
1993	724,245	0.45%	295,314	1.11%	39,898		255,416	33,787	1.19%	1,143	3.38%
1994	726,695	0.34%	299,471	1.41%	40,119		259,352	33,972	0.55%	1,155	3.40%
1995	729,004	0.32%	304,514	1.68%	40,256		264,258	34,311	1.00%	1,111	3.24%
1996	730,719	0.24%	307,994	1.14%	40,434		267,560	35,481	3.41%	1,102	3.11%
1997	733,061	0.32%	311,952	1.29%	40,644		271,308	36,516	2.92%	1,087	2.98%
1998	736,970	0.53%	315,886	1.26%	40,723	0.19%	275,163	37,046	1.45%	1,064	2.87%

TABLE A10 (Continued.)
HISTORY OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1981-1998

Non-Res. Real	\$/KWH	G.R.		7.19%	6.29%	1.24%	-0.39%	-2.35%	-6.45%	-5.26%	-5.87%	-5.97%	-4.41%	-4.56%	-1.50%	-3.60%	-3.89%	-4.78%	-2.03%	0.47%
	LP	\$/KWH	35.20	38.57	40.18	40.99	40.63	39.42	36.30	34.05	32.00	30.15	28.72	27.20	26.48	25.46	24.15	23.12	22.56	22.40
		\$/KWH																		
	3S Summer	\$/KWH	64.26	68.45	71.67	72.37	69.33	67.77	63.60	61.28	57.51	54.61	51.60	50,34	49.12	48.04	46.41	44.75	43.77	38.09 43.05
	GS Winter O	\$/KWH	56.58	58.96	60.59	60.71	61.73	60.15	56.75	53.77	51.44	47.97	45.72	44.13	43.59	42.25	40.69	39.34	38.58	38.09
	gs	\$/KWH	59.44	62.40	64.93	65.05	64.54	63.01	59.43	56.68	53.75	50.51	48.05	46.46	45.76	44.50	42.96	41.40	40.54	40.06
	es Summer	\$/KWH	54.05	59.88	65.22	67.45	64.61	63.13	58.79	56.65	53.11	50.49	47.52	46.55	45.24	44.34	42.95	40.56	40.48	40.93
	Res Winter R	\$/KWH	51.09	51.43	54.09	55.12	56.98	55.07	51.92	48.83	46.62	43.44	41.25	39.73	39.07	37.76	36.43	34.56	34.09	34.68 40.93
	Res	\$/KWH	52.37	54.85	59.22	60.21	60.13	58.48	55.02	52.31	49.38	46.47	44.13	42.50	41.82	40.59	39.41	37.08	36.76	37.51
		G.R.		-0.90%	1.21%	5.44%	1.67%	2.60%	2.78%	2.89%	2.18%	0.70%	-0.31%	3.16%	1.54%	1.66%	3.20%	2.55%	0.14%	4.13%
Real	Per Capita	ncome (92\$	16,731	16,580	16,781	17,694	17,990	18,458	18,971	19,519	19,944	20,084	20,021	20,654	20,972	21,320	22,002	22,564	22,596	23,529
		Year	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

TABLE A10 (Continued.)
HISTORY OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1981-1998

	A/C Sat.	0.6296	0.6635	0.6952	0.7245	0.7515	0.7763	0.7990	0.8196	0.8383	0.8553	0.8706	0.8844	0.8968	0.9080	0.9180	0.9270	0.9350	0.9422
	000	1,423	1,213	1,606	1,359	1,349	1,598	1,650	1,596	1,401	1,566	2,020	1,246	1,557	1,445	1,629	1,378	1,293	1,816
	임	4,383	4,532	4,387	4,799	4,148	4,232	4,148	4,500	4,366	3,731	3,881	3,914	4,336	4,280	4,171	4,757	4,322	3,381
	G.R.		-1.81%	0.14%	1.54%	1.65%	1.02%	0.76%	2.91%	0.64%	1.05%	-0.35%	0.45%	1.31%	2.23%	2.19%	-1.66%	-1.22%	2.03%
erv Emp/	3S Cust.	12.24	12.02	12.04	12.22	12.43	12.55	12.65	13.02	13.10	13.24	13.19	13.25	13.42	13.72	14.02	13.79	13.62	13.90
G	G.R.				3.00%														
Trade &	erv. Emp	344,418	342,344	346,712	357,124	368,139	379,058	389,748	408,455	418,993	430,189	434,033	442,427	453,570	466,246	481,189	489,352	497,490	514,931
	G.R.		-3.35%	0.05%	3.44%	1.91%	2.52%	2.30%	3.97%	2.10%	2.16%	%90.0	1.78%	2.56%	3.04%	2.56%	1.18%	1.64%	2.94%
Total	Emp.	483,924	467,711	467,961	484,062	493,318	505,750	517,365	537,929	549,236	561,123	561,460	571,472	586,124	603,913	619,399	626,728	636,989	655,691
	G. R.		-0.98%	1.42%	3.03%	2.94%	3.21%	2.83%	4.41%	2.44%	2.62%	0.41%	2.04%	2.74%	2.94%	3.06%	1.73%	2.00%	3.26%
Jon-Mfg.	Emp.	380,455	376,708	382,051	393,629	405,199	418,226	430,052	448,999	459,966	472,023	473,946	483,634	496,890	511,508	527,170	536,291	547,030	564,882
_	G.R.		-12.05%	-5.60%	5.26%	-2.56%	-0.68%	-0.24%	1.85%	0.38%	-0.19%	-1.78%	0.37%	1.59%	3.55%	-0.19%	-1.94%	-0.53%	0.95%
Mfg.	Emp.	103,469	91,003	85,910	90,433	88,119	87,524	87,313	88,930	89,270	89,100	87,514	87,838	89,234	92,405	92,229	90,437	89,959	90,810
	Year	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998

### Section B

## INPUT ASSUMPTIONS MADE FOR THE 1999 IRP MODEL FORECASTS

TABLE B1
PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013
(Base-Growth Scenario)

SS /HS SS	otal Cust.	2.78%	2.69%	2.60%	2.52%	2.44%	2.36%	2.28%	2.21%	2.14%	2.07%	2.00%	1.94%	1.88%	1.82%	1.76%
GS SH G	Cust. 1	1,045	1,025	1,005	986	196	949	931	914	896	879	862	845	829	812	962
	G.R.	1.43%	1.38%	1.34%	1.36%	1.38%	1.38%	1.39%	1.38%	1.34%	1.34%	1.33%	1.31%	1.29%	1.26%	1.24%
	GS Cust.	37,575	38,094	38,604	39,129	39,669	40,216	40,773	41,338	41,892	42,454	43,017	43,582	44,142	44,700	45,254
Res. NSH	Cust.	278,955	282,391	285,688	289,039	292,442	295,847	299,271	302,696	305,986	309,281	312,535	315,752	318,894	321,973	324,978
_	G.R.	0.35%	0.31%	0.29%	0.30%	0.30%	0.29%	0.29%	0.29%	0.28%	0.27%	0.27%	0.26%	0.25%	0.25%	0.24%
Res. SH	Cust.	40,865	40,992	41,113	41,235	41,357	41,479	41,601	41,722	41,837	41,951	42,064	42,174	42,281	42,385	42,486
	G.R.	1.25%	1.11%	1.06%	1.06%	1.07%	1.06%	1.05%	1.04%	0.99%	0.98%	0.96%	0.94%	0.91%	0.88%	0.85%
	Res. Cust.	319,820	323,383	326,800	330,274	333,800	337,326	340,872	344,418	347,823	351,233	354,599	357,926	361,175	364,358	367,463
	S. R.	0.59%	0.49%	0.46%	0.49%	0.52%	0.53%	0.55%	0.56%	0.53%	0.54%	0.54%	0.54%	0.53%	0.52%	0.50%
	Population	741,318	744,936	748,349	752,017	755,927	759,954	764,137	768,427	772,510	776,704	780,901	785,110	789,243	793,322	797,321
	Year	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B1 (Continued.)
PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013
(Base-Growth Scenario)

Non-Res. Real \$/KWH	G.R.														
9	\$/KWH														
2	\$/KWH														
GS Winter GS Summer	\$/KWH														
GS Winter	\$/KWH														
gs	\$/KWH														
Residential Real \$/KWH	G.R.														
Res Winter Res Summer	\$/KWH														
Res Winter	\$/KWH														
Res															
	G.R.	2.24%	2.44%	2.07%	1.92%	1.93%	1.75%	1.89%	1.82%	1.81%	1.80%	1.78%	1.77%	1.77%	1.89%
Real Per Capita	Income (92\$)	24,755	25,358	25,883	26,379	26,889	27,361	27,878	28,387	28,899	29,419	29,941	30,470	31,008	31,593
	<u>Year</u>	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B1 (Continued.)
PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013
(Base-Growth Scenario)

	A/C Sat.	0.9486	0.9543	0.9594	0.9639	0.9679	0.9715	0.9747	0.9776	0.9801	0.9823	0.9843	0.9861	0.9877	0.9890	0.9903
	CDD	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506
	HDD	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290
	G.R.	0.65%	-0.95%	-0.44%	-0.28%	-0.47%	-0.55%	-0.35%	-0.29%	-0.19%	-0.13%	-0.04%	0.05%	0.07%	0.08%	0.10%
erv Emp/	3S Cust.	13.99	13.86	13.80	13.76	13.69	13.62	13.57	13.53	13.50	13.49	13.48	13.49	13.50	13.51	13.52
S	G.R. GS Cust.	2.08%	0.42%	0.89%	1.08%	0.91%	0.83%	1.03%	1.09%	1.15%	1.20%	1.29%	1.36%	1.35%	1.35%	1.34%
	Serv. Emp															
	٠,,								0.94%							
Total	Emp.	667,328	669,495	675,449	682,633	688,629	694,483	700,851	707,439	714,260	721,339	728,934	737,104	745,206	753,398	761,653
	G.R.	2.16%	0.42%	0.95%	1.11%	0.91%	0.86%	1.03%	1.09%	1.14%	1.20%	1.27%	1.34%	1.33%	1.32%	1.31%
Non-Mfg.	Emp.	577,076	579,506	584,849	591,331	596,741	601,858	608,056	614,692	621,722	629,164	637,173	645,706	654,291	662,938	671,633
	G.R.	-0.61%	-0.29%	0.68%	0.78%	0.64%	0.80%	0.18%	-0.05%	-0.22%	-0.39%	-0.45%	-0.40%	-0.53%	-0.50%	-0.49%
Mfg.	Emp.	90,252	686'68	009'06	91,303	91,888	92,625	92,796	92,747	92,538	92,175	91,761	91,398	90,915	90,460	90,019
	Year	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B2
OPTIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

SS /HS SS	Total Cust.	2.78%	2.69%	2.60%	2.52%	2.44%	2.36%	2.28%	2.21%	2.14%	2.07%	2.00%	1.94%	1.88%	1.82%	1.76%
GS SH		1,049	1,034	1,017	1,000	984	296	951	935	919	902	886	870	854	838	823
	G.R.	1.91%	1.79%	1.62%	1.65%	1.61%	1.61%	1.61%	1.56%	1.51%	1.50%	1.48%	1.46%	1.42%	1.39%	1.43%
	GS Cust.	37,753	38,430	39,052	39,696	40,337	40,987	41,649	42,297	42,936	43,581	44,227	44,873	45,509	46,142	46,801
Res. NSH	Cust.	280,418	285,140	289,350	293,659	297,871	302,095	306,342	310,421	314,356	318,289	322,174	326,010	329,707	333,344	337,138
	G.R.	0.48%	0.43%	0.37%	0.38%	0.36%	0.36%	0.36%	0.34%	0.32%	0.32%	0.31%	0.30%	0.29%	0.28%	0.29%
Res. SH	Cust.	40,919	41,093	41,247	41,402	41,553	41,702	41,851	41,992	42,128	42,262	42,393	42,522	42,645	42,765	42,890
	G.R.	1.73%	1.52%	1.34%	1.35%	1.30%	1.29%	1.28%	1.21%	1.16%	1.14%	1.11%	1.09%	1.04%	1.01%	1.04%
	Res. Cust.	321,337	326,233	330,597	335,061	339,424	343,797	348,193	352,413	356,484	360,551	364,568	368,532	372,352	376,109	380,027
	റ പ	1.07%	0.90%	0.74%	0.78%	0.75%	0.76%	0.78%	0.73%	0.70%	0.70%	0.70%	0.69%	0.65%	0.64%	0.69%
	Population	744,835	751,502	757,043	762,918	768,663	774,533	780,550	786,266	791,746	797,309	802,855	808,375	813,667	818,907	824,582
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B2 (Continued.)
OPTIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

Non-Res.	Real	\$/KWH	G.R.															
		ᇰ	\$/KWH															
		ട	\$/KWH															
		GS Winter GS Summer	\$/KWH															
		<b>GS Winter</b>	\$/KWH															
		SS	\$/KWH															
Residential	Real	\$/KWH	G.R.															
		Res Summer	\$/KWH															
		Res Winter I	\$/KWH															
		Res	₩															
			G.R.	2.78%	2.21%	2.48%	2.09%	1.96%	2.00%	1.80%	1.97%	1.91%	1.89%	1.89%	1.87%	1.83%	1.84%	1.92%
	Real	Per Capita	Income (92\$)	24,183	24,718	25,332	25,860	26,367	26,895	27,378	27,917	28,450	28,989	29,536	30,089	30,641	31,205	31,803
			Year	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B2 (Continued.)
OPTIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

	A/C Sat.	0.9486	0.9543	0.9594	0.9639	0.9679	0.9715	0.9747	0.9776	0.9801	0.9823	0.9843	0.9861	0.9877	0.9890	0.9903
		1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506
	밁	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290
	G.R.	0.37%	-1.13%	-0.52%	-0.34%	-0.49%	-0.56%	-0.37%	-0.24%	-0.14%	-0.08%	0.02%	0.10%	0.16%	0.19%	0.14%
erv Emp/	GS Cust.	13.95	13.79	13.72	13.67	13.61	13.53	13.48	13.45	13.43	13.42	13.42	13.44	13.46	13.48	13.50
S															1.58%	
Trade &	serv. Emp															
	G.R.	2.02%	0.52%	1.09%	1.28%	1.08%	1.05%	1.14%	1.15%	1.17%	1.19%	1.26%	1.31%	1.33%	1.33%	1.33%
Total	Emp.															
	G.R.	2.41%	0.63%	1.12%	1.32%	1.12%	1.07%	1.24%	1.31%	1.35%	1.40%	1.48%	1.54%	1.55%	1.55%	1.55%
Non-Mfg.	Emp.	578,486	582,115	588,629	596,393	603,079	609,511	617,076	625,137	633,591	642,460	651,999	662,067	672,349	682,799	693,356
	G.R.	-0.40%	-0.13%	0.89%	1.00%	0.83%	<b>%96</b> .0	0.47%	0.14%	-0.01%	-0.20%	-0.29%	-0.29%	-0.27%	-0.31%	-0.24%
Mfg.	Emp.	90,445	90,328	91,128	92,035	92,798	93,685	94,122	94,257	94,246	94,055	93,786	93,511	93,257	92,965	92,747
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2002	2008	2009	2010	2011	2012	2013

TABLE B3
PESSIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

SS /HS SS	Total Cust.	2.78%	2.69%	2.60%	2.52%	2.44%	2.36%	2.28%	2.21%	2.14%	2.07%	2.00%	1.94%	1.88%	1.82%	1.76%
GS SH G	Cust. 1	1,041	1,019	866	977	957	938	919	901	882	865	847	830	813	796	779
	G.R.	1.12%	1.12%	1.16%	1.18%	1.23%	1.24%	1.25%	1.28%	1.24%	1.24%	1.23%	1.22%	1.21%	1.19%	1.12%
	GS Cust.	37,460	37,878	38,318	38,769	39,247	39,732	40,227	40,741	41,247	41,760	42,274	42,791	43,309	43,823	44,315
Res. NSH	Cust.	278,009	280,627	283,351	286,110	289,019	291,929	294,860	297,898	300,809	303,730	306,616	309,475	312,299	315,058	317,602
	G.R.	0.26%	0.24%	0.25%	0.25%	0.26%	0.25%	0.25%	0.26%	0.25%	0.25%	0.24%	0.24%	0.23%	0.22%	0.21%
Res. SH	Cust.	40,829	40,926	41,027	41,128	41,233	41,338	41,444	41,552	41,655	41,757	41,858	41,957	42,055	42,149	42,236
	G.R.	0.93%	0.85%	0.88%	0.88%	0.92%	0.91%	0.91%	0.94%	0.89%	0.88%	0.86%	0.85%	0.83%	0.81%	0.74%
	Res. Cust.	318,838	321,553	324,377	327,237	330,253	333,267	336,303	339,449	342,463	345,487	348,474	351,432	354,354	357,207	359,838
	G.R.	0.28%	0.23%	0.28%	0.31%	0.37%	0.39%	0.41%	0.46%	0.43%	0.45%	0.45%	0.45%	0.45%	0.44%	0.39%
	Population	739,042	740,720	742,801	745,103	747,895	750,810	753,896	757,343	760,606	763,999	767,414	770,867	774,336	777,751	780,776
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

Confidential Information Redacted

TABLE B3 (Continued.)
PESSIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

Non-Res.	Real	\$/KWH	G R.															
		7	\$/KWH															
		일	\$/KWH															
		GS Winter GS Summer	\$/KWH															
		GS Winter	\$/KWH															
		GS	\$/KWH															
Residential	Real	\$/KWH	G.R.															
		Res Winter Res Summer	\$/KWH															
		Res Winter	\$/KWH															
		Res	₩															
			G.R.	3.03%	2.27%	2.39%	2.06%	1.87%	1.86%	1.71%	1.82%	1.74%	1.72%	1.71%	1.68%	1.70%	1.69%	1.85%
	Real	Per Capita	Income (92\$)	24,242	24,792	25,384	25,907	26,392	26,884	27,343	27,840	28,323	28,810	29,302	29,793	30,299	30,812	31,382
			Year	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

TABLE B3 (Continued.)
PESSIMISTIC PROJECTIONS OF ECONOMIC AND DEMOGRAPHIC VARIABLES, 1999-2013

1995

	A/C Sat.	0.9486	0.9543	0.9594	0.9639	0.9679	0.9715	0.9747	0.9776	0.9801	0.9823	0.9843	0.9861	0.9877	0.9890	0.9903
	000	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506	1,506
	밁	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290	4,290
	G.R.	0.71%	-0.93%	-0.51%	-0.35%	-0.58%	-0.64%	-0.47%	-0.43%	-0.35%	-0.30%	-0.20%	-0.11%	<b>%60.0-</b>	-0.08%	-0.02%
erv Emp/	GS Cust.	14.00	13.87	13.80	13.75	13.67	13.58	13.52	13.46	13.41	13.37	13.35	13.33	13.32	13.31	13.31
Ø	G.R.	1.84%	0.18%	0.64%	0.82%	0.65%	0.59%	0.77%	0.84%	0.88%	0.94%	1.03%	1.11%	1.12%	1.11%	1.10%
Trade &	Serv. Emp	524,383	525,321	528,697	533,048	536,512	539,658	543,826	548,409	553,255	558,480	564,257	570,504	576,884	583,284	589,718
	G.R.	1.57%	0.07%	0.63%	0.83%	0.63%	0.60%	0.67%	0.70%	0.71%	0.73%	0.80%	0.85%	0.87%	0.87%	0.87%
Total	Emp.	800'999	666,495	670,667	676,209	680,495	684,602	689,219	694,041	698,946	704,080	709,713	715,762	722,008	728,255	734,584
	G.R.	1.95%	0.19%	0.67%	0.85%	<b>0.66</b> %	0.61%	0.78%	0.85%	0.88%	0.94%	1.02%	1.09%	1.09%	1.09%	1.08%
Von-Mfg.	Emp.	575,923	576,992	580,885	585,834	589,703	593,324	597,955	603,013	608,335	614,037	620,295	627,026	633,888	640,771	647,688
-	ര ട്	-0.80%	-0.65%	0.31%	<b>%99</b> 0	0.46%	0.54%	-0.02%	-0.26%	-0.46%	-0.63%	<b>%69</b> '0-	-0.76%	<b>%69</b> .0-	-0.72%	-0.67%
Mfg.	Emp.	90,085	89,503	89,782	90,375	90,792	91,278	91,264	91,028	90,611	90,043	89,419	88,736	88,121	87,484	86,897
	Year	1999	2000	2001	2002	2003	2004	2002	2006	2002	2008	2009	2010	2011	2012	2013

### Section C

#### 1999 IRP MODEL FORECASTS OF ENERGY SALES, PEAK LOADS AND NUMBER OF CUSTOMERS

TABLE C1
PROJECTIONS OF NET GENERATION (MWH) AND DEMAND (MW) REQUIREMENTS, 1999 - 2013 (BASE, OPTIMISTIC AND PESSIMISTIC GROWTH SCENARIOS)

	l													_		_	
	Load	Factor	52.08%	52.03%	52.93%	53.01%	52.69%	52.34%	52.31%	52.14%	51.99%	51.85%	51.76%	51.65%	51.58%	51.51%	51.46%
		S. S.	3.55%	1.69%	1.74%	1.75%	1.83%	1.81%	1.81%	1.85%	1.76%	1.75%	1.71%	1.68%	1.65%	1.59%	1.46%
essimistic	Peak	Demand	2,564	2,607	2,652	2,699	2,748	2,798	2,848	2,901	2,952	3,004	3,055	3,107	3,158	3,208	3,255
ه.		G.R.	0.64%	1.88%	3.22%	1.88%	1.22%	1.41%	1.47%	1.52%	1.47%	1.47%	1.53%	1.48%	1.50%	1.45%	1.37%
	Net	Generation	11,695,451	11,915,674	12,299,244	12,530,958	12,683,370	12,861,734	13,050,477	13,249,216	13,444,580	13,642,288	13,851,660	14,056,662	14,267,415	14,474,036	14,673,034
	Load	Factor	51.61%	51.25%	51.93%	51.79%	51.35%	50.88%	50.72%	50.51%	50.33%	50.15%	50.04%	49.92%	49.86%	49.80%	49.69%
		G R.	5.15%	3.03%	2.66%	2.68%	2.58%	2.56%	2.54%	2.40%	2.29%	2.26%	2.21%	2.16%	2.05%	2.00%	2.06%
Optimistic	Peak	Demand	2,604	2,682	2,754	2,828	2,901	2,975	3,050	3,124	3,195	3,267	3,340	3,412	3,482	3,551	3,625
		G.R.	1.30%	2.59%	3.74%	2.40%	1.72%	1.89%	1.94%	1.97%	1.92%	1.91%	1.97%	1.91%	1.94%	1.87%	1.84%
	Net	Generation	11,771,381	12,076,625	12,527,701	12,828,264	13,048,494	13,295,194	13,553,654	13,820,558	14,086,268	14,355,553	14,638,863	14,919,015	15,207,969	15,492,089	15,776,424
	Load	Factor	51.91%	51.74%	52.57%	52.44%	52.25%	51.88%	51.82%	51.66%	51.53%	51.40%	51.33%	51.25%	51.21%	51.16%	51.12%
		G.R.	4.18%	2.21%	2.10%	2.11%	2.12%	2.09%	2.08%	2.06%	1.96%	1.94%	1.90%	1.86%	1.80%	1.75%	1.69%
Base	Peak	Demand	2,579	2,636	2,692	2.748	2.807	2,865	2,925	2,985	3,044	3,103	3,162	3,221	3,279	3,336	3,392
			_	• • •	• • •	•											1.60%
	Net	Generation	11.729.299	11,981,818	12,396,340	12,660,709	12,845,993	13,056,708	13,278,657	13,509,858	13,739,686	13,972,286	14.218.050	14,459,917	14,707,251	14,950,453	15,189,858
	-	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

**TABLE C2** 

1999-MODEL FORECASTS OF ELECTRIC ENERGY SALES (MWH) BY CLASS AND PEAK LOAD (MW), 1999 - 2013 (Base Scenario)

Annual	ad Factor	51.91%	51.74%	52.57%	52.44%	52.25%	51.88%	51.82%	51.66%	51.53%	51.40%	51.33%	51.25%	51.21%	51.16%	51.12%
	_														1.75%	
Annuat	Peak Load	2,579	2,636	2,692	2,748	2,807	2,865	2,925	2,985	3,044	3,103	3,162	3,221	3,279	3,336	3,392
	ල ප්	0.94%	2.15%	3.46%	2.13%	1.46%	1.64%	1.70%	1.74%	1.70%	1.69%	1.76%	1.70%	1.71%	1.65%	1.60%
Net	Generation	11,729,299	11,981,818	12,396,340	12,660,709	12,845,993	13,056,708	13,278,657	13,509,858	13,739,686	13,972,286	14,218,050	14,459,917	14,707,251	14,950,453	15,189,858
10																801,719
_															1.65%	
Total	Sales	11,110,228	11,349,419	11,742,062	11,992,479	12,167,983	12,367,576	12,577,811	12,796,809	13,014,507	13,234,831	13,467,623	13,696,724	13,931,004	14,161,370	14,388,139
	<u>ය</u>	1.31%	1.28%	1.28%	1.28%	1.28%	1.28%	1.28%	1.26%	1.20%	1.19%	1.16%	1.14%	1.10%	1.07%	1.03%
Street	Lighting	20,000	70,897	71,806	72,727	73,660	74,604	75,556	76,510	77,428	78,349	79,260	80,163	81,046	81,913	82,760
	ର ଅ	1.39%	0.46%	1.91%	1.24%	0.79%	0.90%	1.61%	1.62%	1.59%	1.53%	1.55%	1.50%	1.48%	1.44%	1.44%
Large	Industrial	3,405,841	3,421,626	3,487,123	3,530,281	3,558,093	3,589,944	3,647,739	3,706,657	3,765,557	3,823,290	3,882,368	3,940,701	3,999,165	4,056,691	4,114,943
	S. R.	1.18%	4.51%	8.82%	3.77%	1.78%	1.77%	1.92%	2.01%	2.01%	2.03%	2.18%	2.14%	2.17%	2.11%	2.02%
Large	Commercial	2,743,328	2,867,009	3,119,916	3,237,657	3,295,186	3,353,475	3,417,815	3,486,434	3,556,373	3,628,485	3,707,541	3,786,744	3,868,923	3,950,374	4,030,115
																2.09%
Small	Commercial	1,291,828	1,319,228	1,339,515	1,364,040	1,389,622	1,420,743	1,446,982	1,474,858	1,503,706	1,534,013	1,566,572	1,600,552	1,635,179	1,670,076	1,705,047
	S. F.	0.53%	1.98%	1.45%	1.72%	1.68%	2.01%	1.55%	1.57%	1.46%	1.44%	1.47%	1.34%	1.36%	1.28%	1.20%
	Residential	3,599,232	3,670,659	3,723,702	3,787,773	3,851,422	3,928,810	3,989,718	4,052,350	4,111,443	4,170,693	4,231,882	4,288,564	4,346,691	4,402,316	4,455,273
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

TABLE C3 1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

		Small	Large	Large	Street	Total
Month	Residential	Commercial	Commercial	Industrial	Lighting	Sales
Jan-99	299,020	104,655	211,332	262,056	6,707	883,770
Feb-99	250,453	94,959	196,797	279,778	5,962	827,949
Mar-99	239,661	98,353	210,732	275,767	5,895	830,407
Apr-99	216,896	93,712	203,676	283,011	5,348	802,644
May-99	268,393	103,627	228,984	292,066	4,990	898,061
gru-99	369,146	118,742	252,822	289,530	4,786	1,035,026
66-Inf	459,987	136,678	288,601	294,493	5,023	1,184,782
Aug-99	430,755	133,154	283,484	292,893	5,304	1,145,590
Sep-99	307,690	110,123	239,086	300,219	5,854	962,972
Oct-99	232,597	98,384	210,979	273,035	6,332	821,326
Nov-99	238,195	96,654	205,351	287,898	6,659	834,757
Dec-99	286,439	102,786	211,483	275,095	7,141	882,944
Total	3,599,232	1,291,828	2,743,328	3,405,841	20,000	11,110,228

TABLE C3 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

TABLE C3 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

		Small	Large	Large	Street	Total
ď	Residential	Commercial	Commercial	Industrial	Lighting	Sales
	305,158	109,534	230,990	269,262	6,880	921,825
	255,106	98,605	212,387	289,604	6,115	861,818
	247,613	103,663	231,720	278,598	6,047	867,643
	225,076	97,691	222,225	287,504	5,486	837,983
	280,525	106,763	258,663	292,206	5,119	943,277
	384,830	121,840	292,974	295,602	4,910	1,100,157
	475,893	139,787	334,208	302,771	5,152	1,257,811
	449,255	137,059	327,230	301,279	5,441	1,220,265
	317,687	112,102	276,911	309,175	6,005	1,021,879
	241,814	103,290	248,002	279,932	6,495	879,534
	245,153	101,099	238,707	298,202	6,831	889,991
	295,589	108,081	245,897	282,988	7,325	939,881
	3,723,702	1,339,515	3,119,916	3,487,123	71,806	11,742,062

TABLE C3 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

		Small	Large	Large	Street	Total
Month	Residential	Commercial	Commercial	Industrial	Lighting	Sales
Jan-02	309,321	112,048	250,385	272,704	6,968	951,427
	258,464	100,920	227,707	292,435	6,194	885,720
	252,315	106,626	248,863	280,576	6,125	894,505
	228,479	99,563	239,032	292,183	5,557	864,813
	286,386	108,401	270,575	297,099	5,185	967,646
	392,552	123,439	299,012	300,160	4,973	1,120,136
	483,415	141,259	338,753	305,277	5,218	1,273,923
	456,719	138,487	332,677	301,425	5,511	1,234,819
	326,449	113,694	283,175	312,596	6,082	1,041,996
	247,139	105,376	253,044	291,226	6,578	903,363
Nov-02	248,011	103,655	243,679	300,480	6,918	902,743
	298,522	110,573	250,755	284,120	7,419	951,390
Total	3,787,773	1,364,040	3,237,657	3,530,281	72,727	11,992,479

TABLE C3 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

		Small	Large	Large	Street	Total
Month	Residential	Commercial	Commercial	Industrial	Lighting	Sales
ဗ္ဗ	312,927	114,518	254,643	275,651	7,058	964,797
က္လ	262,751	103,737	232,298	295,637	6,273	269'006
63	253,936	108,587	251,725	283,663	6,203	904,114
03	233,322	102,172	243,110	295,320	5,628	879,552
May-03	293,374	110,413	275,559	300,284	5,251	984,881
03	398,553	124,481	303,953	303,430	5,036	1,135,454
8	491,770	142,978	344,967	308,626	5,285	1,293,626
03	464,658	140,103	338,613	304,748	5,582	1,253,704
ဗ္ပ	333,888	115,164	289,200	314,768	6,160	1,059,180
ဗ္ပ	251,889	107,536	256,934	285,029	6,663	908,050
ဗ္ပ	251,934	106,713	249,049	303,835	7,007	918,538
03	302,419	113,220	255,134	287,101	7,514	965,388
Total	3,851,422	1,389,622	3,295,186	3,558,093	73,660	12,167,983

TABLE C3 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF ENERGY SALES BY CLASS

		Small	Large	Large	Street	Total
Reside	dential	Commercial	Commercial	Industrial	Lighting	Sales
က	318,495	117,242	258,880	278,097	7,148	979,862
7	276,476	109,972	238,171	298,291	6,354	929,263
7	257,447	111,013	255,801	286,215	6,283	916,759
0	238,130	104,658	247,349	297,914	5,700	893,750
ന	300,530	112,561	280,457	302,928	5,319	1,001,794
4	407,427	126,168	309,106	306,153	5,101	1,153,955
4,	501,406	145,016	351,023	311,394	5,353	1,314,193
7	471,358	141,989	344,509	307,544	5,653	1,271,053
(,)	336,641	116,582	294,243	317,684	6,239	1,071,388
	255,392	110,158	261,104	287,578	6,748	920,980
•	256,321	109,198	253,226	306,589	7,097	932,430
	309,189	116,188	259,606	289,557	7,610	982,150
ω,	928,810	1,420,743	3,353,475	3,589,944	74,604	12,367,576

1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS TABLE C4

	Small Commercial/		Large Power/	
Month	<b>General Service</b>	Large Commercial	Industrial	Total
Jan-99	10,356	55,260	19,780	85,396
Feb-99	965'6	52,426	20,442	82,464
Mar-99	9,430	54,672	20,410	84,512
Apr-99	8,281	52,234	21,406	81,921
May-99	8,567	61,577	21,566	91,709
Jun-99	9,470	926,99	23,276	99,722
96-InC	10,772	75,506	24,373	110,650
Aug-99	11,244	76,216	22,273	109,733
Sep-99	10,130	64,381	22,734	97,246
Oct-99	8,724	53,246	19,699	81,669
Nov-99	8,686	51,979	20,030	969'08
Dec-99	685'6	55,189	20,492	85,270
Total	114,845	719,662	256,482	1,090,989

Note: Large commercial public authority sales include sales to Fort Knox.

TABLE C4 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS

	Small Commercial/		Large Power/	
Month	<b>General Service</b>	Large Commercial	Industrial	Total
Jan-00	10,487	57,233	19,987	87,708
Feb-00	10,079	55,432	20,657	86,167
<u> </u>	9,730	56,973	20,625	87,328
-00	8,341	54,623	21,630	84,595
00-/	8,676	63,822	21,792	94,290
00-ر	9,631	70,167	23,520	103,319
00-1	10,888	78,572	24,628	114,089
Aug-00	11,637	79,635	22,507	113,779
00-0	10,335	66,708	22,973	100,016
t-00	8,877	55,091	19,906	83,874
00-	8,780	52,899	20,240	81,919
Dec-00	9,801	56,048	20,707	86,556
Total	117,262	747,205	259,173	1,123,639

1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS TABLE C4 (Continued.)

	Small Commercial/		Large Power/	
Month	<b>General Service</b>	Large Commercial	Industrial	Total
Jan-01	10,680	57,959	20,197	88,836
eb-01	888'6	54,236	20,873	84,997
/ar-01	9,892	57,612	20,841	88,345
Apr-01	8,501	55,162	21,857	85,520
lay-01	8,818	64,673	22,021	95,512
un-01	9,770	70,721	23,767	104,258
Jul-01	11,051	79,871	24,887	115,809
Aug-01	11,750	81,221	22,743	115,715
ep-01	10,470	67,830	23,214	101,515
Oct-01	60'6	55,966	20,115	85,119
lov-01	8,937	53,746	20,453	83,135
ec-01 °	976'6	56,633	20,924	87,483
Total	118,723	755,629	261,892	1,136,245

TABLE C4 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS

	Small Commercial/		Large Power/	
Month	<b>General Service</b>	Large Commercial	Industrial	Total
Jan-02	10,831	58,615	20,409	89,855
Feb-02	10,034	54,795	21,092	85,922
Mar-02	10,105	58,482	21,060	89,646
Apr-02	8,633	55,547	22,087	86,266
May-02	8,968	65,664	22,252	96,883
Jun-02	9,938	71,812	24,016	105,766
Jul-02	11,200	80,379	25,148	116,728
Aug-02	11,830	81,693	22,982	116,506
Sep-02	10,599	69,091	23,458	103,148
Oct-02	9,182	56,925	20,326	86,433
Nov-02	60'6	54,583	20,667	84,343
Dec-02	10,060	57,481	21,144	88,685
Total	120,475	765,067	264,640	1,150,181

TABLE C4 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS

Large Commercia 59,347
55,652 59,067
56,256 66,489
72,662
81,471
82,703
70,234
57,601
55,524
58,132
775,138

TABLE C4 (Continued.)
1999 SHORT-TERM MODEL FORECASTS OF PUBLIC AUTHORITY SALES BY RATE CLASS

	Small Commercial/		Large Power/	
Month	<b>General Service</b>	Large Commercial	Industrial	Total
Jan-04	11,131	59,971	20,840	91,941
Feb-04	10,735	58,257	21,537	90,529
Mar-04	10,277	59,579	21,504	91,360
Apr-04	8,981	62,039	22,553	88,573
May-04	6,593	67,519	22,721	69,833
Jun-04	10,416	73,535	24,523	108,475
Jul-04	11,607	82,652	25,679	119,937
Aug-04	12,324	83,864	23,467	119,655
Sep-04	11,103	71,226	23,953	106,281
Oct-04	6,500	58,084	20,755	88,339
Nov-04	9,526	56,120	21,103	86,750
Dec-04	10,452	58,960	21,565	90,976
Total	125,645	786,807	270,198	1,182,650

1999 LONG-TERM MODEL FORECASTS OF RESIDENTIAL ENERGY SALES BY END USE (MWH), 1999 - 2013 TABLE C5

					Residential	ntial				;
Year	Base Load	G.R.	Elec. SH	G.R.	Comb. SH	G.R.	Air Cond.	G.R.	Total	G.R.
1999	2.431.715	-0.58%	205,801	55.48%	119,261	31.63%	756,800	-16.96%	3,513,577	-1.86%
2000	2.468,109	1.50%	202,094	-1.80%	120,953	1.42%	765,582	1.16%	3,556,739	1.23%
2001	2.504.407	1.47%	200,119	-0.98%	123,502	2.11%	774,603	1.18%	3,602,631	1.29%
2002	2.540,823	1.45%	198,186	-0.97%	125,995	2.02%	783,287	1.12%	3,648,291	1.27%
2003	2.576,879	1.42%	195,733	-1.24%	128,067	1.65%	791,382	1.03%	3,692,061	1.20%
2004	2,613,288	1.41%	194,005	-0.88%	130,520	1.91%	799,589	1.04%	3,737,403	1.23%
2005	2,649,581	1.39%	192,263	-0.90%	132,887	1.81%	807,493	0.99%	3,782,223	1.20%
2006	2.686,110	1.38%	191,021	-0.65%	135,531	1.99%	815,491	0.99%	3,828,153	1.21%
2007	2,721,138	1.30%	189,536	-0.78%	137,893	1.74%	822,770	0.89%	3,871,336	1.13%
2008	2.756.114	1.29%	188,174	-0.72%	140,281	1.73%	829,923	0.87%	3,914,493	1.11%
2009	2.791.199	1.27%	187,437	-0.39%	143,074	1.99%	837,207	0.88%	3,958,918	1.13%
2010	2,825,064	1.21%	185,932	-0.80%	145,216	1.50%	843,726	0.78%	3,999,937	1.04%
2011	2,858,775	1.19%	185,028	-0.49%	147,749	1.74%	850,324	0.78%	4,041,876	1.05%
2012	2,891,558	1.15%	183,861	-0.63%	150,004	1.53%	856,465	0.72%	4,081,887	0.99%
2013	2,923,312	1.10%	182,429	-0.78%	151,963	1.31%	862,166	0.67%	4,119,871	0.93%

TABLE C5 (Continued.)

999 LONG-TERM MODEL FORECASTS OF SMALL COMMERCIAL ENERGY SALES BY END USE (MWH), 1999 - 201

SH-Rate         G.R.         Reg. SH         G.R.         A.           31,636         22.21%         39,416         30.43%           30,910         -2.30%         40,066         1.65%           30,194         -2.32%         41,027         2.40%           29,506         -2.28%         41,945         2.24%           28,844         -2.24%         42,705         1.81%           28,202         -2.23%         43,591         2.07%           27,579         -2.21%         44,497         2.08%           26,374         -2.20%         46,422         2.03%           26,373         -2.22%         46,422         2.03%           25,789         -2.21%         47,321         1.94%           25,789         -2.22%         46,422         2.03%           25,217         -2.22%         46,422         2.03%           25,217         -2.22%         48,397         2.27%           24,104         -2.22%         49,276         1.85%           24,104         -2.24%         50,287         2.05%           23,562         -2.25%         51,218         1.55%           23,562         -2.25%         51,218						Small Commercial	mercial				
1,085,006       5.00%       31,636       22.21%       39,416       30.43%         1,093,023       0.74%       30,910       -2.30%       40,066       1.65%         1,104,389       1.04%       30,194       -2.32%       41,027       2.40%         1,117,345       1.17%       29,506       -2.28%       41,945       2.24%         1,129,230       1.06%       28,844       -2.24%       42,705       1.81%         1,140,638       1.01%       28,202       -2.24%       42,705       1.81%         1,140,638       1.01%       28,202       -2.24%       44,497       2.08%         1,167,412       1.15%       26,974       -2.21%       44,497       2.08%         1,167,412       1.19%       26,974       -2.22%       46,422       2.03%         1,167,412       1.21%       26,373       -2.22%       46,422       2.03%         1,196,334       1.25%       25,789       -2.22%       48,397       2.27%         1,228,239       1.35%       24,104       -2.24%       50,287       2.05%         1,244,598       1.32%       23,562       -2.25%       51,218       1.55%         1,261,016       1.32%	Year	Base Load	G.R.	SH-Rate	G.R.	Reg. SH	G.R.	Air Cond.	G.R.	Total	G.R.
1,093,023       0.74%       30,910       -2.32%       40,066       1.65%         1,104,389       1.04%       30,194       -2.32%       41,027       2.40%         1,117,345       1.17%       29,506       -2.28%       41,945       2.24%         1,129,230       1.06%       28,844       -2.24%       42,705       1.81%         1,140,638       1.01%       28,202       -2.23%       43,591       2.07%         1,140,638       1.01%       26,974       -2.21%       44,497       2.08%         1,167,412       1.19%       26,974       -2.20%       45,498       2.25%         1,167,412       1.19%       26,974       -2.20%       46,422       2.03%         1,167,412       1.21%       26,373       -2.22%       46,422       2.03%         1,181,561       1.21%       25,789       -2.21%       47,321       1.94%         1,196,334       1.25%       25,789       -2.22%       48,397       2.27%         1,228,239       1.35%       24,104       -2.24%       50,287       2.05%         1,244,598       1.32%       23,562       -2.25%       50,47       50,47       25,47         1,261,016	1999	1,085,006	2.00%	31,636	22.21%	39,416	30.43%	166,108	-16.03%	1,322,167	2.71%
1,104,389       1.04%       30,194       -2.32%       41,027       2.40%         1,117,345       1.17%       29,506       -2.28%       41,945       2.24%         1,129,230       1.06%       28,844       -2.24%       42,705       1.81%         1,140,638       1.01%       28,202       -2.23%       43,591       2.07%         1,153,715       1.15%       27,579       -2.21%       44,497       2.08%         1,167,412       1.19%       26,974       -2.20%       45,498       2.25%         1,181,561       1.21%       26,373       -2.22%       46,422       2.03%         1,181,561       1.21%       26,373       -2.22%       46,422       2.03%         1,196,334       1.25%       25,789       -2.21%       47,321       1.94%         1,211,914       1.30%       25,217       -2.22%       48,397       2.27%         1,228,239       1.35%       24,104       -2.22%       49,276       1.85%         1,244,598       1.32%       23,562       -2.25%       51,218       1.55%         1,261,016       1.32%       23,562       -2.25%       51,218       1.55%	2000	1,093,023		30,910	-2.30%	40,066	1.65%	167,326	0.73%	1,331,325	0.69%
1,117,345 1.17% 29,506 -2.28% 41,945 2.24% 1,129,230 1.06% 28,844 -2.24% 42,705 1.81% 1,140,638 1.01% 28,202 -2.23% 43,591 2.07% 1,167,412 1.19% 26,974 -2.20% 45,498 2.25% 1,167,412 1.19% 26,974 -2.20% 46,422 2.03% 1,181,561 1.21% 26,373 -2.22% 46,422 2.03% 1,196,334 1.25% 25,789 -2.21% 47,321 1.94% 1,211,914 1.30% 25,217 -2.22% 48,397 2.27% 1,244,598 1.35% 24,656 -2.22% 49,276 1.85% 1,244,598 1.32% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1,277,451 1.30% 23,562 -2.25% 51,218 1.85%	2001	1,104,389		30,194	-2.32%	41,027	2.40%	169,113	1.07%	1,344,722	1.01%
1,129,230 1.06% 28,844 -2.24% 42,705 1.81% 1,140,638 1.01% 28,202 -2.23% 43,591 2.07% 1,140,638 1.01% 28,202 -2.23% 43,591 2.07% 1,153,715 1.15% 27,579 -2.21% 44,497 2.08% 1,167,412 1.19% 26,974 -2.20% 45,498 2.25% 1,181,561 1.21% 26,373 -2.22% 46,422 2.03% 1,196,334 1.25% 25,789 -2.21% 47,321 1.94% 1,211,914 1.30% 25,217 -2.22% 48,397 2.27% 1,228,239 1.35% 24,656 -2.22% 49,276 1.82% 1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1,277,451 1.30% 23,562 -2.25% 51,218 1.85%	2002	1,117,345		29,506	-2.28%	41,945	2.24%	171,137	1.20%	1,359,933	1.13%
1,140,638       1.01%       28,202       -2.23%       43,591       2.07%         1,153,715       1.15%       27,579       -2.21%       44,497       2.08%         1,167,412       1.19%       26,974       -2.20%       45,498       2.25%         1,181,561       1.21%       26,373       -2.22%       46,422       2.03%         1,181,561       1.21%       25,789       -2.21%       47,321       1.94%         1,211,914       1.30%       25,217       -2.22%       48,397       2.27%         1,228,239       1.35%       24,656       -2.22%       49,276       1.82%         1,244,598       1.33%       24,104       -2.24%       50,287       2.05%         1,261,016       1.32%       23,562       -2.25%       51,218       1.55%	2003	1,129,230		28,844	-2.24%	42,705	1.81%	172,968	1.07%	1,373,747	1.02%
1,153,715       1.15%       27,579       -2.21%       44,497       2.08%         1,167,412       1.19%       26,974       -2.20%       45,498       2.25%         1,181,561       1.21%       26,373       -2.22%       46,422       2.03%         1,196,334       1.25%       25,789       -2.21%       47,321       1.94%         1,211,914       1.30%       25,217       -2.22%       48,397       2.27%         1,228,239       1.35%       24,656       -2.22%       49,276       1.82%         1,244,598       1.33%       24,104       -2.24%       50,287       2.05%         1,261,016       1.32%       23,562       -2.25%       51,218       1.85%	2004	1,140,638		28,202	-2.23%	43,591	2.07%	174,741	1.02%	1,387,172	0.98%
1,167,412       1.19%       26,974       -2.20%       45,498       2.25%         1,181,561       1.21%       26,373       -2.22%       46,422       2.03%         1,196,334       1.25%       25,789       -2.21%       47,321       1.94%         1,211,914       1.30%       25,217       -2.22%       48,397       2.27%         1,228,239       1.35%       24,656       -2.22%       49,276       1.82%         1,244,598       1.33%       24,104       -2.24%       50,287       2.05%         1,261,016       1.32%       23,562       -2.25%       51,218       1.85%	2005	1,153,715		27,579	-2.21%	44,497	2.08%	176,774	1.16%	1,402,564	1.11%
1,181,561 1.21% 26,373 -2.22% 46,422 2.03% 1,196,334 1.25% 25,789 -2.21% 47,321 1.94% 1,211,914 1.30% 25,217 -2.22% 48,397 2.27% 1,228,239 1.35% 24,656 -2.22% 49,276 1.82% 1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1.277,451 1.30% 23,507 2.25% 51,218 1.85%	2006	1,167,412		26,974	-2.20%	45,498	2.25%	178,914	1.21%	1,418,799	1.16%
1,196,334 1.25% 25,789 -2.21% 47,321 1.94% 1,211,914 1.30% 25,217 -2.22% 48,397 2.27% 1,228,239 1.35% 24,656 -2.22% 49,276 1.82% 1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1,277,451 1.30% 23,572 2.25% 51,218 1.85%	2007	1,181,561		26,373	-2.22%	46,422	2.03%	181,116	1.23%	1,435,472	1.18%
1,211,914 1.30% 25,217 -2.22% 48,397 2.27% 1,228,239 1.35% 24,656 -2.22% 49,276 1.82% 1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1,277,451 1.30% 23,027 2.25% 51,218 1.85%	2008	1,196,334		25,789	-2.21%	47,321	1.94%	183,411	1.27%	1,452,856	1.21%
1,228,239 1.35% 24,656 -2.22% 49,276 1.82% 1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1,277,451 1.30% 23,027 2.25% 51,218 1.85% 1	2009	1,211,914	1.30%	25,217	-2.22%	48,397	2.27%	185,854	1.33%	1,471,383	1.28%
1,244,598 1.33% 24,104 -2.24% 50,287 2.05% 1 1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1	2010	1,228,239	1.35%	24,656	-2.22%	49,276	1.82%	188,387	1.36%	1,490,559	1.30%
1,261,016 1.32% 23,562 -2.25% 51,218 1.85% 1	2011	1,244,598	1.33%	24,104	-2.24%	50,287	2.05%	190,944	1.36%	1,509,934	1.30%
1 277 451 1 30% 23 027 2 27% 52 047 1 56% 1	2012	1,261,016	1.32%	23,562	-2.25%	51,218	1.85%	193,499	1.34%	1,529,295	1.28%
0,000.1 1.0,20 0.72.2- 1.20,02 0.00.1 1.04,112,1	2013	1,277,451	1.30%	23,027	-2.27%	52,017	1.56%	196,041	1.31%	1,548,535	1.26%

TABLE C5 (Continued.)

# 1999 LONG-TERM MODEL FORECASTS OF ELECTRIC ENERGY SALES BY CLASS (MWH), 1999 - 2013

	G.R.	0.73%	0.19%	1.21%	1.22%	1.26%	1.30%	1.33%	1.29%	1.28%	1.32%	1.27%	1.27%	1.23%	1.19%
Total	KWHSales	11,037,326	11,158,740	11,294,239	11,431,990	11,576,239	11,726,791	11,882,308	12,035,855	12,189,741	12,350,486	12,507,469	12,666,797	12,822,555	12,975,720
	G.R.	1.13%	1.07%	1.08%	1.09%	1.07%	1.07%	1.06%	1.01%	1.00%	0.97%	0.95%	0.92%	0.90%	0.87%
Street	Lighting 60 072	70,765	71,526	72,299	73,084	73,869	74,658	75,448	76,207	76,966	77,716	78,458	79,182	79,891	80,584
	G.R.	0.20%	-2.08%	1.14%	1.45%	1.59%	1.61%	1.62%	1.59%	1.53%	1.55%	1.50%	1.48%	1.44%	1.44%
Large	<u>Industrial</u>	3,432,038 3,438,958	3,367,189	3,405,844	3,455,525	3,510,764	3,567,566	3,625,472	3,683,360	3,740,101	3,798,163	3,855,495	3,912,953	3,969,492	4,026,742
	G.R.	0.75%	1.18%	1.27%	1.06%	1.04%	1.14%	1.20%	1.19%	1.21%	1.30%	1.27%	1.29%	1.25%	1.20%
Large	Commercial	2,719,773 2,740,206	2,772,671	2,807,872	2,837,573	2,867,033	2,899,779	2,934,437	2,969,481	3,005,325	3,044,306	3,083,021	3,122,852	3,161,990	3,199,988
	Year	1999 2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

TABLE C6
POPULATION AND RESIDENTIAL ELECTRIC CUSTOMER PROJECTIONS, 1999-2013
(Base-Growth Scenario)

7	Oldham	2.56%	2.49%	2.46%	2.41%	2.52%	2.55%	2.81%	2.85%	2.80%	2.80%	2.78%	2.77%	2.75%	2.73%	2.71%
. by County	Meade	1.73%	1.41%	1.63%	1.42%	1.70%	1.64%	1.58%	1.57%	1.54%	1.54%	1.53%	1.53%	1.53%	1.53%	1.52%
Population G.R	lefferson	0.42%	0.31%	0.28%	0.32%	0.33%	0.34%	0.34%	0.34%	0.31%	0.32%	0.31%	0.31%	0.29%	0.28%	0.26%
Pop	Bullit	2.33%	2.15%	2.12%	2.13%	2.23%	2.29%	2.35%	2.39%	2.32%	2.30%	2.24%	2.18%	2.12%	2.07%	2.02%
<b>L</b>	Pop/RsCust	2.3179	2.3036	2.2899	2.2770	2.2646	2.2529	2.2417	2.2311	2.2210	2.2114	2.2022	2.1935	2.1852	2.1773	2.1698
Annual	G.R.	1.25%	1.11%	1.06%	1.06%	1.07%	1.06%	1.05%	1.04%	0.99%	0.98%	0.96%	0.94%	0.91%	0.88%	0.85%
Electric	Res. Cust.	319,820	323,383	326,800	330,274	333,800	337,326	340,872	344,418	347,823	351,233	354,599	357,926	361,175	364,358	367,463
Annual	G.R.	0.59%	0.49%	0.46%	0.49%	0.52%	0.53%	0.55%	0.56%	0.53%	0.54%	0.54%	0.54%	0.53%	0.52%	0.50%
LGE Area	<u>Population</u>	741,318	744,936	748,349	752,017	755,927	759,954	764,137	768,427	772,510	776,704	780,901	785,110	789,243	793,322	797,321
<b>L</b> _	Oldham	45,386	46,517	47,662	48,809	50,040	51,314	52,755	54,261	55,777	57,337	58,931	60,563	62,228	63,929	65,661
	Meade	29,039	29,450	29,931	30,356	30,872	31,380	31,875	32,377	32,876	33,382	33,892	34,410	34,936	35,471	36,011
	Jefferson	676,942	679,074	680,977	683, 129	685,403	687,735	690,055	692,405	694,540	696,742	698,918	701,075	703,129	705,101	706,970
	Ballis	60,553	61,857	63, 166	64,511	65,953	67,466	69,050	70,697	72,340	74,001	75,660	77,313	78,956	80,591	82,217
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

1) Proportions of the county population to be served for electricity are assumed to be 35% for Bullitt, 100% for Jefferson, 15% for Meade and 85.2% for Oldham County. Notes:

2) Pop/RsCust = Number of persons per residential customer count.

TABLE C7
POPULATION AND GENERAL SERVICE ELECTRIC CUSTOMER PROJECTIONS, 1999 - 2013
(Base-Growth Scenario)

LGE Area	<b>Population</b>	741,318	744,936	748,349	752,017	755,927	759,954	764,137	768,427	772,510	776,704	780,901	785,110	789,243	793,322	797,321
Increase in	Total GS	529	519	510	525	539	547	222	565	555	295	563	564	561	558	553
-	G.R.	1.43%	1.38%	1.34%	1.36%	1.38%	1.38%	1.39%	1.38%	1.34%	1.34%	1.33%	1.31%	1.29%	1.26%	1.24%
Total GS	Customers	37,575	38,094	38,604	39,129	39,669	40,216	40,773	41,338	41,892	42,454	43,017	43,582	44,142	44,700	45,254
	Pop/Cust	407.06	406.65	406.25	405.85	405.44	405.04	404.64	404.24	403.83	403.43	403.03	402.63	402.23	401.83	401.43
ncrease in	GS P.A.	-12	1	10	7	-	12	12	12	12	12	12	12	12	12	12
=	_			0.56%	0.59%	0.62%	0.63%	0.65%	<b>%99</b> .0	0.63%	0.64%	0.64%	0.64%	0.63%	0.62%	0.60%
GS P.A.	Customers	1,821	1,832	1,842	1,853	1,864	1,876	1,888	1,901	1,913	1,925	1,938	1,950	1,962	1,974	1,986
	Pop/Cust	20.73	20.54	20.36	20.17	20.00	19.82	19.65	19.49	19.32	19.16	19.01	18.86	18.71	18.57	18.43
ncrease in	GS Comm.	541	508	200	514	528	536	545	552	543	550	551	552	548	546	541
جَ		1.54%	1.42%	1.38%	1.40%	1.42%	1.42%	1.42%	1.42%	1.38%	1.37%	1.36%	1.34%	1.32%	1.29%	1.27%
GS Comm.	Customers	35,754	36,262	36,762	37,276	37,804	38,340	38,885	39,437	39,980	40,529	41,080	41,632	42,180	42,726	43,268
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

TABLE C8
ANNUAL NUMBER OF ELECTRIC LARGE COMMERCIAL CUSTOMERS, 1981-2004

	Non-P.A.			Public Auth.			Total L.C.		
<u>Year</u>	Customers	<u>G.R.</u>	<u>Increase</u>	<u>Customers</u>	<u>G.R.</u>	<u>Increase</u>	Customers	<u>G.R.</u>	<u>Increase</u>
1981	1,399			160			1,559		
1982	1,420	1.50%	21	162	1.25%	2	1,582	1.48%	23
1983	1,466	3.24%	46	164	1.23%	2	1,630	3.03%	48
1984	1,508	2.86%	42	167	1.83%	3	1,675	2.76%	45
1985	1,552	2.92%	44	172	2.99%	5	1,724	2.93%	49
1986	1,583	2.00%	31	173	0.58%	1	1,756	1.86%	32
1987	1,653	4.42%	70	174	0.58%	1	1,827	4.04%	71
1988	1,709	3.39%	56	177	1.72%	3	1,886	3.23%	59
1989	1,750	2.40%	41	183	3.39%	6	1,933	2.49%	47
1990	1,764	0.80%	14	184	0.55%	1	1,948	0.78%	15
1991	1,801	2.10%	37	187	1.63%	3	1,988	2.05%	40
1992	1,839	2.11%	38	203	8.56%	16	2,042	2.72%	54
1993	1,900	3.32%	61	225	10.84%	22	2,125	4.06%	83
*1994	1,933	1.74%	33	230	2.22%	5	2,163	1.79%	38
1995	1,963	1.55% `	30	238	3.48%	8	2,201	1.76%	38
1996	2,020	2.90%	57	249	4.62%	11	2,269	3.09%	68
1997	2,045	1.24%	25	250	0.40%	1	2,295	1.15%	26
1998	2,061	0.78%	16	251	0.40%	1	2,312	0.74%	17
1999	2,096	1.70%	35	254	1.20%	3	2,350	1.64%	38
2000	2,121	1.19%	25	257	1.18%	3	2,378	1.19%	28
2001	2,151	1.41%	30	260	1.17%	3	2,411	1.39%	33
2002	2,186	1.63%	35	263	1.15%	3	2,449	1.58%	38
2003	2,221	1.60%	35	266	1.14%	3	2,487	1.55%	38
2004	2,256	1.58%	35	269	1.13%	3	2,525	1.53%	38

Note: When the customer accounting system was converted from CIS-I to CIS-II, there was a change in the way of billing multi-metered customers. Consequently, number of non-public-authority LC customers in May, 1994 and thereafter was lowered by 10 to fit the new way of billing under CIS-II. Therefore, true growth of customers in 1994 was more likely 40, rather than 33.

TABLE C9

# PROJECTED NUMBER OF RETAIL ELECTRIC CUSTOMERS BY CLASS, 1999-2004

(Annual Average)

	Res	Residential	-	Small Commercial	omme	rcial	Large Commercial	ommo	ercial	Large Power	Pov	/er	Public Authority	c Aut	hority	•	Total	
Customers Incr.	핕	ا بر	Annual G.R.	Customers	Incr.	Annual G.R.	Customers Incr.	Incr.	Annual G.R.	Customers Incr.	Incr.	Annual G.R.	Customers	Incr.	Annual G.R.	Customers Incr. Annual G.R. Customers Incr.	Incr.	Annual G.R.
319,820 3,934 1.25%	ຕ໌	934	1.25%	35,754	541	1.54%	2,096	35	1.70%	426	7	0.47%	2,131	4-	-14 -0.65%	360,227 4,498 1.26%	4,498	1.26%
323,383 3,563	က်	563	1.11%	36,262	508	1.42%	2,121	25	25 1.19%	428	7	0.47%	2,145	4	0.64%	364,339	4,112	4,112 1.14%
326,800 3,417 1.06%	က	,417	1.06%	36,762	200	1.38%	2,151	30	30 1.41%	431	က	0.70%	2,158	13	0.62%	368,302	3,964	1.09%
330,274 3,473 1.06%	6.7	3,473	1.06%	37,276	514	1.40%	2,186	35	1.63%	436	2	1.16%	2,172	4	0.64%	372,344	4,041	1.10%
333,800 3,526	ന	,526	1.07%	37,804	528	1.42%	2,221	35	35 1.60%	441	2	1.15%	2,186	4	0.67%	376,452 4,108	4,108	1.10%
337,326 3,527 1.06%	.,	3,527	1.06%	38,340	536	1.42%	2,256	35	35 1.58%	446	2	1.13%	2,201	15	0.68%	380,569	4,117	1.09%

*Street lighting customers are not included in this table.

# Section D

# REGIONAL ECONOMIC AND DEMOGRAPHIC FORECAST REPORTS PREPARED BY UNIVERSITY OF LOUISVILLE AND REGIONAL FINANCIAL ASSOCIATES

## Economic, Demographic, and Industrial Electricity Forecasts 1999 to 2020 for the Louisville Region

for

Louisville Gas and Electric Company

by

Nan-Ting Chou, Ph.D. Associate Professor of Economics

> Barry Kornstein Senior Research Analyst

University of Louisville

August 1999

### Economic, Demographic, and Industrial Electricity Forecasts 1999 to 2020 for the Louisville Region

August 1999

### **Executive Summary**

The Louisville area economy has revitalized during the past decade, and out-performed the United States economy during the first half the 1990s. Manufacturing expansions led to employment increases at area factories, even as the US economy was shedding one million workers in that key industry. UPS's international air freight hub in Louisville has added over 10,000 workers in the last ten years, and another major expansion is underway.

The relatively strong economic growth has caused a turnaround in the demographic outlook for the Louisville area. The Louisville Metropolitan Statistical Area (MSA) has added around 50,000 persons so far this decade, after posting zero net growth during the 1980s. The steady economic and demographic growth, combined with low interest rates, has led to a strong market for new housing in Louisville - our area has added more new homes every year this decade than any year last decade.

Louisville's economic growth has been strong and steady over the past two years. On average, the fastest growing metropolitan area economies in the country are now also the largest. These expansions in New York, Philadelphia, Boston, Los Angeles, San Diego, San Francisco, and other large metros have put new life into the national economy and have led to good business conditions for Louisville products and services.

This is the general backdrop for the current long-term forecasts for the Louisville area. This forecast updates the one published in August 1998. In this report, we take account of an additional year of data and a new national outlook to produce a fresh forecast of economic and demographic activity in the region. We use the first quarter 1999 national forecast produced by the WEFA Group.

The analysis also covers the six Kentucky counties surrounding the seven-county Louisville MSA. In percentage terms, the greatest demographic growth is occurring in the ring, or exurban, counties. The counties outside of Jefferson, and within a commuting distance of the Louisville economy, offer the greatest sales growth potential for Louisville-based utilities. For the most important variables - population, jobs, income - we provide forecasts for each of the thirteen counties of interest to the research sponsors.

In addition, we have developed a regression model of electricity usage by LGE industrial customers. We examined 18 years of electricity usage for the 25 largest individual industrial customers. For each customer we attempted to explain usage by the volume of production in each industry, and by evident trends in intensity of electricity usage in each industry nationally. This group of industial customers accounts for roughly 73 percent of the annual electricity usage by LGE industrial customers over the past two decades.

Among the most important forecast results are:

- around 166,000 net new jobs are expected to be generated in the Louisville market in the 22 year period 1999-2020, over half of these to be based in Jefferson County.
- over the period, the population of the MSA is expected to grow by 154,000 in the MSA and around 196,000 in the thirteen county region.
- due to the steady job and earnings growth, combined with the below average population growth, the per capita personal income of Louisville MSA residents is expected to surpass that for the United States as a whole by over 5.4 percent by the year 2020.
- in terms of residents, the fastest growing counties in percentage terms are expected to be Oldham, Bullitt, Nelson, and Shelby.
- in terms of jobs by place of work, the fastest growing counties in percentage terms are expected to be Nelson, Shelby, and Oldham, and Bullitt.
- industrial electricity usage is likely to grow at an average annual rate of about 1.29 percent over the forecast period 1999-2020. This is lower than the average annual rate of 2.04 percent experienced during the period 1983-1998. Part of it is due to the scheduled closure of the Phillip Morris facility in the year 2000.
- the industrial sectors projected to have the fastest growing electricity usage for the forecast period are Plastic Products, not elsewhere classified (SIC 308), with an average annual growth rate of 3.3 percent; Foods (SIC 201-207), with an average annual growth rate of 2.5 percent; Beverages (SIC 208), with an average annual growth rate of 2.2 percent; Motor Vehicles (SIC 3711), with an average annual growth rate of 2.1 percent; and Clay, Glass, Stone, and Concrete Products (SIC 32), with an average annual growth rate of 2.0 percent;.
- local firms represented among the industrial sectors with the fastest growing electricity usage are DJ, Inc., Protein Technologies (Ralston Purina), Swift & Co. (Monfort), Fischer Packing, Liqui-Dri Foods, Brown Forman, Ford, Kosmos Cement, and Corhart Refractories.
- the industrial sectors projected to have the slowest growing electricity usage for the forecast period are Household Appliances (SIC 363), with an average annual growth rate of -2.0 percent; Newspapers (SIC 271), with an average annual growth rate of -0.7 percent; Nonferrous Mill Products (SIC 335), with an average annual growth rate of -0.6 percent; Basic Chemicals (SIC 281) and Soap and Toiletries (SIC 284), with an average annual growth rate of 0.7 percent; and Tobacco (SIC 21) which is scheduled to cease production in December 2000.
- local firms represented among the industrial sectors with the slowest growing electricity usage are General Electric, Courier Journal, Alcan Rolled, Reynolds Metals, Carbide Graphite, Rohm & Haas, United Catalyst, Johnson Controls, and Olin Mathieson.

### Economic and Demographic Forecast Methodology, and Detailed Results

The forecasts have been prepared using simple techniques and straightforward assumptions. The methods used are dictated largely by data constraints. Unlike at the national level, there are no regular detailed county or MSA-level estimates of industrial output, wage rates, product prices, household formation, labor force participation, or commuting patterns. Regional analysts must try to use whatever clean data they can obtain to produce useful and consistent forecasts, given a national scenario and their knowledge of the local economy.

The steps used in this forecast are outlined below. We perform a shift-share analysis of Louisville area wage and salary job growth over the last 38 years. We use this information, along with forecasts of the number of wage and salary jobs by industry for the United States provided by the WEFA Group, to produce a forecast of Louisville's growth rate for wage and salary jobs by industry. We then use historical relationships to construct a forecast of all jobs, including the self-employed. Next we model and forecast earnings per job in each industry, based upon trend relationships between Louisville area and national earnings. This becomes the foundation for a forecast of the personal income - wages, salaries, dividends, interest, rent, transfer payments - of Louisville area residents. Finally, we examine the county-level shares of economic and demographic activity, and forecast the key variables for each of the 13 counties in our analysis.

# The Louisville Metropolitan Statistical Area and Surrounding Kentucky Counties



Due to service area restrictions set by the Kentucky Public Service Commission, most of LGE's customers are in Jefferson, Oldham, and Bullitt counties. However, it is important to understand economic and demographic trends throughout the region. The geography most coterminous with an economic market is the Metropolitan Statistical Area (MSA). This includes Bullitt, Jefferson, and Oldham counties in Kentucky; and Clark, Floyd, Harrison, and Scott counties in Indiana. The MSA is defined by commuting patterns of workers and as such is closely aligned with labor, housing, media, retail, and transportation markets. We conduct most of our economic analysis first in terms of the MSA, and then in terms of each county's share of that economic activity.

Louisville-based utilities are also naturally interested in growth in the surrounding exurban Kentucky counties: Henry, Shelby, Spencer, Nelson, Hardin, and Meade. Several of these counties have experienced

strong population growth this decade and are the source of many of the long-distance commuters who are filling jobs in the central county. Hence, we have also developed forecasts of population and jobs for these six surrounding Kentucky counties.

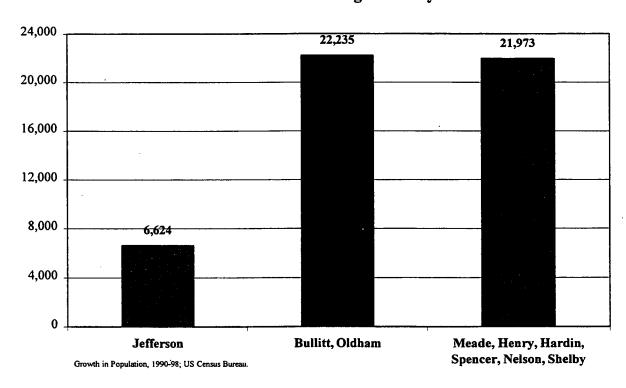
Wage and salary jobs by industry for the Louisville MSA were forecast using the results of a shift-share analysis over the last 38 years of data on Louisville and US job growth. We used 24 industrial categories. The growth in jobs in each Louisville industry was decomposed into three components: national growth, industry mix, and local competitiveness. The national component quantifies the extent to which the growth of the region may be attributed simply to the fact that the nation is growing. The industry mix component can be attributed to the mix of industries in the region. If the region happens to have more than its share of fast or slow growth industries, its growth rate will be greater than or less than that of the nation. The competitive component recognizes that the local firms may grow faster or slower than other firms in their industries located outside the region. WEFA forecasts of national job growth by industry were used to forecast the first two components. We then applied our estimates of future local competitiveness by industry to arrive at our final forecasts of wage and salary job growth in the Louisville MSA. See Appendix A Table 1 for our estimate of the competitive components, as well as the forecasted distribution of jobs by industry. Excel spreadsheet name: Shift-Share W&S Job Forecast.

The competitive components for manufacturing sectors derived from the shift-share analysis indicate that Louisville is most competitive in the other nondurables, transportation & public utilities, transportation equipment, printing & publishing, and contract construction industries. Consistent with national trends, Louisville's manufacturing industries are expected to account for only 11.1 percent of area wage and salary jobs in twenty years, down from 16.0 percent today.

Appendix A Table 2 provides our forecast of job levels by industry for the Louisville MSA. Keep in mind that the job estimates are on a place-of-work basis, and may be filled by nonresident commuters as well as the MSA resident workforce. Also, multiple job holders are double (and triple) counted; this is a job forecast, not a forecast of employed persons.

<u>Labor and proprietors jobs by industry</u> for the Louisville MSA were forecast using ratios of total jobs to wage and salary jobs for each industry. This allows us to account for all jobs, including the roughly 89,000 proprietors in the MSA, and to make our forecast definitionally equivalent to the comprehensive database produced by the US Bureau of Economic Analysis for all counties. The ratios of labor and proprietors jobs to wage and salary jobs by industry are fairly constant and predictable over time. Appendix A Table 3 provides forecast data at the major industry level, as portrayed in the accompanying chart. *Excel spreadsheet name: Jobs - Labor& Proprietors*.

Reconciliation of job and population forecasts. As in our previous report, we found that our population forecasts from the Cornerstone 2020 exercise were tracking resonably well, but that an unexpectedly large portion of Louisville MSA jobs were being filled by nonresidents. Exurban counties have the highest population growth rates in the region, but are gaining relatively few jobs. This reinforces the notion that more people are commuting in to Louisville from surrounding rural counties. We update this data in the table at the top of page 6. Excel spreadsheet name: Labor Force and Population.


The pattern of exurban population growth coupled with more centrally located job growth can be seen clearly in the table. We estimate that job growth outstripped population growth in the MSA by 47,000 from 1990 to 1998. Part of the discrepancy is due to an increase in percentage of persons employed, yet there remains a difference of 26,000 between job growth and the growth in employed persons in the metro area. In contrast, the exurban counties added about 5,000 more people than jobs.

The gap between employment and population growth can be narrowed somewhat by adjusting the population figures to account for the loss in military personnel (and nonworking dependents). We know from military employment data that the MSA counties lost on net around 1,100 military personnel, and the six

### Labor and Proprietors Jobs by Industry, Louisville MSA



### Population Growth in the 1990s Jefferson and Surrounding Kentucky Counties

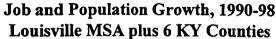


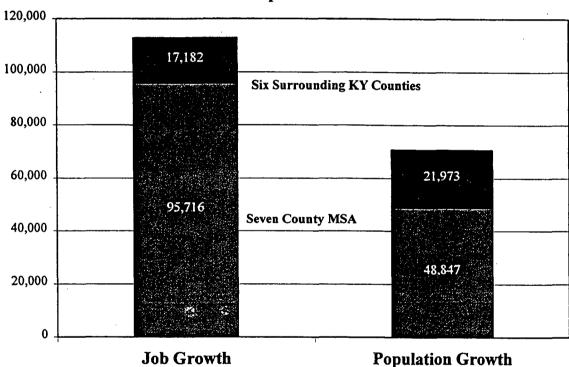
### **Estimated Growth: 1990-1998**

	Jobs* (civilian) by	Employed Persons (civilian) by place of	Number of
	place of work	residence	Residents
Bullitt County, KY	4,871	7,505	11,408
Clark County, IN	9,569	8,344	6,109
Floyd County, IN	7,937	7,272	7,173
Harrison County, IN	2,471	3,795	4,793
Jefferson County, KY	63,857	34,058	6,624
Oldham County, KY	4,545	6,471	10,827
Scott County, IN	2,466	1,991	1,913
Louisville MSA	95,716	69,436	48,847
Hardin County, KY	7,516	1,937	2,013
Henry County, KY	668	686	1,915
Meade County, KY	860	1,743	4,515
Nelson County, KY	3,680	3,494	6,109
Shelby County, KY	3,909	3,211	4,607
Spencer County, KY	548	1,243	2,814
6 Exurban Counties	17,182	12,314	21,973
13 County Region	112,898	81,750	70,820

### Sources:

Jobs from U.S. Bureau of Economic Analysis, "Local Area Personal Income, 1969-96", August 1998. Employed Persons from US Bureau of Labor Statistics, "Local Area Unemployment Statistics," April 1999. Population from U.S. Census Bureau, April 1999.


# Forecasted Annual Change (1999-2020) in County Shares of Regional Sub-Totals


	Population	Jobs
Bullitt County, KY	0.080%	0.048%
Clark County, IN	0.003%	0.025%
Floyd County, IN	0.040%	0.020%
Harrison County, IN	0.030%	0.007%
Jefferson County, KY	-0.239%	-0.160%
Oldham County, KY	0.085%	0.050%
Scott County, IN	0.001%	0.010%
Louisville MSA	0.000%	0.000%
Hardin County, KY	-0.230%	-0.263%
Henry County, KY	0.010%	-0.007%
Meade County, KY	0.040%	0.010%
Nelson County, KY	0.070%	0.150%
Shelby County, KY	0.060%	0.100%
Spencer County, KY	0.050%	0.010%
6 KY Exurban Counties	0.000%	0.000%

^{• 1990-98} jobs are estimated from historical ratios of total jobs to wage and salary jobs by industry and adjusted according to military employment data through 1996.

exurban counties lost around 5,200 military personnel. We do not know how many nonworking military dependents left the area with the military personnel. If we assume that the average soldier has .5 nonworking dependents, then we could reasonably add 10,000 persons to the civilian population estimate. This would still leave us with civilian job growth exceeding civilian population growth by about 27,000 since 1990 in the 13 county region. In addition, the table shows job growth exceeding civilian labor force growth by about 31,000. Two factors may account for such disparities. First, the Census Bureau population estimates may be significantly undercounting parts of the MSA, especially Jefferson County. Second, there may be exceptional growth in the number of multiple job holders. No regional data exist upon which to make more precise statements about multiple job holding.

Finally, we have reexamined the recent patterns of job and population growth among the 13 counties and have modified our forecasts of MSA and exurban county shares. See the table at the bottom of page 6 for county share adjustments.

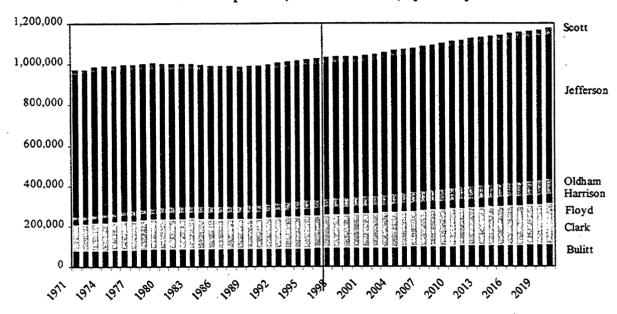




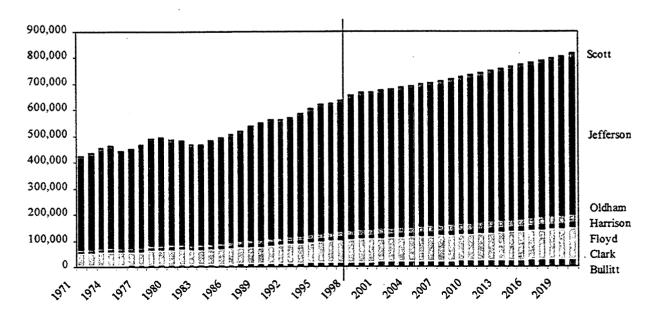
Earnings per labor and proprietors job by industry in the Louisville MSA were forecast using relationships to national compensation measures. WEFA forecasts hourly earnings in a number of important industrial categories. For other industries, such as Trade and Government, we used WEFA's forecast of a national index of labor compensation per hour. Earnings per job were multiplied by jobs to arrive at a forecast of total labor and proprietors earnings in the Louisville MSA on a place of work basis. Excel spreadsheet name: Earnings and Income.

The components of personal income for Louisville MSA residents were forecast using historical relationships between Louisville and national measures. For example, employee contributions to social insurance programs (primarily Social Security) in Louisville are tightly related to the comparable national measure. Similarly, income per Louisville resident derived from transfer payments, dividends, interest, and rent are

751
S
2
ates (Ba
2
ם
S
P
Ę
2
Unit
MSA and United S
Ĕ
æ
<b>₹</b>
S
Σ
ille MSA
=
.2
:S
₹
.3
_
e e
Ē
ខ
=
H
al In
nal In
sonal In
ersonal In
Personal Income: Louisville
f Personal In
of Personal In
ts of Personal In
ents of Personal In
nents of Personal In
<b>=</b>
oponents of Personal In
imponents of Personal In
Components of Personal In


Componer	Components of Personal Incor	Income: Louisville MOA and United States (Daseille	15A and Onned	States (Daseilli	:)		
	1970	1980	1990	1996	2000	2010	2020
Louisville MSA							
Eamings by Place of Work (\$000)	\$3,041,131	\$7,197,385	\$13,003,531	\$17,812,113	\$21,923,908	\$34,545,260	\$54,227,574
- Personal Contributions for Social Insurance	\$128,539	\$380,998	\$877,433	\$1,253,933	\$1,577,346	\$2,614,871	\$4,625,515
- Adjustment to Place of Residence Basis	\$72,251	\$231,960	\$357,109	\$466,853	\$589,391	\$1,055,510	\$1,890,257
= Net Earnings by Place of Residence	\$2,840,341	\$6,584,427	\$11,768,989	\$16,091,327	\$20,935,954	\$32,985,898	\$51,492,316
+ Dividends, Interest and Rent Income	\$434,191	\$1,323,858	\$3,406,723	\$4,521,851	\$4,738,618	\$7,114,444	\$10,864,249
+ Transfer Payments	\$306,190	\$1,265,476	\$2,558,744	\$3,873,617	\$4,365,043	\$7,668,535	\$13,474,614
= Total Personal Income of Residents (\$000)	\$3,580,722	\$9,173,761	\$17,734,456	\$24,486,795	\$30,039,614	\$47,768,878	\$75,831,179
Population	906,870	953,944	950,420	988,802	1,002,807	1,081,441	1,153,394
Per Capita Income Average Compound Growth Rate	\$3,948	\$9,617 9.31%	\$18,660 6.85%	\$24,764 4.83%	\$29,956 4.87%	\$44,172 3.96%	\$65,746 4.06%
United States	\$657.814.000	\$1,686,882,000	\$3.414.296.000	\$4.548.259.000	\$5.644.577.500	\$8,636,635,000	\$13,207,742,500
- Personal Contributions for Social Insurance		\$88,283,000	\$223,152,000	\$305,842,000	\$388,303,775	\$626,502,000	\$1,084,939,325
- Adjustment to Place of Residence Basis	\$186,000	\$488,000	\$790,000	\$3,399,000	\$3,775	-500	\$1,825
= Net Earnings by Place of Residence	\$630,004,000	\$1,598,111,000	\$3,190,354,000	\$4,239,018,000	\$5,256,277,500	\$8,010,132,500	\$12,122,805,000
+ Dividends, Interest and Rent Income	\$116,198,000	\$366,045,000	\$908,201,000	\$1,173,114,000	\$1,297,110,000	\$1,958,240,000	\$2,907,170,000
+ Transfer Payments	\$84,646,000	\$322,202,000	\$687,738,000	\$1,067,899,000	\$1,257,737,500	\$2,221,845,000	\$3,968,632,500
= Total Personal Income of Residents (\$000)	\$830,848,000	\$2,286,358,000	\$4,786,293,000	\$6,480,031,000	\$7,811,125,000	\$12,190,217,500	\$19,131,257,500
Population	203,798,722	227,224,719	249,439,545	265,179,411	274,500,000	297,665,000	322,720,000
Per Capita Income	\$4,077	\$10,062	\$19,188	\$24,436	\$28,456	\$40,953	\$59,281
Average Compound Growth Rate		9.46%	6.67%	4.11%	3.88%	3.71%	3.77%
	4	3001 - 4 "20 0201	900				

Source: Historical data from the US Bureau of Economic Analysis, "Local Area Personal Income, 1969-96", August 1998.


closely related to the national measures. WEFA forecasts these components and we apply these to the Louis-ville forecast on a per capita or per dollar basis. The result is a total personal income forecast for Louisville MSA residents. The table on page eight provides the forecast details for personal income and its components. Excel spreadsheet name: Earnings and Income.

<u>County-level forecasts</u> of population and jobs. We have produced forecasts of people and jobs for thirteen counties. Seven counties are part of the official Louisville MSA. The other six counties of interest are in Kentucky to the east, south and west of Louisville: Hardin, Henry, Meade, Nelson, Shelby, and Spencer. The population of the Louisville MSA is forecast to grow from its current level of 999,000 to 1,153,000 by the year

Total Population, Louisville MSA, by County



Total Jobs in the Louisville MSA, by County



### Forecasts of Population, by County (Baseline)

	1970	1980	1990	1998	2000	2010	2020
Bullitt County, KY	26,462	43,469	47,896	59,304	60,963	74,395	88,572
Clark County, IN	76,238	89,016	87,696	93,805	94,188	101,898	109,024
Floyd County, IN	55,580	61,406	64,817	71,990	73,347	83,425	93,589
Harrison County, IN	20,512	27,404	29,937	34,730	35,225	41,231	47,434
Jefferson County, KY	696,224	684,359	665,480	672,104	669,803	696,479	715,253
Oldham County, KY	14,664	27,861	33,568	44,395	46,216	59,032	72,764
Scott County, IN	17,190	20,429	21,026	22,939	23,065	24,982	26,759
Louisville MSA	906,870	953,944	950,420	999,267	1,002,807	1,081,441	1,153,394
Hardin County, KY	78,328	88,418	89,449	91,462	90,068	94,136	96,940
Henry County, KY	10,904	12,760	12,850	14,765	15,021	16,818	18,609
Meade County, KY	18,610	22,945	24,294	28,809	28,864	32,798	36,808
Nelson County, KY	23,473	27,634	29,775	35,884	36,183	41,573	47,143
Shelby County, KY	19,012	23,379	24,976	29,583	29,698	34,181	38,822
Spencer County, KY	5,488	5,931	6,846	9,660	9,625	11,785	14,125
6 County Ring	155,815	181,067	188,190	210,163	209,458	231,290	252,446
13 County Region	1,062,685	1,135,011	1,138,610	1,209,430	1,212,265	1,312,731	1,405,840

### **County Shares of Total Population in the Region (Baseline)**

	1970	1980	1990	1998	2000	2010	2020
Bullitt County, KY	2.9%	4.6%	5.0%	5.9%	6.1%	6.9%	7.7%
Clark County, IN	8.4%	9.3%	9.2%	9.4%	9.4%	9.4%	9.5%
Floyd County, IN	6.1%	6.4%	6.8%	7.2%	7.3%	7.7%	8.1%
Harrison County, IN	2.3%	2.9%	3.1%	3.5%	3.5%	3.8%	4.1%
Jefferson County, KY	76.8%	71.7%	70.0%	67.3%	66.8%	64.4%	62.0%
Oldham County, KY	1.6%	2.9%	3.5%	4.4%	4.6%	5.5%	6.3%
Scott County, IN	1.9%	2.1%	2.2%	2.3%	2.3%	2.3%	2.3%
Louisville MSA	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Hardin County, KY	50.3%	48.8%	47.5%	43.5%	43.0%	40.7%	38.4%
Henry County, KY	7.0%	7.0%	6.8%	7.0%	7.2%	7.3%	7.4%
Meade County, KY	11.9%	12.7%	12.9%	13.7%	13.8%	14.2%	14.6%
Nelson County, KY	15.1%	15.3%	15.8%	17.1%	17.3%	18.0%	18.7%
Shelby County, KY	12.2%	12.9%	13.3%	14.1%	14.2%	14.8%	15.4%
Spencer County, KY	3.5%	3.3%	3.6%	4.6%	4.6%	5.1%	5.6%
6 County Ring	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

2020. This forecast of MSA population was generated from the Cornerstone 2020 exercise in 1995. It was driven by an economic forecast, and is tracking reasonably well. (An alternative set of forecasts, developed by state demographers using no economic assumptions, is provided in Appendix B.) The six surrounding counties are forecast to grow from 210,000 to 252,000 residents over the same period. Detailed forecasts are in the tables on the following page. Excel spreadsheet name: BEA County Data.

Forecasts of Labor and Proprietors Jobs, by County (Baseline)

	1970	1980	1990	1996	2000	2010	2020
Bullitt County, KY	4,298	7,785	11,405	14,946	17,231	22,433	28,855
Clark County, IN	37,147	39,050	45,385	52,103	56,260	63,581	72,722
Floyd County, IN	17,993	21,493	27,378	33,432	36,206	41,204	47,437
Harrison County, IN	6,185	8,774	11,229	12,976	14,032	15,914	18,263
Jefferson County, KY	346,655	396,547	445,979	488,471	516,899	555,558	604,553
Oldham County, KY	4,693	7,432	12,534	15,699	18,088	23,521	30,227
Scott County, IN	5,338	6,036	7,213	9,101	9,978	11,685	13,806
Louisville MSA	422,309	487,117	561,123	626,728	668,694	733,896	815,862
Hardin County, KY	56,132	51,207	56,941	56,808	59,474	62,049	65,394
Henry County, KY	4,590	4,363	5,215	5,629	5,978	6,475	7,103
Meade County, KY	3,495	4,273	5,101	5,663	6,091	6,807	7,704
Nelson County, KY	8,510	10,205	14,097	16,657	18,454	22,092	26,604
Shelby County, KY	9,168	10,634	14,264	17,140	18,746	21,800	25,597
Spencer County, KY	1,988	2,125	2,342	2,741	2,971	3,383	3,897
6 County Ring	83,883	82,807	97,960	104,638	111,713	122,606	136,300
13 County Region	506,192	569,924	659,083	731,366	780,407	856,502	952,162

County Shares of Total Jobs in the Region (Baseline)

	1970	1980	1990	1996	2000	2010	2020
Bullitt County, KY	1.0%	1.6%	2.0%	2.4%	2.6%	3.1%	3.5%
Clark County, IN	8.8%	8.0%	8.1%	8.3%	8.4%	8.7%	8.9%
Floyd County, IN	4.3%	4.4%	4.9%	5.3%	5.4%	5.6%	5.8%
Harrison County, IN	1.5%	1.8%	2.0%	2.1%	2.1%	2.2%	2.2%
Jefferson County, KY	82.1%	81.4%	79.5%	77.9%	77.3%	75.7%	74.1%
Oldham County, KY	1.1%	1.5%	2.2%	2.5%	2.7%	3.2%	3.7%
Scott County, IN	1.3%	1.2%	1.3%	1.5%	1.5%	1.6%	1.7%
Louisville MSA	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Hardin County, KY	66.9%	61.8%	58.1%	54.3%	53.2%	50.6%	48.0%
Henry County, KY	5.5%	5.3%	5.3%	5.4%	5.4%	5.3%	5.2%
Meade County, KY	4.2%	5.2%	5.2%	5.4%	5.5%	5.6%	5.7%
Nelson County, KY	10.1%	12.3%	14.4%	15.9%	16.5%	18.0%	19.5%
Shelby County, KY	10.9%	12.8%	14.6%	16.4%	16.8%	17.8%	18.8%
Spencer County, KY	2.4%	2.6%	2.4%	2.6%	2.7%	2.8%	2.9%
6 County Ring	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Jefferson County is expected to continue to lose population share to surrounding counties, particularly Bullitt and Oldham. We expect Jefferson County to gain around 43,000 net residents, but in percentage terms, all area counties except Hardin are expected to grow faster than Jefferson.

The thirteen county area is forecast to add on net 221,000 jobs from 1996 to 2020. Of these, 189,000 are expected to be in the seven-county Louisville MSA. While Jefferson County will lose some share to surrounding counties, we expect it to capture 53 percent of all jobs created in the area over this horizon. See details in the tables above.

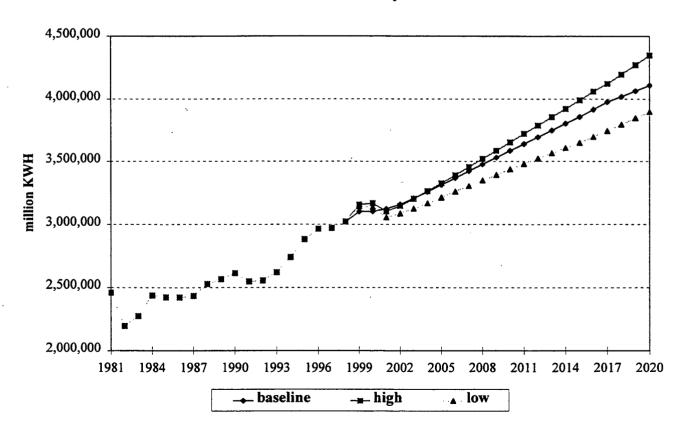
### Alternative Forecasts

We have used WEFA's High Growth and Low Growth forecast scenarios for the US economy to generate alternative forecasts for the Louisville area. WEFA's High and Low Growth scenarios differ from their Trend/Moderate Growth scenario in their assumptions for fertility, population growth, labor force participation, productivity, energy costs, exports, and fiscal and monetary policy. The difference among the resulting total jobs forecasts are on average about 0.2 percentage points in the annual compound growth rate. For example, under the Trend forecast, the US economy is expected to support 156 million wage and salary jobs by the year 2020; the comparable job number is 148million under the Low forecast, and 164 million under the High forecast. We mapped these alternative national scenarios to the local area economy. The results are summarized below.

**Alternative Forecasts for Louisville MSA** 

	1996	2000	2010	2020
Population	988,802			
Low		1,000,283	1,057,262	1,108,431
Baseline		1,002,807	1,081,441	1,153,394
High		1,005,213	1,104,930	1,197,815
Jobs - Nonagricultural Wage and Salary	536,783			
Low		577,651	627,169	685,858
Baseline		579,694	643,042	717,516
High		582,872	662,313	758,557
Earnings of Labor and Proprietors	\$17,812,113,000			
Low		\$21,857,974,791	\$33,741,899,657	\$51,939,967,324
Baseline		\$21,923,908,469	\$34,545,260,085	\$54,227,573,559
High		\$22,053,717,228	\$35,624,325,127	\$57,497,284,289
Personal Income of Residents	\$24,486,795,000			
Low		\$28,836,051,146	\$44,253,538,973	\$67,718,825,746
Baseline		\$28,860,832,153	\$45,657,858,582	\$72,050,664,695
High		\$29,101,363,001	\$46,370,833,282	\$72,903,092,902
Per Capita Personal Income of Residents	\$24,764			
Low		\$28,828	\$41,857	\$61,094
Baseline		\$28,780	\$42,219	\$62,468
High		\$28,950	\$41,967	\$60,863

### Industrial Electricity Usage


Louisville Gas & Electric Company's total industrial electricity sales amounted to 3,105,308 million KWH in 1998. The average annual growth rate for the period 1983-1998 was 2.04 percent. The percentage of total industrial electricity sales accounted for by the top 25 industrial electricity customers of LG&E has remained fairly steady over the past 16 years, on average about 72 percent.

We have made three forecasts of annual electricity sales out to the year 2020. Industrial electricity sales to large LGE customers are related to the national industrial production indexes produced by the Federal Reserve System and forecast by the WEFA Group. Alternative electricity forecasts are generated using WEFA's Low Growth, Trend/Moderate Growth, and High Growth forecast scenarios. According to our baseline long-term forecasts, LG&E's industrial electricity sales will grow to 4,108,880 million KWH in 2020. The average annual growth rate over the forecast period is 1.29 percent.

Our optimistic, high growth, long-term forecasts predict that industrial electricity sales will grow to 4,348,906 million KWH in 2020. The average annual growth rate of this scenario is 1.55 percent for the period 1998-2020.

The pessimistic, low growth, long-term forecasts predict LG&E's industrial electricity sales will grow to 3,895,514 million KWH in 2020. The average annual growth rate of this scenario is 1.04 percent for the forecast period. The significant reduction in year 2001 is due to the scheduled closing of the Phillip Morris cigarette factory at the end of year 2000.

### Alternative Industrial Electricity Sales Forecasts



### A Model of Local Industrial Electricity Usage

We modeled the industrial electricity usage of major LG&E customers in two steps. First, we estimated a energy-intensity trend for each of the 13 industries represented by LG&E's top 25 customers. Second, we explained historical electricity sales in each industry locally based on the national output in each industry, and the corresponding energy-intensity trend fitted from step 1. The models were then used to forecast electricity usage by industry locally, based upon WEFA forecasts of national industrial production for each sector.

Louisville Gas & Electric Company's Major Industrial Electricity Customers

C Code(s) Description	Local Firms
201-207 Foods	Protein Tech. (Ralston Purina), Swift & Co. (Monfort),
	Fischer Packing, Liqui-Dri Foods
208 Beverages	Brown Forman
21 Tobacco Products	Phillip Morris
271 Newspapers	Courier Journal
281 Basic Chemicals (Industrial Inorganic)	Carbide Graphite, Rohm & Haas, United Catalyst
282 Synthetic Materials (Plastics, Synthetic Resins, etc.)	DuPont, American Synthetic, Borden Chemical
2821 Plastic Materials, Synthetic Resins	Geon (BF Goodrich)
284 Soaps and Toiletries	Olin Mathieson
308 Plastic Products, not elsewhere classified	DJ, Inc.
32 Clay, Glass, Stone and Concrete Products	Kosmos Cement, Corhart Refractories
335 Nonferrous Mill Products	Alcan Rolled, Reynolds Metals
363 Household Appliances	General Electric
3711 Motor Vehicles and Passenger Car Bodies	Ford

Our long-term forecasts take into account not only the level of industrial production but also changing manufacturing tools and techniques by way of a trend term on the ratio of electricity consumed to industrial output. A negative trend may indicate an emphasis on conservation and energy efficiency, while a positive trend may reflect increased automation of the manufacturing process. With this method we estimated the electricity sales for each of the 13 industries which comprise the top 25 industrial customers of LG&E. The residual was estimated based only on projected industrial production.

### Step 1

Over time, industries substitute among labor, capital, land, and energy inputs in response to technological change and the relative prices of inputs. Some manufacturers, like food processors, have chosen to increase the electricity intensity of their production processes; others, like household appliance producers, have decreased their electricity intensity.

To investigate the trends in the intensity of electricity usage in the production processes of the above 13 industrial sectors, we used the ratio of the quantity of electricity purchased (QELEC, thousand KWH) to the industrial production index (IPI) for that particular industry at the national level. A negative trend over time indicates decreasing electricity usage per output, and therefore greater energy efficiency and conservation. A positive trend does not signal inefficiency or a disregard for energy conservation, but may indicate increased automation of the manufacturing process or a change in the composition of the end product. We collected data on the quantity of electricity purchased and the IPI for these industrial sectors for the period 1972-1996 (the former from Annual Survey of Manufacturers and the latter from CITIBASE).

We fit a time trend for each of the 13 industries by estimating the following regression equation:

$$(QELEC_{jt} / IPI_{jt}) = a_j + b_j *t + e_{jt},$$
  
where  $j = 1,.....13$  industries;  $t = 1972,.....1996$ ;  $e = error term$ .

The results of these 13 regressions are shown in the table below. While some industries have experienced negative trends, others have experienced positive trends. Based on these regression results, we forecast the ratio of the quantity of electricity consumed to industrial output for each industry for each year of the period 1997-2020.

Intensity of Electricity Usage Trend Regression Results:  $(QELEC_{jt}/IPI_{jt}) = a_j + b_j *t + e_{jt}$ 

	Coeffi	cients	t-stat	istics		Avg. Impact
Industrial Sector	Intercept	Time Trend	Intercept	Time Trend	Adjusted R ²	of Trend
Foods (201-207)	-3,423,430	1,947.71	-3.12	3.52	0.32	0.44%
Beverages (208)	758,853	-350.77	2.20	-2.02	0.11	-0.56%
Tobacco Products (21)	-404,421	210.58	-7.06	7.30	0.69	1.55%
Newspapers (271)	-1,204,042	621.20	-5.90	6.03	0.60	2.14%
Basic Chemicals (281)	9,553,437	-4,423.28	1.85	-1.70	0.07	-0.57%
Synthetic Materials (282)	5,563,018	-2,668.87	6.02	-5.73	0.57	-1.01%
Plastic Materials, Synthetic Resins (2821)	2,539,933	-1,195.92	3.38	-3.15	0.27	-0.72%
Soaps and Toiletries (284)	-912,165	473.45	-3.16	3.25	0.29	1.71%
Plastic Products, not elsewhere classified (308)	3,128,943	-1,416.51	1.36	-1.22	0.02	-0.45%
Clay, Glass, Stone and Concrete Products (32)	-1,085,096	707.47	-1.92	2.48	0.18	0.22%
Nonferrous Mill Products (335)	-1,376,278	750.95	-3.36	3.64	0.34	0.66%
Household Appliances (363)	1,413,958	-697.98	13.95	-13.66	0.89	-2.45%
Motor Vehicles and Passenger Car Bodies (3711)	-1,031,185	558.94	-2.63	2.83	0.23	0.71%

Seven of the 13 industrial sectors exhibited positive electricity intensity trends, all with significant coefficients. The sectors with positive electricity intensity trend coefficients are Foods, Tobacco, Newspapers, Soaps and Toiletries, Clay, Glass, Stone & Concrete, Nonferrous Mill Products, and Motor Vehicles. The impact of the trend on the electricity/production ratio is roughly 2 percent per year for the Newspapers sector, 1.71 percent per year for Soaps and Toiletries, 1.55 percent for Tobacco, 0.71 percent per year for Motor Vehicles, 0.66 percent per year for Nonferrous Mill Products, 0.44 percent per year for Foods, and just 0.22 percent per year for the Clay, Glass, Stone and Concrete sector.

Five of the remaining industrial sectors exhibited significant negative electricity intensity trends. These sectors are Beverages, Basic Chemicals, Synthetic Materials, Plastic Materials, and Household Appliances. The impact of the trend on the electricity/production ratio is roughly -2.45 percent per year for the Household Appliances sector, -0.56 percent per year for the Beverages, -1.01 percent per year for the Synthetic Materials sectors, and -0.57 percent per year for the Basic Chemicals, and -0.72 percent per year for Plastic Materials sectors. The Plastic Products, Not Elsewhere Classified industrial sector has a negative, but insignificant electricity intensity trend.

### Step 2

To model the industrial electricity usage by LG&E's major customers, we estimate the following equation for each of the 13 industries for the period 1981-1998:

$$MWH_{it} = a_i + b_i * IPI_{it} + c_i * (QELEC_{it} / IPI_{it}) + e_{it}.$$

For the model of residual sales (total industrial sales subtracts top 25 customers' sales) we estimated:

$$MWH_{it} = a_i + b_i * IPI_{it} + e_{it}.$$

In addition to the variables above, a number of the equations included a dummy variable in order to account for some specific aspect of those particular electricity sales series. The Food sector equation includes a dummy variable to account for an unusual increase in electricity usage in 1984 and 1985. The beverages sector has a dummy to account for a jump in electricity usage since 1990. The Newspapers sector equation includes a dummy to account for the 1992 closure of one facility. The Soaps and Toiletries sector equation includes a dummy to account for an unusually large decline in 1987 and 1988. The Household Appliances sector has a dummy variable to account for an unusual decline in 1982. The Plastic Materials, Synthetic Resins sector has a dummy to account for the significant slow down since 1995. Finally, the Motor Vehicles industrial sector equation includes a dummy variable to account for a strong increase since 1994.

Electricity Sales Regression Results:  $MWH_{it} = a_i + b_i * IPI_{it} + c_i * (QELEC_{it} / IPI_{it}) + e_{it}$ 

	(	Coefficients			t-statistics		
Industrial Sector	Intercept	IPI	QELEC/IPI	Intercept	IPI	QELEC/IPI	Adjusted R ²
Foods (201-207)	-53,915	1,385.9		-4.55	11.46		0.8839
Beverages (208)	-370	162.8		-0.10	4.78		0.9636
Tobacco Products (21)	-99,336	191.3	10.43	-5.44	1.31	12.25	0.9023
Newspapers (271)	22,251	71.5	-0.43	5.29	2.45	-3.91	0.9672
Basic Chemicals (281)	915,739	1,272.5	-0.74	2.02	0.84	-1.59	0.2860
Synthetic Materials (282)	-244,981	2,239.4	1.01	-0.50	1.81	0.68	0.6185
Plastic Materials, Synthetic Resins (2821)	66,138	805.5	İ	4.12	6.64		0.9045
Soaps and Toiletries (284)	73,585	618.3	-1.57	2.18	1.27	-0.62	0.7389
Plastic Products, not elsewhere classified (308)	-55,543	365.4	0.10	-0.19	1.60	0.11	0.8689
Clay, Glass, Stone and Concrete Products (32)	-1,159,178	497.2	3.88	-4.40	1.23	4.24	0.8086
Nonferrous Mill Products (335)	171,878	-6.8	-0.65	8.56	-0.06	-3.19	0.6539
Household Appliances (363)	-240,346	1,325.4	19.23	-1.48	1.75	5.51	0.8945
Motor Vehicles and Passenger Car Bodies (3711)	-1,095,660	162.2	17.06	-6.48	0.53	8.18	0.9708
residual (total U.S. industry)	161,036	5,543.7		4.78	16.99		0.9510

Because the electricity/production ratio is so unstable for the Food sector, only the industrial production index is used as an explanatory variable in that equation. Inclusion of the electricity intensity trend variable for the Beverage industrial sector does not yield a reasonable regression result, so only the industrial production index is used as an explanatory variable in that equation.

Since the Plastic Products, Not Elsewhere Classified industrial sector only emerged as a top 25 customer in 1989, we have only 10 observations for this industry. Therefore the regression results may not be as reliable as those for other industries.

Since the residual is comprised of a mix of various industries, we use the U.S. total industrial production index to account for its growth. We excluded the years 1981 and 1982 due to the marked decline in industrial electricity usage, associated with the last strong recession, in those two years. The regression, therefore, has only 16 observations.

The regression results are given in the table above.

**Industrial Electricity Usage: History & Forecast** 

	Average Ann	ual Growth
Industrial Sector	1990-1998	1999-2020
Foods (201-207)	3.9%	2.5%
Beverages (208)	5.0%	2.2%
Tobacco Products (21)	1.8%	0.0%
Newspapers (271)	-3.4%	-0.7%
Basic Chemicals (281)	-0.1%	0.7%
Synthetic Materials (282)	3.3%	1.4%
Plastic Materials, Synthetic Resins (2821)	4.9%	1.3%
Soaps and Toiletries (284)	3.2%	0.7%
Plastic Products, not elsewhere classified (308)	19.2%	3.3%
Clay, Glass, Stone and Concrete Products (32)	1.8%	2.0%
Nonferrous Mill Products (335)	-1.2%	-0.6%
Household Appliances (363)	-2.2%	-2.0%
Motor Vehicles and Passenger Car Bodies (3711)	7.8%	2.1%
Residual	2.2%	2.0%
Total	1.85%	1.29%

To forecast annual electricity sales for the period 1999-2020 we used the regression coefficients from the preceding table, WEFA's industrial production indexes forecasts, and our forecasted intensity of electricity usage proxy. The average annual growth rates in electricity usage for the 13 industrial sectors during the historical and forecast periods are summarized in the table above.

Five of the 13 industrial sectors are forecast to have higher annual average rates of growth in electricity consumption over the forecast period than they have had over the last eighteen years. The The Newspaper Products sector will continue to use less electricity over time, despite the impact of an increasing electricity intensity trend variable (QELEC/IPI) in our model, but the decline will be slower than in the past. The Basic Chemicals sector is forecast to experience a slow positive rate of growth of less than 1 percent. The Clay, Glass, Stone & Concrete Products is expected to continue its historically strong growth, even increasing the pace slightly. The Nonferrous Mill Products sector, despite having a positive electricity intensity trend, is forecast to decrease its electricity consumption by an average of 0.6 percent per year. The Household Appliances sector (represented by GE), which has the strongest negative electricity intensity trend (in terms of impact of overall usage), is projected to decrease its electricity consumption by an average of 2.0 percent per year.

All of the remaining industrial sectors are forecast to grow at slower rates than they did from 1990 to 1998. The Tobacco sector is scheduled to close in December, 2000. The Beverages, Plastic Materials & Synthetic Resins, and Motor Vehicles sectors are projected to have sharply reduced average annual rates of growth for the forecast period when compared to their historical average rates, though growth will remain fairly robust (in the 1.3 to 3.3 percent range). The Foods, Synthetic Materials, and Soaps & Toiletries sectors are expected to have somewhat slower rates of growth. They will all continue to increase their energy consumption at a moderate pace (0.7 to 2.5 percent per year). The Plastic Products, Not Elsewhere Classified sector, which emerged as a top 25 customer in 1989, and has experienced a four-fold increase in energy consumption since then, is not expected to continue that rapid rate of growth. But it is forecast to remain the fastest growing sector, increasing its electricity usage by an average annual rate of 3.3 percent. The residual is forecast to grow at the robust average annual rate of 2.0 percent, above the overall growth rate of 1.29 percent. Factoring out the residual leaves an average annual rate of growth for the 13 industrial sectors of just 0.86 percent over the forecast period. As a result, in 2020 the residual would account for 33.4 percent of total electricity sales compared to 28.0 percent in 1998.

The various growth rates will result in a marked change in the distribution of Louisville Gas & Electric Company's industrial electricity sales among the thirteen industrial sectors. Four sectors are forecast to increase their respective shares of total industrial electricity sales by at least 0.9 percent, while another three sectors are expected to see their respective shares drop by over 1.9 percent during the period 1999-2020. The Foods, Plastic Products Not Elsewhere Classified, Clay, Glass, Stone & Concrete, and Motor Vehicles industrial sectors accounted for just 15.1 percent of LG&E's total industrial electricity sales in 1983, currently account for 21.6 percent, and are forecast to account for 26.8 percent by the year 2020. On the other hand, the Tobacco, Basic Chemicals, and Household Appliances sectors accounted for 38.7 percent of total industrial electricity sales in 1983, currently account for 28.4 percent, and are forecast to account for just 18.8 percent by the year 2020. Most of the decrease in the share of the latter group is due to the long term trends towards downsizing and increased energy conservation at the General Electric Appliance Park facility.

LG&E Electricity Sales by Industrial Sector as Percent of Total Sales

Industrial Sector	1983	1998	2020
Foods (201-207)	2.9%	3.4%	4.4%
Beverages (208)	0.3%	0.6%	0.7%
Tobacco Products (21)	2.4%	2.7%	0.0%
Newspapers (271)	1.0%	0.5%	0.3%
Basic Chemicals (281)	17.9%	15.8%	14.0%
Synthetic Materials (282)	8.5%	9.8%	9.8%
Plastic Materials, Synthetic Resins (2821)	4.3%	5.5%	5.5%
Soaps and Toiletries (284)	3.6%	3.0%	2.8%
Plastic Products, not elsewhere classified (308)	0.3%	0.7%	1.1%
Clay, Glass, Stone and Concrete Products (32)	5.5%	5.8%	6.6%
Nonferrous Mill Products (335)	3.9%	2.8%	1.8%
Household Appliances (363)	18.4%	9.9%	4.8%
Motor Vehicles and Passenger Car Bodies (3711)	6.4%	11.8%	14.7%
residual	24.9%	28.0%	33.4%

Note: The first percentage of total sales for Plastic Products, not elsewhere classified (308) is for the year 1990.

### References

- Barff, Richard A. and Prentice L. Knight III, "Dynamic Shift-Share Analysis," *Growth and Change*, Spring 1988, pp.1-10.
- Berzeg, Korhan, "The Empirical Content of Shift-Share Analysis," *Journal of Regional Science*, 1978, vol. 18, pp.463-469.
- Bjerklie, John W., "Industrial Energy Use Profile: Significance of Choice," *Gas Energy Review*, June 1995, vol. 23, pp. 8-11.
- Citicorp Database Services, CITIBASE: Citibank Economic Database, New York, 1997.
- Coomes, Paul A., Nan-Ting Chou, and Barry Kornstein, Economic, Demographic, and Industrial Electricity Forecasts 1997 to 2020 for the Louisville Region, June 1997.
- Cornerstone 2020 Marketplace Committee, Greater Louisville Forecasts of Jobs, Population, and Income: 1995 to 2020, Cornerston 2020, Louisville, 1994.
- Elkhafif, Mahmound, "Estimating Disaggregated Price Elasticity in Industrial Energy Demand," *Energy Journal*, 1992, vol. 13, No. 4, pp. 209-217.
- Engle, Robert F., Scott J. Brown, and Gary Stern, "A Comparison of Adaptive Structural Forecasting Methods for Electricity Sales," *Journal of Forecasting*, July/September, 1988, vol. 7, pp. 149-172.
- Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, Washington, D.C., 1987.
- Fischler, Edward B., and Robert F. Nelson, "Integrating Time-Series and End-Use Methods to Forecast Electricity Sales," *Journal of Forecasting*, January/March 1986, vol. 5, pp. 15-30.
- Halvorsen, Robert, Econometric Models of U.S. Energy Demand, Lexington Books, Lexington, Massachusetts, 1978.
- Indiana Business Research Center, *Preliminary Population Projections for Indiana Counties: 2000-2020*, Kelley School of Business, Indiana University, Indianapolis, 1999.
- Kentucky Cabinet for Economic Development, 1996 Kentucky Directory of Manufacturers, Frankfort, 1996.
- Kentucky Population Research, How Many Kentuckians, 1999 Edition, Kentucky State Data Center, University of Louisville, Louisville, 1999.
- Kurre, J.A. and B. R. Weller, "Forecasting the Local Economy Using Time-Series ad Shift-Share Techniques," Environment and Planning A, 1989, vol.21, pp. 753-770.
- U.S. Bureau of Economic Analysis, Local Area Personal Income, 1969-1995, Washington, D.C., 1997.
- U.S. Bureau of Labor Statistics, Employment and Earnings, Washington, D.C., 1998.
- U.S. Bureau of the Census, 1992 Census of Manufacturers, Washington, D.C., 1996.
- U.S. Bureau of the Census, Annual Survey of Manufacturers, Washington, D.C., 1970-1995.
- WEFA Group, U.S. Long-Term Economic Outlook: Fourth Quarter 1997, Eddystone, Pennsylvania, 1997.
- Yanchar, Joyce, "The U.S. Electricity Outlook," *Electrical World*, January 1995, vol. 209, No. 1, p. 28.

## Appendix A

Table 1

Estimated "Competitive Component" Used in Shift-Share Forecast

		1998	1997	LOUISVILLE % of Total Jobs		U.S. % of Total Jobs	
	This						
Industy (SIC)	Forecast	Forecast	Forecast	1998	2020	1998	2020
Contract Construction (15 to 17)	0.0021	0.0020	0.0000	5.16%	5.60%	4.74%	4.97%
Mining (10 to 14)	0.0000	0.0013	0.0012	0.10%	0.08%	0.46%	0.39%
Total Manufacturing				15.67%	11.12%	14.88%	11.81%
Nondurable Manufacturing				6.95%	5.11%	6.06%	4.62%
Food and Kindred Products (20)	-0.0063	-0.0083	-0.0032	1.65%	0.77%	1.35%	0.76%
Tobacco Products (21)	-0.0298	-0.0247	-0.0276	0.49%	0.14%	0.03%	0.02%
Apparel and Other Finished Textile Products (23)	0.0000	0.0000	0.0165	0.35%	0.24%	0.61%	0.37%
Printing and Publishing (27)	0.0022	0.0020	0.0034	1.72%	1.67%	1.24%	1.16%
Chemicals and Allied Products (28)	-0.0228	-0.0254	-0.0192	1.01%	0.52%	0.82%	0.73%
Other Nondurables (22,26,29,30,31)	0.0155	0.0180	0.0419	1.72%	1.78%	1.99%	1.58%
Durable Manufacturing				8.72%	6.01%	8.82%	7.20%
Lumber and Wood Products (24)	-0.0076	-0.0106	-0.0128	0.70%	0.50%	0.64%	0.58%
Furniture and Fixtures (25)	0.0007	0.0006	0.0019	0.43%	0.42%	0.42%	0.39%
Stone, Clay and Glass (32)	0.0008	-0.0003	0.0056	0.40%	0.35%	0.45%	0.39%
Fabricated Metal Products (34)	-0.0150	-0.0084	-0.0135	1.31%	0.75%	1.18%	0.99%
Nonelectrical Machinery (35)	-0.0006	0.0000	0.0000	1.49%	1.15%	1.74%	1.40%
Electrical Machinery (36)	-0.0325	-0.0277	-0.0095	1.69%	0.72%	1.35%	1.13%
Transportation Equipment (37)	0.0023	0.0125	0.0133	2.06%	1.61%	1.49%	1.13%
Other Durables (33,38,39)	0.0048	0.0009	-0.0007	0.65%	0.51%	1.56%	1.18%
Transportation and Public Utilities (40 to 49)	0.0139	0.0129	0.0056	7.50%	8.73%	5.20%	4.67%
Wholesale and Retail Trade (50 to 59)	0.0004	0.0004	0.0005	24.36%	24.43%	23.29%	23.58%
Finance, Insurance and Real Estate (60 to 68)	-0.0054	-0.0050	-0.0059	5.27%	4.54%	5.83%	5.75%
Services (70 to 89)				29.55%	33.70%	29.82%	33.47%
Health Services (80)	0.0023	-0.0002	0.0000	9.11%	11.73%	7.87%	9.93%
Business Services (73)	-0.0008	0.0000	-0.0004	7.12%	9.85%	6.79%	9.47%
Other Services (70,72,75 to 79,81 to 89)	0.0010	-0.0025	0.0001	13.32%	12.12%	15.16%	14.08%
Federal Government (91)	-0.0029	-0.0145	-0.0090	1.79%	1.32%	2.13%	1.89%
State and Local Governments (92,93)	0.0009	-0.0028	-0.0042	10.60%	10.49%	13.64%	13.46%

Table 2
Wage and Salary Jobs by Industry, Louisville MSA (Baseline)

Major Industries (SIC Code)	1970	1980	1990	1998	2000	2010	2020
Mining	594	545	527	592	555	585	595
Construction	15,933	17,550	23,836	29,225	30,550	35,318	40,209
Total Manufacturing	118,658	100,333	87,736	88,817	87,265	86,397	79,783
Nondurable Manufacturing	47,057	41,742	40,864	39,408	38,388	38,881	36,651
Food and Kindred Products (20)	13,448	10,483	10,200	9,342	9,055	8,028	5,509
Tobacco Products (21)	10,292	8,367	4,400	2,783	2,479	1,518	978
Apparel and Other Finished Textile Products (23)	2,426	2,317	2,700	2,000	2,102	1,959	1,718
Printing and Publishing (27)	7,577	7,342	8,400	9,767	10,027	11,332	11,964
Chemicals and Allied Products (28)	9,609	8,825	7,400	5,742	5,354	4,557	3,737
Other Nondurables (22,26,29,30,31)	3,705	4,408	7,764	9,775	9,370	11,485	12,745
Durable Manufacturing	71,602	58,592	46,873	49,408	48,877	47,516	43,132
Lumber and Wood Products (24)	3,951	3,983	3,922	3,958	3,808	3,830	3,587
Furniture and Fixtures (25)	2,615	1,408	2,122	2,417	2,637	3,013	3,034
Stone, Clay and Glass (32)	2,542	2,625	2,122	2,292	2,323	2,508	2,529
Fabricated Metal Products (34)	9,286	9,408	7,822	7,408	6,891	6,341	5,347
Nonelectrical Machinery (35)	12,904	11,991	6,822	8,417	8,367	8,545	8,257
Electrical Machinery (36)	16,260	17,800	12,822	9,592	9,758	7,361	5,141
Transportation Equipment (37)	7,842	7,425	7,722	11,667	11,654	12,206	11,568
Other Durables (33,38,39)	16,200	3,950	3,522	3,658	3,440	3,711	3,668
Transportation and Public Utilities (40 to 49)	22,750	24,292	30,855	42,525	43,785	52,345	62,612
Wholesale and Retail Trade (50 to 59)	69,008	88,975	119,027	138,025	141,819	159,129	175,260
Finance, Insurance and Real Estate (60 to 68)	16,667	23,433	27,664	29,867	30,419	30,583	32,555
Services (70 to 89)	47,666	75,391	125,455	167,458	173,971	200,671	241,795
Health Services (80)	12,740	24,459	40,315	51,600	52,431	63,655	84,147
Business Services (73)	6,801	11,642	26,215	40,375	44,790	54,144	70,679
Other Services (70,72,75 to 79,81 to 89)	28,126	39,290	58,924	75,483	76,750	82,873	86,969
All Government	43,792	61,033	64,427	70,183	71,330	78,014	84,706
Federal Government (91)	11,861	12,437	12,464	10,133	9,166	9,081	9,470
State and Local Governments (92,93)	31,931	48,597	51,964	60,050	62,164	68,932	75,236
Total Nonagricultural Wage and Salary Jobs	335,067	391,552	479,527	566,692	579,694	643,042	717,516

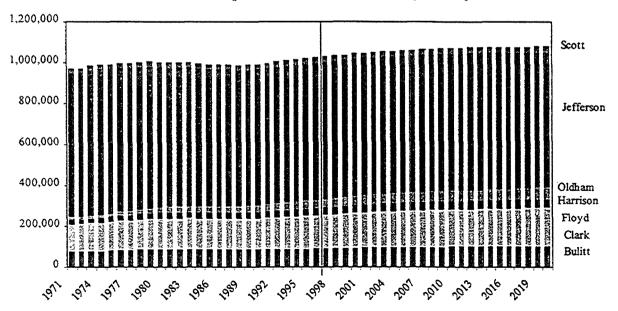
Note: Historical data from the US Bureau of Labor Statistics. Estimates exclude proprietors and other self-employed persons.

Jobs are on a place of work basis and are NOT full-time equivalents; double-counting occurs for person holding two jobs. 'See the monthly BLS publication, "Employment and Earnings", for details.

Table 3

Labor and Proprietors Jobs by Industry, Louisville MSA (Baseline)

Major Industries (SIC Code)	1970	1980	1990	1998	2000	2010	2020
Mining	859	844	738	795	738	729	723
Construction	22,853	25,545	31,472	39,963	41,708	47,918	54,284
Total Manufacturing	122,166	104,227	89,100	90,810	89,188	88,190	81,386
Transportation and Public Utilities (40 to 49)	25,326	27,223	33,723	45,847	46,875	54,929	64,951
Wholesale and Retail Trade (50 to 59)	85,805	105,593	130,228	154,754	158,849	177,925	195,688
Finance, Insurance and Real Estate (60 to 68)	29,494	41,751	40,616	41,134	41,643	40,895	42,643
Services (70 to 89)	75,554	105,813	158,510	207,778	214,781	244,665	292,380
All Government	52,671	66,732	67,112	65,419	65,719	69,454	74,614
Federal Government (91)	11,599	12,838	12,636	9,952	8,930	8,650	8,931
State and Local Governments (92,93)	36,805	49,654	49,433	55,467	56,789	60,803	65,683
Total Nonagricultural Labor and Proprietors Jobs	414,728	477,728	351,499	646,499	659,502	724,704	806,670
+ Ag. services, forestry, fishing, and other	851	1,922	3,643	4,484	4,484	4,484	4,484
+ Farm employment	6,686	7,387	5,632	4,708	4,708	4,708	4,708
= Total Labor and Proprietors Employment (BEA)	422,309	487,117	561,123	655,691	668,694	733,896	815,862


### Appendix B

The forecasts presented in the body of the report are predicated upon a regional demographic forecast produced as part of the 1995 Cornerstone 2020 exercise. Those population forecasts were driven by the need to import people to support the strong job forecasts we developed for the region. We forecast then that to meet the anticipated industrial demand for labor the population of the Louisville MSA would need to grow to 1,153,000 people by the year 2020. That forecast remains our best estimate of the likely regional population given the economic outlook.

In this appendix, we provide an alternative demographic outlook by county. It is generated by the state demographers of Kentucky and Indiana, respectively. It is considerably lower than the one used in the body of this report. We believe it is inconsistent with the regional economic activity we have witnessed this decade. Nevertheless, the state demographers have good data and sound methodology, and their forecasts should be considered carefully. We carry the alternative demographic outlook through to alternative forecasts of personal income, and display these in tables, also.

At the MSA level, our population forecast and that of the state demographers differ by about 100,000 persons in the year 2020. This is a large difference. Whereas we forecast a continuation of the population growth rates we have seen througout the last decade, the demographers forecast a deceleration. Small differences in annual growth rates, compounded over twenty-five years, can have large effects on totals. Over one-half of the difference between the forecasts of the MSA population in the year 2020 is due to the very different outlooks for Jefferson County. While in the body of the report we provided forecasts showing Jefferson County continuing to modestly add population - 43,000 more people between 1998 and 2020 - the state demographers project that the County will lose 12,000 persons on net. However, most of the divergence in the two forecasts occurs during the last decade of the horizon - where uncertainty is greatest. We have provided a duplicate set of Excel spreadsheets which incorporate these alternative demographic forecasts.

# Alternative Forecast Total Population, Louisville MSA, by County



	Į
<u> </u>	
.Ξ	
=	
Se	
ď	
ě	
$\overline{}$	1
C/O	
ئة	
7	
ٽٽ	
S	
71	
ಪ	
≛	
Έ	
Unit	
_	
U	
=	
æ	
_	
ville MSA	
2	
2	
a	
~	ı
╤	ı
?	ļ
.2	
=	
Ó	
$\vdash$	
••	
<u>و</u>	
Ξ	
5	
Ū	
्≡	
_	
7	
32	
7	
Š	
Š	
1	
بين	
0	
Ś	
7	
<u> </u>	
Ě	
5	
ă	
=	
=	
۲۲,	
$\mathbf{-}$	

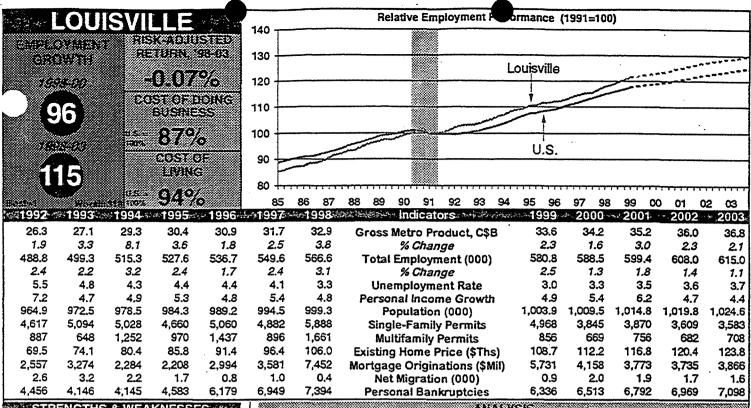
Componen	Components of Personal Income: Louisville MSA and United States (Baseline)	me: Louisville IV	ASA and United	States (Baselin	(3		
	1970	1980	1990	1996	2000	2010	2020
Louisville MSA							
Eamings by Place of Work (\$000)	\$3,041,131	\$7,197,385	\$13,003,531	\$17,812,113	\$21,923,908	\$34,545,260	\$54,227,574
- Personal Contributions for Social Insurance	\$128,539	\$380,998	\$877,433	\$1,253,933	\$1,577,346	\$2,614,871	\$4,625,515
- Adjustment to Place of Residence Basis	\$72,251	\$231,960	\$357,109	\$466,853	\$589,391	\$1,055,510	\$1,890,257
= Net Earnings by Place of Residence	\$2,840,341	\$6,584,427	\$11,768,989	\$16,091,327	\$20,935,954	\$32,985,898	\$51,492,316
+ Dividends, Interest and Rent Income	\$434,191	\$1,323,858	\$3,406,723	\$4,521,851	\$4,738,618	\$7,114,444	\$10,864,249
+ Transfer Payments	\$306,190	\$1,265,476	\$2,558,744	\$3,873,617	\$4,365,043	\$7,668,535	\$13,474,614
= Total Personal Income of Residents (\$000)	\$3,580,722	\$9,173,761	\$17,734,456	\$24,486,795	\$30,039,614	\$47,768,878	\$75,831,179
Population	906,870	953,944	950,420	988,802	1,002,807	1,081,441	1,153,394
Per Capita Income Average Compound Growth Rate	\$3,948	\$9,617 9.31%	\$18,660 6.85%	\$24,764 4.83%	\$29,956 4.87%	\$44,172 3.96%	\$65,746 4.06%
United States							
Earnings by Place of Work (\$000)	\$657,814,000	\$1,686,882,000	\$3,414,296,000	\$4,548,259,000	\$5,644,577,500	\$8,636,635,000	\$13,207,742,500
- Personal Contributions for Social Insurance	\$27,624,000	\$88,283,000	\$223,152,000	\$305,842,000	\$388,303,775	\$626,502,000	\$1,084,939,325
- Adjustment to Place of Residence Basis	\$186,000	\$488,000	\$790,000	\$3,399,000	\$3,775	-200	\$1,825
= Net Earnings by Place of Residence	\$630,004,000	\$1,598,111,000	\$3,190,354,000	\$4,239,018,000	\$5,256,277,500	\$8,010,132,500	\$12,122,805,000
+ Dividends, Interest and Rent Income	\$116,198,000	\$366,045,000	\$908,201,000	\$1,173,114,000	\$1,297,110,000	\$1,958,240,000	\$2,907,170,000
+ Transfer Payments	\$84,646,000	\$322,202,000	\$687,738,000	\$1,067,899,000	\$1,257,737,500	\$2,221,845,000	\$3,968,632,500
= Total Personal Income of Residents (\$000)	\$830,848,000	\$2,286,358,000	\$4,786,293,000	\$6,480,031,000	\$7,811,125,000	\$12,190,217,500	\$19,131,257,500
Population	203,798,722	227,224,719	249,439,545	265,179,411	274,500,000	297,665,000	322,720,000
Per Capita Income	\$4,077	\$10,062	\$19,188	\$24,436	\$28,456	\$40,953	\$59,281
Average Compound Growth Rate		9.46%	9.67%	4.11%	3.88%	3.71%	3.77%
			0000				

Forecast data for the United States from WEFA Group "U.S. Long-Term Economic Outlook", Trend Scenario, First Quarter 1999. Source: Historical data from the US Bureau of Economic Analysis, "Local Area Personal Income, 1969-96", August 1998.

Alternative Forecast Forecasts of Population, by County (Baseline)

	1970	1980	1990	1998	2000	2010	2020
Bullitt County, KY	26,462	43,469	47,896	59,304	61,858	71,401	78,280
Clark County, IN	76,238	89,016	87,696	93,805	96,748	102,115	105,311
Floyd County, IN	55,580	61,406	64,817	71,990	74,802	79,867	82,883
Harrison County, IN	20,512	27,404	29,937	34,730	36,430	40,119	42,317
Jefferson County, KY	696,224	684,359	665,480	672,104	669,722	669,421	659,860
Oldham County, KY	14,664	27,861	33,568	44,395	46,036	51,839	56,779
Scott County, IN	17,190	20,429	21,026	22,939	23,672	24,967	25,739
Louisville MSA	906,870	953,944	950,420	999,267	1,009,268	1,039,729	1,051,169
Hardin County, KY	78,328	88,418	89,449	91,462	89,816	91,322	92,708
Henry County, KY	10,904	12,760	12,850	14,765	15,480	17,227	18,419
Meade County, KY	18,610	22,945	24,294	28,809	30,780	37,507	43,064
Nelson County, KY	23,473	27,634	29,775	35,884	37,675	44,074	49,433
Shelby County, KY	19,012	23,379	24,976	29,583	30,747	35,092	38,141
Spencer County, KY	5,488	5,931	6,846	9,660	10,646	14,790	18,852
6 County Ring	155,815	181,067	188,190	210,163	215,144	240,012	260,617
13 County Region	1,062,685	1,135,011	1,138,610	1,209,430	1,224,412	1,279,741	1,311,786

Sources: Kentucky Population Research, How Many Kentuckians, 1999 Edition, Kentucky State Data Center, Louisville, 1999; and Indiana Business Research Center, Preliminary Population Projections for Indiana Counties: 2000-2020, Kelley School of Business, Indianapolis, 1999.


Alternative Forecast

County Shares of Total Population in the Region (Baseline)

	1970	1980	1990	1998	2000	2010	2020
Bullitt County, KY	2.9%	4.6%	5.0%	5.9%	6.1%	6.9%	7.4%
Clark County, IN	8.4%	9.3%	9.2%	9.4%	9.6%	9.8%	10.0%
Floyd County, IN	6.1%	6.4%	6.8%	7.2%	7.4%	7.7%	7.9%
Harrison County, IN	2.3%	2.9%	3.1%	3.5%	3.6%	3.9%	4.0%
Jefferson County, KY	76.8%	71.7%	· 70.0%	67.3%	66.4%	64.4%	62.8%
Oldham County, KY	1.6%	2.9%	3.5%	4.4%	4.6%	5.0%	5.4%
Scott County, IN	1.9%	2.1%	2.2%	2.3%	2.3%	2.4%	2.4%
Louisville MSA	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Hardin County, KY	50.3%	48.8%	47.5%	43.5%	41.7%	38.0%	35.6%
Henry County, KY	7.0%	7.0%	6.8%	7.0%	7.2%	7.2%	7.1%
Meade County, KY	11.9%	12.7%	12.9%	13.7%	14.3%	15.6%	16.5%
Nelson County, KY	15.1%	15.3%	15.8%	17.1%	17.5%	18.4%	19.0%
Shelby County, KY	12.2%	12.9%	13.3%	14.1%	14.3%	14.6%	14.6%
Spencer County, KY	3.5%	3.3%	3.6%	4.6%	4.9%	6.2%	7.2%
6 County Ring	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

#### Alternative Forecasts for Louisville MSA

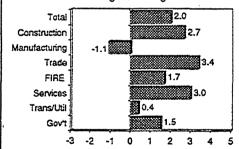
	1996	2000	2010	2020
Population	988,802			
Low		1,003,556	1,020,867	1,019,771
Baseline		1,009,268	1,039,729	1,051,169
High		1,018,164	1,070,539	1,103,776
Jobs - Nonagricultural Wage and Salary	536,783			
Low		577,651	627,169	685,858
Baseline		579,694	643,042	717,516
High		582,872	662,313	758,557
Earnings of Labor and Proprietors	\$17,812,113,000			
Low		\$21,857,974,791	\$33,741,899,657	\$51,939,967,324
Baseline		\$21,923,908,469	\$34,545,260,085	\$54,227,573,559
High		\$22,053,717,228	\$35,624,325,127	\$57,497,284,289
Personal Income of Residents	\$24,486,795,000			
Low		\$28,829,226,975	\$45,089,850,300	\$70,599,523,198
Baseline		\$28,919,489,036	\$45,087,667,577	\$69,893,515,746
High		\$28,962,170,272	\$46,518,886,975	\$73,913,749,765
Per Capita Personal Income of Residents	\$24,764			
Low		\$28,727	\$44,168	\$69,231
Baseline		\$28,654	\$43,365	\$66,491
High		\$28,445	\$43,454	\$66,964



#### STRENGTHS & WEAKNESSES

#### STRENGTHS

- ■Below-average employment volatility.
- Massive UPS hub acts as a magnet for relocating firms.
- Very low business costs.


#### **WEAKNESSES**

'ght labor markets.

- vulnerable to defense cutbacks, since thousands of military personnel are based in the area.
- Transportation industry is vulnerable to a downturn in the national economy.

#### CURRENT EMPLOYMENT TRENDS

June 1999 Employment Growth % Change Year Ago





#### UPSIDE

· Production of new SUV at Ford plant leads to large-scale job gains at parts suppliers.

#### **DOWNSIDE**

 Tight labor market deters corporate relocations. Further cuts at Phillip Morris plant. ≥w Ford SUV Excursion is scrapped due to bad press.

Recent Performance. As UPS has completed its recent round of hiring, Louisville's driving industry transportation and distribution is no longer expanding. This has led to an overall slowdown in the economy, and brought job growth to below the national rate for the first time in more than a year. Manufacturing industries continue to exert the largest drag on the metro area's economy, however. In particular, Phillip Morris has been making massive cuts at its LOU plant. As job growth has decelerated. LOU's labor market has been afforded some slack. Help-wanted ad volume is falling and the unemployment rate, though still low by national standards, is rising.

Auto manufacturing. LOU's manufacturing industry is proceeding with its transformation toward the production of durable goods. As the secular decline of apparel and textile manufacturing continues and cigarette production falls, durable manufacturing's share of total manufacturing employment in the metro area has increased from 51% in 1991 to 57% currently.

Auto manufacturing accounts for much of the increase in durable payrolls. LOU's Ford operations employ almost 9,000 workers, and have plans to increase production and employment over the next year. The truck plant will produce the new Ford Excursion, which will require 1,100 additional workers. LOU's shift to durable manufacturing is a good development for the metro area's economy. Though subject to downturns in the national economy and correspondingly soft auto demand, these jobs are much less vulnerable than unskilled positions in nondurable industries. Auto manufacturing is much more capital intensive and transportation costs are much higher, which reduces the incentive to locate production facilities overseas. Also, auto manufacturing industry wages are much higher than wages in nondurable goods production, providing a boost to LOU's retail, housing and service industries.

Services. Growth in LOU's services industries

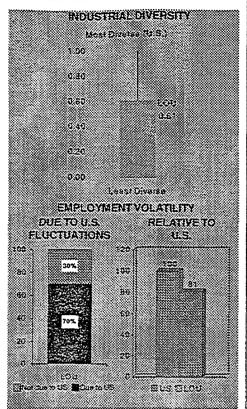
has decelerated sharply. As health service expansions have slowed or been cancelled altogether, particularly at Vencor, Inc., service industry employment growth has fallen by half since late last year. The outlook for LOU's service industries is bright, however, with several large expansions planned over the next few years. Most notably, Sykes Health Plan Services Inc. will invest \$80 million in a new headquarters campus and hire 2,900 new workers. This expansion was predicated on \$32 million in state and local incentives. In addition, Providian Financial Corp., will hire more than 1,000 workers for a new service center.

Risks. LOU's economy faces a number of downside risks. The most prominent is the metro area's tight labor market, which has already stymied expansion efforts. A second risk is a further reduction in cigarette production; Phillip Morris's LOU paper processing plant will remain at risk as long as national cigarette consumption falls. Finally, LOU's financial services industry is at risk of losing a number of headquarters jobs; Louisville-based ARM Financial Group has been rumored to be a takeover target, and if this develops payrolls would likely decline at its headquarters office.

Louisville's transportation and distribution industry will allow the economy to continue to post solid gains. However, the pace of growth will be weaker now that UPS has completed a round of hiring. A slowdown in manufacturing and construction will also curb job growth late this year and into 2000. LOU's greatest advantage remains the favorable living and business cost differential relative to midwestern metro areas, coupled with its proximity to the Midwest. However, weak population trends will limit growth potential in various local industries. LOU's advantages will outweigh disadvantages allowing its economy to expand at an above-average pace.

Ryan T. Cardwell July 1999

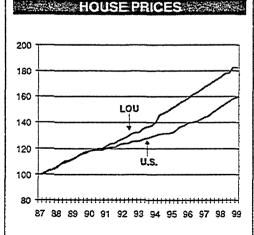
#### EMPLOYM


#### T&INDUSTRY

#### TOP EMPLOYERS

United Parcel Service, Inc 15,339
Ford Motor Company 8,903
GE Appliances
Jewish Hospital HealthCare Services 5,138
University of Louisville
Humana, Inc 4,523
The Kroger Company4,430
Alliant Health System
Louisville Healthcare Network 3,500
American Commercial Lines, Inc 2,814
LG & E Energy Corporation2,600
Phillip Morris USA2,400
Roman Catholic Archdiocese of Louisville 2,275
CARITAS Health Services2,216
Baptist Hospital East2,086
Sears, Roebuck & Company1,985
Bank One Corporation
Vencor, Inc
NPC (National Processing Company) 1,900
Publishers Printing Company

Source: Business First of Louisville, August 1998


Public	
Federal	10,133
State	17,432
Local	42,618
1998	



#### COMPARATIVE EMPLOYMENT AND INCOME

	% of 7	Total Empl	loyment	Averag	e Annual E	arnings
Sector	LOU	KY	us	LOU	KY	US
Mining	0.1%	1.3%	0.5%	\$56,482	\$50,904	\$51,194
Construction	5.2%	4.8%	4.7%	\$29,730	\$26,902	\$32,860
Manufacturing	15.7%	18.3%	14.9%	\$44,205	\$38,200	\$44,091
Durable	55.4%	58.6%	59.3%	na	\$40,201	\$45,979
Nondurable	44.6%	41.4%	40.7%	na	\$35,482	\$41,387
Transport/Utilities	7.5%	5.8%	5.2%	\$39,296	\$36,740	\$43,781
Wholesale Trade	5.6%	4.8%	5.4%	\$39,041	\$34,672	\$42,575
Retail Trade	18.8%	18.9%	17.9%	\$15,771	\$14,831	\$16,664
Finance,Ins.,Real Estate	5.3%	4.0%	5.8%	\$34,151	\$28,995	\$34,930
Services	29.5%	25.2%	29.8%	\$25,290	\$22,934	\$28,483
Memo: Health Services	9.1%	8.7%	7.9%	na".	\$34,216	\$36,760
Government	12.4%	16.8%	15.8%	\$29,606	\$28,026	\$32,829

Percent of total employment - BLS, 1998; Average annual earnings - BEA, 1997



Source: Freddie Mac/Fannie Mae, 1987Q1=100

	CREE	IT QU	ALITY	
MOO	DYS		A	A22
RAT	ING			au

SIC	Industry Employees (0	
581	Eating & drinking places	39.9
806	Hospitals	21.4
531	Department stores	15.1
421	Trucking & courier senices ex	air 13.3
451	Air transportation, scheduled	11.7
737	Computer and data processin	g <b>9.</b> 6
864	Civic, social, & fratemal assoc	iations 9.6
801	Offices & clinics of medical de	octors 9.2
371	Motor vehicles and equipment	9.1
805	Nursing and personal care fac	ilities 8.8
602	Commercial banks	7.5
363	Household appliances	7.5
275	Commercial printing	6.3
734	Services to buildings	5.9
171	Plumbing, heating, air-condition	oning 5.6
	High-Tech Employment	13.0

2.3

E SELEADING INDUSTRIES . . . .

Source: BLS, RFA, 1998

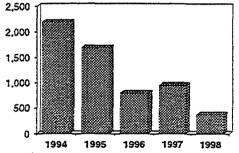
As % of Total Employment

#### MIGRATION FLOWS

Number

Median

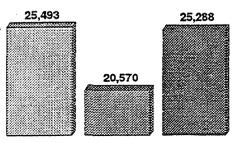
		of Migrants	income
*	Laxington KY	1.027	19,873
,	Corcurati Ort	469	23.828
l	Chicago IL	460	34,642
i	Indantoolis IN	439	25,434
	Nashville TN	364	25,096
Ì	Atlanta GA	2634	28,983
ĺ	Washington DC	222	39,421
l	Terregar FI. Evansvillen IN	223 231	18,979
l	Stilous MO	97	20,489 32,372
l	Total All MSA's	42.913	20.802
I			***************************************


#### From Louisville

Into Louisville

Lexington KY	891	18,608
Circorcal CHS	529	26.568
Indianapolis IN	489	23,171
Nashille TN	437	26,740
Atlanta GA	327	16,293
Tampa FL	255	17,475
Chicago L	241	32,789
Columbus Ch	217	36,733
Washington DC	185	25,501
Jackschulle FL	179	39,007
Total All MSA's	42,508	20,971

Total Net Migration 405 -169


#### Net Migration, LOU



	Domestic	Foreign	Total
1994	1,678	518	2,196
1995	985	711	1,696
1996	77	722	799
1997	76	875	951
1998 -577		954	377

Source: IRS (top), 1997; Census Bureau, 1998

#### PER CAPITA INCOME



ELOU EKY MUS

Source: Bureau of Economic Analysis, 1997

## Section E

# 1999 IRP FORECASTING MODEL DESCRIPTIONS, EQUATIONS AND STATISTICAL TEST RESULTS

#### I. ENERGY SALES FORECASTING MODELS

The short-term energy sales model equations were estimated on the basis of the monthly historical data for January 1994 - December 1998. The annual data for 1981-1998 were used to estimate the long-term energy sales model equations. The estimated model equations are presented in Tables E1 and E2, with the results of the statistical tests performed on the equations. An econometric PC software package called "EVIEWS" was utilized for estimating both the short-term and the long-term model coefficients and conducting statistical robustness tests.

#### Residential and Small Commercial/industrial Sectors

Residential and small commercial/industrial (or general service) energy sales forecasting models were disaggregated into the equations for non-weather-sensitive (or base) energy sales and weather-sensitive energy sales. The weather-sensitive energy sales models were divided into space-heating energy usage per customer and air-conditioning energy usage per customer equations. In the long-term model, the residential and general service space-heating energy sales were further disaggregated into all-electric space-heating energy sales and regular (or non-electric furnace) space-heating energy sales. The primary use of the regular space-heating energy is for the circulating fan of gas furnaces. In the short-term model, the general service sector was divided into non-public-authority and public authority classes.

In the short-term model, monthly sales data were used to disaggregate total class sales into base usage and weather-sensitive usage. Each classes' base KWH sales, by

month and year, were determined by using the load research data and ex post analysis of forecast residuals. The load research data are used to set initial values. The initial values of base loads are vigorously tested and adjusted through an iteration procedure based on regression analysis of monthly energy sales and simulation of actual sales. The iteration procedure is completed when the final estimate of base load and subsequent estimate of temperature-sensitive load yield ex post forecasts of monthly sales fairly close to the actual sales for every month.

The base usage and the separately-metered outdoor lighting and electric water heating sales were subtracted from monthly total sales. The remainder was defined as space-heating energy sales if the month is in the winter season, or air-conditioning sales if the month belongs to the summer season, or a combination of heating and cooling energy sales if the month is in the swing season. The winter season covers November through April, the summer season includes June through September and the swing seasons are May and October. Primary drivers of the short-term residential and small commercial energy sales are heating degree days (HDD), cooling degree days (CDD), monthly variation factors which allow the weather variable coefficients to change each month, and a short-term trend variable.

In the long-term model, annual residential and small commercial energy sales were broken down into base usage, space-heating usage and air-conditioning usage by assuming the minimum-usage month's sales as the base usage of the class in each month of the year.

The base usage amount was then subtracted from each month's total energy sales to the

class. The residential space-heating usage was further broken down into all-electric space-heating usage and non-electric-furnace space-heating energy usage. *LG&E* records the energy sales to all-electric residential customers separately from the energy sales to "other" residential customers. Therefore, application of the same "minimum-monthly-usage" approach to the all-electric customer sales yielded the estimates of all-electric space-heating usage. The same approach was followed to separate the non-electric-furnace space heating usage from the monthly total sales to "other" residential customers.

4 f

The main explanatory variables of the long-term residential energy sales model are the real price of electricity by season and the real per capita personal income, cooling and heating degree days, the composite saturation rate of air conditioners, and a long-term trend variable. The real values of price and income are in 1982-1984 dollar and 1992 dollar, respectively. The main drivers of the small commercial model are the real price of electricity by season, the service industry employment, cooling and heating degree days, and a long-term trend variable.

The estimated usage per customer model coefficients reflect a slightly increasing trend in base (non-weather-sensitive) usage of both residential and small commercial customers but a slightly declining trend in residential weather-sensitive usage. Rising penetration of new electric appliances, such as personal computers, microwave ovens and home entertainment systems, is believed to be responsible for the increasing trend. The slightly declining trend in weather-sensitive usage is actually a net effect of two phenomena happening in the energy market. The utilization rate of weather-sensitive appliances has

been gradually increasing due to the stabilization of energy prices and the increase in real per capita income over the last several years. Capital investments for conservation and retrofitting of old appliances with more energy-efficient units continuously reduce residential air-conditioning and space-heating energy usage.

#### Large Commercial Sector

188

The short-term forecasting model of large commercial energy sales also consists of non-weather-sensitive (base load) energy sales, space-heating energy sales and air-conditioning energy sales equations. Similar to the case of residential and general service sales modeling, the base load for each month and year was determined by using the load research data and ex post analysis of forecast residuals. The main drivers of the large commercial sales model are annual trend variables, heating and cooling degree days, and monthly factors for weather sensitivity. Like the general service sales models, separate model equations were developed for the non-public-authority class and public authority class. Fort Knox is classified as a large commercial public authority customer under a special contract rate. Sales to Fort Knox were modeled with separate equations.

The long-term large commercial energy sales forecasting model is a single-equation model. The variables included in the model are the real price of electricity, non-manufacturing employment, cooling degree days and a long-term trend variable. A small positive coefficient estimated for the long-term trend variable implies that the net impact of the increasing trend in base load and the decreasing trend in weather-sensitive sales will be a slight increase in total usage per customer.

#### Large Industrial Sector

The short-term forecasting model for large industrial energy sales has the capability to individually forecast energy sales to each of the twenty-five largest LG&E customers. Energy sales to those twenty-five customers comprise about 75% of total large industrial energy sales. Sales to the top twenty-five customers were projected for the next five years by combining the individual future usage information provided by the industrial customer survey conducted through the LG&E Account Executives, with their most recent five-year (1994-1998) compound sales growth rates. The remainder of the large industrial sales was forecasted in aggregate using the annual growth rates of 1.0% for 2000, 3.5% for 2001, and 2.0% for 2002-2004. The annual growth rates projected for 2000 (1.0%) and 2001 (3.5%) reflect the slowdown of the regional economy in 2000 and the catch-up growth in 2001 predicted by the Regional Financial Associates. The annual growth rate projected for 2002-2004 (2.0%) is the average annual compound growth rate experienced during 1994-1998.

In the long-term forecasting model, the top twenty-five customers were classified by their standard industrial classification (SIC) code. Econometric analyses were performed by the University of Louisville on energy sales to each of the thirteen SIC groups for the top twenty-five customers and a separate group for the residual customers. The main drivers of the large industrial sales model are industrial productivity index by SIC, electric energy intensity by industry and trend variables. The modeling results and forecasts are provided in pp. 13-18 of the U of L's forecasting study report attached in Section D of Appendix 1.

#### Street Lighting Sector

The change in street lighting energy sales is a function of the change in the number of street lights, the number of retrofitted bulbs and energy efficiency improvements in new street lights. The future rate of increase in street lighting energy sales was projected by using the ratio of the street lighting energy sales growth rate to the residential customer growth rate averaged over the years of 1993-1998. Therefore, future annual growth rates for street lighting energy sales are estimated by multiplying the projected annual growth rates of residential customers by the street lighting growth ratio.

#### II. PEAK DEMAND FORECASTING MODEL

The 1999 peak demand model has two equations; one for summer peak load and another for winter peak load. In both of the model equations, the number of residential customers was used to reflect the growth of the demographic base. The reason for using the number of residential customers to track the service area's population growth is that historical numbers of residential customers are directly observable and readily available, while annual population figures are estimates which are reported with a one or two year time lag in the census years. Temperature-Humidity Index averaged for the twenty-four hour period prior to the time of peak demand was included to accommodate the cumulative impact of weather on summer peak load. Heating degree hours at the time of peak demand was selected for the winter peak demand equation.

#### III. CUSTOMER FORECASTING MODEL

- 477

Both the short-term and long-term residential and small commercial (or general service) energy sales forecasts were produced by multiplying the per customer usage forecast from the energy sales model by the number of customers forecast from the customer forecasting model.

As explained in section 7.(7)(b), the annual total number of residential customers were forecasted based on the population projections provided by the University of Kentucky and LG&E's projected number of persons per residential electric customer. LG&E's forecast of the number of persons per residential electric customer was produced by using the Gompertz-curve equation estimated in Table E2.

As shown in Table A9 of Section A, Appendix 1, the number of residential all-electric customers was fairly stable for the last several years. New residential gas service was restricted from October 1973 through August 1980. With the gas service moratorium lifted, new residential customers and also existing all-electric customers were allowed to receive gas service. As heat pumps and electric resistance heaters installed during the moratorium period have reached the end of their service lives in recent years, the residential customers' conversion to gas service has become fairly active. The number of conversions in 1998 almost canceled out the number of new all-electric customer additions. The economic advantage of natural gas as a heating fuel source over electricity is quite obvious from the current level and foreseeable prospects of the gap between LG&E's gas and

electricity prices. The main reason for new all-electric customers is their inaccessability to gas mains or the high cost of gaining access to gas mains. The number of residential all-electric customers is expected to grow from 40,723 in 1998 according to the annual growth rates estimated by prorating the annual growth rates projected for total residential customers with the average of 1997 and 1998 ratios of electric space-heating customer growth rate to the total residential customer growth rate.

The number of general service customers was forecasted as a function of growth in the population base and a long-term trend. The estimated model equation for general service customers is reported in Table E2. As implied by a positive coefficient of the trend variable, per capita demand for retail trade, financial and other small commercial/industrial services would increase over time as the standard of living increases. Due to the same reasons cited for the case of all-electric residential customers, the number of general service electric space-heating customers has been declining since 1991. The declining trend of those customers is reflected in Table A9 of Section A, Appendix 1, along with the history of all-electric residential customers. The economic advantage of natural gas as a heating fuel source over electricity is assumed to continue during the forecast period. The number of general service electric space-heating customers was projected to decrease from 1,064 in 1998 at an annual rate of 1.42%. The annual rate of decrease was estimated from the average rate of decrease experienced in 1993-1998.

The short-term large commercial energy sales forecasting model is also a per customer usage model and requires customer projections to produce an energy sales forecast

for the class. The annual growth rates projected for 1999-2004 were obtained by adjusting the average annual growth rate for 1993-1998 with RFA's short-term regional economic forecast.

#### TABLE E1

#### SHORT-TERM MODEL EQUATIONS FOR ENERGY SALES

#### I. Residential Sector

RSMWH = RSNWS + RSOLWH + RSSHS + RSACS

A. Non-Weather-Sensitive Energy Sales

RSNWS = RSNWSPC*RSCUST*BILLDAYS

RSNWSPC = 20.57 + 0.31*(Year-1998)

B. Outdoor Lighting and Water Heating Energy Sales

Annual total sales for residential outdoor lighting and water heating in 1999-2004 were forecasted by compounding the 1998 actual energy sales with the five-year (1993-1998) average annual growth rates of 3.78% and -5.40%, respectively. Monthly sales forecasts were then generated by distributing the projected annual totals to each month on the basis of the five-year (1993-1998) average ratios of monthly sales to annual total. The five-year average monthly allocation factors are as follows:

Month .	Outdoor Lighting	Water Heating
1	10.01%	10.74%
2	8.49%	10.23%
3	8 <b>.</b> 59%	9.90%
4	7.46%	9.40%
5	7.01%	8.51%
6	6.41%	7.78%
7	6.86%	7.02%
8	7.53%	6.46%
9	8.11%	6.46%
10	9.26%	6.86%
11	9.75%	7.65%

12 10.52% 8.98% Total 100.00% 100.00%

- C. Weather-Sensitive Energy Sales
  - 1) Space-heating energy sales, November April

RSSHSPC = 
$$0.37096*(HDD)-0.02299*(D2*HDD)-0.08001*(D3*HDD)$$
  
 $(60.379)$   $(-4.344)$   $(-7.616)$   
 $-0.14629*(D4*HDD)-0.11119*(D11*HDD)$   
 $(-8.484)$   $(-6.885)$   
 $-0.04903*(D12*HDD)-6.77033*TREND$   
 $(-2.807)$   $(-4.267)$   
 $+60.77705*D294$   
 $(16.162)$   

$$R^2 = 0.9889$$
  

$$S\hat{y} = 13.49892$$
  

$$D.W. = 1.2435$$

Notes:

- i) The value in the parenthesis below each of the model coefficients represents t-statistic for the corresponding variable.
- ii)  $R^2$  = The coefficient of multiple determination.
- iii) Sŷ = Standard error of the regression.
- iv) D.W. = Durbin-Watson Statistic.
  - 2) Air-conditioning energy sales, June September

$$RSACS = RSACSPC*RSCUST$$

3) Air-conditioning and space-heating energy sales, May & October

$$R^2 = 0.9720$$
  
 $S\hat{y} = 12.86448$ 

#### II. Small Commercial/Industrial Sector

1. Non-Public-Authority Class

$$GSMWH = GSNWS + GSOLWH + GSSHS + GSACS$$

A. Non-Weather-Sensitive Energy Sales

$$GSNWS = GSNWSPC*GSCUST*BILLDAYS$$

GSNWSPC = 
$$75.8*1.012^{(year-1998)}$$

B. Outdoor Lighting and Water Heating Energy Sales

Annual General Service outdoor lighting and water heating energy sales were forecasted by compounding the 1998 actual energy sales with the five-year average annual growth rate (1993-1998) of 5.65%. Monthly sales forecasts were then generated by distributing the projected annual totals to each month on the basis of the five-year (1993-1998) average ratios of monthly sales to annual total. The five-year average monthly allocation factors are as follows:

	Outdoor Lighting
<b>Month</b>	& Water Heating
1	9.91%
2.	8.40%

3	8.50%
4	7.49%
5	7.01%
6	6.45%
7	6.87%
8	7.53%
9	8.11%
10	9.33%
11	9.77%
12	10.63%
Total	100.00%

#### C. Weather-Sensitive Energy Sales

1) Space-heating energy sales, November - April

GSSHSPC = 
$$0.41267*(HDD)+0.13763*(D2*HDD)-99.52534*Ln(TREND94)$$
  
(13.327) (3.603) (-5.751)

$$R^2 = 0.8495$$
  
 $S\hat{y} = 64.32425$   
D.W. = 1.3205

2) Air-conditioning energy sales, May - October

$$GSACS = GSACSPC \times GSCUST$$

$$R^2 = 0.9913$$
  
 $S\hat{y} = 43.68619$   
D.W. = 2.2622

#### 2. Public Authority Class

$$GSPAMWH = GSPANWS + GSPAWHS + GSPASHS + GSPAACS$$

#### A. Non-Weather-Sensitive Energy Sales

GSPANWSPC = 
$$142.6*1.012^{\text{(year-1998)}}$$

#### B. Water Heating Energy Sales

Annual General Service Public Authority water heating energy sales were forecasted by compounding the 1998 actual energy sales with the five-year average annual growth rate (1993-1998) of -15.36%. Monthly sales forecasts were then generated by distributing the projected annual totals to each month on the basis of the five-year (1993-1998) average ratios of monthly sales to annual total. The five-year average monthly allocation factors are as follows:

Month	Water Heating
1	10.50%
2	9.77%
3	9.20%
4	9.02%
5	9.09%
6	8.79%
7	7.02%
8	6.49%
9	6.29%
10	7.06%
11	7.80%
12	8.98%
Total	100.00%

#### C. Weather-Sensitive Energy Sales

1) Space-heating energy sales, November - April

$$GSPASHS = GSPASHSPC * GSPACUST$$

$$R^2 = 0.7348$$
  
 $S\hat{y} = 248.062$   
D.W. = 1.4111

2) Air-conditioning energy sales, May - October

$$R^2 = 0.9039$$
  
 $S\hat{y} = 201.9757$   
D.W. = 2.3092

#### III. Large Commercial Sector

1. Non-Public-Authority Class

$$LCMWH = LCNWS + LCSHS + LCACS$$

A. Non-Weather-Sensitive Energy Sales

$$LCNWSPC = 2238.8*1.0051^{(year-1998)}$$

- B. Weather-Sensitive Energy Sales
  - 1) Space-heating energy sales, November April

LCSHS = LCSHSPC * LCCUST

$$R^2 = 0.5702$$
  
 $S\hat{y} = 1159.552$   
D.W. = 1.5241

3) Air-conditioning energy sales, May - October

LCACSPC = 
$$55.0792*(CDD)+2525.367*ln(TREND94)$$
  
(26.509) (4.734)

$$R^2 = 0.9388$$
  
 $S\hat{y} = 2143.958$   
D.W. = 1.3075

2. Public Authority Class

$$LCPAMWH = LCPANWS + LCPASHS + LCPAACS$$

A. Non-Weather-Sensitive Energy Sales

$$LCNWSPC = 4538.2*1.0051^{(year-1998)}$$

#### B. Weather-Sensitive Energy Sales

1) Space-heating energy sales, November - April

LCPASHS = LCPASHSPC * LCPACUST

LCPASHSPC = 
$$7.33911*HDD+11.41801*(D2*HDD)+13.11805*(D3*HDD)$$
  
(2.080) (4.460) (4.004)  
 $+7.09809*(D12*HDD)+3936.172*in(TREND94)$   
(2.435) (2.123)  

$$R^2 = 0.7176$$

$$S\hat{y} = 4146.030$$

$$D.W. = 1.7869$$

$$O1 = 0.3024$$

Notes:  $o_1$  = First-order autocorrelation coefficient.

3) Air-conditioning energy sales, May - October

LCPAACS = LCPAACSPC * LCPACUST

3. Fort Knox

$$FKMWH = FKNWS + FKSHS + FKACS$$

A. Non-Weather-Sensitive Energy Sales

$$FKNWS = 155532*0.99^{(year-1998)}$$

- B. Weather-Sensitive Energy Sales
  - 1) Space-heating energy sales, November April

FKSHS = 
$$1.18778*HDD+0.66877*(D2*HDD)+1.06851*(D3*HDD)$$
  
 $(6.596)$   $(3.192)$   $(3.817)$   

$$R^2 = 0.6030$$

$$S\hat{y} = 366.795$$

$$D.W. = 1.8718$$

$$O1 = 0.3526$$

3) Air-conditioning energy sales, May - October

FKACS = 
$$15.00831*(CDD)-1.79788*(D7*CDD)$$
  
 $(16.094)$   $(-2.623)$   
 $R^2 = 0.9149$   
 $S\hat{y} = 698.895$   
 $D.W. = 1.7353$   
 $O1 = 0.7273$ 

#### V. Large Industrial (or Power) Sector

Sales to the top 25 customers were projected for the next five years by combining the individual future usage information provided by the industrial customer survey conducted through LG&E Account Executives with their most recent five-year (1994-1998)

compound growth rates. The remainder of the large industrial sales was forecasted by using the annual growth rate of 1.0% for 2000, 3.5% for 2001, and 2.0% for 2002-2004.

#### TABLE E1(continued.)

#### LIST OF VARIABLES FOR THE SHORT-TERM FORECASTING MODELS

<u>Var</u>	iable Name	<u>Description</u>
1.	BILLDAYS	Number of days included in a given monthly bill.
2.	CDD	Monthly total cooling degree days calculated with daily average temperatures based on 24 hourly readings
3.	D2	Dummy variable for the month of February; equals one if the month is February, zero otherwise.
4.	D3	Dummy variable for the month of March; equals one if the month is March, zero otherwise.
5.	D4	Dummy variable for the month of April; equals one if the month is April, zero otherwise.
6.	D5	Dummy variable for the month of May; equals one if the month is May, zero otherwise.
7.	D6	Dummy variable for the month of June; equals one if the month is June, zero otherwise.
8.	D7	Dummy variable for the month of July; equals one if the month is July, zero otherwise.
9.	D8	Dummy variable for the month of August; equals one if the month is August, zero otherwise.
10.	D9	Dummy variable for the month of September; equals one if the month is September, zero otherwise.
11.	D10	Dummy variable for the month of October; equals one if the month is October, zero otherwise.
12.	D11	Dummy variable for the month of November; equals one if the month is November, zero otherwise.
13.	D12	Dummy variable for the month of December; equals one if the month is December, zero otherwise.

14.	GSACS	Air-conditioning energy sales to non-public-authority general service (or small commercial) customers.
15.	GSACSPC	Non-public-authority general service air-conditioning energy sales per customer.
16.	GSCUST	Total number of non-public-authority general service customers.
17.	GSMWH	Total energy sales to non-public-authority general service customers.
18.	GSNWS	Non-weather-sensitive (or base load) energy sales to non-public- authority general service customers.
19.	GSNWSPC	Non-public-authority general service non-weather-sensitive energy sales per customer.
20.	GSOLWH	Outdoor lighting and water heating energy sales to general service customers.
21.	GSPAACS	Air-conditioning energy sales to public authority general service customers.
22.	GSPAACSPC	Public authority general service air-conditioning energy sales per customer.
23.	GSPACUST	Total number of public authority general service customers.
24.	GSPAMWH	Total energy sales to public authority general service customers.
25.	GSPANWS	Non-weather-sensitive (or base load) energy sales to public authority general service customers.
26.	GSPANWSPC	Public authority general service non-weather-sensitive energy sales per customer.
27.	GSPASHS	Space heating energy sales to public authority general service customers.
28.	GSPASHSPC	Public authority general service space-heating energy sales per customer.
29.	GSPAWHS	Water heating energy sales to public authority general service

#### customers

30.	GSSHS	Space heating energy sales to non-public-authority general service customers.
31.	GSSHSPC	Non-public-authority general service space-heating energy sales per customer.
32.	HDD	Monthly total heating degree days.
33.	LCACS	Air-conditioning energy sales to non-public-authority large commercial customers.
34.	LCACSPC	Non-public-authority large commercial air-conditioning energy sales per customer.
35.	LCCUST	Total number of non-public-authority large commercial customers.
36.	LCMWH	Total energy sales to non-public-authority large commercial customers.
37.	LCNWS	Non-weather-sensitive (or base load) energy sales to non-public- authority large commercial customers.
38.	LCNWSPC	Non-public-authority large commercial non-weather-sensitive energy sales per customer.
39.	LCPAACS	Air-conditioning energy sales to public authority large commercial customers.
40.	LCPAACSPC	Public-authority large commercial air-conditioning energy sales per customer.
41.	LCPACUST	Total number of public authority large commercial customers.
42.	LCPAMWH	Total energy sales to public authority large commercial customers.
43.	LCPANWS	Non-weather-sensitive (or base load) energy sales to public authority large commercial customers.
44.	LCPANWSPC	Public authority large commercial non-weather-sensitive energy sales per customer.

45.	LCPASHS	Space-heating energy sales to non-public-authority large commercial customers.
46.	LCPASHSPC	Non-public-authority large commercial space-heating energy sales per customer.
47.	LCSHS	Space-heating energy sales to non-public-authority large commercial customers.
48.	LCSHSPC	Non-public-authority large commercial space-heating energy sales per customer.
49.	RSACS	Air-conditioning energy sales to residential customers.
50.	RSACSPC	Residential air-conditioning energy sales per customer.
51.	RSCUST	Total number of residential customers.
52.	RSMWH	Total energy sales to residential customers.
53.	RSNWS	Non-weather-sensitive energy sales to residential customers.
54.	RSNWSPC	Residential non-weather-sensitive energy sales per customer.
55.	RSOLWH	Outdoor lighting and water heating energy sales to residential customers.
56.	RSSHS	Space-heating energy sales to residential customers.
57.	RSSHSPC	Residential space-heating energy sales per customer.
58.	TREND94	The current year minus 1994.
59.	YEAR	The current year.

#### TABLE E2

## LONG-TERM MODEL EQUATIONS FOR ENERGY SALES, PEAK DEMAND AND CUSTOMER FORECASTING

I. Residential Energy Sales

. . .

$$RSMWH = RSNWS + RSACS + RSESHS + RSNESHS$$

1) Non-weather-sensitive energy sales

$$ln(RSNWSPC) = 8.94749-0.06089*ln(RSPRICE) +0.07123*ln(TREND) (55.562) (-1.595) (8.369)$$

$$R^2 = 0.9374$$
  
 $S\hat{y} = 0.01811$   
D.W. = 2.2492

2) Air-conditioning energy sales

$$RSACS = RSACSPC * RSCUST$$

$$ln(RSACSPC) = -0.13601*ln(RSSUMPR) + 1.14911*ln(CDD*ACSAT)$$

$$(-1.043) (8.523)$$

$$+0.03534*ln(PCINC)-0.14605*ln(TREND)$$

$$(0.348) (-3.598)$$

$$R^2 = 0.8754$$
  
 $S\hat{y} = 0.07137$   
D.W. = 1.4953

$$ln(ln(ACSAT)) = ln(ln(0.7763)) + t*ln(0.8864)$$
  
where t = year -1986

- Notes: i) The value in parenthesis below each of the model coefficients represents t-Statistic for the corresponding variable.
  - ii)  $R^2$  = The coefficient of multiple determination.
  - iii)  $S\hat{y} = Standard error of the regression.$
  - iv) D.W. = Durbin-Watson Statistic.

3) Electric space-heating energy sales

RSESHS = RSESHPC * RSESHCUST

$$\ln(\text{RSESHPC}) = -0.91761*\ln(\text{RSWINPR}) + 1.56718*\ln(\text{HDD}) -0.45066*\ln(\text{TREND})$$
  
(-2.345) (7.096) (-2.131)

$$R^2 = 0.7993$$
  
 $S\hat{y} = 0.09663$   
D.W. = 1.9845  
 $\rho_1 = 0.3024$ 

Notes:  $o_1$  = First-order autocorrelation coefficient

4) Non-electric space-heating energy sales

RSNESHS = RSNESHPC * RSNESHCUST

$$ln(RSNESHPC) = -0.92036*ln(RSWINPR) + 1.11482*ln(HDD)$$
  
(-4.051) (10.787)

$$R^2 = 0.5105$$
  
 $S\hat{y} = 0.16281$   
 $\rho_1 = -0.6626$   
D.W. = 2.7355

II. Small Commercial (or General Service) Energy Sales

$$GSMWH = GSNWS + GSACS + GSESHS + GSNESHS$$

1) Non-weather-sensitive energy sales

GSNWS = GSNWSPC * GSCUST

$$ln(GSNWSPC) = 8.51196 + 0.66663*ln(SERVEMP/GSCUST)$$
  
(8.972) (1.829)

$$R^2 = 0.9020$$
  
 $S\hat{y} = 0.02094$   
D.W. = 2.1916  
 $Q_1 = 0.6854$ 

2) Air-conditioning energy sales

GSACS = GSACSPC * GSCUST

$$ln(GSACSPC) = -0.02988*ln(GSSUMPR) + 0.67886*ln(SERVEMP/GSCUST)$$
 $(-0.239)$  (2.317)
 $+0.91777*ln(CDD)$ 
(9.114)

$$R^2 = 0.8327$$
  
 $S\hat{y} = 0.06416$   
D.W. = 2.0484  
 $\rho_1 = 0.5136$ 

3) Electric space-heating energy sales

GSESHS = GSESHSPC * GSESHCUST

$$ln(GSESHSPC) = 3.22131 + 0.87749*ln(HDD)-0.08226*ln(TREND)$$
  
(2.696) (6.193) (-5.464)

$$R^2 = 0.8796$$
  
 $S\hat{y} = 0.04606$   
D.W. = 1.7081

4) Non-electric space-heating energy sales

GSNESHS = GSNESHSPC * GSNESHCUST

$$ln(GSNESHSPC) = -0.85816*ln(GSWINPR)+1.20874*ln(HDD)$$
(-1.111) (3.404)

$$R^2 = 0.4937$$
  
 $S\hat{y} = 0.20255$   
D.W. = 1.6653  
 $Q_1 = 0.5665$ 

#### III. Large Commercial Energy Sales

. 49 .

$$ln(LCMWH) = 12.22404 - 0.11900*ln(LCPRICE) + 0.68892*ln(NMFGEMP)$$
 $(7.198) (-2.436) (5.779)$ 
 $+0.06978*ln(CDD) + 0.08483*ln(TREND)$ 
 $(4.782) (8.696)$ 

$$R^2 = 0.9987$$
  
 $S\hat{y} = 0.00756$   
D.W. = 2.8591

#### IV. Large Industrial (or Power) Energy Sales

Refer to pp. 13-18 of the U of L's Forecasting Study Report attached in Section D of Appendix 1.

#### V. Peak Demand

1) Summer (or annual) peak demand

$$\ln(\text{SUMPIK}) = -23.79561 + 1.53274* \ln(\text{THI24}) + 1.96900* \ln(\text{RSCUST})$$

$$(-16.156) \quad (5.722) \qquad (28.738)$$

$$R^2 = 0.9770$$

$$S\hat{y} = 0.02155$$

$$D.W. = 2.0221$$

2) Winter peak demand

$$\ln(\text{WINPIK}) = -13.26389 + 0.29148 * \ln(\text{HDH}) + 1.54192 * \ln(\text{RSCUST})$$

$$(-9.294) \quad (5.562) \qquad (13.121)$$

$$R^2 = 0.9365$$

$$S\hat{y} = 0.02969$$

$$D.W. = 1.7630$$

#### VI. Number of Customers

1) Total number of residential customers

$$RSCUST = POP / RSSIZE$$

$$ln(ln(RSSIZE/2)) = ln(ln(1.69318)) + T*ln(0.95816)$$
  
(-15.447) (-20.403)

$$R^2 = 0.9974$$
  
 $S\hat{y} = 0.01355$   
D.W. = 2.2819

2) Number of residential electric space-heating customers

RSESHCUST = will grow from 40,723 in 1998 according to the annual growth rates estimated by prorating the annual growth rates projected for total residential customers with the average of 1997 and 1998 ratios of electric space-heating customer growth rate to total residential customer growth rate.

3) Number of small commercial (or general service) customers

GSCUST = 
$$0.03764*POP + 512.1108*T$$
  
(42.540) (10.762)

$$R^2 = 0.9917$$
  
 $S\hat{y} = 257.5439$   
D.W. = 1.5701  
 $O_{11} = 0.7049$ 

4) Number of small commercial electric space-heating customers

GSESHCUST = will decrease from 1,064 in 1998 at an annual rate of 1.42 %.

3) Number of large commercial customers

LCCUST = will increase at the annual growth rates projected by adjusting the average annual growth rate experienced during 1993-1998 with RFA's short-term regional economic forecast.

### TABLE E2(continued.)

#### LIST OF VARIABLES FOR THE LONG-TERM FORECASTING MODELS

Variable Name		<u>Description</u>
1.	ACSAT	Composite rate of residential air-conditioner saturation weighted by BTU capacity size of central units and window units.
2.	CDD	Monthly total cooling degree days.
3.	GSACS	Air-conditioning energy sales to general service (or small commercial/industrial) customers.
4.	GSACSPC	General service air-conditioning energy sales per customer.
5.	GSCUST	Total number of general service customers.
6.	GSESHCUST	Number of electric space-heating general service customers.
7.	GSESHS	Electric space-heating energy sales to general service customers.
8.	GSESHSPC	General service electric space-heating energy sales per customer.
9.	GSMWH	Total energy sales to general service customers in MWH.
10.	GSNESHCUST	Number of non-electric space-heating general service customers.
11.	GSNESHS	Space-heating energy sales to general service non-electric space-heating customers.
12.	GSNESHSPC	General service space-heating energy sales per non-electric space-heating customer.
13.	GSNWS	Non-weather-sensitive (or base) energy sales to general service customers.
14.	GSNWSPC	General service non-weather-sensitive energy sales per customer.
15.	GSSUMPR	Real price of electricity per MWH during the summer months for general service customers.

		•
16.	GSWINPR	Real price of electricity per MWH during the winter months for general service customers.
17.	HDD	Monthly total heating degree days.
18.	HDH	Heating degree hour at the time of winter peak demand.
19.	LCCUST	Number of large commercial customers.
20.	LCMWH	Annual total energy sales to large commercial customers in MWH.
21.	LCPRICE	Real price of electricity per MWH for large commercial customers.
22.	NMFGEMP	Non-manufacturing employment.
23.	PCINC	Per capita personal income in real terms.
24.	POP	Population of the $LG\&E$ electric service area.
25.	RSACS	Air-conditioning energy sales to residential customers.
26.	RSACSPC	Residential air-conditioning energy sales per customer.
27.	RSNESHCUST	Number of electric space-heating (or all-electric) customers.
28.	RSCUST	Total number of residential customers.
29.	RSESHCUST	Number of residential electric space-heating (or all-electric) customers.
30.	RSESHS	Electric space-heating energy sales to residential customers.
31.	RSESHPC	Residential electric space-heating energy sales per all-electric customer.
32.	RSMWH	Total energy sales to residential customers in MWH.
33.	RSNESHCUST	Number of residential non-electric space-heating customers.
34.	RSNESHS	Space-heating energy sales to residential non-electric space-heating customers.

35.	RSNESHPC	Space-heating energy sales per residential non-electric space-heating customer.				
36.	RSNWS	Non-weather-sensitive (or base) energy sales to residential customers.				
37.	RSNWSPC	Residential non-weather-sensitive energy sales per customer.				
38.	RSPRICE	Real price of residential electricity per MWH averaged for year-round.				
39.	RSSIZE	Number of persons per residential electric customer.				
40.	RSSUMPR	Real price of electricity per MWH during the summer months for residential customers.				
41.	RSWINPR	Real price of electricity per MWH during the winter months for residential customers.				
42.	SERVEMP	Service industry employment.				
43.	SUMPIK	Summer (or annual) peak demand in MW.				
44.	T	Time variable equal to year minus 1970.				
45.	THI24	Average temperature-humidity index during the twenty-four hours prior to the time of summer peak demand.				
46.	TREND	Long-term trend variable equal to year minus 1980.				
47.	WINPIK	Winter peak demand in MW.				

## **TECHNICAL APPENDIX 2**

Kentucky Utilities Co.



A SUBSIDIARY OF LG&ENERGY

# 1999 – 2013 Energy & Demand Forecast

October 1999

With Extended Forecast to 2028

## **TABLE OF CONTENTS**

List of Tables	iii
List of Figures	vi
List of Graphs	vii
EXECUTIVE SUMMARY/OVERVIEW	1
ENERGY FORECAST SUMMARY	3
DEMAND FORECAST SUMMARY	7
KEY CHANGES/DRIVERS IN THE FORECAST	10
RETAIL ENERGY BASELINE FORECAST DESCRIPTION	19
KENTUCKY	
RESIDENTIAL	19
Summary	19
RS Summary	
FERS Summary	
Customer Model	
Customer Allocation by Rate Class	
Consumption Models	
Short-Term Energy Sales	
RS Class	
FERS Class	
Long-Term Energy Sales Residential End-Use Model	
RS Consumption Outlook	
FERS Consumption Outlook	43
COMMERCIAL	46
Commercial End-Use Model	52
INDUSTRIAL	56
MINE POWER SERVICE	59
LIGHTING	64

## **TABLE OF CONTENTS**

#### **VIRGINIA**

OLD DOMINION POWER	67
Summary	67
Residential	69
Commercial/Industrial	
Schools	
Lighting	
WHOLESALE	82
MUNICIPALS	82
Summary	82
Primary Municipal Class	84
Transmission Municipal Class	
City of Paris	
City of Pitcairn, PA	90
OUTPUT	91
KU DEMAND FORECAST	97
Summary/Overview	97
Methodology	
UNCERTAINTY ANALYSIS	111
DRI Macroeconomic Assumptions	113
1999-2013 Energy and Demand Forecast Comparisons	114
EXTENDED ENERGY AND DEMAND FORECAST: 2014-2028	118
DESEADCH & DEVELOPMENT	121

## **LIST OF TABLES**

<u>TABLE</u>		<u>PAGE</u>
KU-1	Total KU Company Customer Sales & Generation Forecasts	6
KU-2	Total KU Energy Forecast by Components (gWh)	6
KU-3	1999-2013 Company Seasonal Peak Demand (MW)	8
RES-1	Total Residential Forecast	21
RS-1	RS Forecast	22
FERS-1	FERS Forecast	23
RC-1	Total Service Territory Households and Residential Customers	26
RCP-1	Percent of Total Residential Customers on the FERS Rate	31
RCP-2	Forecast of Residential Customers by Class	32
RS-2	RS Class Seasonal kWh Per Customer	41
FERS-2	FERS Class Seasonal kWh Per Customer	44
COMM-1	KY-Retail Commercial Forecast	47
IND-1	Applied Weights to the Short-Term and Long-Term Industrial Forecast	56
IND-2	Industrial Forecast.	58
MP-1	Kentucky Coal Production Forecast (MM Tons)	60
MP-2	1999 End-Use & Market Share Parameters	60
MP-3	Mine Power Forecast	63
LT-1	Lighting Forecast	66
ODP-1	Forecasted Growth Rates for ODP	67
ODP-2	Total ODP Forecast	68

## **LIST OF TABLES**

<u>TABLE</u>		<u>PAGE</u>
ORES-1	ODP Residential Forecast	72
ORES-2	ODP Residential Seasonal kWh Per Customer	74
OLPGS-1	ODP Commercial/Industrial Forecast	77
OLT-1	ODP Lighting Forecast	81
MUNI-1	Municipal Summary	82
MUNI-2	Municipal Forecast	83
MUNI-3	Primary Municipal Forecast	85
MUNI-4	Transmission Municipal Forecast	87
MUNI-5	City of Paris Municipal Forecast	89
MUNI-6	City of Pitcairn Municipal Forecast	90
OUTPUT-1	Losses by Rate Class	91
OUTPUT-2	Projected Baseline Sales (gWh)	92
OUTPUT-3	Projected Company Sales (gWh)	93
OUTPUT-4	Projected Baseline Output (gWh)	94
OUTPUT-5	Projected Company Output (gWh)	95
OUTPUT-6	2000-2013 Monthly Output Adjustments (gWh)	96
DEM-1	1999-2013 Seasonal Peak Demand (MW)	97
DEM-2	1999-2013 Monthly Adjustments (MW)	98
DEM-3	System Peak Forecast (MW)	99
DEM-4A	Class Summer Coincident Peak (MW)	102
DEM-4B	Class Winter Coincident Peak (MW)	103

## **LIST OF TABLES**

TABLE		<u>PAGE</u>
DEM-5A	System Load Factors	104
DEM-5B	Coincident Load Factor by Class	104
UNC-1	Probability of Forecast Occurring.	112
UNC-2	Uncertainty Analysis Study Variables	113
UNC-3	Baseline/Scenarios Sales Comparison	115
UNC-4	Baseline/Scenarios Peak Demand Comparison (MW)	117
EXT-1	Extended Energy and Demand Forecast, 2014-2028	118

## LIST OF FIGURES

FIGURE		<u>PAGE</u>
RC-1	Residential Customer Model Flow Chart	25
RCP-1	REEPS All Electric Customer Forecasting Approach	29
MP-1	Mine Power gWh Model	62

## **LIST OF GRAPHS**

<u>GRAPH</u>		<u>PAGE</u>
KU-1	Total Company gWh Sales	3
KU-2	KU Company Winter Demand	9
KU-3	KU Company Summer Demand	9
KU-4	Annual Increases in Real GDP, 1996 IRP vs 1999 Forecast	13
KU-5	KU Service Territory Output, 1996 IRP vs 1999 Forecast	14
KU-6	Comparison of Household Forecasts, 1996 IRP vs 1999 Forecast	16
KU-7	KY Retail Price Forecasts, 1996 IRP vs 1999 Forecast	17
RES-1	Total Residential gWh Sales	21
RS-1	RS gWh Sales	22
FERS-1	FERS gWh Sales	23
RC-1	Residential Customers, 1998 Forecast vs 1999 Forecast	26
RS-2	RS Summer kWh per Customer	42
RS-3	RS Winter kWh Per Customer	42
FERS-2	FERS Summer kWh per Customer	45
FERS-3	FERS Winter kWh Per Customer	45
COMM-1	KU Commercial Sales: History & 1999-2013 Forecast	48
IND-1	Industrial gWh Sales	58
MP-1	Mine Power gWh Sales	63
LT-1	Lighting gWh Sales	66
ODP-1	Total ODP gWh Sales	68

## **LIST OF GRAPHS**

<u>GRAPH</u>		<u>PAGE</u>
ORES-1	ODP Residential gWh Sales	73
ORES-2	ODP Summer Residential Sales	75
ORES-3	ODP Winter Residential Sales	75
OLPGS-1	ODP Commercial/Industrial gWh Sales	77
OAES-1	ODP All Electric Schools gWh Sales	78
OLT-1	ODP Lighting gWh Sales	81
MUNI-1	Municipal gWh Sales	83
MUNI-2	Primary Municipal gWh Sales	85
MUNI-3	Transmission Municipal gWh Sales	87
MUNI-4	City of Paris gWh Sales	89
MUNI-5	City of Pitcairn gWh Sales	90
DEM-1	Winter Demand	100
DEM-2	Summer Demand	100
DEM-3	Class Contribution to Summer Peak	105
DEM-4	Class Contribution to Winter Peak	105
DEM-5	1999 System Summer Peak Day Load Shape by Class	106
DEM-6	1999 System Winter Peak Day Load Shape by Class	106
DEM-7	2013 System Summer Peak Day Load Shape by Class	107
DEM-8	2013 System Winter Peak Day Load Shape by Class	108
UNC-1	Baseline/Scenarios Sales Comparison	115

## **LIST OF GRAPHS**

<u>GRAPH</u>		<u>PAGE</u>	
UNC-2	Baseline/Scenarios Peak Demand Comparison	116	

### KENTUCKY UTILITIES COMPANY ENERGY AND DEMAND FORECAST 1999 - 2013

#### **EXECUTIVE SUMMARY**

Kentucky Utilities Company provides electrical service to customers in seventy-seven counties throughout the Commonwealth of Kentucky and to customers in five counties in Southwestern Virginia through its Old Dominion Power operating unit. In addition, the Company sells electricity to 11 municipally owned utilities in Kentucky, Berea College (a privately owned utility), and to the municipality of Pitcairn, Pennsylvania. The Company serves such diverse classes of retail customers as: industrial, commercial, residential, coal mining, and street lighting.

Forecasting future energy and demand is essential for the planning and control of the Company's operations. The forecast becomes the basis for the decisions regarding construction of facilities, such as: power plants, transmission and distribution lines, and substations, all of which are vital to providing reliable service. The energy forecast also becomes the basis for estimating revenues, which in turn are used in the development of the annual operating budget and the five-year financial forecast.

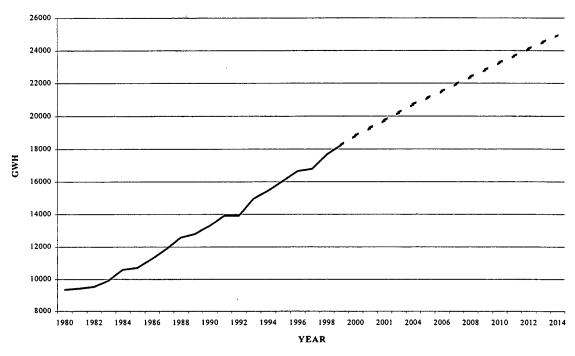
Vital as the information is, the energy and demand forecast remains an estimate. The desired outcome of the forecasting process is a <u>reasonable</u> estimate upon which strategies and goals can logically be based so that the Company's mission of providing adequate and reliable electric service to its customers at the lowest reasonable cost can be attained.

The sophistication of modeling techniques is such that the energy forecast can be tailored to address the unique data characteristics and analysis needs identifiable on an individual rate class basis. These techniques focus on the use of econometrics and end-use modeling, with minimal use of trending. The major classes of the energy forecast, along with the forecasts for certain large customers, are combined with losses and converted into a forecast of peak demands using class and individual customer load research data. New forecasting approaches continue to be evaluated in order to improve all aspects of the load forecasting process. A section of this report discusses current research and development efforts.

The body of this report describes in detail the methods and assumptions used to generate a forecast of energy and demand for the 1999-2013 time period. Beyond 2013, simplified

assumptions are employed starting at various points of time to extend the models to forecast the 2014-2028 time period, for a total forecast period of 30 years. While recognizing the high level of uncertainty that exists with such an extended forecast, the longer forecast period allows the Company to integrate the thirty year period into its planning process. A tabular presentation of the extended outlook, along with brief comments on its preparation is included in a section of this report.

#### **Alternative Scenarios**


For the 1999 – 2013 Energy and Demand Forecast, uncertainty analysis has been approached from the standpoint of selecting the most important variables to the base forecast over which the forecaster has control of the predicted values. Three outlooks have been developed, coinciding with Baseline, Pessimistic, and Optimistic scenarios. Uncertainty analysis will be discussed further in a separate section of this report.

#### 1999 – 2013 ENERGY FORECAST SUMMARY

The 1999 – 2013 Baseline Energy Forecast is developed utilizing the methodologies and assumptions that have evolved over the last several years. It is then adjusted for specific company activities including sales growth initiatives, the Curtailable Service Rider (CSR), and any Demand Side Management (DSM) adjustments. For the 1999 Forecast, no adjustment was introduced for DSM. The adjusted forecast represents the Company Energy and Demand Forecast. The Company Forecast is used by KU's Generation Services, along with the Optimistic and Pessimistic Scenarios, to develop the optimal generation expansion plan for the Company. The format of this report documents the Baseline Energy Forecast, then incorporates adjustments for the CSR and the sales initiative.

Graph KU-1 presents a visual depiction of actual sales since 1980 and the 1999-2013 Energy Forecast. Over the fifteen-year period of 1983-1998, actual sales have grown at an average annual rate of 3.9 percent, and from 1994-1998, the average growth rate was 3.4 percent. Examination of the drivers of growth in the last five years reveals that Industrial sales have been the primary driver

GRAPH KU-1 TOTAL COMPANY GWH SALES



of sales, growing at a 5.8 percent annual rate. Although KU has experienced significant growth in recent years from some of its largest industrial customers, the industrial sales growth has been relatively broad-based. Commercial sales have slightly exceeded the average, growing by 3.6 percent per year. Residential sales have lagged behind the other key retail sectors, growing 2.5 percent per year. Virginia retail sales have only averaged .3 percent growth since 1993, while Wholesale sales have been relatively healthy, growing at 3.1 percent per year.

Using a model-based estimate of expected sales for 1999 of 18,244 GWH, total KU energy sales over the first five years (1999- 2004) of the forecast are predicted to rise at a 2.4 percent average annual rate in the Baseline Forecast and 2.6 percent in the Company Forecast. Both the Baseline and Company Forecasts average 2.1 percent growth over the fifteen-year forecast horizon. The fifteen-year average annual growth rates for each class of sales and their relative share of 1999 sales for the Baseline and Company forecasts are shown below.

	Percent	t Annual	
	Grow	th Rate	Percent of
	1999	-2013	1999 Sales1
Class	<b>Baseline</b>	<b>Company</b>	
RETAIL	2.0	2.1	85.1
KENTUCKY			
Residential	1.8	1.8	27.8
RS	0.8	0.8	13.6
FERS	2.7	2.7	14.3
Commercial	2.2	2.3	27.0
Industrial	2.4	2.5	27.0
Industrial SIC's	3.0	3.1	20.2
Major Industrials	0.4	0.4	6.8
Coal Mining (MP, LMP)	(2.1)	(2.1)	2.8
Lighting (C.O.L.T., St. Lt.)	0.6	0.6	0.6
VIRGINIA			
Old Dominion Power	1.9	1.9	4.8
WHOLESALE	2.5	2.5	10.1
TOTAL COMPANY	2.1	2.1	100.0

¹ Percentages are subject to rounding error.

Table KU-1 presents the annual Baseline Energy Forecast values for customers, sales, output and growth rate through 2013. Sales are expected to increase by 3.2 percent in 2000, assisted by a sales "adder" of 139 GWH. Without the sales adder, sales in 2000 are expected to increase 2.4 percent. In the short run, customer growth provides the major impetus to growth, while in the long-term customer growth moderates and usage per customer growth provides the greater impetus to growth. Table KU-2 presents the KU energy forecast by component. The CSR has a small impact on energy sales as it is generally assumed that the customers who curtail load make up the production

- - -

energy sales as it is generally assumed that the customers who curtail load make up the production in later time periods. The sales adder of 139 GWH is fully reflected in 2000 and carries out through the forecast period.

Over the first five years of Baseline Energy Forecast, sales growth by sector are predicted to be fairly balanced. Kentucky Retail Residential sales are predicted to increase at a 2.2 percent annual rate. Residential growth comes from both customer growth and continued growth in usage per customer. The increased outlook for Residential sales comes primarily from the customer forecast for the FERS class, with approximately two-thirds of all new customers predicted to choose the allelectric rate. Baseline Kentucky Retail Commercial sales are predicted to increase at a 2.6 percent annual rate, with increases in customers and usage per customer again driving the forecast. Baseline Kentucky Retail Industrial sales are projected to average 2.7 percent growth. Concerns with minor Y2K disruptions and slower national growth expectations, along with major new customer growth settling at more normal levels lead to slower sales growth than has been experienced in recent years. The outlook for total coal production in Kentucky is rather flat, with sales under the Mine Power rate expected to decrase at an average annual rate of 0.9 percent. Virginia sales are expected to pick back up and average 2.1 percent, and Wholesale sales grow at the relatively high rate of 2.9 percent.

From 1999 to 2004, total sales are predicted to increase by 2,472 GWH, and by 6,275 GWH by 2013. Over the thirty year forecast horizon, the total KU Baseline Energy Forecast reaches 30,541 GWH. Any outlook beyond fifteen years is very tenuous and should be regarded as merely an early indicator of where the currently anticipated relationships of energy usage to demographic and economic growth will take energy sales. To achieve this level of sales, the compound growth rate needs to average 1.8 percent over the thirty years.

TABLE KU-1
TOTAL KU COMPANY CUSTOMER ,SALES, AND GENERATION FORECASTS

Year	Customers	% Growth in Customers	Company Energy Forecast (GWH)	% Growth in Energy Sales	Company Generation Forecast (GWH)	% Growth in Generation
1999	477,640	1.76%	18,240	3.31%	19,324	2.90%
2000	485,962	1.74%	18,821	3.19%	19,994	3.46%
2001	494,280	1.71%	19,269	2.38%	20,413	2.10%
2002	502,509	1.66%	19,739	2.44%	20,913	2.45%
2003	510,920	1.67%	20,208	2.37%	21,409	2.37%
2004	518,875	1.56%	20,712	2.50%	22,003	2.78%
2005	522,709	.74%	21,088	1.82%	22,341	1.54%
2006	528,214	1.05%	21,492	1.92%	22,769	1.92%
2007	533,398	.98%	21,928	2.02%	23,231	2.03%
2008	538,359	.93%	22,363	1.98%	23,760	2.28%
2009	543,229	.90%	22,800	1.95%	24,154	1.66%
2010	548,071	.89%	23,255	1.99%	24,636	1.99%
2011	552,446	.80%	23,657	1.73%	25,064	1.74%
2012	556,783	.79%	24,081	1.79%	25,583	2.07%
2013	561,051	.77%	24,515	1.80%	25,872	1.52%

TABLE KU-2
TOTAL KU ENERGY FORECAST BY COMPONENTS (GWH)

	A	B	C=A-B	D	E=C+D
	Unadjusted				Company
	Baseline	Existing	Baseline		Forecast
	Energy	Curtailable	Energy	Retail	Projected
Year	Forecast	Decrease	Forecast	Sales Adder	Energy
1999	18,105	4	18,101	139	18,240
2000	18,686	4	18,682	139	18,821
2001	19,134	4	19,130	139	19,269
2002	19,605	4	19,601	139	19,739
2003	20,073	4	20,069	139	20,208
2004	20,577	4	20,573	139	20,712
2005	20,953	4	20,949	139	21,088
2006	21,357	4	21,353	139	21,492
2007	21,793	4	21,789	139	21,928
2008	22,228	4	22,224	139	22,363
2009	22,665	4	22,661	139	22,800
2010	23,120	4	23,116	139	23,255
2011	23,522	4	23,518	139	23,657
2012	23,947	4	23,943	139	24,081
2013	24,380	4	24,376	139	24,515

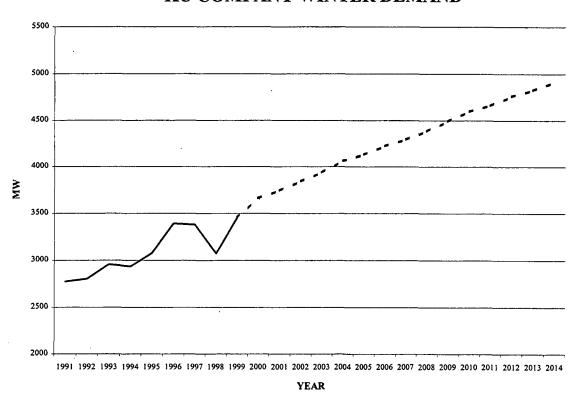
#### 2000 – 2013 DEMAND FORECAST SUMMARY

The 2000 – 2013 KU Baseline Demand Forecast is calculated from the class-level Baseline Energy Forecast data, class level load shapes derived from the Company's load research data, and an assumed daily weather profile. It is then adjusted for specific company activities including sales initiatives, CSR effects not already captured in the Baseline Demand Forecast, and any DSM adjustments. For the 1999 Forecast, no adjustment was introduced for DSM.

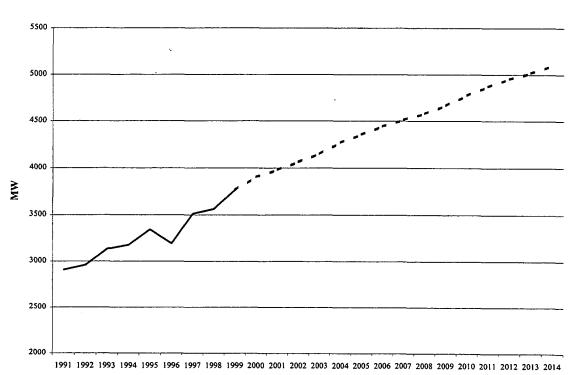
The energy, weather, and load shape information is combined and class-level demand forecasts developed using the Hourly Electric Load Model (HELM) developed by the Electric Power Research Institute (EPRI). The annual class demand profiles are summed within HELM and losses added to create the system demand forecast. The adjusted forecast represents the Company Peak Demand Forecast. The Company Peak Demand Forecast is used by Generation Planning, along with Optimistic and Pessimistic scenarios, to develop the optimal expansion plan for the Company. The format of this report documents the Baseline Demand Forecast, then incorporates adjustments for the CSR and the sales initiative.

Sales initiatives in 2000 add 27 MW to the Demand Forecast, which carry out over the forecast period. CSR reductions are contracted at 54 MW, of which 26 MW is accounted for in the load shape of two of the Company's major industrial clients and one wholesale customer. This leaves an incremental CSR reduction of 28 MW. The net effect is a Company Peak Demand Forecast that is approximately 1 to 2 MW lower each year than the Baseline Peak Demand Forecast.

Table KU-3 shows the fifteen-year winter and summer demand projections for the Company Demand Forecast. Over the forecast period KU is predicted to remain a summer peaking system, although the difference in the summer and winter peaks narrows over the forecast period.


From 1993 to 1998, KU's summer peak demand grew from 3,133 MW to 3,559 MW or 426 MW, averaging 85 MW of growth per year. The compound average annual growth rate was 2.6 percent. KU's winter peak demand grew from 2,956 MW to 3,453 MW, or 497 MW over the 1993-1999 period. The average winter load growth was 99 MW, or 3.2 percent. The Baseline Peak Demand Forecast increases at an average annual rate of 2.5 percent from 1999 to 2004, and the winter season demand forecast increases 2.7 percent per year. This rate of growth adds 495 MW of peak demand

over the five-year period. For the 2000 - 2013 period, the Baseline Peak Demand Forecast increases at an average annual rate of 2.1 percent average annual growth rate, and the winter season demand forecast increases at an average annual rate of 2.2 percent. From 1999 – 2013, peak demand increases by 1,244 MW. Graphs KU-2 and KU-3 visually present actual and forecasted summer and winter peak demands.


TABLE KU-3
1999-2013 COMPANY SEASONAL PEAK DEMAND (MW)
SUMMER WINTER

YEAR	COMPANY	PCT GROWTH	YEAR	COMPANY	% GROWTH
1999	3,776	3.1%	1998/99	3,558	1.4%
2000	3,902	3.3%	1999/00	3,662	2.9%
2001	3,981	2.0%	2000/01	3,743	2.2%
2002	4,064	2.1%	2001/02	3,840	2.6%
2003	4,152	2.2%	2002/03	3,939	2.6%
2004	4,271	2.9%	2003/04	4,063	3.2%
2005	4,356	2.0%	2004/05	4,132	1.7%
2006	4,443	2.0%	2005/06	4,226	2.3%
2007	4515	1.6%	2006/07	4,296	1.7%
2008	4,581	1.5%	2007/08	4,389	2.2%
2009	4,670	1.9%	2008/09	4,493	2.4%
2010	4,779	2.3%	2009/10	4,600	2.4%
2011	4,875	2.0%	2010/11	4,664	1.4%
2012	4,955	1.6%	2011/12	4,761	2.1%
2013	5,020	1.3%	2012/13	4,828	1.4%

## GRAPH KU-2 KU COMPANY WINTER DEMAND



## GRAPH KU-3 KU COMPANY SUMMER DEMAND



#### KEY CHANGES/DRIVERS IN THE FORECAST

Changes in the Energy and Demand Forecast are typically driven by three main factors: the addition of the previous year's data to the model's inputs, changes in the weather, economic and demographic assumptions which drive the forecast, and methodological changes which reflect new methods of modeling the outlook. The 1999 Company Energy and Demand Forecast also incorporates specific estimates for sales initiatives and estimated impacts of the Curtailable Service Rate (CSR).

#### **1998 Sales**

Consolidated actual KU Retail and Wholesale energy sales before consideration of off-system sales and unbilled sales were 17,659 gWh in 1998, which normalized up by 32 gWh to 17,791 gWh. The normalized value was .7% above the budgeted sales for 1998. Updated annual sales therefore have a small upward influence on the new energy forecast.

At the time of the 1996 IRP filing, 1998 sales were predicted to be 17,208 for the Baseline Energy Forecast and 17,949 GWH for the Company Energy Forecast. Compared to the 1996 IRP Baseline Energy Forecast, 1998 actual sales were 583 GWH or 3.4 percent higher than forecast. However, compared to the 1996 Company Energy Forecast, 1998 actual sales were 158 GWH or .9 percent below forecast. A more realistic comparison is to back out the Wholesale component of the Marketing Plan as stated in the 1996 IRP. Since 1996, only the small municipality of Pitcairn, Pennsylvania has been added to KU's Wholesale customers, providing about 13 GWh of annual energy sales. In the 1996 IRP, 325 GWH were added for increased Wholesale customer sales. Adjusting for Pitcairn leaves an unrealized increase of 312 GWH. Subtracting the 312 GWH from the 1996 Company Energy Forecast for 1998 leaves an adjusted predicted value of 17,636 GWH. On this basis, 1998 sales exceeded the predicted value by 155 GWH or .9 percent. Since 1996, therefore, historical sales growth has exceeded expectations and places an upward influence on the forecast.

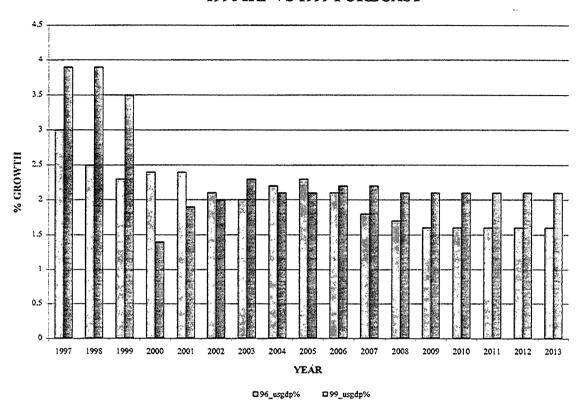
#### Changes in Weather, Economic, and Demographic Assumptions

In order to forecast electricity sales, assumptions must be made regarding the climate over the

forecast horizon. KU assumes a twenty-year rolling average of heating degree days (HDD) and cooling degree days (CDD) as a reasonable representation of the likely weather conditions to be experienced on average over the forecast horizon. Lexington, Kentucky is the primary source of weather data, although KU's geographic diversity leads to the use of Bristol, Virginia and Evansville, Indiana for some portions of the forecast. For the 1999 Baseline Energy Forecast, 3,639 HDD (on a 60-degree base) have been assumed as representing normal heating weather for the Lexington data. At the time of the 1996 IRP, the normal Lexington weather assumption was 3,698 HDD. Therefore, since the 1996 IRP, KU's concept of normal HDD for Lexington has decreased by 59 HDD or 1.6 percent. For cooling, the 1999 Baseline Energy Forecast assumes 1,110 CDD (on a 65-degree base) for normal weather. At the time of the 1996 IRP, the normal Lexington weather assumption was 1,111 CDD, so that the assumed level of CDD for the forecast has remained virtually unchanged.

#### **WEFA Macroeconomic Assumptions**

National macroeconomic assumptions are among the most important in determining the path of the Energy and Demand Forecast. KU obtains a national macroeconomic forecast from WEFA Inc. This forecast is used by the Center for Business Research (CBER) at the University of Kentucky in generating a state forecast. The CBER state forecast is used by KU's service territory economic model (KUSTEM) as a key driver. Following is a brief review of the key assumptions made by WEFA in generating their trend forecast.

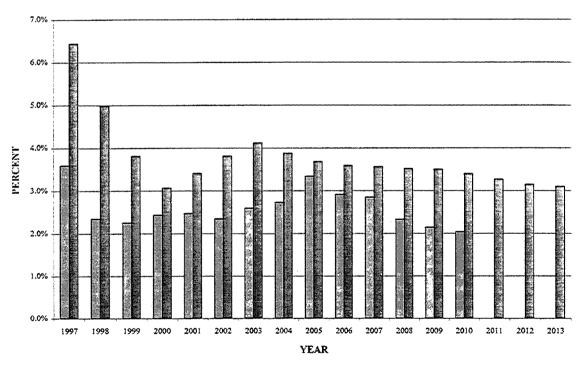

- In the Trend Scenario, WEFA assumes an environment free of exogenous shocks. Economic output converges towards its potential level, with all resources fully utilized.
- Growth in the economy has exceeded the long-run rate of growth in the last few years.
   Beginning in the year 2000, the trend forecast expects that the economy will follow a pattern of smooth growth, with actual output approximately paralleling the path of potential output.
   Although, growth in the year 2000 is expected to fall slightly below average long-term

growth due to modest Y2K problems. Annual real U.S. GDP should average 2.0 percent over the next five years from 1999 to 2004 and 2.1 percent over the next fifteen years. Inflation over the forecast will remain moderate. Inflation will average 1.9 percent over the next five years from 1999 to 2004, and 2.1 percent over the next fifteen years.

- Real interest rates are expected to remain at moderate levels as the Federal Reserve guards against inflation but does not raise rates in order to drive inflation even lower.
- The productivity performance of the U.S. economy should be fairly steady over the forecast period. Non-farm business productivity growth should average 1.1 percent per year over the long term, in line with the 1.1 percent average experienced since 1970. This productivity growth will support growth in real disposable income per capita of 1.6 percent annually over the long run.
- U.S. population is projected to expand at an annual rate of 0.8 percent over the fifteen year forecast horizon.

Graph KU-4 shows the projected growth rates for real U.S. GDP over the fifteen year forecast horizon and compares them to the annual growth rates used for the 1996 IRP. Actual growth rates in 1997 and 1998 were well above the expectation at the time of the 1996 IRP, although this experience has probably contributed to the reduced outlook in percentage growth for 2000 and 2001. Over the forecast horizon, the outlook for U.S. real GDP growth is generally higher than was expected at the time of the 1996 IRP, but the fifteen year average growth is equivalent to the fifteen year average cited in the 1996 IRP.

#### GRAPH KU-4 ANNUAL INCREASES IN REAL US GDP 1996 IRP VS 1999 FORECAST




#### **Kentucky Output**

Service territory level economic and demographic forecasts are derived for KU via the KUSTEM (Kentucky Utilities Service Territory Economic Model). KUSTEM was developed by the Center for Business and Economic Research at the University of Kentucky. The KUSTEM model is an employment driven model in which forecasts of sector level value-added output, employment, income, and population are generated for five KU regions. The national forecast received from WEFA provides the inputs for CBER to generate a state forecast. This forecast in turn provides the inputs to five regional models specific to geographic areas which influence economic activity in the KU service area. These forecasts are summed to create a total KU service territory value-added output forecast. The use of KUSTEM represents a shift from the methodology employed in the 1996 IRP of using a state level output forecast from DRI, adjusted to remove the Louisville Metropolitan Statistical Area.

Graph KU-5 presents the annual percent increases assumed in the 1996 IRP versus the 1999 Energy Forecast. It is evident that as in the case of the national economy, output in KU's service territory is estimated to have grown more rapidly than was expected at the time of the 1996 IRP. For the 1999 Energy Forecast, KU service territory output is predicted to increase at a 3.7 percent annual rate for the five year period from 1999 to 2004, and average 3.5 percent growth over the fifteen-year forecast horizon. The 1996 IRP indicated an average annual growth rate of 2.5 percent over its fifteen-year horizon. At least some of this difference in outlook is attributable to the conversion to the KUSTEM model from the adjusted DRI state model. KUSTEM focuses more directly on the growth history and prospects for the economy served by KU, rather than a state-wide perspective as analyzed by the DRI state model.

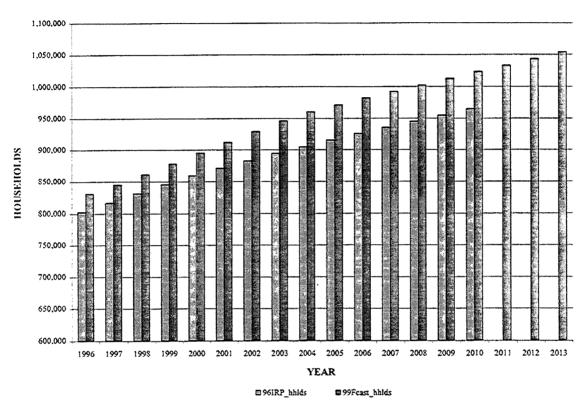
GRAPH KU-5
KU SERVICE TERRITORY OUTPUT
FORECASTED ANNUAL PERCENT INCREASE
1996 IRP VS 1999 FORECAST



■96st_vao% ■99st_vao%

#### **Demographic Forecasts**

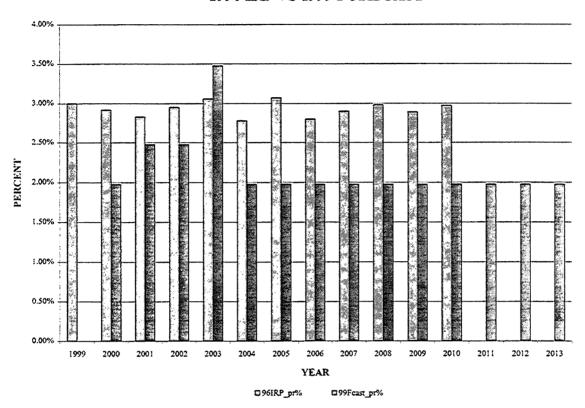
Demographic forecasts of population and households are critical to the accurate forecasting of residential sales and indirectly contribute to the forecasting of commercial sales through their influence on commercial customer growth. KU utilizes the population and household forecast generated by the KUSTEM model. This is a change from the 1996 IRP, at which time KU relied on the demographic forecasts of the Center for Urban and Economic Research (CUER) at the University of Louisville (U of L).


Forecasts of population in the KUSTEM model are made using a cohort-component model, the same type of model utilized in Bureau of Census (and U of L) forecasts. These models utilize birth, survival, and migration rates to forecast population. The KUSTEM model continues to use birth and survival data from the CUER. The major difference between the Bureau of Census and KUSTEM approaches is in the estimation of migration rates. Migration behavior in the Census models is based on past migration rates, while migration behavior in KUSTEM is a function of economic growth in the service territory. As a result, with a fast growing economy, it is possible that migration rates in the forecast period can exceed past rates, leading to faster growth in population. The population forecasts developed are by county, and as such are only an approximation of population specific to KU's service territory.

Population forecasts from the KUSTEM model call for a steady increase in population that closely matches the national population forecast. This is a strong performance for a state where population growth has often lagged growth rates nationally. Annual population growth is forecast to average 0.9 percent over the next five years in KU's service territory counties, and to continue to average 0.7 percent growth over the fifteen-year forecast horizon.

As nationally, the KU service territory is forecast to have an aging population. Since older persons tend to live in smaller households, this aging of the population implies fewer persons per household. This drop in household size implies that the number of households should grow even faster than the population. This is indeed the case for the 1999 Energy Forecast, with KU service territory households predicted to rise at a 1.8 percent annual rate from 1999 to 2004, and a 1.3 percent annual rate through 2013.

Graph KU-6 compares the household forecast generated by the KUSTEM model for the 1999 Baseline Energy Forecast with the household forecast provided in the 1996 IRP.


GRAPH KU-6 COMPARISON OF HOUSEHOLD FORECASTS 1996IRP VS 1999 FORECAST



#### **Price Forecast**

Many of the energy forecast class models are sensitive to price changes. The price forecast reflects the merger surcredit and a refund adjustment in 1999. Thereafter fuel expenses and environmental cost recovery drives the forecast. There are no general rate increases incorporated in the forecast and there are no assumed impacts relative to Performance Based Regulation. Graph KU-7 plots the 1999 Forecast electric price growth rates for Kentucky-Retail versus the 1996 IRP Forecast. The 1999 Forecast price outlook is for significantly lower price increases than were expected in 1996.

#### GRAPH KU-7 KY RETAIL PRICE FORECASTS 1996 IRP VS 1999 FORECAST



#### **METHODOLOGICAL CHANGES**

#### Introduction of KUSTEM

KU has found through comparison of its historical sales growth rates during various periods to that of total Kentucky electricity sales that KU has consistently outperformed the state as a whole. Further, the economy of KU's service territory has appeared to perform better that that of the nation in recent years. These observations led KU to question whether dependence on a state-level economic forecast was the best option for predicting likely growth in its territory. KU also recognizes that the future of strategic marketing in the electric utility industry lies in the knowledge of regional markets not tied to traditional service territory boundaries, and systems supportive of

flexible decision analysis.

In response, KU contracted with the Center for Business and Economic Research (CBER) at the University of Kentucky to construct a regional economic and demographic database and modeling system that will enable the Company to become an independent producer of regional and service territory economic forecasts. The model has been named KUSTEM (KU Service Territory Economic Model). KUSTEM utilizes a CBER generated state-level forecast of output in conjunction with five regional models which conform to the local economies served by KU. The five regional models utilize county-level data and the state output forecast by two-digit manufacturing industry to forecast output and employment by two digit industry, commercial employment by two digit sector, personal income, and population/households. Four of the regions correspond to Kentucky and one models the Virginia jurisdiction. Quarterly forecasts are developed for the first three years and annual forecasts thereafter. Attached as Subsection 2 of Appendix 2 is documentation of the construct of the KUSTEM model.

#### Kentucky -Retail Commercial and Industrial Short-Run Models

Short-run Kentucky-Retail Commercial and Industrial sector sales models based on monthly data have been developed to go along with existing Residential short-run models. The monthly models use data going back to 1985 to capture near term growth better than a long-term annual model. The models capture the effects of weather on sales more effectively due to the monthly detail and the inclusion of month specific weather terms. The short-run forecasts are merged with the long run forecast from the annual models.

#### **Municipal Models**

Past forecasts have required numerous model runs in the Municipal sector as many of the Municipals provide class-level detail. For the 1999 Energy Forecast cycle, class-level forecasts will still be prepared to provide understanding of the growth prospects of each Municipal. However, for system-level forecasting, KU has migrated to a simplified four-model structure. Models have been constructed for Municipal Transmission sales, Municipal Primary sales, City of Pitcairn, Pennsylvania, and the City of Paris.

#### RETAIL ENERGY BASELINE FORECAST DESCRIPTION

#### KENTUCKY

## RESIDENTIAL SUMMARY

The residential sales forecasting process embodies a combination of short-term econometric and end-use modeling methodologies. Each model is designed to contribute to a specific need of the forecasting process.

The residential sales forecast is developed in three parts: (1) a projection of customers by rate class (2) a projection of short-term (three years) monthly energy sales by class and (3) a projection of long-term annual energy sales by class.

A Customer Model is used to forecast total residential customers. This model relates increases in the number of customers to growth in the number of households for the Company's service territory. These projected customers are apportioned between the all-electric (FERS) and non all-electric rate classes (RS) through the use of a Customer Allocation Model. The rate class disaggregation accounts for differences in usage levels and revenues. In the Customer Allocation Model, a discrete choice-modeling framework is used to derive all electric households. The results are then calibrated to the actual net annual change in FERS customers. The net annual change in RS customers is calculated by subtracting the FERS customer forecast from the total residential customer forecast.

Two econometric models are developed as a means of modeling short-term monthly kWh per customer for each residential class. The purpose of these models is to improve the budget forecasting process by analyzing recent sales history. In these econometric models monthly consumption is related to weather, price and seasonal binary variables. The projections from the short-term models are merged with the long-term outlooks in a manner that creates continuity between the outlooks.

The long-term energy outlook is derived using the Residential End-Use Planning System (REEPS) model. This is an end-use forecasting model that is developed and supported by Regional Economic Research (RER) and the Electric Power Research Institute (EPRI). Company specific information is supplemented with regional and

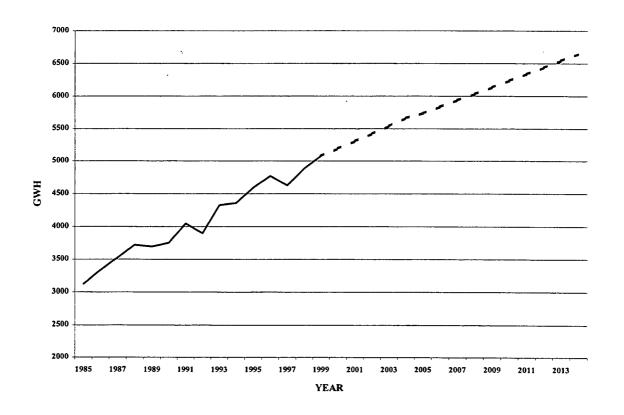
national data to develop a database for each of the two residential classes. These databases are run independently in separate REEPS models for the purpose of generating an energy forecast for each class.

The general premise of the REEPS model is to create a profile of customers in a base year, 1993. Calculated energy sales are calibrated to the total normalized energy sales for each rate class in the base year. The REEPS forecast is driven by decision equations that are used to construct multinomial share systems for each end-use. Probabilities are derived based on an end-use's economic attractiveness relative to the economic attractiveness of alternative technologies. The result is a saturation forecast by end-use and housing type. The model also projects size, use, and efficiency values for each end-use and housing type. The kWh per end-use calculation is based on the following equation:

Sales = Households x Saturation x Size x Use

#### Efficiency

Summing the sales for each appliance an annual energy forecast is derived for each rate class.

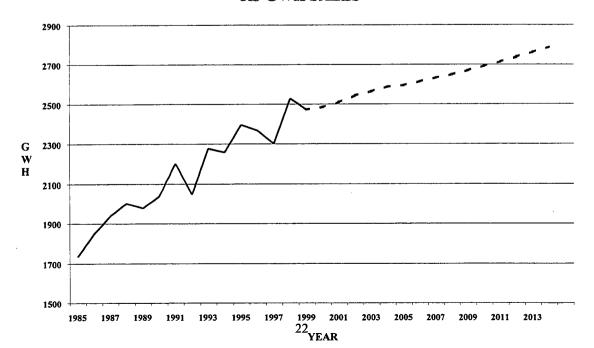

The residential energy outlook combines the short-term and long-term forecasts for the RS and FERS rate classes. The first two years of the forecast period for the RS rate class (1999 and 2000) represent the short-term model's monthly projections. 2001 represents a 50/50 split between the short-term and long-term models for the RS class. For the FERS class, 1999 represents a 75/25 split between the short-term and long-term model, respectively. The FERS class forecast for 2000 represents a 50 percent weight applied to the short-term and a 50 percent weight applied to the long-term forecasts. In year 2001, the weights for the short-term and long-term model are 25 percent and 75 percent, respectively, for the FERS class. For both classes, the remainder of the forecast is a product of the REEPS models.

The baseline forecast of residential customers, average kWh consumption per customers, and gWh sales for the total Kentucky Retail residential sector are shown in Table RES-1. Graph RES-1 shows annual historic and forecasted sales. The average annual baseline growth rate for total residential gWh sales is 2.2 percent for 1999-2004 and 1.8 percent for 1999-2013.

TABLE RES-1 TOTAL RESIDENTIAL FORECAST

<u>YEAR</u>	<b>CUSTOMERS</b>	<b>GWH SALES</b>	KWH/CUSTOMER
1999	373,270	5,078	13,605
2000	379,920	5,191	13,664
2001	386,590	5,305	13,723
2002	393,140	5,420	13,786
2003	399,830	5,537	13,850
2004	406,220	5,665	13,947
2005	409,062	5,734	14,018
2006	413,320	5,833	14,113
2007	417,304	5,937	14,226
2008	421,096	6,032	14,325
2009	424,807	6,134	14,440
2010	428,496	6,237	14,556
2011	432,027	6,337	14,669
2012	435,524	6,440	14,787
2013	438,963	6,545	14,911

### GRAPH RES-1 TOTAL RESIDENTIAL GWH SALES



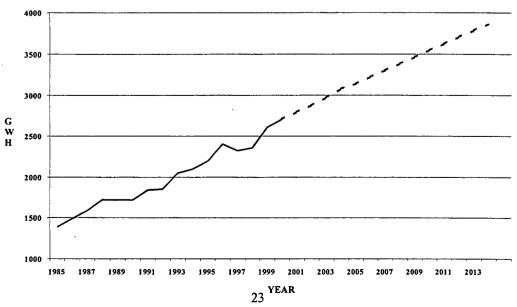

A summary of the baseline forecast of customers, average kWh per customer and gWh sales for the non all-electric (RS) class is shown in table RS-1. Historical and forecasted gWh sales are shown graphically in Graph RS-1. The 1999-2004 average annual baseline growth rate for gWh sales and kWh/Customer is 0.9 percent and 0.5 percent, respectively. For 1999-2013, the annual baseline growth rate for gWh sales is 0.8 percent and the annual growth rate for kWh/Customer is 0.6 percent.

TABLE RS-1 RS FORECAST

	10101	ECARD I	
<u>YEAR</u>	<u>CUSTOMERS</u>	<u>GWH SALES</u>	KWH/CUSTOMER
1999	229,550	2,472	10,770
2000	230,430	2,484	10,779
2001	231,300	2,509	10,847
2002	232,180	2,543	10,952
2003	233,250	2,563	10,989
2004	234,250	2,587	11,043
2005	234,170	2,594	11,078
2006	234,553	2,612	11,135
2007	234,863	2,632	11,205
2008	235,131	2,649	11,266
2009	235,386	2,669	11,341
2010	235,651	2,691	11,420
2011	235,888	2,713	11,499
2012	236,138	2,736	11,585
2013	236,396	2,760	11,677

#### GRAPH RS-1 RS GWH SALES




#### RESIDENTIAL **FERS SUMMARY**

A summary of the base line forecast of customers, average kWh per customer and gWh sales for the all-electric (FERS) class is shown in Table FERS-1. Historical and forecast gWh sales are shown graphically in Graph FERS-1. The 1999-2004 average annual baseline growth rate for gWh sales and kWh/Customer is 3.4 percent and -0.3 percent, respectively. For 1999-2013, the annual baseline growth rate for gWh sales is 2.7 percent and the annual growth rate for kWh/Customer is 0.2 percent.

**TABLE FERS-1** FERS FORECAST

	reks fu	RECASI	
<u>YEAR</u>	<u>CUSTOMERS</u>	<u>GWH SALES</u>	KWH/CUSTOMER
1999	143,720	2,606	18,133
2000	149,490	2,707	18,110
2001	155,290	2,796	18,007
2002	160,960	2,877	17,874
2003	166,580	2,974	17,855
2004	171,970	3,079	17,902
2005	174,892	3,140	17,954
2006	178,767	3,222	18,021
2007	182,441	3,305	18,116
2008	185,965	3,383	18,192
2009	189,421	3,465	18,292
2010	192,845	3,546	18,388
2011	196,139	3,625	18,481
2012	199,386	3,705	18,580
2013	202,567	3,785	18,685

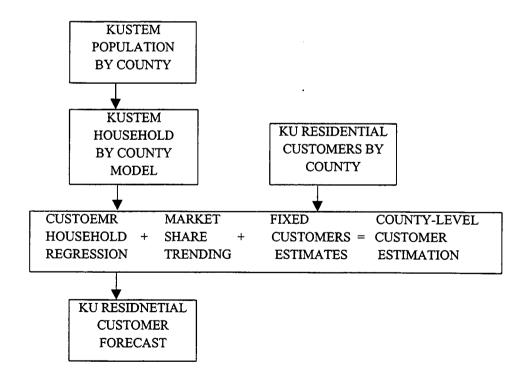
#### **GRAPH FERS-1** FERS GWH SALES



## RESIDENTIAL CUSTOMER MODEL

The forecast of total residential customers begins with a county-level population forecast that is generated by the KUSTEM (Kentucky Utilities Service Territory Economic Model) model developed by the University of Kentucky Center for Business and Economic Research (CBER). The KUSTEM model utilizes birth and mortality rate data from the Center for Urban and Economic Studies (CUER) at the University of Louisville. However, the KUSTEM model generates forecasts of migration based on the model's forecast of employment growth in Kentucky counties rather than past migration trends, as is the case for CUER population forecasting models. The KUSTEM model utilizes forecasts of population growth to forecast household growth.

Migration is an important factor in the Kentucky population forecast. The natural population increase for Kentucky is declining because birth rates are stabilizing or declining, and death rates are increasing as the population ages. Migration has also proven more difficult to understand and forecast than the components of the natural growth rate. Historically, Kentucky has had periods of out migration of young adults as well as seen influxes of workers and families or the settling of retirees. During the 1980's, Kentucky experienced a net out migration of its population, however since 1990 the state has seen a net in migration.


The primary driver of the KU customer forecast is the county level household forecast and is derived using the county level population projection as a starting point. The KUSTEM model provided KU with this household forecast.

For counties provided residential service by KU, the forecasted growth rate in population is 0.9 percent for 1999-2004 and 0.7 for 1999-2013. The number of households in counties served by KU is projected to grow at five and fifteen year annual rates of 1.3 percent and 1.8 percent, respectively. The service territory household forecasts are able to maintain significantly higher growth rates than population due to an average population per household that is declining 0.9 percent annually over the first five years of the forecast and a decline of 0.6 percent annually over the entire forecast period. The customer growth forecast for each individual county is generated by a selection

process between regressions of historical customers to households or trending of KU's market share in a county (customers/households). Acceptable statistical results were obtained for 91 percent of the customer base using the customer to household regression method, while another 4 percent of the customer base was estimated using trended county market shares. A very small number of customers were in four counties that have exhibited no growth and are fixed at their current levels. This ability to restrict household growth enables the Company to account for service territory growth constraints. To date, no such constraints have been imposed on the forecast.

Figure RC-1 illustrates the process used to forecast residential customers. Graph RC-1 shows a comparison of actual customers with the 1999 and 2000 customer forecasts. Table RC-1 shows the historical and forecasted service territory households and customers and the annual increase in customers. For the 1999-2004 period, total residential customers are forecasted to increase at a 1.7 percent annual rate, and at a 1.2 percent annual rate for the 1999-2013 period.

FIGURE RC-1 RESIDENTIAL CUSTOMER MODEL



GRAPH RC-1
RESIDENTIAL CUSTOMERS: 1998 FORECAST VS 1999 FORECAST

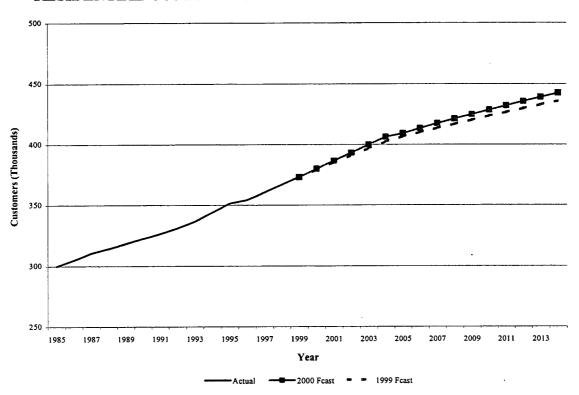
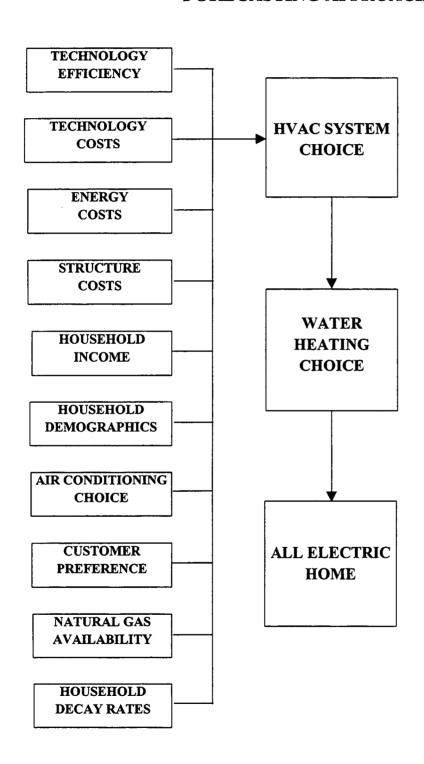



TABLE RC-1
TOTAL SERVICE TERRITORY HOUSEHOLDS
AND RESIDENTIAL CUSTOMERS

		ESTIMATED HISTORIC &	HISTORIC &
		FORECASTED SERIVCE	FORECASTED
	<b>YEAR</b>	TERRITORY HOUSEHOLDS	<b>CUSTOMERS</b>
	1990	705,970	322,476
	1991	719,601	326,493
	1992	735,396	330,951
	1993	751,880	336,497
	1994	766,622	343,728
	1995	782,253	351,166
	1996	797,969	354,224
	1997	813,519	360,375
	1998	827,483	366,755
•	1999	842,030	373,270
	2000	856,729	379,920
	2001	871,290	386,590
	2002	885,723	393,140
	2003	900,647	399,830
	2004	915,286	406,220
	2005	928,520	409,062
	2006	940,867	411,320
	2007	952,227	417,304
	2008	962,940	421,096
	2009	973,349	424,807
	2010	983,685	428,496
	2011	993,893	432,027
	2012	1003,985	435,524
	2013	1013,928	438,963

## RESIDENTIAL CUSTOMER ALLOCATION BY RATE CLASS

Annual residential customer counts represent an average annual calculation. They are derived using monthly billing data. The company distinguishes between two types of residential customers, full-electric residential service (FERS) and general residential service (RS). Once the forecasted net annual change in residential customers has been derived, the forecast is then divided by rate class. The discrete choice logic embedded in EPRI's Residential End-Use Energy Planning System (REEPS) model has been used to forecast FERS customers. This discrete choice methodology specifically enables the Company to account for multiple factors such as:


- Influence of space cooling preferences on heat equipment choice
- Impact of capital and operating costs on HVAC system choice
- Impact of changing efficiency standards
- Influence of developers on HVAC system choice
- Influence of non-economic factors (i.e. customer perceptions and attitudes)

The REEPS model contains discrete choice equations for each end-use that incorporate numerous factors including those mentioned above. Choice equations are developed for eighteen HVAC systems and eight household appliances. The choice equations are used to construct a "multinomial" share system for all end-uses. Each equation relates the market share of an end-use to its economic attractiveness relative to the economic attractiveness of alternative technologies. This reflects the notion that customer choice is dependent upon the available alternatives. These equations incorporate projected changes in energy prices, efficiency standards, equipment capital costs, structure characteristics, household income, natural gas availability, household decay rates, and other household demographics to derive the relative attractiveness of the competing end-use technologies. The equations are calibrated to known market shares for a base year and the first forecast year. Market shares are estimated using the biennial KU appliance saturation survey. A calibration term is estimated in the calibration process and represents an estimate of all the non-economic factors affecting market share of an appliance. After the first forecasted year, market share of each end-use for the three housing types, single family, multifamily, and mobile home are calculated by the discrete choice equations.

The modeling approach forecasts FERS customers using the REEPS model in an iterative process. An FERS customer is defined as a household with electric space heating and electric water heating. This definition was formulated after a review of residential survey results indicated virtually all customers with both electric space heating and electric water heating were on the FERS rate.

In the first iteration, a total residential customer REEPS model predicts the percentage of residential customers that will select electric space heating. HVAC system conversions are part of this electric space heating saturation forecast. For modeling purposes, all conversions to electric space heating are assumed to be heat pumps. It was also assumed that there would be a minimum of eight years before a household would consider converting their space heating system. Then in a spreadsheet, the REEPS forecasted percentage of electric space heating customers is multiplied times the total residential customer forecast for each housing type. The resulting customer forecast is used as an input to a second REEPS model. This REEPS model is developed based on a database of households with electric space heating and is used for the second iteration. The purpose of this model is to predict the percentage of customers with electric space heating that will also select electric water heating. In a second spreadsheet, the forecasted electric water heating saturations from the second iteration is multiplied times the electric space heating customer forecast that was calculated in the first spreadsheet. The result represents the FERS new customer forecast. RS new customers are derived by subtracting the FERS customer forecast from the total residential customer forecast. Figure RCP-1 provides an overview of the REEPS iterative process.

## FIGURE RCP-1 REEPS ALL ELECTRIC CUSTOMER FORECASTING APPROACH



It should be noted that the objective of the customer forecast is to accurately predict the net annual change in customers. Therefore, the final step in this process was to calibrate results from the second iteration to the net annual change in FERS customers. Analyzing several years of customer activity for the RS and FERS rate classes revealed that the number of average annual customers who appear to go "off service" had a significant impact on the net annual change in customers for each rate class. The RS class had approximately twice as many "off service" customers as the FERS class, which is roughly proportional to its size. The effect is to increase the FERS percentage of the net annual change in residential customers. For example, in recent years a larger percent of new residential customers have gone on the FERS. In fact, since 1990 the net annual change in FERS customers has averaged between 57-86 percent of the net annual change in total residential customers. The primary factor creating the difference is the number of customers going "off service" on the RS rate relative to those going "off service" on the FERS rate. In addition, many large market share in the FERS class can be contributed to the successful marketing effort made possible by a strong commitment to sales, training, and advertising from senior management.

The term "off service" represents an average annual number and, for analysis purposes, is defined as any premise that has been removed from the billing database. Demolitions are considered part of the "off service" category. The "off service" effect could not be captured within a behaviorally based REEPS model. Therefore, it was accounted for in a spreadsheet external to the model. The REEPS generated FERS new customer forecast was calibrated to an average of the percent of the net annual change in residential customers that went on the FERS rate, approximately 75 percent. A calibration adjustment was then applied to all future years. Table RCP-1 presents this year's forecast of the percent of new FERS customers and the percent of the net annual change in total residential customers that are on the FERS rate.

# TABLE RCP-1 PERCENT OF TOTAL RESIDENTIAL CUSTOMERS ON FERS RATE

	% ANNUAL CHANGE IN CUSTOMERS	% OF NEW CUSTOMERS
<b>YEAR</b>	1999 FORECAST	1999 FORECAST
1980	138.0	89.2
1981	118.0	85.8
1982	214.7	82.4
1983	82.9	76.0
1984	137.7	79.8
1985	98.8	84.0
1986	105.6	66.5
1987	72.9	60.9
1988	89.2	58.9
1989	57.5	62.6
1990	77.1	49.7
1991	85.8	57.0
1992	81.8	44.6
1993	70.4	46.0
1994	57.0	49.6
1995	69.4	53.4
1996	176.4	56.2
1997	91.6	60.3
1998	94.9	61.8
1999	78.6	73.0
2000	86.8	76.6
2001	87.0	77.6
2002	86.6	77.9
2003	84.0	79.3
2004	84.4	77.0
2005	102.8	52.3
2006	91.0	77.6
2007 ·	92.2	75.0
2008	92.9	73.1
2009	93.1	72.1
2010	92.8	71.3
2011	93.3	72.1
2012	92.9	71.1
2013	92.5	70.1

Table RCP-1 shows that from 1985 through 1998 the percentage of new customers on the FERS rate range from 45 percent to 84 percent, while the percent of net additions ranges form 70 percent to over 100 percent. The 1999 Forecast is predicting the FERS percent of total residential net additions will generally rise over the forecast period to over 90 percent by 2013. It is also predicting that the percent of net additions from the FERS class will increase steadily to over 90 percent towards the end of the forecast period.

Table RCP-2 shows the residential customer forecast by rate class. RS customers are projected to increase at an average annual rate of 0.4 percent over 1999-2004 and 0.2 percent over 1999-2013. The FERS customers are forecasted to increase at an annual rate of 3.7 percent for 1999-2004 and 2.5 percent for 1999-2013.

TABLE RCP-2
FORECAST OF RESIDENTIAL CUSTOMERS BY CLASS

<b>YEAR</b>	<b>FERS</b>	<u>RS</u>	<b>TOTAL</b>
1999	143,720	229,550	373,270
2000	149,490	230,430	379,920
2001	155,290	231,300	386,590
2002	160,960	232,180	393,140
2003	166,580	233,250	399,830
2004	171,970	234,250	406,220
2005	174,892	234,170	409,062
2006	178,767	234,553	413,320
2007	182,441	234,863	417,304
2008	185,965	235,131	421,096
2009	189,421	235,386	424,807
2010	192,845	235,651	428,496
2011	196,139	235,888	432,027
2012	199,386	236,138	435,524
2013	202,567	236,396	438,963

Some of the benefits of this customer allocation forecasting methodology are that it allows for the direct consideration of a number of factors that can influence customer fuel choice. It also provides a customer forecast by housing type for each rate class, a forecast of new construction activity by housing type for each rate class, a baseline forecast for HVAC system conversion activity, and a much richer database that can be used to evaluate impacts of future marketing and DSM programs on the forecast.

## RESIDENTIAL CONSUMPTION MODELS

The residential consumption models that are developed for the RS and FERS classes fall into two categories: 1) a projection of short-term energy sales and 2) a projection of long-term energy sales. This section will discuss these models for each class in detail.

#### SHORT-TERM ENERGY SALES

The objective of KU's short-term forecasting models is to improve the estimate of monthly energy sales used in the budgeting process and to provide a smooth transition from the short-run to a long-run sales outlook. A monthly econometric kWh per customer model using data for the period of January 1981 though March 1999 and for the period January 1990 through March 1999 is created for this purpose for the FERS and RS classes, respectively. The primary advantage of this model is its ability to capture recent cycles or trends in energy consumption and incorporate them into its projection of future energy consumption. An annual model can only capture trends over longer periods of time. Consequently, the short-term model should be a better predictor of a one to five year time horizon. Beyond this period the dynamic nature of a short-term model may distort the long-term outlook. Independent variables are tested for significance in both the RS and FERS models. Only the variables that test significant are included in a model. The number of periods a variable is lagged may also differ between models. Again, the t-test is used to determine the appropriate number of lagged periods.

#### **RS CLASS**

The dependent variable in the RS model is average monthly kWH per customer. The RS explanatory variables are real marginal price lagged one period, monthly kWh per customer lagged one period, heating degree day interaction variables for the months of January, February, March, April, November, and December, cooling degree interaction variables for the months of May, June, July, August, September, and October, and monthly kWh per customer lagged one period.

A basic assumption behind this short-term model is that much of the variation in monthly residential energy usage over short periods of time is directly related to the weather. To this end, the heating degree-day series is designed to capture an average or common effect that heating degree-days have on each month's energy consumption. The interaction variables are designed to capture the effect that cooling and heating degree-days may have on energy consumption in a particular month. The cooling and heating degree-days are calculated utilizing a ramp function to align the weather data with monthly billing cycles. Cooling degree-days are calculated using a 65-degree base and heating degree-days are calculated using a 60-degree base.

The six cooling degree day interaction variables, May, June, July, August, September, and October are all calculated in the same manner. Each series multiplies 1*CDD for the specified month and 0*CDD for all other months. The six heating degree-day interaction variables, January, February, March, April, November, and December are calculated in the same manner. Each series multiplies 1*HDD for a specified month and 0*HDD for all other months. These degree-day interaction variables capture the seasonal components of the forecast. The monthly kWh per customer term is lagged so to capture the general movements of customer consumption or, in other words, the trend components of the forecast.

The RS short-run equation is shown below (the number in parenthesis indicates the probability of that variable being insignificant).

```
RS Monthly kWH = 913.25 - 11832.07(RSPRICE<sub>-1</sub>) + 0.10(KPC<sub>-1</sub>)
                                     (0.0000)
                                                       (0.0667)
                    +0.32(JANHDD) + 0.22(FEBHDD) + 0.19(MARHDD)
                                           (0.0000)
                                                            (0.0000)
                          (0.0000)
                    +0.24(APRHDD) + 1.10(MAYCDD) + 1.68(JUNCDD)
                                           (0.0280)
                                                              (0.0000)
                          (.0002)
                    + 1.70(JULCDD) + 1.85(AUGCDD) + 1.79(SEPCDD)
                                           (0.0000)
                                                             (0.0000)
                          (0.0000)
                    + 1.47(OCTCDD) + 0.16(NOVHDD) + 0.31(DECHDD)
                          (0.0000)
                                            (0.0120)
                                                             (0.0000)
```

Where:

RSPRICE₋₁ = Real Marginal Price of Electricity Lagged One Period KPC₋₁ = Monthly kWh Per Customer Lagged One Period JANHDD = January Degree Day Interaction Variable

= February Degree Day Interaction Variable FEDHDD = March Degree Day Interaction Variable MARHDD = April Degree Day Interaction Variable APRHDD MAYCDD = May Degree Day Interaction Variable JUNCDD = June Degree Day Interaction Variable JULCDD = July Degree Day Interaction Variable AUGCDD = August Degree Day Interaction Variable SEPCDD = September Degree Day Interaction Variable OCTCDD = October Degree Day Interaction Variable = November Degree Day Interaction Variable NOVHDD DECHDD = December Degree Day Interaction Variable

#### Model Statistics:

Adjusted  $R^2 = 0.96$ F-statistic = 176.12 D-W Test = 1.54

#### **FERS CLASS**

As with the RS short-term model, the purpose of the FERS short-term model is to improve the estimate of 1999 monthly sales used in the budgeting process and to provide a smooth transition form a short-term to a long-term sales outlook. The dependent variable in the model is average monthly kWh per customer. The explanatory variables are real marginal price lagged one period, kWh per customer lagged one period, heating degree day interaction variables for the months of January, February, March, April, November, and December, a September cooling degree day interaction variable, seasonal heating degree days, seasonal cooling degree days, binary variables for February, March, and July, and monthly kWh per customer lagged one period. The cooling and heating degree days are calculated utilizing a ramp function to align the weather data with monthly billing cycles. Cooling degree-days are calculated using a 65-degree base and heating degree-days are calculated using a 60-degree base.

The six heating degree-day interaction variable terms, January, February, March, April, November, and December are calculated in the same manner. Each series multiplies 1*HDD for the specified month and 0*hdd for all other months. The one cooling degree day interaction variable, September, is calculated in the same manner. Each series multiplies 1*CDD for the specific month and 0*CDD for all other months. Other cooling degree terms were tested for May, June, July, August, and October but they

did not prove to be significant. The monthly kWh per customer term is lagged so to capture the general movements of customer consumption or, in other words, the trend components of the forecast.

The FERS short-run equation is shown below (the number in parenthesis indicates the probability of that variable being insignificant).

### Where:

RSPRICE₋₁ = Real Marginal Price of Electricity Lagged One Period = Monthly kWh Per Customer Lagged One Period KPC₋₁ = January Degree Day Interaction Variable JANHDD = February Degree Day Interaction Variable FEDHDD MARHDD = March Degree Day Interaction Variable APRHDD = April Degree Day Interaction Variable NOVHDD = November Degree Day Interaction Variable = December Degree Day Interaction Variable DECHDD SEPCDD = September Degree Day Interaction Variable CDD = Cooling Degree Days (65 degree base) = Heating Degree Days (60 degree base) HDD = February Binary Variable FEB MAR = March Binary Variable JUL = July Binary Variable

### Model Statistics:

Adjusted  $R^2 = 0.98$ F-statistic = 880.20 D-W Test = 1.89

## LONG-TERM ENERGY SALES RESIDENTIAL END-USE MODEL

KU's long-term forecasting models are designed to support the Company's expansion planning efforts. For the residential sector, the REEPS model is utilized. REEPS generates an annual sales forecast based on a discrete choice-modeling framework. The model utilizes choice equations to construct a "multinominal" share system for all defined end-uses. Each equation relates the market share of an end-use to its economic attractiveness relative to the economic attractiveness of alternate technologies. This results in a market share forecast. These appliance shares are multiplied times the customer forecast and then a kWh per appliance forecast to derive an energy forecast by rate class. Both appliance shares and kWh per appliance are derived within the model. Customers are derived external to the model. The model permits direct interaction with the data, model concepts, and decision equations that are developed for each defined end-use. This gives KU the flexibility to develop a model that reflects demographic and energy usage characteristics of their residential customers.

As with any detailed end-use model, REEPS requires a substantial data development effort and that the user make several assumptions regarding customer behavior and efficiency related issues. REEPS models appliance purchase decisions and energy consumption for ten end-uses plus an HVAC (heating, ventilation, and air conditioning) end-use. The FERS HVAC end-use contains eleven and the RS HVAC end-use contains nine heating and cooling appliances. The FERS class models geothermal heating and cooling due to the anticipated growth of this technology. It is not a factor for the RS class. All of the end-uses included in the models are listed below:

#### **HVAC**

Central electric heating
Heat pump heating
Geothermal heat pump heating
Room electric heating
Secondary heating
Ventilation
R HEATING

WATER HEATING DISHWASHING CLOTHES DRYING CLOTHES WASHING RANGE Central air conditioning
Heat pump cooling
Geothermal heat pump cooling
Room air conditioning
Secondary cooling

MICROWAVE FIRST REFRIGERATOR SECOND REFRIDERATOR FREEZER OTHER APPLIANCES The REEPS framework for modeling these end-uses consists of a fuel price module, an exogenous variable module, a household module, a demographic segments module, an HVAC module, an appliance list module, and an appliance module. REEPS provides a default database for each of these modules that is derived using information obtained from national survey results. This information is periodically updated by Regional Economic Research Inc. (RER), a consulting group retained by the Electric Power Research Institute (EPRI). The default databases are modified to reflect updated national information, regional data, and KU specific data obtained from the Company's saturation surveys, conditional demand analysis, end-use metering results, and other internal sources. Separate REEPS databases are created for the RS and FERS rate classes.

The fuel price module consists of nominal price series for electricity, natural gas, fuel oil, and firewood as well as an implicit GDP price deflator series. The purpose of this module is to create deflated price series and convert these price series to a common unit of measurement, \$/mmbtu.

The exogenous variable module includes year, average income per household, average number of people per household, heating degree days, cooling degree days, customer forecast by housing type, fuel availability, quantitative measures for appliance efficiency standards, and other demographic variables used by the model. Efficiency standards are incorporated into the model using units of measurement as they are defined in the federal legislation. In the forecast period phase in of new technologies and decay and replacement assumptions are made to derive future values of the efficiency measures.

The household module provides a framework for creating a customer forecast model. However, KU currently has a customer forecast model and the output from this model is used as an input to the REEPS model. The purpose of this module is to calculate new households for three housing types using a fixed decay rate and the exogenous customer forecast.

The demographic segment module allows for dividing the model into smaller, more homogenous groups. Currently, each REEPS model is segmented by housing type. Although the model allows for a greater degree of segmentation, the benefits received

from further segmentation continue to be weighed against the availability of data and the cost of maintaining a significantly larger database.

The HVAC module consists of 20 primary system combinations plus three secondary heating systems and one secondary cooling system. The purpose of this module is to calculate saturation rates, energy consumption, appliance efficiencies, and thermal shell efficiencies for a base year and a forecast period for the HVAC systems. Variables included in this model areas follows: average and marginal saturation rates for each system; average and marginal appliance size; average and marginal appliance efficiencies;, heating and cooling degree days; capital costs; base year appliance unit energy consumption (UEC's); average and marginal thermal shell efficiency; and appliance availability for each housing type.

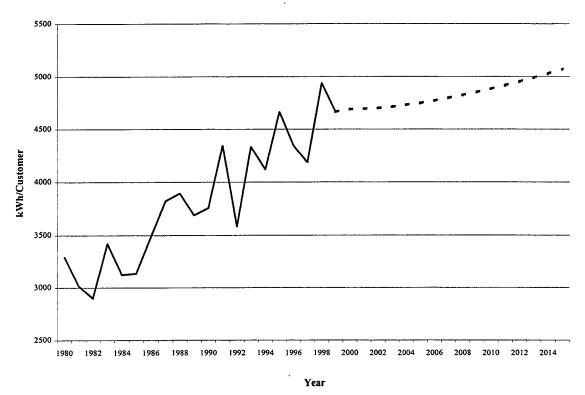
The appliance list module is a listing of all base or nonweather sensitive appliances defined for use in the REEPS model. Each appliance listed in this module must be defined in the appliance module.

The appliance module establishes a framework for modeling the purchase/replacement decisions, efficiency, and usage of each end-use not included in the HVAC module. Variables used in this module differ from the HVAC module in that weather and thermal shell characteristics are not specifically modeled for each of these appliances. All of the other variables mentioned before are used in the appliance module.

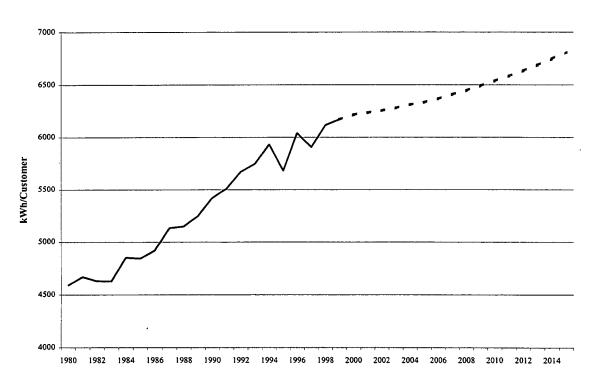
To begin a REEPS forecast, its computed normal energy consumption is calibrated to an estimate of normalized energy consumption for a base year. 1993 was used as the base year in this year's forecast. The forecast is calibrated by revising the "other" appliance UEC in the appliance module. The calibration process creates a base profile of each end-use and its associated parameters. The REEPS forecast is calibrated to the marginal data in the first forecasted year. The forecast is then driven by the multinominal share system, placements, household decay rates, kWh per appliance, and customer growth projections.

## RESIDENTIAL RS CONSUMPTION OUTLOOK

The long-term outlook for the RS class is for slow sales growth in the winter and summer seasons. Historically, from 1994-1998 the actual summer kWh per customer grew at an annual rate of 2.7 percent and from 1984-1998, the summer kWh per customer grew at an annual rate of 2.5 percent. Summer kWh per customer is expected to increase at an annual rate of 1.0 percent over the 1999-2004 period and 0.7 percent over the 1999-2013 period. The moderate growth reflects the effects of increasing efficiencies in air conditioning and refrigeration on energy consumption. The average efficiency for central and room air conditioning is increasing at an annual rate of 0.1 percent while the efficiency for refrigerators is increasing at an annual rate of 2.5 percent.


Historically from 1994-1998, the actual winter kWh per customer grew at an annual rate of 1.0 percent and from 1984-1998, the winter kWh per customer grew at an annual rate of 1.8 percent. Winter kWh per customer is projected to increase at an annual rate of 0.1 percent over the 1999-2004 period and increase at an annual rate of 0.4 percent for the 1999-2013 period.

The customer gWh sales and kWh per customer forecasts for the RS class are presented in summary annual form in Table RS-1 and Graph RS-1 (page 22). Table RS-2 presents the actual and normalized kWh per customer for the summer and winter seasons. Graphs RS-2 and RS-3 plot the actual historic data along with the predicted kWh per customer values for the summer and winter seasons.


TABLE RS-2 RS CLASS SEASONAL KWH PER CUSTOMER

<b>YEAR</b>	<b>SUMMER</b>	<b>WINTER</b>
1980	3,294	4,591
1981	3,017	4,671
1982	2,898	4,631
1983	3,420	4,629
1984	3,125	4,853
1985	3,136	4,844
1986	3,481	4,921
1987	3,822	5,129
1988	3,894	5,146
1989	3,691	5,245
1990	3,757	5,417
1991	4,344	5,510
1992	3,583	5,670
1993	4,333	5,746
1994	4,117	5,931
1995	4,666	5,679
1996	4,344	6,041
1997	4,186	5,816
1998	4,941	6,032
1999	4,487	6,286
2000	4,483	6,290
2001	4,577	6,280
2002	4,681	6,273
2003	4,693	6,281
2004	4,713	6,312
2005	4,727	6,337
2006	4,750	6,366
2007	4,778	6,405
2008	4,802	6,444
2009	4,832	6,486
2010	4,864	6,532
2011	4,896	6,579
2012	4,961	6,629
2013	4,968	6,682

## GRAPH RS-2 RS SUMMER KWH PER CUSTOMER

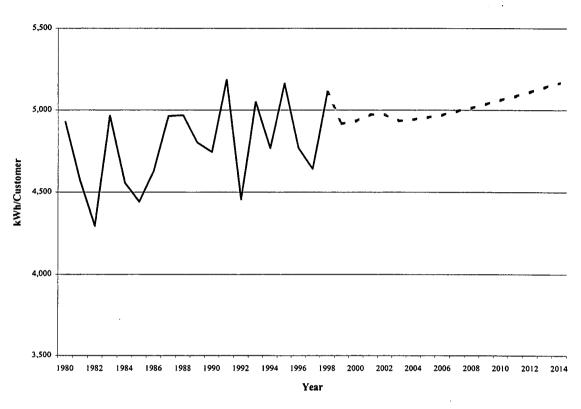


## GRAPH RS-3 RS WINTER KWH PER CUSTOMER

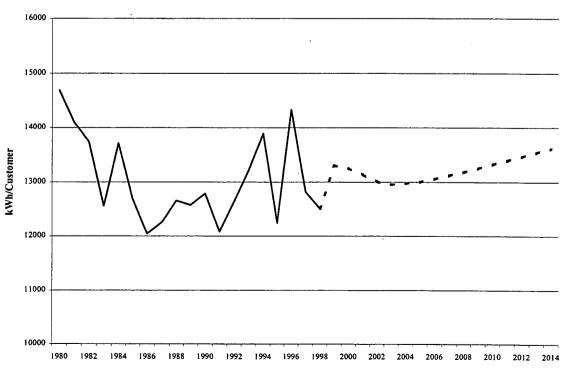


## RESIDENTIAL FERS CONSUMPTION OUTLOOK

The long-term outlook for this class is for moderate increase in kWh per customer in both the summer and winter seasons. Historically, from 1994-1998 the actual summer kWh per customer grew at an annual rate of 0.2 percent and from 1984-1998, the summer kWh per customer grew at an annual rate of 0.9 percent. Summer kWh per customer is projected to increase at an annual rate of 0.1 percent over the 1999-2004 period and increase at a rate of 0.3 percent over the 1999-2013 period. The relatively flat FERS summer season kWh per customer is due primarily to the effects of increasing efficiency standards for air conditioning and refrigerators. The average efficiency for central and room air conditioning is increasing at an annual rate of 0.1 percent, while the efficiency for refrigerators is increasing at an annual rate of 2.5 percent.


Historically from 1994-1998, the actual winter kWh per customer fell at an annual rate of 1.1 percent and from 1984-1998, the winter kWh per customer declined at an annual rate of 0.03 percent. Winter kWh per customer is projected to decline at an annual rate of 0.5percent over the 1999-2004 period and increase at a rate of 0.1 percent over the 1999-2013 period.

The customer gWh sales and kWh per customer forecasts for the FERS class are presented in annual summary form in Table FERS-1 and Graph FERS-1 (page 23). Table FERS-2 presents the actual and normalized kWh per customer for the summer and winter seasons. Graphs FERS-2 and FERS-3 plot the actual historic data along with the predicted kWh per customer values for the summer and winter seasons.


## TABLE FERS-2 FERS CLASS SEASONAL KWH PER CUSTOMER

<b>YEAR</b>	<b>SUMMER</b>	<b>WINTER</b>
1980	4,930	14,694
1981	4,572	14,096
1982	4,295	13,746
1983	4,967	12,557
1984	4,558	13,713
1985	4,442	12,691
1986	4,630	12,041
1987	4,964	12,256
1988	4,969	12,659
1989	4,803	12,577
1990	4,745	12,789
1991	5,185	12,081
1992	4,455	12,640
1993	5,050	13,209
1994	4,769	13,888
1995	5,163	12,243
1996	4,769	14,330
1997	4,642	12,818
1998	5,110	12,506
1999	4917	13,300
2000	4933	13,245
2001	4943	13,133
2002	4943	13,004
2003	4934	12,955
2004	4944	12,976
2005	4956	13,002
2006	4971	13,055
2007	4994	13,119
2008	5013	13,180
2009	5038	13,249
2010	5062	13,322
2011	5085	13,391
2012	5111	13,463
2013	5139	13,539

## GRAPH FERS-2 FERS SUMMER KWH PER CUSTOMER



## GRAPH FERS-3 FERS WINTER KWH PER CUSTOMER

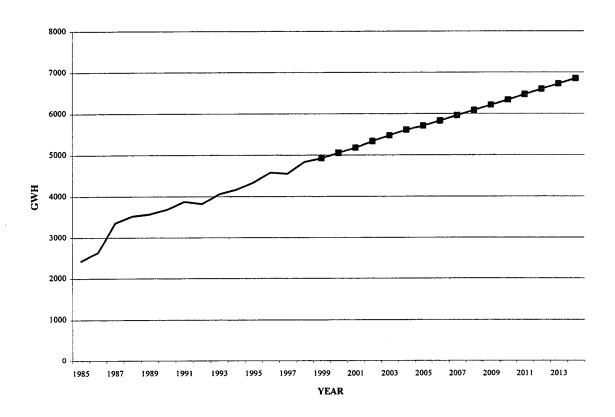


## KY RETAIL COMMERCIAL

The Commercial sector is defined as an SIC code based combination of the General Service, Light and Power, All-Electric Schools, and Municipal Water Pumping rates, along with the Commercial Space Heating and Off-Peak Water Heating Riders. Together, the Kentucky Retail Commercial sector accounts for 27 percent of total KU sales expected in 1999.

Historic Commercial sector sales under these rate codes are segmented from the Industrial sector on the basis of each account's SIC code. The SIC codes that define the Industrial sector include SIC codes 20 through 39 and a general mining category that includes SIC codes 10 through 14. All accounts with other SIC codes are considered to be Commercial sector sales. Sales groups by SIC code are assumed to exhibit similar usage characteristics and to be influenced by common economic or demographic variables.

Table COMM-1 presents the forecast data for the total Commercial/Industrial class and Graph COMM-1 plots the historical and forecasted gWh sales for the total class. From 1993 to 1998, actual sales to the Commercial sector increased at an average annual rate of 3.6 percent. The predicted average growth rate for the base case forecast from 1999 – 2004 period is 2.6 percent. Increases in both the customer forecast and the usage per customer forecast contribute to the outlook for the Commercial sector. Commercial customers provide the greatest impetus to near term growth, driven by continuing residential customer growth. Commercial customers are forecast to grow at a 1.7 percent average annual rate through 2004 after growing at an average annual rate of 2.3 percent from 1993 to 1998. Usage per customer grew at a 1.2 percent annual rate from 1993 to 1998 but the rate of growth slows to 0.9 percent over the next five years. Over fifteen years, the base case forecast reflects a 2.2 percent growth rate.


The Commercial sector sales forecasting process is a combination of short-term and long-term econometric and end-use modeling methodologies. Short-term and long-term sales are forecast as the product of customer and KWH per customer forecasts. The short-term econometric model uses monthly data from 1989 through April 1999. Two seasonal econometric models are used for the long-term forecast, one each for the cooling and heating seasons. The cooling season is May through

October and the heating season is November through April. The short-term econometric forecast predicts KWH per customer for the 1999 through 2002 period. The remainder of the outlook for KWH per customer is derived using the seasonal econometric models. Heating and cooling degree days for both the short-term and long-term models are calculated on a 65-degree base. Both use Lexington as the source of the weather data. A ramp function is utilized to align the weather data with the billing data.

TABLE COMM-1 KY-RETAIL COMMERCIAL FORECAST

YEAR	<u>CUSTOMERS</u>	<u>GWH SALES</u>	KWH/CUSTOMER
1999	71,377	4,925	69,000
2000	72,609	5,047	69,507
2001	73,900	5,172	69,988
2002	75,221	5,331	70,868
2003	76,584	5,471	71,432
2004	77,787	5,607	72,085
2005	78,417	5,703	72,728
2006	79,304	5,828	73,498
2007	80,142	5,954	74,298
2008	80,948	6,079	75,102
2009	81,743	6,206	75,926
2010	82,530	6,335	76,758
2011	83,290	6,463	77,591
2012	84,044	6,591	78,428
2013	84,786	6,721	79,267

## GRAPH COMM-1 KU COMMERCIAL SALES: HISTORY AND 1999-2013 FORECAST



Commercial customers are forecast as a function of residential customers and a binary term starting in 1987 to capture the effect of a shift in historic data due to the use of SIC codes to segment commercial and industrial customers. The resulting equation for commercial customers is shown below (the number in parenthesis indicates the probability of that variable being insignificant).

$$COMCUST = -11294 + .21329(RESCUST) + 2059.75(BIN) - .7113(AR1)$$

$$(.0001) \qquad (.0005)$$

WHERE:

COMCUST = KU Commercial Customers

BIN = Binary Variable for SIC Code Reclassification

RESCUST = Residential Customers

AR1 = Autoregressive correction term

## **MODEL STATISTICS:**

$$Adj R^2 = .99$$
  
F Test = 2194  
 $AR(1)PARM = -.71$ 

t-test of AR(1) = -5.06

The short-term model uses monthly KWH per customer as the dependent variable. Monthly KWH per customer is forecast using KWH per customer lagged one period, commercial service territory employment, January heating degree days, February heating degree days, March heating degree days, April heating degree days, December heating degree days, June cooling degree days, July cooling degree days, August cooling degree days, and September cooling degree days. (the number in parenthesis indicates the probability of that variable being insignificant).

#### Where:

KPC L1 Monthly KWH per Customer (lagged one period) **ENGO** Monthly Commercial Employment **JANHDD** January Heating Degree Days February Heating Degree Days FEBHDD MARHDD = March Heating Degree Days = April Heating Degree Days APRHDD DECHDD = December Heating Degree Days JUNCDD June Cooling Degree Days JULCDD July Cooling Degree Days AUGCDD August Cooling Degree Days SEPTCDD = September Cooling Degree Days

### Model Statistics:

 $Adj R^2 = .91$ F Test = 114.7 D-W Test = 2.25 The dependent variable in both seasonal models is kWh per customer. For the cooling season model, the explanatory variables are service territory commercial employment, cooling degree days, the real average commercial price of electricity, a binary variable designed to capture the effect of SIC code based segmentation beginning in 1987, and an interaction term between commercial employment and the binary variable. For the heating season model, the explanatory variables are service territory employment, heating degree days, the real average commercial price of electricity, a binary variable designed to capture the effect of SIC code based segmentation beginning in 1987, and an interaction term between commercial employment and the binary variable.

The forecast of service territory employment is obtained from the KUSTEM model. Real average commercial price is calculated from FERC Form 1 data for KU for the commercial sector, deflated by the U.S. implicit price deflator provided by WEFA.

The resulting equations are shown below (the number in parenthesis indicates the probability of that variable being insignificant). The heating degree day and real average commercial price terms in the heating season model are weakly specified, but are included for the sake of theoretical completeness and since they do have the expected signs.

```
COOLING SEASON:
```

```
KWH per customer = -3002.38 + 3.545(CDD)-106507(RACP)+.066(COMEMP)+21310(BIN)

(.0001) (.0731) (.0001) (.0001)

+-.038189(INEMP) -.57548(AR1)

(.0003)
```

## **HEATING SEASON:**

### Where:

EMP = Service Territory Commercial Employment

CDD = Cooling Degree Days HDD = Heating Degree Days

BIN = Binary Variable for SIC Code Reclassification in 1987

RACP = Real Average Commercial Price INEMP = Interaction Variable (EMP * BIN) Model Statistics:

Cooling Season:

Adj R² = . 995 AR(1) PARM T-test of AR(1) =-.575 =-3.31

D-W Test after AR(1) = 1.67

Heating Season:

Adj R² .988

F Test 560.7

D-W Test 2.49

#### **COMMERCIAL END-USE MODEL**

The COMMEND model enables KU to forecast subsets of the Commercial Sector which represent classifiable commercial building sales. Commercial sales to non-building types such as pumps, billboards, phone booths, automatic tellers and sales to industrial SIC-coded accounts with a commercial revenue class are grouped and reported as >out-of-scope= sales.

The COMMEND model provides projected sales by eleven building types and nine end-uses and captures the estimated effects of appliance standards from the National Energy Policy Act of 1992 and the National Appliance Energy Conservation Act of 1987. The model is similar to REEPS in that it uses an integrated end-use econometric modeling framework which combines engineering concepts with economic relationships at the individual appliance level. Direct interaction with the data, model concepts and decision equations for each end-use gives KU the flexibility to make changes in the model that reflect the energy usage characteristics of commercial customers.

COMMEND models appliance purchase decisions and energy consumption for the nine enduses and eleven building types listed below:

END-USES	BUILDING TYPES
Space heating	Small Offices
Space cooling	Large Offices
Ventilation	Warehouses
Water heating	Foodstores
Cooking	Retail
Refrigeration	Schools
Interior lighting	Colleges
Office Equipment	Restaurants
Miscellaneous	Health
	Lodging
	Miscellaneous

The COMMEND framework for modeling these building types and end-uses consists of modules for exogenous variables, floor stock, market profiles, technology data, economic data, and standards and demand-side management. COMMEND provides a default database for all parameters that has been derived from national surveys and examinations of utility data. This database is

periodically updated by RER as was the case in the Residential sector. These databases have been modified to reflect available KU-specific data obtained from the 1992 KU Commercial Survey. This survey was designed as a means of populating key data inputs to the COMMEND model.

The Exogenous Variables module includes an energy price section and an "other" exogenous variable section. The energy price section consists of nominal price series for electricity, natural gas and fuel oil (treated as "other" fuels), as well as the implicit GDP price deflator series. The electricity price series is the same as used in the commercial econometric model.

The Floor Stock module serves to define market segments (building types), define historical and forecast periods, construct historical floor stock data using a base year stock value, historical scale data and survival functions, and to develop floor stock forecasts. The 1992 Base Year floor stock has been estimated from the 1992 KU Commercial Survey. Historic and forecast values are based on employment estimates and forecasts by building type and on an estimate of floor stock per employee from the commercial survey.

The Market Profiles module contains data on energy use profiles within each building type. Key parameters that are controlled here are fuel shares and energy utilization intensity (EUI) values. Average and marginal shares and EUI values are entered for each building type, end-use, and fuel choice combination. COMMEND utilizes the base year floor stock, average fuel shares and average EUI's to calculate in a spreadsheet format a total sales level for each fuel type within each building type. For electricity sales, this value can be calibrated to an estimated base year total. Average fuel shares have been estimated from the Commercial Survey. Average and marginal EUI's for small and large offices and foodstores have been estimated utilizing prototype building simulations with micro-Axcess an EPRI supported simulation model. The remaining average EUI=s are generally based on averages of South and Midwest region default data. The remaining marginal shares are estimated using adjustments to the average shares using marginal default data. Marginal EUI's are generally default data.

The Technology Data module contains information about end-use efficiencies and average equipment costs in new construction. When calculating HVAC energy usage, COMMEND recognizes a technology level distinction between heat pumps and resistance heating technologies. Direct input in this module of heat pump specific data allows the EUI value to be unbundled into the two technology components. Tradeoff elasticities between equipment costs and energy use in

new construction are required. The concept behind these parameters is the existence of a technology segment representing the range of available technologies. The marginal EUI and the capital cost represent weighted averages across options on this curve. Efficiency trends are included that are considered independent of energy prices and efficiency standards. Equipment cost trends are also provided. The interaction of efficiency and cost shifts over time determine the position and shape of the technology curve. Finally, HVAC interactions with non-HVAC equipment and thermal shell characteristics are modeled through efficiency parameters. The data in this module is generally based on default values.

The Economic Data module contains information about decision makers and decision rules. Two types of decision maker data are required. The first data type is a set of discount rate distributions. Separate distributions can be entered for each building type. The second data type is a set of weights for price expectations. This allows for the introduction of distributed lags of past prices. Decision rules are modeled through the use of choice elasticities, utilization elasticities, replacement factors, penetration changes, miscellaneous equipment growth, and thermal shell parameters. Choice elasticities indicate the sensitivity of equipment decisions to life-cycle cost. Utilization elasticities indicate the sensitivity of equipment usage to energy prices or other factors. Replacement factors create a distinction between fuel share and efficiency changes in new buildings and the degree to which these changes are adopted in older buildings. They are referred to as fuel share and EUI inertia factors. Penetration factors control changes in the penetration of end uses in existing structures. The miscellaneous growth factors allow electric equipment saturations to grow independently for each building type. Separate growth profiles are entered for office equipment and miscellaneous equipment. Thermal shell parameters are used to measure the sensitivity of thermal efficiency to energy prices, and any trends in thermal efficiency that are unrelated to energy prices or efficiency standards. The data in this module is generally based on default values.

The Standards and DSM module allows the input of data related to equipment efficiency standards, thermal efficiency standards, and DSM program impacts. Equipment efficiency standards limit the range of efficiency options available in the equipment market. Standards are assigned separately to each end-use and building type. Thermal efficiency standards are not represented in COMMEND. However, the data provided give a path for thermal efficiency levels required by standards. The path is constructed from the following information:

- The timing of the standards and an assumption about compliance levels.
- The estimated impacts of standards on head loss during the heating season.
- The estimated impacts of standards on heat gain during the cooling season.

#### **KY-RETAIL**

### **INDUSTRIAL**

The Industrial sector is an aggregation of sales under The General Service, Light & Power, Large Commercial/Industrial, and High Load Factor rate classification with SIC codes 20 through 39 plus an additional category for mining sales, including sales not covered by the Company's Mine Power rate. The Industrial sector accounts for 27 percent of total KU sales expected in 1999. The forecast for sales to the Industrial sector has been produced using a monthly econometric model and an annual econometric model along with a small number of individual customer forecasts. The results from the monthly model and the annual model are weighted so as to phase in the long-term model. The weights applied to each are illustrated in Table CI-3. After 2005, the remainder of the forecast is the prediction from the annual model.

TABLE IND-1
APPLIED WEIGHTS TO THE SHORT-TERM
AND LONG-TERM INDUSTRIAL FORECAST

	Short-Term	Long-Term
<u>Year</u>	<u>Model</u>	<u>Model</u>
1999	80%	20%
2000	80%	20%
2001	65%	35%
2002	40%	60%
2003	25%	75%
2004	15%	85%
2005	10%	90%

The monthly model used monthly kWh as the dependent variable. The explanatory variables are service territory output, a seasonal binary for January, June cooling degree-days, July cooling degree-days, August cooling degree-days, and September cooling degree-days. The resulting equation is shown below (the numbers in parenthesis indicate the probability of that variable being insignificant).

$$\begin{array}{rll} \mbox{Industrial kWh} &=& -29267726 + 0.03(RGSP) - 7764782(JAN) + 240071.8(JUNCDD) \\ & & (0.0000) & (0.0079) & (0.0000) \\ & & + 59895.82(JULCDD) + 92298.31(AUGCDD) + 209782.6(SEPCDD) \\ & & (0.0012) & (0.0000) & (0.0000) \end{array}$$

Where:

RGSP = Service Territory Output JAN = January Binary Variable

JUNCDD = June Degree Day Interaction Variable

JULCDD = July Degree Day Interaction Variable

AUGCDD = August Degree Day Interaction Variable

SEPCDD = September Degree Day Interaction Variable

Model Statistics:

Adjusted  $R^2 = 0.94$ F-Statistic = 251.62 D-W Test = 2.07

AR(1) PARM = 0.16 t-Test of AR(1) = 1.72

Annual kWh consumption is the dependent variable in the annual model. The explanatory variables are real service territory manufacturing output, the real average industrial price of electricity, cooling degree-days using a 70-degree base, and an annual dummy variable beginning in 1985. The resulting equation is shown below (the numbers in parenthesis indicate the probability of that variable being insignificant).

Where:

D(RGSPRE) = First Difference of Service Territory Output
D(REPRICE) = First Difference of Real Average Industrial Price

of Electricity

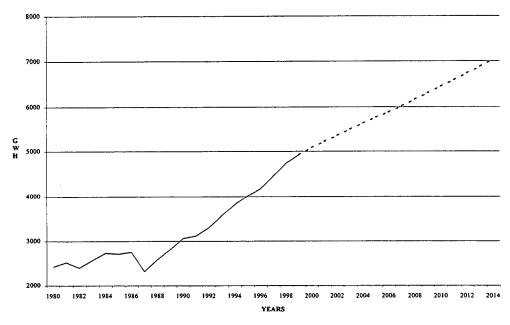
D(CDD70) = First Difference of Cooling Degree Days

(70 Degree Base)

D(YRDUM) = First Difference of Annual Dummy Variable

Model Statistics:

Adjusted  $R^2 = 0.92$ F-Statistic = 45.54 D-W Test = 2.11 AR(1) PARM = -0.59 t-Test of AR(1) = 3.24


The five-year predicted growth rate for the Industrial sector is 2.7 percent. Over the fifteen year forecast horizon, the growth rate decreases slightly to 2.4 percent.

Four large industrial KU customers are individually forecasted. The forecast for these customers are developed based on recent history in sales and demand and on communications with each customer regarding its outlook for growth and expansion. In total, sales to these large customers are forecasted at 1232 gWh for 1999, rising annually at 1.2 percent to 1309 gWh in 2004, and remaining constant thereafter.

TABLE IND-2
INDUSTRIAL FORECAST

<u>YEAR</u>	<u>GWH</u>
1999	4,923
2000	5,086
2001	5,221
2002	5,353
2003	5,493
2004	5,632
2005	5,763
2006	5,876
2007	6,016
2008	6,159
2009	6,303
2010	6,448
2011	6,592
2012	6,736
2013	6,882

GRAPH IND-1
INDUSTRIAL GWH SALES



## MINE POWER SERVICE (MP, LMP)

The Mine Power sales and customer forecasts reflect the dependence of this class of service on the general outlook for the state's coal industry. Table MP-1 presents Resource Data International's (RDI) outlook for coal production in Kentucky, in total and by region.

RDI predicts a general increase in total state production over the forecast period of approximately one and a half million tons from 1999 to 2004, and an average annual rate of 0.2 percent. Over the full fifteen year forecast horizon, state production is predicted to increase by approximately fourteen million tons from 1999 to 2013, an average annual growth rate of 0.6 percent. Most of the growth comes from Eastern Kentucky, which is projected to experience an increase of 4.1 million tons from 1999 to 2004 (0.6 percent average annual growth) and 13.4 million tons over the fifteen-year period (0.7 percent average annual growth) over the forecast period. Western Kentucky tonnage is projected to decline by 2.5 million tons from 1999 to 2004 (1.4 percent average annual decline) and increase by 700,000 tons (0.1 percent average annual increase) over the forecast period.

To forecast sales, the model incorporates intensity of use and market share analyses. Utilizing billing data, the RDI coal production history, Company field office knowledge, an average kWh/ton extracted on KU territory and KU's approximate share of coal production for 1997 were calculated for the Eastern and Western Kentucky regions. The analysis was based on data associated with 90 percent of total Mine Power sales. These values were then applied to KU's forecast of coal production in each region to estimate future sales for 1999 and beyond. The parameters calculated for the forecast are given in Table MP-2. A flowchart of Mine Power kWh forecast process is presented in Figure MP-1. The Mine Power customer forecast is derived from the kWh forecast by dividing forecasted gWh by 1998 average kWh per customer.

TABLE MP-1
KENTUCKY COAL PRODUCTION FORECAST (MM TONS)

<u>YEAR</u>	TOTAL <u>KENTUCKY</u>	EAST <u>KENTUCKY</u>	WEST KENTUCKY
1999	161.9	125.1	36.8
2000	159.4	125.0	34.4
2001	161.3	127.3	34.0
2002	161.4	127.6	33.8
2003	161.9	128.2	33.7
2004	163.5	129.2	34.3
2005	164.5	129.7	34.8
2006	164.5	130.4	34.2
2007	166.8	131.8	35.0
2008	168.9	133.4	35.5
2009	170.9	135.4	35.5
2010	174.6	137.6	37.0
2011	175.5	138.5	37.0
2012	176.5	139.5	37.0
2013	176.0	138.5	37.5

TABLE MP-2 1999 END-USE AND MARKET SHARE PARAMETERS

	EAST KENTUCKY		WEST KENTUCKY	
	AVGERAGE	MARKET	AVERAGE	MARKET
	kWh/TON	<u>SHARE (%)</u>	kWh/TON	SHARE (%)
		,		
1999	24.9	3.90	14.9	65.71
2000	24.9	3.83	14.9	65.68
2001	24.9	4.02	14.9	64.83
2002	24.9	3.77	14.9	68.84
2003	24.9	3.44	14.9	65.56
2004	24.9	3.24	14.9	68.19
2005	24.9	2.99	14.9	69.77
2006	24.9	2.57	14.9	68.43
2007	24.9	2.19	14.9	63.97
2008	24.9	1.83	14.9	61.58
2009	24.9	1.40	14.9	59.41
2010	24.9	0.98	14.9	56.47
2011	24.9	0.76	14.9	48.79
2012	24.9	0.58	14.9	45.32
2013	24.9	0.46	14.9	42.14

RDI's coal production outlook is disaggregated by producing mine. In addition to facilitating an analysis of the Company's major Mine Power rate customers to provide the annual coal production market shares by region, the database also identifies the major customers of each mine. By analyzing the markets for the coal, KU has concluded that its major Mine Power customers in western Kentucky have relatively well protected markets due to their contracts with utilities that employ scrubbers. Therefore, there is reason to believe that KU's market share on the Mine Power rate in Western Kentucky should fluctuate in the mid-60 percent range through 2007 and decline thereafter due to new contract negotiations. For 2000, the Western Kentucky market share is projected to be 65.7 percent. From 2006 through 2005 the market share fluctuates between 65 and 69 percent. From 2006 through the end of the forecast period the market share steadily declines to 39 percent.

A summary of forecasted customers and energy sales is shown in Table MP-3. Energy sales are forecasted to show an slight decline from 502 gWh in 1999 to 479 gWh in 2004 (0.9 percent average annual decrease). Sales are anticipated to take a dip in 2007 to 466 gWh. Thereafter, the outlook is for a continued decline to a sales level of 374 in 2013 (2.0 percent average annual decline over the forecast period). Customers track the gWh forecast, declining from 50 in 1999 to 37 in 2013. Graph MP-1 plots the historical and forecasted gWh sales for the Mine Power rate class.

# FIGURE MP-1 MINE POWER GWH MODEL

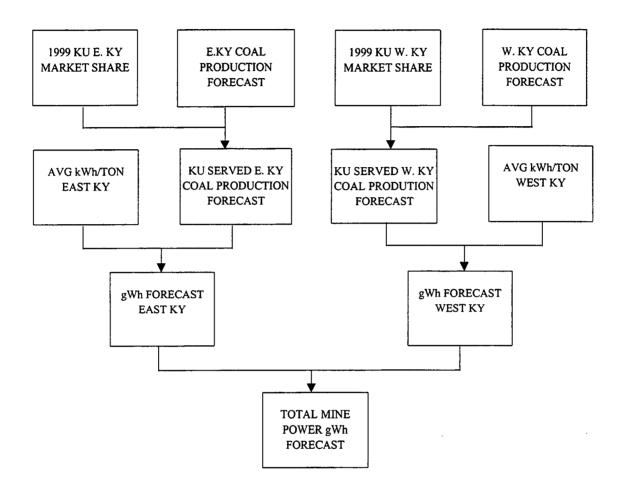
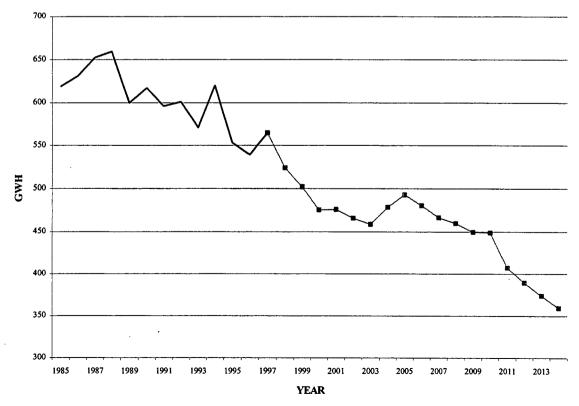




TABLE MP-3 MINE POWER FORECAST

<u>YEAR</u>	<u>CUSTOMERS</u>	<u>GWH</u>
1999	50	502
2000	47	475
2001	47	476
2002	46	466
2003	45	459
2004	47	479
2005	49	493
2006	47	480
2007	46	466
2008	45	460
2009	44	450
2010	44	449
2011	40	407
2012	38	389
2013	37	374

# GRAPH MP-1 MINE POWER GWH SALES



#### **LIGHTING**

KU-Retail lighting sales are forecasted in two groups, outdoor area lighting and street lighting. The outdoor area lighting group is projected utilizing two regression models, one for the number of fixtures and one for the average KW rating per fixture. The fixture count times the consumption rate times hours of use determines the energy forecast. Fixtures are regressed against service territory households and a binary variable that accounts for a revision of the fixture accounting procedure in 1987. As fixtures are a physical unit, the projected fixture values are adjusted so that the last year of known values equal the predicted values. Average KW rating per light for outdoor area lighting is regressed against time and a binary variable that accounts for the impact of the fixture count revision in 1987 on average KW rating per light. The equations for fixtures and average KW rating per light are shown on the following page (the number in parenthesis indicates the probability of that variable being insignificant).

#### AREA LIGHTING:

FIXTURES = 
$$-189.9*10^3 + 0.705(HHLDS) - 2.46*10^3(BIN)$$
  
(.0001) (.0520)

AVG KW/LIGHT = 
$$9.83 - .005(YEAR) - .0009(BIN)$$
  
(.0021) (.897)

Where:

HHLDS = KU Service Territory Households

BIN = Binary Variable for 1987 Redefinition

YEAR = Time

Model Statistics:

Area Lighting: Adj  $R^2$  = .99 Avg kw/light: Adj  $R^2$  = .90

The Company provides incandescent, mercury vapor and high pressure sodium (HPS) street lighting service. Incandescent lights are not available for new installations and the price differential between mercury vapor and HPS lights effectively eliminate requests for new mercury vapor

systems. The forecast assumes that all new street lights will be HPS.

The street lighting group uses the same methodology as the area lighting group for the fixture forecast. Fixtures are regressed against time and the binary variable for the 1987 revision. Following is the equation for fixtures in the street lighting group (the number in parenthesis indicates the probability of that variable being insignificant).

#### STREET LIGHTING:

FIXTURES = 
$$-203.4*10^4 + 1892(YEAR) + 1050(BIN)$$
 (.0001)

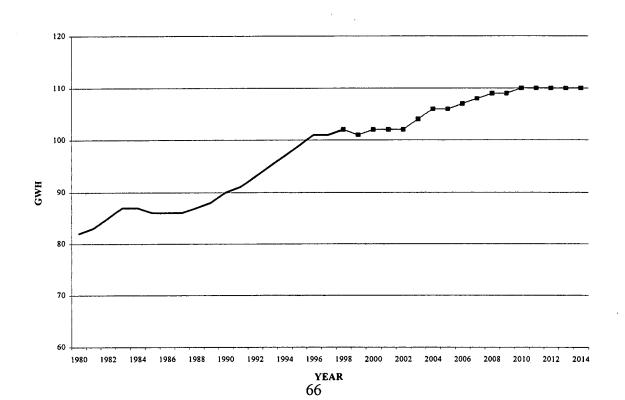
Where:

YEAR = Time

BIN = Binary Variable for 1987 Redefinition

Model Statistics:

 $Adj R^2 = .99$ 


For the average KW rating per fixture, existing fixtures are grouped by type and lumen to identify HPS and Non-HPS weighted averages. The mix of HPS lighting types is then held constant over the forecast period. This establishes an average KW rating for HPS fixtures. All increases of fixtures are assumed to occur in the HPS group. The Non-HPS fixtures are retired based upon the average of the annual change in fixture count over the last five years. The Non-HPS KW per fixture used for the forecast period is based on the average over the last five years. This is the factor used in the energy calculation. The street lighting energy is calculated in the same manner as in the area lighting group and is combined to produce the energy for this group.

The forecasted gWh sales are shown in Table LT-1. A plot of the historical and forecasted lighting gWh sales are shown on Graph LT-1.

TABLE LT-1 LIGHTING FORECAST

<u>YEAR</u>	<u>GWH</u>
1999	101
2000	101
2001	102
2002	102
2003	104
2004	106
2005	106
2006	107
2007	108
2008	109
2009	109
2010	110
2011	110
2012	110
2013	110

# GRAPH LT-1 LIGHTING GWH SALES



#### **VIRGINIA**

#### **OLD DOMINION POWER**

#### **SUMMARY**

The Old Dominion Power Company (ODP) operating unit of Kentucky Utilities serves five counties in southwestern Virginia. As these sales occur in the Virginia jurisdiction, they are modeled separately from other retail sales. ODP sales are disaggregated to a rate class basis. In the determination of KU system output, a two-step process of accounting for losses is employed for ODP that first brings sales up to the state line and then adjusts for the Kentucky system monthly loss factor. This forecast predicts an annual growth rate of 2.1 percent for the 1999-2004 period and 1.9 percent from 1999-2013. The forecasted growth rates by class for the 1999-2013 period are as follows:

TABLE ODP-1
FORECASTED GROWTH RATES FOR ODP

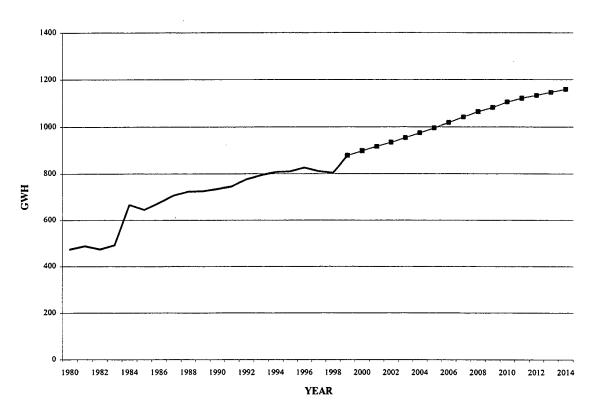

<u>CLASS</u>	% ANNUAL <u>GROWTH RATE</u>	% OF TOTAL ENERGY SALES
Residential	1.7	44
Commercial/Industrial	2.1	52
All Electric Schools	-	3
Lighting	<u>1.9</u>	1
TOTAL	1.9	100

Table ODP-1 is a tabulation of the forecasted gWh sales for the 15-year period. Graph ODP-1 is a plot of the historical and forecasted gWh sales.

TABLE ODP-2 TOTAL ODP FORECAST

<u>YEAR</u>	<b>CUSTOMERS</b>	<b>GWH SALES</b>
1999	29,322	879
2000	29,737	898
2001	30,066	916
2002	30,397	935
2003	30,728	954
2004	31,061	974
2005	31,394	996
2006	31,728	1,018
2007	32,063	1,041
2008	32,400	1,064
2009	32,737	1,082
2010	33,075	1,105
2011	33,135	1,122
2012	33,195	1,133
2013	33,256	1,146

### GRAPH ODP-1 TOTAL ODP GWH SALES



# OLD DOMINION POWER RESIDENTIAL

Old Dominion Power Company (ODP) has one residential rate class for both all-electric and non all-electric customers. The forecast for this class is developed in two parts: (1) a projection of customers and (2) a projection of long term energy sales. The cooling season is June through September and the heating season is October through May. Degree-day data are based on 65-degrees and derived from data from the Bristol, Tennessee weather station.

The customer forecast is initiated using a population forecast developed by the Virginia Employment Commission. A ratio of customers to population is computed by county and trended over the forecast period. Future customers are then estimated by multiplying the trended ratio of customer to population period. Future customers are then estimated by multiplying the trended ratio of customer to population by the population forecast. The most recent population forecast is through the year 2010. Therefore, the customer forecast is fixed at the 2010 level for the rest of the forecast period. Scott County, in which ODP has only 25 customers, is fixed at that value for the forecast period. The average annual service territory decline in population is projected to be 0.7 percent annually for the 1999-2004 period and 0.7 percent for the 1999-2013 period.

#### RESIDENTIAL END-USE MODEL

KU's long-term forecasting models are designed to support the Company's expansion planning efforts. For the residential sector, the Residential End-Use Planning System (REEPS) model is utilized. REEPS generates an annual sales forecast based on a discrete choice-modeling framework. The model utilizes choice equations to construct a "multinominal" share system for all defined end-uses. Each equation relates the market share of an end-use to its economic attractiveness relative to the economic attractiveness of alternate technologies. This results in a market share forecast. These appliance shares are multiplied times the customer forecast and then a kWh per appliance forecast to derive an energy forecast by rate class. Customers are derived external to the model. The model permits direct interaction with the data, model concepts, and decision equations that are developed for each defined end-use. This gives KU the

flexibility to develop a model that reflects the demographic and energy usage characteristics of ODP residential customers.

As with any detailed end-use model, REEPS requires a substantial data development effort and that the user make several assumptions regarding customer behavior and efficiency related issues. REEPS models appliance purchase decisions and energy consumption for ten end-uses plus and HVAC (heating, ventilation, and air conditioning) end-use. The HVAC end-use contains nine heating and cooling appliances. All of the end-uses included in the models are listed below:

#### **HVAC:**

Central electric heating Heat pump heating Room electric heating Secondary heating

WATER HEATING DISHWASHING CLOTHES DRYING CLOTHES WASHING RANGE Central air conditioning Heat pump cooling Room air conditioning Secondary cooling

MICROWAVE FIRST REFRIDERATOR SECOND REGRIDERATOR FREEZER OTHER APPLIANCES

The REEPS framework for modeling these end-uses consists of a fuel price module, an exogenous variable module, a household module, a demographic segments module, an HVAC module, an appliance list module, and an appliance module. REEPS provides a default database for each of these modules that is derived using information obtained from national survey results. This information is periodically updated by Regional Economic Research Inc. (RER), a consulting group retained by the Electric Power Research Institute (EPRI). The default databases are also modified to reflect updated saturation surveys, conditional demand analysis, end-use metering results, and other internal sources.

The fuel price module consists of nominal price series for electricity, natural gas, fuel oil, and firewood as well as an implicit GDP price deflator series. The purpose of this module is to create deflated price series and convert these price series to a common unit of measurement, \$\sigma\mathrm{mmbtu}.

The exogenous variable module includes year, average income per household, average number of people per household, heating degree days, cooling degree days, customer forecast by

housing type, fuel availability, quantitative measures for appliance efficiency standards, and other demographic variables used by the model. Efficiency standards are incorporated into the model using units of measurement as they are defined in the federal legislation. In the forecast period phase-in of new technologies and decay and replacement assumptions are made to derive future values of the efficiency measures.

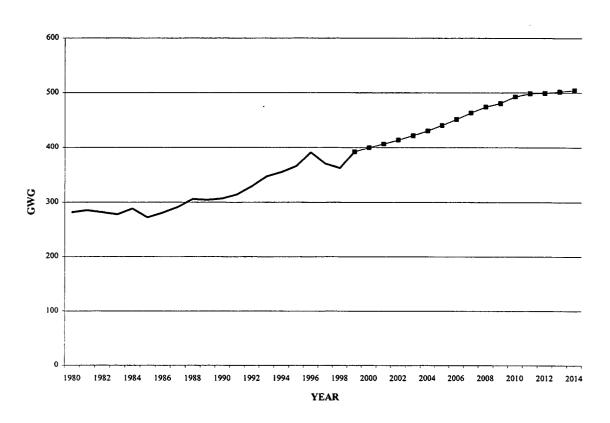
The household module provides a framework for creating a customer forecast model. However, KU currently has a customer forecast model and the output from this model is used as an input to the REEPS model. The purpose of this module is to calculate new households for three housing types using a fixed decay rate and the exogenous customer forecast.

The demographic segment module allows for dividing the model into smaller, more homogenous groups. Currently the REEEPS model is segmented by housing type. Although there are benefits associated with a greater degree of segmentation, the benefits received from further segmentation continue to be weighed against the availability of data and the cost of maintaining a significantly larger database.

The HVAC module consists of twenty primary system combinations plus three secondary heating systems and one secondary cooling system. The purpose of this module is to calculate saturation rates, energy consumption, appliance efficiencies, and thermal shell efficiencies for a base year and a forecast period for the HVAC systems. Variables included in this module are average and marginal saturation rates for each system, average and marginal appliance size, average and marginal appliance efficiencies, heating and cooling degree days, capital costs, base year appliance unit energy consumptions (UEC's), average and marginal thermal shell efficiency and appliance availability for each housing type.

The appliance module establishes a framework for modeling and purchase/replacement decisions, efficiency, and usage of each end-use not included in the HVAC module. Variables used in this module differ from the HVAC module in that weather and thermal shell characteristics are not specifically modeled for each of these appliances. All of the other variables mentioned before are used in the appliance module.

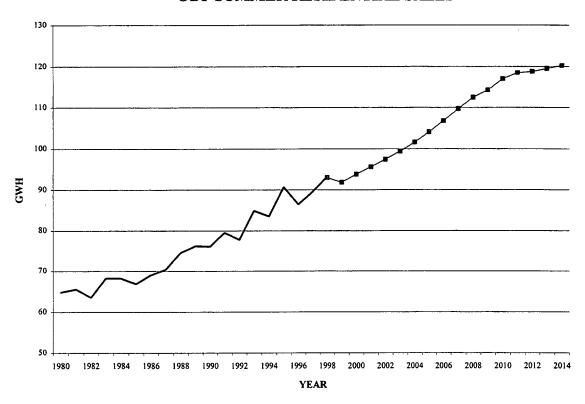
To begin a REEPS forecast, its computed normal energy consumption is calibrated to an estimate of normalized energy consumption for a base year. 1993 was used as the base year in this year's forecast. The forecast is calibrated by revising the "other" appliance UEC in the


appliance module. The calibration process creates a base profile of each end-use and its associated parameters. The REEPS forecast is calibrated to the marginal data in the first forecasted year. The forecast is then driven by the multinominal share system, replacements, household decay rates, kWh per appliances, and customers growth projections.

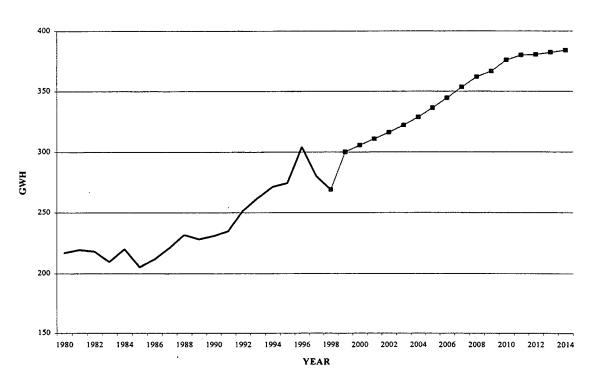
The resultant annual forecast of total residential customers, kWh per customer and gWh sales is tabulated in Table ORES-1. Graph ORES-1 shows the annual historical and forecasted gWh sales. The forecasted seasonal consumption rates are presented on Table ORES-2. Graphs ORES-2 and ORES-3 show the forecasted seasonal consumption. Since 1984, residential energy usage per customer in ODP has increased at an average annual growth rate of 1.1 percent. It is anticipated that over the next five years there will be an increase of 0.8 percent annually and over the entire forecast period kWh per customer will grow at a 0.9 percent average annual rate. The summer consumption rate is forecasted to rise over the five year period at an annual rate of 0.98 percent and over the fifteen year period at an annual rate of 1.1 percent as air conditioning saturation levels off. The winter consumption rate is rising over the five and fifteen year forecast period at an annual rate of 0.2 and 0.1 percent, repsectively. With moderate customer growth (0.7 percent) in the ODP Service Territory projected over the forecast period, residential gWh sales are forecasted to increase at a compound annual rate of 1.9 percent per year through 2004 and at an annual rate of 1.8 percent per year through 2013.

TABLE ORES-1
ODP RESIDENTIAL FORECAST

<b>YEAR</b>	<b>CUSTOMERS</b>	KWH/CUSTOMER	<b>GWH SALES</b>
1999	25,157	15,571	392
2000	25,511	15,655	399
2001	25,781	15,765	406
2002	26,051	15,875	414
2003	26,322	16,010	421
2004	26,595	16,177	430
2005	26868	16,390	440
2006	27,142	16,624	451
2007	27,417	16,887	463
2008	27,693	17,130	474
2009	27,970	17189	481
2010	28,248	17,445	493
2011	28,248	17,649	499
2012	28,248	17,672	499
2013	28,248	17,762	502


# GRAPH ORES-1 ODP RESIDENTIAL GWH SALES




# TABLE ORES-2 ODP RESIDENTIAL SEASONAL KWH PER CUSTOMER

<u>YEAR</u>	<b>SUMMER</b>	<b>WINTER</b>
1980	3,023	10,133
1981	3,035	10,121
1982	2,886	9,956
1983	3,081	9,449
1984	3,062	9,871
1985	2,987	9,201
1986	3,086	9,451
1987	3,143	9,844
1988	3,318	10,302
1989	3,387	10,126
1990	3,365	10,201
1991	3,478	10,254
1992	3,358	10,864
1993	3,623	11,174
1994	3,519	11,442
1995	3,766	11,406
1996	3,571	12,534
1997	3,667	11,448
1998	3,760	10,831
1999	3,652	11,257
2000	3,678	11,279
2001	3,710	11,297
2002	3,741	11,312
20.03	3,778	11,325
2004	3,822	11,336
2005	3,876	11,345
2006	3,936	11,353
2007	4,002	11,360
2008	4,064	11,365
2009	4,086	11,370
2010	4,144	11,374
2011	4,197	11,377
2012	4,208	11,380
2013	4,234	11,382

# GRAPH ORES-2 ODP SUMMER RESIDENTIAL SALES



GRAPH ORES-3
ODP WINTER RESIDENTIAL SALES



#### **OLD DOMINION POWER**

#### COMMERCIAL/INDUSTRIAL

The LP and GS rate classes have been forecast separately to determine the customer outlook and jointly to forecast gWh sales. The customer forecasts are a function of time since 1970 for the LP class and since 1980 for the GS class. The joint approach to forecasting gWh sales utilizes a SIC code based methodology.

The gWh model disaggregates the two rate classes into three portions; Westmoreland Coal, all other SIC Code 12 (Mining) and Commercial/Industrial. For the Westmoreland Coal portion, sales were set to zero for the forecast period to reflect the closing of their operations. 27 GWH were added to reflect the new Wallings Ridge State Prison becoming fully operational. All other SIC code 12 sales were trended from 1979-1998 to best reflect recent history. The other commercial/industrial sales were modeled from 1979 utilizing Households, a time function, and a dummy variable. The equation is listed below:

$$KWH = -6,459* 10^{6} + (3.3*10^{6}) (YEAR) - 8192*10^{6}(BIN) + 4.12*10^{6}(YEARBIN)$$

$$(.0070) \qquad (.0001)$$

$$+ 2110(HOUSE)$$

$$(.2350)$$

Where:

YEAR = Time

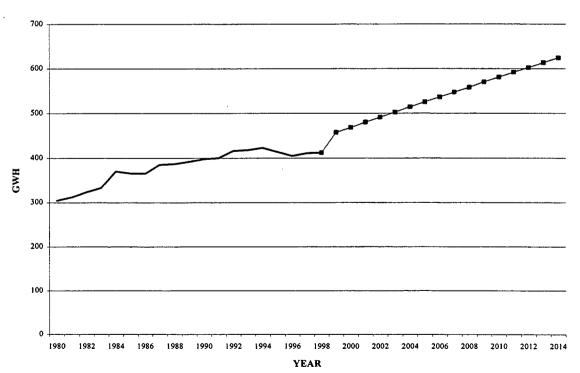
BIN = Binary Variable For 1987 Revision

YEARBIN = Time Binary Variable For 1987 Revision

HOUSE = Residential Customer Forecast

Model Statistics:

 $R^2 = .99$ 

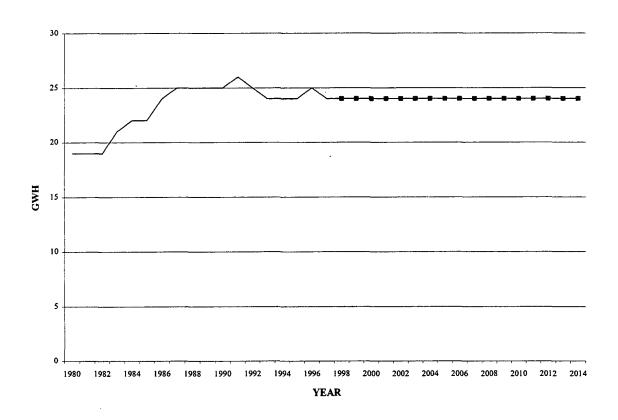

F-test = 636

Sales to the ODP Commercial/Industrial sector are predicted to increase at an average annual rate of 2.4 percent over the five year forecast horizon and 2.1 percent over the fifteen-year period. A tabulation of the forecasted customers and gWh sales for the joint LP and GS rate classes is presented in Table OLPGS-1. Graph OLPGS-1 is a plot of the historical and forecasted gWh sales. The aggregate commercial industrial amounts were disaggregated into commercial and industrial groups based upon the same criteria as the Kentucky models and the last calendar year of the actual sales.

TABLE ODPGS-1
ODP COMMERCIAL/INDUSTRIAL FORECAST

<b>YEAR</b>	<b>CUSTOMERS</b>	<b>GWH SALES</b>
1999	3,998	457
2000	4,058	469
2001	4,118	480
2002	4,178	491
2003	4,238	502
2004	4,298	514
2005	4,358	525
2006	4,419	536
2007	4,479	547
2008	4,539	558
2009	4,599	570
2010	4,660	581
2011	4,720	592
2012	4,780	602
2013	4,840	613

# GRAPH OLPGS-1 ODP COMMERCIAL/INDUSTRIAL FORECAST




#### **OLD DOMINION POWER**

## **SCHOOLS**

Since there has been little growth in the number of customers and a decline in usage on the school rates since 1990, sales for this class are held constant at the 1998 level. Graph OAES-E-1 shows historical and forecasted sales for the school rate classes.

# GRAPH OAES-E-1 ODP ALL ELECTRIC SCHOOLS GWH SALES



#### **OLD DOMINION POWER**

#### **LIGHTING**

The forecast for outdoor area and street lighting for Old Dominion Power is developed using a process identical to that employed for KU-Retail lighting. The outdoor area group is projected utilizing a regression model, corrected for serial correlation, for the number of fixtures and a five year average of KW rating per fixture. The fixture count times the consumption rate times hours of use determines the energy forecast. Fixtures are regressed against time and residential customer forecast. As fixtures are a physical unit, the projected fixture values are adjusted so that the last year of known fixtures equal the predicted values. The equation for fixtures is shown below (the number in parenthesis indicates the probability of that variable being insignificant).

#### **OUTDOOR AREA:**

FIXTURES = 
$$-162.8*10^3 + 79.1(YEAR) + 0.4(HOUSE)$$
  
(.0929) (.0979)

Where:

YEAR = Time

HOUSE = Residential Customer Forecast

Model Statistics:

 $R^2 = .99$ F-test = 440 AR(1) PARM = .99

T-test of AR(1) = -2.398

The Company provides incandescent, mercury vapor and high-pressure sodium (HPS) street lighting service. Incandescent lights are not available for new installations and the price differential between mercury vapor and HPS lights effectively eliminate requests for new mercury vapor systems. The forecast assumes that all new street lights will be HPS.

The street lighting group uses similar methodology as the area lighting group for the fixture forecast. Fixtures are regressed against time and the binary variable for the 1987 revision of the fixture accounting procedure. Following is the equation for fixtures in the street lighting group (the number in parenthesis indicates the probability of that variable being insignificant).

STREET LIGHTING:

FIXTURES = 
$$-46.7*10^3 + 24.8(YEAR) + 12.9(BIN)$$
  
(.0001) (.5718)

Where:

YEAR = Time

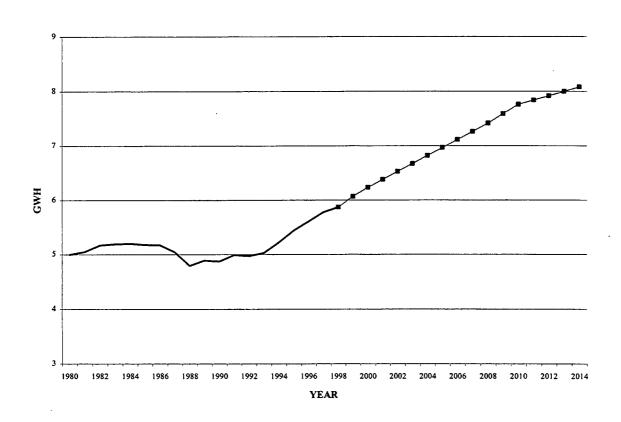
BIN = Binary Variable For 1987 Revision

Model Statistics:

 $Adj R^2 = .98$ 

F test = 647

D-W test = 1.03


For the average KW rating per fixture, existing fixtures are grouped by type and lumen to identify HPS and Non-HPS weighted averages. The mix of HPS lighting types is then held constant over the forecast period. This establishes an average KW rating for HPS fixtures. All increases of fixtures are assumed to occur in the HPS group. The Non-HPS fixtures are retired based upon the average of the annual change in fixture count over the last five years. The Non-HPS KW per fixture used for the forecast period is based on the average over the last five years. The street lighting energy is calculated in the same manner as in the area lighting group and is combined to produce the energy for this group.

The forecasted gWh sales are shown in Table OLT-1. A plot of the historical and forecasted lighting gWh sales is shown on Graph OLT-1.

TABLE OLT-1 ODP LIGHTING FORECAST

<b>GWH SALES</b>
6
6
6
7
7
7
7
7
. 7
7
8
8
8
8
8

GRAPH OLT-1 ODP LIGHTING GWH SALES



#### WHOLESALE

#### **MUNICIPALS**

#### **SUMMARY**

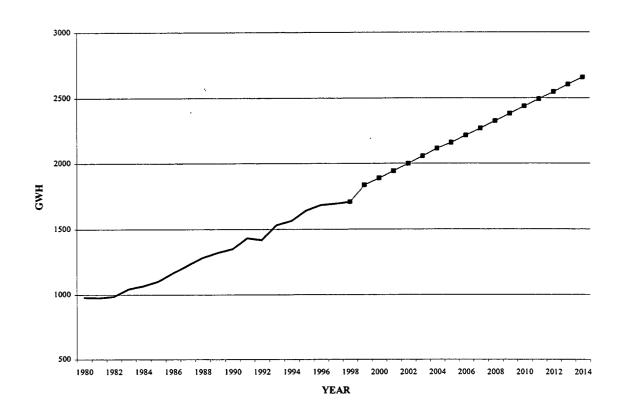
The forecast of municipal purchases from KU is developed by analyzing the Company's GWH sales to Transmission customers; Primary customers; the City of Pitcairn, Pennsylvania; and the City of Paris. The sales data is evaluated to determine the time frame to be used in the models that appear to most accurately represent the latest growth patterns. Historic data back to 1980 has been graphed.

The Primary Municipal customers are Bardstown, Bardwell, Benham, Falmouth, Madisonville, and Providence. The Transmission Municipal customers are Barbourville, Berea, Corbin, Frankfort, and Nicholasville.

The dependent variable in the sales forecast equation is total gWh sales. Common explanatory variables are heating and/or cooling degree-days, county-level real industrial output, county summarized household forecast, and time. The county-level real industrial output and household forecasts are developed from the KUSTEM database using county specific information and a share-down of regional forecast data.

Municipal sales have increased at a 3.6 percent annual rate over the past fifteen years and at a 3.1 percent annual rate over the last five years. These sales are forecast to grow at a 2.9 percent annual rate over the next five years and at a 2.5 percent annual rate over the next fifteen years.

The forecasted annual growth rates and the percent contribution to the total purchases for each class of municipal customer are shown in Table MUNI-1. The forecasted purchases from KU by the Municipal Class is tabulated in Table MUNI-2 and shown graphically in Graph MUNI-1.


#### TABLE MUNI-1 MUNICIPAL SUMMARY

MUNICIPAL	% ANNUAL <u>GROWTH RATE</u>	% OF TOTAL PURCHASES
Primary	2.3	32
Transmission	2.7	66
Paris	<u>1.4</u>	_2
TOTAL	2.5	100

# TABLE MUNI-2 MUNICIPAL FORECAST

<u>YEAR</u>	<u>GWH</u>
1999	1,836
2000	1,888
2001	1,942
2002	1,998
2003	2,056
2004	2,114
2005	2,158
2006	2,214
2007	2,269
2008	2,325
2009	2,381
2010	2,436
2011	2,491
2012	2,546
2013	2,602

# GRAPH MUNI-1 MUNICIPAL GWH SALES



#### PRIMARY MUNICIPAL CLASS

The forecast for the Primary class is developed in a statistical model utilizing multiple regression. The forecast of purchases utilizes historical data from 1977. The explanatory variables are cooling degree-days, heating degree-days, a combined county household forecast, and time. The cooling degree-days are derived using data from the Lexington, Kentucky weather station. A 65-degree base is used for cooling and 60-degree base is used for heating. The resulting equation is shown below (the number in parenthesis indicates the probability of that variable being insignificant).

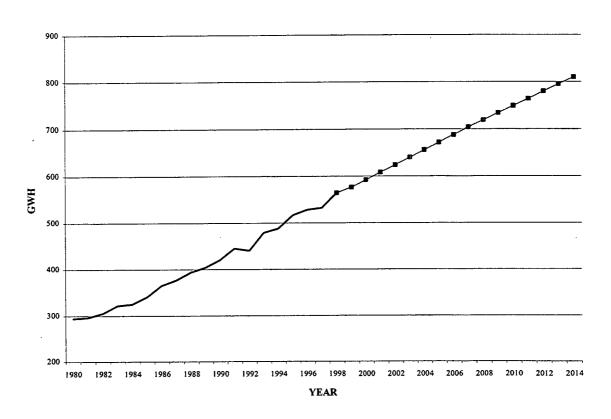
Primary kWh purchases = 
$$-2.378*10^9 + 11.94*10^6$$
 (YEAR) +  $35173$ (ETCDD) (0.0001) (0.0006) +  $11481$ (ETHDD) +  $6616$ (HSLD) (0.0480) (0.0036)

Where:

YEAR = Time function

ETCDD = Total annual Cooling Degree Days Base 65 ETHDD = Total annual heating Degree Days Base 60 HSLD = Combined county Household Forecast

Model Statistics:


Adj  $R^2$  = .996 F test = 1226 D-W Test = 1.02

The resultant forecast of total energy sales is tabulated in Table MUNI-3. Primary Customers' Purchases are projected to increase at an average annual rate of 2.4 percent from 1999-2013. Graph MUNI-2 shows the annual historical and forecasted gWh sales.

TABLE MUNI-3
PRIMARY MUNICIPAL FORECAST

<u>YEAR</u>	<u>GWH SALES</u>
1999	576
2000	592
2001	608
2002	624
2003	. 640
2004	656
2005	672
2006	688
2007	704
2008	719
2009	734
2010	749
2011	764
2012	780
2013	795

# GRAPH MUNI-2 PRIMARY MUNICIPAL GWH SALES



## TRANSMISSION MUNICIPAL CLASS

The forecast for the Transmission class is developed in a statistical model utilizing multiple regression. The forecast of purchases utilizes historical data from 1977. The explanatory variables are cooling degree days, heating degree days, combined county-level real industrial output, and time The cooling degree days are derived using data from the Lexington, Kentucky weather station. A 65-degree base is used for cooling and 60-degree base is used for heating. The resulting equations are shown on the following page (the number in parenthesis indicates the probability of that variable being insignificant).

Transmission kWh purchases = 
$$-46.69*10^9 + 23.75*10^6$$
 (YEAR) +  $37642$ (ETCDD) +  $(0.0001)$  (0.0487)  
 $24185$ (ETHDD) +  $0.86$ (RGSP)  
(0.0724) (0.0036)

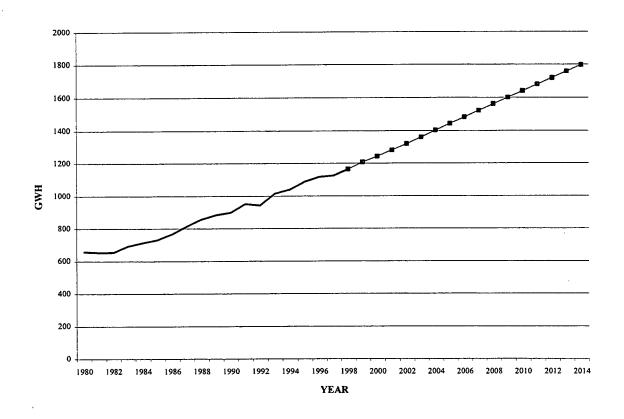
Where:

YEAR = Time function

ETCDD = Total annual Cooling Degree Days Base 65 ETHDD = Total annual heating Degree Days Base 60

RGSP = Combined county Industrial output

Model Statistics:


 $Adj R^2 = .996$ F test = 1126 D-W test = 1.69

The resultant forecast of total energy sales is tabulated in Table MUNI-4. The City of Paris purchases are projected to increase at an average annual rate of 2.7 percent from 1999-2013. Graph MUNI-4 shows the annual historical and forecasted gWh sales.

TABLE MUNI-4
TRANSIMISSION MUNICIPAL FORECAST

<b>YEAR</b>	<b>GWH SALES</b>
1999	1,207
2000	1,242
2001	1,280
2002	1,319
2003	1,360
2004	1,402
2005	1,442
2006	1,481
2007	1,520
2008	1,560
2009	1,600
2010	1,639
2011	1,679
2012	1,718
2013	1,758

# GRAPH MUNI-3 TRANSMISSION MUNICIPAL GWH SALES



#### **CITY OF PARIS**

The forecast for the City of Paris was developed in a statistical model utilizing multiple regression. The forecast of purchases utilizes historical data from 1977. The explanatory variables are cooling degree-days, heating degree-days, and time. The cooling and heating degree-days are derived using data from the Lexington, Kentucky weather station. A 65-degree base is used for cooling and 60-degree base is used for heating. The resulting equations are shown on the following page (the number in parenthesis indicates the probability of that variable being insignificant).

Paris kWh purchases = 
$$-1.25*10^9 + 639726 \text{ (YEAR)} + 876*(ETHDD) + 3290(ETCDD)$$
  
(.0001) (.1014) (.0007)

Where:

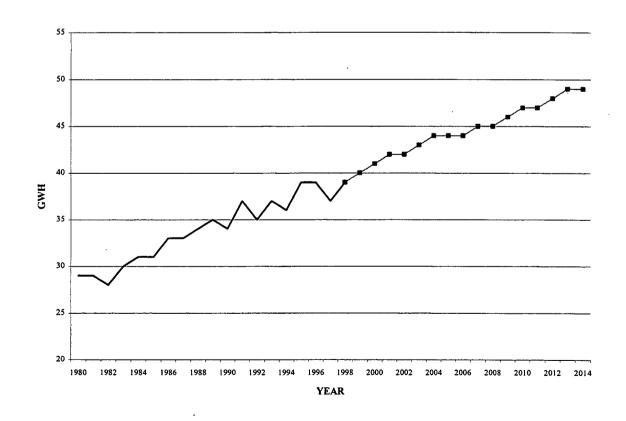
YEAR = Time function

ETCDD = Total annual Cooling Degree Days Base 65 ETHDD = Total annual heating Degree Days Base 60

Model Statistics:

 $Adj R^2 = .979$ 

F test = 286


D-W test = 1.65

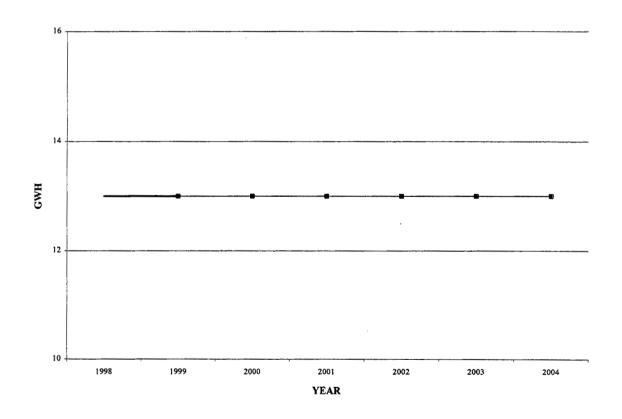
The resultant forecast of total energy sales is tabulated in Table MUNI-5. Transmission Customers' Purchases are projected to increase at an average annual rate of 1.5 percent from 1999-2013. Graph MUNI-4 shows the annual historical and forecasted GWH sales.

TABLE MUNI-5 CITY OF PARIS MUNICIPAL FORECAST

<u>YEAR</u>	<b>GWH SALES</b>
1999	40
2000	41
2001	42
2002	42
2003	43
2004	43
2005	44
2006	44
2007	45
2008	45
2009	46
2010	47
2011	47
2012	48
2013	49

# GRAPH MUNI-4 CITY OF PARIS GWH SALES




# CITY OF PITCAIRN, PA

The forecast for the City of Pitcairn was fixed at the 1998 usage levels. The forecast ends in 2004 at the end of the current contract. The resultant forecast of total energy sales is tabulated in Table MUNI-6. Graph MUNI-7 shows the annual historical and forecasted gWh sales.

TABLE MUNI-6 CITY OF PITCAIRN MUNICIPAL FORECAST

<u>YEAR</u>	<b>GWH SALES</b>
1999	13
2000	13
2001	13
2002	13
2003	13
2004	13

GRAPH MUNI-5 CITY OF PITCAIRN GWH SALES



## **OUTPUT**

Losses are added to the annual sales forecast to obtain annual output. Losses are calculated by applying class loss factors (derived from load research data) to the class forecasted energy and summing to get total system losses. Table OUTPUT-1 shows losses by rate class. Monthly and annual sales for baseline and Company forecasts are shown in Tables OUTPUT-2 and OUTPUT-3. Monthly and annual output for baseline and Company forecasts are shown in Tables OUTPUT-4 and OUTPUT-5. The adjustment to the baseline energy forecast for the sales adders and Curtailable Service Rider are shown in Table OUTPUT-6.

### TABLE OUTPUT-1 LOSSES BY RATE CLASS

<u>CLASS</u>	% ENERGY LOSSES
RS	7.87%
FERS	7.87%
Commercial	7.07%
Industrial	5.16%
Mining Power	4.36%
Municipals	2.80%
Lighting	7.87%
Old Dominion Power	2.60%
Large Industrials	
Transmission	2.60%
Primary	3.33%

TABLE OUTPUT-2
PROJECTED BASELINE SALES (GWH)

ANNUAL	18,245	18,738	19,135	19,606	20,074	20,635	20,954	21,358	21,794	22,290	22,666	23,121	23,523	24,013	24,381
DEC	1,615	1,640	1,723	1,757	1,797	1,829	1,855	1,935	1,968	2,001	2,022	2,057	2,086	2,168	2,194
NOV	1,429	1,482	1,473	1,511	1,549	1,615	1,652	1,630	1,679	1,723	1,762	1,815	1,856	1,842	1,882
OCT	1,354	1,391	1,426	1,461	1,495	1,530	1,556	1,591	1,625	1,659	1,688	1,719	1,748	1,790	1,819
SEP	1,468	1,480	1,547	1,589	1,624	1,654	1,671	1,731	1,759	1,797	1,824	1,854	1,874	1,933	1,970
AUG	1,643	1,692	1,740	1,767	1,799	1,850	1,888	1,950	1,976	1,987	2,025	2,072	2,115	2,172	2,189
TOL	1,786	1,810	1,885	1,939	1,981	2,009	2,025	2,086	2,137	2,186	2,221	2,245	2,266	2,346	2,394
ION	1,568	1,629	1,582	1,630	1,687	1,766	1,810	1,759	1,797	1,865	1,923	1,978	2,028	1,976	2,021
MAY	1,424	1,460	1,505	1,540	1,573	1,607	1,629	1,683	1,713	1,743	1,772	1,803	1,829	1,885	1,914
APR	1,391	1,399	1,444	1,482	1,515	1,549	1,579	1,614	1,646	1,680	1,709	1,739	1,773	1,812	1,845
MAR	1,512	1,573	1,582	1,614	1,653	1,710	1,753	1,776	1,805	1,835	1,877	1,922	1,970	1,987	2,012
FEB	1,408	1,472	1,498	1,535	1,568	1,636	1,616	1,678	1,711	1,786	1,765	1,793	1,817	1,938	1,917
JAN	1,667	1,710	1,731	1,782	1,832	1,880	1,922	1,926	1,978	2,027	2,078	2,124	2,161	2,163	2,225
YEAR	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

# TABLE OUTPUT-3 PROJECTED COMPANY SALES (GWH)

ANNUAL	18,245	18,878	19,275	19,745	20,213	20,774	21,093	21,498	21,933	22,429	22,805	23,260	23,663	24,153	24,520
DEC	1,615	1,651	1,734	1,768	1,808	1,841	1,866	1,947	1,980	2,012	2,034	2,069	2,097	2,180	2,205
NOV	1,429	1,494	1,484	1,522	1,560	1,626	1,663	1,641	1,690	1,734	1,773	1,826	1,867	1,853	1,893
OCI	1,354	1,402	1,437	1,472	1,507	1,541	1,567	1,602	1,636	1,670	1,700	1,730	1,759	1,801	1,830
SEP	1,468	1,492	1,559	1,601	1,636	1,666	1,682	1,743	1,771	1,809	1,836	1,866	1,885	1,945	1,982
AUG	1,643	1,705	1,753	1,779	1,812	1,863	1,900	1,963	1,989	2,002	2,038	2,085	2,128	2,185	2,201
JUL	1,786	1,823	1,898	1,952	1,994	2,022	2,038	2,099	2,150	2,199	2,234	2,258	2,279	2,359	2,407
NO	1,568	1,641	1,594	1,642	1,699	1,779	1,822	1,771	1,809	1,877	1,935	1,990	2,040	1,988	2,033
MAY	1,424	1,472	1,517	1,552	1,585	1,619	1,641	1,694	1,725	1,754	1,784	1,815	1,840	1,897	1,926
APR	1,371	1,410	1,455	1,493	1,526	1,560	1,590	1,625	1,657	1,691	1,720	1,750	1,784	1,823	1,856
MAR	1,512	1,584	1,593	1,625	1,665	1,721	1,764	1,787	1,816	1,846	1,888	1,934	1,982	1,999	2,023
FEB	1,408	1,483	1,509	1,546	1,578	1,647	1,627	1,689	1,721	1,797	1,775	1,804	1,828	1,949	1,927
JAN	1,667	1,772	1,743	1,793	1,844	1,891	1,933	1,938	1,989	2,039	2,090	2,135	2,173	2,175	2,236
YEAR	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

TABLE OUTPUT-4
PROJECTED BASELINE OUTPUT (GWH)

ANNUAL	19,324	19,850	20,270	20,769	21,265	21,859	22,198	22,625	23,087	23,616	24,011	24,492	24,919	25,438	25,829
DEC	1,716	1,741	1,832	1,868	1,910	1,944	1,970	2,059	2,093	2,128	2,150	2,186	2,216	2,306	2,333
NOV	1,508	1,566	1,553	1,594	1,634	1,705	1,745	1,718	1,770	1,817	1,860	1,916	1,961	1,943	1,985
OCT	1,421	1,460	1,496	1,533	1,569	1,605	1,632	1,669	1,705	1,741	1,771	1,803	1,834	1,878	1,909
SEP	1,552	1,564	1,637	1,681	1,719	1,750	1,766	1,833	1,861	1,902	1,930	1,961	1,980	2,046	2,084
<u>AUG</u>	1,747	1,800	1,852	1,879	1,913	1,967	2,007	2,074	2,103	2,115	2,153	2,202	2,249	2,311	2,327
JOL	1,907	1,933	2,016	2,073	2,119	2,147	2,163	2,229	2,285	2,338	2,374	2,399	2,420	2,507	2,560
JUN	1,666	1,732	1,676	1,728	1,790	1,876	1,923	1,863	1,905	1,979	2,041	2,100	2,155	2,095	2,142
MAY	1,500	1,538	1,586	1,623	1,657	1,693	1,716	1,773	1,805	1,836	1,866	1,899	1,926	1,987	2,017
APR	1,443	1,473	1,521	1,560	1,595	1,630	1,663	1,700	1,733	1,769	1,799	1,831	1,867	1,909	1,943
MAR	1,599	1,664	1,672	1,706	1,748	1,809	1,854	1,878	1,908	1,940	1,984	2,034	2,085	2,102	2,127
FEB	1,439	1,558	1,589	1,628	1,663	1,733	1,713	1,781	1,815	1,894	1,871	1,901	1,926	2,056	2,034
JAN	1,774	1,821	1,842	1,896	1,950	2,001	2,046	2,049	2,104	2,158	2,213	2,261	2,301	2,301	2,368
YEAR	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013

# TABLE OUTPUT-5 PROJECTED COMPANY OUTPUT (GWH)

ANNUAL	19,324	19,997	20,417	20,916	21,413	22,007	22,345	22,773	23,235	23,764	24,158	24,640	25,067	25,586	25,976
DEC	1,716	1,753	1,844	1,880	1,922	1,956	1,982	2,071	2,105	2,140	2,162	2,198	2,228	2,319	2;345
NOV	1,508	1,578	1,564	1,605	1,645	1,717	1,756	1,730	1,782	1,829	1,871	1,928	1,972	1,954	1,996
OCI	1,421	1,471	1,508	1,544	1,581	1,617	1,644	1,681	1,717	1,753	1,783	1,815	1,846	1,890	1,921
SEP	1,552	1,576	1,650	1,694	1,731	1,762	1,779	1,844	1,873	1,914	1,942	1,973	1,993	2,058	2,097
AUG	1,747	1,814	1,865	1,892	1,927	1,981	2,021	2,089	2,116	2,128	2,166	2,216	2,263	2,324	2,341
<u>IUL</u>	1,907	1,947	2,030	2,088	2,133	2,161	2,176	2,243	2,299	2,352	2,388	2,412	2,433	2,522	2,574
NO	1,666	1,745	1,689	1,741	1,803	1,890	1,936	1,876	1,917	1,992	2,054	2,114	2,168	2,107	2,155
MAY	1,500	1,550	1,598	1,635	1,669	1,704	1,727	1,785	1,817	1,848	1,878	1,911	1,937	1,999	2,029
APR	1,443	1,484	1,532	1,572	1,607	1,642	1,674	1,711	1,744	1,781	1,811	1,842	1,879	1,920	1,954
MAR	1,599	1,677	1,684	1,718	1,760	1,821	1,867	1,890	1,921	1,952	1,996	2,045	2,097	2,114	2,139
FEB	1,493	1,570	1,600	1,640	1,674	1,745	1,724	1,792	1,826	1,905	1,882	1,912	1,937	2,067	2,045
JAN	1,774	1,833	1,854	1,908	1,962	2,013	2,058	2,061	2,116	2,170	2,225	2,274	2,314	2,313	2,380
YEAR	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013

# TABLE OUTPUT-6 2000-2013 MONTHLY OUTPUT ADJUSTMENTS* (GWH)

## SALES ADDER

	<u>CSR</u>	<u>INDUSTRIAL</u>	<b>COMMERCIAL</b>	<u>NET</u>
JANUARY	-0.1	5.8	6.4	12.1
<b>FEBRUARY</b>	0.0	5.6	5.6	11.2
MARCH	0.4	5.8	6.4	12.2
APRIL	-0.4	5.7	5.4	10.7
MAY	-0.1	6.1	6.2	12.2
JUNE	-0.5	6.1	6.4	12.0
JULY	-2.0	5.9	8.3	12.2
AUGUST	-0.8	6.3	7.3	12.8
<b>SEPTEMBER</b>	0.0	5.8	6.8	12.6
OCTOBER	-0.1	6.1	5.8	11.8
NOVEMBER	0.1	5.7	6.9	12.7
DECEMBER	0.0	5.5	6.9	12.2

^{*} No sales adder for 1999

### **KU DEMAND FORECAST**

The 1999-2013 Demand Forecast for Kentucky Utilities is calculated from the class level Baseline Energy Forecast data, adjusted for existing peak demand reductions under the Curtailable Service Rider (CSR), increases due to sales adders and class-level load shapes derived from the Company's load research data. The energy and load shape information is combined and class-level demand forecasts are developed using the Hourly Electric Load Model (HELM) from EPRI. The annual class demand profiles are summed within HELM to create the system demand forecast. The existing curtailable reduction is contracted at 54 MW, of which 26 MW is accounted for in the load shape for two of the Company's major industrial clients and one wholesale customer. Table DEM-1 shows the fifteen year winter and summer demand projections and annual growth rates for the Demand Forecast. Table DEM-2 shows the monthly adjustments for the CSR, sales adders, and the breakdown of the sales adder by class, this adjustment is the same for all years except 1999 which has no sales adder. Table DEM-3 shows the monthly demands and Graphs DEM-1 and DEM-2 show the seasonal forecasts over time along with actual demand and the 1999 Demand Forecast for each season. The forecast projects KU to be a summer peaking utility.

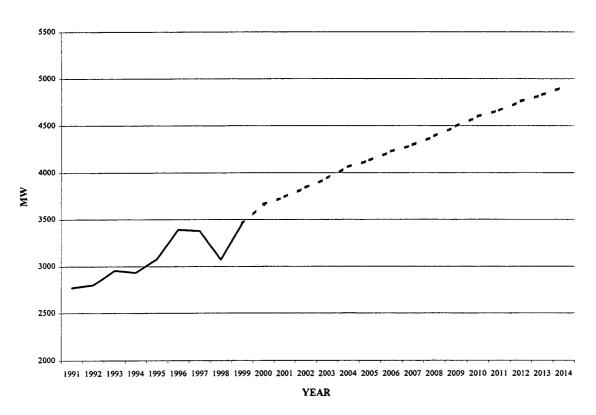
TABLE DEM-1 1999-2013 COMPANY SEASONAL PEAK DEMAND (MW)

	Winter				Summer	
Year	Demand	Growth Rate		Year	Demand	Growth Rate
1998/99	3558.0	1.43%	•	1999	3776	3.06%
1999/00	3662.0	2.92%		2000	3902	3.34%
2000/01	3743.0	2.21%		2001	3981	2.02%
2001/02	3840.0	2.59%		2002	4064	2.08%
2002/03	3939.0	2.58%		2003	4152	2.17%
2003/04	4063.0	3.15%		2004	4271	2.87%
2004/05	4132.0	1.70%		2005	4356	1.99%
2005/06	4226.0	2.27%		2006	4443	2.00%
2006/07	4296.0	1.66%		2007	4515	1.62%
2007/08	4389.0	2.16%		2008	4581	1.46%
2008/09	4493.0	2.37%		2009	4670	1.94%
2009/10	4600.0	2.38%		2010	4779	2.33%
2010/11	4664.0	1.39%		2011	4875	2.01%
2011/12	4761.0	2.08%		2012	4955	1.64%
2012/13	4828.0	1.41%		2013	5020	1.31%

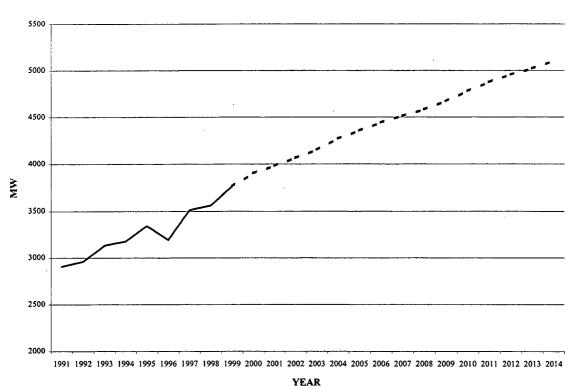
TABLE DEM-2 2000-2013 MONTHLY ADJUSTMENTS* (MW)

2000-2013	Monthly Dem	and Adjustments	(MW)	Sales Adder			
	<u>CSR</u>	Sales Adder	Net	<u>Industrial</u>	<b>Commercial</b>		
January	-28.4	22.9	-5.5	10.2	12.7		
February	0.2	20.4	20.6	10.2	10.2		
March	0.4	21.3	21.7	9.9	11.4		
April	0.5	20.5	21.0	10.4	10.1		
May	0.1	22.6	22.7	10.0	12.6		
June	-28.2	24.6	-3.6	10.2	14.4		
July	-28.5	26.5	-2.0	10.3	16.2		
August	-28.3	26.1	-2.2	10.6	15.5		
September	-0.4	23.8	23.4	10.0	13.8		
October	0.5	20.1	20.6	10.1	10.0		
November	-0.4	21.3	20.9	10.2	11.1		
December	0.2	22.1	22.3	9.6	12.5		

^{*} No sales adder in 1999


During the period of 1999 to 2004 the peak demand forecast increases at a rate of 2.5 percent and the winter season demand forecast increases 2.7 percent. This rate of growth adds 495 MW of peak demand from 19 to 2004. Over the fifteen-year period, the peak summer demand forecast increases at an average annual rate of 2.1 percent and the winter season demand forecast increases at an average annual rate of 2.2 percent. From 1999 to 20136, peak demand increases by 1244 MW.

The 1999-2013 KU Demand Forecast was developed using HELM. The HELM model develops an individual demand forecast for the following load classes; RS, FERS, Commercial, Industrial, Mine Power, Municipals, Lighting, ODP, and major industrial customers. It then combines the individual forecasts to determine the forecasted system load. HELM then applies losses using class specific loss factors and aggregates the class demand forecasts to the system. The CSR, which is designed to induce customers to reduce their load during time of high demand, is subtracted from the HELM system demand forecast to provide the final KU demand forecast.


## TABLE DEM-3 SYSTEM PEAK FORECAST (MW)

Summer	3776.0	3902.0	3981.0	4064.0	4152.0	4271.0	4356.0	4443.0	4515.0	4581.0	4670.0	4779.0	4875.0	4955.0	5020.0	2.50%		2.05%	
Winter	3558.0	3662.0	3743.0	3840.0	3939.0	4063.0	4132.0	4226.0	4296.0	4389.0	4493.0	4600.0	4664.0	4761.0	4828.0	2.69%		2.20%	
Dec	3298	3415	3474	3552	3656	3771	3829	3898	3980	4037	4121	4219	4286	4390	4455	2.72%		2.17%	
Nov	2848	2956	3030	3100	3188	3250	3303	3373	3463	3541	3600	3657	3717	3795	3872	2.68%		2.22%	
Oct	2603	2682	2733	2801	2870	2973	3024	3077	3125	3190	3266	3347	3404	3446	3503	2.70%		2.14%	
Sept	3281	3389	3478	3556	3624	3715	3772	3858	3944	3999	4073	4152	4220	4328	4391	2.52%		2.10%	
August	3578	3673	3759	3862	3965	4056	4104	4186	4267	4378	4462	4536	4596	4686	4777	2.54%		2.72%	
July	3776	3902	3981	4064	4152	4271	4356	4443	4515	4581	4670	4779	4875	4955	5020	2.50%		2.05%	
June	3480	3585	3676	3780	3860	3948	4007	4083	4171	4261	4330	4407	4480	4579	4671	2.56%		2.12%	
May	2896	2963	3028	3102	3183	3280	3321	3371	3434	3514	3597	3668	3715	3769	3831	2.52%		2.02%	
April	2837	2955	3018	3080	3156	3249	3315	3400	3458	3513	3586	3663	3740	3819	3867	2.75%		2.24%	
March	3164	3267	3339	3456	3542	3618	3677	3739	3826	3940	4010	4076	4143	4220	4328	2.72%		2.26%	
Feb	2988	3051	3162	3241	3322	3392	3474	3548	3620	3656	3773	3850	3916	3950	4063	2.57%		2.22%	
<u>Jan</u>	3558	3662	3743	3840	3939	4063	4132	4226	4296	4389	4493	4600	4664	4761	4828	2.69%		2.20%	
Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Five Year Growth	Rate Fifteen	Year Growth Rate	71117

### GRAPH DEM-1 WINTER DEMAND



### GRAPH DEM-2 SUMMER DEMAND



The use of the HELM model allows the demand forecast to be examined at the class level. Tables DEM-4A and DEM-4B show the class summer and winter coincident peaks. Graphs DEM-3 and DEM-4 show how the class contributions to system peak change over the forecast. Table DEM-4A indicates that the most rapid growth in peak demand over the next five years will come from the Industrial class at an average annual growth rate of 3.6 percent. Above average growth also is expected from the FERS class at 3.4 percent, the Commercial class at 2.9 percent and the Municipals at 2.9 percent. The five-year winter growth rates are 3.3 percent, 3.4, 2.9 percent and 2.9 percent. The fifteen-year peak growth rates for the Industrial, FERS, Commercial, and Municipal classes are 3.0 percent, 2.7 percent, 2.3 percent, and 2.5 percent, respectively, as shown in Table DEM-4B. The RS coincident demands will grow at a rate of 0.9 percent over the next five years and an average of 0.8 percent from 1999-2013. ODP coincident demands are expected to rise 2.1 percent over the next five years and 1.9 percent from 1999-2013. Mine Power will experience reduced sales during the forecast period.

Graph DEM-3 demonstrates that the Commercial sector makes up 27 percent of the total summer peak demand forecast for 1999. This share is predicted to increase to 28 percent over the forecast period. The Industrial and FERS sectors make up 14 and 13 percent respectively with the Industrial sector increasing to 16 percent while FERS increases to 14 percent. Municipals increase from 10 percent to 11 percent, while Large Industrials drop from 5 percent to 4 percent and the RS class drops from 18 percent to 15 percent. The Commercial Sector contributes the largest component of peak demand growth, representing 383.97 MW of the 1,244 MW increase in peak demand from 1999 to 2013. The Industrial sector is next with 262.9 MW. Graph DEM-4 demonstrates that the FERS class constitutes the largest portion of the total winter peak demand at 25 percent, with this share predicted to increase to 26 percent over the forecast period.

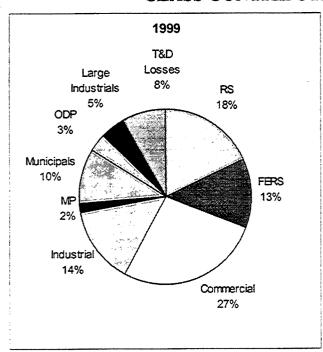
# TABLE DEM 4A CLASS SUMMER COINCIDENT PEAK (MW)

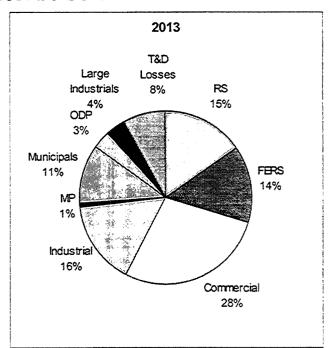
Vear	S.	FERS	Commercial Indu	Industrial	MP	Municipals	Lighting	ODP	Large Industrials	T&D Losses	CSR*	Total
1999	703.80	490.90	1015.00	516.40	68.70	395.90	0.00	129.40	174.20	310	-28.0	3776.0
2000	09.902	508.20	1055.70	551.80	67.00	407.30	0.00	132.00	182.20	319	-28.0	3902.0
2001	714.80	525.60	1079.90	561.90	65.70	419.20	0.00	134.80	180.80	326	-28.0	3981.0
2002	723.70	540.80	1112.70	571.10	62.80	431.20	0.00	137.60	179.90	332	-28.0	4064.0
2003	729.10	558.90	1141.40	586.40	61.70	443.50	0.00	140.40	179.20	339	-28.0	4152.0
2004	737.00	580.20	1170.80	615.70	65.60	456.00	0.00	143.40	181.20	349	-28.0	4271.0
2005	738.00	590.00	1189.70	641.20	69.10	465.50	0.00	146.50	188.50	356	-28.0	4356.0
2006	744.90	06.909	1215.70	656.20	67.50	478.70	0.00	150.10	188.70	362	-28.0	4443.0
2007	749.80	621.20	1241.00	08.899	64.40	490.00	0.00	153.20	186.10	369	-28.0	4515.0
2008	753.70	635.00	1266.70	678.30	62.10	501.50	0.00	156.40	181.40	374	-28.0	4581.0
2009	759.80	652.80	1293.20	698.70	60.50	513.50	0.00	159.40	178.80	381	-28.0	4670.0
2010	766.10	06.799	1320.40	728.30	61.40	525.30	0.00	162.70	185.70	389	-28.0	4779.0
2011	771.70	681.00	1346.20	758.90	57.10	537.40	0.00	165.00	188.50	397	-28.0	4875.0
2012	779.90	696.90	1373.20	771.80	53.90	550.20	0.00	166.90	186.50	404	-28.0	4955.0
2013	785.60	711.40	1398.90	779.30	50.40	561.50	0.00	168.80	183.30	409	-28.0	5020.0
Five Year												
Growth	0.93%	3.40%	2.90%	3.58%	-0.92%	2.87%	0.00%	2.08%	0.79%	2.40%	0.00%	2.49%
Rate Fifteen Year												
Growth	0.79%	2.69%	2.32%	2.98%	-2.19%	2.53%	%00.0	1.92%	0.36%	2.00%	0.00%	2.05%
Kate												

## TABLE DEM-4B CLASS WINTER COINCIDENT PEAK (MW)

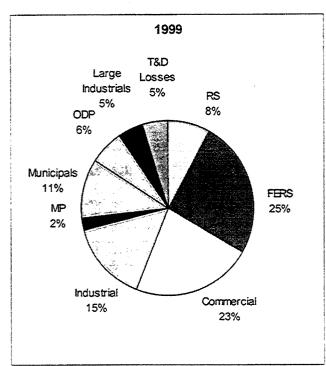
	Total	3558.0	3662.0	3743.0	3840.0	3939.0	4063.0	4132.0	4226.0	4296.0	4389.0	4493.0	4600.0	4664.0	4761.0	4828.0	2.69%	2.20%	
	CSR*	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	-28.0	0.00%	%000	
T&D	Losses	167	171	174	178	183	190	192	196	198	203	500	213	213	218	220	2.61%	1 99%	
Large	Industrials	173.90	177.10	174.90	177.80	179.80	183.70	182.50	182.30	179.20	181.30	183.20	184.20	182.50	182.60	180.80	1.10%	0.28%	) 
			237.00														2.09%	1.92%	
	Lighting	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00%	%000	) )
	Municipals	395.90	407.30	419.20	431.20	443.50	456.00	465.50	478.70	490.00	501.50	513.50	525.30	537.40	550.20	561.50	2.87%	2.53%	
	MP	93.40	87.00	85.70	83.90	82.60	87.40	89.90	88.30	84.00	83.00	81.90	83.50	74.30	71.80	67.30	-1.32%	-2.31%	
	Industrial	524.90	547.70	557.50	574.40	592.50	617.30	635.40	653.10	663.60	685.20	709.80	740.30	752.00	776.50	783.80	3.30%	2.91%	ì
	<b>Commercial</b>	804.80	837.10	856.30	882.30	905.10	928.30	943.30	964.00	984.00	1004.40	1025.40	1047.00	1067.40	1088.90	1109.30	2.90%	2,32%	
	FERS	893.90	925.40	957.10	984.80	1017.80	1056.70	1074.40	1105.20	1131.20	1156.40	1188.90	1216.30	1240.20	1269.20	1295.60	3.40%	2.29%	
	RS	299.70	300.90	304.40	308.20	310.50	313.80	314.30	317.20	319.30	321.00	323.60	326.30	328.60	332.10	334.50	0.92%	%62.0	
	Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Five Year Growth Rate	Fifteen Year	Rate

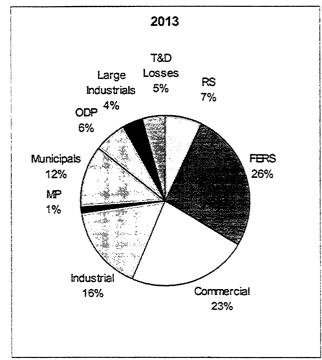
By forecasting each class individually we are able to see how the system load factor will change as KU's energy mix changes. Table DEM-5A shows that the system load factor is improving over time. This improvement is attributed to the varying load factors and energy growth rates in the different classes. Table DEM-5B shows the coincident load factors for the individual classes. Graphs DEM-5 through DEM-8 show the system peak load shape with class contributions for summer and winter in 1999 and 2013. In the residential sector the energy growth rate is greatest for FERS, which has a coincident load factor of 60.8 percent. While RS, which has a coincident load factor of 40.01 percent, is growing at a relatively slow rate. Also, energy growth in lighting is contributing to the improved load factor since lighting is off peak. The improvement in load factor is slowed somewhat by the negative growth in mining, which uses less energy in summer months giving it a high coincident load factor.


### TABLE DEM-5A SYSTEM LOAD FACTORS

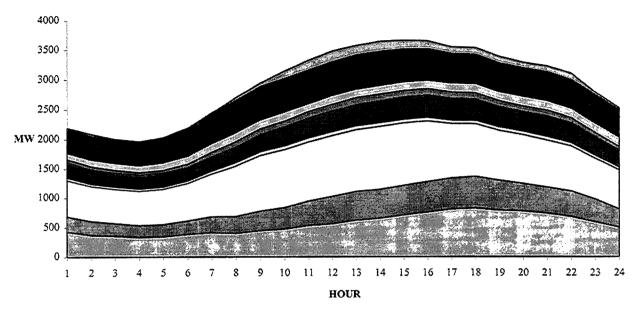

YEAR .	LOAD FACTOR
2000	58.30%
2005	58.50%
2010	58.80%
2015	59.10%

### TABLE DEM-5B COINCIDENT LOAD FACTOR BY CLASS


<u>CLASS</u>	<b>LOAD FACTOR</b>
RS	40.01%
FERS	60.80%
Commercial	55.40%
Industrial	80.40%
Mine Power	81.00%
Municipals	52.90%
Old Dominion	77.60%

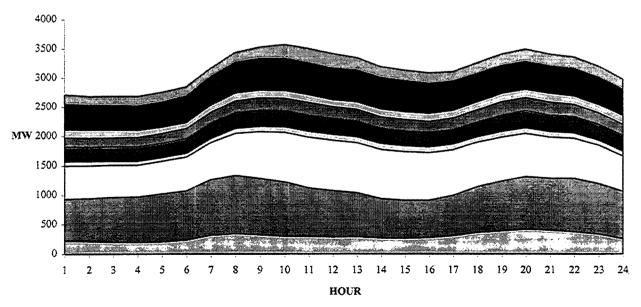

GRAPH DEM- 3
CLASS CONTRIBUTION TO SUMMER PEAK





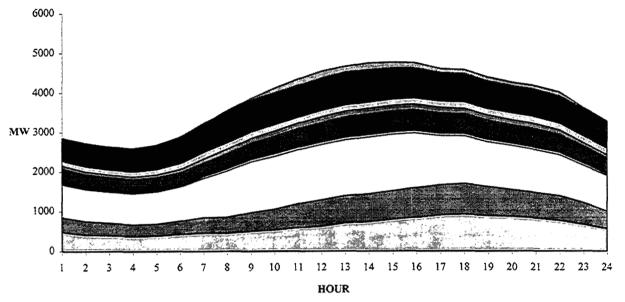

GRAPH DEM-4 CLASS CONTRIBUTION TO WINTER PEAK





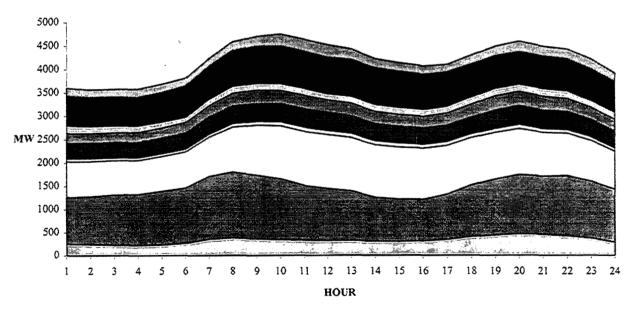

GRAPH DEM-5 1999 KU SYSTEM SUMMER PEAK DAY LOAD SHAPE BY CLASS




☐RS ☐FERS ☐Commercial ☐Mine Power ■Municipals 圖Lighting ■ODP ☐Large Industrials ■Industrial ☐T&D Losses

GRAPH DEM-6 1999 KU SYSTEM WINTER PEAK DAY LOAD SHAPE BY CLASS




■RS ■FERS □Commercial □Mine Power ■Municipals ■Lighting ■ODP □Large Industrials ■Industrial □T&D Losses

GRAPH DEM-7
2013 KU SYSTEM SUMMER PEAK DAY LOAD SHAPE BY CLASS



☐RS ☐FERS ☐Commercial ☐Mine Power ■Municipals ☐Lighting ☐ODP ☐Large Industrials ☐Industrial ☐T&D Losses

GRAPH DEM-8 2013 KU SYSTEM WINTER PEAK DAY LOAD SHAPE BY CLASS



■RS ■FERS □Commercial □Mine Power ■Municipals □Lighting □ODP □Large Industrials ■Industrial □T&D Losses

### KU DEMAND FORECASTING METHODOLOGY

HELM develops an 8760 hourly load forecast for each class, by allocating forecasted sales to each day of the year and assigning daily load shapes to each day, and adds up the class loads to determine the forecasted system demand. HELM creates a library of load shapes that vary by season, groups of months that exhibit similar characteristics, day-type, such as week-day or weekend, and weather. Load shapes are then estimated from load research data. Finally, HELM adds losses to the class level demand and sums the class forecasts to give the system demand forecast.

The following section describes in detail the process HELM uses to accomplish these tasks.

### Allocation of Sales

Annual sales are forecasted for each class and allocated to each day in the year by one of two methods. First, if the energy for a given class is sensitive to weather then normal weather is used to allocate sales to the days of the year. If the sales for a particular class are not affected by the weather then annual sales are simply allocated based on the mix of days in the year.

For weather sensitive classes HELM distributes annual forecasted sales to the days of the year by means of daily allocation factors. HELM estimates daily sales for the forecast period. These values of sales are only used for calculating the allocation factors and are not the official forecasted sales. The HELM forecasted daily sales are estimated using normal weather and are divided by the annual sales to provide the allocation factor.

Sales are forecasted by HELM for each day of the year by use of a Weather Response Function (WRF). The WRF shows the relationship between daily weather and sales. It is calculated by regressing the average daily dry-bulb temperature on daily sales. Any non-linearity that exists is captured by using a spline function. The spline function separates the relationship into segments. For example, there is a segment for all average temperatures between the range of -20 and 0 degrees, another segment for 0 to 25 degrees, and so on throughout the relevant temperature range. Segments are chosen to isolate near linear sections of the relationship. The spline function then estimates a linear relationship within each of these segments. The combination of the segments fully describes the daily sales and weather relationship for all temperatures. Separate WRF's are calculated for each class and can be further separated into WRF's for each season and day-type combination.

HELM then uses forecasted weather files for each year in the forecast period which contain temperature values for each day of the year. The forecasted weather observations are based on 20 years of historical weather data. The maximum average temperatures for all twenty years are averaged and then assigned to the hottest day of the mapping year. The mapping year is any year of daily weather patterns and is chosen to best represent historical patterns. The same procedure is carried out for the next hottest day and so on for each day in the year. The assignment of temperatures to days is done in a way that maintains weather patterns. That is, if the hottest day of the year falls in July then the hottest day is always assigned to a day in July.

The forecasted weather values are plugged into the regression equation providing predicted sales for each day. The predicted value is then divided by the sum of the predicted values for the year to provide the percent of total sales that each day uses. These percentages are then applied to the official forecasted annual sales to determine the amount of sales to be allocated to each day.

For classes that are not weather sensitive the allocation factor is still calculated by dividing estimated daily load by estimated annual load. However, the estimate for daily load is simply the average historical load for all days that fall into the season, day-type combination. For example, average sales will be calculated for winter, week-days. All winter, week-days in the forecast period will be assigned that average daily sales. Again, annual sales is the sum of the daily sales. Once the allocation factors are determined they are applied to the annual sales forecast in the same manner as the weather sensitive allocation factors.

### **Load Shapes Development**

HELM maintains a library of load shapes, consisting of load shapes that vary by season, day-type, and weather bin. Weather bins are temperature ranges for which loads in the bin have similar shapes. If the average temperature for a day falls into the specified range, that day is assigned to the corresponding weather bin. Unique load shapes are estimated for each weather range to reflect the differences in load shapes as weather changes. Typical weather bins may be -20 to 20 degrees, 20 to 35, and so on.

The load shape for a given season, day-type, and weather bin is derived by calculating the average daily load duration curve and the average daily load shape. The average daily load duration curve sorts the hourly load in each day from the highest load to the lowest and averages the hour

with the highest load, then the next highest, and so on. These averages are then mapped to the average load shape. The highest average from the average load duration curve is assigned to the hour with the highest load in the average load shape. This process is done for each hour to develop a "typical" load shape.

### **Forecast**

HELM forecasts class load by determining the amount of sales for each day and the appropriate load shape. By doing this for each day of the year HELM is able to create an 8760 hour demand forecast based on sales for each class. Transmission and distribution losses are then applied to each hour of the class forecast to determine the demand associated with output. Summing the class level demands yields an 8760 hour system forecast. An adjustment was made to the January load to help the winter peak better reflect its expected relationship with historical weather normalized winter demand. The ratio of historical weather normalized winter peak load to historical weather normalized January peak load was applied at an exponentially decreasing rate to the forecasted January peak demand.

The CSR constrains certain customers to reduce their load to specified levels when requested by KU. The constraint is typically imposed when demand is high. Curtailable load is accounted for by two methods in the forecast. First, a portion of curtailable load contracted with the large industrials is accounted for within their individual load shape. The remaining curtailable load is subtracted from the HELM forecast. It is assumed that the contracted load is for 150 hours of curtailment. The curtailable load is subtracted from the HELM forecast by finding the hours of the 150 highest peaks and subtracting the contracted amount from the load for those hours.

### **UNCERTAINTY ANALYSIS**

For the 1999 Energy Demand Forecast, uncertainty analysis has been approached from the standpoint of selecting the most important variables to the forecast over which the forecaster has control of the predicted values. Table UNC-2 shows that for the chosen variables three alternative outlooks have been developed, coinciding with Baseline, Pessimistic, and Optimistic growth scenarios. For each case, a scenario was either available from the vendor of the exogenously provided forecast variable or a scenario was created utilizing information provided by the vendor.

Quantitative assessment of the likelihood of the variables following their alternative paths depends on the individual vendors. WEFA states in its documentation that it believes there is a 70 percent probability that the economy will most closely resemble the trend, a 15 percent chance that it will resemble the optimistic scenario, and a 15 percent chance that it will resemble the pessimistic case. The CUER at the University of Louisville offers no assessment of the likelihood of households growing at a high versus a moderate rate. KU has defined a mid-path between the two that it considers the base outlook that accounts for recent customer growth rates in its territory. Price is internally modeled using WEFA assumptions regarding interest rates.

The scenarios as constructed do not directly reflect the inherent degree of uncertainty that electricity usage will have regardless of the path of the economic and demographic drivers. In other words, the variance in sales is due solely to changes in the economic drivers and customer assumptions. However, probabilities of occurrence of each forecast path can be constructed by fitting a probability distribution to the forecast. The forecast is assumed to follow a normal distribution with the Baseline Forecast as the mean. The variance is estimated from historical sales. Ranges defined for each scenario are as follows:

Pessimistic - 0 to the mid-point of the Pessimistic and Base forecast

Baseline - Mid-point between Pessimistic and Baseline forecast to the midpoint between the Baseline and Optimistic Forecast

Optimistic - From the mid-point of the Baseline and Optimistic forecasts and beyond

The probabilities for each forecast scenario are determined by calculating the cumulative probability of sales falling within the specified range given a normal distribution with mean and variance above. The probabilities of occurrence are calculated in five, ten, and fifteen-year increments. Each increment is the probability that the total sales will fall within the range of the pessimistic, optimistic, and baseline forecast and is illustrated in Table UNC-1.

TABLE UNC-1 PROBABILITY OF FORECAST OCCURRING

	<u>5-YEAR</u>	<u> 10-YEAR</u>	<u> 15-YEAR</u>
BASELINE	62.63	78.85	85.87
OPTIMISTIC	4.43	2.33	1.55
PESSIMISTIC	32.94	18.82	12.57

It should be noted that in calculating the cumulative probabilities, the variances are associated with the long run growth trend of the Company. It should also be noted that by becoming directly involved in marketing efforts to achieve the Bulk Power initiatives, and because of the unique load requirements that might be associated with an individual customer, the probability of the Optimistic Forecast occurring may be understated. Although the remaining portions of the Retail Marketing initiatives were not considered fully independent of the Optimistic sales outlook without initiatives, clearly these efforts increase the probability that the sales outlook of KU will track with the Optimistic scenario. If they are successful in addition to the occurrence of optimistic economic and demographic conditions, sales could track well above the Optimistic scenario.

### TABLE UNC-2 UNCERTAINTY ANALYSIS STUDY VARIABLES

	GROWTH	SCENARIOS
VARIABLES	LOW	HIGH
REAL GROSS DOMESTIC PRODUCT	KUSTEM Low	KUSTEM High
INCOME	KUSTEM Low	KUSTEM High
KY OUTPUT	KUSTEM Low	KUSTEM High
RESIDENTIAL CUSTOMERS	1999 Forecast	KUSTEM
ELECTRIC PRICE	KUSTEM Low	KUSTEM High

### WEFA Optimistic/pessimistic Assumptions

Macroeconomic assumptions regarding Optimistic and Pessimistic scenarios are provided by WEFA Group in their report "U.S. Long-Term Economic Outlook", third quarter, 1999. Key WEFA assumptions relative to the Baseline Energy forecast were presented in the Executive Summary/Overview section of this report. Following is a brief review of the key assumptions made by WEFA in generating their Optimistic and Pessimistic forecasts.

### **WEFA Optimistic Forecast**

• Characterized by high growth and low inflation. Read GDP increases at a 2.5 percent annual rate over the forecast period.

- Despite the higher GDP growth rate, the GDP deflator averages only 1.9 percent increase over the forecast.
- Population growth averages 1.0 percent

### **WEFA Pessimistic Forecast**

- Characterized by low growth and high inflation. Real GDP increases at a 1.7 percent rate over the forecast period.
- The GDP Inflator averages 2.3 percent over the forecast period.
- Population growth is below the trend due to lower net immigration.
- Productivity growth averages .6 percent.

### 1999-2013 Energy Demand Forecast Comparisons

Graph UNC-1 illustrates the relative bandwidth created by the three scenarios for total KU energy sales. The Baseline Energy Forecast increases at an average annual rate of 2.4 percent (assuming normalized actual sales of 18,244 gWh in 1999) over the first five years and 2.1 percent over the fifteen-year horizon. The Optimistic scenario increases at an average annual rate of 2.8 percent over the first five years and 2.4 percent over the fifteen-year horizon. The pessimistic scenario increases at an average annual rate of 2.3 percent over the fifteen-year period.

The Baseline Energy Forecast is 413 gWh lower than the Optimistic scenario in 2004. For the year 2013, the Base line Energy Forecast is 704 gWh higher than the Pessimistic scenario and 990 gWh lower than the Optimistic scenario. The commercial and industrial sectors account for most of the variance between the Baseline Forecast and Optimistic scenario, while the commercial, industrial, and residential sectors account for the variance between the Baseline Energy Forecast and the Pessimistic Scenario. Table UNC-3 presents the annual forecast values for the Baseline Energy Forecast and each scenario.

GRAPH UNC-1
BASELINE/SCENARIO SALES COMPARISON

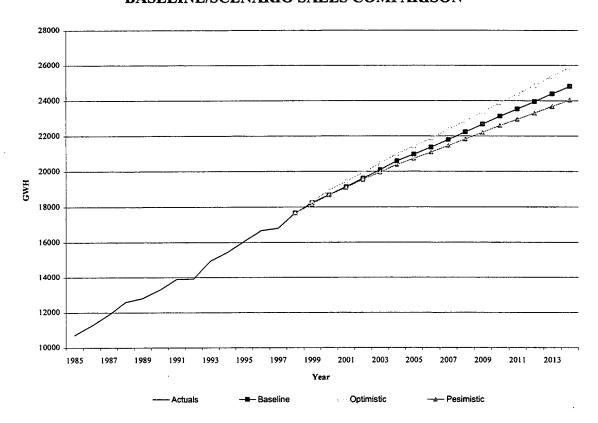



TABLE UNC-3
BASELINE/SCENARIOS SALES COMPARISON
(GWH)

<u>Year</u>	1999 Baseline	1999 Optimistic	1999 Pessimistic
1999	18,244	18,300	18,152
2000	18,686	18,939	18,680
2001	19,134	19,440	19,083
2002	19,605	19,932	19,546
2003	20,073	20,442	19,948
2004	20,577	20,990	20,372
2005	20,953	21,418	20,723
2006	21,357	21,875	21,074
2007	21,793	22,368	21,449
2008	22,228	22,862	21,827
2009	22,665	23,361	22,204
2010	23,120	23,886	22,605
2011	23,522	24,360	22,944
2012	23,947	24,857	23,304
2013	24,380	25,370	23,676

Graph UNC-2 illustrates the relative bandwidth associated with peak demand forecasts generated using the three energy scenarios above. The baseline Demand Forecast increases at an average annual rate of 2.5 percent from 1999 through 2004 and 2.1 percent over the fifteen-year horizon. The Optimistic scenario increases at an average annual rate of 2.7 percent over the first five years and 2.3 percent over the fifteen-year horizon. The Pessimistic scenario increases at an average annual rate of 2.2 percent over the first five years and 1.8 percent over the fifteen-year horizon.

The Baseline Demand forecast is 67 MW higher than the Pessimistic scenario in 2004 and 69 MW lower than the Optimistic scenario. For the year 2013, the Baseline demand Forecast is 174 MW higher than the Pessimistic scenario and 186 MW lower than the Optimistic scenario. Table UNC-4 presents the annual forecast values for the Baseline Demand Forecast and each scenario.

GRAPH UNC-2
BASELINE/SCENARIOS PEAK DEMAND COMPARISON

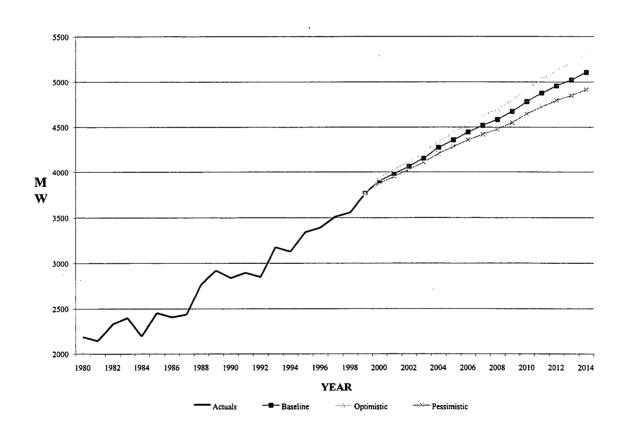



TABLE UNC-4
BASELINE/SCENARIOS PEAK DEMAND COMPARISON
(MW)

<b>YEAR</b>	1999 Baseline	1999 Optimistic	1999 Pessimistic
1999	3776	3796	3763
2000	3902	3934	3878
2001	3981	4026	3948
2002	4064	4116	4031
2003	4152	4214	4106
2004	4271	4340	4204
2005	4356	4432	4282
2006	4443	4532	4357
2007	4515	4617	4417
2008	4581	4696	4473
2009	4670	4796	4548
2010	4779	4918	4644
2011	4875	5027	4724
2012	4955	5123	4792
2013	5020	5206	4846

TABLE EXT-1
EXTENDED ENERGY AND DEMAND FORECAST
2014-2028

	<u>2014</u>	<u>2018</u>	<u>2023</u>	<u>2028</u>
ENERGY FORECAST (GWH)				
RESIDENTIAL	• =0.6		2.025	
RS	2,786	2,897	3,027	3,094
FERS	3,864	4,169	4,538	4,834
TOTAL	6,651	7,066	7,565	7,928
COMMERCIAL/INDUSTRIAL				
COMMERCIAL	6,849	7,460	7,940	8,465
INDUSTRIAL	7,027	7,604	8,236	8,798
TOTAL	13,876	15,064	16,176	17,263
MINE POWER	3,592	3,447	3,516	3,584
LIGHTING	110	108	103	96
TOTAL KU RETAIL	2,100	2,246	2,419	2,565
MUNICIPALS	2,657	2,877	3,134	3,397
OLD DOMINION	1,160	1,213	1,284	1,360
TOTAL ENERGY SALES	24,813	26,552	28,613	30,402
TOTAL ENERGY OUTPUT	26,431	28,275	30,460	32,442
DEMAND FORECAST (MW)				
SUMMER SUMMER	5,101	5,478	5,918	6,275
WINTER	4,916	5,265	5,712	6,071
11 II 1 I II X	1,52.0	٠,٥٥	-,,	0,011

### CONFIDENTIAL INFORMATION REDACTED

## **KEYASSUMPTIONS FOR EXTENDED FORECAST PERIOD** (2014-2028)

### **ENERGY FORECAST**

### RESIDENTIAL

- The KUSTEM county level population forecast drives KU's customer forecast.
- KU's market share of households that are customers in a county is not allowed to rise above 100 percent or fall lower than 0.0 percent.
- Customer Allocation Model assumptions are unchanged after 2010.
- Gas price increase at an average annual rate of through 2020. Thereafter, gas price increase at through per year.
- Electric price increases are internally generated.
- Personal income increases follows CBER's projections and service territory weighting procedures through 2028.
- Normalized degree-days are unchanged.
- Appliance UEC and saturation assumptions change in response to the forecast drivers.

### **COMMERCIAL/INDUSTRIAL**

- Nominal GDP increases follow WEFA projections through 2028.
- The GDP implicit price deflator follows WEFA projections through 2028.

### **MINE POWER**

- East and West Kentucky coal production follows the RDI forecast through 2028.
- Market share for West Kentucky remains fixed for the 2014-2028 period.
- Market share for East Kentucky remains fixed at the 2003 level for 2003-2028.

### LIGHTING

No change in assumptions.

### **MUNICIPALS**

- Industrial output series are derived from the KUSTEM database.
- Cooling and heating degree-days are fixed at the 1979-1998 20-year average.
- Household estimates are derived from the KUSTEM database.

### **OLD DOMINION POWER**

- Old Dominion population estimates is held at the 2010 level.
- Westmoreland Coal's usage is zeroed because of closing of operations.
- No change in assumptions made for other mining and the GS-LP-HLF group to generate the 2014-2028 forecast.

### **DEMAND FORECAST**

• Monthly peak demands for the 2014-2028 forecast period are determined using the 2014-2028 energy forecast and class level load shapes. While the underlying energy changes over time, the class level load shapes are assumed constant over the forecast period.

### RESEARCH AND DEVELOPMENT

Research and development efforts in the immediate future will concentrate on identifying "best practices" between the LG&E and KU forecasting systems with the objective of standardizing as many processes as possible. With this approach, the companies can continue to look ahead to enhancements to the forecasting process while maximizing consistency and efficiency.

While the separate tariff structures of KU and LG&E will make complete standardization impractical for the present, the companies are working to develop a common segmentation scheme. While final decisions have not been made, consideration is being given to introducing SIC-code based segmentation to the LG&E data. While useful in developing a more customer focused approach to forecasting, it may require some additional years of history before time dependent regression methods will be able to utilize the data.

In the coming year, the companies will evaluate the methodological differences in the modeling of customers and sales, with the goal of settling on a common approach for as many classes as possible. The final approach may not be identical to either company's methodology before consolidation if enhancements are identified. In particular, KU's experience with the end-use models suggests that innovative thinking needs to be applied to achieve a proper balance between complexity and efficiency in system level energy forecasting. The companies envision a hybrid of econometric and end-use modeling, similar to KU's modeling of the Commercial sector, that attempts to capture factors not present in the historic data while providing statistical rigor for the model diagnostics.

With respect to data, the KUSTEM model utilized by KU has been expanded to include LG&E's service territory. Future forecasts will be more reliant on a common source of local economic outlook information. However, additional information sources may continue to be evaluated in order to provide a comprehensive perspective.

In demand forecasting, the companies intend to emulate the KU use of HELM to generate a class-level demand forecast for LG&E. In addition, the companies intend to thoroughly evaluate the value of a hybrid approach of mixing econometric techniques with the HELM process to capture benefits from each method.

## Subsection 1

KU Service Territory Economic and Demographic Forecast Report

### Report on the 2000 Economic and Demographic Forecast for the Kentucky Utilities Service Territory May 7, 1999

### Introduction

The following document presents the 2000 economic and demographic forecast for the Kentucky Utilities Service Territory made using the Kentucky Utilities Service Territory Econometric Model (KUSTEM). Forecasts are presented for aggregate variables and by detailed industry and demographic group. Forecasts are presented for the entire Kentucky Utilities Service Territory and for key sub-areas such as the Kentucky Retail Service Territory, the Virginia Service Territory, and municipal customers. Throughout, forecast growth rates from the 2000 forecast are compared to those from the 1999 forecast.

As in the previous years, the 2000 long-term economic forecast for the Kentucky Utilities Service Territory calls for a rapid rate of growth. The area's economy is forecast to outperform the national economy. Growth in industrial value added in particular is forecast to be strong.

Over the next 5 years, from 2000 through 2004, industrial value added in the Kentucky Utilities Service Territory is forecast to grow by 3.5% annually. Commercial employment, which is employment in retail, trucking, wholesale, services, government, and finance, insurance, and real estate is forecast to grow at 2.1% per year. Nationally, commercial employment is forecast to grow by 0.9% annually. Real total personal income in the Kentucky Utilities Service Territory is forecast to grow by 2.7% on average each year compared to 2.4% nationally.

The rate of population growth in the service territory is forecast to match population forecasts for the United States over the next five years. This is a strong performance for a state where population growth has often lagged growth rates nationally. Annual population growth is forecast to average 0.8% over the next five years in the Kentucky Utilities Service Territory, and 0.8% nationally. The number of households is forecast to increase by 1.6% per year in the Kentucky Utilities Service Territory.

These rapid rates of growth over the next 5 years are forecast to moderate slightly further in the future. This can be seen by comparing forecast annual growth rates over the next 5 years with the annual average forecasts for the entire 15 year period from 2000 to 2014. Forecast annual growth rates for industrial value-added are expected to average 3.4% annually from 2000 through 2014 compared to 3.5% annually from 2000 through 2004. Commercial employment is forecast to grow by 2.0% each year for 2000 through 2014 compared to 2.1% each year from 2000 through 2004. Households are forecast to grow by 1.3% per year from 2000 through 2014 compared to 1.6% per year from 2000 through 2004.

### Results for the Kentucky Utilities Service Territory

The entire Kentucky Utilities Service Territory includes 82 counties, including 77 counties in Kentucky and 5 counties in southwest Virginia. Forecasts for the entire Kentucky Utilities Service Territory are presented below. Forecasts for aggregate growth measures are presented first followed by forecasts for detailed industrial and demographic categories. The results for this entire service territory should be representative of results for important sub-regions such as the Kentucky Retail Service Territory, and municipal customers.

### Output

¹ The industrial sector is defined to include all mining industries (SIC 12-14) and all manufacturing industries (SIC 20-39).

² The commercial sector is defined to include all construction industries (SIC 15-17), all transportation, communications, and public utility industries (SIC 41-49), all wholesale trade industries (SIC 50-51), all retail trade industries (SIC 52-59), all finance, insurance, and real estate industries (SIC 60-67), all services industries (SIC 70-89), and all government industries (SIC 90-99).

Output growth includes the growth in value-added in manufacturing and mining sectors. As seen in Figure 1, the current 1999 forecast calls for output to grow strongly throughout the next 15 years, though the rate of growth is expected to decline over time. Output is forecast to grow on average by 3.5% per year for the 5 year period of 2000 through 2004, and average 3.4% over the entire 15 year period from 2000 to 2014. These growth rates represent a slight slowdown relative to 1999 forecasts for the period 2000 to 2004, but more rapid overall growth for the entire 2000 to 2014 period. The 1999 forecasts called for 3.8% growth in industrial value-added over the 2000 through 2004 period and 3.0% annual growth over the 2000 through 2014 period. For the entire 30 year period, industrial value-added for the Kentucky Utilities Service Territory is forecast to grow by 2.7% annually, which is 0.4% higher than the growth rate in the 1999 forecast. These changes from the 1999 to 2000 forecast reflect changes to the national forecast between the two years. Relative to last year, the current national forecast has slower growth in industrial production in the next five years, but faster growth from 6 to 30 years into the future. This issue is discussed in more detail in the section at the end of this report entitled "WEFA Macroeconomic Assumptions."

### **Commercial Employment**

Commercial employment growth encompasses growth in the wholesale trade, retail trade, trucking, finance, insurance, and real estate, and services industry employment, as well as government employment. Growth in commercial employment in the Kentucky Utilities Service Territory is forecast to grow steadily over the next 15 years. Commercial employment is forecast to grow by 2.1% annually from 2000 through 2004, and average 2.0% annual growth over the entire 2000 to 2014 period. As seen in Figure 2, these growth rates are slightly higher than the 1999 forecasts of 2.0% average annual growth from 2000 through 2004, and 1.8% annual growth from 2000 to 2014.

### Population and Households

Forecasts of population in the KUSTEM model are made using a cohort-component model, the same type of model utilized in Bureau of Census forecasts. These models utilize birth, survival, and migration rates to forecast population. The major difference between the Bureau of Census and KUSTEM approach is in the estimation of migration rates. Migration behavior in Census models is based on past migration rates, while migration behavior in the KUSTEM model is a function of economic growth in the service territory. As a result, with a fast growing economy, it is possible that migration rates in the forecast period can exceed past rates, leading to faster growth in population.

Population forecasts from the KUSTEM model call for a steady increase in population in the Kentucky Utilities Service Territory over the forecast period. Population is forecast to increase by 0.7% per year over the entire 2000 to 2014 period, and at a slightly faster 0.8% annual rate for 2000 through 2004. As nationally, the Kentucky Utilities service territory is forecast to have an aging population. Since older persons tend to live in smaller household, this aging of the population implies fewer persons per household. This drop in household size implies that the number of households should grow even faster than the population.

The growth rate for households over the 2000 to 2014 is indeed faster, averaging 1.3% per year. This is slightly faster than the annual household increase forecast for the same period in the 1999 Forecast. Households are forecast to increase by 1.6% per year from 2000 to 2004.

### Forecast Detail

Widely varying growth rates in individual industries and age groups underlie these aggregate results. To examine these differences, more disaggregate forecasts are presented below.

### Output

Industry value-added growth rates indicate that selected durable goods industries appear to be the impetus for rapid value-added growth in the Kentucky Utilities Service Territory. The most rapidly growing industries were transportation equipment and industrial machinery, which includes the very rapidly growing computer equipment and parts manufacturing industry. As seen in Table 1, the forecasts call for continued

success in Kentucky in growth in the transportation equipment industry, and participation in the nationwide trend for rapid value-added growth in computers and other industrial machinery.

There is also expected to be one rapidly growing non-durable goods industry over the next 5 years: wood products. Value-added in wood products is expected to grow at an average annual rate of 5.9% from 2000 to 2004, though the industry is expected to have more moderate growth thereafter. In the next few years, this industry is expected to benefit from the continued realignment of the industry from the western United States to the southeast. The growth rate in many other non-durable goods manufacturing industries, however, is expected to be more moderate, and quite slow in some cases. One moderately growing non-durable goods industries is chemical products, which is forecast to grow at just above 3.0% per year.

Non-durable goods industries experiencing very slow growth include the food processing industry, which is expected to average just over 0.6% growth annually over the next 5 years. Coal mining is expected to be another weak industry in terms of value-added growth. The industry is forecast to experience a decline in value-added over each of the next 5 years.

### **Commercial Employment**

Forecasts for growth in commercial employment are illustrated in Table 2. Figures in that table indicate broad-based growth. Each of the commercial industries presented in Table 2 is expected to add employment over the next fifteen years.

Despite restructuring, the health care industry is still expected to be among the fastest growing commercial industry over the next 15 years. On average, its growth rate is expected to exceed the overall growth rate of commercial employment by 0.5% from 2000 through 2014. In the next five years, however, the rate of employment growth in the health care industry is expected to be very similar to overall growth in commercial employment. Several services industries forecast to grow quickly are personal services, education and other retail trade also are forecast to grow quickly. The slower growing commercial industries are expected to be wholesale trade, finance, insurance, and real estate, and government.

### **Demographic Change**

National trends towards an older age distribution are clearly evident in forecasts for the Kentucky Utilities Service Territory. Table 3 shows this aging process by presenting forecast population growth rates for selected age groups. For both men and women, it is evident that the growth in the population age 15 to 34 will be limited over the next 15 years. Moderate growth is forecast among 25 to 29 and 30 to 34 year olds, but population is expected to decline among 15 to 19 and 20 to 24 year olds. At the same time, population is forecast to grow rapidly among many older age cohorts.

Rapid growth among persons age 55 through 69 reflect the aging of the baby boom generation. The number of persons age 55 to 59 and 60 to 64 are forecast to grow by more than 3% annually over the next 5 years. The growth rate of persons 65 to 69 is forecast to be most rapid later in the 2000 to 2014 time period.

The growth rate of persons over age 85 is also rapid throughout the period. This does not reflect the aging of the baby boom population since baby-boomers will not have reached that age as of yet. Instead, the growth reflects the rising life expectancy of Kentuckians and people throughout the United States.

### The Kentucky Retail Area

The Kentucky Retail Service Territory includes parts of 77 Kentucky counties, but excludes Kentucky Utilities' twelve municipal customers in Kentucky. The Kentucky Retail Service Territory makes up a large portion of the entire Kentucky Utilities Service Territory. Thus it is not surprising that the results for the Kentucky Retail Service Territory are quite similar to those for the entire Kentucky Utilities Service Territory.

Value-added output in the Kentucky Retail Service Territory is forecast to grow at an annual rate of 3.7% per year from 2000 to 2004, and 3.5% per year over the entire 15 year 2000 to 2014 period. These

growth rates represent a slight slowdown relative to 1999 forecasts for the period 2000 to 2004, but more rapid overall growth for the entire 2000 to 2014 period. The 1999 forecasts called for 3.9% growth in industrial value-added over the 2000 through 2004 period and 3.1% annual growth over the 2000 through 2014 period.

The forecast for commercial employment growth in the Kentucky Retail Service Territory is a 2.1% growth rate each year from 2000 to 2004. The 15 year forecast calls for a 2.0% average annual growth from 2000 to 2014. These growth rates match the 1999 forecasts of 2.1% average annual growth from 2000 through 2004, and exceed the 1999 forecast of 1.8% annual growth from 2000 to 2014.

The forecast for population in the Kentucky Retail Service Territory is 0.8% each year from 2000 to 2004, and an average growth of 0.8% annually from 2000 to 2014. The forecast for household growth is 1.7% annually from 2000 to 2004, and 1.3% on average from 2000 to 2014.

### The Virginia Area

The rate of growth in the Virginia Service Territory is somewhat slower than the rate of growth in the Kentucky Retail Service Territory. This is because the Virginia Service Territory has a larger concentration of two industries that are forecast to grow quite slowly: coal mining and apparel.

Total value-added is forecast to drop at an annual rate of 0.5% from 2000 through 2004, but grow 1.5% annually on average from 2000 to 2014. The results reflect a slower growth forecast for value-added output among mining industries, including a forecast drop in mining output from 2000 through 2004. In the current forecast, mining value-added is forecast to grow by less than 0.4% per year on average over the 15 year period. Manufacturing output is forecast to grow by 4.1% on average from 2000 through 2004, and average 4.3% growth each year from 2000 through 2014.

The forecast for commercial employment growth in the Virginia Service Territory is a 1.5% growth rate each year from 2000 to 2004. The 15 year forecast calls for a 1.6% average annual growth from 2000 to 2014. These forecast annual growth rates are just above those called for in the 1999 forecast. Households in the Virginia Service Territory are forecast to grow by 0.9% per year from 2000 through 2004, and 0.7% per year over the entire 15 year period from 2000 through 2014.

### Municipals

Kentucky Utilities serves 12 municipal customers. Each of these municipalities has a unique growth forecast. However, in the interest of brevity, an aggregate forecast for all 12 municipal customers is presented here. While the forecasts for individual municipal customers will differ, the forecast for this aggregate of all twelve municipals is quite similar to the forecast for the Kentucky Retail Service Territory. Although, the forecast rate of growth for value-added is higher for the municipals in aggregate.

Aggregate value-added output for the twelve municipals is forecast to grow at an annual rate of 4.1% per year from 2000 to 2004, and 3.6% per year over the entire 15 year period from 2000 to 2014. Commercial employment is forecast to grow by 2.0% per year from 2000 to 2004, and 2.1% annually from 2000 to 2014. Aggregate households for the twelve municipals is forecast to grow by 1.5% annually from 2000 to 2004, and by 1.2% each year on average form 2000 to 2014.

### **Summary**

Economic growth in the Kentucky Utilities Service Territory is forecast to proceed at a rapid rate over the next 15 years. Growth in industrial value-added in particular is expected to be strong, though the growth in commercial employment and households is also expected to be brisk. These 2000 forecasts from the KUSTEM model are similar to those produced in the 1999 forecasts. In general, the 2000 forecast shows slightly slower growth from 2000 through 2004, but faster growth from 2005-2014.

### **WEFA Macroeconomic Assumptions**

The Center for Business and Economic Research develops an economic forecast for the Commonwealth of Kentucky in order to drive its forecast for the Kentucky Utilities Service Territory. In turn, this economic forecast for Kentucky is developed using variables from a national economic forecast developed by WEFA. Thus, the national economic forecast from WEFA has an important influence on the economic, and therefore, the Energy and Demand Forecast, for the Kentucky Utilities Service Territory.

The current forecast from WEFA (the year 2000 forecast) calls for slower growth in the next five years, and particularly the next few years, than was called for in last year's national forecast (the year 1999 forecast). The two forecasts are illustrated in Figure 3, which illustrates forecast growth rates of gross domestic product (GDP) in the current year WEFA forecast and last year's forecast. GDP is the most comprehensive measure available of national output, and is a measure that is correlated with national industrial output. Note that much slower growth is forecast for the years 2000 and 2002 in the current year forecast. Note also that forecast rates of GDP growth in the current WEFA forecast are higher in most years after 2005, particularly after 2010. This pattern of slower growth forecast from 2000 through 2004 relative to last year's forecast, and faster growth after 2005 is also reflected in forecasts for the Kentucky Utilities Service Territory.

As mentioned above, the current year forecast from WEFA calls for slower growth from 2000 through 2004 than last year's forecast, particularly in 2000 and 2002. The source for last year's national economic forecast was DRI/McGraw-Hill. One natural question is: how have DRI's forecasts for 2000 and the next few years changed between this year's forecast and last year's forecast? Has there also been a slowdown in DRI's forecasts? These questions are answered in Figure 3A, which shows forecasts for the years 2000 through 2003 based on DRI's current year forecast (the year 2000 forecast) and last year's forecast (the year 1999 forecast). The 2000 forecast does call for slower growth than the 1999 forecast for the 2000 through 2003 period, and there is a sharp slowdown in the year 2000 and the year 2002. Both the DRI and WEFA sources for national macroeconomic forecasts call for a slowdown in growth relative to last year's forecast.

Some of the key assumptions behind WEFA's First-Quarter 1999 Trend/Moderate Growth Scenario national forecast are presented below.

- Growth in the economy has exceeded the long-run rate of growth in the last few years. Beginning in the year 2000, the trend forecast expects that the economy will follow a pattern of smooth growth, with actual output approximately paralleling the path of potential output. Although, growth in the year 2000 is expected to fall slightly below average long-term growth due to modest Y2K problems. Annual real U.S. GDP growth should average 2.0% over the next 5 years from 2000 through 2004 and 2.1% over the next 15 years.
- Inflation over the forecast will remain moderate. Inflation will average 1.9% over the next 5 years from 2000 through 2004, of the forecast, and 2.1% over the next 15 years.
- Real interest rates are expected to remain at moderate levels as the Federal Reserve guards against inflation but does not raise rates in order to drive inflation even lower.

Figure 1 Growth Rates in Real Industrial Value Added for KU Service Territory 2000 Forecast versus 1999 Forecast

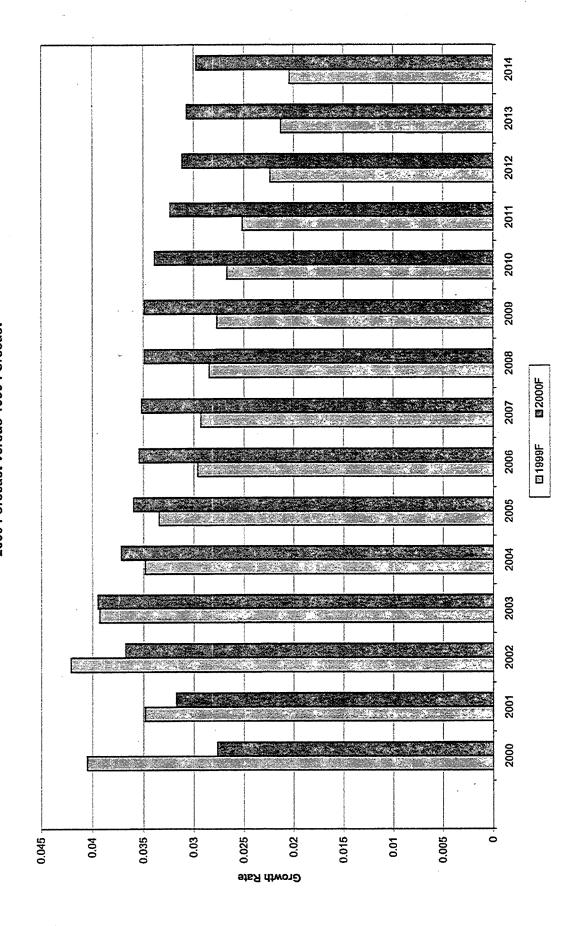



Figure 1-RTL Growth Rates in Real Industrial Value Added for Kentucky Retail Customers 2000 Forecast versus 1999 Forecast

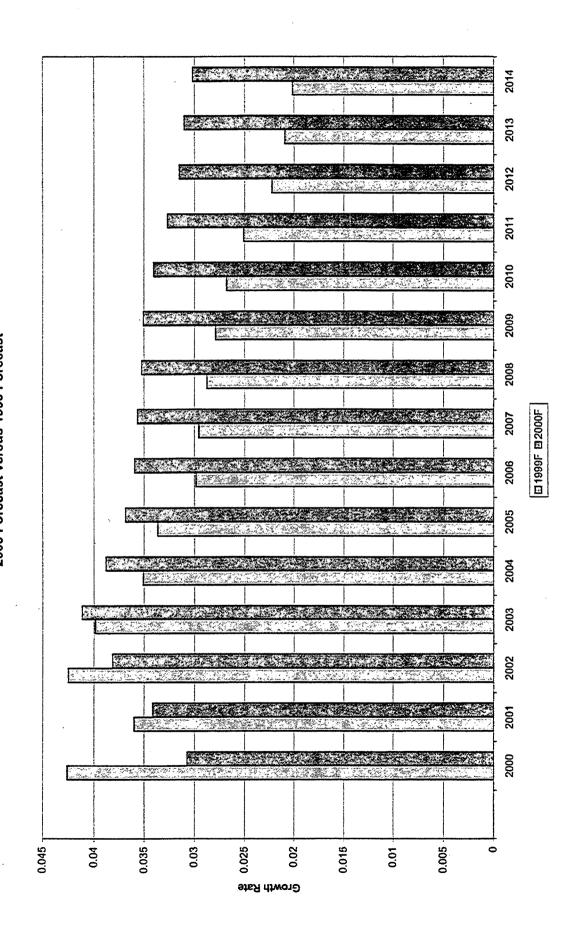
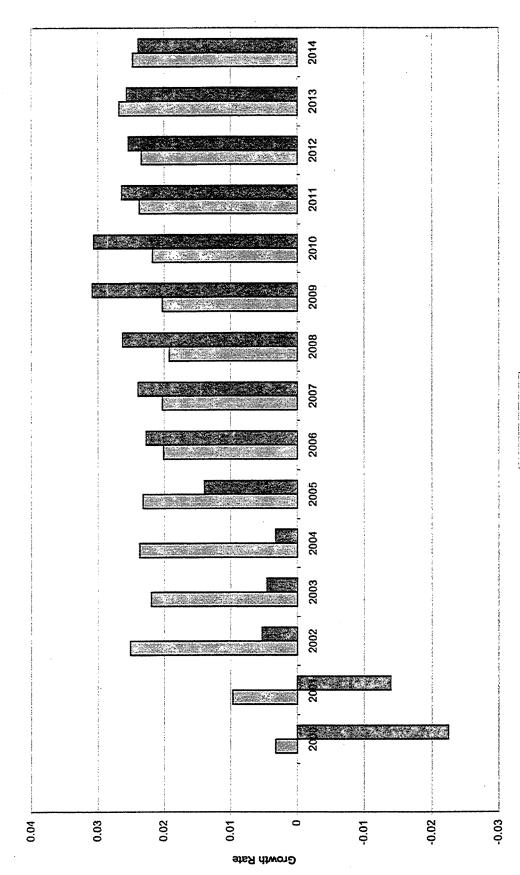




Figure 1 -Va Growth Rates in Real Industrial Value Added for Old Dominion Power Service Territory 2000 Forecast versus 1999 Forecast



□1999F ■2000F

Figure 1- Whi Growth Rates in Real Industrial Value Added for KU Wholesale Customers 2000 Forecast versus 1999 Forecast

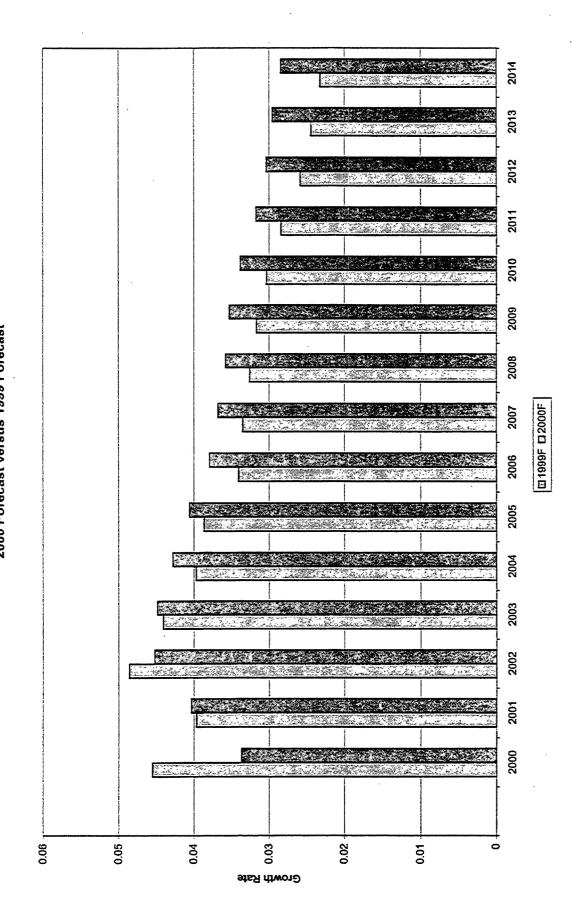



Figure 2
Growth Rate in Commercial Employment 2000 Forecast versus 1999 Forecast

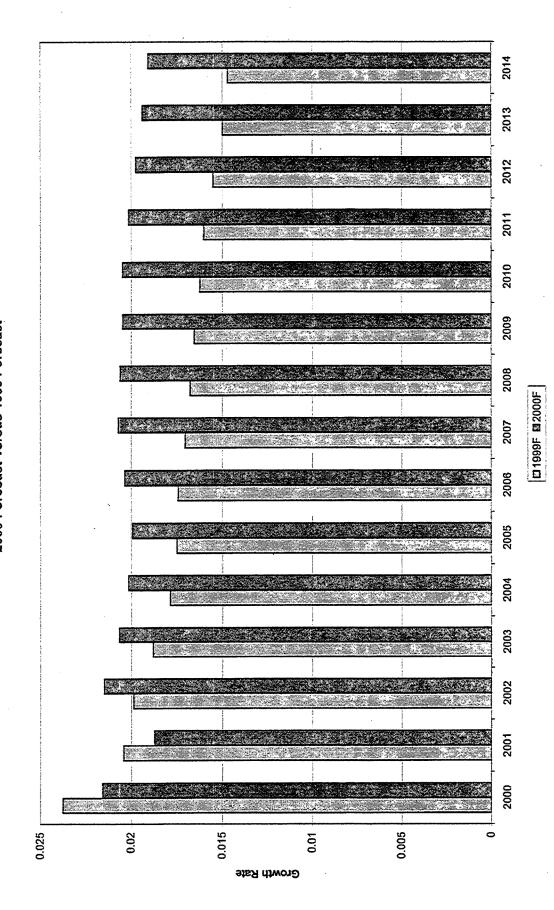



Figure 2-Rtl Growth Rate in Commercial Employment for Kentucky Retail Customers 2000 Forecast versus 1999 Forecast

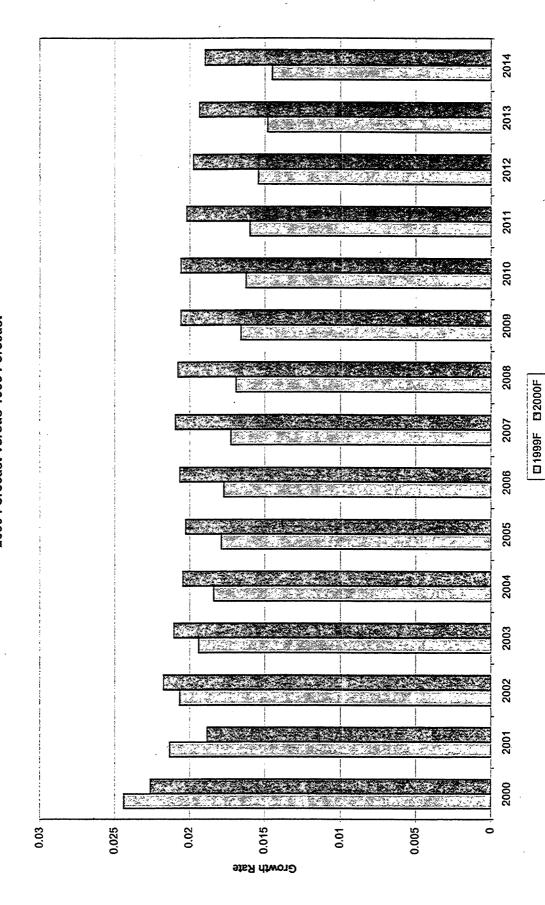



Figure 2-Va Growth Rate in Commercial Employment in the Old Dominion Power Service Territory 2000 Forecast versus 1999 Forecast

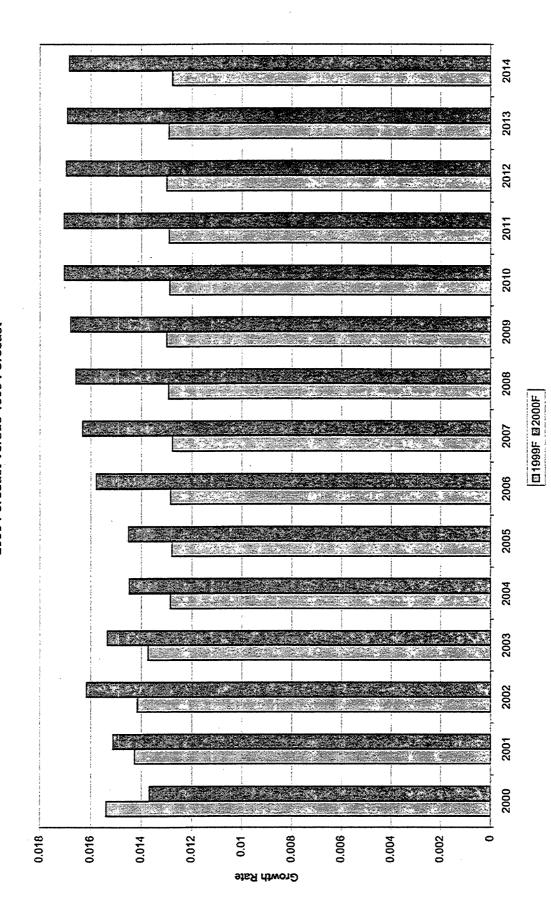



Figure 2 -Whl Growth Rate in Commercial Employment for KU Wholesale Customers 2000 Forecast versus 1999 Forecast

22.20

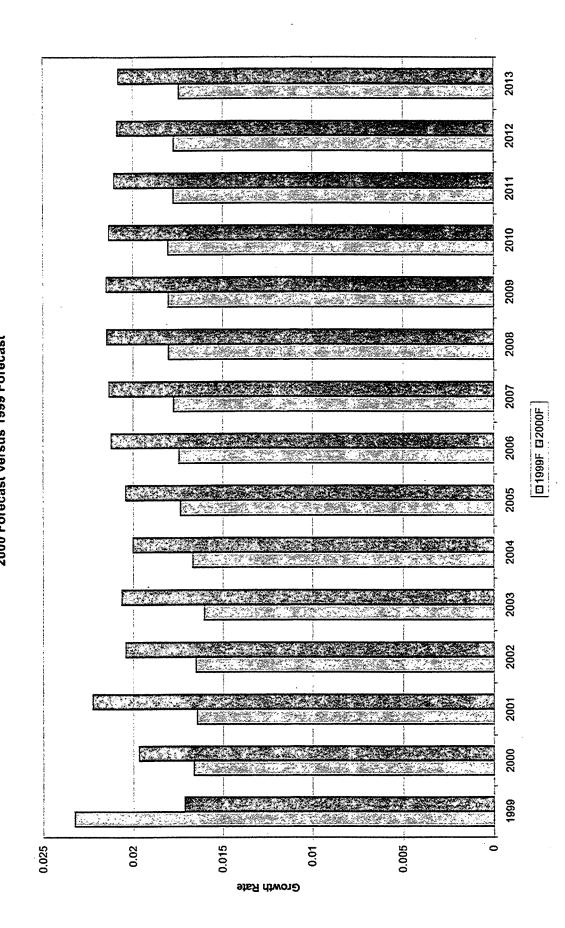



Figure 3
Forecast for the Growth Rate in U.S. Real GDP WEFA 2000 Forrecast versus DRI/McGraw Hill 1999 Forecast

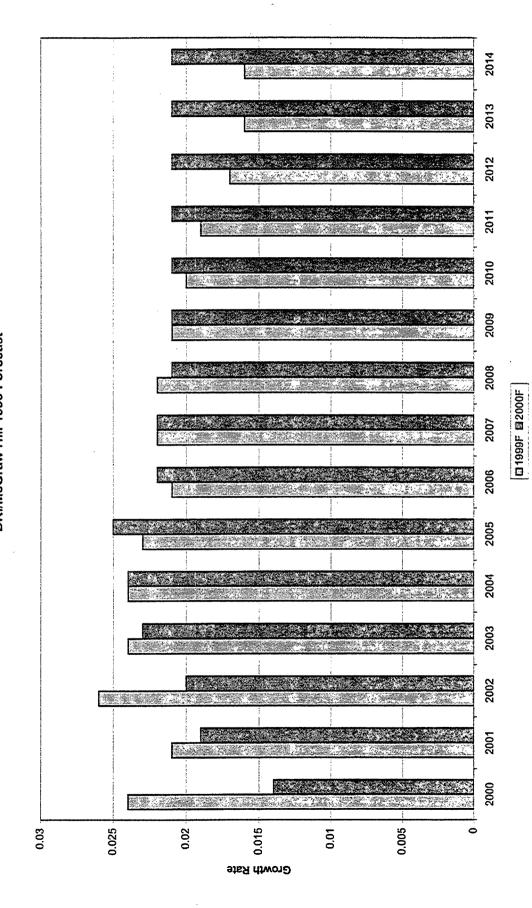



Figure 3A
Forecast for the Growth Rate in U.S. Real GDP
DRI/McGraw Hill 2000 Forrecast versus
DRI/McGraw Hill 1999 Forecast

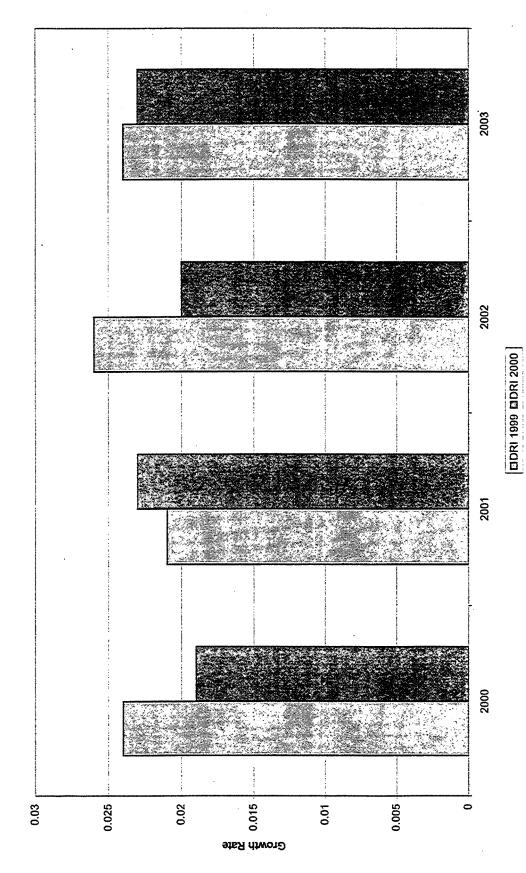



Figure 4
Growth Rate in Real Total Personal Income 2000 Forecast versus 1999 Forecast

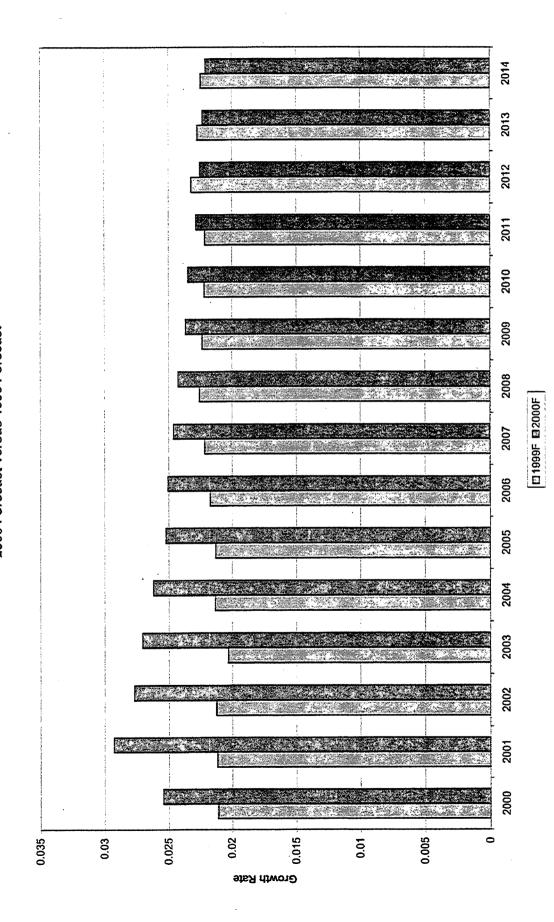
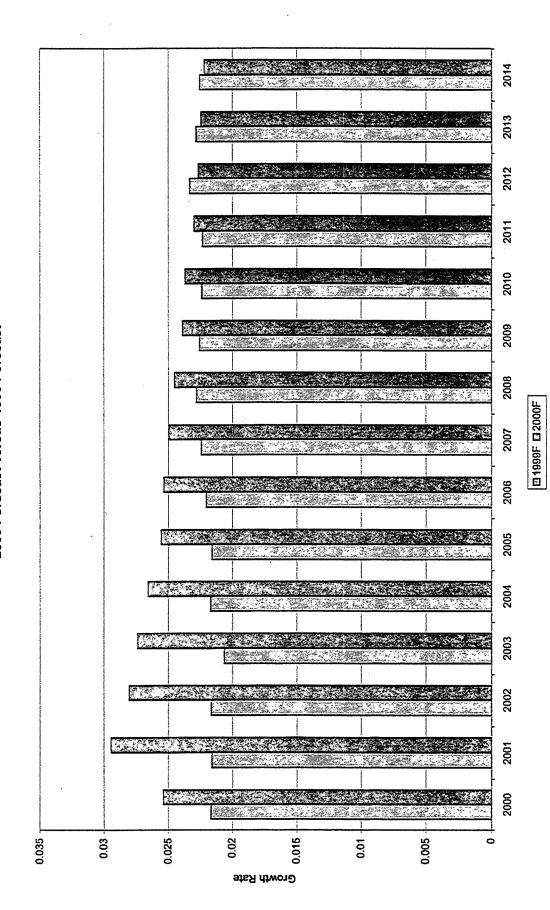




Figure 4 -Rtl Growth Rate in Real Total Personal Income for Kentucky Retall Customers 2000 Forecast versus 1999 Forecast



Growth Rate in Real Total Personal Income in the Old Dominion Power Service Territory 2000 Forecast versus 1999 Forecast Figure 4 -Va



Table 1 Growth in Industrial Value Added by Detailed Industry 2000-2014

		Ā	Annual Growth Rate	th Rate	Aver	Average Annual Growth Rate	า Rate
Industry	2000	2001	2002	2003	2004	2000-2004 2000-201	00-2014
Total Industrial Value Added	2.8%	3.2%	3.7%	3.9%	3.7%	3.5%	3.4%
Coal Mining	-2.9%	-1.6%	0.1%	-0.5%	-0.8%	-1.2%	1.0%
Manufacturing	3.6%	3.9%	4.2%	4.6%	4.3%	4.1%	3.5%
Food Processing	-0.4%	0.3%	0.8%	1.1%	1.4%	<b>%9</b> :0	1.8%
Wood Products	5.4%	6.5%	6.3%	<b>%</b> 0.9	5.5%	2.9%	4.9%
Chemicals Products	3.1%	2.9%	3.1%	3.2%	2.8%	3.0%	2.5%
Plastic Products	2.1%	2.8%	3.3%	4.0%	4.7%	3.4%	3.2%
Primary Metals	4.4%	3.9%	4.6%	4.6%	4.0%	4.3%	2.7%
Industrial Machinery	8.6%	8.2%	7.6%	7.9%	7.0%	7.9%	2.9%
Transportation Equipment	6.2%	2.9%	%0:9	2.6%	4.8%	2.7%	4.0%

Table 2
Growth in Commercial Employment by Detailed Industry

	5		20	2000-2014	2000-2014		
		Ā	Annual Growth Rate	rth Rate	Aver	Average Annual Growth Rate	n Rate
Industry	2000	2001	2002	2003	2004	2000-2004 2000-2014	00-2014
Total Commercial Employment	2.2%	1.9%	2.1%	2.1%	2.0%	2.1%	2.0%
Wholesale Trade	0.4%	0.3%	0.5%	0.7%	0.7%	0.5%	0.5%
Eating and Drinking Places	3.0%	2.4%	2.3%	2.1%	2.2%	2.4%	2.3%
Other Retail	2.7%	2.6%	2.8%	2.7%	2.6%	2.7%	2.4%
Finance, Insurance, and Real Estate	0.5%	0.3%	0.5%	%9.0	<b>%9</b> .0	0.5%	0.8%
Personal Services	3.1%	2.8%	3.0%	3.1%	2.9%	3.0%	2.8%
Health Care	2.6%	1.7%	2.0%	2.0%	1.7%	2.0%	2.5%
Education	3.1%	2.8%	2.6%	2.4%	2.4%	2.7%	2.4%
Miscellaneous Services	2.7%	2.4%	2.4%	2.3%	2.2%	2.4%	2.2%
Government	0.7%	1.1%	1.4%	1.3%	1.4%	1.2%	1.4%

Table 3
Growth in Population by Age and Gender Cohort 2000-2014

		Ar	Annual Growth Rate	th Rate	Avera	Average Annual Growth Rate	n Rate
<b>Industry</b> Total Population	<b>2000</b> 0.8%	<b>2001</b> 0.8%	<b>2002</b> 0.8%	<b>2003</b> 0.8%	<b>2004</b> 0.8%	2000-2004 2000-2014 0.8% 0.7%	00-2014 0.7%
Males				ì	•	,	č
Age 15-19	-1.6%	-1.3%	-1.0%	-0.7%	-0.5%	-1.0%	-0.3%
Age 20-24	0.3%	%0.0	-0.2%	-0.2%	-0.2%	%0.0	-0.1%
Age 25-29	2.1%	1.7%	1.4%	1.2%	1.0%	1.5%	<b>%9</b> .0
Age 30-34	%6.0	1.1%	1.2%	1.3%	1.3%	1.2%	%8.0
Age 55-59	3.6%	3.4%	3.2%	3.0%	2.7%	3.2%	2.1%
Age 60-64	2.8%	3.0%	3.1%	3.2%	3.1%	3.1%	2.5%
Are 65-69	1.2%	1.6%	2.0%	2.3%	2.5%	1.9%	2.4%
Above age 85	2.5%	4.6%	3.9%	3.3%	2.9%	4.1%	2.8%
Eomolos							
Age 15-10	-1.1%	%6·0-	-0.7%	-0.5%	-0.3%	-0.7%	-0.2%
AGB 20-24	0.4%	0.2%	%0:0	0.1%	%0.0	0.2%	0.0%
Ade 25-29	1.0%	0.9%	0.8%	0.7%	<b>%9</b> .0	%8'0	0.4%
Age 30-34	0.3%	0.4%	0.5%	<b>%9</b> :0	0.7%	0.5%	0.4%
Age 55-59	3.7%	3.5%	3.2%	3.0%	2.7%	3.2%	2.1%
App 60-64	2.9%	3.1%	3.1%	3.2%	3.1%	3.1%	2.5%
Age 65-69	1.2%	1.6%	1.9%	2.2%	2.4%	1.8%	2.3%
Above age 85	4.0%	3.5%	3.1%	2.7%	2.4%	3.1%	2.3%

## Subsection 2

KU Service Territory Data Base and Modeling System Documentation

# CENTER FOR BUSINESS AND ECONOMIC RESEARCH



THE KENTUCKY UTILITIES SERVICE TERRITORY DATA BASE AND MODELING SYSTEM

University of Kentucky Gatton College of Business and Economics Lexington, KY 40506-0034

> (606) 257-7675 (606) 257-7671 (FAX) http://gatton.gws.uky.edu/cber/cber.htm





Documentation for
The Kentucky Utilities Service Territory Data Base and Modeling System

Center for Business and Economic Research University of Kentucky Lexington, KY 40506-0034 (606) 257-7675

Mark C. Berger, Director

November, 1996

#### Introduction

THE CBER KU Service Territory Model consists of 8 EVIEWS programs. Five of the programs are used to produce value-added output, employment, and demographic forecasts in each of five groupings of counties within Kentucky Utilities' service territory. The sixth program is used both to control and operate the five regional programs and to specify simulations made with the CBER KU model. The seventh program aggregates forecasts produced in each region to produce both annual and monthly summary forecasts for KU's entire service territory, and separately for its retail and wholesale territories. The eighth program simulates economic growth in additional counties outside of the current KU service territory. Forecasts also are produced for each of the 82 KU service territory counties. The control program can be used to produce forecasts under baseline, optimistic, and pessimistic scenarios.

The five county groupings or regions within the KU service territory are listed in Table 1. Region 1 consists of counties from the Bluegrass and northern Kentucky. Region 2 consists of coal counties in southeastern Kentucky and southwestern Virginia. Region 3 consists of counties with substantial employment in apparel and textiles in the southern and southeastern portion of Kentucky. Region 4 contains counties on the highway corridors from Cincinnati, Ohio to Memphis, Tennessee. Region 5 contains counties in KU's service territory in the western part of Kentucky.

#### The Control Program for the CBER KU Model

The model control program both regulates the forecasts carried out using each of the five regional programs and is used to run simulations using the CBER KU model. The control program is called "control.prg". The majority of the program is used for the purpose of running simulations. The portion of the program which is involved with getting each of the five regional programs to execute is located in the bottom portion of the program. The command which begins with "run" tells EVIEWS to run the program for Region 1. The control program does not directly instruct EVIEWS to run the other regional programs, but a line of text is included on the bottom of the program for Region 1 which instructs EVIEWS to run the program for Region 2. A line on the bottom of the program for Region 2 gets EVIEWS to execute the program for Region 3, and so on, until all five programs are run. In this way, the control program sets off a chain of events to execute all regional programs. A line at the bottom of the fifth regional program then tells EVIEWS to execute the seventh program, which sums the forecasts produced in each of the regional models to produce forecasts for the entire KU service territory, and for the KU retail and wholesale territories.

The bulk of text in the control program is devoted to running simulations with the CBER KU model. The first simulation is related to running baseline optimistic or pessimistic scenarios using the CBER KU model. One part of such scenarios is to assume Kentucky Utilities, through its industrial recruitment efforts, is able to attract a larger (or smaller) than predicted share of new industrial plants in Kentucky. This can be done by using the line of text which defines the variable "recruit". Simply type in a number indicating the extra percentage of new plant employment which KU recruitment efforts are able to capture (or manage to lose) for its service territory. For example, typing .05 would assume that KU is able to capture an extra 5% of the new plant employment for Kentucky, while typing -.05 would assume that KU fails to capture 5% of the new plant employment that it should capture given the area's growth. Typing .05 is a possible part of an optimistic scenario, while typing -.05 is a possible part of a pessimistic scenario. Typing .00 is part of a baseline scenario. Running an optimistic scenario also involves using the optimistic statewide forecast for Kentucky in spreadsheet "Kentucky.xls". Running a baseline scenario also involves using the baseline statewide forecast for Kentucky in spreadsheet "Kentuckx.xls".

Just above the line of text used to select a value for the variable recruit is a line that solves the EVIEWS modelfile "control.dbl". This modelfile not only creates the default value for the variable "recruit" (zero), it also creates a large group of 1,722 variables (also with default value zero) which can be used to simulate an employment shock from the location of a new plant in any of the 82 KU service territory counties in coal mining or any of the twenty manufacturing industries.

The selection of the shock to simulate is carried out in the next set of lines. First, the time period for the shock is selected. To do this, it is necessary to type in the time period in which the shock is expected to take place. For example, if a 1,000 worker car plant is expected to open in December 1997, then the time period selected should be the fourth quarter of 1997 (type smpl 1997:4 1997:4). Then it is necessary to indicate the county and industry in which the shock will take place. This is done using the name of the variable entitled "shoc??XX,", where ?? refers to the 2-digit SIC code for the industry (see Table 3), and XX refers to the two letter abbreviation for the county (see Table 2). Simply insert the 2-digit SIC code for the correct manufacturing industry or coal mining for ??, and the two letter abbreviation for the county for XX. As for the number of jobs in the new plant, simply insert that number to the right of the equal sign. So, for example, to simulate the shock of a 1,000 worker car assembly plant in Adair County, Kentucky, type shoc37ad=1000.

Another part of simulating the shock is to estimate the multiplier effect within the same two digit industry. In our example, there would likely be some growth in existing and/or new auto parts producers in or near Adair County, Kentucky. This part of the shock is simulated by multiplying the original shock by a coefficient which would yield the multiplier effect within the same 2-digit industry. The coefficients would simply indicate the number of additional jobs which would be created in the same 2-digit industry for each job generated in the shock. A coefficient of .1 would indicate one additional job in the same 2-digit industry for each 10 jobs created in the simulated new plant.

The appropriate coefficients for each 2-digit manufacturing industry and coal mining in each of the 5 KU regions were calculated for these groupings of counties using the IMPLAN model. Those coefficients were then placed in the spreadsheet "inoutput.xls". This spreadsheet of coefficients is then imported into the control program (with the line which begins with read(e,b2)). In the EVIEWS modelfile "control2.dbl", the multiplier for the same 2-digit industry resulting from the shock is calculated. Aggregate shocks and multiplier effects for each industry in each region also are calculated. The regional and county shocks for each industry and county are then written to spreadsheets for use when the programs to produce forecasts for each of the 5 KU regions are executed. These spreadsheets are entitled "contrrRa.xls," "contrrRb.xls," and in the case of region 1, "contrrRc.xls." The "R" in each of these spreadsheet names, as always, refers to the region number.

By importing these spreadsheets, the shock is then introduced into the forecast for the relevant region in which the shock takes place. The shock may have further impacts on other manufacturing industries through inter-industry linkages, and will have an impact on commercial industry employment as well as earnings, income, and population. These results of the shock are simulated within the models contained in each of the 5 regional forecasting programs.

The spreadsheets, of course, contain mostly zeros since only one or a few shocks are used in any particular simulation. To simulate more than one shock, it is simply necessary to introduce additional sets of commands which select a time period for a shock, and the county, industry, and employment level. So, for example, to also simulate a shock for the opening of a 300 job apparel plant in Webster County. Kentucky in July 1996, simply type two additional lines, the first being "smpl 1996:3 1996:3." and the second being "shoc23we=300".

Once any simulations are introduced, it is simply necessary to push the RUN button in EVIEWS and the model will run. Of course, it is possible to run the model without any simulations using the baseline Kentucky forecast by using "Kentuckx.xls," and by typing .00 when defining the variable recruit, and by setting the shoc??XX variable equal to 0.

#### The Summing Program for the CBER KU Model

The EVIEWS program "sumthem.prg" totals the results of output, employment, population, and income forecasts from each of the five KU regions. These totals are produced at the same high level of disaggregation as for counties, with 32 value-added output variables, 47 employment variables, 5 income variables, and 38 population variables. Results are aggregated in several ways which are of interest to Kentucky Utilities. First, results are totaled for all 82 KU service territory counties. Second, results are totaled

only for the 77 Kentucky counties in the KU service territory. Third, results are totaled for the retail service territory for Kentucky. Lastly, forecast results are totaled for the 5 Virginia counties. Totals are converted into annual and monthly forecasts. Annual forecasts are for 30 years into the future and monthly forecasts for 8 years into the future. The difference between the current forecast and the baseline forecast also is calculated. Annual forecasts are output into the EXCEL spreadsheets entitled: "totalku.xls" for the entire KU service territory forecast, "totalky.xls" for the Kentucky portions of the KU service territory, "totalre.xls" for the retail portions of the Kentucky counties, and "totalva.xls" for the Virginia counties in the KU service territory. The difference between current and baseline annual forecasts are output to EXCEL spreadsheets entitled: "changeku.xls," "changeky.xls," "changere.xls," and "changeva.xls." Monthly forecasts are output to EXCEL spreadsheets entitled: "totalkum.xls," "totalkym.xls," "totalrem.xls," and "totalvam.xls."

#### The New County Simulation Program for the CBER KU Model

The program "newcounR.prg" is used to forecast output, employment, population, and income in counties outside of the existing KU service territory. This program is set-up to run automatically after the "sumthem.prg" program. The program is currently set to the unnecessary case of trying to simulate adding Adair County, Kentucky as a new county in the KU service territory. To simulate a true new county for the service territory, it is necessary to take two steps. First, it is necessary to gather demographic, income, employment, and value-added output data for the new county. Succinctly, it is necessary to gather the same data which is contained in each of the spreadsheets for the 82 service territory counties. Second, it is necessary to decide which existing service territory county is the best "twin" for the new county to be modeled, and then to enter the existing county's single county modelfile into the "newcounR.prg". This model already developed for the twin county will be used to produce the forecast for the new county (the new county's data spreadsheet should contain the same column names as the twin county's data spreadsheet). To get EVIEWS to properly run this simulation, it is first necessary to select the proper "newcounR.prg" program. Choose the program for the region of which the twin county is a part. Type the name of the spreadsheet with data for the new county in the second line of text (which begins with read(e,b2)). In the line near the end of the file just before the "write(e)" command, type the two letter abbreviation for the twin county into the modelfile name "modsimXX.dbl". This ensures that the correct singe county modelfile is used. Lastly, write the first five letters of new county's name into the "write(e)" command to have the forecasts for the new county written to an EXCEL spreadsheet.

#### Five Regional Models

The proceeding text described how to use the **control.prg** program to run alternative simulations with the CBER KU model, and how the **sumthem** would sum results to create annual and monthly forecasts. These two programs control the operation or summarize the results of the 5 regional forecasting programs. These five regional programs contain the economic forecasting models for five groupings of KU's 82 service territory counties. The structure of a regional forecasting program is discussed in detail below.

#### The Regional Forecasting Program

Each regional forecasting program contains a number of commands to input and manipulate data and produce forecasts. As pictured in Figure 2, these programs can be considered to have several stages. The first is the data input stage in which the necessary data are input into an EVIEWS modelfile. The second stage is the data transformation stage in which the variables which have been loaded are logged or manipulated in some other way to prepare the variables for use in the model. The third stage is the data update stage in which variables which are not as current are updated through estimation so that all variables are current to the same time period. The fourth stage is the forecasting stage in which variables are forecast on a quarterly basis 30 years into the future. The final stage is the data output stage in which forecasts data are output into EXCEL files. Each of these stages is described in detail below. The description of the forecasting stage includes an explanation of the equations included in the model.

#### **Data Input Stage**

The first step in the operation of the CBER model is to import historic and forecast data into an EVIEWS workfile for each region. This data is housed in EXCEL spreadsheets. Depending on the region, there will be from 11 to 24 spreadsheet files which contain both historic and forecast data for each county "countynameXXx.xls". In addition, each region will have a spreadsheet file which contains historic data on relative wages in the region in manufacturing industries and coal mining "wagratrR.xls". Each region also will have a spreadsheet which contains a forecast for the Kentucky economy "kentucky.xls". This spreadsheet is the source for statewide exogenous data for the CBER model. Finally, each region will have a spreadsheet which contains information on any employment shocks which may be introduced to coal mining or manufacturing industries in any county by the operator of the model. These spreadsheets will contain zeroes for most industries since shocks would be introduced to few if any counties and industries at any one time. These shock spreadsheets ("contrrR1.xls," and "contrrR2.xls," (and "contrrR3.xls" in region 1)) are generated in the control program which guides the overall model. These data will be combined into a single EVIEWS modelfile which covers the years 1989 to 2025. An "R" in the above spreadsheet names stands for region 1 through 5, while an "XX" stands for a 2 letter abbreviation for a particular county name.

The county data spreadsheet files imported into the EVIEWS workfile "regRpx.wf1" contain both historic and forecast county-specific data. The historic data include county value-added output and employment data by industry, county nominal total income and nominal income by source, and population by gender and five year age group. With the exception of the population data, the historic quarterly data begin in the first quarter of 1989 and run through the most recent quarter for data which is available. The forecast data include the birth rates, survival rates, and household headship rates which are used to forecast population growth and the change in the number of households in counties. These forecast data extend from the most recently available quarter through the fourth quarter of 2025.

The source for employment data is ES202 data. The value-added output data is estimated using county employment and earnings data from ES202 and statewide value-added output data. The source for the statewide value added output data is the United States Department of Commerce, Bureau of Economic Analysis' Regional Economic Information System. The Regional Economic Information System is also the source for nominal income data. The source for the historic population data for counties by gender and five year age cohort is the United States Bureau of Census (through the University of Louisville). Data on birth rates, survival rates, and household headship rates also come from the United States Bureau of Census (also through the University of Louisville). Each county has a unique set of headship rates for each age and gender cohort. The birth rates for women age 14 to 49 are unique for larger counties, but are an average rate for smaller rural counties, which account for most of the counties in the KU service territory. The survival rates are state averages. Forecast values for birth rates, survival rates, and household headship rates are generated by taking current values and growing or shrinking them at the same rate as they are forecast to change in (moderate) national demographic forecasts by the United States Bureau of Census.

The spreadsheet containing relative wage data contains data for the 20 manufacturing industries and coal mining. The relative wage data for each industry is average annual wages per job in the region divided by

average annual wages per job in the state. Thus, the relative wage data reflect whether wages per job are higher or lower in the region than in the state. A lower relative wage can reflect a comparative advantage for a region. The source for the regional and statewide average annual wage data is the ES202 employment data set. This is also the source for the regional employment data.

The file containing state forecast data contains statewide value-added output, employment, and income forecasts as well as national forecasts for total employment and selected industrial production indexes. This forecast data will embody the baseline, optimistic, or pessimistic forecast for the Kentucky economy depending on whether the objective is to produce a baseline, optimistic, or pessimistic forecasts for the KU regions. The source for these Kentucky forecast data is the University of Kentucky Center for Business and Economic Research's University of Kentucky State Econometric Model. The UKSEM utilizes national forecast data from DRIMEGRAW Hall and produces output forecasts for over 30 industries and employment forecasts for nearly 70 industries. Income is forecast for 7 sources of income and population for 36 age and gender cohorts. The model has been operated by the Center for Economic Research since 1995.

#### **Data Transformation Stage**

Some of the raw imported data must be transformed before it is utilized in the UK CBER forecasting model. Such transformations are made to statewide forecast data using the EVIEWS modelfile entitled "makeexo.xls." Transformations are made to county variables in the EVIEWS modelfiles entitled "makendrR.xls", "artpirR.xls", and "mak2ndrR.xls", where R refers to KU regions 1 through 5. The relative wage data do not need to be transformed.

Two types of transformations are made to the imported statewide data using the modelfile "makeexo.dbl" First, state employment variables in 2-digit manufacturing industries are transformed using the natural logarithm to create log of state employment variables. Similarly, statewide average productivity variables for 2-digit manufacturing industries are created by dividing statewide value-added output in each industry by statewide employment. Both sets of transformed variables are utilized in the regional modelfiles "modmrRp9.dbl" for forecasting industrial value-added output and employment, and manufacturing wages. These transformations are made for the entire historic and forecast period for the model, from first quarter, 1989 through fourth quarter, 2025.

Multiple transformations are made to the county data which is imported. County data from the years 1989 to 1993 is transformed in numerous ways in the EVIEWS modelfile "makendrR.dbl" First, regional aggregates are created in the data for value-added output and employment. Regional output aggregates are created for all 32 industrial sectors, and regional employment aggregates are created for all 47 industrial and commercial sectors. Then, both regional and county employment data are aggregated into various totals which are important for evaluating model forecasts. County or regional employment data are totaled into manufacturing employment (eman_XX), industrial employment (ego_XX), and commercial employment (engo_XX). County or regional employment data also are totaled into the high wage (ehiw_XX), medium wage (emedw_XX), and low wage (eloww_XX) employment data which are utilized for forecasting county earnings growth by place of residence.

The next transformation made in modelfile "makendrR.dbl" is that regional employment data for coal mining, manufacturing industries, and non-trucking transportation, communications, and utilities are seasonally adjusted and logged. This transformed data is utilized in the regional value-added output, employment, and relative wage forecasting modelfiles "modmrRp9.dbl". Finally, nominal income data is transformed into real income data using the consumer price index, and real farm and military income is logged.

The modelfile "artpirR.dbl" is used on 1989 to 1993 county income data in order to create a variable which is a four quarter moving average of real total personal income in each county. Each of these income variables is utilized in forecasting employment growth in commercial sectors in the CBER KU model.

Lastly, a modified version of the modelfile "makendrR.dbl" is utilized to transform 1994 quarterly data. This modelfile is called "mak2ndrR.dbl" This model makes all the transformations of employment and value-added output data which were described above. But, it does not make the transformations of income data which were described above. This is because the historic income data are available only through fourth quarter, 1993. Thus the model "mak2ndrR.dbl" essentially completes all of the transformations made in "makendrR.dbl" for every variable for which 1994 data is available- i.e., the employment and value-added output data.

#### Data Update Stage

The release of historic income and population data lags the release of historic employment and earnings data. Income data typically lags employment and earnings data by a full year while the lag for population is less than a year. These longer lags for income and population data are a problem because all historic data must be updated to the same quarter for the forecast to begin. It is necessary to estimate these lagging historic variables in order to update them to the quarter in which employment and earnings data are available. In the current CBER model, data must be estimated through the fourth quarter of 1994, the last quarter for which employment and earnings data are available. This implies that income data, which are available through the fourth quarter of 1993, must be updated for four quarters, while population data, which are available through the third quarter of 1994, must be updated one quarter.

In order to run the cohort-component population forecasting model, it is necessary to have an estimate of net migration to a county in the previous quarter. As a consequence, before utilizing the cohort-component model to estimate county population in the fourth quarter of 1994, it is necessary to estimate net migration to all counties in the third quarter of 1994. This is accomplished through the EVIEWS modelfile "modmigrR.dbl," which contains all of the migrations equations for each county in the region. The modelfile is run for only the third quarter of 1994.

Once the lagged net migration is calculated, it is possible to run the cohort-component population forecasting models for the fourth quarter of 1994. These models are quite large so that only about 8 county population forecasting models can be held in one EVIEWS modelfile. As a result, from two to three modelfiles entitled "moderRp1.dbl," "moderRp2.dbl," or "moderRp3.dbl" are run in order to estimate population data for the fourth quarter of 1994. Essentially, the cohort-component model looks at all the ways in which population flows in or out of each five year age and gender population cohort. Population flows in as persons "age in" from the previous cohort and as persons in the cohort migrate into the county. Population flows out of each cohort as persons "age out" into the next cohort, as persons in the cohort migrate to another county, or as persons die. Population flows into the age 0-4 male and female cohorts through births. A more complete description of the cohort-component model is given below.

County population growth, along with county or area employment growth, is one of the key factors influencing income growth in counties. That is why it is necessary to update population growth before updating income growth. But, once population has been updated, it is possible to use the income growth portions of the CBER KU service territory model for each county to update income variables from the first quarter of 1994 through the fourth quarter of 1994. This is done by gathering the income equations for each county in a region into a single EVIEWS modelfile entitled "modelrRy.dbl" and running it for all four quarters of 1994. Once this is done, all model historic data have been updated to the fourth quarter of 1994, and forecasts can begin starting with the first quarter of 1995. The income equations in the CBER KU forecasting model are described below.

#### The Forecasting Stage

Given the industry and county detail used in the CBER KU model, its was not possible to fit all model equations for a given region into a single KU model file. As a result, data were organized into a set of model files. One model file, entitled ("modmrRp9.dbl") contains all variables which are forecast on a regional basis. These variables include industrial sector value-added output, employment, and wages. Additional modelfiles contain forecasting equations for variables forecast at the county level, including income, commercial employment, and population. The modelfiles also contain equations to share-down regional industrial sector employment and value-added forecasts to the county level. These model files are of the form ("modelXXx.dbl"), where XX refers to the two-digit abbreviation for one of the counties in the modelfile (see Table 2). Each modelfile contains equations for 2 or 3 counties. There are from 4 to 8 such county model files in each region, depending on the number of counties. A final modelfile, entitled ("modsrRp2.dbl"), summarizes data forecast only at the county level (commercial sector employment, population, income) to produce regional level forecasts.

For the first forecast period, these modelfiles are imported into the EVIEWS workfile and executed to produce forecasts for the first quarter. For later periods, a "do loop" is used to instruct EVIEWS to execute each of the modelfiles in each of succeeding periods. Finally, forecasts are made for any wholesale areas that are found in each region using a program entitled ("modtowrR.dbl"). The equations included in each of the model forecasting files are discussed below. Employment, and value-added output forecasts are discussed first, followed with a discussion of income, population, and household forecasts.

#### Region-Wide Equations

The EVIEWS modelfile "modmrRp9.dbl" contains equations for forecasting regional employment, as well as regional value-added output for manufacturing, mining, and non-trucking transportation industries. The modelfile also has equations for forecasting relative wages for coal mining and manufacturing industries. These regional level equations are discussed below.

The CBER KU model is an employment driven model, so that regional forecasts of employment growth are a key driver of regional economic growth. An example of an equation for manufacturing employment growth is illustrated below (Equation 1). This equation shows the group of variables which each industry equation might have for manufacturing sectors, although each equation does not have each of the type of explanatory variable discussed below. Employment (as well as wage) equations were estimated using pooled data for each of the 5 regions in order to increase the sample size.

In all industry equations, statewide growth in output and average product are key explanatory variables for regional employment growth. These variables are chosen because statewide trends are expected to better explain growth in the KU service territory than national industry variables. This is true because southern states like Kentucky have outperformed the nation in manufacturing growth, particularly in heavy industries such as transportation equipment. It is also true because Kentucky's industrial specialty within each 2-digit industry is more likely to mirror the specialty in each KU region than the national industrial mix (which would underlie national industry variables). It should be noted that for the estimation period in most industry equations, predicted values for value-added output and average product (predicted using the statewide forecasting model) were substituted for actual values in order to address simultaneity bias.

(1)  $d(E_{i,r,q}) = b_0 + b_1 * d(O_{i,s,q}) + b2 * d(AP_{i,s,q}) + b3 * d(RW_{i,r,q-v}) + b4 * d(E_{j,r,q}) + b5 * d(T_{i,u,q})$ where  $E_{i,r,q}$  is quarterly employment in industry i in region r.  $O_{i,s,q}$  is quarterly value-added output in industry i in the state.  $AP_{i,s,q}$  is quarterly average productivity in industry i in the state.  $RW_{i,r,q-v}$  is relative wages in industry i in region r in previous quarter q-x.  $E_{j,r,q}$  is quarterly employment in consumer industry j in region r.  $T_{i,u,q}$  is quarterly employment in 3-digit industry i in the United States.

A relative wage variable also was part of equations for most manufacturing industries. Relative wages refers to the average annual wages in an industry in a region divided by the average annual wages in that industry for the state. Relative wages are an aspect of the relative cost of production in the region compared to the state as a whole. Regions of the state with lower wages in past periods can experience more investment or faster expansion of firms leading to greater employment growth. When estimating equation 1, the lag length for RW, i.g., was chosen which had the most significant negative value.

Inter-industry linkage and national industrial production index variables also are included in forecasting equations for some industries. In the case of industries influenced by inter-industry linkages, growth in these industries benefit from growth of nearby firms which are major customers. For these industries, growth in major customer industries increases their own growth potential, and thus, growth in customer industries is included as an additional explanatory variable.

The customer industries which are used as explanatory variables were selected using national input-output tables and econometric testing. The national input-output model was consulted in order to identify potential major customer industries in Kentucky regions. Any manufacturing industry which nationally purchased 5% of its inputs from a particular industry was a major customer industry. Since spending patterns of business are often very dispersed, this 5% threshold was not crossed frequently. There were in total 54 cases where one manufacturing industry was identified as a major customer industry for another. These 54 cases were then tested in econometric equations such as equation 1 to determine when growth in the customer industry had a significant effect on employment growth. There were 7 cases in which the customer industry growth variable had the expected sign and was significant at least at the 20% confidence level. In these cases, employment growth in the customer industry is included in Equation 1. These 7 cases were all in durable goods industries.

There also were cases in which a national production index was included as an explanatory variable in a manufacturing equation. Those cases occurred when an industry had a unique industrial specialty in at least one region. The indexes were used to account for the fact that within some 2-digit manufacturing industries, a region will have a narrow specialization in a particular 3-digit industry. That narrow specialization can mean that Kentucky forecasts for the 2-digit industry may not be an appropriate driver for industry growth in the region. This is particular true where patterns of employment growth for the 3-digit industry differ dramatically from the growth of the 2-digit industry of which it is a part.

In these cases, a national industrial production index for the particular 3-digit industry can be added to Equation 1. This is done in all cases where a region is specialized in a particular 3-digit industry (which is not a specialty of the state economy), and when the coefficient on the production index variable is significant when it is included in Equation 1. Cases when a region specialized in a particular 3-digit industry were identified by comparing the shares of each 2-digit industry's employment located in its 3-digit industries for each KU region and the state. This was done using ES202 data. When a specialization was identified, it was tested in estimation of Equation 1 to determine if it should be included in the equation. There were 2 cases in which an national industrial production index was used.

There were four manufacturing industries where employment growth was not estimated using pooled data, as described above. Pooled data also was not used for coal mining equations. A KU service territory equation is estimated for these four manufacturing industries, meaning that data for the entire KU service territory is aggregated together for estimation. This is done because most of the employment in these industries is in one or two of the five KU regions. This implies that there is very little employment in these industries in other regions, often fewer than 100 jobs. Estimating industry equations with these region's data pooled with data from regions with more employment could lead to unreliable results for the larger regions where most of the employment is located. Thus, it is preferable to aggregate data from all the regions together and estimate an equation on data for the entire KU service territory. This yields an estimate based on fewer data points, but on data that represent the growth and decline of a large number of jobs and firms. Service territory forecasts can then be allocated to each of the five regions proportionally, that is, by assigning each

region the same share of service territory employment it held in the previous quarter. The four effected industries are tobacco products (SIC 21), petroleum products (SIC 29), leather products (SIC 31), and instruments (SIC 38). Such aggregation is also carried out to a limited degree for coal mining. Data for coal mining in Regions 1, 3, and 4 are aggregated together and estimated in a single equation. The eastern and western coal fields are not located in either of these three regions.

There were five other industries which were estimated using employment data aggregated for the entire KU service territory. These industries were oil and gas extraction (SIC 13), nonmetallic minerals (SIC 14), water transportation (SIC 44), air transportation (SIC 45), and pipelines (SIC 46). Employment change in the KU service territory for water transportation and pipelines was estimated as a function of the statewide employment change in these industries. Service territory employment change in air transportation was estimated as a function of total employment change. Employment change in oil and gas extraction was estimated as a function of a national industrial production index. Employment change in nonmetallic minerals was estimated as a function of the employment change in construction industries.

#### Output

The CBER model is an employment driven model in which forecasts of output are driven by forecasts of employment. For the construction, transportation, communications, public utilities, oil and gas extraction, and nonmetallic minerals industries, employment forecasts are multiplied by average productivity measures in order to yield value-added output for each region. Statewide gross state product per job is used as the measure of average productivity.

Relative annual wages is an additional factor in equations estimating value-added output in all manufacturing industries and in coal mining. Earnings are the largest component of value-added output, so regions with higher levels of wage and salary earnings per job also are likely to have greater value-added output per job. As a consequence, statewide average value-added per job for these industries is multiplied by relative wages in each region to derive a unique measure of value-added output per job for each of the 5 KU regions. These unique value-added output per job measures are then multiplied by regional employment levels to yield value-added output for each region in each industry. This approach reflects that value added per job will be greater in those regions that pay wages above the state average.

#### Wages

A difference in relative wage rates is one factor which may account for the difference between the relative growth of an industry in a KU region versus Kentucky as a whole. Relative wages in a region is also an important factor in determining value-added output in a particular region. For these reasons, relative annual wages in each manufacturing industry and coal mining are forecast in the CBER KU model. The equations which forecast relative wages are also part of the EVIEWS modelfile "modmrRp9.dbl". The equation for forecasting the change in wage rates is a reduced form equation which reflects the change in the supply of population (a proxy for labor force) in the region and the state, as well as the change in employment growth in the industry in the region versus the state. Population and industry employment variables are logged so that changes reflect change rates. These variable also are lagged one period. The equation was estimated by pooling the data from all industries and regions together in order to estimate a single equation.

#### Sharing-Down Output and Employment

Regional forecasts for employment and output need to be shared down to the county level to determine the influence of manufacturing growth on each county's economy. In the CBER KU model, regional forecasts of employment and output are shared down proportionately to produce county forecasts. Proportional shares simply mean that a county's share of current regional employment and output in a manufacturing industry is equal to its share in the previous quarter. The assumption is that counties will share in forecast changes in employment or output in a 2-digit manufacturing industry or coal mining to the same extent that they have shared in employment in that industry in the past.

#### **County-level Equations**

County level equations are used to forecast commercial employment, income, population, and households. Equations are included in the county modelfiles named "modelXXx.dbl". These county level equations are described below.

#### **Commercial Employment**

Equations for forecasting commercial employment were developed at the county rather than regional level. Furthermore, county data were pooled in order to increase sample size and reliability of estimates. Data were pooled within KU regions in some cases and for all KU counties in others. When data were pooled across all KU regions, counties in each region in some cases shared a region-specific intercept. Counties of different size also in some cases shared a county size-specific intercept. In these cases, counties were divided into those with fewer than 20,000 residents, those with more than 20,000 but few than 50,000 residents, and those with more than 50,000 residents, according to the 1990 Census.

The basic form of county employment equations is for employment to be a function of both county income multiplied by a statewide employment to income ratio, and seasonal dummy variables. The statewide ratio is the statewide ratio of employment in an industry to statewide real total personal income. This ratio introduces statewide and national patterns of employment growth in these industries into the county equations. The ratio does this by reflecting the statewide (and therefore national) tendency for income to be spent on a particular commercial industry. Seasonal dummies are multiplied by county real total personal income. This is done to model the larger seasonal effects in larger counties through the estimation of a single seasonal coefficient. A typical equation is pictured below in Equation 2. Note that a moving average of county real total personal income over the last four quarters is used rather than county total personal income in the current quarter.

Q1 is a dummy variable for the first quarter,

Q2 is a dummy variable for the second quarter, and

Q3 is a dummy variable for the third quarter.

This approach implies that real income growth over the previous 12 months influences the propensity for spending in various commercial industries in the county, which leads to employment in those industries. It also means that the coefficient b₁does not reflect spurious correlation resulting because quarters with higher employment are also quarters with higher personal income. Dummy variables capture the seasonal fluctuations in commercial industries.

For some sectors, county employment is substituted for county real total personal income. This is done for industries with a large share of business as well as household customers. The effected industries include hotels and other lodging places (SIC 70). They also include the six industrial sectors which were modeled in the same way as the commercial sectors: general construction (SIC 15), heavy construction (SIC 16), specialty construction (SIC 17), transportation services (SIC 47), communications (SIC 48).and public utilities (SIC 49).

#### Population and Household Block

Unlike other blocks of the CBER KU model, the population and household block of the model is not based on econometric estimation. Instead, the CBER KU model utilizes a cohort component approach to model population growth. Population growth in each county is modeled in five year age and gender cohorts. The model functions by aging one twentieth of each cohort's population into the next older cohort in each quarter. The appropriate Kentucky death rate is applied then to each age and gender cohort, which reduces population in each cohort. Population then is added or lost from cohorts depending on net migration for each county. County-specific or rural county birth rates are applied to female cohorts of childbearing age to calculate births into the male and female age 0 to 4 cohorts.

Net migration is forecast using econometric equations for both inmigration and outmigration. In each equation, the migration variable is a function of county employment growth relative to national employment growth. These two equations are shown below.

(3) 
$$INR_{c,y} = b_{0c} + b_1*(EGR_{c,y} - EGR_{u,y}) + b_s*(EGR_{c,y-1} - EGR_{u,y-1}) \\ + b_3*(EGR_{c,y-2} - EGR_{u,y-2}) + b_4*(EGR_{c,y-3} - EGR_{u,y-3}) \\ + b_5*(EGR_{c,y-4} - EGR_{u,y-4}) + b_6*(EGR_{c,y-5} - EGR_{u,y-5})$$

(4) 
$$ONR_{c,y} = b_{0c} + b_1^* (EGR_{c,y} - EGR_{u,y}) + b_s^* (EGR_{c,y-1} - EGR_{u,y-1}) + b_3^* (EGR_{c,y-2} - EGR_{u,y-2}) + b_4^* (EGR_{c,y-3} - EGR_{u,y-3})$$

where INR, is the annual inmigration rate for county c in the current year,

ONR_c, is the annual outmigration rate for county c in the current year,

b₀, is the county-specific intercept for county c,

EGR_{evex} is the annual growth rate for county employment in the current

or lagged year, and

EGR_{u,y-x} is the annual growth rate for national employment in the current

or lagged year.

Four years of lagged relative employment growth data are utilized in the outmigration equation, while six years of lagged data are utilized in the inmigration equation. The equation produces annual forecasts for county inmigration and outmigration. One quarter of the forecast for the current year is taken as the forecast for inmigration or outmigration in the current quarter. Net migration is taken by subtracting outmigration from inmigration

Population forecasts are the cornerstone of household forecasts in the CBER KU model. Household headship rates for each age and gender cohort are used to convert forecasts of population by cohort into forecasts of the number of households headed by people in each age and gender cohort. The number of households headed by persons in each cohort are then added to yield a forecast of the total number of households in each county. The household headship rate for each Kentucky and Virginia County are available from the 1990 census for the 15-19, 20-24, 25-34, 44-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84 age cohorts for both men and women.

Headship rates for future years are assumed to be the same as in the 1990 Census for each age and gender cohort in each county. Future birth rates for Kentucky counties by age cohort also are held constant. This is done because the vast majority of Kentucky's population is white, and the birth rates for white females are held constant through 2050 in national Bureau of Census forecasts. This is done because the Bureau of Census has noted that birth rates within age cohorts in most racial groups have remained quite steady throughout recent history, and are expected to remain steady in the future.

Future values for Kentucky survival rates in each age and gender cohort are developed by assuming the same percentage change in Kentucky survival rates as are forecast for national survival rates by the United States Bureau of Census. The percentage change in survival rates forecast for the nation are applied to Kentucky-specific rates. If survival rates for the nation are expected to increase by 1 percentage point over ten

years, then the Kentucky survival rate is also forecast to rise by 1 percentage point. This method is used to obtain annual survival rates, which are then multiplied to the fourth power to obtain quarterly survival rates. Annual birth rates are divided by four to obtain quarterly birth rates.

#### Incomes

The UK CBER model forecasts the components of real personal income for each county. These five components are: real earnings by place of residents; real dividend, interest and rent (DIR) income; real transfer income; real farm earnings; and real military earnings.

The principal source for historic county income data for these income components is the United States Departments of Commerce Economics and Statistics Administration's Regional Economic Information System. This source contains annual data in nominal dollars. Annual values for real earnings by place of residents were converted to quarterly values using the quarterly fluctuations in wage and salary earnings which occurred in each county in each year. The source for these quarterly wage and salary earnings data was ES202 data. Annual county data for dividends interest and rent income, transfer income, farm earnings, and military earnings was converted to quarterly county data using the quarterly statewide fluctuations which occurred in these variables in each year. Statewide fluctuations were used because no county information is available on which to base quarterly fluctuations. The source for these quarterly statewide values was the Regional Economic Information System. Nominal values for the five components were converted into real values using the consumer price index. Income variables are not seasonally adjusted.

Earnings by place of residence for each county is forecast as a function of employment growth. The measure of employment growth used depends on the commuting patterns for each county. Commuting data are available in the 1990 Census. If almost all of the workforce that lives in a county also works in that county, then only employment growth in that county influences earnings growth. But, if a substantial share of the workforce works in adjacent counties, then employment growth in these adjacent counties also influences earnings growth. In particular, if more than 10% of a county's workforce works in an adjacent county, then that adjacent county's employment growth is included in the earnings equation.

The form of the real earnings by place of residence equation is shown below. Data were pooled for the counties in each of the five KU regions.

(5) 
$$\begin{aligned} d(YE_{c,q}) &= b_{0,c} + b_1 * rwgjob_{s,q} * d (HE_{c,q} + HE_{a,q}) \\ &+ b_2 * rwgjob_{s,q} * d (ME_{c,q} + ME_{a,q}) \\ &+ b_3 * rwgjob_{s,q} * d (LE_{c,q} + LE_{a,q}) \end{aligned}$$

where YE_{c,q} is real earnings by place of residence in county c in quarter q, b_{0,c} is the county-specific intercept for each county. rwgjob_{s,q} is the statewide average wage and salary earnings per job in quarter q, HE_{c,q}, ME_{c,q} and LE_{c,q} are jobs in high wage industries, medium wage industries, and low wage industries, respectively in the county. and HE_{a,q}, ME_{a,q} and LE_{a,q} are jobs in high wage industries, medium wage industries, and low wage industries, respectively, in the adjacent commuting county.

In the equations, the change in earnings growth in each county is not simply a function of total employment growth in all appropriate counties. Employment growth is multiplied by the statewide average wage and salary earnings per job. This causes the county earnings forecasts to reflect whether wage growth is strong or weak in the economy. In addition, employment growth is broken into three industry categories: high wage, medium wage, and low wage industries. This approach makes the earnings growth equation responsive to whether growth occurs in manufacturing or other high wage sectors, or occurs primarily in low wage sectors, which is the case in some rural counties. In particular, earnings growth would be

increased more by job growth in high and medium wage industries than growth in low wage industries. The high wage industries (those paying on average over \$14/hr) were: coal mining (SIC 12), heavy construction (SIC 16), special trade construction (SIC 17), primary metal industries (SIC 33), transportation equipment (SIC 37), tobacco products (SIC 21), chemicals and allied products (SIC 28), petroleum and coal products (SIC 29), water transportation (SIC 44), pipelines (SIC 46), communications (SIC 48), and utilities (SIC 49). The medium wage industries (those paying on average between \$10/hr and \$14/hr) were: oil and gas extraction (SIC 13), nonmetallic minerals (SIC 14), general building construction (SIC 15), food and kindred products (SIC 20), paper products (SIC 26), printing and publishing (SIC 27), rubber and miscellaneous plastic products (SIC 30), stone, clay and glass products (SIC 32), fabricated metal products (SIC 34), industrial machinery (SIC 35), electronic equipment (SIC 36), instruments (SIC 38), transportation (SICs 40-42), transportation by air (SIC 45), transportation services (SIC 47), wholesale trade (SICs 50-51), finance, insurance, and real estate (SIC 60-67), health care (SIC 80), business and professional services (SICs 73, 81, 87). The low wage industries (those paying on average less than \$10/hr) were: textile mill products (SIC 22), apparel products (SIC 23), lumber and wood products (SIC 24), furniture and fixtures (SIC 25), food stores (SIC 54), eating and drinking places (SIC 58), other retail trade (SICs 52,53,55,56,57,59), agricultural services (SIC 7), hotels and motels (SIC 70), and other services (SIC 83, 84, 86, 88, 89), and miscellaneous manufacturing (SIC 39).

County values for dividends interest and rent income, transfer income, farm earnings, and military earnings are estimated using both county and state data and equations. Statewide rather than county specific information is used because the quarterly fluctuations for historic county data were taken from statewide fluctuations. Any attempt to estimate county equations would simply mimic statewide equations since most quarter-to-quarter variation would be the same. For farm and military earnings, the statewide equations for these variables are used to yield the percentage growth in the income or earnings in each county. As a consequence, farm and military earnings in each county are forecast to grow at the same percentage as statewide.

Statewide growth in transfer income and dividend, interest, and rent income also determines county growth in these variables, although not as directly. Instead of assuming that county growth rates equal statewide growth rates, a method is introduced to allocate statewide growth in transfer income and dividend, interest, and rent income to KU service territory counties. These allocation equations take the following form:

(6) 
$$d(tran_{s,q}) = d(tran_{s,q})*(pop_{s,q}/pop_{s,q})*reltran$$

(7) 
$$d(dir_{s,o}) = d(dir_{s,o})^* (pop_{s,o}/pop_{s,o})^* reldir$$

where d(tran_{e,q}) and d(tran_{e,q}) refers to the change in county or state transfer income in quarter q,

 $d(dir_{c,q})$  and  $d(dir_{s,q})$  refers to the change in county or state DIR income in quarter q,

pop_{c,q} and pop_{s,q} refers to county or state population in quarter q. reltran is county transfer income per person divided by state transfer income per person, and

reldir is county DIR income per person divided by state DIR income per person.

In these equations, a county's share of forecast statewide transfer and DIR income growth depends on its share of state population and on its historic propensity to receive transfer or DIR income (i.e., reltran or reldir). This form for the allocation equation implies that a county's share of transfer and DIR income growth increases if its population grows faster than the state and decreases if its population grows slower. The allocation equation also recognizes that some counties have a historic propensity to receive transfer income due to factors like higher levels of disability and poverty, just as some counties have a higher propensity to receive dividend, interest, and rent income due to higher levels of wealth. The values for reltran and reldir come from Regional Economic Information System data from 1990 through 1993.

#### Wholesale and Retail Data

Separate forecasts are required for twelve municipalities inside the KU service territory. These municipalities are wholesale customers of Kentucky Utilities. Thus, forecasts for these wholesale municipalities must be separated from the remainder of the KU service territory. The KU service territory without these twelve municipalities is referred to as the retail territory.

The forecasts for municipalities are generated by sharing down the forecasts for the counties in which the municipalities are located. A percentage of sector employment or value-added, county population, or county income is attributed to the municipality and the remained is attributed to the balance of the county. The shares are determined using census data, but can be supplemented based on knowledge of each area. Regional commercial territory forecasts are obtained by subtracting out municipal values from the regional totals, once municipal employment, value-added output, income, population, and household data are calculated. These calculations are carried out in the EVIEWS modelfile "modtowrR.dbl"

The key issue in this process is what percentage of a particular economic activity to attribute to the municipality versus the rest of its county. When no data is available regarding the distribution of a particular economic variable within a county, the percentage used is the share of the population located in the municipality versus the share located in the balance of the county according to the 1990 Census. When available, other data or knowledge is substituted for this percentage.

For some variables, using the percentage of population inside and outside of the municipality is clearly an appropriate manner in which to divide municipal versus balance of county forecasts. In particular, this is true for population, income, and household data. These variables pertain to population, and should track the population variable. However, use of the percent of population may be less appropriate when assigning a share of employment or value-added output to the municipality or the balance of the county. Commercial or industrial districts would not necessarily be located closely to residential districts. Typically, a much larger share of commercial activity is located within municipalities rather than rural countyside, even relative to the distribution of population. Industrial districts could be located either within or outside of the municipality.

Censuses of services, retail trade, and wholesale trade from 1992 for Kentucky were used as a resource to attribute commercial employment to a municipality or the balance of the county. Census data list the number of establishments and retail sales located inside municipalities and in the balance of counties. Data was available for 2-digit industries or groupings of 2-digit industries within wholesale and retail trade and services. These data were aggregated up to the commercial categories utilized in the UK CBER model. When not suppressed, sales in commercial industries inside of the county and in the balance of the county were used to split county employment between the municipality and the rest of the county. When sales data were suppressed, the number of establishments inside and outside of the municipality was used. Aggregate shares for services were assumed to hold for government employment and for finance, insurance, and real estate.

Local knowledge about the location of various factories, mines, or construction companies within the county would be the best way to attribute industrial employment and value-added output to the municipality within 2-digit manufacturing industries. There are likely to be few factories within a given 2-digit SIC grouping in each county, and persons familiar with the county could be consulted in order to attribute this activity to the municipality or balance of the county. This has not been done as of yet, so 2-digit manufacturing activity was attributed according to the share of population inside and outside of the municipality.

#### The Data Output Stage

After forecasts have been made, several types of forecast data are output to EXCEL spreadsheets. Variable totals for all counties in a region are output in a file named ("resulrR.xls"). Variable totals for the retail portions of each region, and aggregate industrial value-added, total employment, and household

forecasts for wholesale areas in each region are output in a file named ("resrerR.xls"). Variable values for each county in a region are output in a file named ("Countynamef.xls"). In region 2, variable totals for all Virginia counties in the region are output in a file name ("virginia.xls").

. 52

#### Appendix I

#### **Backcasts**

In addition to developing a quarterly data set back to 1990, CBER gathered or backcast annual data for the value-added output, employment, income, population, and household data forecast in the CBER model. These historic annual data were developed back to 1970. By combining this historic data with CBER forecasts, it is possible to obtain annual values for county data for the period from 1970 to 2025.

CBER obtained historic employment data for all KU counties from 1970 to 1989 from the firm Regional Financial Associates, hereafter referred to as RFA. The historic data provided by RFA was at the 2-digit SIC level. The RFA data is based on the Bureau of Labor Statistics 790 series which is consistent with state ES202 data and has more complete employment information for social services (part of the other services sector in the KU county data base provided by CBER). Social services is the one sector which ES202 data underestimates. As a consequence, ES202 data from the early 1990s was inflated to keep it consistent with the historic RFA data series for 1970 through 1989.

The historic employment series, along with ES202 earnings data, was used to generate a historic value-added output series by industry for KU counties. Statewide ratios for value-added output per job were multiplied by the number of jobs in each county and the relative wages per job in each county to yield value-added output in each county in historic years. This process is similar to the process used to convert employment forecasts for KU regions into value-added output forecasts. 1989 values for the relative wages per job in each county were used from 1970 to 1989 because 1989 is the first year for which this data is available.

Backcasts did not need to be made for: real earnings by place of residents; real dividend, interest and rent income; real transfer income; real farm earnings; and real military earnings. Nominal values for these data were available in the United States Department of Commerce's Regional Economic Information System. Nominal values for these annual data were converted to real annual values using the consumer price index.

Historic population data for 1970 through 1989 by age and gender cohort were estimated using information available on the number of births in each county in each year and the number of deaths in each age and gender cohort in each county in each year. Data also were available on the net number of new migrants in each county. Net migration was estimated using Equations (3) and (4) for the years in the 1970s for which migration data were not available. Once birth, death, and net migration data were collected, population backcasts for 1971-1979, and 1981-1989 were made using the cohort-component approach. Census data were used for 1970, 1980, and 1990 population by age and gender cohort. Weighted headship rate data from the three census years were applied to age and gender cohort population in order to backcast households for each county.

#### Table 1 Counties Contained in Each KU Region

		_		
Region 1	Region 2	Region 3	Region 4	Region 5
Anderson	Bell	Adair	Barren	Ballard
Bath	Clay	Boyle	Bullitt	Caldwell
Bourbon	Harlan	Casey	Carroll	Carlisle
Bracken	Knox	Garrard	Edmonson	Christainson
Campbell	Laurel	Green	Gallatin	Crittendon
Clark	Whitley	Lincoln	Grayson	Daviess
Estill	Dickenson, VA	McCreary	Hardin	Fulton
Fayette	Lee, VA	Marion	Hart	Henderson
Fleming	Russell, VA	Mercer	Henry	Hickman
Franklin	Scott, VA	Pulaski	Larue	Hopkins
Grant	Wise, VA	Rockcastle	Nelson	Livingston
Harrison		Russell	Oldham	Lyon
Jessamine		Taylor	Shelby	McCracken
Lee	•	Washington	Spencer	McLean
Madison			Trimble	Muhlenburg
Mason				Ohio
Montgomery				Union
Nicholas				Webster
Owen				
Pendleton				
Robertson				
Rowan				
_				

Scott Woodford

Table 2
Two Letter Abbreviation for Each County Name

County Name	Two Letter Abbreviation
Adair	ad
Anderson	an
Ballard	bl
Barren	ba
Bath	bt
Bell	be
Bourbon	bu
Boyle	by
Bracken	br
Bullitt	bi
Campbell	cm
Cardwell	ca
Carlisle	CS
Carroll	. Cr
Casey	су
Christainson	ch
Clark	ck
Clay	cl
Crittenden	cd
Daviess	da
Edmonson	
	ed
Estill	es
Fayette	fa
Fleming	fl
Franklin	fr
Fulton	fu
Gallatin	ga
Garrard	gd
Grant	gr
Grayson	gy
Green	gn
Hardin	hr
Harlan	hl
Harrison	hs
Hart	ht
Henderson	he
Henry	hn
Hickman	hi
Hopkins	ho
Jessamine	je
Knox	kx
Larue	la
Laurel	lu
Lee	le
Lincoln	li
Livingston	lv
Lyon	ly

## Table 2 (Continued) Two Letter Abbreviation for Each County Name

County Name	Two Letter Abbreviation
McCreary	my
McCracken	mc
McLean	ml -
Madison	md
Marion	ma
Mason	ms
Mercer	mr
Montgomery	mm
Muhlenburg	mu
Nelson	ne
Nicholas	ni
Ohio	oh
Oldham	od
Owen	on
Pendleton	pe
Pulaski	pu
Robertson	ro
Rockcastle	rk
Rowan	rw
Russell	ru
Scott	sc
Shelby	sh
Spencer	sp
Taylor	ta
Trimble	tr
Union	un
Washington	ws
Webster	we
Whitley	wh
Woodford	wd
Dickenson, VA	vd
Lee, VA	vi
Russell, VA	vr
Scott, VA	vs
Wise, VA	vw

### Table 3 State and County Variables

(County, regional or service territory summary variables end in XX, state variables do not. The XX is for the county abbreviation in Table 2, for the region number of "ku" for the entire service territory, "ky" for Kentucky service territory counties, "re" for retail portions of the Kentucky service territory, or "va" for the Virginia counties of the service territory.)

(All variables ending in "s" are seasonally adjusted.)

(All variables beginning with "l" are log of the variable.)

mwinXX= county nominal military earnings in 1982-84 dollars.

fwinXX= county nominal farm earnings in 1982-84 dollars.

nwinXX= county nominal nonfarm (and nonmilitary) earnings in 1982-84 dollars.

dirXX= county nominal dividend, interest, and rent income in 1982-84 dollars.

tranXX= county nominal transfer income in 1982-84 dollars.

tpiXX= county nominal total personal income in 1982-84 dollars.

rmwinXX= county real military earnings in 1982-84 dollars.

rfwinXX= county real farm earnings in 1982-84 dollars.

rnwinXX= county real nonfarm (and nonmilitary) earnings in 1982-84 dollars.

rdirXX= county real dividend, interest, and rent income in 1982-84 dollars.

rtranXX= county real transfer income in 1982-84 dollars.

rtpiXX= county real total personal income in 1982-84 dollars.

artpiXX= a four quarter moving average of county real total personal income in 1982-84 dollars.

rwgslky= real wage and salary income in the state in millions of 1982-84 dollars.

rwgslrat=real wage and salary income per job in the state in millions of 1982-84 dollars.

rtranky= real transfer income in the state in millions of 1982-84dollars.

rdirky= real dividend, interest, and rent income in the state in millions of 1982-84 dollars.

popXX = total county population.

male??XX= males in age group ?? in county (04 to 84 in five year intervals and 85+).

female??XX= females in age group ?? in county (04 to 84 in five year intervals and 85+).

birthXX= number of births in county.

brat??XX= birth rate for women in age group?? in county (age 14 to 49 in five year intervals).

svrtma??XX= survival rate for males age in age group ?? in county (04 to 84 in five year intervals and 85+).

syrtfe??XX= survival rate for females age in age group ?? in county(04 to 84 in five year intervals and 85+).

InmigrXX= inmigration rate in county.

outmigrXX= outmigration rate in county.

InmigXX= county inmigration.

outmigXX= county outmigration.

nmigXX= net county migration.

Hdrma??XX= household headship rate for males in age group ?? in county (04 to 84 in five year intervals and 85+).

Hdrfe??XX= household headship rate for females in age group ?? in county (04 to 84 in five year intervals and 85+).

Hdma??XX= households headed by males in age group ?? in county (04 to 84 in five year intervals and 85+).

Hdfe??XX= households headed by females in age group ?? in county (04 to 84 in five year intervals and 85+).

HdXX= in county households.

DUMMY1= dummy variable for first quarter.

DUMMY2= dummy variable for second quarter.

#### DUMMY3= dummy variable for third quarter.

- e7rat=statewide ratio of employment in agricultural services to real total personal income.
- el Srate=statewide ratio of employment in general contractor construction to total employment.
- el6rate=statewide ratio of employment in heavy construction to total employment.
- e17rate=statewide ratio of employment in specialty construction to total employment.
- e42rate=statewide ratio of employment in trucking to total employment (SIC 40,41,42).
- e47rate=statewide ratio of employment in transportation services to total employment.
- e48rate=statewide ratio of employment in communications to total employment.
- e49rate=statewide ratio of employment in public utilities to total employment.
- e51rat=statewide ratio of employment in wholesale trade to real total personal income (SIC 50,51).
- e54rat=statewide ratio of employment in food stores to real total personal income.
- e58rat=statewide ratio of employment in eating and drinking places to real total personal income.
- e59rat=statewide ratio of employment in other retail to real total personal income (SIC 52,53,55,56,57,59).
- e67rat=statewide ratio of employment in other finance, insurance and real estate to real total personal income (SIC 60-67).
- e70rate= statewide ratio of employment in hotels and motels to total employment.
- e79rat=statewide ratio of employment in personal services to real total personal income (SIC 72,75,76,78,79).
- e80rat= statewide ratio of employment in health services to real total personal income.
- e82rat= statewide ratio of employment in educational services to real total personal income.
- e87rat= statewide ratio of employment in business and professional services to real total personal income (SIC 73,81,87).
- e89rat= statewide ratio of employment in other services to real total personal income (SIC 83,84,86,88,89).
- e99rat= statewide ratio of employment in other services to real total personal income (SIC 91-99).
- e7 XX= county employment in agricultural services.
- e12 XX= county employment in coal mining.
- e13 XX= county employment in oil and natural gas.
- el4 XX= county employment in other mining.
- e15 XX= county employment in general contractor construction.
- el6 XX= county employment in heavy construction.
- e17 XX= county employment in specialty construction.
- e20 XX= county employment in food products.
- e21_XX= county employment in tobacco products.
- e22 XX= county employment in textile products.
- e23 XX= county employment in apparel products.
- e24 XX= county employment in lumber and wood products.
- e25 XX= county employment in furniture and fixtures.
- e26 XX= county employment in paper products.
- e27 XX= county employment in printing.
- e28 XX= county employment in chemical products.
- e29 XX= county employment in petroleum products.
- e30 XX= county employment in plastics products.
- e31 XX= county employment in leather products.
- e32_XX= county employment in stone, clay, and glass products.
- e33_XX= county employment in primary metals.
- e34_XX= county employment in fabricated metal products.
- e35_XX= county employment in industrial machinery.
- e36 XX= county employment in electronics and electrical equipment.
- e37_XX= county employment in transportation equipment.
- e38_XX= county employment in instruments.
- e39_XX= county employment in miscellaneous manufacturers.
- e42_XX= county employment in trucking (SIC 40,41,42).

```
e44 XX= county employment in water transportation.
e45 XX= county employment in air transportation.
e46 XX= county employment in pipeline transportation.
e47 XX= county employment in transportation services.
e48 XX= county employment in communications.
e49 XX= county employment in public utilities.
e51 XX= county employment in wholesale trade (SIC 50,51).
e54_XX= county employment in food stores.
e58_XX= county employment in eating and drinking places.
e59_XX= county employment in other retail (SIC 52,53,55,56,57,59).
e67 XX= county employment in other finance, insurance and real estate (SIC 60-67).
e70 XX= county employment in hotels and motels.
e79 XX= county employment in personal services (SIC 72,75,76,78,79).
e80 XX= county employment in health services.
e82_XX= county employment in educational services.
e87_XX= county employment in business and professional services (SIC 73,81,87).
e89 XX= county employment in other services (SIC 83,84,86,88,89).
e99 XX= county employment in other services (SIC 91-99).
eman XX = county employment in manufacturing (SIC 20-39).
ego XX = county employment in industrial sector (SIC 12-39, 44-49).
engo XX = county employment in commercial sector (SIC 40-42,50-99).
ehiw_XX = county employment in high wage industries.
emedw XX = county employment in medium wage industries.
eloww_XX = county employment in low wage industries.
w12 XX= real gross county product in coal mining in 1987 dollars.
w13 XX= real gross county product in oil and natural gas in 1987 dollars.
w14_XX= real gross county product in other mining in 1987 dollars.
w15_XX= real gross county product in general contractor construction in 1987 dollars.
w16 XX= real gross county product in heavy construction in 1987 dollars.
w17 XX= real gross county product in specialty construction in 1987 dollars.
w20 XX= real gross county product in food products in 1987 dollars.
w21 XX= real gross county product in tobacco products in 1987 dollars.
w22 XX= real gross county product in textile products in 1987 dollars.
w23 XX= real gross county product in apparel products in 1987 dollars.
w24 XX= real gross county product in lumber and wood products in 1987 dollars.
w25 XX= real gross county product in furniture and fixtures in 1987 dollars.
w26 XX= real gross county product in paper products in 1987 dollars.
w27 XX= real gross county product in printing in 1987 dollars.
w28 XX= real gross county product in chemical products in 1987 dollars.
w29 XX= real gross county product in petroleum products in 1987 dollars.
w30 XX= real gross county product in plastics products in 1987 dollars.
w31 XX= real gross county product in leather products in 1987 dollars.
w32 XX= real gross county product in stone, clay, and glass products in 1987 dollars.
w33 XX= real gross county product in primary metals in 1987 dollars.
w34_XX= real gross county product in fabricated metal products in 1987 dollars.
w35_XX= real gross county product in industrial machinery in 1987 dollars.
w36 XX= real gross county product in electronics and electrical equipment in 1987 dollars.
w37_XX= real gross county product in transportation equipment in 1987 dollars.
w38_XX= real gross county product in instruments in 1987 dollars.
w39 XX= real gross county product in miscellaneous manufacturers in 1987 dollars.
w44 XX= real gross county product in water transportation in 1987 dollars.
w45 XX= real gross county product in air transportation in 1987 dollars.
w46 XX= real gross county product in pipeline transportation in 1987 dollars.
```

w47_XX= real gross county product in transportation services in 1987 dollars.
w48_XX= real gross county product in communications in 1987 dollars.
w49_XX= real gross county product in public utilities in 1987 dollars.
(rgsp is substituted for w when variable is for regional (or total KU) gross product in an industry).

rgspman_XX= real gross county or regional product in manufacturing in 1987 dollars (SIC 20-39). rgspgo_XX=real gross county or regional product in the industrial sector in 1987 dollars (SIC 12-39, 44-49).

wrat12rR=quarterly wages in coal mining in region relative to the state. wrat20rR=quarterly wages in food products in region relative to the state. wrat21rR=quarterly wages in tobacco products in region relative to the state. wrat22rR=quarterly wages in textiles in region relative to the state. wrat23rR=quarterly wages in apparel in region relative to the state. wrat24rR=quarterly wages in lumber and wood products in region relative to the state. wrat25rR=quarterly wages in furniture and fixtures in region relative to the state. wrat26rR=quarterly wages in paper products in region relative to the state. wrat27rR=quarterly wages in printing and publishing in region relative to the state. wrat28rR=quarterly wages in chemical products in region relative to the state. wrat29rR=quarterly wages in petroleum products in region relative to the state. wrat30rR=quarterly wages in plastic products in region relative to the state. wrat31rR=quarterly wages in leather products in region relative to the state. wrat32rR=quarterly wages in stone, clay, and glass products in region relative to the state. wrat33rR=quarterly wages in primary metals in region relative to the state. wrat34rR=quarterly wages in fabricated metal products in region relative to the state. wrat35rR=quarterly wages in industrial machinery in region relative to the state. wrat36rR=quarterly wages in electrical machinery in region relative to the state. wrat37rR=quarterly wages in transportation equipment in region relative to the state. wrat38rR=quarterly wages in instruments in region relative to the state. wrat39rR=quarterly wages in miscellaneous manufacturers in region relative to the state.

rgspb12s=real gross state product in coal mining in millions of 1987 dollars. rgspb20s=real gross state product in food products in millions of 1987 dollars. rgspb21s=real gross state product in tobacco products in millions of 1987 dollars. rgspb22s=real gross state product in textiles in millions of 1987 dollars. rgspb23s=real gross state product in apparel in millions of 1987 dollars. rgspb24s=real gross state product in lumber and wood products in millions of 1987 dollars. rgspb25s=real gross state product in furniture and fixtures in millions of 1987 dollars. rgspb26s=real gross state product in paper products in millions of 1987 dollars. rgspb27s=real gross state product in printing and publishing in millions of 1987 dollars. rgspb28s=real gross state product in chemical products in millions of 1987 dollars. rgspb29s=real gross state product in petroleum products in millions of 1987 dollars. rgspb30s=real gross state product in plastic products in millions of 1987 dollars. rgspb31s=real gross state product in leather products in millions of 1987 dollars. rgspb32s=real gross state product in stone, clay, and glass products in millions of 1987 dollars. rgspb33s=real gross state product in primary metals in millions of 1987 dollars. rgspb34s=real gross state product in fabricated metal products in millions of 1987 dollars. rgspb35s=real gross state product in industrial machinery in millions of 1987 dollars. rgspb36s=real gross state product in electronic and electrical equipment in millions of 1987 dollars. rgspb37s=real gross state product in transportation equipment in millions of 1987 dollars. rgspb38s=real gross state product in instruments in millions of 1987 dollars. rgspb39s=real gross state product in miscellaneous manufacturers in millions of 1987 dollars.

s112002s=state employment in coal mining in thousands of jobs. s420002s=state employment in food products in thousands of jobs. s421002s= state employment in tobacco products in thousands of jobs. s422002s= state employment in textiles in thousands of jobs. s423002s= state employment in apparel in thousands of jobs. s324002s= state employment in lumber and wood products in thousands of jobs. s325002s= state employment in furniture and fixtures in thousands of jobs. s426002s= state employment in paper products in thousands of jobs. s427002s= state employment in printing and publishing in thousands of jobs. s428002s= state employment in chemical products in thousands of jobs. s429002s= state employment in petroleum products in thousands of jobs. s430002s= state employment in plastic products in thousands of jobs. s431002s= state employment in leather products in thousands of jobs. s332002s= state employment in stone, clay, and glass products in thousands of jobs. s333002s= state employment in primary metals in thousands of jobs. s334002s= state employment in fabricated metal products in thousands of jobs. s335002s= state employment in industrial machinery in thousands of jobs. s336002s= state employment in electronic and electrical equipment in thousands of jobs. s337002s= state employment in transportation equipment in thousands of jobs. s338002s= state employment in instruments in thousands of jobs. s339002s= state employment in miscellaneous manufacturers in thousands of jobs. (productivity refers to real gross state product per employee). prod12=state productivity in coal mining in 1987 dollars per jobs. prod13=state productivity in natural gas production in 1987 dollars per jobs. prod14=state productivity in other mining (mining besides coal mining and natural gas production) in 1987 dollars per jobs. prod20=state productivity in food products in 1987 dollars per jobs. prod21= state productivity in tobacco products in 1987 dollars per jobs. prod22= state productivity in textiles in 1987 dollars per jobs. prod23= state productivity in apparel in 1987 dollars per jobs. prod24= state productivity in lumber and wood products in 1987 dollars per jobs. prod25= state productivity in furniture and fixtures in 1987 dollars per jobs. prod26= state productivity in paper products in 1987 dollars per jobs. prod27= state productivity in printing and publishing in 1987 dollars per jobs. prod28= state productivity in chemical products in 1987 dollars per jobs. prod29= state productivity in petroleum products in 1987 dollars per jobs. prod30= state productivity in plastic products in 1987 dollars per jobs. prod31= state productivity in leather products in 1987 dollars per jobs. prod32= state productivity in stone, clay, and glass products in 1987 dollars per jobs. prod33= state productivity in primary metals in 1987 dollars per jobs. prod34= state productivity in fabricated metal products in 1987 dollars per jobs. prod35= state productivity in industrial machinery in 1987 dollars per jobs. prod36= state productivity in electronic and electrical equipment in 1987 dollars per jobs. prod37= state productivity in transportation equipment in 1987 dollars per jobs. prod38= state productivity in instruments in 1987 dollars per jobs. prod39= state productivity in miscellaneous manufacturers in 1987 dollars per jobs. prod44= state productivity in water transportation in 1987 dollars per jobs. prod45= state productivity in air transportation in 1987 dollars per jobs. prod46= state productivity in pipeline transportation in 1987 dollars per jobs. prod47= state productivity in transportation services in 1987 dollars per jobs. prod48= state productivity in communications services in 1987 dollars per jobs. prod49= state productivity in utility services in 1987 dollars per jobs.

prod12rR=regional productivity in coal mining in region R in 1987 dollars per jobs. prod20rR= regional productivity in food products in region R in 1987 dollars per jobs. prod21rR= regional productivity in tobacco products in region R in 1987 dollars per jobs. prod22rR= regional productivity in textiles in region R in 1987 dollars per jobs. prod23rR= regional productivity in apparel in region R in 1987 dollars per jobs. prod24rR= regional productivity in lumber and wood products in region R in 1987 dollars per jobs. prod25rR= regional productivity in furniture and fixtures in region R in 1987 dollars per jobs. prod26rR= regional productivity in paper products in region R in 1987 dollars per jobs. prod27rR= regional productivity in printing and publishing in region R in 1987 dollars per jobs. prod28rR= regional productivity in chemical products in region R in 1987 dollars per jobs. prod29rR= regional productivity in petroleum products in region R in 1987 dollars per jobs. prod30rR= regional productivity in plastic products in region R in 1987 dollars per jobs. prod31rR= regional productivity in leather products in region R in 1987 dollars per jobs. prod32rR= regional productivity in stone, clay, and glass products in region R in 1987 dollars per jobs. prod33rR= regional productivity in primary metals in region R in 1987 dollars per jobs. prod34rR= regional productivity in fabricated metal products in region R in 1987 dollars per jobs. prod35rR= regional productivity in industrial machinery in region R in 1987 dollars per jobs. prod36rR= regional productivity in electronic and electrical equipment in region R in 1987 dollars per iobs. prod37rR= regional productivity in transportation equipment in region R in 1987 dollars per jobs. prod38rR= regional productivity in instruments in region R in 1987 dollars per jobs. prod39rR= regional productivity in miscellaneous manufacturers in region R in 1987 dollars per jobs.

recruit = relative success of KU industrial recruiting efforts. shoc12XX=exogenous shock to coal mining employment in county or region. shoc20XX=exogenous shock to food processing employment in county or region. shoc21XX=exogenous shock to tobacco products employment in county or region. shoc22XX=exogenous shock to apparel products employment in county or region. shoc23XX=exogenous shock to textiles employment in county or region. shoc24XX=exogenous shock to wood processing employment in county or region. shoc25XX=exogenous shock to furniture and fixtures employment in county or region. shoc26XX=exogenous shock to paper products employment in county or region. shoc27XX=exogenous shock to printing and publishing employment in county or region. shoc28XX=exogenous shock to chemical products employment in county or region. shoc29XX=exogenous shock to petroleum products employment in county or region. shoc30XX=exogenous shock to plastic products employment in county or region. shoc31XX=exogenous shock to leather products employment in county or region. shoc32XX=exogenous shock to stone, clay, and glass products employment in county or region. shoc33XX=exogenous shock to primary metals employment in county or region. shoc34XX=exogenous shock to fabricated metals employment in county or region. shoc35XX=exogenous shock to industrial machinery employment in county or region. shoc36XX=exogenous shock to electronic and electrical equipment employment in county or region. shoc37XX=exogenous shock to transportation equipment employment in county or region. shoc38XX=exogenous shock to instruments employment in county or region.

mult20rR=within industry multiplier for exogenous shock in coal mining in the region.
mult20rR=within industry multiplier for exogenous shock in food processing in the region.
mult21rR=within industry multiplier for exogenous shock in tobacco products in the region.
mult22rR=within industry multiplier for exogenous shock in apparel products in the region.
mult23rR=within industry multiplier for exogenous shock in textiles in the region.
mult24rR=within industry multiplier for exogenous shock in wood products in the region.
mult25rR=within industry multiplier for exogenous shock in furniture and fixtures in the region.

shoc39XX=exogenous shock to miscellaneous employment in county or region.

mult26rR=within industry multiplier for exogenous shock in paper products in the region.
mult27rR=within industry multiplier for exogenous shock in printing and publishing in the region.
mult28rR=within industry multiplier for exogenous shock in chemical products in the region.
mult29rR=within industry multiplier for exogenous shock in petroleum products in the region.
mult30rR=within industry multiplier for exogenous shock in plastic products in the region.
mult31rR=within industry multiplier for exogenous shock in leather products in the region.
mult32rR=within industry multiplier for exogenous shock in stone, clay, and glass products in the region.
mult34rR=within industry multiplier for exogenous shock in primary metals in the region.
mult34rR=within industry multiplier for exogenous shock in fabricated metals in the region.
mult35rR=within industry multiplier for exogenous shock in industrial machinery in the region.
mult36rR=within industry multiplier for exogenous shock in electronic and electrical equipment in the region.

mult37rR=within industry multiplier for exogenous shock in transportation equipment in the region. mult38rR=within industry multiplier for exogenous shock in instruments in the region. mult39rR=within industry multiplier for exogenous shock in miscellaneous manufacturers in the region.

e44kys=state employment in water transportation. e46kys= state employment in pipeline transportation.

ggncmq= national compensation of military employees.
gprof=farm proprietor's income.
ip357= national industrial production index for computers and office machines.
ip131= national industrial production index for oil and gas extraction.

#### Subsection 3

**Data Series** 

155 301 318 225 58 58 305 576

155 301 318 225 225 58 305 576

155 301 318 225 58 58 305 576

183 303 312 305 142 291 395

55 266 302 161 67 449 623

132 271 235 235 192 25 25 360 638

152 289 413 288 34 398 686

179 353 267 172 39 190 459

125 371 332 258 30 30 363

92 245 223 160 40 40 297 613

253 334 327 262 69 69 345

296 244 250 250 55 290 466

(CDD) (CDD) (CDD) (CDD) (CDD) (HDD)

August September

Internal Internal Internal

October November December

Internal Internal

Internal

## KENTUCKY UTILITIES COMPANY 1999 FORECAST

							MONTHI	MONTHLY MODEL	31.					
Rate Class	Series	Source	1990	1991	1992	1993	1994	1995	9661	1997	1998	1999	2000	2001
kWh/	kWh/Customer													
January	ıry	Internal	805.57	764.52	792.36	807.22	922.81	833.16	909.47	877.73	844.65	922.31	914.80	914.94
February	ıary	Internal	98.699	718.33	745.23	771.94	832.07	813.09	836.82	824.06	800.84	800.26	855.91	854.88
March	Ę.	Internal	629.96	666.44	673.11	740.79	734.73	718.18	751.31	747.91	749.15	776.62	765.79	764.58
April		Internal	616.38	607.73	669.83	682.47	678.40	80.199	722.29	713.62	706.81	729.88	727.45	726.24
May		Internal	572.49	621.17	633.26	635.88	633.45	631.31	670.95	625.57	672.98	691.22	690.03	689.10
June		Internal	725.23	975.06	726.37	795.49	890.99	843.37	829.02	703.97	935.59	896.35	895.26	894.34
July		Internal	1046.14	1174.68	1000.12	1238.14	1228.72	1113.91	1099.41	1075.34	1184.58	1182.94	1181.91	1181.03
August	st	Internal	1051.74	1240.96	1037.99	1298.03	1175.14	1434.95	1113.76	1241.62	1282.64	1298.95	1298.44	1297.79
September	mber	Internal	1047.93	1107.99	920.85	1149.34	979.10	1215.72	1021.94	987.76	1254.53	1118.76	1118.30	1117.67
October	ber	Internal	677.74	727.91	675.33	703.43	698.57	720.54	701.09	766.56	922.77	790.97	790.52	789.90
November	mber	Internal	595.95	633.31	632.66	658.02	631.55	661.78	674.86	701.54	715.38	209.86	709.94	709.46
December	mber	Internal	679.74	715.96	767.15	760.48	729.35	807.40	815.95	823.29	761.32	822.18	822.31	821.82
Elec.	Elec. \$/kWh													
January	ıry	Internal	0.0364	0.0362	0.0339	0.0321	0.0313	0.0315	0.0307	0.0292	0.0290			
March	æ	Internal	0.0378	0.0362	0.0342	0.0329	0.0322	0.0323	0.0315	0.0305	0.0295			
April		Internal	0.0370	0.0363	0.0340	0.0327	0.0321	0.0324	0.0311	0.0309	0.0298			
May		Internal	0.0373	0.0359	0.0342	0.0330	0.0326	0.0328	0.0315	0.0307	0.0297			
June		Internal	0.0373	0.0340	0.0339	0.0324	0.0314	0.0315	0.0301	0.0303	0.0283			
July		Internal	0.0353	0.0334	0.0328	0.0299	0.0300	0.0299	0.0291	0.0286	0.0276			
August	ıst	Internal	0.0352	0.0335	0.0322	0.0299	0.0302	0.0299	0.0291	0.0284	0.0279			
Septe	September	Internal	0.0355	0.0335	0.0328	0.0311	0.0312	0.0307	0.0296	0.0290	0.0274			
October	ber	Internal	0.0364	0.0344	0.0333	0.0323	0.0322	0.0326	0.0308	0.0303	0.0283			
November	mber	Internal	0.0369	0.0353	0.0337	0.0328	0.0328	0.0324	0.0305	0.0297	0.0292			
December	mber	Internal	0.0370	0.0346	0.0326	0.0322	0.0320	0.0312	0.0295	0.0294	0.0287			
Intera	Interaction Weather Variables	bles												
January	ıry	Internal	846	701	889	642	966	716	106	735	624	819	819	819
January		Internal	846	701	889	642	966	716	106	735	624	862	802	802
February	nary (HDD)	Internal	490	719	402	722	906	698	006	774	674	551	815	815
March		Internal	477	268	453	754	286	541	645	473	295	899	288	588
April		Internal	374	241	399	363	311	251	455	370	290	330	330	330
May		Internal	33	70	51	38	30	32	49	9	38	40	40	40

HDD - Heating Degree Days CDD - Cooling Degree Days

		•				
	2001	2449.32 2332.10 1872.86 1466.44 1013.47 1048.82 1296.66 1308.13 1231.61 991.50 1263.04 1859.81		802 815 588 321 225 305 576	0 0 0 1 1 1 1 1 1 1 2 2 2 2 3 6 6	802 815 588 588 330 115 116 0 0 0 0 5 8 8 8 8 8 76
	7000	2449.50 2332.32 1873.07 1466.61 1013.64 1048.99 1296.79 1308.26 1231.73 991.60 1263.13 1859.90		802 815 588 321 225 305 576	0 0 0 1 1 40 155 301 318 5225 58 6	802 818 818 588 . 330 115 10 0 0 0 0 5 88 88 88 305 576
	1939	2526.36 1744.01 1979.92 1464.62 1013.59 1049.16 1296.89 1308.35 1230.36 991.41 1263.09		862 551 668 321 225 305 576	0 0 1 1 155 301 318 318 524 58 6	862 551 668 321 115 115 0 0 0 5 8 8 8 8 8 8 8 305 576
	1998	2118.25 1973.05 1774.36 1408.53 987.54 1077.79 1302.97 1299.25 1361.24 1096.98 1249.71	0.0257 0.0259 0.0260 0.0260 0.0276 0.0272 0.0265 0.0266	624 674 562 290 305 395	0 0 3 38 38 303 312 305 142 142	624 674 562 290 38 183 303 312 142 291
	1997	2331.69 2227.84 1601.78 1487.16 1042.46 917.49 1227.03 1274.76 1112.42 972.93	0.0257 0.0246 0.0270 0.0279 0.0273 0.0273 0.0273 0.0267	735 774 473 370 161 449 623	0 0 0 5 5 2 5 5 3 3 0 0 0	735 774 473 370 211 35 0 0 0 7 2 72 449
	936	2656.58 2545.84 2016.72 1676.34 1064.16 1014.43 1177.43 1153.76 924.93 1325.25	0.0269 0.0270 0.0276 0.0291 0.0287 0.0279 0.0289 0.0289	901 900 645 455 192 360 638	0 0 0 0 1 132 271 271 271 271 271 192 192	900 900 645 455 136 13 0 0 0 4 83 360 638
	3661	2248.83 2425.36 1771.63 1320.89 972.91 1022.78 1270.67 1438.52 1347.97 948.83 1379.78	0.0277 0.0278 0.0284 0.0302 0.0302 0.0288 0.0288 0.0288 0.0305 0.0305	716 869 541 251 288 398 686	0 0 0 10 152 289 413 288 34	716 869 869 541 109 4 4 0 0 0 8 73 398
	1994	2807.92 2576.68 1888.64 1430.38 970.93 1073.60 1369.97 1120.74 913.12 1070.92	0.0273 0.0273 0.0284 0.0301 0.0297 0.0295 0.0396 0.0399	996 906 586 311 172 190 459	0 0 0 179 179 179 172 172	996 906 586 311 94 18 0 0 0 1 190 459
	1993	2140.67 2076.98 2198.90 1541.45 990.26 990.24 1388.19 1334.14 1279.61 953.24 1134.64	0.0281 0.0290 0.0286 0.0304 0.0306 0.0279 0.0279 0.0397	642 722 754 363 258 363 549	0 0 0 0 125 371 332 258 30 5	642 722 754 363 88 88 115 0 0 0 96 363 363
	7661	2204.30 2054.22 1529.83 1537.74 1042.26 962.95 11194.00 1147.43 1089.10 942.93 1230.23	0.0297 0.0294 0.0301 0.0313 0.0318 0.0310 0.0314 0.0307 0.0304	688 709 453 399 160 297 613	0 0 0 0 13 13 24 24 25 25 16 40 0	688 709 453 399 1132 1 1 0 0 0 4 95 297
CASI	1881	2213.19 2073.19 1781.40 11292.61 976.93 1163.06 1345.07 1313.83 1286.77 1322.10	0.0317 0.0314 0.0317 0.0328 0.0321 0.0321 0.0318 0.0318 0.0316 0.0316	701 719 568 241 262 345 511	0 0 0 7 70 253 334 327 262 69 69	701 719 568 568 58 58 1 0 0 0 113 113 345
CALIFOR	7990	2555.14 1591.78 1529.19 1484.51 995.09 972.09 1764.28 1179.42 1241.69 961.33 1219.45	0.0314 0.0328 0.0328 0.0340 0.0352 0.0335 0.0336 0.0336 0.0336	846 490 477 374 250 290	0 0 6 9 117 296 244 250 55	846 490 477 374 1122 17 1 0 0 7 7 7 7 7 8 8 7 8
HISTORY	1989	2146.85 1966.07 1940.77 1026.93 1017.93 1258.87 1244.25 1221.68 968.24 1192.48	0.0360 0.0341 0.0341 0.0351 0.0350 0.0331 0.0331 0.0350 0.0350	657 678 648 335 235 272 776	0 0 1 1 145 145 145 289 288 235 43 6	657 678 648 335 165 165 0 0 0 6 115 274
	1988	2502.72 2281.96 1981.26 11443.65 962.80 1062.33 1411.82 1193.76 999.81 1341.62	0.0377 0.0370 0.0379 0.0385 0.0385 0.0374 0.0376 0.0375 0.0375	856 802 654 265 210 382 597	0 0 0 13 193 397 422 210 47	856 802 654 265 1115 6 0 0 0 158 188 382 397
	1987	2381.21 2275.20 1730.47 1443.17 977.04 1163.74 11293.58 1395.41 11224.04 978.94 1175.56	0.0434 0.0442 0.0409 0.0409 0.0416 0.0418 0.0413 0.0413 0.0421 0.0408	790 813 544 349 272 514	0 0 0 5 269 313 402 239 53	790 813 544 349 63 63 0 0 0 1 1 128 272 212
	9861	2565.37 2090.99 1850.21 1257.75 982.93 1045.74 1106.12 1080.06 1155.66 1861.64	0.0451 0.0461 0.0453 0.0458 0.0451 0.0451 0.0451 0.0451 0.0454	890 724 613 229 166 269 610	0 0 0 14 188 351 351 166 139	890 724 613 229 116 116 0 0 0 0 269 269
	1985	2204.96 2937.90 1832.23 1324.54 896.66 951.42 1134.77 1173.22 1134.64 914.13	0.0492 0.0462 0.0487 0.0501 0.0480 0.0473 0.0487 0.0487	708 1117 563 272 206 146 608	0 0 0 17 134 232 273 273 206 55	708 1117 563 272 272 37 16 0 0 0 0 77 146 608
	1984	2854.34 2303.00 1906.08 1543.57 979.42 1073.29 1125.19 1118.41 907.75 1184.13	0.0488 0.0484 0.0490 0.0473 0.0597 0.0497 0.0497 0.0499 0.0499 0.0500 0.0500	1043 805 631 410 201 272 590	0 0 0 2 32 204 287 270 201 63	1043 805 631 410 142 33 0 0 0 4 4 63 272 590
	1983	2132.85 2176.57 1592.36 1533.62 960.28 897.33 1300.10 1446.53 1417.02 918.34 1131.30	0.0471 0.0515 0.0515 0.0512 0.0529 0.0529 0.0515 0.0538 0.0538 0.05318	685 786 496 434 362 267 628	0 0 0 13 13 451 362 64	685 786 496 434 1162 20 0 0 0 267 628
	1982	2622.58 2508.36 1748.08 1419.61 959.29 915.55 1119.59 1194.54 1044.38 913.30	0.0473 0.0476 0.0507 0.0567 0.0568 0.0568 0.0519 0.0507 0.0518	917 907 550 351 158 103	0 0 0 0 136 138 158 158	917 907 550 351 351 1 1 2 0 0 7 7 7 7 7 422
	1861	2732.65 2444.75 1878.21 1305.65 910.18 1002.53 1241.90 1183.08 1076.19 868.82 1126.94	0.0436 0.0447 0.0465 0.0503 0.0516 0.0462 0.0487 0.0487 0.0450	976 870 737 262 176 271 656	0 0 0 13 13 164 164 176 176	976 870 608 262 106 106 0 0 0 0 11 11 93
	Source	Internal	Internal	iables Internal Internal Internal Internal Internal Internal Internal	Internal	internal
			4	Interaction Weather Variables January (HDD) Internal February (HDD) Internal March (HDD) Internal March (HDD) Internal September (CDD) Internal November (HDD) Internal December (HDD) Internal	egree Days	ifeaing Degree Days abauary April April April April April April April Asy May Suggest Cobber November December
	s Series	A WELLESON  February  February  March  April  May  June  Jun	Elec. Srkwh January February March April May June June June June September October November	Interaction January February March April September November	Cooling Degree Days Farnary March April May June July Angust September Occober November December	Heating De January February March April May June June June June June June June June
	Rate Class	2				

HDD - Heating Degree Days CDD - Cooling Degree Days

END-USE HISTORICAL/FORECAST

Ele., S/kWh         Internal         6.044         1921         1924         1924         1925         1926         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929         1929	2013 0.8010 9.03 287.493	36.85		0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.80	30.52	17.17
Euc. St.Wuh   Internal   0.0447   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0478   0.0466   0.0478   0.0466   0.0478   0.0466   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0478   0.0		36.36	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.77	30.49	17.23
Elec. S.K.Wh         Internal         1921         1926         1922         1929         2004         2004         2047         0.445         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457         0.0457		35.86	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.74	30.46	17.30
Elec, SkWh         Internal         0.0447         0.0466         0.0459         0.6404         Bod         0.0450         0.6450         Bod         0.0450         0.6450         Bod         0.0450         0.6450         0.6450         0.6430         0.6430         0.6430         0.6430         0.6430         0.6430         0.6430         0.6430         0.6430         0.6430         0.6440         0.6440         0.0465         0.6440         0.6440         0.0450         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440         0.6440 <td></td> <td>35.40 2.35</td> <td>3639</td> <td>0.67</td> <td>0.80</td> <td>85.00</td> <td>8.5</td> <td>17.18</td> <td>54.00</td> <td>0.46</td> <td>0.70</td> <td>30.43</td> <td>17.37</td>		35.40 2.35	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.70	30.43	17.37
Elec. S/WWh         Internal         6.394         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924         1.924	2009 0.7590 8.11 253.227 1.26	34.95	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.67	30.40	17.43
Series         Source         1931         1944         1956         1926         1929         2000         2001         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004		34.51	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.64	30.37	17.50
Series         Source of		34.06	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	186 97	30.33	17.57
Series         Source         1924         1925         1926         1929         2000         2001         2002         2003         2004         2005           Gas Sthem         Internal         0.0447         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0467         0.0460         0.0470         0.0467         0.0460         0.0470         0.0467         0.0440         0.0490         0.0590         0.6520         0.6700         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6730         0.6		33.64	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.58	30.29	17.63
Elec. 5kWh         Internal         509tec         1994         1995         1995         1999         2000         2001         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004         2004		33.25	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.55	30.24	17.69
Series         Source         1924         1924         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1927         1924         1927         1924         1927         1924         1927         1924         1924         1928         1928         1928         1939         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924		32.90	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.52	30.23	17.78
Series         Source         1924         1924         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1927         1924         1927         1924         1927         1924         1927         1924         1924         1928         1928         1928         1939         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924         1924	2003 0.6730 6.56 200.129 1.11	32.64	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.49	30.13	17.81
Series         Source         1924         1925         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926         1926		32.53	3639	0.67	0.80	85.00	 	17.18	54.00	0.46	0.46	30.01	17.83
Series         Source         1993         1994         1995         1996         1996         1997         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999         1999	2001 0.6590 6.08 185.031	32.38	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.43	29.85	17.86
Sexies         Source         1992         1994         1995         1996         1997         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998         1998	200 <u>0</u> 0.6450 5.83 177.914 1.05	32.25	3639	0.67	0.80	85.00	8.5	17.18	54.00	0.46	0.40	29.69	17.87
Series         Source         1923         1994         1995         1997           Elec. \$f,Wh         Internal         0.0447         0.0466         0.0478         0.0471         0.0467           Gas \$f,therm         Internal         0.6394         0.5990         0.5590         0.6820           Oil \$f,munbtu         Internal         6.639         0.5990         0.5590         0.6820           Wood \$f,cord         RER         135.200         140.608         146.232         152.082         158.165           Deflator         CBER         135.200         140.608         146.232         152.082         158.165           Ave Income (000T)         CBER         135.200         10.94         0.96         0.98         1           Morn HDD         Internal         1110         1110         1110         1110         1110         1110           Gas Avail Exist (%)         RER         0.67         0.67         0.67         0.67         0.67         0.67           Gas Avail New (%)         RER         0.080         0.090         80.00         80.00         80.00           Gas Avail Exist (%)         RER         80.00         80.00         80.00         80.00		32.13 2.49	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.38	29.52	17.88
Series Source Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) % Rural Norm HDD Norm CDD Gas Avail Exist (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard FRER Room A/C Standard Freezer Standard Gas Water Htg Standard Gas Water Htg Standard Freezer Standard Gas Water Htg Standard Freezer Stand	1998 0.0464 0.6620 5.4 164.491	31.90	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.35	29.35	17.89
Series Source Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) % Rural Norm HDD Norm CDD Gas Avail Exist (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard FRER Room A/C Standard Freezer Standard Gas Water Htg Standard Gas Water Htg Standard Freezer Standard Gas Water Htg Standard Freezer Stand	1997 0.0467 0.6820 6.41 158.165	31.40	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.33	29.19	17.90
Series Source Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) % Rural Norm HDD Norm CDD Gas Avail Exist (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard FRER Room A/C Standard Freezer Standard Gas Water Htg Standard Gas Water Htg Standard Freezer Standard Gas Water Htg Standard Freezer Stand	1996 0.0471 0.6050 6.57 152.082 0.98	30.51	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.31	29.02	17.96
Series Source Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) % Rural Norm HDD Norm CDD Gas Avail Exist (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard FRER Room A/C Standard Freezer Standard Gas Water Htg Standard Gas Water Htg Standard Freezer Standard Gas Water Htg Standard Freezer Stand	1995 0.0478 0.5590 5.83 146.232 0.96	30.37	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.28	28.95	18.00
Series Source Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) % Rural Norm HDD Norm CDD Gas Avail Exist (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard FRER Room A/C Standard Freezer Standard Gas Water Htg Standard Gas Water Htg Standard Freezer Standard Gas Water Htg Standard Freezer Stand	1994 0.0466 0.5990 5.82 140.608 0.94	29.14	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.46	0.26	28.68	18.00
Series Elec. \$KWh Gas \$/therm Oil \$/mmbtu Wood \$/cord Deflator Ave Income (000T) #/Household % Rural Norm UDD Gas Avail New (%) Gas Avail New (%) Gas Avail Exist (%) Gas Htg Standard Heat Pump Standard Heat Pump Standard Gom A/C Standard Freezer Standard Freezer Standard Freezer Standard Gis Water Htg Standard Dishwasher Standard Dishwasher Standard MF Customers (000T) MF Customers (000T)	1993 0.0447 0.6394 5.79 135.200 0.92	28.17	3639	0.67	0.80	80.00	8.5	17.18	54.00	0.44	0.23	28.57	18.00
	Source Internal Internal Internal RER CBER	CBER	RER Internal	Internal RER	RER	RER	RER	RER	RER			Internal	Internal
<b>~</b> U	Rate  Class  RS Elec. \$/kWh  Gas \$/therm Oil \$/mmbtu  Wood \$/cord Deflator	Ave Income (000T) #/Household	% Rural Norm HDD	Norm CDD Gas Avail New (%)	Gas Avail Exist (%) Gas Htg Standard	Other Hgt Standard	Room A/C Standard	Freezer Standard	Elec water Htg Standard Gas Water Htg Standard	Dishwasher Standard	Lowflow Shower/Faucet (%)	MF Customers (000T)	MO Customers (000T)

RER - Regional Economic Resources (Default Data) CBER - Center for Business & Economic Research

## KENTUCKY UTILITIES COMPANY 1999 FORECAST END-USE HISTORICAL/FORECAST

2013	9.03	7.493	1.38	36.85	2.33	0.33	36	1110	0.49	0.75	85.00	85.00	8.9	0	8.5	17.18	92.00	59.00	0.46	98.0	17.20	56.74	28.63
2012 2 0.7910 0								1110															
2011				35.86	2.34	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	92.00	59.00	0.46	0.81	112.94	55.42	27.77
2010				35.40	2.35	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	0	8.5	17.18	92.00	29.00	0.46	0.78	110.76	54.75	27.34
2009				34.95	2.36	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	92.0	108.49	54.05	26.89
0.7400				34.51	2.37	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.74	106.19	53.35	26.43
200 <u>7</u> 0.7230	7.62	234.123	1.21	34.06	2.37	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	28.00	0.46	0.71	103.84	52.63	25.97
200 <u>6</u> 0.7060				33.64	2.38	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	69.0	101.40	51.88	25.49
2005	7.07	216.460	1.16	33.25	2.39	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	01	8.5	17.18	91.00	58.00	0.46	99.0	98.83	51.08	24.99
2004				32.90	2.40	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	01	8.5	17.18	91.00	58.00	0.46	0.64	96.84	50.52	24.61
2003 0.6730				32.64	2.41	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.61	93.31	49.36	23.91
2002				32.53	2.43	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	01	8.5	17.18	91.00	58.00	0.46	0.58	89.64	48.14	23.19
2001	80.9	185.031	1.07	32.38	2.45	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.55	86.25	46.57	22.47
200 <u>0</u> 0.6450				32.25	2.47	0.32	3639	1110	0.49	0.75	85.00	85.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.52	82.87	45.00	21.63
0.6100	5.45	171.071	1.02	32.13	2.49	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.49	79.49	43.44	20.80
1998 0.043 0.6620	5.4	164.491	1.01	31.90	2.51	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.47	76.29	41.94	19.99
1997 0.0422 0.6820	6.41	35.200 140.608 146.232 152.082 158.165 164.491	_	31.40	2.53	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	91.00	58.00	0.46	0.43	73.06	40.47	19.19
1996 0.0429 0.6050	6.57	152.082	0.98	30.51	2.56	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	01	8.5	17.18	91.00	58.00	0.46	0.40	92.69	38.88	18.67
1995 0.0437 0.5590	5.83	146.232	0.96	30.37	2.58	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	90.00	57.00	0.46	0.37	68.05	37.99	17.96
1994 0.0423 0.5990	5.82	140.608	0.94	29.14	2.56	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	90.00	56.00	0.46	0.33	64.75	35.89	17.12
1993 0.0407 0.6394	5.79	135.200	0.92	28.17	2.58	0.32	3639	1110	0.49	0.75	80.00	80.00	8.9	10	8.5	17.18	90.00	56.00	0.44	0.29	99.09	34.70	16.25
Source Internal Internal	Internal	RER	CBER	CBER	CBER	RER	Internal	Internal	RER	RER	RER	RER	RER	RER	RER	RER	RER	RER	RER	RER	Internal	Internal	Internal
Rate Class Series FERS Elec. \$\text{\$\kappa\$}\$KWh Gas \$\text{\$\kappa\$}\$/therm	Oil \$/mmbtu	Wood \$/cord	Deflator	Ave Income (000T)	#/Household	% Rural	Norm HDD	Norm CDD	Gas Avail New (%)	Gas Avail Exist (%)	Gas Htg Standard	Other Htg Standard	Heat Pump Standard	Gound Loop HP Standard	Room A/C Standard	Freezer Standard	Elec Water Htg Standard	Gas Water Htg Standard	Dishwasher Standard	Lowflow Shower/Faucet (%)	SF Customers (000T)	MF Customers (000T)	MO Customers (000T)

RER - Regional Economic Resources (Default Data) CBER - Center for Business & Economic Research

## OLD DOMINION POWER COMPANY 1999 FORECAST END-USE

## END-USE HISTORICAL/FORECAST

2013 0.8435 7.50 289.46 2.8590	2.47 2.47 2.47 2.47 2.85.00 85.00 85.00 85.00 8.50 17.2 86.0 54.0 0.80 0.80	2.22
2012 0.8149 7.40 280.48 2.7530	20.55 2.47 0.23 4471 875 7% 7% 85.00 85.00 85.00 8.50 17.2 8.50 17.2 86.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87	2.22
2011 0.7871 7.30 271.78 2.6490	2.50 0.23 0.23 4471 875 7% 7% 85.00 85.00 85.00 85.00 85.00 6.8 6.8 6.8 6.8 6.0 6.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	2.22
2010 0.7604 7.20 263.36 2.5480	20.32 2.49 0.23 4471 875 7% 7% 85.00 85.00 85.00 85.00 85.00 6.8 85.00 6.8 6.0 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	2.22
2009 0.7373 7.12 253.23 2.4510	2.50 2.50 0.23 0.23 4471 875 7% 85.00 85.00 85.00 85.00 17.2 8.5 17.2 86.0 86.0 86.0 86.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87	2.22
2008 0.7149 7.04 243.49 2.3580	19.43 2.50 0.23 4.471 875 7% 7% 85.00 85.00 86.0 875 17.2 876 0.46	
2007 0.6932 6.96 234.12 2.2680	18.64 2.50 0.23 0.23 4471 875 7% 85.00 85.00 85.00 8.50 6.8 8.5 17.2 86.0 54.0 6.46	
2006 0.6721 6.88 225.12 2.1810	2.50 2.50 0.23 0.23 4471 875 7% 7% 85.00 85.00 85.00 85.00 6.8 8.5 17.2 86.0 86.0 87.0 85.00 87.0 87.0 87.0 87.0 87.0 87.0 87.0 8	
2005 0.6517 6.80 216.46 2.0990	17.00 2.51 0.23 0.23 4471 875 7% 7% 78.00 85.00 85.00 85.00 85.00 86.0 86.0 86.0 86.0 875 0.55	
2004 0.6360 6.71 208.13 2.0200	16.28 2.51 0.23 0.23 4471 875 7% 7% 85.00 85.00 85.00 876 6.8 85.00 876 6.8 85.00 877 6.8 85.00 876 6.8 85.00 876 6.8 85.00 876 6.8 86.00 876 6.8	
2003 0.6206 6.62 200.13 1.9480	15.63 2.52 0.23 0.23 4471 875 7% 7% 85.00 85.00 8.5 17.2 86.0 86.0 86.0 876 0.46 0.46	2.22
2002 0.6057 6.53 192.43 1.8820	15.02 2.52 0.23 4471 875 7% 7% 85.00 85.00 8.5 17.2 8.5 17.2 8.5 0.46 0.46 0.46	2.22
2001 0.5910 6.45 185.03 1.8180	2.53 0.23 4471 875 7% 7% 85.00 85.00 8.5 17.2 8.5 17.2 86.0 5.8 0.46 0.46	
2000 0.5767 6.37 177.91 1.7590	13.91 2.53 0.23 4471 875 7% 85.00 85.00 85.00 8.5 17.2 8.5 17.2 8.5 0.46 0.46	2.19 6.33
0.5729 6.36 171.07	13.37 2.54 0.23 4471 875 7% 80.00 80.00 8.5 17.2 8.5 17.2 8.5 0.046 0.046	
1998 0.0550 0.5690 6.49 164.49	12.87 2.54 0.23 4471 875 7% 80.00 80.00 80.00 8.5 17.2 8.5 17.2 9.5 17.2	
1997 0.0535 0.5908 6.63 158.16 1.6110	2.54 0.23 4471 875 7% 80.00 80.00 6.8 8.5 17.2 86.0 54.0 0.46 0.46	
1996 0.0520 0.5949 6.98 152.08 1.5700	2.55 0.23 4471 875 7% 80.00 80.00 6.8 8.5 17.2 8.5 0.31	
1995 0.0506 0.5795 6.17 146.23 1.5240	2.55 0.23 4471 875 5% 7% 80.00 80.00 6.8 8.5 17.2 86.0 54.0	16.11 1.91 6.05
1994 0.0466 0.6046 5.96 140.61 1.4820	2.56 0.23 4471 875 5% 5% 7% 80.00 80.00 6.8 8.5 17.2 86.0 94.0 0.06	15.97 1.82 5.92
1993 0.0456 0.5753 5.93 135.20 1.4450	10.75 2.57 0.23 4471 875 5% 7% 80.00 80.00 6.8 8.5 17.2 8.6 0.44 0.44	15.85 1.77 5.81
Source Internal Internal Internal RER	O	Internal Internal Internal
	<b>%</b>	~ C E
Series h n tu rd	Ave Income (000T) #/Household % Rural Norm HDD Gas Avail New (%) Gas Avail Exist (%) Gas Htg Standard Other Htg Standard Heat Pump Standard Freezer Standard Goom A/C Standard Goom A/C Standard Com Standard C	SF Customers (000T) MF Customers (000T) MO Customers (000T)
Elec. S/kWh Gas \$/therm Oil \$/mmbtu Wood \$/cord	Ave Income (000T) #/Household % Rural Norm HDD Gas Avail New (%) Gas Avail Exist (%) Gas Htg Standard Other Htg Standard Heat Pump Standard Room A/C Standard Freezer Standard Elec Water Htg Stan Gas Water Htg Stan Gus Water Htg Stan Chan Chan Chan Chan Chan Chan Chan Ch	Custom F Custom O Custor
	大 に の の の の の の の の の の の の の	Z Z Š
Rate Class Residential		

RER - Regional Economic Resources (Default Data) CBER - Center for Business & Economic Research

#### KENTUCKY UTILITIES COMPANY 1999 FORECAST END-USE

Rate				END-US	)E			
	Coning							
<u>Class</u>	<u>Series</u>				UEC'S		Average	Average .
RS	Calibration Inputs	Source	<u>Units</u>	SF	MF	MO	Efficiency	Saturation (%)
	Elec. Furnace	<u>554.55</u>	kWh	<u>51.</u> 7875	3185	<u></u>	3.41	1.50
	Heat Pump htg.		kWh	8690	2039	4766	5.88	3.98
	Elec. Room htg.		kWh	4801	2831	4242	3.41	1.87
	Secondary htg. elec.		kWh	263	263	263	N.A.	9.68
	Secondary htg. Stove		kBtu	19000	16000	27000	N.A.	3.04
	Secondary htg. Wood		kBtu	19000	16000	27000	N.A.	3.92
	Gas Furnace		kBtu	41861	33135	24881	0.69	63.10
	Oil Furnace		kBtu	37127	29387	22066	0.77	20.89
	Gas Hydronic		kBtu	43500	34432	25855	0.66	3.98
	Oil Hydronic		kBtu	38105	30162	22649	0.76	2.83
	Gas Room		kBtu	42791	33871	25438	0.67	1.50
	Oil Room		kBtu	37856	29965	22500	0.76	1.50
	Central A/C		kWh	2665	1665	2102	7.64	47.33
	Heat Pump Cooling		kWh	2335	1134	2857	7.37	3.98
	Room A/C		kWh	1425	715	1070	7.67	27.69
	Secondary Cooling		kWh	320	213	267	N.A.	5.12
	Elec. Water htg.		kWh	4159	2896	3146	2.82	36.77
	Gas Water htg.		kBtu	28381	19762	21468	0.49	59.57
	Oil Water htg.		kBtu	28381	19762	21468	0.49	3.66
	Elec. Range		kWh	1008	1008	1008	3.41	65.53
	Gas Range		kBtu	3439	3439	3439	1.00	27.50
	Oil Range		kBtu	3439	3439	3439	1.00	6.97
	Refrigerator 1		kWh	1699	1465	1861	6.78	100.00
	Refrigerator 2		kWh	891	891	891	5.05	14.22
	Freezer		kWh	1401	1400	1403	11.80	49.76
	Dishwasher		kWh	355	277	311	0.34	39.96
	Washer		kWh	121	81	82	4.16	84.71
	Elec. Dryer		kWh	1114	923	1374	0.40	70.94
	Gas Dryer		kBtu	3801	3149	4688	0.10	10.77
	Microwave		kWh	161	168	148	1.00	82.76
	Miscellaneous		kWh	1850	1764	1796	1.00	100.00

Source for Average Efficiency and Saturation is the CDA, RER, and Residential Survey

**CDA - Conditional Demand Analysis** 

AEP - American Electric Power Survey

RER - Regional Economic Resources (Default Data)

#### KENTUCKY UTILITIES COMPANY 1999 FORECAST **END-USE**

Rate								
<u>Class</u>	<u>Series</u>				LIFOIO			
	Calibration Inc. do	0	Units	SF	UEC'S MF	МО	Average	Average Saturation (%)
FERS	Calibration Inputs Elec. Furnace	Source	kWh	<u>5F</u> 7684	3106	<u>1910</u> 5784	3.41	30.49
	Heat Pump htg.		kWh	8400	1980	4623	6.05	34.44
	Geothermal Heat Pump htg.		kWh	4755	4755	4755	9.64	2.64
	Elec. Room htg.		kWh	4693	2754	4126	3.41	24.10
	Secondary htg. elec.		kWh	1467	1471	1456	N.A.	4.69
	Secondary htg. Stove		kBtu	19000	5500	27000	N.A.	3.34
	Secondary htg. Wood		kBtu	19000	5500	27000	N.A.	3.39
	Gas Furnace		kBtu	40094	25632	27395	0.69	1.78
	Oil Furnace		kBtu	36363	23247	24846	0.78	5.68
	Gas Hydronic		kBtu	42684	27288	29166	0.66	0.35
	Oil Hydronic		kBtu	36895	23587	25210	0.76	0.35
	Gas Room		kBtu	39692	25375	27121	0.70	0.09
	Oil Room		kBtu	35985	23005	24588	0.77	0.08
	Central A/C		kWh	2510	1567	1948	8.14	31.81
	Heat Pump Cooling		kWh	2180	1061	2673	8,22	34.44
	Geothermal Heat Pump Cooling		kWh	1575	1575	1575	12.20	2.64
•	Room A/C		kWh	1365	685	1025	7.67	23.20
	Secondary Cooling		kWh	179	97	85	N.A.	4.20
	Elec. Water htg.		kWh	4144	2891	3146	2.85	96.80
	Gas Water htg.		kBtu	28279	19708	21448	0.49	2.42
	Oil Water htg.		kBtu	28279	19708	21448	0.49	0.78
	Elec, Range		kWh	1,008	1008	1008	3.41	100.00
	Gas Range		kBtu	3439	3439	3439	0.00	0.00
	Oil Range		kBtu	3439	3439	3439	0.00	0.00
	Refrigerator 1		kWh	1675	1440	1811	6.78	100.00
	Refrigerator 2		kWh	879	881	880	5.73	10.29
	Freezer		kWh	1377	1374	1370	11.80	43.77
	Dishwasher		kWh	353	225	308	0.35	49.83
	Washer		kWh	119	80	81	4.16	78.50
	Elec. Dryer		kWh	1102	913	1358	0.40	76.18
	Gas Dryer		kBtu	3757	3112	4630	0.10	3.41
	Microwave		kWh	161	168	148	1.00	87.75
	Miscellaneous		kWh	3334	3224	3275	1.00	100.00

Source for Average Efficiency and Saturation is the CDA, RER, and Residential Survey

CDA - Conditional Demand Analysis AEP - American Electric Power Survey

RER - Regional Economic Resources (Default Data)

#### OLD DOMINION POWER COMPANY 1999 FORECAST END-USE

Nate		
<u>Class</u>	<u>Series</u>	

					UEC'S		Average	Average
ODP	Calibration inputs	Source	<u>Units</u>	<u>SF</u>	<u>MF</u>	MO	Efficiency	
	Elec. Furnace		kWh	7895	3193	6007	3.41	10.98
	Heat Pump htg.		kWh	9050	2122	4965	6.30	30.13
	Elec. Room htg.		kWh	4962	2928	4387	3.41	22.23
	Secondary htg. elec.		kWh	263	263	263	N.A.	1.44
	Secondary htg. Stove		kBtu	19000	16000	27000	N.A.	0.56
	Secondary htg. Wood		kBtu	19000	16000	27000	N.A.	0.72
	Gas Furnace		kBtu	41861	33135	24881	0.73	0.44
	Oil Furnace		kBtu	37127	29387	22066	0.76	32.44
	Gas Hydronic		kBtu	43500	34432	25855	0.67	1.71
	Oil Hydronic		kBtu	38105	30162	22649	0.76	1.68
	Gas Room		kBtu	42791	33871	25433	0.69	0.20
	Oil Room		kBtu	37856	29965	22500	0.77	0.20
	Central A/C		kWh	2526	1577	1992	7.60	12.78
	Heat Pump Cooling		kWh	2180	1059	2668	7.82	30.13
	Room A/C		kWh	1365	685	1025	7.99	27.17
	Secondary Cooling		kWh	320	213	267	N.A.	3.95
	Elec. Water htg.		kWh	4159	2896	3146	2.82	95.62
	Gas Water htg.		kBtu	28381	19762	21468	0.49	1.76
	Oil Water htg.		kBtu	28381	19762	21468	0.50	2.62
	Elec. Range		kWh	1008	1008	1008	3.41	87.13
	Gas Range		kBtu	3439	3439	3439	1.00	7.69
	Oil Range		kBtu	3439	3439	3439	1.00	5.19
	Refrigerator 1		kWh	1699	1465	1861	6.58	100.00
	Refrigerator 2		kWh	891	891	891	5.25	10.30
	Freezer		kWh	1401	1400	1403	10.98	49.83
	Dishwasher		kWh	355	227	311	0.34	32.36
	Washer		kWh	121	81	82	4.16	89.10
	Elec. Dryer		kWh	1114	923	1374	0.40	86.88
	Gas Dryer		kBtu	3801	3149	4688	0.10	3.80
	Microwave		kWh	161	168	148	1.00	81.98
	Miscellaneous		kWh	941	740	905	1.00	100.00

Source for Average Efficiency and Saturation is the CDA, RER, and Residential Survey

CDA - Conditional Demand Analysis

AEP - American Electric Power Survey

RER - Regional Economic Resources (Default Data)

## KENTUCKY UTILITIES COMPANY 1999 FORECAST RS FORECAST

																																	_	
	3013	1.7 1.7	64.15	19.62	5.02	7.27	2.48	1.94 1.94	1.29	1.20	54.40	5.02	23.37	17.21	3.08	3.96	9.81	4.75	90.51	39.13	57.68	3.19	65.99	27.37	6.65	100.00	15.28	53.23	44.18	88.88	74.06	88.63	100.00	
	,100	1.70	64.10	19.68	4.98	2.58	2.30	4.	1.30	1.22	54.11	4.98	23.54	17.37	3.08	3.96	9.80	4.77	90.47	39.02	57.76	3.22	65.98	27.36	99.9	100.00	15.21	53.05	43.96	85.80	73.90 11.27	88.39	100.00	
	1100	1.69	64.05	19.74	4.94	2.59	2.51	4.	1.31	1.23	53.81	4.94	23.71	17.54	3.07	3.96	9.80	4.78	90.43	38.90	57.85	3.25	65.96	27.36	89.9	100.00	15.14	52.87	43.75	85.72	73.74 11.24	88.15	100.00	
	9,00	3 1 2 3 3 1 3	64.01	19.79	8.3	2.60	2.53	1.94	1.32	1.24	53.51	4.90	23.88	17.70	3.07	3.96	9.79	4.79	90.39	38.78	57.94	3.28	65.95	27.36	69.9	100.00	15.07	52.69	43.54	85.65	73.59 11.21	87.90	100.00	
		1.68	63.96	19.85	4.86	2.61	2.54	1.93	1.32	1.25	53.21	4.86	24.06	17.88	3.07	3.95	9.78	4.81	90.34	38.66	58.03	3.30	65.93	27.36	6.71	100.00	15.00	\$2.52	43.33	85.58	73.43 11.19	87.65	100.00	
	9	1.67	63.91	19.91	4.82	2.62	2.55	1.93	1.33	1.26	52.90	4.82	24.23	18.05	3.07	3.95	9.78	4.82	90.30	38.55	58.13	3.33	65.91	27.36	6.72	100.00	14.94	52.33	43.13	85.51	73.27 11.16	87.39	100.00	
	t	1.66	63.86	19.96	4.77	2.63	2.57	1.93	1.34	1.28	52.58	4.77	24.41	18.23	3.06	3.95	9.71	4.84	90.26	38.43	58.22	3.35	65.90	27.36	6.74	100.00	14.87	\$2.16	42.93	85.44	73.12	87.13	100.00	
	ò	1.65	63.81	20.02	4.73	2.64	2.58	1.92	1.35	1.29	52.26	4.73	24.60	18.41	3.06	3.95	9.76	4.85	90.22	38.31	58.31	3.38	65.88	27.36	6.75	100.00	14.81	51.98	42.73	85.37	72.97 11.11	86.86	100.00	
		2005 1.65	63.77	20.08	4.68	2.65	2.60	1.92	1.36	1.30	51.93	4.68	24.79	18.59	3.06	3.94	9.76	4.87	90.17	38.20	58.40	3.40	65.87	27.37	6.77	100.00	14.75	51.80	42.53	85.30	72.81 11.09	86.59	100.00	
	,	1.64 1.64	63.72	20.13	4.65	5.66	2.61	1.92	1.37	1.31	\$1.62	4.65	24 05	18.78	3.06	3.94	9.75	88.	90.14	38.10	58.47	3.43	65.85	27.36	87.9	100.00	14.69	51.62	42.36	85.25	72.67 11.06	86.31	100.00	
í	(%)	2003 1.63	63.67	20.20	4.59	2.67	2.63	1.91	1.38	1.33	81.26	4.59	25.20	18.96	3.05	3.94	9.75	4.90	80.06	37.95	58.59	3.45	65.82	27.38	6.80	100.00	14.64	51.45	42.13	85.17	72.50 11.04	86.02	100.00	
	_	200 <u>2</u> 1.61									\$0.80	4 57	26.45	19.14	3.05	3.94	9.74	4.93	90.02	37.81	58.71	3.48	65.79	27.40	6.81	100.00	14.59	51.29	41.89	85.10	72.33	85.73	100.00	
OREC	7	2001 1.60	63.55	20.35	4.45	2.70	2.67	1.91	1.40	1.36	50 52	4 45	05.30	19.33	3.05	3.93	9.73	4.95	89.96	37.66	58.83	3.51	65.75	27.42	6.83	100.00	14.55	51.13	41.67	85.04	72.17 11.00	85.44	100.00	
RS F	VERAG	2000 1.59	63.50	20.42	4.39	2.72	5.69	1.90	1.42	1.38	\$0.14	4 30	20.50	19.53	3.05	3.93	9.72	4.97	89.90	37 51	58.96	3.53	65.71	27.44	6.85	100.00	14.51	50.96	41.46	84.98	72.01 10.97	85.13	100.00	
•	_	1989 2.	63.44	20.49	4.33	2.73	2.71	8.	1.43	1.40	7C 0F	7.72	26.10	19.72	3.04	3.93	9.72	4.99	89.84	17 17	59.07	3.55	89 59	27.45	6.87	100.00	14.47	\$0.79	41.24	84.93	71.85 10.95	84.82	100.00	
		1998 1.56	63.38	20.56	4.26	2.75	2.73	1.89	1.44	1.42	7E 0F	2007	36.46	19.93	3.04	3.93	9.71	5.02	71.68	37 70	\$1.05	3.57	99.59	27.46	6.88	100.00	14.43	50.63	41.01	84.88	71.69 10.92	84.50	100.00	
		1887 25 25	63.33	20.63	4.20	2.77	2.75	1.89	1.45	1.43	70 04	70.7	3 :	20.13	3.04	3 93	9.70	5.04	89.71	37.16	\$6.75	3.58	65.63	27.47	6.90	100.00	14.39	50.46	40.79	84.83	71.53 10.89	84.17	100.00	
		1996	63.27	20.70	4.14	2.78	2.77	1.89	1.47	1.45	79 66	40.7	*.I.*	20.35	3 04	3.93	69.6	5.06	89.68	27.03	50.75	3.60	65 50	27.49	6.92	100.00 100.0	14.34	50.29	40.57	84.79	71.37 10.87	83.83	100.00 100.00 100.00 100.00 100.00	
		1995	63.23	20.75	4.11	2.79	2.78	1.88	1.47	1.46	10 10	40.17	1.5	20.58	3 04	3 63	69.6	5.07	89.62	30 92	50.73	3.62	85 59	27.48	6.94	100.00	14.29	\$0.09	40.41	84.77	71.25 10.83	83.49	100.00	
		<u> </u>	63.16	20.83	4.04	2.81	2.80	1.88	1.49	1.48	76.64	97.7	2.6	20.79	3.04	3 03	9.68	5.10	89.54	08 98	50.67	3.64	y <b>y</b>	27.49	6.96	100.00	14.26	49.93	40.18	84.74	71.10	83.13	100.00	
		1993	63.10	20.89	3.98	2.83	2.83	1.87	1.50	1.50	,,,,,	50.74	5. K	21.00	3.04	6	9.68	5.12	89.48	26 77	50.77	3.66	23 33	27.50	6.97	100.00	14.22	49.76	39.96	84.71	70.94 10.77	82.76	100.00	1
		OPTION	GFIRN	OFURN	HPMP	GH20	OH2O	EROOM	GROOM	OROOM	9	CAC	HFMF	NONE	erove	STOVE	ELEC	SRAC		Ç	ELEC	o Ho	70.10	GAS	3 ⊟						ELEC GAS			
			1 6	ö	出	5	ð	ER	ij	ő	ć	: כ	₹ ;	2 %	1.0	5 6	古古	SR				8 B	10	ਰ ਦੇ	충등	R I	R 2				回じ		RIC	į
		END-USE UEATTAGE	TEALING.									COOLING		·	110 A TT	SEC. HEAT		SEC. COOL	VENT	THE THE COLUMN	WATER HEATER		4000	4000		REFRIGERATOR	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	

KENTUCKY UTILITIES COMPANY 1999 FORECAST FERS FORECAST

	66 65 66 66 66 66 66 66 66 66 66 66 66 6	8 2 2 8 8	4.31 4.13 4.90	3.92	39	£43 88	5 <u>5</u> 5	8	8.1	8	41	=	23 ES	8	8
	2013 2013 3 0.91 2 2.65 5 48.98 5 2.24 7 0.17 6 0.04	0 26.09 5 48.98 5 2.24 5 16.39 5 16.39			2 81.39	0 98.43 1 1.19 9 0.38	0 82.21 5 15.19 5 2.60	0 100.00	1 13.87	7 48.60	8 57.47	1 83.11	3 80.02 9 4.53	3 91.48	0 100.00
	26.68 0.93 0.73 2.72 2.23 2.23 0.17 0.17 0.04	26.20 48.65 2.25 16.55 16.55	4.29 4.11 4.89	3.93	81.22	98.40 1.21 0.39	82.60 14.85	100.00	13.71	48.47	57.18	82.91	79.83	91.33	100.00
	2011 26.76 0.95 0.78 48.30 2.26 0.18 18.51 0.04	26.32 48.30 2.26 16.71 16.71	4.26	3.93	81.05	98.36 1.24 0.40	83.01 14.50 2.50	100.00	13.54	48.33	\$6.90	82.70	79.63	91.18	100.00
	2010 26.84 0.97 2.85 47.94 2.26 0.18 0.18 0.04	26.44 47.94 2.26 16.88 16.88	4.23	3.93	80.88	98.32 1.27 0.41	83.43 14.13 2.44	100.00	13.38	48.18	\$6.61	82.49	79.44 4.41	91.02	100.00
	26.94 0.99 2.93 47.56 2.27 0.19 0.08 0.04	26.57 47.56 2.27 17.06 17.06	4.20 4.04 4.86	3.94	80.69	98.28 1.30 0.42	83.89 13.73 2.38	100.00	13.22	48.04	56.32	82.27	79.24 4.37	90.86	100.00
	2008 27.04 1.01 3.01 47.16 2.28 0.19 0.01 0.05	26.72 47.16 2.28 17.25	4.17 4.01 4.85	3.94	80.50	98.24 1.33 0.43	84.37 13.32 2.31	100.00	13.05	47.88	\$6.02	82.06	79.04 4.33	90.70	100.00
	2007 27.14 1.04 3.09 46.74 2.29 0.20 0.19 19.22 0.04	26.87 46.74 2.29 17.45	4.13 3.99 4.84	3.95	80.30	98.19 1.36 0.44	84.87 12.89 2.24	100.00	12.89	47.72	55.72	81.84	78.84	90.53	100.00
-	27.25 1.06 3.18 46.29 2.30 0.20 0.20 19.42 0.05	27.03 46.29 2.30 17.66 17.66	4.10 3.96 4.83	3.95	80.08	98.15 1.40 0.45	85.41 12.42 2.16	100.001	12.72	47.55	55.42	81.61	78.63	90.36	100.00
	2005 27.38 3.28 3.28 45.80 2.31 0.20 19.64 0.05	27.21 45.80 2.31 17.89 17.89	4.06 3.93 4.82	3.95	79.86	98.09 1.44 0.47	86.00 11.92 2.08	100.001	12.56	47.37	55.10	81.38	78.42	90.18	100.001
	2004 27.48 3.36 45.38 2.31 0.21 19.83 0.05	27.36 45.38 2.31 18.09	4.02 3.90 4.81	3.96	79.65	98.05 1.47 0.48	86.53 11.47 2.01	100.001	12.39	47.22	54.83	81.18	78.22	89.99	100.001
ු	2003 27.67 1.15 3.50 2.33 0.22 20.12 0.05	27.63 44.69 2.33 18.41	3.97 3.86 4.80	3.97	79.35	97.98 1.53 0.50	87.32 10.79 1.88	100.00	12.21	46.97	54.41	80.88	4.09	89.81	100.001
FERS FORECAST ERAGE SHARES (%)	2002 27.88 1.20 1.20 2.35 0.23 0.02 0.06	27.93 43.94 2.35 18.76	3.91 3.81 4.79	3.97	10.62	97.89 1.59 0.52	88.20 10.06 1.74	100.001	12.02	46.69	53.97	80.57	4.04	89.62	100.001
S FOR GE SF	28.12 28.12 1.24 3.82 43.12 2.37 0.24 0.03 0.06	28.27 43.12 2.37 19.13	3.86 3.78 4.78	3.99	18.67	97.80 1.66 0.54	89.12 9.27 1.61	100.001	11.85	46.43	53.56	80.34	3.99	89.45	100.001
FER VERA	28.35 1.30 4.00 42.26 0.25 0.25 0.06	28.61 42.26 2.40 19.53	3.81 3.74 4.77	4.01	78.30	97.70 1.73 0.56	90.15 8.40 1.46	100.001	11.67	46.16	53.14	80.09	3.93	89.27	100.001
4	28.59 28.59 1.35 1.35 1.35 2.43 0.26 0.06 0.06	28.97 2 41.34 4 2.43 19.96 1	3.76 3.70 4.76	4.03	7.191	97.60 5 1.81 0.59	91.26 9 7.44 1.29	100.001	11.48	45.86	52.70	79.84	3.87	89.09	100.00
	28.84 2 28.84 2 1.41 4.40 4.40 4.39 4 2.46 0.27 21.82 2 21.82 2 0.07	29.35 2 40.39 4 2.46 20.41 1 20.41 1	3.70 3.66 4.75	4.06	7.50 7	97.49 9 1.90 0.61	92.46 9 6.42 1.12	00.00	11.29	45.56 4	52.25	7 09.67	3.81	88.89	100.001
٠	29.11 22 29.11 22 1.48 4.62 4.62 4.62 6.29 6.29 6.29 6.07 6.07 6.07 6.07 6.07 6.07 6.07 6.07	29.76 2 39.37 4 2.49 2 20.90 2	3.64 1.74	80.1	.07	97.37 9 1.99 0.64	33 4	100.00	11.09	45.24 4	92.	79.35 7	.74	88.68	100.00
	1996 1.54 255 25.54 255 255 255 255 255 255 255 255 255 2	30.31 25 38.14 35 2.52 7 21.41 20 21.41 20	3.57 3 3.56 3 4.73	4.10 4	76.60 77	97.24 97 2.09 1 0.67 (	95.05 93 4.22 5 0.72 0	100.00	10.87	44.87 4	51.22 51	79.16 79	76.64 76 3.68 3	88.46 81	00.00
	29.64 29 29.64 29 11.59 11.59 11.59 11.59 11.59 11.59 12.55 2.55 2 2.55 2 2.55 2 22.98 22.98 22.98 22.98 20.08 0	30.54 30 37.44 38 2.55 2 21.79 21 21.79 21	3.53 3 3.53 3 4.72 4	4.13 4	76.26 76	97.15 97 2.15 2 0.70 0	96.16 95 3.26 4 0.59 0		10.72 10	44.68 44	50.98 51	79.01 79	76.51 76 3.61 3	88.24 88	100.00 100.00 100.00
			3.46 3.3.48 3.48 3.48 3.48 3.48 4.72 4.49 4.72 4.49 4.72 4.49 4.72 4.49 4.72 4.49 4.72 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.4	4.18 4				00 100.00			50.50 50	78.94 79	76.50 76 3.53 3		00 100
		1 31.17 4 36.00 4 2.61 0 22.43 0 22.43			4 75.71	0 96.98 2 2.28 8 0.74	•	0 100.00	9 10.53	7 44.30				5 88.05	0 100.
	1993 30.49 1.78 5.68 34.44 2.64 0.35 0.35 0.09	31.81 34.44 2.64 23.20 23.20	3.34 3.39 4.69	4.20	75.04	96.80 2.42 0.78	100.00 0.00 0.00	100.00	10.29	43.77	49.83	78.50	76.18 3.41	87.75	100.00
	OPTION EFURN GFURN OFURN HPMP GHPMP GH2O OH2O EROOM GROOM	CAC HPMP GHPMP RAC NONE	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC		
	HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	соок	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC
	<b>~</b>	-		••	-	-	-	_	_	_				-	-

## OLD DOMINION POWER COMPANY 1999 FORECAST AVERAGE SHARES (%)

2013 9.47 0.96 28.17 36.12 1.50 1.39 21.82 0.30	13.84 36.12 28.28 21.76	0.54 0.69 1.53	4.19	74.73	96.45 1.53 2.02	85.64 10.31 4.05	100.00	13.05	52.46	56.10	92.33	89.18 4.29	89.06	89.06
2012 9.51 0.94 28.23 36.02 1.50 1.40 21.84 0.30	13.76 36.02 28.13 22.09	0.54 0.69 1.52	4.16	74.70	96.43 1.53 2.03	85.77 10.16 4.07	100.00	12.87	\$2.20	54.56	92.16	89.04 4.26	88.77	88.77
2011 9.55 0.91 28.29 35.92 1.50 1.40 21.86 0.30	13.68 35.92 27.97 22.42	0.54 0.69 1.52	4.14	74.68	96.41 1.54 2.05	85.90 10.00 4.09	100.00	12.69	51.93	53.00	91.98	88.88	88.47	88.47
2010 9.56 0.89 28.49 35.72 1.52 1.42 21.84 0.30	13.59 35.72 27.97 22.72	0.54 0.70 1.51	4.13	74.67	96.37 1.55 2.08	85.99 9.86 4.15	100.00	12.49	51.71	51.40	91.74	88.67 4.22	88.19	88.19
2009 9.68 0.86 28.84 35.17 1.53 1.54 0.29 0.29	13.59 35.17 28.12 23.12	0.54 0.69 1.51	4.15	74.55	96.32 1.57 2.11	85.93 9.84 4.23	100.00	12.33	\$1.62	49.38	91.41	88.42 4.16	87.86	87.86
2008 9.67 0.84 28.90 35.15 1.54 1.45 21.90 0.29	13.47 35.15 27.95 23.42	0.54 0.70 1.50	4.12	74.57	96.30 1.57 2.13	86.11 9.64 4.25	100.00	12.13	51.31	47.80	91.21	88.23 4.15	87.56	87.56
2007 9.73 0.82 29.11 34.87 1.55 1.46 21.93 0.28	13.42 34.87 27.93 23.78	0.54 0.70 1.49	4.12	74.53	96.26 1.58 2.16	86.17 9.53 4.30	100.00	11.96	51.13	46.09	90.96	88.02	87.24	87.24
2006 9.80 0.79 29.31 34.59 1.56 1.48 21.95 0.28	13.36 34.59 27.90 24.15	0.54 0.70 1.48	4.11	74.49	96.22 1.59 2.19	86.23 9.41 4.36	100.00	11.80	\$0.95	44.51	90.72	87.83 4.08	86.91	86.91
2005 9.86 0.77 29.52 34.31 1.57 1.49 0.27	13.31 34.31 27.87 24.51	0.54 0.70 1.48	4.10	74.46	96.18 1.60 2.21	86.30 9.29 4.41	100.00	11.65	50.78	43.06	90.49	87.64 4.05	86.58	86.58
2004 9.94 0.74 29.73 34.02 1.58 1.58 1.51 0.27	13.26 34.02 27.83 24.89	0.54 0.70 1.47	4.09	74.43	96.14 1.62 2.24	86.36 9.17 4.47	100.00	11.52	50.63	41.73	90.27	87.47 4.02	86.24	86.24
2003 10.01 0.71 29.93 33.74 1.59 1.59 0.26	13.21 33.74 27.78 25.26	0.54 0.70 1.47	4.08	74.40	96.10 1.63 2.27	86.43 9.05 4.52	100.00	11.39	50.48	40.52	90.06	87.31 3.99	85.90	85.90
2002 10.09 0.69 30.14 33.47 1.60 1.54 21.99 0.26	13.16 33.47 27.73 25.64	0.54 0.70 1.46	4.07	74.38	96.06 1.64 2.30	86.50 8.92 4.58	100.00	11.27	50.33	39.39	89.86	87.16 3.96	85.56	85.56
2001 10.17 0.66 30.35 33.18 1.61 1.55 22.00 0.25	13.12 33.18 27.67 26.04	0.54 0.70 1.46	4.06	74.36	96.02 1.65 2.33	86.57 8.79 4.64	100.00	11.16	50.21	38.32	89.66	87.02 3.93	85.21	85.21
2000 10.26 0.63 30.59 32.86 1.62 1.57 22.01 0.24	13.07 32.86 27.63 26.45	0.55 0.71 1.45	4.05	74.33	95.98 1.66 2.36	86.64 8.66 4.70	100.00	11.04	50.11	37.37	89.50	86.92 3.91	84.84	84.84
1999 10.35 0.60 30.93 32.35 1.64 1.59 0.24 0.24	13.03 32.35 27.66 26.96	0.55 0.71 1.45	4.05	74.24	95.93 1.67 2.40	86.69 8.53 4.78	100.00	10.90	50.12	36.56	89.47	86.96 3.89	84.42	84.42
1998 10.45 0.58 31.28 31.84 1.65 1.61 22.14 0.23	12.99 31.84 27.68 27.48	0.55 0.71 1.45	4.04	74.15	95.87 1.68 2.44	86.74 8.39 4.87	100.00	10.76	50.15	35.82	89.46	87.02 3.87	84.00	84.00
1997 10.53 0.55 31.37 31.67 1.66 1.62 22.16 0.22	12.93 31.67 27.47 27.93	0.55 0.71 1.45	4.01	74.12	95.85 1.69 2.46	86.87 8.23 4.90	100.00	10.66	49.97	35.01	89.36	86.94 3.85	83.63	83.63
1996 10.65 0.52 31.59 31.33 1.66 1.66 22.19 0.22	12.90 31.33 27.36 28.41	0.55 0.71 1.45	3.99	74.09	95.80 1.70 2.49	86.95 8.10 4.96	100.00	10.58	49.90	34.24	89.24	3.82	83.24	83.24
1995 10.75 0.49 31.79 31.03 1.67 1.64 22.21 0.21	12.85 31.03 27.23 28.88	0.56 0.71 1.45	3.97	74.06	95.76 1.72 2.53	87.04 7.95 5.01	100.00 100.00 100.00 100.00	10.49	49.80	33.52	89.15	86.83 3.80	82.84	82.84
1994 10.86 0.46 32.15 30.54 1.69 1.66 22.23 0.20	12.82 30.54 27.23 29.41	0.56 0.72 1.45	3.96	74.01	95.69 1.74 2.57	87.07 7.82 5.11	100.00	10.39	49.85	32.95	89.15	3.80	82.41	82.41
1993 10.98 0.44 32.44 30.13 1.71 1.68 22.23 0.20	12.78 30.13 27.17 29.92	0.56 0.72 1.44	3.95	73.98	95.62 1.76 2.62	87.13 7.69 5.19	100.00	10.30	49.83	32.36	89.10	3.80	81.98	81.98
OPTION EFURN GFURN OFURN HPMP GHZO OHZO EROOM GROOM	CAC HPMP RAC NONE	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC GAS		
END-USE HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC

## KENTUCKY UTILITIES COMPANY 1999 FORECAST AVERAGE UEC'S RS - SINGLE FAMILY HOMES

	2013 9229 35792 35968 9901 38403 37847 5767 37332	2550 2225 1532	16602 16610 285	329	631	4019 25425 25104	1028 2872 2854	138	515	1375	339	128	1047 3126	173	3501	12091 414 9
	2012 9177 35788 35946 9842 38324 37742 5730 37228	2540 2213 1523	16624 16631 285	329	628	4032 25467 25234	1029 2885 2872	1206	528	1373	339	128	1048 3127	173	3424	11985 415 9 0
	2011 9124 35800 35934 9776 37634 3692 37133	2531 2201 1514	16677 16684 285	329	625	4047 25515 25375	1030 2898 2891	1223	<b>24</b> 2	1371	339	128	1049 3131	12	3347	11905 415 10 0
	2010 9071 35828 35928 9704 38178 37528 5653 37059	2522 2189 1504	16726 16733 285	328	621	4066 25585 25539	1031 2914 2911	1244	557	1370	339	128	1051 3138	112	3271	11822 416 10 0
	2002 9016 35876 35920 9626 38128 37416 5614 37011	2514 2178 1495	16813 16819 285	328	617	4080 25646 25672	1032 2931 2932	1267	572	1370	339	128	1053 3149	171	3184	11739 417 10 0
	2008 8967 35985 35983 9547 38142 37346 5578 37033	2508 2168 1486	16900 16906 284	328	614	4095 25752 25831	1034 2950 2954	1291	589	1372	340	128	1056 3166	171	3117	11661 419 10 0
	2007 8926 36127 36021 9470 38190 37310 5547 37088	2505 2161 1479	17028 17034 285	328	910	4120 25901 26040	1035 2971 2978	1317	209	1377	340	127	1061 3189	171	3042	11596 421 10 0
	2006 8878 36248 36079 9385 38217 37265 5512 37119	2500 2152 1469	17113 17119 285	327	99	4135 25997 26212	1036 2992 3003	134	625	1381	97	127	1065 3211	171	2964	11522 422 10 0
	2005 8837 36411 36178 9308 38277 37265 5481 37177	2498 2146 1460	17243 17248 285	327	602	4157 26123 26436	1038 3016 3029	1375	4	1389	34	127	1071 3239	171	2888	11462 425 10 0
MES	2004 8810 36541 36256 9244 38378 37284 5460 37219	2498 2142 1453	17361 17366 287	328	299	4192 26208 26637	1039 3039 3054	1410	\$	1399	342	127	1079 3264	12	2815	11424 426 10 0
	2003 8776 36742 36742 9188 38549 37342 5431 37233	2502 2143 1444	17465 17470 287	328	594	4214 26263 26813	1041 3063 3080	1447	685	1409	343	127	1085 3289	13	2736	11367 428 10 0
LAMI	2002 8755 37012 36548 9161 38830 37477 5409 37288	2511 2151 1435	17620 17625 288	328	165	4242 26351 27026	1042 3089 3106	1488	706	1422	<del>2</del> 4	127	1093 3317	133	2659	11328 431 10 0
375	2001 8745 37341 36771 9162 39227 37694 5395 37436	2526 2168 1429	17785 17789 289	329	888	4271 26462 27261	1044 3118 3135	1532	728	1435	348	127	1101 3350	172	2584	11300 435 10 0
3	2000 8745 37851 37126 9192 39857 38073 5388 37786	2546 2194 1424	17978 17981 289	329	288	4296 26713 27593	1048 3154 3169	1575	752	1445	347	128	1111 3398	172	2507	11276 440 10 0
	1999 8701 38456 37520 9196 40627 38514 5353 38249	2555 2215 1412	18115 18118 285	328	286	4276 27073 27982	1052 3190 3202	1611	277	<u>148</u>	347	127	1116 3455	12	2420	11200 447 11
	1998 7169 31652 30952 7636 33562 31797 4402 31369	3057 2672 1667	15082 15084 236	389	553	4329 26830 28171	1057 3227 3236	1659	<b>8</b> 04	1462	350	128	1131 3473	173	2354	11424 398 9
	8653 8653 40119 38300 9290 42586 39365 5306 39505	1968 1733 1064	19160 19162 285	248	539	4195 26860 27348	1023 3268 3271	1636	803	1417	340	124	1101 3514	991	2197	10414 458 11 0
	1996 9717 45539 42305 10522 48269 43491 5950 5950	2112 1876 1137	21374 21375 319	264	290	4288 27632 27345	1048 3312 3312	1702	846	1452	350	126	1134 3606	169	2164	10732 501 12 0
	8343 8343 41060 37746 9097 43434 38834 5104 39671	2795 2488 1504	19010 19011 273	347	288	4207 28210 28152	1031 3352 3352	1691	855	1426	348	124	1119 3684	99	2044	10897 474 11 0
	1994 7960 40773 37073 8735 42818 38109 4861 40018	2367 2097 1269	18902 18902 264	291	3	4134 27907 28208	101 1 3393 3395	1679	862	1399	347	121	1105 3711	162	1926	10317 470 11 0
	1993 7875 41861 37127 8690 43500 38105 4801 42791	2665 2335 1425	19000 19000 263	320	555	4159 28381 28381	1008 3439 3439	1699	168	1401	355	121	1114 3801	191	1850	10460 482 11 0
	N N N N N N N N N N N N N N N N N N N	Δ.	Бя													
	OPTION EFURN GFURN OFURN HPMP GH2O OH2O OH2O EROOM GROOM	CAC HPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC			BLEC GAS OIL WOOD
			_	,		EATER		ATOR 1	ATOR 2						ECTRIC	
	HEATING HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS
	回日	8	SE	SE	¥.	ă'	ម	2	Æ	Æ	۵	š	Ö	Z	6	足

### KENTUCKY UTILITIES COMPANY 1999 FORECAST AVERAGE UEC'S RS - MULTI-FAMILY HOMES

810 50 4 L 8 L 4 L	8 - 2	e 0 0	m	Q	<b>0 4 4</b>	F: 80 ##	Q	=	9	7	98	9.5	۵	80	= 440
2013 3669 28680 2364 2304 29971 32918 3291 3291		14783 14416 14416	223	346	2783 17612 17394	1027 2878 2881	1040	521	1376	217		869 2587	179	3338	9141 324 4 0
2012 3653 28361 28669 2292 29948 29472 3276 28789	1586 1076 745	14768 14407 14407	223	345	2792 17647 17489	1028 2891 2899	1052	534	1373	217	98	870 2588	179	3265	9062 325 4
2011 3636 28369 28666 2278 29925 29424 3260 28762 28762	1580 1072 742	14780 14424 14424	222	<del>4</del>	2804 17687 17591	1030 2905 2919	1067	\$49	1371	217	98	871 2590	179	3192	8988 325 4 0
2010 3619 28390 28670 2263 29911 29377 3245 28659	1575 1068 738	14790 14440 14440	222	342	2818 17743 17710	1031 2920 2939	1086	<b>2</b> 2	1371	217	82	872 25%	179	3118	8919 326 4 0
2009 3602 28429 28672 2247 29912 29327 3228 28762	1570 1063 735	14831 14486 14486	222	8	2829 17791 17805	1032 2938 2960	1106	280	1371	217	82	874 2605	179	3045	8850 328 4
2008 3586 28510 28703 2230 29957 29957 3213 28823	1566 1060 732	14872 14533 14533	221	339	2840 17871 17919	1033 2957 2983	1127	597	1373	217	82	877 2619	179	2972	8784 329 4
2007 3573 28617 28762 2214 30029 3201 3201 28908	1564 1058 729	14949 14615 14615	221	337	2858 17980 18068	1035 2977 3007	1150	919	1377	218	88	881 2637	179	2901	8727 331 4
2006 3557 28705 28810 2196 30083 30083 3187 28974 28858	1561 1054 726	14987 14660 14660	220	336	2869 18052 18191	1036 2999 3032	1173	634	1382	218	82	885 2655	179	2826	333 4 4
2005 3544 3544 28825 28889 2180 30161 29332 3174 29062 28946	1559 1052 722	15061 14742 14742	220	334	2885 18145 18350	1038 3022 3058	1200	653	1389	218	88	890 2677	179	2754	8610 335 4 0
2004 3537 28922 28963 2167 30276 30276 3168 29135	1559 1051 720	15135 14817 14817	220	332	2911 18210 18494	1039 3045 3083	1230	674	1400	219	88	896 2698	179	2684	8571 337 4 0
2003 3526 29056 29032 2155 30427 29441 3156 29180	1561 1052 716	15172 14873 14873	220	330	2926 18253 18620	1040 3069 3108	1261	694	1410	219	88	901 2717	179	2609	8519 338 4 0
2002 3519 3519 29135 2149 30658 30658 3148 29252 29149	1565 1056 713	15251 14972 14972	220	329	2946 18319 18772	1042 3094 3132	1295	715	1423	220	88	907 2740	179	2536	8480 124 0
2001 3516 29497 29281 2150 30975 29731 3144 29392	1575 1064 710	15345 15095 15095	220	328	2968 18400 18940	1044 3123 3160	1332	737	1435	221	88	915 2768	180	2463	844 343 0
2000 3516 29884 29516 2157 31458 30017 3141 29675	1587 1076 708	15463 15243 15243	220	327	2985 18578 19177	1048 3158 3192	1369	760	1445	222	88	923 2807	180	2390	8419 348 0
1999 3499 3499 29783 2157 2157 32056 30359 3123 30050	1592 1085 703	15532 15343 15343	219	326	2972 18831 19454	1052 3194 3224	1399	782	148	222	88	927 2855	179	2307	8352 353 4 0
2882 2882 24966 24530 1789 26471 2570 2570 24655	1904 1307 830	12886 12759 12759	260	307	3009 18666 19597	1057 3230 3255	1439	811	1462	224	86	939 2871	180	2244	8427 316 4 0
1997 3479 3479 30307 2176 33576 31014 31062	1225 846 530	16317 16190 16190	166	301	2917 18690 19036	1023 3271 3288	1417	808	1417	217	83	914 2906	173	2094	7814 362 5 0
1996 3908 33906 33443 2463 38058 34271 3479 34962	1315 914 567	18144 18045 18045	176	331	2983 19230 19034	1048 3314 3325	1473	851	1451	224	2	940 2983	111	2064	8042 396 5
1995 3361 32432 29878 2132 34303 30656 2991 31281	1743 1213 751	16115 16043 16043	231	329	2928 19637 19599	1031 3354 3364	1463	829	1426	222	83	928 3048	173	1949	8043 375 5 0
1994 3219 32343 29398 2052 33910 30174 2862 31672	1482 1023 636	15973 15954 15954	194	303	2878 19428 19638	1011 3396 3401	1452	865	1399	222	81	916 3075	169	1836	7649 373 5 0
1993 31135 29387 2039 34432 30162 2831 33871	1665 1134 715	16000 16000 16000	213	312	2896 19762 19762	1008 3439 3439	1465	891	1400	727	8	923 3149	168	1764	7702 382 5 0
OPTION EFURN OFURN OFURN OFURN OFURO OFURO OFURO GRZO OHZO GRZO OHZO OHZO OHZO OHZO OHZO OHZO OHZO	CAC HPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC			ELEC GAS OIL WOOD
<b>5</b> 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CAC HPM RAC	STOV FIRE ELEC	SR			EF GA	_	7				E G		ភ្	ELEC GAS OIL WOO
aw		H	ت		EATER		RATOR	RATOR						LECTR	
HEATING HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS
回日	ŏ	S	S	5	<b>≩</b>	Ö	2	2	臣	Ω	3	Ω	Σ	0	匠

## KENTUCKY UTILITES COMPANY 1999 FORECAST

**RS - MOBILE HOMES** 

KENTUCKY UTILITIES COMPANYE 1999 FORECAST AVERAGE UEC'S FFRS - SINGLE FAMILY HOMES

	2013 7115 37474 37774 7554 3745 39285 38199 4870 37263	2053 1775 1499 1218	14726 14724 1276	151	697	3613 24069 24311	926 2816 2795	1066	504	1246	312	114	935 3072	156	4968	21394 10 1 0
	2012 7091 37355 37662 7525 3748 39166 38053 4848 37101	2046 1769 1491 1212	14790 14788 1277	151	695	3625 24124 24426	927 2819 2803	1070	511	1245	312	113	935 3070	156	4888	21281 10 1 0
	2011 7068 37248 37561 7493 3756 39044 37901 4825 36954 36915	2040 1763 1483 1206	14854 14852 1278	151	693	3644 24232 24586	929 2822 2811	1077	519	1243	312	113	936 3069	156	4809	21175 10 1 0
	2010 7050 37177 7465 3770 38960 37777 4806	2035 1758 1477 1201	14923 14921 1279	152	069	3661 24360 24753	930 2826 2819	1087	529	1242	312	113	938 3070	156	4731	21077 10 1 0
	2005 7035 37132 37444 7437 3790 38903 37656 4787 36694	2030 1753 1470 1197	15030 15028 1281	152	687	3673 24502 24893	931 2830 2827	1099	541	1242	312	113	939 3074	156	4653	20975 10 1
	2008 7022 37124 37417 7407 3886 37554 4769 36668	2026 1749 1464 1192	15138 15136 1282	152	683	3681 24673 25057	933 2835 2835	111	553	1242	312	113	942 3082	155	4574	20870 10 1
	2007 7015 37428 37428 7381 3889 37483 4754 36832	2024 1746 1459 1188	15288 15286 1288	153	629	3701 24914 25296	934 2839 2843	1126	268	1245	312	113	945 3093	156	4498	20790 10 1
	2006 7009 37152 37450 7354 38905 37415 4738 36849 36655	2021 1744 1454 1184	15407 15405 1290	153	675	3709 25079 25473	936 2844 2851	1142	582	1247	313	113	948 3104	155	4418	20692 10 1
IES	2005 7014 37240 37532 7339 3929 38958 37406 4729 36693	2022 1744 1452 1182	15576 15573 1296	154	671	3728 25302 25730	937 2848 2859	1162	298	1251	313	113	953 3118	155	4342	20626 10 1 0
FAMILY HOMES	2004 7028 37353 37616 7332 3978 39070 37434 4726 36958	2025 1746 1453 1182	15735 15732 1308	154	699	3753 25459 25935	938 2852 2866	1185	616	1258	314	113	959 3131	156	4257	20580 10 1
AMIL	2003 7067 37541 37743 7356 4043 39294 37537 4731 37049 36810	2037 1757 1457 1184	15922 15919 1317	155	299	3776 25636 26166	941 2858 2876	1212	635	1264	315	114	966 3148	156	4167	20547 10 1 0
- SINGLE	2002 7143 38020 7426 4132 39736 37820 4757 37365 37063	2061 1778 1467 1191	16199 16195 1334	157	668	3813 25894 26482	944 2870 2891	1246	657	1274	317	114	976 3180	156	4088	20596 10 1
S-SIN	2001 7214 38296 38261 7499 4220 40205 38098 4776 37720	2086 1800 1477 1197	16477 16474 1349	158	699	3847 26135 26781	948 2882 2904	1282	679	1283	319	114	986 3215	157	4005	20638 10 2 0
FERS	2000 7279 38776 38529 7579 4307 40802 38432 4789 38209 37636	2112 1824 1484 1200	16777 16774 1358	160	668	3869 26455 27121	952 2895 2915	1320	701	1289	320	115	995 3259	157	3914	20654 10 2 0
	1999 7323 39403 39864 7648 4377 41575 38865 4781 38878	2133 1845 1486 1199	17055 17052 1349	160	999	3858 26917 27558	956 2908 2925	1355	721	1291	320	114	1000 3318	157	3807	20587 11 2 0
	1998 6016 32352 31925 6316 3629 34261 32008 3895 31309	2534 2197 1746 1406	14324 14322 1113	189	602	3854 26711 27744	949 2917 2927	1385	737	1286	320	114	1002 3343	155	3686	19555 10 2 0
	1997 7565 40644 39139 7988 4604 43158 39341 4854 40185	1691 1470 1153 931	18337 18334 1410	126	631	3885 26828 26986	949 2938 2922	1425	757	1289	321	114	1010 3393	155	3588	20231 11 2 0
	1996 8700 45424 42606 9249 5328 48317 42934 5520 44916	1850 1615 1245 1014	20624 20621 1624	137	707	4051 27631 26933	994 2971 2942	1526	808	1347	336	118	1061 3501	161	3633	21786 12 2 0
	1995 7394 41030 38153 7920 4552 43713 38546 4657 40584 37603	2416 2110 1603 1327	18555 18553 1371	177	629	3881 28284 27830	954 2990 2970	1491	792	1291	325	113	1024 3596	154	3380	20441 11 2 0
	1994 7480 40143 37090 8085 4624 4277 37558 4651 39721	2159 1881 1398 1182	18663 18661 1408	157	634	4013 28009 28051	983 2984 2984	1574	833	1331	338	116	1063	157	3361	20543 11 2 0
	1993 7684 40094 36363 8400 4755 42684 36895 4693 39692 35985	2510 2180 1575 1365	19000 19000 1467	179	654	4144 28279 28279	1008 0 0	1675	879	1377	353	119	1102 3757	161	3334	21193 11 2 0
	OPTION EFURN GFURN OFURN HPMP GH2O OH2O EROOM GROOM	CAC HPMP GHPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC GAS			ELEC GAS OIL WOOD
	END-USE HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	СООК	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS

KENTUCKY UTILITIES COMPANY 1999 FORCAST AVERAGE UEC'S FERS - MULTI-FAMILY HOMES

		10 10 <del></del> 10	m 10 10	_		# ~ ·^	10 10 C	~	•	_	_	10				
	2013 3196 3196 23067 23245 1683 4209 24169 23502 2561 22932 22932 22932	1415 816 1614 546	4453 4705 1425	8	356	2514 1 <i>6757</i> 16926	926 2816 0	928	207	1244	8	92	774 2568	163	4803	13615 12 1 0
	2012 3185 23040 23223 1679 4215 24144 23459 2586 22878	1410 1604 545	4471 4721 1425	83	355	2522 16790 17001	927 2819 0	932	514	1243	8	76	775 2569	163	4727	13544 12 1 0
	2011 3173 23021 23208 1674 4225 24117 23413 2551 25833	1405 812 1594 544	4488 4736 1424	83	353	2535 16863 17110	929 2822 0	939	523	1241	<u>8</u>	8	775 2571	162	4650	13479 12 1 0
	2010 3163 23022 23212 1670 4242 24110 23380 2547 22816	1400 810 1584 543	4507 4751 1423	8	352	2547 16950 17223	930 2826 0	949	533	1240	8	26	776 2574	162	4574	13420 12 1 0
	2009 3153 23037 23221 1665 4265 24120 23349 2544 22825	1396 809 1575 542	4535 4778 1422	83	350	2554 17045 17317	931 2830 0	096	544	1240	138	92	778 2580	162	4499	13358 12 1
	2008 3142 23075 23248 1660 4292 24154 23329 253129 2541 2541	1391 808 1565 542	4564 4804 1422	83	348	2559 17161 17428	933 2835 0	116	557	1240	<u>86</u>	76	780 2589	162	4423	13294 13 1 0
	2007 3135 23130 23298 1656 4328 24208 23328 25927	1387 807 1557 541	4605 4842 1424	83	346	2574 17328 17594	934 2839 0	586	570	1242	8	92	782 2601	162	4349	13249 13 1 0
	2006 3125 3125 233178 23353 1651 1651 24254 2337 2339 2339 22378	1382 806 1549 541	4635 4869 1423	83	344	2579 17440 17714	935 2844 0	666	585	1244	8	92	785 2612	162	4272	13190 13 0
2	2005 3119 23271 2342 1648 4399 24328 23361 2341 23053	1379 807 1542 542	4679 4909 1426	84	342	2592 17595 17893	937 2848 0	1016	009	1248	700	26	789 2626	162	4198	13152 13 1
	2004 3118 23377 23337 4446 2443 24435 23413 23413 2346 23120	1378 808 1539 543	4719 4946 1434	84	341	2610 17704 18036	938 2853 0	1037	617	1255	200	92	794 2639	163	4116	13118 13 1 0
IMILL	2003 3119 23522 23636 1652 4492 24603 24603 23505 23504 23504	1379 812 1536 546	4764 4984 1438	84	340	2626 17828 18197	940 2859 0	1059	635	1261	201	92	799 2656	163	4029	13091 13 0
73-117	200 <u>7</u> 3131 23371 23823 1665 4554 4554 22894 23996 231596 23115	1387 821 1539 551	4833 5045 1449	82	340	2652 18008 18416	944 2872 0	1087	959	1270	202	11	808 2684	163	3953	13109 14 0
OTAL C	2001 3142 24026 23391 1684 4613 25206 25206 2602 23655 23399	1395 832 1540 556	4910 5110 1458	88	340	2676 18173 18623	948 2884 0	1118	819	1279	203	n	816 2716	<u>3</u>	3872	13131 14 1 0
LEP	2000 3148 24342 24175 1704 4664 4664 25596 22596 22114 2624 23977	1403 844 1538 562	4993 5178 1459	81	339	2691 18396 18858	952 2897 0	1151	700	1286	204	μ	823 2755	2	3784	13135 14 1 0
	1999 3140 24751 24400 1723 4690 26097 24400 2436 24412	1406 855 1530 565	5065 5233 1440	8.7	337	2684 18718 19163	956 2911 0	1181	720	1287	205	11	828 2806	163	3681	13083 15 1 0
	2556 2556 20343 20066 1426 3845 3845 21529 20117 2163 20092	1656 1021 1786 667	4243 4365 1180	103	328	2681 18573 19292	949 2920 0	1205	736	1283	204	26	829 2828	162	3564	12718 14 1 0
	1997 3187 25614 24656 1813 4821 27181 24782 27181 24782	1097 687 1172 445	5417 5545 1481	89	303	2704 18661 18771	949 2942 0	1238	756	1286	205	92	837 2868	162	3470	12802 16 1 0
	1996 3633 28738 28738 20948 5520 5520 30554 3129 3129 28411	1190 762 1261 491	6071 6179 1689	74	336	2820 19224 18739	994 2977 0	1324	808	1343	215	79	879 2953	168	3513	13627 17 1 0
	1995 3064 25975 24149 1823 4675 27665 24398 2657 2657 25689	1544 1001 1616 646	5450 5524 1416	%	339	2703 19686 19370	954 2997 0	1293	792	1289	207	92	848 3032	99	3268	12982 17 1 0
	1994 3075 25552 23607 1899 4699 27225 23905 2702 25282	1369 912 1407 586	5474 5505 1439	82	318	2797 19504 19533	983 2984 0	1369	837	1330	216	78	882 3061	<u>इ</u>	3251	13115 17 1 0
	1993 3106 25632 23247 1980 4755 27288 23587 23587 2754 25375	1567 1061 1575 685	5500 5500 1471	97	335	2891 19708 19708	1008	1440	881	1374	225	80	913 3112	168	3224	13534 18 1 0
	ION N P P R N N N N O O O O O O O O O O O O O O O	A. A.	<b></b> n	c)		r)	r)						•			. A
	OPTION EFURN GFURN OFURN HPMP GHRMP GH20 OH20 OH20 GROOM GROOM	CAC HPMP GHPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL	_	۵.				ELEC			ELEC GAS OIL WOOD
			_	. 1		EATER		ATOR 1	ATOR 2						ECTRIC	
	HEATING HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS
	回日	ರ	SE	SE	ΛĒ	¥.	8	22	22	FR	ā	×.	ă	Z	Б	F

#### KENTUCKY UTILITIES COMPANY 1999 FORCAST AVERAGE UEC'S FERS - MOBILE HOMES

	2013 5197 24535 24734 4322 4322 4191 25719 25008 3581 2402 2402	1543 2273 1607 799	21232 21309 1288	29	205	2743 18262 18262	926 2816 2795	1153	201	1240	272	11	1152 3800	143	4880	17647 15 1
	2012 5193 24512 24716 4314 4198 25698 24968 3575 24256	1542 2270 1597 799	21334 21412 1290	11	200	2752 18303 18303	927 2819 2803	1157	207	1239	272	11	1152 3799	143	4802	17572 15 1 0
	2011 5189 24497 24497 4305 4209 25676 24925 3568 34309 24214	1541 2267 1587 799	21436 21514 1291	2	498	2767 18385 18385	928 2822 2811	1165	516	1238	272	π	1153 3799	143	4724	17504 15 1 0
	2010 5188 24502 24715 4227 4227 25674 24896 3564 3564 24297	1540 2265 1578 800	21543 21622 1293	וו	496	2780 18482 18482	930 2826 2819	1176	525	1237	272	u	1155 3802	143	4647	17444 15 1 0
	2009 5188 24523 24730 4285 4250 25690 24868 3560 3400 24312	1540 2263 1569 800	21704 21783 1295	r	495	2788 18589 18589	931 2830 2827	1188	\$36	1237	272	μ	1157 3809	143	4570	17383 15 2 0
	2008 5189 24569 24764 4274 4278 25732 24852 3558 24362	1540 2261 1560 801	21866 21945 1297	r	493	2794 18719 18719	932 2835 2835	1202	549	1237	272	11	1160 3820	143	4493	17321 15 2 2 0
	2007 5195 24633 24633 24822 4264 4314 4314 4314 3559 24836 3559 24311	1541 2261 1552 803	22085 22164 1302	22	491	2810 18901 18901	934 2840 2843	1218	295	1239	273	4	1164 3836	143	4419	17283 15 2 0
	2006 5200 24689 24886 4349 25850 25850 3559 24491	1541 2260 1544 804	22257 22337 1305	22	489	2816 19026 19026	935 2844 2851	1235	376	1241	273	4	1168 3850	143	4340	17229 15 2 0
	2005 5213 5213 54793 74793 74793 74794 7474 74901 75933 7565 74478	1544 2262 1538 807	22498 22578 1311	22	487	2830 19196 19196	937 2849 2859	1257	592	1245	273	п	1174 3869	143	4265	17203 15 2 0
1	2004 5231 24911 25084 25084 25084 24435 2495 2495 24495 24495	1549 2266 1535 810	22726 2 22806 2 1322	73	487	2849 19314 19314	938 2853 2866	1282	610	1252	274	$\mu$	1181 3886	143	4182	17188 15 2 0
	2003 5262 25069 25201 25201 25201 26235 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25063 25	1558 2276 1533 816	22979 2 23057 2 1331	23	486	2867 19449 19449	940 2860 2876	1311	629	1259	275	$\iota\iota$	1189 3910	143	4094	17184 15 2 0
	2002 5316 25336 25402 4548 4544 26546 25268 3629 24971 24763	1576 2297 1535 825	23348 2 23425 2 1346	74	487	2895 19645 19645	944 2872 2890	1346	650	1268	276	78	1202 3951	₹	4016	17243 15 2 0
	2001 5367 25611 25584 25584 4602 26881 25475 25475 25228 25228 25228	1595 2319 1536 834	23726 2 23801 3 1360	75	488	2921 19827 19827	948 2884 2904	1385	672	1277	278	78	1214 3995	<del>1</del>	3934	17298 15 2 0
•	2000 5421 5521 25522 25782 25782 25782 27299 25718 25718 2573 2573 2573 2573 2573	1615 2342 1535 842	24158 2 24230 2 1368	25	489	2937 20070 20070	952 2897 2915	1426	694	1283	279	78	1225 4052	4	3844	17336 15 2 0
	1999 26390 26390 26024 26024 4680 27835 26035 26039 26039 25486	1633 2360 1527 847	24550 2 24616 3 1359	92	487	2929 20419 :: 20419 ::	956 2911 2924	1465	714	1285	280	78	1232 4127	₹	3739	17306 16 2 0
	1998 4486 21694 2 21404 2 3588 3837 22966 2 21459 2 21434 2 20992 2 20992 2	1942 2796 1783 1001	20608 2 20657 2 1121	8	457	2926 20261 20261	949 2921 2925	1498	731	1280	279	μ	1234 4159	143	3621	16620 14 2 0
	2652 2652 27322 26308 26308 26308 29003 29003 26442 27014 25840	1299 1863 1170 668	26358 2 26412 2 1417	8	453	2949 20349 20349	949 2942 2919	1542	751	1284	280	11	1245	142	3525	17016 16 3
	1996 6494 90671 28766 5500 5513 32617 28987 28987 24884 30329 28301	1420 2031 1259 734	29471 2 29523 2 1622	8	206	3075 20961 20961	994 2972 2938	1644	802	1340	293	80	1306 4345	148	3569	18269 17 3
	1995 5547 27726 3547 27726 4439 4670 29535 3 26047 26047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 25047 250	1865 2644 1614 969	26611 2 26645 2 1374	<b>%</b>	491	2946 21453 2 21453 2	954 2992 2970	1615	790	1286	283	n	1262 4470	141	3320	17329 16 3
	1994 5637 27293 2 25218 2 4509 4697 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25537 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2 25557 2	1675 2343 1406 876	26705 2 26724 2 1408	22	468	3047 21243 2 21243 2	983 2984 2984	1708	832	1325	295	92	1311 4526	145	3302	17474 16 3
	1993 5784 27395 24846 24846 463 463 475 29166 25210 27121 27121 24588	1948 2673 1575 1025	27000 2 27000 2 1456	\$	489	3146 21448 2 21448 2	1008 0 0	1811	880	1370	308	83	1358 4630	148	3275	18112 16 3
						7 7										
	OPTION BFURN GFURN OFURN HPMP GHPMP GH2O OH2O OH2O EROOM GROOM	CAC HPMP GHPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC			ELEC GAS OIL WOOD
						ITER		TOR 1	TOR 2						OTHER ELECTRIC	
	as o	Đ	EAT	100		R HEA		GERA.	GERA	ER		ER	œ	^	S ELE	70
	HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR	REFRIGERATOR	FREEZER	DISH	WASHER	DRYER	MICRO	OTHE	FUELS
	~	_			•	-	-									

## OLD DOMINION POWER COMPANY 1999 FORECAST AVERAGE UEC'S SINGLE FAMILY HOMES

2013	50589 50682 13538 52523 52773 7478.4 42704	3864.9 3252.1 2040.4	20715 20747 307.88	376.96	812.5	4171 29430 32816	1007.3 3093.4 3079.6	1210.5	565.86	1289.8	346.58	129.79	1083.5 3610	174.55	1478.2	170071 15 7
2012	50449 50525 13449 52531 52535 7433.2 42633	3835.1 3232.7 2031.4	20650 20681 306.52	376.52	813.51	4169.4 29456 32565	1006.8 3093.9 3079	1215.5	575.4	1286.1	346.01	129.38	1081.5 3603.7	174.23	1455.9	16913 15 7 0
2011	50494 50532 13392 52722 52464 7409.8 42709	3815.9 3222.4 2028.5	20627 20658 305.81	376.93	817.12	4191.2 29645 32460	1011.5 3110.9 3095.8	1225	587.25	1283.7	346.92	129.76	1087.5 3624.2	174.5	1439.7	16823 15 7 0
2010	50528 50495 13311 52895 52358 7379.4 42773	3792.5 3208.7 2023.7	20568 20598 304.54	376.69	820.05	4194.9 29700 321 <i>7</i> 9	1010.9 3112.2 3098	1236.8	600.35	1283.3	346.39	129.39	1086.8 3622	174.2	1417.6	16742 15 7 0
2009	51120 50625 13279 53295 52404 7356.6 43748	3799.4 3209 2024.8	20648 20675 304.65	377.6	824.74	4199 29732 31834	1011.6 3118.6 3105.9	1249.8	615.85	1284.7	346.29	129.21	1088.8 3627	174.05	1397	16659 15 7 0
2008	49861 49353 12862 52228 51080 7159.8 42535	3678.2 3117.7 1972.8	20462 20489 300.82	374.4	808.32	4185.8 29638 31363	1011.4 3122.9 3112.9	1258.7	628.16	1283.3	344.65	128.48	1086.2 3617.3	173.15	1370.7	16570 15 7 0
2007	49041 48201 12481 51345 49891 6971.2 41988	3579.1 3037.2 1925.6	20335 20361 297.89	371.95	792.17	4178.1 29581 30943	1012.3 3131.9 3125.3	1269.3	642.34	1283.9	343.33	127.9	1085.8 3615.2	172.36	1345.6	16786 15 7
2006	48145 46904 12072 50354 48594 6767 41368 41849	3471.4 2949.6 1872.9	20178 20203 294.55	368.98	772.84	4161.3 29461 30482	1012 3138.4 3135.8	1283.3	657	1285.9	341.5	127.09	1083.9 3608.3	171.33	1318.8	16402 15 7
2005	47362 45684 111688 49476 47405 6577.3 40855	3370.6 2868.2 1822.9	20040 20063 291.48	366.3	753.83	4151.2 29386 30097	1013 3150.7 3152.3	1302.4	672.89	1290.3	340.13	126.51	1084.7 3611.1	170.48	1294.1	16330 15 7 0
2004	46695 44615 11339 48741 46374 6406.7 40488	3279.6 2795.3 1777.1	19916 19937 288.65	363.89	736.44	4142.7 29284 29758	1014.1 3164.1 3169.9	1326.9	6.689	1297.2	338.99	125.99	1086.1 3613.9	169.68	1263.6	16255 14 7 0
2003	46138 43675 11038 48163 45477 6253.7 40219	3198.2 2732.3 1735.1	19813 19833 286.13	361.75	720.34	4139.7 29226 29499	1015.3 3178.7 3188.6	1357	707.75	1306.7	338.2	125.55	1088.1 3620.6	168.96	1234.4	16216 14 7 0
2002 9593.4	45640 42812 10771 47663 44654 6111.2 40006 39739	3123 2676.1 1694.6	19724 19742 283.83	359.76	704.8	4137.6 29178 29280	1016.5 3194.6 3208.1	1392.3	725.81	1318.1	337.69	125.16	1090.5 3630.7	168.29	1206	16222 15 7 0
2001	45356 42105 10559 47347 43985 5989.2 40089 39535	3061.7 2632.3 1660.1	19661 19678 281.92	358.25	691.02	4140.4 29169 29113	1018.3 3213.8 3230.6	1433.6	744.4	1330.2	337.69	124.92	1094.5 3648.1	167.75	1179	16227 15 7 0
2000 2000 9219.6	44896 41298 10339 46906 43206 3354.1 39980 39136	2992.9 2584.1 1621.6	19575 19590 279.68	356.27	675.33	4142.3 · 29158 28965	1019.5 3232 3251.6	1475.5	762.81	1341.5	337.6	124.54	1097.1 3663.2	167.08	1151.4	16242 15 7 0
1999	44472 40529 10154 46472 42458 5729.3 39998 38838	2932.6 2543.5 1586	19510 19523 277.76	354.54	660.07	4142.8 29036 28757	1020.8 3251.8 3273.7	1519.4	782.27	1353.2	337.87	124.21	1100.2 3675.9	166.46	1124.6	16269 15 7 0
1998 8875.5	43983 39669 10010 46033 41606 5617.1 40014	2881.1 2511.2 1554	19468 19480 276.17	353.15	645.39	4153.8 28990 28507	1023 3277 3300.1	1562.1	801.8	1365	338.77	124.07	1105.2 3697.9	99	1099.2	15227 13 6 0
1997 8567	42509 38248 9701.9 44633 40085 5416.8 38988 37208	2651.2 2323.8 1431.5	19087 19097 269.8	329.46	616.19	4155.9 28627 28206	1022.8 3296.8 3320.4	1599.7	821.39	1377	339.55	123.65	1107.1 3695.7	165.37	1072.3	15854 15 8 0
1996 8451.2	42343 37644 9608.7 44396 39349 5333.6 39397 36985	2618 2305.3 1417.1	19098 19106 269	328.82	604.16	4169.2 28515 27821	1025 3328.8 3350.6	1638.2	842.56	1390	342.61	123.63	1113.5 3724.4	165.08	1048.2	17162 16 9 0
1995 8191.6	41594 37118 9345.7 43542 38631 5162.3 39169 36685	2550.2 2245.3 1382.8	18943 18949 265.86	325.66	586.48	4161.8 28436 28282	1024.9 3356.1 3375.3	1665.6	858.19	1397.6	345.41	122.85	1113.2 3738.3	163.96	1018.6	16022 15 8 0
1994 8144.7	41593 37225 9317.2 43417 38506 5125.3 40407 37282	2563.8 2241.7 1389.1	18981 18983 268.96	326.45	580.94	4213 28129 28394	1023.7 3393.1 3405.4	1702.7	884.28	1414.7	352.98	123.22	1124.9 3752.2	164.2	990.15	16067 14 8 0
285 285	41861 37127 9050 43500 38105 4962 42791 37856	2526 2180 1365	19000 19000 263	320	564.56	4159 28381 28381	1008 3439 3439	1699	891	1401	355	121	1114 3801	191	ĭ	15543 22 17 0
OPTION EFURN	GFURN OFURN HPMP GH20 OH20 EROOM GROOM OROOM	CAC HPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL					•	ELEC GAS			ELEC GAS OIL WOOD
END-USE HEATING		COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS

## OLD DOMINION POWER COMPANY 1999 FORCAST AVERAGE UEC'S MULTI-FAMILY HOMES

								_	_	_	~	<b>+</b> 10	-	<b>~</b>	06.40
2013 4155.5 34724 36164 2866 33686 34711 3987.1 33137	2065.1 957.85 957.85	17439 15815 290.9	257.33	452.48	2862.7 20219 22532	1007 3077.4 3081.7	1015.3	558.38	1280	221.37	86.872	893.34 2966	182.14	1162.5	9659 7 6 0
2012 4138.7 34715 36114 2852.1 33763 3968.5 33170 33964	2054.7 953.9 953.9	17390 1 <i>5775</i> 289.84	256.84	452.58	2863.7 20253 22378	1006.5 3077.3 3081.2	1017.5	\$67.04	1276	220.99	86.582	891.26 2958.7	181.8	1144.8	9621 7 6
2011 4134.1 34837 36180 2844.9 33958 34670 3961.6 33319 34028	2049.8 952.76 952.76	173 <i>7</i> 7 15768 289.4	256.93	454.13	2880.9 20400 22324	1011.1 3093.5 3098.1	1023.4	16.77.81	1273.3	221.55	86.824	895.82 2973.3	182.09	1132.1	9586 7 6 0
2010 4123.4 34925 36193 3660 34660 3348.6 33435 34053	2041.4 950.19 950.19	17333 15733 288.43	256.58	455.04	2886.1 20458 22152	1010.5 3094.1 3100.5	1031.1	589.88	1272.5	221.2	86.563	894.86 2969.2	181.77	1114.7	9559
2002 4115.5 35052 36217 2817.5 34674 3938.3 33589 34109	2033.8 948.26 948.26	17338 15744 287.63	256.37	456.25	2892 20504 21952	1011.2 3099.6 3108.9	1040	603.32	1273.4	221.1	86.452	896.13 2971.5	181.61	1098.6	9530 7 6 0
2008 4035.7 34587 35594 2752.6 33922 34087 3859.2 33168	1990.1 929.75 929.75	17212 15635 284.68	254.22	449.29	2885.1 20456 21640	1011 3103 3115.9	1045.2	614.5	1271.5	220.04	85.943	893.54 2961.2	180.68	1077.8	9498 7 6 0
2007 3958.7 34168 34976 2687.7 33565 33530 3782.8 32774	1947.5 911.89 911.89	17090 15530 281.8	252.14	442.2	2882.4 20437 21374	1011.8 3111 3128.5	1051.6	626.82	1271.4	219.16	85.55	892.81 2957.3	179.85	1058.1	0740 7 0
2006 3873.7 33701 34264 2617.5 33152 32911 3698.9 32319	1900.9 891.73 891.73	16942 15404 278.53	249.71	433.83	2873.1 20372 21078	101-1.5 3116.3 3139.1	1060.6	639.44	1272.7	217.96	85.004	890.77 2949.4	178.78	1037	9441
200 <u>5</u> 3795.1 33291 33594 2551.8 32803 32352 3621.2 31919	1857.5 872.59 872.59	16809 15291 275.53	247.48	425.77	2868.3 20338 20832	1012.5 3127.2 3155.7	1073.7	653.1	1276.2	217.04	84.614	891 2949.4	177.89	1017.5	9419 6
2004 3724.1 32914 33003 2491.5 32523 31873 31563 31563	1817.9 854.73 854.73	16687 15189 272.72	245.4	418.29	2864.4 20284 20618	1013.6 3138.8 3173.4	1091	667.63	1282.2	216.28	84.26	891.65 2949.2	177.06	993.58	9393
2003 3660.5 32590 32487 2439.8 32332 31466 3487.5 31262	1783.5 838.12 838.12	16583 15105 270.25	243.52	411.32	2864.2 20260 20458	1014.7 3151.4 3192	1112.7	682.78	1290.6	215.71	83.959	892.81 2951.8	176.31	970.55	9388 6 6
2002 3601.2 32290 32290 2394.8 32188 31100 3428.3 30990	1752.9 822.05 822.05	16493 15034 268.01	241.75	404.58	2864.6 20241 20324	1015.9 3164.9 3211.6	1138.6	76.769	1301	215.33	83.691	894.28 2956.8	175.61	948.18	2405 2005 2005
2001 3550.6 32061 31626 2359.2 32140 30811 3377.6 30839	1728.2 808.01 808.01	16419 14980 266.06	240.24	398.59	2868.2 20250 20227	1017.7 3181.1 3233.8	1168.7	713.29	1311.9	215.25	83.521	896.87 2967	175.04	926.98	9423 6 0
2000 3500.1 31981 31224 2324.5 32254 30606 3322 30773	1705.6 792.93 792.93	16351 14991 264.83	238.63	391.83	2870.5 20250 20133	1018.9 3197.7 3254.8	1202.9	730.48	1323.1	215.14	83.268	898.95 2977.1	174.34	905.25	848 8 9
1999 3475.7 32576 30940 2301.4 33016 30820 3273.6 31328	1698.9 779.89 779.89	16352 15278 266.77	237.64	385.38	2870.2 20154 19977	1020.2 3222.1 3276.6	1252.2	755.59	1337.6	215.43	83.072	903.51 2994.5	173.7	884.14	9481
1998 3463.7 33251 30563 2288.4 33844 30953 31946 30389	1701.5 768.21 768.21	16374 15667 269.71	236.89	379.15	2878.4 20117 19794	1022.7 3256.1 3302.8	1306.7	783.32	1353.5	216.21	83.01	910.37 3027	173.22	864.21	9160 6 6 0
1997 3360.6 32238 29606 2228.8 33046 30012 3130.9 31061	1578.7 709.93 709.93	16046 15390 263.74	220.63	360.84	2881.7 19878 19598	1022.5 3272.4 3322.9	1337.8	801.46	1365.4	216.61	82.728	911.75 3023	172.56	843.09	9207 6 6 0
1996 3333.6 32215 29259 2217.4 33226 29711 3096.7 31094	1571.6 704.36 704.36	16043 15495 263.75	219.78	355.9	2892.5 19810 19340	1024.8 3303.6 3352.5	1372	822.9	1378.8	218.48	82.72	917.23 3047.6	172.26	824.14	9884 9 9
1995 3264.1 31960 29096 2176 33124 29556 3022.7 30861	1552.5 691.69 691.69	15909 15487 261.71	217.31	347.44	2889.5 19769 19671	1024.6 3330.5 3376.7	1398.9	839.49	1387.5	220.19	82.198	917.31 3062.8	171.09	800.85	9459 6 6 0
1994 3270.3 32540 29323 2175.8 33794 30038 3011.1 31986	1581.7 695.69 695.69	15973 15797 267.36	217.63	344.3	2929.4 19570 19757	1023.7 3382.8 3406	1453.4	876	1410	225.45	82.485	930.03 3094	171.34	778.66	9525 6 6 6 0
1993 3193 33135 29387 2122 34432 30162 2928 33871	1577 685 685	16000 16000 263	213	335.14	2896 19762 19762	1008 3439 3439	1465	168	1400	227	8	923 3149	168	740	9920 10 6
OPTION EFURN GFURN OFURN HPMP GH2O OH2O EROOM GROOM	CAC HPMP RAC	STOVE FIRE ELEC	SRAC		ELEC GAS OIL	ELEC GAS OIL						ELEC GAS			ELEC GAS OIL WOOD
END-USE HEATING	COOLING	SEC. HEAT	SEC. COOL	VENT	WATER HEATER	COOK	REFRIGERATOR 1	REFRIGERATOR 2	FREEZER	DISH	WASHER	DRYER	MICRO	OTHER ELECTRIC	FUELS

## OLD DOMINION POWER COMPANY 1999 FORCAST AVERAGE UEC'S

										AVER MOBI	AVEKAGE UEC'S MOBILE HOMES	MES										
END-USE HEATING	OPTION EFURN GFURN OFURN HPMF GH2O OH2O EROOM GROOM	1993 6007 24881 22066 4965 25855 22649 4387 25433	1994 6173.5 24562 21868 5083 25682 22775 4509.6 24050	1995 6195 24436 21582 2077.3 25671 22769 4526.2 23383 21871	1996 6339.1 24637 21591 5163.3 25936 22977 4627.2 23512 21981	1997 6404 24651 21745 5181.9 25967 23298 4670.8 23446	1998 6604 25402 22401 5315.5 26653 24058 4815.2 24092	1999 6690.3 25423 22602 5348.6 26728 24386 4873 24008	2000 6787.5 25401 22732 5401.3 26785 24639 4939.3 23909	2001 6892 25351 22858 5469 26825 24890 2011.1 23778	2002 6984.9 25284 22963 5537.2 26830 25103 5075.3 23689	2003 7093.5 25272 23118 5625.9 26901 25370 2151.2 23450	2004 7209.9 25294 23306 5728.9 27008 25666 5233.2 23634	2005 7339.6 25371 23547 5850.4 5850.4 5850.4 5375.4 5375.4 5375.4	2006 7482.4 7 25472 2 23833 2 5981.7 27412 2 26425 2 5427.6 5 23749 2	2007 7637.4 7637.4 7637.4 7638.2 77694 27694 27694 26882 25839.3 5539.3 54188	2008 7776.5 75 25769 2 25417 2 26250.9 65 27725 2 27728 2 2772	2009 7920.5 7920.5 7920.5 7920.5 7940.2 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940.5 7940	2010 7931.7 25709 24528 24528 24528 27980 27980 27675 27675 27675 27675 27675 27675 27675 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676 27676	2011 7943 75 25429 2 24304 2 2404.6 6 6404.6 6 27763 2 27625 2 5762.7 5 23501 2	2012 7952.9 7 7952.9 7 24221 2 6417.2 6 27602 2 27605 2 27605 2 27605 2 23375 2 24083 2	2013 1986.2 25279 24217 24217 2738 27672 5795 23331 24092
COOLING	CAC HPMP RAC	1992 2668 1025	2009.9 2721.9 1027.4	1989.7 2709.5 1009.7	2018.4 2749.3 1017.5	2031.1 2753 1016	2188.4 2957.9 1091.7	2208.3 2968.7 1099.4	2234 2 2988.9	2264.4 3016.2 1120.6	2293.1 3042.9 1130.3	2329.1 2 3079.7 3 1142.7 1	2369.9 3123.4 1155.8	2417.3 3176.2 3 1170.6 1	2469 2 3234.7 1186.9 1:	2524.8 2: 3299 3: 1204.9 1:	2575.3 26 3356.5 34 1219.8 12	2626.8 26 3416.1 34 1235.7 12	2633.5 26 3418.5 34 1231.2 17	2639.2 26 3419.2 34 1226.1 15	2644.7 2 3423.1 3 1223.1	2657.3 3436.8 1224
SEC. HEAT	STOVE FIRE ELEC	27000 27000 263	26986 26809 268.43	26947 26588 264.8	27177 26706 267.43	27181 26604 267.88	27739 27109 274.14	27793 27012 274.89	27879 26957 276.03	27984 26917 277.39	28071 26871 278.66	28183 26847 280.21	28318 26848 282.04	28485 26884 284.26 2	28667 2 26931 2 286.65	28876 2 27014 2 289.4 25	29040 2 27053 2 291.73 29	29211 22 27101 24 294.17 29	29162 2 26947 2 294.45 25	29170 2 26790 2 294.53	29187 2 26766 2 295 23	29266 26797 296.09
SEC. COOL	SRAC	267	270.15	267.41	268.35	267.42	285.54	284.93	284.71	284.68	284.51	284.68 2	285.06	285.74 2	286.63 24	287.85 28	288.68 28	289.66 28	288.51 28	287.24 28	286.27 2	285.99
VENT		490.14	500.76	503.48	515.04	521.48	547	555.05	563.7	572.66	580.45	589.26	598.37	608.23 6	618.81 6.	629.93 63	639.32 64	648.58 64	646.84 64	645.23 6	643.5 6	643.76
WATER HEATER	ELEC GAS OIL	3146 21468 21468	3185.8 21277 21480	3146.1 21508 21397	3151.4 21566 21046	3141.2 21650 21336	3139.5 21923 21564	3130.7 21957 21757	3129.9 3 22048 21920	3128.1 3 22056 22039	3125.7 3 22061 22171	3126.9 3 22096 22343	3128.8 22138 22545	3134.8 3 22212 3 22805	3141.9 3 22264 2 23101 2	3153.8 31 22350 2 23452 2	3158.9 31 22387 2 2 17752	3168.5 31 22455 2 24140 2	3163.9 31 22419 2 24387 2	3160.9 31 22374 2 24618 2	3143.5 3 22224 2 24692 2	3143.9 22197 24877
соок	ELEC GAS OIL	1008 3439 3439	1023.7 3379.8 3393.5	1024.8 3333 3352.2	1024.9 3301.1 3321.5	1022.6 3266.3 3287.1	1022.8 3247.1 3266.7	1020.5 3220.3 3236.2	3200 3 3200 3 3211.3	1018.1 1 3181.6 3 3188.1 3	1016.2 3163.1 3164.8	1015 1 3148.1 3 3145	1013.8 3134.7 3127	1012.8 1 3122.9 3 3110.7 3	1011.8 10 3112.2 31 3096.1 30	1012.2 10 3107.5 31 3088.2 30	1011.4 10 3100.3 :	3098 30 3075.3 30	1011.1 3093.5 3070.9	1011.9 10 3094.5 30 3074.2 30	1007.3 10 3078.9 30 3059.7 30	1007.8 3079.6 3062.5
REFRIGERATOR 1		1861	1850.2	1796	1760.5	1715.3	1674.9	1622	1569.8	1520.4	1474.5	1435.3	1403	1377.6	1358.4 13	1345.4 13	1336.4 13	1329.5 13	1318.4 13	1309.9	1301.9	1298.7
REFRIGERATOR 2		891	874.57	841.16	822.28	799.03	779.6	757.48	736.06	715.83	696.31	677.47 6	659.46	642.83 6	627.65	614.3 60	601.79 59	590.91 57	578.16 56	566.81 55	557.12 \$	549.55
FREEZER		1403	1409	1385.2	1374.4	1359.2	1346.9	1332.8	1319.7	1307.6	1295.6	1284.8	1276.5	1270.9	1268 13	1267.6 12	1268.6 12	1271.5 12	1271.3	1273 12	1275.9	1280
DISH		311	307.91 300.53		297.84	295.11	294.48	293.71	293.55 2	293.72	293.84 2	294.42 2	295.25	296.38	297.7	299.42 30	300.69 30	302.23 30	302.43 30	302.99 30	302.26 30	302.84
WASHER		83	83.504	83.233	83.761	83.767	84.053 8	84.142 8	84.358 8	84.609	84.775 8	85.043 8	85.348 8	85.709	86.11	86.67 87	87.078 87	87.605 87	87.728 88	88.022 87	87.767 88	88.052
DRYER	ELEC GAS	1374	1385 4624.7	1368.5 4605.2	1368.1 4586.5	1359.7	1357.5 1 4554.6 4	1350.4 1 4525.5 4	1345.8 4508.4 4	1342 1 4488.3 4	1336.9 1	1333.6 1 4453.6 4	1331.1 1 4445.3 4	1329.5 1:	1328.7 13	1331.5 13 4448 44	1332.4 13 4451.4 44	1336.2 13 4464.5 44	1334.3 13 4458.9 44	1335.9 4463.1 44	1329 13 4438.7 44	1331.9 4447.1
MICRO		148	150.94	150.73	151.75	152.02	152.6	153.02	153.59	154.2	154.7	155.32	155.98	156.72	157.5 15	158.44 15	159.17	159.99 16	160.13 16	160.41 16	160.16 16	160.45
OTHER ELECTRIC		808	952.27	979.52	1008	1031.2	1057	1081.4	1107.2	1133.8	1159.7	1187.1	1215.3	1244.6	1268.5 12	1294.3 13	1318.5	1344 13	1363.7 13	1385.2 14	1400.7 14	1422.2
FUELS	ELEC GAS OIL WOOD	14902 10 4	13768 7 3 0	13 <i>6</i> 74 7 3 0	14436 7 3 0	13357 7 3 0	13047 6 2 0	13697 7 3	13646 7 3	13604	13576 7 2 0	13547 1 7 2 0	13554	13593 1 7 2 0	13627 1: 7 2 0	13669 13 7 2 0	13713 13 7 2 0	13760 13 7 2 0	13805 13 7 2 0	13848 13 7 2 0	13897 1: 7 2 0	13951 7 2 0

# KENTUCKY UTILITIES COMPANY 1999 FORECAST

	2002	8909	\$879	\$561	5461	\$266	6053	6634	6654	0029	5513	5315	5857	601056	250170	024000	700233	709874	717623	718285	672454	692898	720585	726221	730619	734166		819	843	604	328	139	302	292	220	584	
	2001	6015	5826	5507	5405	5211	5997	6581	0099	6645	5456	5257	\$799	678813	76000	4679/0	685516	694640	702222	702870	658016	678021	705114	710485	714788	718258		819	843	604	328	139	302	292	220	<b>584</b>	
	2000	5974	5785	5467	5360	5164	5950	6535	6553	9659	5404	5204	5746	707377	10100	/17/00	674321	681905	689349	689985	645443	990599	691641	696023	700238	703638		819	843	604	328	139	302	292	220	<b>584</b>	
	1999	6026	5024	5406	5243	2099	5893	6489	6507	6249	5358	5159	5700	201277	04/103	648/90	655698	667165	674448	675070	633255	652507	678580	683553	687692	691031		862	551	899	328	139	302	292	220	<b>\$84</b>	
	1998	5801	5412	5257	\$190	4939	6332	6999	6480	6716	5838	4951	5378	076067	030700	631909	638637	644365	651399	652000	616063	634793	660158	665083	669111	672359		624	674	562	290	183	303	312	305	395	
	1997	\$676	5708	4952	2002	4813	5244	6334	6715	6250	5347	4983	5522	607017	019437	621050	627663	632352	639255	639845	601807	620103	644881	641714	645600	648735		735	774	473	370	55	790	302	191	623	
	1996	\$798	5950	5367	5314	5244	5857	6410	6432	9366	5126	4975	5593	2000	\$61600	606729	613189	620548	627321	627900	591034	609002	633337	631587	635411	638496		106	8	645	455	132	172	235	192	638	
ODEL	1995	5380	5434	4969	4759	4836	5543	6472	6762	6521	4865	4857	5572		591641	593182	599497	608607	615251	615818	577829	595397	619187	618684	622430	625452		716	869	541	251	152	289	413	288	989	
MONTHLY COMMERCIAL MODEL	1994	5750	5571	5141	2008	4809	5616	6385	6140	5840	5041	4652	5013		262068	566540	572572	585880	592276	592822	554828	571696	594540	204363	597962	600865		966	906	586	311	179	353	267	172	459	
COMIME	1993	5438	4949	5383	4945	4787	5383	6324	6205	6437	4986	4793	\$222		551829	553266	559156	565034	571201	571728	537192	553524	575642	275365	578850	281660		642	722	754	363	125	371	332	258	549	
ONTHLY	1992	\$218	5383	4782	4875	4857	5143	5743	5944	8690	4922	4672	5289		534103	535494	541195	547618	553595	554106	519224	535010	888988	390095	564362	201195		889	709	453	399	92	245	223	160	613	
X	1661	\$219	5332	4805	4779	4794	6107	5932	6220	6474	4976	4738	5314	,	518960	520311	525851	532651	538465	538962	506195	521585	547476	541477	544756	547401		701	719	568	241	253	334	327	262	511	
	1990	6832	4880	4731	4882	4526	5347	5826	1925	6273	\$106	4666	4970		510403	511732	517180	524526	530251	530741	496344	511434	521870	520110	531308	533888		846	490	477	374	117	296	244	250	465	
	1989		4843	4865	4977	4280	5379	5838	5503	6266	4647	4509	5346		•	493429	498682	507788	513331	513804	481002	20201	615420	616600	\$18877	521341	·	•	119	649	338	145	289	788	235	776	
	Source	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal		Internal	IIICIII	Internal	Internal	ğ	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal	Internal									
														nployment													other Variahl	(HDD)		(HDD)	(HDD)	(ממיז) (ממיז)	(00)		(CDD)	(HDD)	
	Series	kwn/customer Jenner	Januar y February	March	Anril	May	Iviay Ivas	July	August	August Sentember	September	October	December	Commercial Employment	January	February	March	Anril	May	Time	Julic	August	August	September	October	December	Interaction Weather Variables	Inning action we	February	Morch	And	Line	Inly	Angust	Sentember	December	
		Commercial						-				•																									

HDD - Heating Degree Days CDD - Cooling Degree Days 2.2

	2005	369230575 376554875 378673391 384184874 3873235 403889923 401805709 401505709 401505709 391912160 391931836 39492587	489074259 487457745 495322444 15127119969 153811210 153841210 1574904234 15306338608 15437489190 15530339597	x 55 55 50
	2004	3546.88791 361989731 364035920 36973866 36973896 319753913 386339052 31694972 31693978 3179913394	435645230 440743631 4415742499 4607805716 4770269122 4647181019 4779997266 4760241485 4878693778 4876693897	2 162 153 153 163
	2003	33933287 34655623 34854332 34874332 351075191 37331116 37331116 37331116 37331116 37331116 373311320 36195381 37355649 3619570	13794535629 1 3858662227 1 4402910699 1 4403011211 1 4217996874 1 441893797 1 441892797 1 441828797 1 441828797 1 4418288797 1 4418288797 1 4418288797 1	2 15 15 15 15 15 15 15 15 15 15 15 15 15
	2002	33477315 33231748 334211678 3389773 3477139 34934773 3493773 3403773 3403773 3403739 3433599 3438599	328731299 113 332168128 113 332259806 113 3397728806 13 3397728806 13 337256019 13 337256019 13 337356014 13 337356014 13 33737366 13 337373668 13 337373668 13 337373668 13	¥ 52 25 55
	2001	310731071 318077204 31989883 31989883 31733739 34374673 34374673 343748359 350705729 333072865 333078669 333078669	12746564297 11. 12731119559 11. 12797188782 11. 127971883949 11. 1310209688 1310209688 13112117578 13112117578 13112117578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 1311217578 131121757	24 152 193 193
	2000	301361394 308699638 310471720 313868012 331746570 331746570 331746570 31394308 31994308 319944018 319944018	12403137924 1: 1245245607 1: 1245245607 1: 1245245205 1: 1257046147 1: 1271414736 1: 1271414736 1: 1271416733 1: 1271613398 1: 127162313312 1: 127163313312 1:	54 162 153 103
	1999	291263110 277207407 30548707 303481733 3048133 313444973 311091594 311091594 313774437	11969387136 1 11933646800 1 12016739507 1 12147866672 1 1214786672 1 123914322 1 123817430 1 1238177430 1 1238177430 1 1236577430 1 1236577430 1	54 152 103
	1998	284674137 294674137 291761680 291761680 313067973 312017839 312017839 3141729 29488589 285594423	11447761703 1 1142106548 1 1149233562 1 1175619368 1 1190244508 1 118573417026 1 118573417474 1 118573417474 1 1202461766 1 1202461766 1 12014618374 1	78 161 160 160
1	1997	23472564 282308910 27537074 267398193 287384400 28673530 304773345 301063678 287438673 287438673 287438673	10862948670 110862948670 11096048714488 1109607064725 11103964673 111039667499 11103560767 1103560767 1103560767 1103546414 11103346414 11170131856	17 139 164 63
	788	242366115 265102681 25202349 26238719 771029812 27102445 2871646143 265376871 268341036	10224075008 1 10264634649 1 1033103853 1 103103853 1 105161807503 1 1075616062 1 1075616062 1 1075610048 1 1075610048 1 1075610048 1 1075610048 1	2 2 2 2 2 2 2
	1995	240564254 24283608 242837020 24582043 261496428 27078777 27078777 27078777 27078777 27078777 27078777 270789113 277568012 27756912 2742403217	9996009789 9996009789 101212161059 10197441647 1013080179397 10131868942 10158937176 10478494000 1046817847	50 146 263 160
	1994	24047176 24047176 243192676 243192676 24319267 24319267 24319821 243194263 243194263 2441681193 246561991	9517257102 9550637246 9638920300 9697538613 9706494149 9818825639 9921489964 10029872367 984225199 10069887313	90 208 133
	. 1993	224763434 2115192362 221856961 221856961 2218515157 2215151811 241392188 2613331958 2313816275 231816275	9264357557 9221901066 9227389122 9310331951 932043810 9231812191 929053077 931176273 9313922976	48 232 186 142
	767	199543259 221736990 217687994 217087094 227066184 219902001 237783914 22677502 223337014 22575524 217876534	8898800134 8893570476 8931513777 906073008 912377396 918323778 918323778 918323989 9183233989 9183233989 9183233989 9183233989 91803326 9146995723	20 115 83 83
	1861	192615386 208499088 194311733 20182285 20182285 223567112 24273081 244913092 209649798 21332012	8424849421 84253739618 84253738 8447713355 8438271947 8438721947 84153734 841137744 841137744 841137744 841137744 841137744	118 185 179 130
	<u>861</u>	196052010 203951670 200718299 20450827 210489945 210489945 21079231 202078346 202078361 197820976	8551851254 8552006384 8593502669 8585451401 8665714605 87181186821 8713711958 8713711958 865146773103	39 155 107 121
	8861	18322937 18478307 193782276 184676207 20532889 203824039 190906291 128936340 184678388	8331765822 8331765822 8389038246 846692438 856126730 8518363459 8518363459 8518363459 8518363459 8518363459 8518363459	53 147 151 108
	Source	Internal	CBER CBER CBER CBER CBER CBER CBER CBER	ables Internal Internal Internal
			lory Ουφυί	Veather Vari (CDD) (CDD) (CDD) (CDD)
	Series	kWh January February March April May June July August September October November	Service Territory Output January February March April May June July August September October November	Interaction Weather Variables June (CDD) 1 July (CDD) 1 August (CDD) 1 September (CDD) 1
	Rate Class	Industrial		•

#### KENTUCKY UTILITIES COMPANY 1999 FORECAST ANNUAL MODELS HISTORICAL/FORECAST

1861	36943 0.21691 285490 0	44745 0.28597 0	2191431857 5937 410 0.03879	1847819614 986713446 972 0.050016	861106168 4494 387636 0	1993 44740 0.24056 336500 0 60000 0.21557	2825717990 8824 598 0.02712	4055839372 2139345160 1154 0.03483 191649212 4282 533675
1980	36633 0.21971 281828 0	43576 0.28451 0	2112828381 5768 674 0.03489	1815224537 994609415 1276 0.046250	820615122 4547 389097 0	1992 41367 0.24732 331220 1 1 58794 0.22090	2656252854 8641 281 0.02784	3819266362 1977508689 811 0.035146 1841757673 398 536174
226	36414 0.21592 276768 0	43550 0.28295 0	2139160953 5983 348 0.03674	1680100414 872664137 860 0.050406	807436277 4677 396274 0	1991 39184 0.25205 326497 1 57249 0.22499	2537594007 8020 612 0.02909	3872524 508 2070213329 1315 0.036237 1802311179 3843 520838
82.61	34028 0.21789 268521 0	41201 0.28139 0	1951014382 6011 453 0.03867	1700057374 870809433 1064 0.052277	829247941 5069 383695 0	37418 0.25403 322475 322475 1 1 53676 0.23268	2493597313 8189 422 0.02937	3679240080 1930263399 995 0.036925 1748976681 4095 \$12875
1231	31244 0.20651 261065 0	40098 0.27842 0	1983281314 5970 613 0.03399	1601622443 861796867 1335 0.048200	739825576 5119 361663 0	35900 0.25196 318310 318310 1 54172 0.24000	2335857219 8045 459 0.03020	3563683855 1852150503 1036 0.038306 17115333352 4181 428637
2761	32098 0.20622 253833	39834 0.27792 0	1855288828 5560 266 0.03077	1400151946 755763638 705 0.046068	644388308 3883 348050 0	34737 0.24934 314366 1 52604 0.24800	2223729860 7704 729 0.03306	3516539300 1818001523 1305 0.042130 1698537775 4214 479726
1975	29491 0.20614 246741	39156 0.27699 0	1695989679 5060 574 0.03606	1299510792 728699734 1129 0.052200	570811058 4154 330854 0	34211 0.24875 310543 310543 1 51485 0.25324	2074098216 7090 662 0.03616	3554754315 1778796872 1346 0.045653 1775957443 4271 4271
1974	28360 0.20601 239807 0	37979 0.27647 0	1704100000 5347 262 0.02968	1174295256 655336786 751 0.047755	518958470 3769 320962 0	37272 0.22607 305050 0 50150 0	2509939031 6555 545 0.04001 0	2626435780 142091332 1238 0.049695 1203522458 440958
223	26672 0.20571 233024 0	37927 0.27648 0	1716903384 5539 475 0.02786	1169776771 668511690 1097 0.047828	501265081 4018 314304 0	1985 37549 0.27405 299686 0 48583 0.26954	2441599781 6598 357 0.04099	2422831645 1277830132 952 0.050449 11145001513 4321 4321 43209
22.61	23624 0.20533 226257	36071 0.27273 0	1578298488 4925 279 0.03016	\$78065605 \$19065605 \$100 \$100	451308197 3988 301650 0	37600 0.22137 295423 0 47274 0.28151	2433149777 6532 454 0.04057	2265014722 1177197291 1057 0.050790 1087817431 4685 411444
1261	21606 0.20507 219686 0	34785 0.26805 0	1445189344 4341 397 0.03061	923087135 517804673 1016 0.052333	405282462 4566 283095	1983 37937 0.22010 291763 0 46258 0.28757	2288905439 5772 778 0.04202	2056153565 1154741318 1343 0.052248 901414247 3971 3971
1970	19224 0.20480 213303 0	34425 0.26940 0	1361044291 4187 439 0.03053	841412383 487174956 1133 0.053435	354237427 - 272492 0	37480 0.21744 288490 0 45314 0.28660	2129208484 5647 345 0.04090	2028516215 1046311095 952 0.051605 982205120 4527 387677
Source	Internal Internal Internal Internal	Internal Internal Internal	Internal CBER Internal Internal	Internal Internal Internal	Internal CBER Internal	internal internal internal internal internal internal internal	Internal CBER Internal Internal Internal	Internal Internal Internal Internal Internal Internal CRER Internal
	-	Street Lights Total Fixtures K.W. per Fixture Binary Verlable	1 Annual kWh Service Territory Output (000,000's) Cooling Degree Days Industrial Price Binary Variable	iai Annual kWh Cooling Season Summer kWh Cooling Degret Days Conmercial Price	Heating Season Winter RWn Heating Degree Days Commercial Employment Binary Variable	COL-POP Lights Total Fixtures KW per Fixture Households Binary Veriable Street Lights Total Fixtures KW per Fixture Binary Veriable	d Annual kWh Service Terniory Output (000,000's) Cooling Degree Days Industrial Price Binary Variable	ial Annual kWh Cooling Staton Summer kWh Cooling Degree bays Commercial Price Healing Season Winer kWh Healing Degree bays Commercial Employment Binary Variable
Rate Class	ການໃນ ການໃ		Industrial	Commercial		Lighting	Industrial	Commercial

CBER - Center for Business & Economic Research

## KENTUCKY UTILITIES COMPANY 1999 FORECAST ANNUAL MODELS HISTORICAL/FORECAST

-					
2003 89598 0.19348 399830	70255 0.12234 0	4195652783 13336 533	5470542177 2838100962 1096	2632441215 4278 707237 1	2013 117167 0.14986
2002 84889 0.19789 393146	69196 0.12731 0	4066633844 12808 533	5330741850 2763498311 10%	2267243539 4278 692681	2012 114744 0.15422
2001 80269 0.20240 386588	68171 0.13593 0	3945349685 12338 533	5172150219 2693848810 1096	2478301409 4278 677953	2011 112281 0.15857
2000 75573 0.20716 319922	67248 0.14477 0	3820214721 11931 533	5046793252 2631576714 1096	2415216538 4278 665416 1	2010 109793 0.16293
1999 70882 0.21238 0	66631 0.15372 0	3692240506 11575 533	4924988685 2570342649 1096	2354646036 4778 650697	107194 0.16729
65959 0.21975 366757 0	66931 0.16320 0	3543766049 11150 650 0.02553	4837925086 2594886348 1783 0.033282	2238038738 4083 633192 1	2008 104580 0.17165
62368 0.2178 0.005	65402 0.17831 0	3368713285 10620 383 0.02553	4548866163 2375352731 857 0.033460	2173513432 4220 619599 1	2007 101908 0.17601
38837 0.21676 0	60813 0.20569 0	3208366548 9977 357 0.02602	4576353929 2374634088 904 0.033663	2201719841 4863 607031	2006 99102 0.18037
24599 54599 0.22077 351163	62676 0.20387 0	3073482030 9691 619 0.02719	4334754354 2308441645 1208 0.034871	2026312709 3890 594183	2005 96102 0.18473
49316 49316 0.23193 943726	61388 0.20983 0	2949269080 9304 503 0.02702	4162960169 2171788610 1040 0.034661	1991171559 4583 570477 1	2004 94100 0.18910
Internal Internal Internal Internal	Internal Internal Internal	Internal CBER Internal Internal Internal	Internal Internal Internal Internal	Internal Internal CBER Internal	Internal Internal
COL. POP Lights Total Fixture K.W. per Fixture Households Binary Variable Street Lights	Total Fixtures KW per Fixture Binary Variable	Annual kWh Service Ternitory Output (000,000's) Cooling Degree Days Industrial Price Binary Variable	Commercial Aurual kWh Coming Seaon Summer kWh Cooling Degree Day Commercial Price Hedring Season	Winter kWh Weating Degree Days Comunercial Employment Binary Variable	COL-POP Lights Total Fixtures KW per Fixture
Lighting		Industrial	Commercial		Lighting

2009 2010 2011 2012 2013	107194 109793 112281	CLD10 C28210 F0C310 0C210	776010 100010 00000 100000	424807 428496 432027 435524	0 0 0 0 0		76705 77781 78858 79934	4 0.12234 0.12234 0.12234 0.12234	0 0 0 0	2 4995293756 5140246302 5284510912 5428530562 5573851029	16511 17073 17631 18186	533 533 533		1 1 1 1	6 6206417211 6334847387 6462626792 6591371638 6720709315		5 322202513 3287556004 3352664716 3418331726 3484386484	9601 9601 9601			1 5884214698 3047291383 3109962076 3173039912 3236322831	4278 4278 4278 4278	11/01/0 11/10 11/10 07/001
2008	104580	0 1716		421096	•		75625	0.12234	Ŭ	4850712052	15952	533			6079338046		3157400225	1096			2921937821	4278	9000
2002	101908	0 17601		417304	•		74552	0.12234	•	4708486590	15409	533			5954408658		3093863897	1096			2860544761	4278	210017
2006	99102	0 18037		413320	0		73476	0.12234	•	4568016618	14879	533		-	5828617572		3029658141	1096			2798959431	4278	451400
2005	96102	0 18473		409062	0		72400	0.12234	•	4455047531	14363	533		-	5703081639		2965662856	9601			2737418783	4278	0000
5007	94100	0.18910	100,007	406221	•		71326	0.12234	•	4323783779	13853	533			5607297397		2915997071	1096			2691300326	4278	2017100
	Internal	Internal		Internal	Internal		Internal	Internal	Internal	Internat	CBER	Internal	Internal		Internal				Internal	•		Internal	
COL-POP Lights	Total Fixtures	KW per Fixture	Homerholds	Households	Binary Variable	Street Lights	Total Fixtures	KW per Fixture	Binary Variable	Armual kWh	Service Territory Output (000,000's)	Cooling Degree Days	Industrial Price	Binary Variable	Commercial Annual kWh	Cooling Season	Summer kWh	Cooling Degree Days	Commercial Price	Heating Season	Winter kWh	Heating Degree Days	Employment.
Lighting										Industrial					Commercial								

CBER - Center for Business & Economic Research

## KENTUCKY UTILITIES COMPANY 1999 FORECAST ANNUAL MODEL

	2013 24.9 138.520 0.46%	14.9 37.500 42.14%
	2012 24.9 139.520 0.58%	14.9 37.025 45.32%
	2011 24.9 138.520 0.76%	14.9 36.950 48.79%
	2010 24.9 137.625 0.98%	14.9 36.975 56.47%
	200 <u>9</u> 24.9 135.353 1.40%	14.9 35.450 59.41%
	2008 24.9 133.406 1.83%	14.9 35.500 61.58%
	2007 24.9 131.802 1 2.19%	14.9 35.000 53.97%
	2006 24.9 130.436 1.57%	14.9 34.200 38.43% 6
	2005 20 24.9 129.735 13 2.99%	14.9 34.800 3 69.77% 64
	2004 200 24.9 129.159 12: 3.24% 2	14.9 34.250 58.19% 69
ST		14.9 33.675 34 65.56% 68.
ORECA	2003 4.9 24.9 330 128.175 7% 3.44%	-
ORICAL/FC	2002 9 24.9 3 127.630 6 3.77%	9 14.9 0 33.750 % 64.84%
HISTO	2001 24.9 127.283 4.02%	34.000
	2000 24.9 124.954 3.83%	14.9 34.350 65.68%
	24.9 24.9 125.100 3.90%	36.822
	1998 24.9 120.536 3.94%	16.4 34.811 67.64%
	1997 24.9 119.555 6.73%	14.9 34.629 65.77%
	1996 24.9 116.032 8.28%	14.9 35.986
	199 <u>\$</u> 18.8 117.042 6.80%	14.6 34.776
	urce ernal of ernal	emal )[
	Source Internal D RDI Internal	3
	Series Est kWh/ton Est tonnage (000T) Est market share	West kWh/ton West townage (000T)
	Rate Class Mine Power	

RDI - Resource Data International

OLD DOMINION POWER 1999 FORECAST ANNUAL MODELS HISTORICAL/FORECAST

1984	3382 0.20706 22301	2423 0.24712 0	126 21888485	3094 110.2 1115.7 144.3 22301	788	5224 0.20976 25157	2828 0.14863 1	167 23698943	3998.00 182.3 0.0 247.8 25157					
1983	3411 0.20714 22173	2385 0.24761 0	124 20502892	3088 91.5 106.0 135.1 22173	1998	5025 0.20876 24807	2749 0.15224 1	167 23698943	3919.00 174.8 0.0 235.3 24807	2013	0.20976 28247	3175 0.13279 1	167 23698943	4840.00 227.7 0.0 358.3 28247
1983	3387 0.20707 22006	2386 0.24740 0	120	3059 93.7 99.5 140.8 22006	1997	4835 0.20954 24459	2750 0.15677 1	161 24091150	3851.00 164.1 15.9 231.6 24459	2013	0.20976 28247	3150 0.13279 1	167 23698943	4780.00 224.4 0.0 350.9 28247
1861	3257 0.20715 19886	2371 0.24750 0	118 19327658	3022 99.6 82.4 129.6 19886	<b>3</b> 66	4610 0.21056 24248	2714 0.15908 1	161 25443740	3801.00 144.1 31.8 225.3 24248	75011	7306 0.20976 28247	3125 0.13279 1	167 23698943	4720.00 221.2 0.0 343.5 28247
<b>861</b>	3201 0.20715 18946	2366 0.24748 0	117 19318772	2295 84.8 121.1 18946 0	3881	4405 0.21068 24073	2708 0.15961 1	161 24487171	3728.00 138.1 58.8 217.3 24073	2010	0.20976 28247	3100 0.13279 1	167 23698943	4660.00 218.0 0.0 336.0 28247
22.51	3210 0.20730 19340	2331 0.24448 0	114 17314325	3023 70.4 104.5 122.7 19340	188	4188 0.20923 23713	2699 0.15866 1	165 23821872	3666.00 121.7 93.7 207.6 23713	2009	0.20976 0.20976 0.7972	3076 0.13279 1	167 23698943	4599.00 214.7 0.0 328.0 27970
1978	2984 0.20733 20894	2268 0.24070 0	112 16327950	3051 49.7 86.7 116.8 20894 0	<u> 1993</u>	3963 0.20815 23436	2684 0.16061 1	174 23925485	3603.00 118.8 99.0 200.4 23436	<u>2008</u>	0.20976 27693	3051 0.13279 1	167 23698943	4539.00 211.5 0.0 320.0 27693
77.61	2824 0.20717 20244	2260 0.24067 0	113 15421636	2969 48.4 85.9 107.7 20244	2661	3763 0.20832 23157	, 2676 0.17143 1	170 25248840	2527.00 127.2 99.9 189.4 23157	2007	0.20976	3026 0.13407 1	167 23698943	4479.00 208.2 0.0 312.0 27417
9761	2636 0.20718 19611	2240 0.24424 0	112	2877 43.2 89.3 95.6 19611	1881	3643 0.20811 22883	2664 0.18367 1	152 25743392	3478.00 123.9 92.1 184.4 22883	<u>2006</u>	0.20976 27142	3001 0.13579 1	167 23698943	4419.00 205.0 0.0 304.0 27142
3231	2393 0.20720 18997	2228 0.24434 0	105 8438494	2770 31.1 82.7 83.5 18997	<u> </u>	3530 0.20705 22622	2632 0.18509 1	141 25290096	3441.00 131.0 93.0 174.1 22622	2005	0.20976 26868	2976 0.13753 1	167 23698943	4358.00 201.8 0.0 296.0 26868
1974	0.20711 18399	2213 0.24427 0	97 6627005	2687 26.7 79.4 75.3 18399	383	3425 0.207 22512		141 25093296	3373.00 135.2 93.5 162.9 22512	2004	0.20976 26595	2952 0.1393 1	167 23698943	428.00 198.5 0.0 288.0 26595
2281	1963 0.20712 17818	2205 0.24296 0	308 6208381	2620 26.2 82.3 70.8 17818	886	3314 0.20723 22476	2548 0.20038 1	140 25391839	3356.00 131.4 95.0 160.6 22476	2003	26322	2927 0.14111 1	167 23698943	4238.00 195.3 0.0 280.0 26322
1972	0.20714 17253	2139 0.24309 0	315 5580025	2507 27.1 72.8 53.6 17253	7861	3309 0.20695 22423	2592 0.22185 1	136 24700027	3564.00 124.9 103.5 157.0 22423	2002	0.20976 26051	2902 0.14294 1	167 23698943	4178.00 192.0 0.0 272.0 26051
1261	1426 0.20700 16704	2082 0.24210 0	296 5346996	2407 24.2 58.1 52.5 16704 0	9861	3313 0.20699 22389	2503 0.24272 0	130 24042525	3211.00 108.5 103.7 153.2 22389 0	2001	0.20976 25781	2877 0.1448 1	167 23698943	4118.00 188.8 0.0 264.0 25781
1970	0.20700 16171	2054 0.23771 0	287 4643492	2307 26.4 60.8 45.6 16171	\$861	3319 0.20706 22401	2476 0.24528 0	127 21581749	3143.00 106.4 111.3 148.7 22401 0	2000	0.20976 25511	2853 0.1467 1	167 23698943	4058.00 185.6 0.0 256.0 25511
Source	Internal Internal Internal	Internal Internal Internal	Internal	Internal Internal Internal Internal Internal Internal		Internal Internal Internal	Internal Internal Internal	Internal Internal	Internal Internal Internal Internal Internal Internal	1	Internal Internal	Internal Internal Internal	Internal Internal	Internal Internal Internal Internal Internal Internal
Series COL-POP Liebte	Total Fixtures KW per Fixture Households	Total Fixtures KW per Fixture Binary Variable	Customers kWh Sales	al Customers SIC 12 gWh Lergs Mining gWh All Other gWh Households	COL-POP Lights	Total Fixtures KW per Fixture Households Street Lichts	Total Fixtures kWh per Fixture Binary Variable	Customers kWh Sates	il Customers SIC 12 gWh Large Mining gWh All Other gWh Houscholds	COL-POP Lights	KW per Fixture Households Street Liehts	Total Fixtures kWh per Fixture Bingry Variable	Customera kWh Sales	a Customers SIC 12 gWh Large Mining gWh All Other gWh Households Binary Veriable
Rate Class			All Electric Schools	Commercial/Industrial	Lighting			All Electric Schools	Commercial/Industrial Customers SIC 12 gw Lerge Muli All Other gi Household Binsty Ver	Lighting			All Electric Schools	Commercial/Industrial

CBER - Center for Business & Economic Research

#### KENTUCKY UTILITIES COMPANY 1999 FORECAST ANNUAL MODEL HISTORICAL/FORECAST

	1282	403723405 52931	883055991 225100634	34690514 1049 3675								
	1988	393709000 52614	856383918 240781401	33941407 1312 3838	2001	607633154 61736	1279689580 367058456	41656731 1110 3639	2013	794694447 68346	1757574842 591864713	49333442 1110 3639
	1987	377475300 52300	814402494 223297457	33094945 1355 3474	2000	591950985 61171	1242148926 350985741	41017005 1110 3639	2012	779601114 67870	1718113954 573553826	48693716 1110 3639
	1986	365240500 51994	766034357 186800290	32933527 1272 3529	1999	\$76176189 60592	1206662937 337307887	40377279 1110 3639	2011	764454852 67386	1678761554 555369389	48053990 1110 3639
	1985	340350200 51690	729527583 182239898	31102989 987 3556	1998	564409000 60025	1164012515 320870823	39110840 1311 2988	2010	749268894	1639304228 537062654	47414264 1110 3639
	1984	324725800 51395	711818692 191284597	30735707 1076 3992	1991	531829000	1124964724 313909965	37413428 867 3744	5009	734069703	1599661898 518540282	46774538 1110 3639
	1983	322410000 51102	691350548 173806047	30383305 1347 3537	1996	527521680 58418	1117180734 292298608	38826200 906 4135	2008	718883744	1559982148 499974295	46134812 1110 3639
ECAST	1982	305465500 50817	652787056 164614386	28261792 974 3632	1995	515855600 57512	1038617230 1087927600 290868789 295282862	38683648 1219 3655	2007	8	1480829951 1520375695 463083948 481493741	45495086 1110 3639
HISTORICAL/FORECAST	1981	295797700 50535	651588565 172819523	28764498 985 3881	1994	488033600 56451	1038617230 290868789	35954806 1049 3614	2006	688128090 64876	1480829951 463083948	44855360 1110 3639
HISTO	1980	293938800 50258	657346860 179574170	28788642 1281 3933	1993	479026800 55730	942281829 ######### 253999754 277634525	36794804 1159 3595	2005	61	1401579028 ######## 426078529 445012822	44215634 1110 3639
	1979	259314700 49062	616800376 191135731	27401487 874 4138	1992	440294400 54992	942281829 253999754	35398826 826 3425	2006	656155065 63654	1401579028 426078529	43575908 1110 3639
	1978	256035500 47897	588491316 189587483	27438610 1073 4463	1881	444570096 54180	950370489	36791812 1335 3269	2003	639738502 62978	1360247798 405587622	42936182 1110 3639
	1977	243551800 467ģ2	576830253 188907969	27707220 1393 3990	1990	419542182 53256	896670674 243365884	34068866 1017 3167	2002	623507192 62330	1319379600 385636413	422964 <i>57</i> 1110 3639
	Source	Internal Internal	Internal Internal	Internal Internal Internal		Internal Internal	Internal Internal	Internal Internal Internal		Internal Internal	Internal Internal	Internal Internal Internal
	Series	KWh Sales Households	Transmussion kWh Sales Industrial Output	Paris kWh Sales Cooling Degree Days Heating Degree Days		Primary kWh Sales Households	Irensmussion kWh Sales Industrial Output	Fans kWh Sales Cooling Degree Days Heating Degree Days		Primary kWh Sales Households	Transmission kWh Sales Industrial Output	Faris kWh Sales Cooling Degree Days Heating Degree Days
	Rate Class	Municipal				Municipal				Municipal		

```
COMMEND DATA FILES
```

```
;EX4: Exogenous Variables
    2 ;file version: do not edit
                                                  ; file description
"KU 00Fcast uncalibrated"
; Exogenous Variables
; Exog Var Data Definitions
   33 ; Number of variables
 1975 ; Year Vars Begin
 2029 ; Year Vars End
;Exog Vars
            "Deg Days" "Heating degree days"
"HDD"
           "Deg Days" "Cooling degree days"
"CDD"
"P:HDD"
            "Deg Days" "Peak heating degree days"
           "Deg Days" "Peak cooling degree days"
"P:CDD"
           "Hours"
                       "Op Hours Small Office"
"OPHSMO"
            "Hours"
                       "Op Hours Large Office"
"OPHLGO"
                       "Op Hours Restaurant"
"OPHRES"
            "Hours"
                       "Op Hours Retail"
"OPHRET"
            "Hours"
            "Hours"
                       "Op Hours Grocery".
"OPHGRC"
                       "Op Hours Warehouse"
"OPHWRH"
           "Hours"
                       "Op Hours Schools"
"OPHSCH"
            "Hours"
            "Hours"
                       "Op Hours Colleges"
"OPHCOL"
                       "Op Hours Health"
"OPHHLT"
           "Hours"
"OPHLDG"
            "Hours"
                       "Op Hours Lodging"
"OPHMSC"
            "Hours"
                       "Op Hours Miscellaneous"
"GDP"
                       "Gross Domestic Product"
            "bill$"
"RESCUSTS" "Custs"
                       "Residential Customers"
"RateBlk1" "%"
"RateBlk2" "%"
"RateBlk3" "%"
"RateBlk4" "%"
"smelmult" "index"
                       "Small Office Electric Calibration Factor"
"loelmult" "index"
                       "Large Office Electric Calibration Factor"
"whelmult" "index"
                       "Warehouse Electric Calibration Factor"
                       "Foodstore Electric Calibration Factor"
"fdelmult" "index"
"rtelmult" "index"
                       "Retail Electric Calibration Factor"
                       "Schools electric calibration Factor"
"Scelmult" "index"
"Coelmult" "index"
                       "College electric calibration Factor"
"rselmult" "index"
                       "Restaurant electric calibration factor"
"hlelmult" "index"
                       "Health electric calibration factor"
"lgelmult" "index"
                       "Lodging electric calibration factor"
"mielmult" "index"
                       "Miscellaneous electric calibration factor"
"nselmult" "index"
                       "Not-In-Scope electric calibration factor"
; Exog Var Data Values
```

·24							
;	HDD	CDD	P:HDD	P:CDD	OPHSMO	OPHLGO	OPHRES
OPHRE ; De	ET eg Days	Deg Days	Deg Days	Deg Days	Hours	Hours	Hours
Hours	4013	1129	40	12	55	65	90
70 ;	1975 4466	705	40	12	55	65	90
70 ;	1976 4620	1335	40	12	55	65	90
70 ;		1064	40	12	55	65	90
70 ;		860	40	12	55	65	90
70 ;	1979			•			
70 ;		1276	40	12	55	. 65	90
70 ;	4497 1981	972	40	12	55	65	90
70.;	4301 1982	952	40	12	55	65	90
70 ;	4173 1983	1343	. 40	12	55	65	90
70 ;	4596	1057	40	12	55	65	90
70 ;	4215	952	40	12	55	65	90
	4198	1258	40	12	55	65	90
70 ;	4151	1346	40	12	57	67	94
70.7	; 1987 4437	1304	40	12	59	. 69	98
71.4	; 1988 4237	1036	40	12	61	71	102
72.1	; 1989 3801	995	40	12	63	73	106
72.8	; 1990 3915	1315	40	12	64	74	
73.1	; 1991 4025	811	40	12	65	75	110
	; 1992 4277				66	76	112
73.7	; 1993	1154	40	12			
74 ;		1040	40	12	67	77	114
74.3	4333 ; 1995	1208	40	12	68	78	116
74.3	4346 ; 1996	1099	40	12	68	78	116
74.3	4346 ; 1997	1099	40	12	68	. 78	116
	4346 ; 1998	1099	40	12	68	78	. 116
	4346	1099	40	12	68	78	116
	; 1999 4346 ; 2000	1099	40	12	68	78	116

	4346	1099	40	12	68	78	116
74.3	; 2001 4346	1099	40	12	68	78	116
74.3	; 2002 4346	1099	40	12	68	78	116
74.3	; 2003						
74.3	4346 ; 2004	1099	40	12	68	78	116
	4346	1099	40	12	68	78	116
	; 2005 4346	1099	40	12	68	78	116
74.3	; 2006 4346	1099	40	12	68	78	116
74.3	; 2007			12	68	78	116
74.3	4346 ; 2008	1099	40				
74 3	4346 ; 2009	1099	40	12	. 68	78	116
	4346	1099	40	12	68	78	116
74.3	; 2010 4346	1099	40	12	68	78	116
74.3	; 2011 4346	1099	40	12	68	78	116
74.3	; 2012						
74.3	4346 ; 2013	1099	40	12	68	78	116
	4346 ; 2014	1099	40	12	68	78	116
	4346	1099	40	12	68	78	116
74.3	; 2015 4346	1099	40	12	68	78	116
74.3	; 2016			12	<b>68</b> .	78	116
74.3	4346 ; 2017	1099	. 40				
74.3	4346 ; 2018	1099	40	12	68	78	116
	4346	1099	40	12	68	78	116
74.3	; 2019 4346	1099	40	12	68	78	116
74.3	; 2020 4346	1099	40	12	68	78	116
74.3	; 2021						116
74.3	4346 ; 2022	1099	40	12	68	78	
74.3	4346 ; 2023	1099	40	12	68	78	116
	4346	1099	40	12	68	78	116
	; 2024 4346	1099	40	12	68	78	116
74.3	; 2025 4346	1099	40	12	68	78	116
74.3	; 2026		40	12	68	78	116
74.3	4346 ; 2027	1099	40	12	00	70	110
; GDP	OPHGRC	OPHWRH	OPHSCH	OPHCOL	OPHHLT	OPHLDG	OPHMSC

; Hours	Hours	Hours	Hours	Hours	Hours	Hours
bill\$ 115	50	55	75	168	168	70
3222 ; 1975 115	50	55	75	168	168	70
3381 ; 1976 115	50	55	75	168	168	70
3533 ; 1977						
115 3704 ; 1978	50	55	75	168	168	70
115 3797 ; 1979	50 -		75	168	168	70
115 3776 ; 1980	50	55	75	168	168	70
115 3843 ; 1981	50	55	75	168	168	70
115 3760 ; 1982	50	55	75	168	168	70
115	50	55	75	168	168	70
3907 ; 1983 115	50	55	75	168	168	70
4149 ; 1984 115	50	55	75	168	168	70
4280 ; 1985 115	50	55	75	168	168	70
4405 ; 1986 116	51.3	57.3	77.3	168	168	72
4540 ; 1987 117	52.6					
4719 ; 1988		59.6	79.6	168	168	74
118 4837 ; 1989	53.9	61.9	81.9	168	168	76
119 4885 ; 1990	55.2	64.2	84.2	168	168	78
119.5 4821 ; 1991	55.8	65.3	85.3	168	168	79
120 4920 ; 1992	56.4	66.4	86.4	168	168	80
120.5	57	67.5	87.5	168	168	81
5070 ; 1993 121	57.6	68.6	88.6	168	168	82
5227 ; 1994 121.5	58.2	69.7	89.7	168	168	83
5344 ; 1995 121.5	58.2	69.7	89.7	168	168	83
5479 ; 1996 121.5	58.2	69.7	89.7	168	168	83
5619 ; 1997 121.5	58.2	69.7	89.7	168	168	83
5748 ; 1998 121.5	58.2	69.7	89.7	168	168	83
5888 ; 1999						
121.5 6032 ; 2000	58.2	69.7	89.7	168	168	83
121.5 6171 ; 2001	58.2	69.7	89.7	168	168	83

*:* . .

121.5 6312 ; 2002	58.2	69.7	89.7	168	168	83
121.5 6465 ; 2003	58.2	69.7	89.7	168	168	83
121.5	58.2	69.7	89.7	168	168	83
6604 ; 2004 121.5	58.2	69.7	89.7	168	168	83
6731 ; 2005 121.5	58.2	69.7	89.7	168	168	83
6858 ; 2006 121.5	58.2	69.7	89.7	168	168	83
7005 ; 2007 121.5	58.2	69.7	89.7	168	168	83
7135 ; 2008 121.5	58.2	69.7	89.7	168	168	83
7255 ; 2009	58.2	69.7	89.7	168	168	83
121.5 7387 ; 2010						**
121.5 7520 ; 2011	58.2	69.7	89.7	168	168	. 83
121.5 7653 ; 2012	58.2	69.7	89.7	168	168	83
121.5 7780 ; 2013	58.2	69.7	89.7	168	168	83
121.5 7911 ; 2014	58.2	69.7	89.7	168	168	83
121.5	58.2	69.7	89.7	168	168	83
8041 ; 2015	58.2	69.7	89.7	168	168	83
8173 ; 2016 121.5	58.2	69.7	89.7	168	168	. 83
8308 ; 2017 121.5	58.2	69.7	89.7	168	168	83
8449 ; 2018 121.5	58.2	69.7	89.7	168	168	83
8593 ; 2019 121.5	58.2	69.7	89.7	168	168	83
8739 ; 2020 121.5			89.7	168	1 <b>6</b> 8	. 83
8888 ; 2021	58.2		•	•		83
121.5 9039 ; 2022		69.7			168	
121.5 9192 ; 2023	58.2	69.7			168	83
121.5 9300 ; 2024	58.2	69.7	89.7	168	168	83
121.5 9450 ; 2025	58.2	69.7	89.7	168	168	83
121.5 9600 ; 2026	58.2	69.7	89.7		168	83
121.5	58.2	69.7	89.7	168	168	83
9700 ; 2027			B . B315	B-4 571		3 3 3 1
; RESCUSTS whelmult						
; Custs index	8	8	8	ક	index	index

. . .

239122	0.1	0.2	0.33	0.5	0	0
0 ; 1975 247308	0.1	0.2	0.33	0.5	0	0
0 ; 1976 255717	0.1	0.2	0.33	0.5	0	0
0 ; 1977						
264386 0 ; 1978	0.1	0.2.	0.33	0.5	0	0
276768 0 ; 1979	0.1	0.2	0.33	0.5	0	0
281828	0.1	0.2	0.33	0.5	0	0
0 ; 1980 285490	0.1	0.2	0.33	0.5	0	0
0 ; 1981 288490	0.1	0.2	0.33	0.5	0	0
0 ; 1982				•	_	•
291763 0 ; 1983	0.1	0.2	0.33	0.5	0	0
295423 0 ; 1984	0.1	0.2	0.33	0.5	0	0
299686 0 ; 1985	0.1	0.2	0.33	0.5	0	0
305050	0.1	0.2	0.33	0.5	0	0
0 ; 1986 310543	0.1	0.2	0.33	0.5	0	0
0 ; 1987					_	
314366 0 ; 1988	. 0.1	0.2	0.33	0.5	0	0
318310 0 ; 1989	0.1	0.2	0.33	0.5	0	0
322475	0.1	0.2	0.33	0.5	0	0
0 ; 1990 32 <u>6</u> 497	0.1	0.2	0.33	0.5	0	0
0 ; 1991 331220	0.1	0.2	0.33	0.5	1	1
1 ; 1992		•				
336618 0.91 ; 1993	0.1	0.2	0.33	0.5	0.95	0.96
342101 0.9 ; 1994	0.1	0.2	0.33	0.5	0.95	0.99
347676	0.1	0.2	0.33	0.5	1.02	1.1
0.9 ; 1995 351771	0.1	0.2	0.33	0.5	1.02	1.1
0.9 ; 1996 355920	0.1	0.2	0.33			
0.9 ; 1997				0.5	1.02	1.1
360126 0.9 ; 1998	0.1	0.2	0.33	0.5	1.02	1.1
364381 0.9 ; 1999	0.1	0.2	0.33	0.5	1.02	1.1
368699	0.1	0.2	0.33	0.5	1.02	1.1
0.9 ; 2000 371798	0.1	0.2	0.33	0.5	1.02	1.1
0.9 ; 2001 374924	0.1	0.2	0.33	0.5		
0.9; 2002	0.1	0.2	0.33	0.5	1.02	1.1

٠.٠

. 2.2

	378091	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2003	0.2	• • •				
	381273	0.1	0.2	0.33	0.5	1.02	1.1
	0.9; 2004						
	384476	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2005						
	387011	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2006			0 22	0.5	1.02	1.1
	389564	0.1	0.2	0.33	0.5	1.02	1.1
	0.9; 2007	0.1	0.2	0.33	0.5	1.02	1.1
	392143 0.9 ; 2008	0.1		0.55			
	394738	0.1	0.2	0.33	0.5	1.02	1.1
	0.9; 2009						
	397360	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2010						
	399362	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2011			0.22	0.5	1.02	1.1
	401381	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2012 403415	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2013	0.1	• • • • • • • • • • • • • • • • • • • •				
	405462	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2014						
	407522	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2015			0 22	0.5	1 02	1.1
	408998	0.1	0.2	0.33	0.5	1.02	T • T
	0.9 ; 2016 410485	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2017	0.1	0.2	0.55	0.0		
	411978	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2018						
	413480	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2019			0.22	0 5	1.02	1.1
	414990	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2020 415891	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2021	0.1	0.2	,			
	416797	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2022						
	417713	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2023	0.1	0.2	0.33	0.5	1.02	1.1
	418713 0.9 ; 2024	0.1	0.2	0.33	0.5	1.02	
	419713	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2025						
	420000	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2026						1.1
	421000	0.1	0.2	0.33	0.5	1.02	1.1
	0.9 ; 2027						
•	; fdelmult	rtelmult	Scelmult	Coelmult	rselmult	hlelmult	lgelmult
	mielmult	<del></del>					
	; index	index	index	index	index	index	index
	index		^	0	0	0	0
	0 . 1075	0	0	U	U	J	5
	0 ; 1975						

---

u e

0	0	0	0	0	0	0
0 ; 1976 0	0	0	0	0	0	0
0 ; 1977 0	0	0	0	0	0	0
0 ; 1978 0	0	0	0	0	0	0
0;1979	0	0	0	0	0	0
0 ; 1980		0	0	0	0	0
0 ; 1981	0					
0 0 ; 1982	0	0	0	0	0	0
0 0 ; 1983	0	0	. 0	0	0	0
0 0 ; 1984	0	0	0	0	0	0
0 ; 1985	0	0	0	0	0	0
0 ; 1986	0	0	0	0	0	0
0	0	0	<b>O</b>	0	. 0	0
0; 1987	0	0	0	0	0	0 -
0 ; 1988 0	0	0	· 0	0	0	0
0 ; 1989 0	0	0	0	0	0	0
0 ; 1990 0	0	0	0	0	0	0
0 ; 1991 1	1	1	1	1	1	1
1; 1992	0.97	1.05	1	1 .	0.99	0.98
0.91 ; 1993						
0.94 0.86 ; 1994	0.97	1.05	1	1	1	1.02
0.92 0.75 ; 1995	0.97	1.09	1	1	1	1.04
0.92 0.76 ; 1996	0.97	1.09	1	1	1	1.04
0.92 0.73 ; 1997	0.97	1.09	1	1	1	1.04
0.92 0.71 ; 1998	0.97	1.09	1	1	1	1.04
0.71 ; 1999 0.71 ; 1999	0.97	1.09	1	1	1	1.04
0.92	0.97	1.09	1	1	1	1.04
0.72 ; 2000 0.92	0.97	1.09	1	1 .	1	1.04
0.68 ; 2001 0.92	0.97	1.09	1	1	1	1.04
0.69 ; 2002 0.92	0.97	1.09	1	1	1	1.04
0.67 ; 2003	- · · ·	_ • • •	_	<del>-</del>	_	<del>-</del>

	0.92	0.97	1.09	1	1	1	1.04
0.67;	2004			•	•	•	1 04
0.67;	0.92	0.97	1.09	1	1	1 .	1.04
0.6/;	0.92	0.97	1.09	1	1	1	1.04
0.67;	2006			_	_		
	0.92	0.97	1.09	1	1	1	1.04
0.65;	0.92	0.97	1.09	1	1	1	1.04
0.65;		0.57					
	0.92	0.97	1.09	1	1	1	1.04
0.65 ;		0 07	1 00	1	1	1	1.04
0.65 ;	0.92	0.97	1.09	<b>-</b>	<b>-</b>	1	1.04
0.05 /	0.92	0.97	1.09	1	1	1	1.04
0.65 ;	2011					_	
	0.92	0.97	1.09	1	1	1	1.04
0.66;	2012 0.92	0.97	1.09	1	1	1	1.04
0.66;		0.37	1.03	•	-	_	
,	0.92	0.97	1.09	1	1	1	1.04
0.66;					•	•	1 04
0.00	0.92	0.97	1.09	1	1	1	1.04
0.66;	0.92	0.97	1.09	1	1	1	1.04
0.66;							
	0.92	0.97	1.09	1	1	1	1.04
0.68 ;		0.07	1 00	1	1	1	1.04
0.68;	0.92	0.97	1.09	1	1	τ.	1.04
0.00 ,	0.92	0.97	1.09	1	1	1	1.04
0.71 ;						_	
	0.92	0.97	1.09	1	1	1	1.04
0.72 ;	2020 0.92	0.97	1.09	1	1	1	1.04
0.72 ;		0.57	1.05	_	_	_	
• • • • • • • • • • • • • • • • • • • •	0.92	0.97	1.09	1	1	1	1.04
0.72 ;				•	•	7	1.04
0.74 ;	0.92	0.97	1.09	1	1	1	1.04
0.74 ;	0.92	0.97	1.09	1	1	1	1.04
0.75 ;							
	0.92	0.97	1.09	1	1	1	1.04
0.75 ;		0.97	1.09	1	1	1	1.04
0.75 ;	0.92 2026	V.31	1.09	<b>-</b>	•	-	
· · • /	0.92	0.97	1.09	1	1	1	1.04
0.75 ;	2027						

; nselmult ; index 0 ; 1975 0 ; 1976 0 ; 1977 0 ; 1978 0 ; 1979 0 ; 1980

```
0 ; 1982
         0 ; 1983
         0; 1984
         0; 1985
         0 ; 1986
         0 ; 1987
         0; 1988
         0; 1989
         0 ; 1990
         0; 1991.
         1; 1992
      1.12 ; 1993
      1.14 ; 1994
      1.19 ; 1995
       1.2 ; 1996
       1.2 ; 1997
      1.12 ; 1998
      1.05 ; 1999
      1.05 ; 2000
      0.96; 2001
         1; 2002
      0.99; 2003
      0.98 ; 2004
      0.98 ; 2005
      0.97 ; 2006
      0.94; 2007
      0.94 ; 2008
      0.94; 2009
      0.95 ; 2010
      0.95 ; 2011
      0.95 ; 2012
      0.96 ; 2013
      0.97 ; 2014
      0.97 ; 2015
      0.98 ; 2016
      0.98 ; 2017
      0.99 ; 2018
       0.99; 2019
          1; 2020
       0.99 ; 2021
       0.99; 2022
          1; 2023
          1 ; 2024
       1.01; 2025
       1.01 ; 2026
       1.01; 2027
;Spreadsheet Links
;P:HDD
```

; HDD 11 11

; CDD ## FF

0 ; 1981

```
0 ""
er 17
;P:CDD
                           0 ""
FT 57
;OPHSMO
                           0 ""
11 11
;OPHLGO
                           0 ""
11 11
;OPHRES
                            0 ""
11 17
;OPHRET
                            0 ""
; OPHGRC
                            0 ""
;OPHWRH
                            0 ""
;OPHSCH
                            0 ""
                                                 17 17
;OPHCOL
                            0 ""
                                                 17 17
;OPHHLT
                                                 97 77
                            0 ""
;OPHLDG
                            0 ""
 ;OPHMSC
                            0 ""
 ;GDP
                                                 97 17
                            0 ""
 ; RESCUSTS
                            0 ""
                                                 11 11
 ;RateBlk1
                            0 ""
 ;RateBlk2
                                                  17 11
                             0 ""
 ;RateBlk3
                            0 ""
 ;RateBlk4
                             0 ""
```

;smelmult

11 17	0 ""	11 11
;;loelmult	0 ""	11 17
; ;whelmult ""	0 ""	71 11
; ;fdelmult "" ;	0 11 11	11 71
;rtelmult	0 ""	n n
;Scelmult	0 ""	<b>n</b> n
;Coelmult	0 ,,,,	11 11
;rselmult	0 ""	. 41 41
;hlelmult	0 ""	11 11
;lgelmult	0 ""	nn
;mielmult	О пп	nn
;nselmult	0 44	18 18
;end of file		

```
;EX1: Fuel Prices
    3 ;file version: do not edit
                                                ;file description
"KU 1998 Price Forecast for 99Fcast"
;Fuel Price Data Definitions
    3 ; Number of fuels
 1980 ; Year Fuel History Begins
 1997 ; Year Fuel History Ends
 2029 ; Year Fuel Forecast Ends
 1992 ; Base Year For Real Prices
; Fuel Definitions
;Fuel
          Units
                    #Rates Description
"Elec"
          "kwh"
                       1 "Elec"
                        1 "Gas"
"Gas"
          "therm"
                       1 "Oil"
          "mmbtu"
"Oil"
; Rate Definitions
;Elec
;Rate Rate Definition
"Elec" "Elec"
;Gas
        Rate Definition
;Rate
       "Gas"
"Gas"
;Oil
        Rate Definition
;Rate
"Oil"
       "Oil"
;Fuel Prices
;
                  Gas ·
       Elec
                          Oil
;
       Elec
                  Gas
                            Oil
;
              $/therm
                        $/mmbtu Deflator
      $/kwh
                                   0.5785 ; 1980
                          4.12
     0.0407
                0.289
                0.335
                           5.47
                                    0.63 ; 1981
     0.0481
                           5.28
                                   0.6658 ; 1982
                0.433
     0.0516
                                   0.6978 ; 1983
                           4.84
     0.0531
                0.506
                                   0.7258 ; 1984
     0.0527
                0.493
                           5.09
                           4.89
                                   0.7539 ; 1985
                0.495
     0.0528
                                   0.7776 ; 1986
                           3.08
                0.455
     0.0513
                                     0.81 ; 1987
                           2.98
     0.0481
                0.411
                                   0.8442 ; 1988
                0.406
                           2.91
     0.0455
                           3.05
                                   0.8841 ; 1989
                0.419
     0.0435
                           3.61
                                   0.9291 ; 1990
      0.044
                0.435
```

0.0441

0.424

0.9694 ; 1991

## CONFIDENTIAL INFORMATION REDACTED

```
0.422
                        0
                               1.0027 ; 1992
0.0433
                      2.76
                               1.03 ; 1993
0.043
            0.46
                               1.0516 ; 1994
                      2.56
           0.566
0.0435
                               1.0797 ; 1995
                     2.747
           0.488
0.0446
                                 1.11 ; 1996
           0.527
                      3.17
0.0442
                                1.124 ; 1997
                      2.96
0.0441
            0.59
                               1.144 ; 1998
           Q.561
                     2.321
0.0432
                                1.166 ; 1999
                      2.49
                     2.545
                                1.192 ; 2000
                                1.217 ; 2001
                     2.609
                                1.243 ; 2002
                     2.709
                                1.273 ; 2003
                     2.831
                                1.305 ; 2004
                     2.961
                     3.097
                                1.339 ; 2005
                                1.376 ; 2006
                     3.269
                                1.415 ; 2007
                     3.462
                     3.627
                                1.456 ; 2008
                                  1.5 ; 2009
                     3.803
                                1.546 ; 2010
                     4.003
                                1.596 ; 2011
                     4.231
                                1.649 ; 2012
                     4.475
                                1.703 ; 2013
                     4.727
                                1.761 ; 2014
                     4.998
                                1.821 ; 2015
                     5.282
                     5.598
                                1.884 ; 2016
                                1.951 ; 2017
                     5.936
                                2.021 ; 2018
                     6.293
                                2.096 ; 2019
                     6.676
                                2.175..; 2020
                     7.063
                     7.436
                                2.259 ; 2021
                                2.348 ; 2022
                     7.834
                                2.41 ; 2023
                     8.148
                     8.546
                                2.495 ; 2024
                     8.959
                                2.582 ; 2025
                      9.39
                                2.672 ; 2026
                                2.764 ; 2027
                     9.836
                                2.859; 2028
                     10.302
```

```
;Spreadsheet Links
;
;Elec
"" 0 "" ""
;Gas
"" 0 "" ""
;Oil
"" 0 "" ""
;Fuel Price Deflator
;
;end of file
```

```
;MP1: Market Profile
    2 ;file version: do not edit
                                                   ;file description
"ku00Fcast uncalibrated"
; End Use Definitions
;Energy Units
                        thousands millions
            1000ths
;Units
                                               ;Elec
                                   "gWh"
"kWh"
           "Wh"
                       "mWh"
                                   "bBtu"
"kBtu"
                       "mBtu"
                                               ;Gas
           "Btu"
                                   "bBtu"
                                               ;Oil
"kBtu"
            "Btu"
                       "mBtu"
1992 ; Energy Base Year
   10 ; Number of End Uses
                                             Pen E
                                  Life
         Long Name
                                                      G
                                                          0
; Name
                                             100 "X" "X" "X"
                                  18
"HEAT"
        "SPACE HEATING"
                                             100 "X" "X" ""
"COOL"
        "COOLING"
                                  18
                                             100 "X" ""
"VENT"
        "VENTILATION"
                                  18
"WATR"
                                  10
                                             100 "X" "X" "X"
        "WATER HEATING"
                                             100 "X" "X"
                                                         "X"
                                  10
"COOK"
        "COOKING"
                                             100 "X" ""
                                                          PF 11
                                  10
"REFR"
        "REFRIGERATION"
                                             100 "X" ""
"XLIT"
        "NON-BUILDING"
                                  33
                                             100 "X" ""
                                  7
"ILIT"
        "LIGHTING"
        "OFFICE EQUIPMENT"
                                   7
                                             100 "X" ""
"OFEQ"
                                 7
"MISC" "MISCELLANEOUS"
                                             100 "X" "X" ""
 SMALL OFFICES
; Average Shares
                                                                                MISC
                                                      XLIT
                                                               ILIT
                                                                       OFEQ
; HEAT
           COOL
                    VENT
                             WATR
                                     COOK
                                              REFR
                                     33.8
                                              38.5
                                                       100
                                                                100
                                                                        100
                                                                                 100
   29.9
           84.4
                     100
                               42
;Elec
                                                                           0
                                                                                   0
                             35.8
                                                 0
                                                          0
                                                                  0
   64.1
                       0
                                         0
;Gas
                       0
                                0
                                         0
                                                 0
                                                          0
                                                                  0
                                                                           0
                                                                                   0
    2.6
               0
;Oil
;Average EUIs
                                                      XLIT
                                                               ILIT
                                                                       OFEQ
                                                                                MISC
                    VENT
                             WATR
                                     COOK
                                              REFR
; HEAT
           COOL
                                                                                1.75
                                                               4.53
                                                                        1.4
                                     1.74
                                              0.42
                                                       2.1
   5.61
            4.46
                     1.8
                             0.52
;Elec
                                                                  0
                                                                                0.92
                            16.32
                                     6.81
                                                 0
                                                          0
 61.94
          30.31
                       0
;Gas
                                                                          0
                                                                                   0
                                         0
                                                 0
                                                          0
                                                                  0
  350.5
               0
                       0
                            125.4
;Oil
;Marginal Shares
                                                                                MISC
; HEAT
                                                      XLIT
                                                               ILIT
                                                                       OFEQ
           COOL
                    VENT
                             WATR
                                     COOK
                                              REFR
                                                                                 100
              90
                     100
                             61.9
                                     56.8
                                              56.8
                                                        100
                                                                100
                                                                       79.3
     50
;Elec
                                                 0
                                                          0
                                                                  0
                                                                           0
                                                                                   0
               0
                       0
                             16.5
                                         0
     30
;Gas
                                                                           0
                                                                                   0
               0
                                         0
                                                 0
                                                          0
                                                                  0
      3
                       0
                                0
;Oil
```

÷

;	•								
;Marginal									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC .
5.6	4.45	1.8	0.52	1.74	0.42	2.1	4.52	1.4	1.75
;Elec		•	16 20	c 01	•	^	^	^	0.00
61.94	30.31	0	16.32	6.81	0	0	0	0	0.92
;Gas	0	0	125.2	0	0	0	0	0	0
349.9	U	U	125.2	U	U	U	O	U	U
;Oil									
; . INDGE	OFFICES								
, DAKGE	OFFICED								,
;Average	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
46.3	92.9	100	62.3	52.6	73.6	100	100	100	100
;Elec									
47.7	0	0	25.9	17.4	0	0	0	0	0
;Gas									
2.4	0	0	7.8	0	0	0	0	0	0
;Oil									
;									
;Average								0770	\
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5.03	6.54	2.82	0.55	0.97	0.39	2.11	6.54	2.82	2.33
;Elec		•	14 67	0.76	0	0	0	0	0.15
38.59	48.67	0	14.67	8.76	U	U	U	U	0.15
;Gas	0	0	121.66	0	0	0	0	0	Ö
245.36	U	U	121.00	U	U	U	O	U	U
;Oil									
; ;Marginal	Shares				•	,			
; HEAT	COOL	VENT	WATR	соок	REFR	XLIT	ILIT	OFEQ	MISC
56	100	100	74.3	60.4	75	100	99.1	97	100
;Elec	100	104	,	33.1				<u> </u>	
42	0	. 0	25.7	15	0	0	0	0	0
;Gas									
0	0	0	0	0	. 0	0	0	0	0
;Oil									
;									
;Margina	l EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5	6.5	2.8	0.55	0.96	0.39	2.1	6.5	2.8	2.32
;Elec		_			•	•	•	•	0.15
38.59	48.67	0	14.67	8.76	0	0	0	0	0.15
;Gas	0	0	101 66	0	0	0	0	0	0
245.36	0	U	121.66	U	U	. 0	U	U	U
;Oil									
; ; WAREHO	Office C								
; WAREHO	COEC								
, ;Average	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
16	15.8	100	42.2	54.9	65.6	100	100	100	100
;Elec									
43.9	0	. 0	13.9	0.5	0	0	0	0	0
;Gas									

__

				_		_	_		
4.4	0	0	28.4	0	0	0	0	0	0
;Oil									•
; ;Average	TIIT e								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.3	1.62	0.21	0.13	0.42	3.34	0.52	1.91	0.15	0.19
;Elec									_
50.28	0	0	6.35	2.94	0	0	0	0	0.21
;Gas									
169.71	0	0	11.19	0	0	0	0	0	0
;Oil									
;						•			
;Marginal		****	***	2007	DEFE	VIIM	TT TM	0000	MTOO
; HEAT	COOL	VENT	WATR 52.7	COOK 4.5	REFR 23.9	XLIT 100	ILIT 100	OFEQ 0	MISC 100
16	18	100	32.7	4.5	23.3	100	100	U	100
;Elec 40	0	0	15.3	2.4	0	0	0	0	0
;Gas	U	U	13.3	4.1	· ·		J	Ū	· ·
0	0	0	0	0	0	0	0	0	0
;0il		_				•			
;									
;Marginal	EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.5	1.7	0.22	0.14	0.44	3.5	0.54	2	0.16	0.2
;Elec	_	_					•	•	0.01
50.28	0	0	6.35	2.94	0	0	0	0	0.21
;Gas	•	0	. 11 10	0	0	0	0	0	0
169.71	0	U	11.19	U	U	U	U	U	U
;Oil						•			
; FOODST	ORES								
;	01.22								
;Average	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
30	67.8	100	49.5	51.8	99.8	100	100	100	100
;Elec									
58.4	0	0	34.1	4.2	0	0	0	0	0
;Gas	_	_			_	•	•	•	
3.3	0	0	7.1	1	0	0	0	0	0
;Oil									
; ;Average	FIITe								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
6.83	4.19	2.32	1	4.86	26.35	1.46	8.73	0.6	1.3
;Elec			_						
51.7	70	0	21.39	15.27	0	0	0	0	0.04
;Gas									
101.17	0	0	19.54	51.56	0	0	0	0	0
;Oil									
;	<b>5</b> 1								
;Marginal		£ 2775 4160	Esta men	0002	מייו מי	VTTM	TTTM	OPPO	MISC
; HEAT	COOL	VENT	WATR 67	COOK 79	REFR 100	XLIT 100	ILIT 99.8	OFEQ 77.1	100
30.7	98.5	100	0 /	13	100	100	JJ.0	11.1	100
;Elec 45	0	0	32	10.7	0	0	0	0	0
;Gas	•	ŭ			•	v	•	•	-
,									

- 2

0	0	0	0.3	1	0	0	0	0	.0
;0il ;									
;Margina	l EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
6.84	4.2	2.32	1	4.87	26.4	1.46	8.75	0.6	1.3
;Elec									
51.7 ;Gas	54.69	0	21.39	15.27	. 0	0	0	0	0.04
101.17 ;Oil	0	0	19.54	51.56	0	0	0	0	0
; ; RETAI	L								
;									
;Average									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
17.2	67.2	100	60.7	28.1	50.4	100	100	100	100
;Elec									
71.5	0	0	11.8	1	0	0	0	0	0
;Gas									
3.1	0	. 0	2.5	0.5	0	0	0	0	0
;Oil									
;									
;Average									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5.6	2.03	2.23	0.36	1.97	1.21	0.66	6.35	0.48	1.04
;Elec									
54.57	35.69	0	32.74	23.37	0	0	0	0	2.28
;Gas	_								
217.17	0	0	22.08	14.56	. 0	0	0	0	0
;Oil									
;									
;Marginal									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
19.2	88.6	100	65	23.1	41.1	100	100	100	100
;Elec									
69	0	0	15	2.6	0	0	0	0	0
;Gas									
0.7	0	0	0.4	0	0	0	0	0	0
;Oil									
;									
;Marginal									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5.6	2.03	2.23	0.36	1.97	1.21	0.66	6.35	0.48	1.04
;Elec		_			_	_			
54.57	35.69	0	32.74	23.37	0	0	0	0	2.38
;Gas	_	_				_			
217.17	0	0	22.08	14.56	0	0	0	0	0
;Oil									
;									
; SCHOOI ;	ıS								
;Average	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
20.1	76.8	100	35.6	57.8	92.1	100	100	100	100
;Elec					•				

						_		_	
54.4	0	0	48	9.2	0	0	0	0	0
;Gas	0	0	9.9	9.2	0	0	0	0	0
25.2 ;Oil	U	U	3.3	3.2	U	U	U	U	U ·.
;011									
, ;Average	EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.52	2.31	2.65	0.88	1.11	0.41	0.88	4.96	0.29	0.99
;Elec									
42.26	0	0	18.33	11.18	0	0	0	0 .	0
;Gas	•				_				
151.02	0	0	21.42	2.74	0	0	0	0	0
;Oil									
; .Mamainal	Channa								
;Marginal ; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
; HEAT 28.6	97.2	100	49.9	69	90	100	96.6	80.6	100
;Elec	3,,,,	100	1312	•			34.4		
45.7	0	0	45.6	. 31	0	0	0	0	0
;Gas									
17.7	0	0	4.5	0	0	0	0	0	0
;Oil	•								
,									
;Marginal		7 FFT	EXT MIT	0001	מחמת	VI TM	77.77	0.000	VTCC
; HEAT	COOL 2.1	VENT 2.4	WATR 0.8	COOK 1.01	REFR 0.37	XLIT 0.8	ILIT 4.5	OFEQ 0.26	MISC 0.9
4.1 ;Elec	2.1	2.4	0.0	1:01	0.37	0.0	4.5	0.20	0.9
42.26	0	0	18.33	11.18	0	0	0	0	0
;Gas	·	J	10.00	11.10	•	•	•	•	•
151.02	0	0	21.42	2.74	0	0	0	0	0
;Oil									
;									
; COLLEG	ES								
;									
;Average									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
1.2 :Elec	54.1	100	4.9	53	97.8	100	100	100	100
28.4	0	0	23.6	47	0	0	0	0	0
;Gas	•	Ü	23.0	7.	· ·	•	•	J	•
69.3	0	0	69.5	0	0	0	0	0	0
;Oil									
;									
;Average									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT		MISC
7.33	5.78	1.79	1.05	1.89	1.05	1.58	5.48	0.84	2.1
;Elec	25	^	10	=	•	0	0	0	4
50	25	0	10	5	0	0	U	U	4
;Gas 40	0	٥	9	5.3	0	0	. 0	0	0
;Oil	v	J	,	3.5	•	•	. •	Ū	-
;									
;Marginal	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
16.6	90	100	20	57.4	80	100	99.8	98.1	100
;Elec									

÷

25	0	0	20	42	0	0	0	0	0
;Gas									
58.4	0	0	60	0	0	0	0	0	0
;Oil									
;									
;Marginal	l EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5.74	4.57	0.92	0.94	1.02	1	1.01	4.51	0.36	1.75
;Elec									
35.01	19.69	0	7.89	3.91	0	0	0	0	3.14
;Gas	13.03	· ·	7.03	3.31	Ū	· ·	J	· ·	3.14
40	0	0	9	5.3	0	0	0	0	0
	U	U	9	٥.5	U	U	U	U	U
;Oil									
;									
; RESTA	JRANTS								
;									
;Average			•					_	
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
15.4	64.7	100	26	62	97.9	100	100	100	100
;Elec									•
52.1	0	0	45.4	38	0	0	0	0	0
;Gas									-
5.5	0	0	3.2	0	0	0	0	0	0
;Oil		•		•	•		•	J	ŭ
;									
	FIITe								
;Average		חואיםינו	WATR	COOK	REFR	YT TM	TTTM	OFFO	MTCC
; HEAT	COOL	VENT				XLIT	ILIT	OFEQ	MISC
5.63	11.3	8.27	6.45	32.88	10.19	3.03	11.7	0.81	1.92
;Elec		_			_	_	_	_	_
45	55	0	55	70	0	0	0	0	0
;Gas									
80	0	0	123	150	0	0	0	0	0
;Oil									
;									
;Marginal	Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
21.2	97.7	100	42.5	62	100	100	99.1	447	100
;Elec							· · · · ·		
50	0	Ö	37.2	38	0	0	0	. 0	0
;Gas		•	_,	•	•	Ŭ	•	Ŭ	Ū
, Gas 1	0	0	1	0	0	0	0	0	0
;Oil	J	U	-	J	J	J	U	J	U
; .Mamainal	77.T -								
;Marginal		*****		<b></b>	b===	***		0222	,,,,,,
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
5.58	11.2	8.2	6.4	32.6	10.1	3	11.6	0.8	1.9
;Elec									
29.33	40.34	0	40.34	51.31	0	0	0	0	0
;Gas									
80	0	0	123	150	0	0	0	0	0
;Oil					ė				
;									
; HEALTH	I								
;	-								
, ;Average	Shares								
; HEAT	COOL	ייינאים עד	כונים ולנגון	COOK	מששם	VTTM	77 770	OFFO	MISC
; near	COOF	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	はてつぐ

ے د

31.1	90.2	100	44.4	52.2	89	100	100	100	100
;Elec					_			_	1.
62.5	0	0	41.6	15.6	0	0	0	0	0 .
;Gas 6.4	0	0	6.3	2.5	0	0	0	0	. 0
;Oil	U	U	6.3	2.5	· ·	Ū	U	J	U
; ;									
;Average	EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.71	5.91	2.86	1.39	4.82	0.48	0.3	5.26	0.61	3.09
;Elec		_			•	•		•	
90	90	0	21	25	0	0	0	0	21
;Gas 95	0	0	30	26	0	0	0	0	0
;Oil	U	U	30	20	•	. •	•	J	J
;									
;Margina	l Shares								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
21.9	94.2	100	50	63	89.7	100	99	91.7	100
;Elec	_		4.4	15.6	•	•	•	0	
66.4	0	0	41	15.6	0	0.	0	0	0
<b>;</b> Gas 1	0	0	1	0	0	0	0	0	0
;Oil	J	· ·	*		•	•		J	•
;									
;Margina	l EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.6	5.78	2.8	1.36	4.71	0.47	0.29	5.14	0.6	3.02
;Elec	CC 01	0	15 62	18.6	0	0	0	D	15.65
59.5 ;Gas	66.91	0	15.62	10.0	U	U	U	U	13.63
, Gas 95	0	0	30	26	0	0	0	0	0
;Oil	J	J			-				
;									
; LODGII	NG								
;									
;Average		777337M	TATA (III TO	COOK	neen	XLIT	ILIT	OFEQ	MISC
; HEAT 65.6	COOL 89.3	VENT 100	WATR 20.2	COOK 36.9	REFR 73.1	100	100	100	100
;Elec	09.3	100	20.2	30.5	73.1	100	100	100	100
30.8	0	0	65.2	37	0	0	0	0	0
;Gas									
0	0	0	0	0	0	0	0	0	0
;Oil									
;	Deter -								
;Average ; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
3.16	3.7	0.96	2.23	1.93	0.85	0.57	3.3	0.26	2.36
;Elec	<b>.</b>	0.50	2.25	2.70	0.00	•••		•	
40	22	0	25	16	0	0	0	0	10
;Gas									
35	0	0	21	0	0	0	0	0	0
;Oil							•	•	
; ;Margina.	l Shares			•					
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC

		100	24.0	<b>63</b>	01 7	100	1.00	71 1	100
64.6 ;Elec	100	100	34.8	63	81.7	100	100	71.1	100
20	0	0	65.2	37	0	0	0	0	0 .
;Gas	•	•	•		_	-	•	•	•
0	0	0	0	0	0	0	0	0	0
;Oil									
;									
;Marginal						***			
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
3.16	3.7	0.96	2.23	1.93	0.85	0.57	3.3	0.26	2.36
;Elec 27.85	17.23	0	19.54	12.54	0	0	0	0	7.83
;Gas	11.23	U	19.34	12.51	· ·	v	•	J	7.05
35	0	0	21	0	0	0	0	0	0
;Oil	•	•		-	•			-	_
;									
	LLANEOUS								
;									
;Average									
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
18.7	57.3	54.8	42.8	53.7	100	100	100	100	100
;Elec 45.6	0		44	8.5	0	0	0	0	0
	U	U	44	0.5	U	U	U	U	U
;Gas 15.4	0	0	0	0	0	0	0	0	0 .
;Oil	·	•	·	J	· ·	•	•	J	· ·
;									
;Average	EUIs								
; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
4.61	2.59	0.78	0.32	0.51	0.35	0.49	4.54	0.32	0.85
;Elec									
40	22	0	15	4	0	0	0	0	4
;Gas	•	•	10	^	•	0	•	•	0
30	0	0	18	0	0	0	0	0	0
;Oil									
; ;Marginal	Shares								
; HEAT		VENT	WATR	соок	REFR	XLIT	ILIT	OFEQ	MISC
	87.2	100	64.2	50.8	62.2	100	93	37.3	
;Elec									
52	0	0	33.6	8.5	0	0	0	0.	0
;Gas							_	_	
1.2	0	0	0.2	0	0	0	0	0	0
;Oil									
; .Momerinol	FUTA								
;Marginal; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
			0.57					0.31	
;Elec		J., U	,	_,_,			<del></del>		
36.25	22.46	0	15.34	4.11	0	0	0	0	4.07
;Gas									
30	0	0	18	0	0	0	0	0	0
;Oil									
;									
; OUT-OF	-SCOPE								
; ;Average	Shares								
, Average	Oliere2								

;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	0	0	0	0	0	100	0	0	0
	lec O	0	0	0	0	0	0	0	0	0
; G	0	0	0	0	0	0	0	0	0	0
;0: ;	il									
;A	verage	EUIs								
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	0	0	0	0	0	0	0	0	0
; E.	lec O	0	0	0	0	0	0	0	0	0
; G	as O	0	0	0	0	0	0	0	0	0
;0.		U	O	J	Ū	v	J	· ·	•	U
;			•							
; M		l Shares								
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
: E.	0 lec	0	0	0	0	. 0	100	0	0	0
	0	0	0	. 0	0	0	0	0	0	0
; G	as 0	0	0	0	0	0	0	0	0	0
;O.	il									
: M	argina	l EUIs								
;		COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
•	0	0	0	0	0	0	0	0	0	0
: E	lec	_			_	-	-	_	_	_
•	0	0	0	0	0	0	0	0	0	0
; G	as O	0	0	0	0	0	0	0	0	0
;0	il	_	_	-						
; ;	SMALİ	OFFICES		٠						
;										
-		Peak Frac								\
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	0	0.7	0.35	0.3	0.36	0.315	0	0.325	0	0.325
	ummer :	Load Shap	e							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
•	0	433	423	100	0	700	0	350	ō	350
;	1:00									
·	0	433	427	100	0	700	0	325	0	325
;	2:00									
	0	433	429	100	0	700	0	325	0	325
;	3:00									
	0 4:00	433	438	100	0	700	0	325	0	325
;	4:00	467	456	200	0	700	0	400	0	400
<b>;</b> ·	5:00	,					•			
	0	500	504	450	0	700	0	524	0	524
;	6:00	600		CEO	150	050	^	631	^	621
_	0	600	606	650	150	850	0	631	0	631
;	7:00									

υz

	0	700	697	850	450	1000	0	850	0	850
;	8:00 0	900	900	1000	500	900	0	893	. 0	893
;	9:00 0	967	971	1000	400	800	0	961	0	961
;	10:00				800	900				
;	0 11:00	1000	980	1000			0	1000	0	1000
;	0 12:00	1000	980	1000	1000	1000	0	1000	. 0	1000
	. 0	950	950	1000	1000	1000	0	950	0	950
;	0	1000	980	1000	500	900	0	1000	0	1000
;	14:00 0	1000	1000	1000	200	800	0	990	0	990
;	15:00 0	1000	989	1000	200	800	0	981	0	950
;	16:00	933	970	1000	200	800	0	932	0	850
;	0 17:00									
;	0 18:00	700	701	850	0	750	0	800	0	800
	0 19:00	500	489	600	0	700	0	700	0	700
•	0	475	445	450	0	700	0	650	0	650
	20:00	467	420	200	0	700	0	600	0	600
;	21:00 0	433	418	100	0	700	0	500	. 0	500
;	22:00	400	383	100	0	700	0	450	0	450
;	23:00	433	431	100	0	700	0	400	0	400
;	24:00	433	431	100	J	700	Ū	900	J	400
;										
;		Peak Frac		tan mb	2002	משמת	VIIM	** ***	OFFIC	MTCC
;	HEAT 1	COOL	VENT 0.33	WATR 0.38	COOK 0.36	REFR 0.315	XLIT 0	ILIT 0.325	OFEQ 0	MISC 0.325
;										
;		Load Shap								
;	HEAT 500	COOL 0	VENT 433	WATR 100	COOK 0	REFR 700	XLIT 0	ILIT 350	OFEQ 0	MISC 350
;	1:00	U	477	100	J	700	. 0	200	U	550
;	600 2:00	0	433	100	0	700	0	325	0	325
	700	0	433	100	0	700	0	325	0	325
;	3:00 700	0	433	100	0	700	0	325	0	325
;	4:00 800	0	467	200	0	700	0	400	0	400
;	5:00 900	0	500	450	0	700	0	524	0	524
;	6:00									
;	1000 7:00	0	600	650	150	850	. 0	631	0	631
	1000	0	700	850	450	1000	0	850	0	850
;	8:00									

٠..

	900	0	900	1000	500	900	0	893	0	893
;	9:00	•		1000	400	000	0	0.61	•	
_	800 10:00	0	967	1000	400	800	0	961	0	961
į	600	0	1000	1000	800	900	0	1000	0	1000
;	11:00	•								
	400	0	1000	1000	1000	1000	0	1000	0	1000
;	12:00	•	050	1000	1000	1000	0	050	•	٥٣٥
	200 13:00	0	950	1000	1000	1000	U	950	0	950
•	100	0	1000	1000	500	900	0	1000	0	1000
;	14:00						_	_		
	100	0	1000	1000	200	800	0	990	0	990
;	15:00 100	0	1000	1000	200	800	0	981	. 0	950
;		ŭ	2000	2000	400		_		•	
	100	0	933	1000	200	800	0	932	0	850
;		0	700	850	0	750	0	800	0	800
;	200 18:00	0	700	830	U	730	· ·	000	U	800
•	400	0	500	600	0	700	0	700	0	700
;	19:00	_				700	•	650	•	er o
	400 20:00	0	475	450	. 0	700	0	650	0	650
į	400	0	467	200	0	700	0	600	. 0	600
;	21:00	_								
	400	0	433	100	0	700	0	500	0	500
;	22:00 400	0	400	100	O	700	0	450	0	450
;	23:00	U	400	100	V	700	· ·	430	U	400
•	500	0	433	100	0	700	0	400	0	400
;	24:00									
;	1 7001	E OFFICES	_							
;	IMIGI	S OFFICES								
;	Summer	Peak Fract	tions			•				•
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	. 0	0.7	0.35	0.3	0.36	0.315	0	0.325	0	0.325
;	Summer	Load Shape	e							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	433	423	100	0	700	0	350	0	350
;	1:00	433	427	100	0	700	0	325	0	325
;	2:00	422	427	100	· ·	700	· ·	323		525
·	0	433	429	100	0	700	0	325	0	325
;	3:00	400				200	^	205	0	325
	0 4:00	433	438	100	0	700	0	325	U	323
;	0	467	456	200	0	700	0	400	0	400
;	5:00								_	
_	6.00	500	504	450	0	700	0	524	0	524
;	6:00 0	600	606	650	150	850	0	631	0	631
;	7:00									
	0	700	697	850	450	1000	0	850	0	850
;	8:00									

20

• • .

	0 9:00	900	900	1000	500	900	0	893	0	893
;	0	967	971	1000	400	800	0	961	0	961
;	0	1000	980	,1000	800	900	0	1000	0	1000
;	11:00 0 12:00	1000	980	1000	1000	1000	0	1000	0	1000
	0 13:00	950	950	1000	1000	1000	0	950	0	950
;	0	1000	980	1000	500	900	0	1000	0	1000
-	0 15:00	1000	1000	1000	200	800	. 0	990	0	990
	0 16:00	1000	989	1000	200	800	0	981	0	950
	0	933	970	1000	200	800	0	932	0	850
	0	700	701	850	0	750	0	800	0	800
;	0	500	489	600	0 .	700	0	700	. 0	700
;	0 20:00	475	445	450	0	700	0	650	0	650
;	0 21:00	467	420	200	0	700	0	600	0	600
;	0 22:00	433	418	100	0	700	0	500	0	500
;	0 23:00	400	383	100	0	700	0	450	0	450
;	0 24:00	433	431	100	0	700	0	400	0	400
;		•							•	
; 1		Peak Frac	tions					•		
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	1	0	0.33	0.38	0.36	0.315	0	0.325	0	0.325
;										
		Load Shap		****	000**	-				
;	HEAT 500 1:00	0 COOT	VENT 433	WATR 100	COOK 0	REFR 700	XLIT O	ILIT · 350	OFEQ 0	MISC 350
; •	600	0	433	100	0	700	0	325	0	325
;	700 3:00	. 0	433	100	0	700	0	325	0	325
;	700 4:00	0	433	100	0	700	0	325	0	325
;	800 5:00	0	467	200	0	700	0	400	0	400
;	900 6:00	0	500	450	0	700	0	524	0	524
;	1000 7:00	0	600	650	150	850	0	631	0	631
;	1000 8:00	0	700	850	450	1000	0	850	0	850
;	900 9:00	0	900	1000	500	900	0	893	0	893

· ..

	800	0	967	1000	400	800	0	961	0	961
;	10:00 600	0	1000	1000	800	900	0	1000	0	1000 .
;	11:00 400	0	1000	1000	1000	1000	0	1000	0	1000
;	12:00									
;	200 13:00	0	950	1000	1000	1000	0	950	0	950
•	100	0	1000	1000	500	900	٥	1000	0	1000
;	100	0	1000	1000	200	800	0	990	0	990
;	15:00 100	0	1000	1000	200	800	0	981	0	950
;	16:00 100	0	933	1000	200	800	0	932	0	850
;	17:00	V	933							
	200 18:00	0	700	850	0	750	0	800	0	800
	400	0	500	600	0	700	0	700	0	700
	19:00 400	0	475	450	0	700	0	650	0	650
;	20:00	0	467	200	0	700	0	600	0	600
;	21:00		407							
	400 22:00	0	433	100	0	700	0 -	500	0	500
;	400	0	400	100	0	700	0	450	0	450
;	23:00 500	0	433	100	0	700	0	400	0	400
;	24:00									
;	WARE	HOUSES								
;	Summer	Peak Frac	tions						*	
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	0.6	0.3	0.3	0.36	0.315	0	0.325	0	0.325
; ;	Summer	Load Shap	e							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	1.00	433	423	400	0	700	0	350	0	350
;	1:00 0	433	427	400	0	700	0	325	0	325
;	2:00	433	429	400	0	700	0	325	0	325
;	3:00						0	325	0	325
;	0 4:00	433	438	400	0	700	0			
;	0 5:00	467	456	400	0	700	0	400	0	400
	0	500	504	. 500	150	700	0	524	0	524
;	6:00 0	600	606	650	250	850	0	631	0	631
;	7:00 0	700	697	850	450	1000	0	850	0	850
;	8:00									
;	0 9:00	900	900	1000	500	900	0	893	0	893

. e

	0	967	971	1000	400	800	0	961	0	961
	10:00	1000	980	1000	800	900	0	1000	0	1000
;	11:00 0	1000	980	1000	1000	1000	0	1000	0	1000
;	12:00 0	950	950	1000	1000	1000	0	950	. 0	950
;	13:00 0	1000	980	1000	500	900	0	1000	0	1000
;	14:00	1000	1000	1000	300	800	0	990	0	990
;	15:00 0	1000	989	1000	300	800	0	981	0	950
;	16:00 0	933	970	1000	300	800	0	932	0	850
;	17:00 0	700	701	850	0	750	. 0	800	. 0	800
· ;	18:00	500	489	600	0	700	0	700	0	700
;	19:00	475	445	400	0	700	0	650	0	650
;	20:00	467	420	400	0	700	. 0	600	0	600
;	21:00				0	700	0			
;	22:00	433	418	400				500	0	500
;	23:00	400	383	400	0	700	0	450	0	450
;	0 24:00	433	418	400	0	700	0	400	0	400
;					•					
; [	Winter	Peak Frac	ctions							
;	HEAT	COOL	VENT.	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	1.2	0.08	0.285	0.38	0.36	0.315	. 0	0.325	0	0.325
;1	Winter	Load Shap	pe							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	500	. 0	433	400	0	700	0	350	0	350
;	1:00 600	. 0	433	400	0	700	0	325	0	325
;	2:00 700	0	433	400	0	700	0	325	0	325
;	3:00 700	. 0	433	400	0	700	0	325	0	325
;	4:00					•	0	400		400
;	800 5:00	0	467	400	0	700			0	
;	900 6:00	0	500	500	150	700	0	524	0	524
;	1000 7:00	0	600	650	250	850	0	631	0	631
;	1000 8:00	0	700	850	450	1000	0	850	0	850
;	900 9:00	350	900	1000	500	900	0	893	0	893
;	800 10:00	500	967	1000	400	800	0	961	0	961

÷ . .

	600	700	1000	1000	800	900	0	1000	0	1000
;	11:00 400	850	1000	1000	1000	1000	0	1000	0	1000
;	12:00	030	1000	1000	1000	1000	J	1000	Ū	1000 .
	200	900	950	1000	1000	1000	0	950	0	950
;	13:00 100	1000	1000	1000	500	900	0	1000	0	1000
;	14:00	1000	1000	1000	300	300	ŭ	1000	Ū	1000
	100	1000	1000	1000	300	800	0	990	. 0	990
;	15:00 100	900	1000	1000	300	800	0	981	0	950
;	16:00					,				
	100 17:00	700	933	1000	300	800	0	932	0	850
į	100	500	700	850	0	75.0	0	800	0	800
;	18:00				•	500	•	700		
•	200 19:00	150	500	600	0	700	0	700	0	700
	300	0	475	400	0	700	0	650	0	650
;	20:00	0	467	400	0	700	0	600	0	600
;	21:00	· ·	407	400	J	700	J	000	Ū	000
	400	0	433	400	0	700	0	500	0	500
;	22:00 400	0	400	400	0	700	0	450	0	450
;	23:00	•								
	500	0	433	400	0	700	0	400	0	400
;	24:00									
;	FOODS	STORES								
;	· •	Daal Ess	-44	•						
;	HEAT	Peak Frac	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
•	0	0.75	0.295	0.25	0.295	0.315	0	0.295	0	0.295
;	Summor	I and Char	20							
; ;	HEAT	Load Shar	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
·	0	300	250	211	100	800	0	450	0	450
;	1:00	300	250	79	50	800	0	350	0	350
;		300	250	,,	30	000	Ū	230	J	550
	0	300	260	26	50	700	0	300	0	300
;	3:00 0	350	274	26	50	600	0	300	0	300
;							_			252
	0 5:00	350	285	26	200	600	0	350	0	350
;	0	375	300	26	333	700	0	500	0	500
;			22.5	7.0	400	000	•	500	0	500
;	0 7:00	400	317	79	400	800	0	500	0	500
•	0	420	417	105	350	800	0	500	0	500
;	00:8 0	480	491	289	300	900	0	750	0	750
;		400	# J T	203	200	300	J	,50		
	0	650	576	316	300	900	0	800	0	800
;	10:00									

	0	1000	639	579	667	900	0	800	0	800	
;	11:00	1000	887	500	800	1000	0	800	0	800	•
;	12:00	1000	991	632	800	1000	0	800	0	800	
;	13:00	1000	1000	800	700	1000	0	800	0	800	
;	14:00										
;	0 15:00	1000	950	1000	600	900	0	800	0	. 800	
;	0 16:00	1000	900	800	650	900	0	900	0	900	
	0 17:00	1000	875	342	700	1000	0	950	0	950	
	0	1000	865	395	900	1000	0	1000	0	1000	
	18:00	1000	859	605	1000	1000	0	1000	0	1000	
;	19:00	1000	820	632	900	1000	0	1000	0	1000	
;	20:00	780	776	1000	600	900	0	900	0.	900	
;	21:00	660	672	1000	500	900	0	750	0	750	
;	22:00										
;	0 23:00	380	378	1000	400	900	0	600	0	600	
;	0 24:00	350	350	579	250	800	0	500	0	500	
;											
. 74	7:	Peak Frac	tione								
<i>,</i> v											
; v	HEAT	COOL	VENT 0.28	WATR 0.31	COOK 0.295	REFR 0.315	XLIT 0	ILIT 0.295	OFEQ 0	MISC 0.295	
;	HEAT 1.3	COOL 0	VENT 0.28								
;	HEAT 1.3 Winter	COOL 0 Load Shap	VENT 0.28	0.31	0.295	0.315	0	0.295	0	0.295	
;	HEAT 1.3 Vinter HEAT	COOL 0 Load Shap COOL	VENT 0.28 e VENT	0.31 WATR	0.295 COOK	0.315 REFR	0 XLIT	0.295 ILIT	0 OFEQ	0.295 MISC	
; ; v ;	HEAT 1.3 Winter HEAT 550	COOL 0 Load Shap	VENT 0.28	0.31	0.295	0.315	0	0.295	0	0.295	
; ; ħ;	HEAT 1.3 Winter HEAT 550 1:00 510	COOL 0 Load Shap COOL	VENT 0.28 e VENT	0.31 WATR	0.295 COOK	0.315 REFR	0 XLIT	0.295 ILIT	0 OFEQ	0.295 MISC	
; ; tv ;	HEAT 1.3 Vinter HEAT 550 1:00 510 2:00 475	COOL 0 Load Shap COOL 0	VENT 0.28 e VENT 250	0.31 WATR 211	0.295 COOK 100	0.315 REFR 800	O XLIT O	0.295 ILIT 450	OFEQ O	0.295 MISC 450	
; ; ħ;	HEAT 1.3 Vinter HEAT 550 1:00 510 2:00 475 3:00 460	COOL 0 Load Shap COOL 0	VENT 0.28 e VENT 250	0.31 WATR 211 79	0.295 COOK 100 50	0.315 REFR 800 800	XLIT 0	0.295 ILIT 450 350	OFEQ O	0.295 MISC 450 350	
; ; tv ;	HEAT 1.3 Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00	COOL 0 Load Shap COOL 0 0	VENT 0.28 e VENT 250 250 260 274	0.31 WATR 211 79 26 26	0.295 COOK 100 50 50 50	0.315 REFR 800 800 700 600	0 XLIT 0 0 0	0.295 ILIT 450 350 300	OFEQ 0 0 0	0.295 MISC 450 350 300	
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 1.3 Vinter HEAT 550 1:00 510 2:00 475 3:00 460	COOL 0 Load Shap COOL 0 0	VENT 0.28 e VENT 250 250	0.31 WATR 211 79 26	0.295 COOK 100 50	0.315 REFR 800 800 700	0 XLIT 0 0	0.295 ILIT 450 350 300	OFEQ O O	0.295 MISC 450 350	
; 70	HEAT 1.3 Winter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504	COOL 0 Load Shap COOL 0 0	VENT 0.28 e VENT 250 250 260 274	0.31 WATR 211 79 26 26	0.295 COOK 100 50 50 50	0.315 REFR 800 800 700 600	0 XLIT 0 0 0	0.295 ILIT 450 350 300	OFEQ 0 0 0	0.295 MISC 450 350 300	
; 70	HEAT 1.3 Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504 6:00 600	COOL 0 Load Shap COOL 0 0 0 0	VENT 0.28 e VENT 250 250 260 274 285	0.31 WATR 211 79 26 26	COOK 100 50 50 50 200	0.315 REFR 800 800 700 600 600	0 XLIT 0 0 0	0.295 ILIT 450 350 300 300 350	OFEQ 0 0 0	0.295 MISC 450 350 300 300 350	
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 1.3  Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504 6:00 600 7:00	COOL 0 Load Shap COOL 0 0 0 0 0	VENT 0.28  e VENT 250 250 260 274 285 300 317	0.31 WATR 211 79 26 26 26 26 79	0.295 COOK 100 50 50 200 333 400	0.315  REFR 800 800 700 600 700 800	0 XLIT 0 0 0 0	0.295 ILIT 450 350 300 350 500	OFEQ 0 0 0 0	0.295 MISC 450 350 300 300 350 500	
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 1.3  Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 600 7:00 7:00 8:00	COOL 0 Load Shap COOL 0 0 0 0 0 0 0 0	VENT 0.28 e VENT 250 250 260 274 285 300 317 417	0.31 WATR 211 79 26 26 26 26 79 105	0.295 COOK 100 50 50 200 333 400 350	0.315  REFR 800 800 700 600 700 800 800	0 XLIT 0 0 0 0 0	0.295  ILIT 450  350  300  300  500  500	OFEQ 0 0 0 0 0	0.295 MISC 450 350 300 300 350 500 500	
	HEAT 1.3  Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 600 7:00 7:00 8:00 850	COOL 0 Load Shap COOL 0 0 0 0 0	VENT 0.28  e VENT 250 250 260 274 285 300 317	0.31 WATR 211 79 26 26 26 26 79	0.295 COOK 100 50 50 200 333 400	0.315  REFR 800 800 700 600 700 800	0 XLIT 0 0 0 0	0.295 ILIT 450 350 300 350 500	OFEQ 0 0 0 0	0.295 MISC 450 350 300 300 350 500	
	HEAT 1.3  Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504 6:00 7:00 7:00 8:00 850 9:00 1000	COOL 0 Load Shap COOL 0 0 0 0 0 0 0 0	VENT 0.28 e VENT 250 250 260 274 285 300 317 417	0.31 WATR 211 79 26 26 26 26 79 105	0.295 COOK 100 50 50 200 333 400 350	0.315  REFR 800 800 700 600 700 800 800	0 XLIT 0 0 0 0 0	0.295  ILIT 450  350  300  300  500  500	OFEQ 0 0 0 0 0	0.295 MISC 450 350 300 300 350 500 500	
	HEAT 1.3  Finter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504 6:00 7:00 7:00 8:00 850 9:00 1000 10:00	COOL 0 Load Shap COOL 0 0 0 0 0 0 0 0 0 0	VENT 0.28  e VENT 250 250 260 274 285 300 317 417 491 576	0.31 WATR 211 79 26 26 26 26 79 105 289 316	COOK 100 50 50 50 200 333 400 350 300	0.315  REFR 800 800 700 600 700 800 800 900	0 XLIT 0 0 0 0 0 0	0.295  ILIT 450  350  300  300  500  500  750  800	OFEQ	0.295 MISC 450 350 300 300 500 500 750 800	
	HEAT 1.3  Vinter HEAT 550 1:00 510 2:00 475 3:00 460 4:00 501 5:00 504 6:00 7:00 7:00 8:00 850 9:00 1000	COOL 0 Load Shap COOL 0 0 0 0 0 0 0 0 0	VENT 0.28 e VENT 250 250 260 274 285 300 317 417 491	0.31 WATR 211 79 26 26 26 79 105 289	COOK 100 50 50 200 333 400 350	0.315  REFR 800 800 700 600 700 800 800 900	0 XLIT 0 0 0 0 0	0.295  ILIT 450  350  300  300  500  500  750	OFEQ 0 0 0 0 0 0	0.295 MISC 450 350 300 300 350 500 500 750	

	964	0	887	500	800	1000	0	800	0	800
;	12:00 938	0	991	632	800	1000	0	800	0	800
;	13:00	•	1000	000	700	1000	0	900	0	900
:	946 14:00	0	1000	800	700	1000	U	800	U	800
-	864	0	950	1000	600	900	0	800	0	800
;	15:00 737	0	900	800	650	900	0	900	0	900
;	16:00									
	829 17:00	0	875	342	700	1000	0	950	0	950
	890	0	865	395	900	1000	0	1000	0	1000
;	18:00 867	0	859	605	1000	1000	0	1000	0	1000
;										
	820 20:00	0	820	632	900	1000	0	1000	. 0	1000
į	731	0	776	1000	600	900	. 0	900	0	900
;	21:00 646	0	672	1000	500	900	0	750	0	750
;	22:00	J	012							
,	602	0	378	1000	400	900		600	0	600
;	23:00 600	0	350	579	250	800	0	500	0	500
;	24:00				•					
; ;	RETAIL				•					
;						•				
; ;	Summer P HEAT	eak Frac	CTIONS VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
,	0	0.65	0.307	0.26	0.307					
;	Cumman T		•		0.307	0.295	0	0.295	0	0.295
; ;	ommier r	and Char			0.307	0.295	U	0.295	0	0.295
′		oad Shar	pe							
	HEAT 0	oad Shar COOL 300		WATR 150	COOK 0	0.295 REFR 700	XLIT 0	0.295 ILIT 350	OFEQ O	0.295 MISC 200
;	HEAT 0 1:00	300 COOL	oe VENT 400	WATR 150	COOK 0	REFR 700	XLIT 0	ILIT 350	OFEQ 0	MISC 200
;	HEAT 0 1:00 0 2:00	300 COOL	VENT 400 400	WATR 150	COOK 0	REFR 700 700	XLIT 0	ILIT 350	OFEQ 0	MISC 200 200
;	HEAT 0 1:00 0 2:00	300 COOL	oe VENT 400	WATR 150	COOK 0	REFR 700	XLIT 0	ILIT 350	OFEQ 0	MISC 200
	HEAT 0 1:00 0 2:00 0 3:00	300 COOL	VENT 400 400	WATR 150	COOK 0	REFR 700 700	XLIT 0	ILIT 350	OFEQ 0	MISC 200 200
;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00	300 300 300 300	VENT 400 400 400 400	WATR 150 150 150	COOK 0 0 0	REFR 700 700 700 700	XLIT 0 0 0 0	350 350 350 350	OFEQ 0 0 0 0	MISC 200 200 200 200
;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00	300 300 300 300 400	VENT 400 400 400 400 400	WATR 150 150 150 150	COOK 0 0 0	REFR 700 700 700 700 700	XLIT 0 0 0 0	350 350 350 350 350	OFEQ 0 0 0 0 0	MISC 200 200 200 200 200
; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00	300 300 300 300	VENT 400 400 400 400	WATR 150 150 150	COOK 0 0 0	REFR 700 700 700 700	XLIT 0 0 0 0	350 350 350 350	OFEQ 0 0 0 0	MISC 200 200 200 200
; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0	300 300 300 300 400	VENT 400 400 400 400 400	WATR 150 150 150 150	COOK 0 0 0	REFR 700 700 700 700 700	XLIT 0 0 0 0	350 350 350 350 350	OFEQ 0 0 0 0 0	MISC 200 200 200 200 200
; ;	HEAT 0 1:00 0 2:00 0 3:00 4:00 0 5:00 0 7:00	300 300 300 300 400 500	VENT 400 400 400 400 400 417	WATR 150 150 150 150 700	COOK 0 0 0 0 0	REFR 700 700 700 700 700 700	XLIT 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 450	OFEQ 0 0 0 0 0 0	MISC 200 200 200 200 200 250 400
;;;;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 7:00	300 300 300 300 400 500 600 700	VENT 400 400 400 400 400 417 528	WATR 150 150 150 150 150 700 700	COOK 0 0 0 0 0 200 300	REFR 700 700 700 700 700 700 800	XLIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 450 500	OFEQ 0 0 0 0 0 0 0	MISC 200 200 200 200 200 250 400 750
; ; ; ; ; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 7:00 0 8:00	300 300 300 300 400 500	VENT 400 400 400 400 400 417	WATR 150 150 150 150 700	COOK 0 0 0 0 0	REFR 700 700 700 700 700 700	XLIT 0 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 450	OFEQ 0 0 0 0 0 0	MISC 200 200 200 200 200 250 400
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 7:00 0 8:00 9:00	300 300 300 300 400 500 600 700	VENT 400 400 400 400 400 417 528	WATR 150 150 150 150 150 700 700	COOK 0 0 0 0 0 200 300	REFR 700 700 700 700 700 700 800	XLIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 450 500	OFEQ 0 0 0 0 0 0 0	MISC 200 200 200 200 200 250 400 750
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 7:00 8:00 9:00 10:00	COOL 300 300 300 400 500 600 700 800	VENT 400 400 400 400 400 417 528 639 950	WATR 150 150 150 150 700 700 800 1000	COOK 0 0 0 0 0 200 300 400	REFR 700 700 700 700 700 700 800 900 1000	XLIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 350 450 500 550 800	OFEQ 0 0 0 0 0 0 0	MISC 200 200 200 200 250 400 750 893 961
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 7:00 0 8:00 9:00	300 300 300 300 400 500 600 700	VENT 400 400 400 400 400 417 528 639	WATR 150 150 150 150 700 700 800	COOK 0 0 0 0 0 200 300 400	REFR 700 700 700 700 700 700 800 900	XLIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 350 350 350 350 350 450 500 550	OFEQ	MISC 200 200 200 200 250 400 750 893

÷

	0	1000	1000	1000	1000	1000	0	1000	0	1000	
	; 12:00 0	1000	1000	1000	1000	1000	0	1000	0	1000	·
	; 13:00 0	1000	1000	1000	500	1000	0	1000	0	990	
	; 14:00 0	1000	1000	1000	500	1000	0	1000	0	981	
	; 15:00 0	1000	1000	1000	700	1000	0	1000	0	981	
	; 16:00										
	0 ; 17:00	1000	1000	1000	700	1000	0	950	0	932	
	0 ; 18:00	1000	972	1000	600	1000	0	900	0	930	
	0 ; 19:00	800	917	1000	400	1000	0	850	0	850	
	0	700	861	.800	300	900	0	750	0	800	
•	; 20:00	600	778	700	0	. 800	0	600	. 0	500	
	; 21:00 0	400	500	700	0	700	0	550	0	300	
	; 22:00 0	300	400	500	0	700	0	450		200	
	; 23:00 0	300	400	400	. 0	700	0	350	0	200	
	; 24:00	300		100	J		J	300	ŭ	200	
•	; :Winter	Peak Frac	tione		•						
	; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC	
	1.1	0.05	0.292	0.325	0.307	0.295	0	0.295	0	0.295	
	;										
		Load Shap									
	; HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC	
	450	0	250	150	0	700	0	350	0	200	
	; 1:00 449	0	250	150	0	700	0	350	0	200	
	; 2:00 439	0	250	150	0	700	0	350	0	200	
	; 3:00										
	444 ; 4:00	0	250	150	0	700	0	350	0	200	
	449	0	250	150	0	700	0	350	0	200	
	526	0	250	700	. 0	700	0	450	0	250	
	; 6:00 868	0	319	700	200	700	0	500	0	400	
	; 7:00 1000	0	309	700	200	000	0	550	0	750	
	; 8:00		309	700	300	800	0	550	0	750	
	900 ; 9:00	350	436	800	400	900	0	800	0	893	
	700	500	511	1000	400	1000	0	980	0	961	
	500	700	511	1000	800	1000	0	1000	0	1000	
•	; 11:00 300	850	713	1000	1000	1000	0	1000	0	1000	
	; 12:00						-		-		

.

· · · · ·

.

se "

	100	900	883	1000	1000	1000	0	1000	0	1000
;	13:00 100	1000	883	1000	500	1000	0	1000	0	990
;	14:00	1000	005	1000	000	1000	· ·	1000		<b>750</b>
	100	1000	947	1000	500	1000	0	1000	0	981
;	15:00 100	900	1000	1000	700	1000	0	1000	0	981
;	16:00									
•	200 17:00	700	936	1000	700	1000	0	950	0	932
	300	500	915	1000	600	1000	0	900	0	930
;	18:00 400	150	766	1000	400	1000	0	850	0	850
;	19:00									
	400 20:00	0	670	800	300	900	0	750	0	800
	425	0	468	700	0	800	0	600	0	500
;	21:00 425	0	266	700	0	700		550	0	300
;	22:00	v	200	700	J	700	Ū	330	J	300
_	450	0	250	500	0	700	0	450	0	200
,	23:00 450	0	250	400	0	700	0	350	0	200
;	24:00				•					
; ;	SCHOO	LS								
;										
;	Summer HEAT	Peak Frac	tions VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
,	0	0.9	0.28	0.24	0.28	0.3	0	0.28	0	0.28
;	Summer	Load Shap	\ <u>\</u>							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
_	0 1:00	300	400	150	0	. 750	0	300	0	200
;	0	300	400	150	0	700	0	300	0	200
;	2:00	200	400	. 150	0	700	0	. 200	o ···	200
;	0 3:00	300	400	150	U	700	U	300	0	200
	. 0	300	400	150	0	700	0	300	0	200
;	4:00 0	400	400	150	0	700	0	300	0	200
;	5:00									
;	0 6:00	500	400	700	0	700	0	500	0	500
•	0	600	417	700	200	750	0	700	0	700
;	7:00 0	700	528	700	300	750	0	800	0	800
;	8:00									
;	0 9:00	700	639	800	400	800	0	900	<b>.</b>	900
,	0	800	950	1000	400	900	0	1000	0	1000
;	10:00	900	950	1000	800	950	0	1000	0	1000
;	11:00									
	0 12:00	1000	1000	1000	1000	950	0	1000	0	1000
;	12:00									

- 4

	0	1000	1000	1000	1000	950	0	1000	0	1000
;	13:00 0	1000	1000	1000	500	950	0	1000	0	1000
;	14:00 0	1000	1000	1000	500	1000	0	1000	0	1000
;	15:00 0	1000	1000	1000	700	1000	0	1000	0	1000
;	16:00 0	1000	1000	1000	700	1000	0	1000	0	1000
;	17:00	1000	972	1000	600	1000	0	1000	0	1000
;	18:00		917	1000	400	950	0	900	0	900
	0 19:00	800	917	1000	400	950	U	900	U	900
	0 20:00	700	861	800	300	900	0	800	0	800
	. 0	600	778	700	0	900	0	700	0	700
	21:00	400	500	700	0	800	0	500	0	. 500
	22:00	300	400	500	0	750	0	300	0	200
;	23:00	300	400	400	0	750	0	300	0	200
; ;	24:00									
; [	Winter	Peak Frac	tions							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0.95	0	0.28	0.305	0.28	0.26	0	0.28	0	0.28
;										
; V		Load Shap								
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT 300	OFEQ	MISC
	600 1:00	0	250	150	0	750	0	300	0	200
;	600	0	250	150	0	700	0	300	0	200
;	2:00		07.5	450	•	7.00	•	200	•	000
	600 3:00	0	250	150	0	700	0	300	0	200
;	600	0	250	150	0	700	0	300	0	200
;	4:00 600	0	250	150	0	700	0	300	0	200
;	5:00	_			_					
	600	0	250	700	0	700	0	500	Ó	500
;	6:00		22.0	700	000	7.0	•	700	•	700
	700 7:00	0	319	700	200	750	0	700	. 0	700
;	1000	0	309	700	300	750	0	800	0	800
;	8:00	· ·								
;	900 9:00	0	436	800	400	800	0	900	0	900
	700 10:00	0	511	1000	400	900	0	1000	0	1000
	500	0	511	1000	800	950	0	1000	0	1000
;	11:00 300	0	7Í3	1000	1000	950	0	1000	0	1000
;	12:00	^	000	1000	1000	050	^	1000	^	1000
;	100 13:00	0	883	1000	1000	950	0	1000	0	1000
		•								

*:* . .

2.€

٠.

	100	0	883	1000	500	950	0	1000	0	1000
;	14:00 100	0	947	1000	500	1000	0	1000	0	1000
;	15:00									
	100	0	1000	1000	700	1000	0	1000	0	1000
;	16:00						_			
	100	0	936	1000	700	1000	0	1000	0	1000
;	17:00		015	1000	600	1000	0	1000	•	
	200	0	915	1000	600	1000	0	1000	0	1000
;	18:00 300	0	766	1000	400	950	0	900	0	900
	19:00	U	700	1000	400	930	U	300	U	900
,	300	0	670	800	300	900	0	800	0	800
•	20:00	J	0,0			,,,,	J	000	Ŭ	000
•	300	0	468	700	0	900	0	700	0	700
;	21:00									
	400	0	266	700	0	800	0	500	0	500
;	22:00	•							-	
	500	0	250	500	0	750	0	300	0	200
;			252	400	•	250	•	200	•	
	600	0	250	400	0	750	0	300	0	200
;	24:00									
,	COLLE	CES								
;	COLLE	LGES								
:	Summer	Peak Frac	ctions							
;		COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
·	0	0.7	0.28	0.28	0.325	0.315	0	0.325	ō	0.325
;						•				
		Load Shap	oe .			•				
	Summer	Load Shar	oe VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
į	Summer HEAT 0			WATR 100	COOK 0	REFR 800	XLIT 0	ILIT 200	OFEQ 0	MISC 200
į	Summer HEAT 0 1:00	COOL 400	VENT 400	100	0	800	0	200	0	200
;	Summer HEAT 0 1:00	COOL	VENT							
;	Summer HEAT 0 1:00 0 2:00	COOL 400 400	VENT 400	100 100	0	800 800	0	200 200	0	200 200
;;;	Summer HEAT 0 1:00 0 2:00 0	COOL 400	VENT 400	100	0	800	0	200	0	200
;	Summer HEAT 0 1:00 0 2:00 0 3:00	400 400 400	VENT 400 400 400	100 100 100	0 0 0	800 800 835	0 0 0	200 200 200	0	200 200 200
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0	COOL 400 400	VENT 400	100 100	0	800 800	0	200 200	0	200 200
;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00	400 400 400 400	VENT 400 400 400 400	100 100 100 100	0 0 0	800 800 835 865	0 0 0	200 200 200 200	0 0 0	200 200 200 200
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00	400 400 400	VENT 400 400 400	100 100 100	0 0 0	800 800 835	0 0 0	200 200 200	0	200 200 200
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00	400 400 400 400	VENT 400 400 400 400	100 100 100 100	0 0 0	800 800 835 865	0 0 0	200 200 200 200	0 0 0	200 200 200 200
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 5:00	400 400 400 400 400	VENT 400 400 400 400	100 100 100 100	0 0 0 0	800 800 835 865 904	0 0 0 0	200 200 200 200 200	0 0 0 0	200 200 200 200 200 200 400
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0	400 400 400 400 400	VENT 400 400 400 400	100 100 100 100	0 0 0 0	800 800 835 865 904	0 0 0 0	200 200 200 200 200	0 0 0 0	200 200 200 200 200
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0	400 400 400 400 400 483 550	VENT 400 400 400 400 483 550	100 100 100 100 100 250 450	0 0 0 0 0	800 800 835 865 904 939 987	0 0 0 0 0	200 200 200 200 200 400 650	0 0 0 0	200 200 200 200 200 200 400 650
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 0	400 400 400 400 400 483	VENT 400 400 400 400 400 483	100 100 100 100 100 250	0 0 0 0	800 800 835 865 904 939	0 0 0 0	200 200 200 200 200 400	0 0 0 0	200 200 200 200 200 200 400
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 4:00 0 5:00 0 6:00 0 7:00 0 8:00	400 400 400 400 400 483 550 650	VENT 400 400 400 400 483 550 650	100 100 100 100 250 450	0 0 0 0 0 0	800 800 835 865 904 939 987 990	0 0 0 0 0	200 200 200 200 200 400 650 850		200 200 200 200 200 400 650 850
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 0 7:00 8:00 0	400 400 400 400 400 483 550	VENT 400 400 400 400 483 550	100 100 100 100 100 250 450	0 0 0 0 0	800 800 835 865 904 939 987	0 0 0 0 0	200 200 200 200 200 400 650	0 0 0 0	200 200 200 200 200 200 400 650
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 0 4:00 0 5:00 0 6:00 0 7:00 0 8:00 0 9:00	400 400 400 400 400 483 550 650	VENT 400 400 400 400 483 550 650	100 100 100 100 250 450 650	0 0 0 0 0 0 250 400	800 800 835 865 904 939 987 990		200 200 200 200 200 400 650 850		200 200 200 200 200 200 400 650 850
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 0 1:00 0 2:00 0 3:00 4:00 0 5:00 0 6:00 0 7:00 0 8:00 0	400 400 400 400 400 483 550 650	VENT 400 400 400 400 483 550 650	100 100 100 100 250 450	0 0 0 0 0 0	800 800 835 865 904 939 987 990	0 0 0 0 0	200 200 200 200 200 400 650 850		200 200 200 200 200 400 650 850
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 01:00 02:00 03:00 4:00 5:00 06:00 7:00 8:00 9:00 010:00	COOL 400 400 400 400 483 550 650 690 759	VENT 400 400 400 400 483 550 650 690 759	100 100 100 100 250 450 650 800	0 0 0 0 0 0 250 400	800 800 835 865 904 939 987 990 995		200 200 200 200 200 400 650 850 1000		200 200 200 200 200 200 400 650 850 1000
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 01:00 02:00 03:00 4:00 5:00 06:00 7:00 8:00 9:00 10:00 0	400 400 400 400 400 483 550 650	VENT 400 400 400 400 483 550 650	100 100 100 100 250 450 650	0 0 0 0 0 0 250 400	800 800 835 865 904 939 987 990		200 200 200 200 200 400 650 850		200 200 200 200 200 200 400 650 850
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 01:00 02:00 03:00 4:00 5:00 06:00 7:00 8:00 9:00 010:00	COOL 400 400 400 400 483 550 650 690 759	VENT 400 400 400 400 483 550 650 690 759 793	100 100 100 100 250 450 650 800 1000	0 0 0 0 0 0 250 400 500	800 800 835 865 904 939 987 990 995 995		200 200 200 200 200 400 650 850 1000		200 200 200 200 200 200 400 650 850 1000
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 01:00 02:00 03:00 04:00 05:00 06:00 7:00 8:00 9:00 010:00 011:00	COOL 400 400 400 400 483 550 650 690 759	VENT 400 400 400 400 483 550 650 690 759	100 100 100 100 250 450 650 800	0 0 0 0 0 0 250 400	800 800 835 865 904 939 987 990 995		200 200 200 200 400 650 850 1000 1000		200 200 200 200 200 200 400 650 850 1000 1000
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Summer HEAT 01:00 02:00 03:00 04:00 05:00 06:00 07:00 8:00 09:00 01:00 01:00 0	COOL 400 400 400 400 483 550 650 690 759	VENT 400 400 400 400 483 550 650 690 759 793	100 100 100 100 250 450 650 800 1000	0 0 0 0 0 0 250 400 500	800 800 835 865 904 939 987 990 995 995		200 200 200 200 400 650 850 1000 1000		200 200 200 200 200 200 400 650 850 1000 1000

_	0 14:00	1000	1000	1000	500	910	0.	1000	0	1000
	0	897	998	1000	200	874	0	1000	0	1000
;	15:00 0	862	950	1000	200	870	a	1000	0	1000
;	16:00 0	759	901	1000	200	861	0	1000	0	1000
;	17:00									
;	0 18:00	621	887	800	0	843	0	1000	0	1000
	0 19:00	552	823	650	0	840	0	1000	0	1000
	0	552	785	450	0	835	0	500	0	500
;	20:00	552	650	250	0	800	0	418	0	418
;	21:00	483	523	200	0	800	0	373	0	373
;	22:00									
;	0 23:00	450	483	100	0	800	0	200	0	200
-	0	400	453	100	0	800	0	200	0	200
; ;	24:00									
;	Winter	Peak Frac	ctions							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
•	1	0	0.28	0.33	0.325	0.315	0	0.325	ō	0.325
;		,								
;		Load Shap								
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
_	412	0	297	100	0	800	0	200	0	200
;	1:00 431	0	264	100	0	800	0	200	0	200
;	2:00 431	0	264	100	0	835	0	200	0	200
;	3:00									
	431	0	231	100	0	865	0	200	0	200
;	4:00 431	0	264	100	0	904	0	200	0	200
;	5:00 700	0	222	250	0	939	0	400	0	400
;	6:00	U	222	230	U	939	U	400		400
	1000 7:00	0	240	450	0	987	0	650	0	650
;	1000	0	252	650	250	990	0	850	0	850
;	8:00 800	0	339	800	400	995	0	1000	0	1000
;	9:00						_			
;	600 10:00	0	588	1000	500	995	0	1000	0	1000
	300 11:00	0	670	1000	900	1000	0	1000	0	1000
	200	0	769	1000	1000	950	0	1000	0	1000
;	12:00 200	0	910	1000	1000	930	0	1000	0	1000
;	13:00 200	0	934	1000	500	910	0	1000	0	1000
;	14:00	•					J		-	

٠..

	200	0	973	1000	200	874	0	1000	0	1000
;	15:00	0	1000	1000	200	870	0	1000	0	1000
:	200 16:00	U	1000	1000	200	870	U	1000	J	1000.
·	300	0	838	1000	200	861	0	1000	0	1000
;	17:00	0	655	800	0	843	0	1000	0	1000
:	300 18:00	0	633	800	U	043	U	1000	U	1000
	350	0	652	650	0	840	0	1000	0	1000
;	19:00		607	450	٥	835	0	500	0	500
•	400 20:00	0	627	450	U	633	U	300	U	500
	400	0	510	250	0	800	0	418	0	418
;	21:00	0	456	200	0	800	0	373	0	373
;	400 22:00	U	430	200	U	800	U	3/3	U	3/3
	400	0	459	100	0	800	0	200	0	200
;	23:00 400	0	390	100	0	800	0	200	0	200
;		U	390	100	J	800	U	200		, 200
;								•		
;	RESTA	AURANTS								
;	Summer	Peak Fra	ctions							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	0.6	0.252	0.2	0.28	0.315	0	0.3	0	0.3
; ;	Summer	Load Shap	pe							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0 1:00	433	433	133	0	700	0	107	0	107
;	1:00	433	433	133	0	700	0	104	0	104
;	2:00									_ •
	0 3:00	433	433	133	0	700	0	101	0	101
;	0	433	433	133	0	700	0	104	0	104
;	4:00						_		_	
	0 5:00	467	467	133	0	700	0	104	· O -	104
;	0.00	567	567	133	250	800	0	200	0	200
;	6:00					,			•	500
	0 7:00	600 .	600	133	400	900	0	500	0	500
;	0	700	700	250	500	1000	0	800	0	800
;	8:00				600	1000	•	201	•	004
;	0 9:00	900	900	400	600	1000	0	924	0	924
•	0	967	967	667	600	1000	0	961	0	961
;	10:00						•	1000	•	1000
•	0 11:00	1000	1000	733	800	1000	0	1000	0	1000
	0	1000	1000	933	1000	1000	0	921	0	921
;	12:00	1000	1000	1000	1000	1000	•	005	0	885
:	0 13:00	1000	1000	1000	1000	1000	0	885	U	003
	0	1000	1000	1000	500	1000	0	1000	0	888
;	14:00									

---

. . .

; 15:0	0 1000	1000	850	300	1000	0	950	0	832
	0 1000	1000	800	300	900	0	800	0	784
; 16:0	0 0 933	933	533	300	800	0	600	0	742
; 17:0	0								
; 18:0	0 700 n	700	533	0	700	0	400	0	711
	0 500	500	400	0	700	0	400	0	593
(	0 433	433	400	0	700	0	400	0	500
	0 467	467	300	0	700	. 0	400	0	400
	0 433	433	300	0	700	0	300	0	300
	0 400	400	133	0	700	0	132	0	132
; 23:0	0 0 433	433	133	0	700	0	118	0	118
; 24:0		100	100	J		J	110	Ū	110
<i>;</i>									
	r Peak Fra r COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MTCC
	1 0	0.36	0.45	0.4	0.315	VLII	0.36	OFEQ 0	MISC 0.36
;		0.50	0.45	0.4	0.515	U	0.50	U	0.50
	r Load Sha	pe							
; HEA!		VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
300		350	133	0	700	0	107	0	107
; 1:00		330	100	Ū	, 00	J	20,	•	10,
300		350	133	0	700	0	104	0	104
		230	100	J	,,,,	J	104	U	104
; 2:00 300		484	133	0	700	0	101	0	101
; 3:00		404	133	U	700	U	101	U	101
300		496	133	0	700	0	104	0	104
; 4:00	כ								
500		496	133	0	700	0	104	0	104
; 5:00									
950		508	133	250	800	0	200	0	200
; 6:00		C1 7	122	400	000		F00	•	500
1000 ; 7:00		617	133	400	900	0	500	0	500
; /:00 800		824	250	500	1000	0	800	0	800
; 8:00	ס								
600		820	400	600	1000	0	924	0	924
; 9:00									
400		828	667	600	1000	0	961	0	961
; 10:00						_		_	
200		859	733	800	1000	0	1000	0	1000
; 11:00		041	ດວວ	1000	1000	^	001	^	001
200 ; 12:00		941	. 933	1000	1000	0	921	0	921
200		950	1000	1000	1000	0	885	0	885
; 13:00		<b>J J J J</b>	2000	2000	2000	J	000	•	000
200		953	1000	500	1000	0	1000	0	888
; 14:00									
200	0	1000	850	300	1000	0	950	0	832
; 15:00	)								

*:* . .

	100	0	859	800	300	900	0	800	0	784
;	16:00 100	. 0	715	533	300	800	0	600	0	742
;	17:00	U	713	333	300	500	J	000	· ·	134
	200	0	547	533	0	700	0	400	0	711
;	18:00 300	0	500	400	0	700	0	400	0	593
;	19:00						_		_	
	300 20:00	0	450	400	0	700	0	400	0	500
	300	. 0	387	300	0	700	0	400	0	400
;	21:00	0	350	300	0	700	0	300	0	300
;	22:00	0		300	U	700	O	200	U	200
	300	0	350	133	0	700	0	132	0	132
;	23:00	0	350	133	0	700	0	118	٥	118
;		Ū	500	,						
;	HEAL?	יני								
;	neau.	ın		,						
;		Peak Frac		**** MD	G00K	nem	VT TM	TY TM	OFFO	MISC
;	HEAT 0	COOL 0.65	VENT 0.272	WATR 0.25	COOK 0.3	REFR 0.315	XLIT 0	ILIT 0.32	OFEQ 0	0.34
;		•								
		Load Shap			00077	2222	1/T T/M	TT TM	OFFIC	MICO
;	HEAT 0	COOL 410	VENT 410	WATR 200	COOK	REFR 500	XLIT O	ILIT 329	OFEQ 0	MISC 329
;		410	410	200	U	300	· ·	347	J	323
•	0	410	410	200	0	500	0	314	0	314
;	2:00	410	410	200	0	500	0	298	0	298
;		410	110	200						
	0	410	410	200	0	500	0 .	314	. 0	314
;	4:00 0	410	410	200	0	600	0	333	0	333
;						250	•	077	•	227
;	0 6:00	487	487	300	200	750	0	377	0	377
•	0	600	600	400	400	900	0	639	0	639
;	7:00 0	820	820 -	800	400	1000	0	643	0	643
;		020								
	0	850	850	900	333	1000	0	1000	0	1000
;	9:00 0	950	950	1000	333	1000	0	1000	0	1000
;	10:00						_		•	1000
	0 11:00	1000	1000	1000	667	1000	0	1000	0	1000
	0	1000	1000	1000	900	1000	. 0	1000	0	1000
;	12:00	1000	1000	900	900	1000	0	1000	0	1000
;	13:00	1000								
	0	1000	1000	800	700	1000	0	1000	0	1000
;	14:00	. 1000	1000	700	500	1000	0	1000	0	1000
;	15:00									

ک د

	0	1000	1000	700	500	1000	0	850	0	850
;	16:00	1000	050	700	750	1000	0	250	•	
•	0 17:00	1000	950	700	750	1000	0	750	0	800
′	0	850	880	700	900	1000	0	700	0	800
;		500			1000	1000				
	0 19:00	780	780	700	1000	1000	0	576	0	750
,	0	718	725	800	850	900	0	550	0	700
;	20:00									
	0 21:00	700	700	900	800	750	0	528	0	700
;	21:00	500	500	900	667	600	0	500	0	500
;	22:00									
_	0 23:00	400	400	800	500	500	0	480	0	480
,	23:00	400	400	400	333	500	0	450	0	450
;									·	100
;		Dank Eng								
; '	HEAT	Peak Frac	VENT	WATR	соок	REFR	XLIT	ILIT	OFEQ	MISC
<i>.</i> .		0	0.34	0.35		0.315	0	0.34	0	0.34
;										
	Winter HEAT	Load Shap	oe VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	418	0	198	200	0	500	0	329	0	329
;	1:00									
	418 2:00	0	188	200	0	500	0	314	0	314
;	408	0	179	200	0	500	0	298	0	298
;	3:00	•			_		_	220		230
	500	0	188	200	0	500	0	314	0	314
;	4:00 600	0	198	200	0	600	0	333	0	333
;	5:00	•		200	ŭ	000	J	555	Ŭ	333
	700	0	224	300	200	· 750	0	377	0	377
;	6:00 900	0	383	400	400	900	0	639	0	639
;	7:00	•		400	400	300	J	033	Ū	033
	1000	0	481	800	400	1000	0	643	0	643
;	8:00 796	0	5.97	900	333	1000	0	1000	0	1000
;	9:00	· ·	3.57	900	333	1000	U	1000	U	1000
	700	0	701	1000	333	1000	0	1000	0	1000
;	10:00	0	692	1000	667	1000	0	1000	0	1000
;	11:00	U	092	1000	667	1000	U	1000	U	1000
	400	0	770	1000	900	1000	0	1000	0	1000
;	12:00	^	021	000	000	1000	^	1000	•	1000
;	200 13:00	0	831	900	900	1000	0	1000	0	1000
	200	0	873	800	700	1000	0	1000	0	1000
;	14:00	•	1000	700	E00	1000	•	1000	•	1000
:	200 15:00	0	1000	700	500	1000	0	1000	0	1000
	200	0	951	700	500	1000	0	850	0	850
;	16:00									

· . .

22

	200	0	815	700	750	1000	0	750	0	800
;	17:00 200	0	802	700	900	1000	0	700	0	800 .
;	18:00				1000	1000	0			
;	250 19:00	0	802	700	1000	1000	0	576	0	750
	300	0	669	800	850	900	0	550	0	· 700
;	20:00	0	633	900	800	750	0	528	0	. 700
;	21:00° 350	0	406	900	667	600	0	500	0	<b>500</b>
;	22:00	U	406	900	867		U	300	U	500
_	400	0	169	800	500	500	0	480	0	480
,	23:00 400	0	166	400	333	50.0	0	450	0	450
;										
; ;		ING								
;	Summor	Peak Frac	stions							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
	0	. 0.7	0.3	0.25	0.295	0.295	0	0.295	0	0.295
; ;		Load Shap	e							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	0 1:00	716	716	167	0	700	0	488	0	300
•	0	697	679	167	0	700	0	476	0	300
;	2:00	684	684	167	0	700	0	470	0	300
;	3:00						_			
;	0 4:00	674	674	167	0	700	0	464	0	300
•	0	674	674	167	0	700	0	464	0	400
;	5:00 0	706	706	250	400	800	0	482	0	600
;	6:00									
;	0 7:00	750	750	500	600	900	0	735	0	735
	0	798	798	917	500	1000	0	783	0	783
;	8:00 0	899	899	1000	400	1000	0	879	0	879
;					400	1000		1000	0	1000
;	0 10:00	900	900	950	400	1000	0	1000	0	1000
	0	918	918	833	667	1000	0	982	0	982
;	11:00 0	1000	998	833	850	1000	0	985	0	985
;	12:00	1000	000	022	000	1000	0	1000	0	1000
;	0 13:00	1000	999	833	800	1000	0	1000	0	1000
	0	1000	1000	833	700	1000	0	1000	0	1000
į	14:00 0	1000	995	755	600	1000	0	1000	0	1000
;	15:00	1000		755	750		^	050	0	950
;	0 16:00	1000	987	755	750	1000	0	950	U	330
•										

2.2

		•											
	0	950	950	755	950	1000	0	900	0	800			
;	17:00 0	899	899	755	1000	1000	0	850	0	700			
;	18:00 0	861	861	755	800	1000	0	800	O	500			
;	19:00												
	0 20:00	785	785	500	700	900	0	765	0	350			
	0	795	795	333	400	800	0	681	0	300			
	21:00 0	788	788	250	0	700	, O	560	0	300			
;	22:00	747	747	167	0	700	0	512	0	300			
;	23:00		716	167	0	700	0	488	0	300			
;	0 24:00	716	110	101	U	700	U	400		300			
· ·													
;	HEAT	Peak Frac	CLIONS VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC			
•	0.95	0.02	0.25	0.31	0.295	0.295	0	0.295	0	0.295			
;		<b>.</b>		٠					•				
; \ :	HEAT	Load Shap	e VENT	WATR	соок	REFR	XLIT	ILIT	OFEQ	MISC			
•	756	0	716	167	0	700	0	488	0	300			
;	1:00	_	<b>60</b> =	4.65	•	700	•	476	•	200			
	742 2:00	0	697	167	0	700	0	476	0	300			
;	750	0	684	167	0	700	0	470	0	300			
;	3:00 775	0	674	167	0	700	0	464	0	300			
;	4:00		674	167	0	700	0	464	0	400			
;	800 5:00	0	674	107	U	700	U	404	U	400			
	900	0	706	250	400	800	0	482	0	600			
;	6:00 1000	0	750	500	600	900	0	735	0	735			
;	7:00					4.5.5	•	700	•	700			
	900 8:00	0	798	917	500	1000	0	783	0	783			
;	700	350	899	1000	400	1000	0	879	0	879			
;	9:00 400	500	900	950	400	1000	0	1000	0	1000			
;	10:00												
	200 11:00	700	918	833	667	1000	0	982	0	982			
į	150	850	1000	833	850	1000	0	985	0	985			
;	12:00												
	150 13:00	900	1000	833	800	1000	0	1000	0	1000			
;	150	1000	1000	833	700.	1000	0	1000	0	1000			
;	14:00 150	1000	1000	750	600	1000	0	1000	0	1000			
;	15:00	1000	1000	130	900	7000	U	1000	U	1000			
-	150	900	1000	750	750	1000	0	950	0	950			
;	16:00 150	700	950	750	950	1000	0	900	0	800			
;	17:00	. 50	200	, 30	230		J	200	•				

٠. .

	200	500	899	750	1000	1000	0	850	0	700
٠	18:00 300	150	861	750	800	1000	0	800	0	500
;	19:00 400	0	785	500	700	900	0	765	0	350
;	20:00									
;	500 21:00	0	795	333	400	800	0	681	0	300
	600 22:00	. 0	788	250	0	700	0	560	0	300
	650	0	747	167	0	700	0	512	0	300
;	23:00 700	0	716	167	0	700	0	488	0	300
; ;	24:00									
;	MISC	ELLANEOUS								
; ;	Summer	Peak Frac	tions							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	0	0.7	0.325	0.27	0.295	0.295	0	0.295	0	0.295
	Summer	Load Shap	e							
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
;	0 1:00	500	500	400	50	700	0	444	0	444
•	0	500	510	300	50	700	. 0	457	0	457
;	2:00	500	520	300	50	700	0	309	0	309
;	3:00	300	320	300	30	700	J	303		303
	0 4:00	500	530	350	50	700	0	296	0	296
;	0	500	540	400	100	700	0	296	0	296
;	5:00 0	500	556	600	300	800	0	556	0	556
;	6:00 0	606	589	909	500	900	0	778	0	778
;	7:00						•			
;	0 8:00	697	700	1000	500	1000	0	864	0	864
	0	878	858	727	400	1000	0	568	0	568
;	0	950	899	636	500	1000	0	556	0	556
;	10:00	969	970	455	800	1000	0	284	0	284
;	11:00									
:	0 12:00	1000	979	455	1000	1000	0	272	0	272
	0	1000	986	455	950	1000	0	259	0	259
	13:00 0	1000	996	364	850	1000	0	259	0	259
;	14:00	1000	1000	364	800	1000	0	272	0	272
;	15:00		•							
;	0 16:00	1000	986	364	850	1000	0	272	0	272
	0	969	965	364	950	1000	0	284	0	284
;	17:00									

ے د

	0 18:00	969	951	455	1000	1000	0	284	0	284
	0	878	877	546	950	1000	0	580	0	580
	19:00 0	848	837	546	900	900	0	741	0	741
	20:00	788	787	546	900	900	0	938	0	938
	21:00	700	700	636	800	800	0	1000	0	1000
;	22:00 0	600	600	636	500	700	0	889	0	889
;	23:00	550	550	500	333	700	0.	457	0	457
; ;	24:00									
	Winter	Peak Frac	tions				•			
;	HEAT	COOL	VENT	WATR	COOK	REFR	XLIT	ILIT.	OFEQ	MISC
•	1.1	0	0.31	0.33	0.295	0.295	0	0.295	0	0.295
;		Load Shap								
				כוח גנט	COOK	REFR	XLIT	TT TM	OFFO	MTCC
;	HEAT	COOL	VENT	WATR				ILIT	OFEQ	MISC
	784	0	500	400	50	700	0	444	Ò	444
;	1:00					500	•		_	
	823	0	500	300	50	700	0	457	0	457
į	2:00						_			
	858	0	500	300	50	700	0	309	0	309
;	3:00									
	852	0	500	350	50	700	0	296	0	296
;	4:00									
•	852	0	500	400	100	700	0	296	0	296
	5:00	ŭ	330		200	, 00	_	270	Ū	250
;	900	0	500	600	300	800	0	556	0	556
		U	500	600	300	800	U	220	U	556
;	6:00	•	<b>60.6</b>	000	500	000	•	550	•	
	1000	0	606	909	500	900	0	778	0	778
;	7:00									
	900	0	697	1000	500	1000	0	864	0	864
;	8:00									
	800	. 0	878	727	400	1000	0	568	0	568
;	9:00			•						
	500	0	950	636	500	1000	0	556	0	556
;	10:00									
-	300	0	969	455	800	1000	0	284	0	284
;	11:00						•			
•	200	0	1000	455	1000	1000	0	272	0	272
•	12:00	J					-		-	
•	200	0	1000	455	950	1000	0	259	0	259
•	13:00	J	1000	100	330	1,000	J	233	J	203
,	200	0	1000	364	850	1000	0	259	0	259
	14:00	Ū	1000	204	050	1000	J	233	J	233
í	200	0	1000	364	800	1000	^	272	0	272
_		U	TOOO	304	800	7000	0	212	U	212
;	15:00	•	1000	264	050	1000	•	656	^	070
	300	0	1000	364	850	1000	0	272	0	272
;	16:00									
	400	0	969	364	950	1000	0	284	0	284
;	17:00									
	600	0	969	455	1000	1000	0	284	0	284
;	18:00									

. . .

ے ب

							•			
	800	0	878	546	950	1000	0	580	0	580
;	19:00 900	0	848	546	900	900	0	761	0	741
;		J								
	800	0	788	546	900	900	0	938	0	938
;	21:00 800	0	700	636	800	800	0	1000	0	1000
;	22:00									
	775 23:00	0	600	636	500	700	0	889	0	889
;	750	0	550	500	333	700	0	457	0	457
;	24:00									
; ;	OUT-0	OF-SCOPE								
;		Peak Fract:								
;	HEAT 0	COOL	VENT 0	WATR 0	COOK 0	REFR 0	XLIT 0	ILIT O	OFEQ 0	MISC 0
;	U	· ·	· ·	· ·	J	J	·		Ŭ	J
		Load Shape	*****	EZD MID	COOK	REFR	VITM	TT TM	OFFO	MTCC
;	HEAT 0	0 COOL	VENT 0	WATR 0	COOK 0	0	XLIT O	ILIT O	OFEQ 0	MISC 0
;	1:00									
	0 2:00	0	0	0	0	0	. 0	0	0	0
;	2:00	0	0	0	0	0	0	0	0	0
;	3:00				•	•	•	•	•	•
;	0 4:00	0	. 0	. 0	0	0	0	0	0	0
•	0	0	0	0.	0	0	0	0	0	0
;	5:00 0	0	0	0	0	0	0	0	0	0
;	6:00		U	U	J	Ū	<b>.</b>	J	Ū	Ū
	0	0	0	0	0	0	. 0	0	0	0
;	7:00 0	0	0	0	0	0	0	0	0	0
;	8:00						_		_	
	0 9:00	0	0	0	0	0	0	0.	. 0	0
,	0	0 ,	0	0	0	0	0	0	0 ·	0
;	10:00	•	•	0	0	0	0	0	0	0
;	0 11:00	0	. 0	0	0	0	0	U	U	U
	0	0	0	0	0	0	0 .	0	0	0
;	12:00	0	0	0	0	0	0	0	0	0
;	13:00									
	0 14:00	0	0	0	0	0	0	0	0	0
;	0	0	0	0	0	0	0	0	0	0
;	15:00						•	•	•	
;	0 16:00	0	0	0	. 0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
;	17:00 0	0	0	0	0	0	0	0	0	0
;	18:00		Ü	J	v	v	·	J	J	. •

. c

. .-

			•							
a		0	0	0	. 0	0	0	0	0	
; 19:00 0		0	0	0	0	0	0	0	0 .:	
; 20:00		0	0	0	0	0	0	0	0	
; 21:00		0	0	0	0	0	0	0	0 ·	
; 22:00		0	.0	0	0	0	0	0	0	
; 23:00		0	0	0	0	0	0	0	0	
; 24:00										
	Peak Frac									
; HEAT		VENT 0	WATR 0	COOK	REFR 0	XLIT O	ILIT O	OFEQ 0	MISC 0	
	Load Shap									
; HEAT		VENT 0	WATR O	COOK	REFR 0	XLIT O	ILIT O	OFEQ 0	MISC 0	
; 1:00		0	. 0	0	0	0	0	0	0	
; 2:00		0	0	0	0	0	0	0	0	
; 3:00		0	0	0	0	0	0	0	0	
; 4:00		0	. 0	0	0	0	0	0	0	
; 5:00		0	0	0	0	0	0	0	0	
; 6:00		. 0	0	0	0	0	0	0	0	
; 7:00		•						-	-	
; 8:00		0	0	0	0	0	0	0	. 0	
9:00 ; 9:00		0	0	0	0	0	0	0	0	
; 10:00		0	0	0	0	0	0	. 0	0	
; 11:00			0	0	0	0	0	0	0	
; 12:00	•	0	0	0	0	0	0	0	0	
; 13:00		0	0	0	0	0	0	0	0	
0 ; 14:00		0	0	0	0	0	0	0	0	
; 15:00	0	0	0	0	0	0	0	0	0	
0 ; 16:00	0	0	0	0	0	0	0	0	0	
, 17:00	0	0	0	0	0	0	0	0	0	
, 18:00	0	. 0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

.

.

	0	0	0	0	0	0	0	0	0	0
;	20:00	.0	0	0	0	0	0	0	0	0
;	21:00	0	0	0	0	0	0	0	0	0
;	22:00	0	0	0	0	0	0	0	0	0
;	23:00	0	0	0	0	. 0	0	0	0	0
;	24:00	U	U	J	J	. 0	J		J	U

;end of file

```
;FS1: Floor Stock
    2 ;file version: do not edit
                                                 ; file description
"KU 00Forecast Floor Stock"
;Floor Stock Data Definitions
;Floor Stock Units
"SqFt"
       "Square Feet"
   11 ; Number of Segments
 1920 ; Historical First Year
 2029 ; Forecast End Year
;Floor Stock Segment Definitions
                                                       StartYear EndYear
                                          Stock Add?
; Name
                                  BYear
         Long Name
                                          21.108 "N"
                                                                      1991
         "SMALL OFFICES"
                                  1995
                                                           1968
"SMO"
                                          14.945 "N"
                                                           1968
                                                                      1991
                                  1995
"LGO"
         "LARGE OFFICES"
                                          22.227 "N"
                                                           1968
                                                                      1991
                                  1995
"WRH"
         "WAREHOUSES"
                                          10.053 "N"
                                                           1968
                                                                      1991
"FOD"
         "FOODSTORES"
                                  1995
                                          36.796 "N"
                                  1995
                                                           1968
                                                                      1991
"RET"
         "RETAIL"
                                          21.404 "N"
                                                           1968
                                                                      1991
                                  1995
"SCH"
         "SCHOOLS"
                                          24.024 "N"
                                                                      1991
                                  1995
                                                           1968
        "COLLEGES"
"COL"
                                          4.7648 "N"
                                                           1968
                                                                      1991
                                  1995
        "RESTAURANTS"
"RES"
                                          16.689 "N"
                                                           1968
                                                                      1991
                                  1995
"HLT"
         "HEALTH"
                                          8.5662 "N"
                                                           1968
                                                                      1991
"LDG"
                                  1995
         "LODGING"
                                          38.095 "N"
                                                           1968
                                                                      1991
                                  1995
"MSC"
         "MISCELLANEOUS"
;Survival Functions
                     Additions
;1st Year
; Stock
                                  Age Remain
; Surv Age Remain Age Remain
                                    80
                                            20 ; SMALL OFFICES
                 99
                              50
         15
                      36
  0.98
                                            20 ; LARGE OFFICES
  0.98
         15
                 99
                       36
                              50
                                    80
                                            20 ; WAREHOUSES
  0.98
                 99
                      36
                              50
                                    80
         15
                                           20 ; FOODSTORES
                 99
                              50
                                    80
  0.98
         15
                      36
                                          -20 ; RETAIL
                                    80
  0.98
          15
                 99
                       36
                              50
 0.985
          15
                 99
                       48
                              50
                                    90
                                           20 ;SCHOOLS
                 99
                              50
                                    90
                                           20 ; COLLEGES
 0.985
         15
                       48
                              50
                                    90
                                           20 ; RESTAURANTS
 0.985
                 99
          15
                       48
                              50
                                    90
                                            20 ; HEALTH
 0.985
          15
                 99
                       48
                              50
                                    80
                                            20 ; LODGING
  0.98
         15
                 99
                       36
                              50
                                    90
                                            20 ; MISCELLANEOUS
                 99
                       48
 0.985
          15
; SMALL OFFICES
; Additions
                 Scale
                0.1458 ; 1920
          0
                0.1464 ; 1921
          0
                0.1471 ; 1922
          0
                0.1479 ; 1923
          0
          0
                0.1487 ; 1924
                0.1496 ; 1925
          0
                0.1505 ; 1926
          0
                0.1515 ; 1927
```

```
0.1525 ; 1928
0
0
      0.1536 ; 1929
      0.1547 ; 1930
0
      0.1559 ; 1931
0
      0.1572 ; 1932
0
      0.1584 ; 1933
0
      0.1598 ; 1934
0
0
      0.1611 ; 1935
      0.1625 ; 1936
0
      0.1639 ; 1937
0
0
      0.1654 ; 1938
0
      0.1669 ; 1939
0
      0.1684 ; 1940
0
      0.1689 ; 1941
      0.1695 ; 1942
0
        0.17 ; 1943
0
0
      0.1705 ; 1944
0
      0.1711 ; 1945
0
      0.1716 ; 1946
0
      0.1721 ; 1947
0
      0.1725 ; 1948
      0.1729 ; 1949
0
      0.1732 ; 1950
0
0
      0.1778 ; 1951
      0.1823 ; 1952
0
0
      0.1866 ; 1953
0
      0.1908 ; 1954
      0.1949 ; 1955
0
      0.1988 ; 1956
0
      0.2031 ; 1957
0
0
      0.2074 ; 1958
0
      0.2117 ; 1959
0
      0.2159 ; 1960
0
      0.2202 ; 1961
0
      0.2245 ; 1962
0
      0.2288 ; 1963
      0.2331 ; 1964
0
0
      0.2374 ; 1965
      0.2417 ; 1966
0
      0.2608 ; 1967
0
0
         0.28 ; 1968
0
      0.2991 ; 1969
0
      0.3183 ; 1970
0
      0.3374 ; 1971
0
      0.3566 ; 1972
0
      0.3757 ; 1973
0
      0.3948 ; 1974
      0.4139 ; 1975
0
        0.433 ; 1976
0
0
      0.4736 ; 1977
0
        0.514 ; 1978
      0.5543 ; 1979
0
      0.5945 ; 1980
0
      0.6345 ; 1981
0
0
      0.6742 ; 1982
0
       0.7138 ; 1983
        0.753 ; 1984
```

```
0
                 0.792 ; 1985
                0.8306 ; 1986
         0
                0.8493 ; 1987
         0
                0.8678 ; 1988
         0
                0.8864 ; 1989
                0.9047 ; 1990
         0
         0
                0.9227 ; 1991
                0.9273 ; 1992
                0.9736 ; 1993
         0
                0.9847 ; 1994
         0
          0
                      1; 1995
; LARGE OFFICES
;Additions
                 Scale
         0
                0.1458 ; 1920
         0
                0.1464 ; 1921
         0
                0.1471 ; 1922
                0.1479 ; 1923
         0
         0
                0.1487 ; 1924
         0
                0.1496 ; 1925
                0.1505 ; 1926
         0
         0
                0.1515 ; 1927
         0
                0.1525 ; 1928
                0.1536 ; 1929
         0
                0.1547 ; 1930
         0
                0.1559 ; 1931
         0
         0
                0.1572 ; 1932
         0
                0.1584 ; 1933
         0
                0.1598 ; 1934
                0.1611 ; 1935
         0
         0
                0.1625 ; 1936
         0
                0.1639 ; 1937
         0
                0.1654 ; 1938
         0
                0.1669 ; 1939
                0.1684 ; 1940
         0
         0
                0.1689 ; 1941
         0
                0.1695 ; 1942
          0
                  0.17 ; 1943
          0
                0.1705 ; 1944
          0
                0.1711 ; 1945
         0
                0.1716 ; 1946
                0.1721 ; 1947
          0
                0.1725 ; 1948
          0
          0
                0.1729 ; 1949
         0
                0.1732 ; 1950
         0
                0.1778 ; 1951
         0
                0.1823 ; 1952
                0.1866 ; 1953
         0
                0.1908 ; 1954
         0
                0.1949 ; 1955
         0
         0
                0.1988 ; 1956
         0
                0.2031 ; 1957
                0.2074 ; 1958
          0
         0
                0.2117 ; 1959
                0.2159 ; 1960
          0
```

```
0.2202 ; 1961
         0
                0.2245 ; 1962
                0.2288 ; 1963
         0
                0.2331 ; 1964
                0.2374 ; 1965
         0
                0.2417 ; 1966
         0
                0.2608 ; 1967
         0
         0
                  0.28 ; 1968
         0
                0.2991 ; 1969
         0
                0.3183 ; 1970
         0
                0.3374 ; 1971
         0
                0.3566 ; 1972
                0.3757 ; 1973
         0
         0
                0.3948 ; 1974
                0.4139 ; 1975
         0
                 0.433 ; 1976
         0
         0
                0.4736 ; 1977
                 0.514 ; 1978
         0
                0.5543 ; 1979
         0
                0.5945 ; 1980
         0
                0.6345 ; 1981
         0
                0.6742 ; 1982
         0
         0
                0.7138 ; 1983
         0
                 0.753 ; 1984
         0
                 0.792 ; 1985
                0.8306 ; 1986
         0
                0.8493 ; 1987
         0
                0.8678 ; 1988
         0
         0
                0.8864 ; 1989
         0
                0.9047 ; 1990
                0.9227 ; 1991
         0
         0
                0.9273 ; 1992
         0
                0.9736 ; 1993
         0
                0.9847; 1994
         0
                      1; 1995
; WAREHOUSES
;Additions
                 Scale
                0.2119 ; 1920
          0
          0
                0.2133 ; 1921
                0.2147 ; 1922
          0
          0
                0.2163 ; 1923
                0.2179 ; 1924
          0
          0
                0.2196 ; 1925
          0
                0.2214 ; 1926
          0
                0.2232 ; 1927
          0
                0.2252 ; 1928
          0
                0.2272 ; 1929
                0.2292 ; 1930
          0
          0
                 0.231 ; 1931
         . 0
                0.2328 ; 1932
                0.2347 ; 1933
          0
          0
                0.2367 ; 1934
          0
                0.2387 ; 1935
                0.2408 ; 1936
```

```
0.2429 ; 1937
0
        0.245 ; 1938
0
       0.2472 ; 1939
0
       0.2495 ; 1940
0
       0.2503 ; 1941
0
       0.2511 ; 1942
0
       0.2519 ; 1943
0
       0.2527 ; 1944
0
       0.2535 ; 1945
0
       0.2542 ; 1946
0
       0.2549 ; 1947
0
       0.2556 ; 1948
0
       0.2561 ; 1949
0
       0.2566 ; 1950
0
       0.2634 ; 1951
0
         0.27 ; 1952
0
       0.2765 ; 1953
0
       0.2827 ; 1954
0
       0.2888 ; 1955
0
       0.2945 ; 1956
0
       0.3057 ; 1957
0
        0.317 ; 1958
0
       0.3282 ; 1959
0
       0.3395 ; 1960
0
       0.3507 ; 1961
0
        0.362 ; 1962
0
       0.3733 ; 1963
0
      0.3846 ; 1964
0
      0.3959 ; 1965
0
      0.4072 ; 1966
0
      0.4267 ; 1967
0
      0.4462 ; 1968
0
      0.4657 ; 1969
0
      0.4852 ; 1970
0
      0.5047 ; 1971
0
      0.5242 ; 1972
0
      0.5436 ; 1973
0
      0.5631 ; 1974
0
      0.5825 ; 1975
0
      0.6018 ; 1976
0
      0.6219 ; 1977
0
      0.6418 ; 1978
0
      0.6615 ; 1979
0
       0.681 ; 1980
0
      0.7001 ; 1981
0
      0.7189 ; 1982
0
      0.7372 ; 1983
0
      0.7552 ; 1984
0
      0.7726 ; 1985
0
      0.7894 ; 1986
0
      0.8194 ; 1987
0
      0.8491 ; 1988
      0.8591 ; 1989
0
0
      0.8686 ; 1990
0
      0.8777 ; 1991
0
      0.8966 ; 1992
      0.9369 ; 1993
```

```
0
                 0.981 ; 1994
                      1; 1995
;
; FOODSTORES
                 Scale
;Additions
                0.2151 ; 1920
          0
          0
                0.2165 ; 1921
                 0.218 ; 1922
          0
          0
                0.2195 ; 1923
          0
                0.2212 ; 1924
          0
                0.2229 ; 1925
          0
                0.2247 ; 1926
          0
                0.2266 ; 1927
          0
                0.2285 ; 1928
          0
                0.2306 ; 1929
          0
                0.2327 ; 1930
          0
                0.2345 ; 1931
          0
                0.2363 ; 1932
          0
                0.2383 ; 1933
          0
                0.2403 ; 1934
          0
                0.2423 ; 1935
          0
                0.2444 ; 1936
          0
                0.2466 ; 1937
          0
                0.2488 ; 1938
          0
                 0.251 ; 1939
          0
                0.2533 ; 1940
          0
                0.2541 ; 1941
          0
                0.2549 ; 1942
                0.2557 ; 1943
          0
          0
                0.2565 ; 1944
          0
                0.2573 ; 1945
          0
                0.2581 ; 1946
          0
                0.2588 ; 1947
          0
                0.2595 ; 1948
                   0.26 ; 1949
          0
          0
                0.2605 ; 1950
          0
                0.2674 ; 1951
          0
                0.2742 ; 1952
          0
                0.2807 ; 1953
          0
                0.2871 ; 1954
                0.2932 ; 1955
          0
          0
                 0.299 ; 1956
          0
                0.3054 ; 1957
          0
                0.3119 ; 1958
          0
                0.3183 ; 1959
          0
                0.3247 ; 1960
                0.3311 ; 1961
          0
                0.3376 ; 1962
          0
          0
                 0.344 ; 1963
          0
                0.3505 ; 1964
          0
                 0.357 ; 1965
          0
                0.3635 ; 1966
          0
                0.3765 ; 1967
          0
                0.3894 ; 1968
```

0.4024 ; 1969

```
0.4154 ; 1970
          0
                0.4283 ; 1971
          0
                0.4413 ; 1972
          0
                0.4543 ; 1973
                0.4672 ; 1974
          0
          0
                0.4802 ; 1975
          0
                0.4931 ; 1976
          0
                 0.523 ; 1977
          0
                0.5527 ; 1978
          0
                0.5823 ; 1979
          0
                0.6116 ; 1980
          0
                0.6407 ; 1981
          0
                0.6695 ; 1982
          0
                 0.698 ; 1983
          0
                0.7261 ; 1984
          0
                0.7539 ; 1985
          0
                0.7812 ; 1986
          0
                0.8189 ; 1987
         0
                0.8565 ; 1988
         0
                0.8679 ; 1989
         0
                0.8792 ; 1990
         0
                0.8903 ; 1991
         .0
                0.9138 ; 1992
         0
                0.9524 ; 1993
         0
                0.9849 ; 1994
                      1; 1995
; RETAIL
;Additions
                 Scale
         0
                0.1255 ; 1920
         0
                0.1263 ; 1921
                0.1272 ; 1922
         0
         0
                0.1281 ; 1923
         0
                0.1291 ; 1924
         0
                0.1301 ; .1925
         0
                0.1311 ; 1926
         0
                0.1322 ; 1927
         0
                0.1334 ; 1928
         0
                0.1346 ; 1929
         0
                0.1358 ; 1930
         0
                0.1368 ; 1931
         0
                0.1379 ; 1932
         0
                 0.139 ; 1933
         0
                0.1402 ; 1934
         0
                0.1414 ; 1935
         0
                0.1426 ; 1936
         0
                0.1439 ; 1937
         0
                0.1452 ; 1938
         0
                0.1465 ; 1939
         0
                0.1478 ; 1940
         0
                0.1482 ; 1941
         0
                0.1487 ; 1942
         0
                0.1492 ; 1943
         0
                0.1497 ; 1944
         0
                0.1502 ; 1945
```

```
0.1506 ; 1946
         0
         0
                 0.151 ; 1947
         0
                0.1514 ; 1948
         0
                0.1517 ; 1949
                 0.152 ; 1950
         0
                 0.156 ; 1951
         0
         0
                  0.16 ; 1952
         0
                0.1638 ; 1953
         0
                0.1675 ; 1954
         0
                0.1711 ; 1955
                0.1745 ; 1956
         0
                0.1878 ; 1957
         0
                0.2011 ; 1958
         0
                0.2144 ; 1959
         0
                0.2277 ; 1960
         0
         0
                0.2411 ; 1961
                0.2544 ; 1962
         0
                0.2677 ; 1963
         0
                0.2811 ; 1964
         0
                0.2944 ; 1965
         0
         0
                0.3078 ; 1966
         0
                0.3152 ; 1967
         0
                0.3227 ; 1968
                0.3301 ; 1969
         0
         0
                0.3376 ; 1970
         0
                 0.345 ; 1971
         0
                0.3524 ; 1972
         0
                0.3598 ; 1973
         0
                0.3671 ; 1974
                0.3745 ; 1975
         0
         0
                0.3817 ; 1976
         0
                0.4228 ; 1977
         0
                0.4638 ; 1978
                0.5045 ; 1979
         0
         0
                0.5451 ; 1980
         0
                0.5854 ; 1981
         0
                0.6254 ; 1982
         0
                 0.665 ; 1983
         0
                0.7043 ; 1984
                0.7431 ; 1985
         0
                0.7814 ; 1986
         0
                0.8193 ; 1987
         0
                0.8567 ; 1988
          0
         0
                0.8685 ; 1989
         0
                0.8798 ; 1990
         0
                0.8905 ; 1991
                0.9141 ; 1992
         0
         0
                0.9524 ; 1993
         0
                0.9849 ; 1994
         0
                     1; 1995
;
;SCHOOLS
; Additions
                 Scale
                0.5676 ; 1920
          0
                0.5717 ; 1921
          0
```

```
0.576 ; 1922
      0.5803 ; 1923
0
0
      0.5848 ; 1924
0
      0.5894 ; 1925
0
      0.5941 ; 1926
       0.599 ; 1927
0
      0.6039 ; 1928
0
      0.6089 ; 1929
      0.6141 ; 1930
0
0
      0.6191 ; 1931
0
      0.6242 ; 1932
0
      0.6294 ; 1933
0
      0.6347 ; 1934
0
      0.6401 ; 1935
      0.6456 ; 1936
0
0
      0.6512 ; 1937
0
      0.6568 ; 1938
0
      0.6626 ; 1939
0
      0.6684 ; 1940
0
      0.6701 ; 1941
0
      0.6719 ; 1942
0
      0.6737 ; 1943
0
      0.6756 ; 1944
0
      0.6776 ; 1945
0
      0.6795 ; 1946
0
      0.6815 ; 1947
0
      0.6835 ; 1948
      0.6855 ; 1949
0
0
      0.6874 ; 1950
0
      0.6891 ; 1951
0
      0.6906 ; 1952
0
      0.6921 ; 1953
0
      0.6936 ; 1954
0
      0.6949 ; 1955
0
      0.6961 ; 1956
0
      0.7013 ; 1957
0
      0.7063 ; 1958
0
       0.711 ; 1959
      0.7156 ; 1960
0
        0.72 ; 1961
0
0
      0.7241 ; 1962
0
      0.7279 ; 1963
0
      0.7314 ; 1964
0
      0.7346 ; 1965
0
      0.7375 ; 1966
0
       0.749 ; 1967
0
      0.7602 ; 1968
0
      0.7711 ; 1969
0
       0.782 ; 1970
0
      0.7928 ; 1971
0
      0.8037 ; 1972
0
      0.8145 ; 1973
0
      0.8254 ; 1974
      0.8362 ; 1975
0
0
      0.8471 ; 1976
0
      0.8534 ; 1977
```

0

0.8598 ; 1978

```
0.8662 ; 1979
         0
                0.8726 ; 1980
         0
                 0.879 ; 1981
         0
                0.8855 ; 1982
         0
         0
                 0.892 ; 1983
         0
                0.8986 ; 1984
                0.9052 ; 1985
         0
                0.9118 ; 1986
         0
                0.9156 ; 1987
         0
                0.9194 ; 1988
         0
                0.9269 ; 1989
         0
                0.9344 ; 1990
         0
                0.9417 ; 1991
         0
                0.9479 ; 1992
         0
         0
                0.9531 ; 1993
                0.9786 ; 1994
         0
                      1; 1995
; COLLEGES
;Additions
                 Scale
                0.5714 ; 1920
          0
                0.5755 ; 1921
          0
          0
                0.5798 ; 1922
                0.5842 ; 1923
          0
                0.5887 ; 1924
          0
                0.5933 ; 1925
          0
                0.5981 ; 1926
          0
                 0.6029 ; 1927
          0
                 0.6079 ; 1928
          0
                  0.613 ; 1929
          0
                 0.6182 ; 1930
          0
          0
                 0.6232 ; 1931
                 0.6284 ; 1932
          0
                 0.6336 ; 1933
          0
                 0.6389 ; 1934
          0
                 0.6444 ; .1935
          0
                 0.6499 ; 1936
          0
          0
                 0.6555 ; 1937
                 0.6612 ; 1938
          0
                 0.6669 ; 1939
          0
                 0.6728 ; 1940
          0
                 0.6745 ; 1941
          0
                 0.6763 ; 1942
          0
          0
                 0.6782 ; 1943
          0
                 0.6801 ; 1944
                  0.682 ; 1945
          0
                  0.684 ; 1946
          0
          0
                  0.686 ; 1947
                  0.688 ; 1948
          0
                   0.69 ; 1949
          0
                  0.692 ; 1950
          0
                 0.6936 ; 1951
          0
                 0.6952 ; 1952
          0
          0
                 0.6967 ; 1953
                 0.6982 ; 1954
```

```
0.6995 ; 1955
                 0.7007 ; 1956
          0
          0
                 0.7059 ; 1957
          0
                 0.7109 ; 1958
          0
                0.7157 ; 1959
          0
                0.7203 ; 1960
          0
                0.7247 ; 1961
          0
                0.7288 ; 1962
          0
                0.7326 ; 1963
          0
                0.7362 ; 1964
          0
                0.7394 ; 1965
          0
                0.7423 ; 1966
          0
                0.7539 ; 1967
          0
                0.7652 ; 1968
          0
                0.7762 ; 1969
          0
                0.7871 ; 1970
          0
                 0.798 ; 1971
          0
                0.8089 ; 1972
          0
                0.8199 ; 1973
          0
                0.8308 ; 1974
          0
                0.8417 ; 1975
          0
                0.8527 ; 1976
          0
                0.8584 ; 1977
          0
                0.8642 ; 1978
          0
                  0.87 ; 1979
          0
                0.8758 ; 1980
          0
                0.8817 ; 1981
          0
                0.8876 ; 1982
          0
                0.8936 ; 1983
          0
                0.8996 ; 1984
          0
                0.9056 ; 1985
          0
                0.9117 ; 1986
          0
                0.9154 ; 1987
          0
                0.9191 ; 1988
          0
                0.9267 ; 1989
         0
                0.9342 ; 1990
         0
                0.9416 ; 1991
         0
                0.9476 ; 1992
         0
                0.9531 ; 1993
         0
                0.9786 ; 1994
         0
                     1; 1995
;
; RESTAURANTS
;Additions
                 Scale
         0
                0.2155 ; 1920
                 0.217 ; 1921
         0
         0
                0.2186 ; 1922
         0
                0.2203 ; 1923
         0
                 0.222 ; 1924
         0
                0.2237 ; 1925
         0
                0.2255 ; 1926
         0
                0.2274 ; 1927
         0
                0.2293 ; 1928
         0
                0.2312 ; 1929
         0
                0.2331 ; 1930
```

```
0.235 ; 1931
0
0
       0.237 ; 1932
0
       0.239 ; 1933
0
       0.241 ; 1934
0
       0.243 ; 1935
0
      0.2451 ; 1936
0
      0.2472 ; 1937
0
      0.2494 ; 1938
0
      0.2515 ; 1939
0
      0.2537 ; 1940
0
      0.2544 ; 1941
0
      0.2551 ; 1942
0
      0.2558 ; 1943
0
      0.2565 ; 1944
0
      0.2572 ; 1945
0
       0.258 ; 1946
0
      0.2587 ; 1947
0
      0.2595 ; 1948
0
      0.2602 ; 1949
0
      0.2609 ; 1950
0
      0.2674 ; 1951
0
      0.2739 ; 1952
      0.2803 ; 1953
0
0
      0.2868 ; 1954
0
      0.2931 ; 1955
0
      0.2995 ; 1956
0
      0.3063 ; 1957
0
      0.3131 ; 1958
0
      0.3198 ; 1959
0
      0.3265 ; 1960
0
       0.333 ; 1961
0
      0.3394 ; 1962
0
      0.3458 ; 1963
0
       0.352 ; 1964
0
      0.3581 ; 1965
0
       0.364 ; 1966
Ó
      0.3704 ; 1967
0
      0.3767 ; 1968
0
      0.3827 ; 1969
0
      0.3888 ; 1970
0
      0.3949 ; 1971
0
      0.4009 ; 1972
0
       0.407 ; 1973
0
       0.413 ; 1974
0
       0.419 ; 1975
0
       0.425 ; 1976
0
      0.4609 ; 1977
0
      0.4968 ; 1978
0
      0.5327 ; 1979
0
      0.5685 ; 1980
0
      0.6043 ; 1981
0
        0.64 ; 1982
0
      0.6757 ; 1983
0
      0.7113 ; 1984
0
      0.7469 ; 1985
0
      0.7823 ; 1986
      0.8201 ; 1987
```

```
0
                0.8577 ; 1988
                0.8691 ; 1989
          0
          0
                0.8804 ; 1990
         0
                0.8915 ; 1991
          0
                0.9151 ; 1992
          0
                0.9524 ; 1993
                0.9849 ; 1994
          0
                     1; 1995
          0
;
; HEALTH
;Additions
                 Scale
                0.0779 ; 1920
          0
                0.0785 ; 1921
          0
          0
                0.0791 ; 1922
          0
                0.0797 ; 1923
          0
                0.0803 ; 1924
          0
                0.0809 ; 1925
          0
                0.0816 ; 1926
                0.0823 ; 1927
          0
          0
                0.0829 ; 1928
          0
                0.0836 ; 1929
          0
                0.0843 ; 1930
          0
                 0.085 ; 1931
          0
                0.0857 ; 1932
          0
                0.0864 ; 1933
          0
                0.0872 ; 1934
          0
                0.0879 ; 1935
          0
                0.0887 ; 1936
          0
                0.0894 ; 1937
          0
                0.0902 ; 1938
          0
                 0.091 ; 1939
          0
                0.0918 ; 1940
          0
                 0.092 ; 1941
          0
                0.0923 ; 1942
          0
                0.0925 ; 1943
          0
                0.0928 ; 1944
          0
                 0.093 ; 1945
          0
                0.0933 ; 1946
          0
                0.0936 ; 1947
          0
                0.0939 ; 1948
          0
                0.0941 ; 1949
          0
                0.0944 ; 1950
          0
                0.0968 ; 1951
          0
                0.0991 ; 1952
          0
                0.1014 ; 1953
          0
                0.1038 ; 1954
          0
                0.1061 ; 1955
          0
                0.1084 ; 1956
          0
                0.1213 ; 1957
          0
                0.1342 ; 1958
          0
                 0.147 ; 1959
          0
                0.1598 ; 1960
          0
                0.1726 ; 1961
          0
                0.1853 ; 1962
                 0.198 ; 1963
```

```
0
                0.2106 ; 1964
          0
                0.2232 ; 1965
                0.2358 ; 1966
          0
                0.2495 ; 1967
          0
          0
                0.2632 ; 1968
          0
                0.2768 ; 1969
          0
                0.2904 ; 1970
          0
                 0.304 ; 1971
          0
                0.3176 ; 1972
                0.3311 ; 1973
          0
          0
                0.3446 ; 1974
          0
                0.3581 ; 1975
          0
                0.3716 ; 1976
          0
                0.4059 ; 1977
          0
                0.4402 ; 1978
          0
                0.4745 ; 1979
          0
                0.5087 ; 1980
          0
                0.5428 ; 1981
          0
                0.5769 ; 1982
          0
                0.6109 ; 1983
          0
                0.6448 ; 1984
          0
                0.6785 ; 1985
          0
                0.7122 ; 1986
          0
                0.7516 ; 1987
          0
                0.7908 ; 1988
          0
                0.8133 ; 1989
          0
                0.8355 ; 1990
          0
                0.8576 ; 1991
                0.8901 ; 1992
          0
          0
                0.9368 ; 1993
          0
                0.9751 ; 1994
          0
                      1; 1995
;
; LODGING
; Additions
                 Scale
                0.0867 ; 1920
          0
                0.0873 ; 1921
          0
          0
                0.0879 ; 1922
          0
                0.0885 ; 1923
          0
                0.0891 ; 1924
          0
                0.0898 ; 1925
          0
                0.0906 ; 1926
          0
                0.0913 ; 1927
                0.0921 ; 1928
          0
          0
                0.0929 ; 1929
          0
                0.0937 ; 1930
          0
                0.0945 ; 1931
         0
                0.0952 ; 1932
         0
                 0.096 ; 1933
         0
                0.0968 ; 1934
         0
                0.0976 ; 1935
         0
                0.0985 ; 1936
         0
                0.0994 ; 1937
                0.1003 ; 1938
         0
                0.1012 ; 1939
```

```
0.1021 ; 1940
0
      0.1024 ; 1941
0
      0.1027 ; 1942
0
      0.1031 ; 1943
0
      0.1034 ; 1944
0
      0.1037 ; 1945
0
      0.1041 ; 1946
0
      0.1043 ; 1947
0
      0.1046 ; 1948
0
      0.1048 ; 1949
0
       0.105 ; 1950
0
      0.1077 ; 1951
0
      0.1103 ; 1952
0
      0.1129 ; 1953
0
      0.1153 ; 1954
0
      0.1177 ; 1955
0
      0.1199 ; 1956
0
       0.134 ; 1957
0
       0.148 ; 1958
0
      0.1621 ; 1959
0
      0.1761 ; 1960
0
      0.1901 ; 1961
0
      0.2042 ; 1962
0
      0.2182 ; 1963
0
      0.2323 ; 1964
0
      0.2463 ; 1965
0
      0.2604 ; 1966
0
      0.2888 ; 1967
0
      0.3171 ; 1968
0
      0.3455 ; 1969
0
      0.3738 ; 1970
0
      0.4021 ; 1971
      0.4304 ; 1972
0
0
      0.4587 ; 1973
      0.4869 ; 1974
0
0
      0.5151 ; 1975
0
      0.5432 ; 1976
0
      0.5691 ; 1977
0
       0.5949 .; 1978
0
      0.6206 ; 1979
       0.646 ; 1980
0
0
       0.6711 ; 1981
0
       0.696 ; 1982
0
       0.7205 ; 1983
0
       0.7445 ; 1984
0
       0.7681 ; 1985
0
       0.7912 ; 1986
0
       0.8351 ; 1987
       0.8786 ; 1988
0
0
        0.904 ; 1989
0
       0.9287 ; 1990
0
       0.9526 ; 1991
0
       0.9888 ; 1992
0
        0.988 ; 1993
0
        0.988 ; 1994
0
            1; 1995
```

;

```
; MISCELLANEOUS
                 Scale
;Additions
                0.5067 ; 1920
          0
                0.5104 ; 1921
                0.5142 ; 1922
          0
                0.5181 ; 1923
          0
                0.5221 ; 1924
          0
                0.5262 ; 1925
          0
          0
                0.5304 ; 1926
          0
                0.5347 ; 1927
          0
                0.5392 ; 1928
          0
                0.5437 ; 1929
          0
                0.5483 ; 1930
          0
                0.5527 ; 1931
          0
                0.5573 ; 1932
          0
                 0.562 ; 1933
          0
                0.5667 ; 1934
          0
                0.5715 ; 1935
          0
                0.5764 ; 1936
                0.5814 ; 1937
          0
                0.5864 ; 1938
          0
          0
                0.5915 ; 1939
                0.5967 ; 1940
          0
          0
                0.5982 ; 1941
          0
                0.5998 ; 1942
                0.6015 ; 1943
          0
          0
                0.6032 ; 1944
          0
                0.6049 ; 1945
          0
                0.6066 ; 1946
          0
                0.6084 ; 1947
          0
                0.6102 ; 1948
                0.6119 ; 1949
          0
          0
                0.6137 ; 1950
          0
                0.6151 ; 1951
          0
                0.6165 ; 1952
          0
                0.6179 ; 1953
          0
                0.6192 ; 1954
                0.6204 ; 1955
          0
          0
                0.6215 ; 1956
          0
                0.6261 ; 1957
          0
                0.6305 ; 1958
          0
                0.6348 ; 1959
                0.6389 ; 1960
          0
          0
                0.6427 ; 1961
          0
                0.6464 ; 1962
          0
                0.6498 ; 1963
          0
                0.6529 ; 1964
          0
                0.6558 ; 1965
          0
                0.6583 ; 1966
          0
                0.6687 ; 1967
          0
                0.6787 ; 1968
          0
                0.6884 ; 1969
```

0

0

0.6981 ; 1970

0.7077 ; 1971 0.7174 ; 1972 *:*.,

```
0.7271 ; 1973
         0
                0.7368 ; 1974
                0.7465 ; 1975
         0
         0
                0.7562 ; 1976
         0
                0.7616 ; 1977
         0
                 0.767 ; 1978
         0
                0.7725 ; 1979
         0
                0.7779 ; 1980
         0
                0.7834 ; 1981
                 0.789 ; 1982
         0
         0
                0.7945 ; 1983
         0
                0.8001 ; 1984
                0.8058 ; 1985
         0
         0
                0.8115 ; 1986
         0
                0.8426 ; 1987
         0
                0.8738 ; 1988
         0
                 0.883 ; 1989
         0
                0.8921 ; 1990
         0
                0.9012 ; 1991
         0
                0.9323 ; 1992
         0
                0.9572 ; 1993
         0
                0.9797 ; 1994
         0
                     1; 1995
;
; SMALL OFFICES
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
; Variable 1 Variable 2 Variable 3
                                       Variable 4
    21.2735
                       0
                                    0
                                                 0 ; 1996
    21.6933
                       0
                                    0
                                                 0 ; 1997
                                                 0 ; 1998
    22.1324
                       0
                                    0
    22.6165
                       0
                                    0
                                                 0 ; 1999
     23.074
                       0
                                    0
                                                 0 ; 2000
                                                 0 ; 2001
    23.4917
                       0
                                    0
    23.8634
                       0
                                    0
                                                 0 ; 2002
    24.1994
                                                 0; 2003
                       0
                                    0
    24.5252
                       0
                                    0
                                                 0; 2004
    24.8469
                       0
                                    0
                                                 0 ; 2005
    25.1655
                       0
                                    0
                                                 0 ; 2006
                                    0
    25.4872
                       0
                                                 0 ; 2007
    25.8109
                       0
                                    0
                                                 0; 2008
                                    0
    26.1122
                       0
                                                 0; 2009
    26.3828
                       0
                                    0
                                                 0 ; 2010
                       0
                                    0
    26.6422
                                                 0 ; 2011
```

```
0 ; 2012
    26.8986
                       0
                                    0
                                                 0 ; 2013
                                    0
    27.1447
                                    0
                                                 0 ; 2014
    27.3888
                       0
                                    0
                                                 0 ; 2015
    27.6359
                       0
                                                 0 ; 2016
     27.881
                       0
                                    0
                                                 0 ; 2017
                                    0
    28.1149
                       0
                                                 0 ; 2018
                       0
                                    0
    28.3344
                                    0
                                                 0; 2019
                       0
    28.5489
                                    0
                                                 0 ; 2020
    28.7674
                       0
                                    0
                                                 0 ; 2021
    29.0656
                       0
                                               . 0 ; 2022
                                    0
    29.3495
                       0
                                                 0 ; 2023
                       0
                                    0
    29.5507
                       0
                                    0
                                                 0 ; 2024
    29.7805
                        ٥
                                    0
                                                 0 ; 2025
    30.0419
                                    0
                                                 0 ; 2026
    30.3054
                        0
                                    0
                                                 0 ; 2027
     30.605
                       . 0
; LARGE OFFICES
;Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
; Variable 1 Variable 2 Variable 3
                                       Variable 4
    15.0398
                        0
                                    0
                                                 0 ; 1996
                        0
                                    0
                                                 0 ; 1997
    15.3309
                                    0
                                                 0 ; 1998
                        0
    15.6855
                                    0
                                                 0 ; 1999
                        0
    16.0261
                        0
                                    0
                                                 0 ; 2000
    16.3537
                                    0
                                                 0 ; 2001
                        0
    16.6776
                                                 0 ; 2002
                                    0
    16.9937
                        0
                        0
                                    0
                                                 0 ; 2003
    17.2766
                        0
                                    0
                                                 0 ; 2004
    17.5326
                                                 0 ; 2005
    17.7808
                        0
                                    0
    18.0207
                        0
                                    0
                                                 0; 2006
    18.2542
                        0
                                    0
                                                 0 ; 2007
                                    0
                                                 0; 2008
                        0
    18.4899
                                                 0; 2009
                                    0
    18.7143
                        0
                        0
                                    0
                                                 0 ; 2010
    18.9127
                        0
                                    0
                                                 0 ; 2011
    19.0935
                        0
                                    0
                                                 0 ; 2012
    19.269
                        0
                                    0
                                                 0 ; 2013
    19.4272
                        0
                                    0
                                                 0 ; 2014
    19.5694
    19.7064
                        0
                                    0
                                                 0 ; 2015
                                                 0 ; 2016
                       0
                                    0
    19.8408
                                                 0 ; 2017
                        0
                                    0
    19.9659
                                                 0 ; 2018
    20.0736
                        0
                                    0
    20.1704
                                    0
                                                 0 ; 2019
                        0
    20.2652
                                    0
                                                 0 ; 2020
```

```
0 ; 2021
    20.4144
                                    0
                                                 0 ; 2022
    20.5781
                       0
                                    0
                                                 0 ; 2023
                       0
    20.6209
                                    0
                                                 0; 2024
    20.6489
                       0
                                    0
                                                 0 ; 2025
                       0
    20.6772
                                    0
                                                 0 ; 2026
    20.7055
                       0
                                                 0 ; 2027
                                    0
     20.733
                       0
; WAREHOUSES
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
; Exogenous Variable Values
; Variable 1 Variable 2
                          Variable 3
                                        Variable 4
    22.9386
                       0
                                    0
                                                 0; 1996
                                                 0 ; 1997
                                    0
    23.6194
                       0
                                                 0; 1998
     24.241
                       0
                                    0
                       0
                                    0
                                                 0; 1999
     24.857
                                    0
                                                 0 ; 2000
    25.4533
                       0
    26.0412
                       0
                                    0
                                                 0 ; 2001
                       0
                                    0
                                                 0 ; 2002
    26.5785
                                                 0 ; 2003
                       0
                                    0
    27.0566
                                                 0 ; 2004
                       0
                                    0
    27.5208
                       0
                                    0
                                                 0; 2005
    28.0017
                                    0
                                                 0 ; 2006
                       0
    28.4827
    28.9694
                       0
                                    0
                                                 0; 2007
                                                 0 ; 2008
    29.4363
                       0
                                    0
                                                 0; 2009
                                    0
     29.847
                       0
                                                 0 ; 2010
    30.2211
                       0
                                    0
                                                 0 ; 2011
                       0
                                    0
    30.5755
    30.8961
                       0
                                    0
                                                 0 ; 2012
                       0
                                    0
                                                 0 ; 2013
     31.169
                                    0
                                                 0; 2014
    31.4278
                       0
                                    0
                                                 0; 2015
                       0
    31.6669
                                                 0; 2016
                                    0
    31.8778
                       0
                       0
                                    0
                                                 0; 2017
    32.0663
                                    0
    32.2379
                       0
                                                 0 ; 2018
                                                 0; 2019
                                    0
                       0
     32.401
                       0
                                    0
                                                 0; 2020
    32.5642
                                                 0 ; 2021
                       0
                                    0
    32.7836
                                                 0 ; 2022
                                    0
    32.9805
                       0
                                                 0; 2023
    33.0648
                       0
                                    0
    33.1239
                       0
                                    0
                                                 0; 2024
                       0
                                    0
                                                 0 ; 2025
    33.1802
                       0
                                    0
                                                 0; 2026
    33.2364
     33.292
                                    0
                                                 0 ; 2027
```

; FOODSTORES

```
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 : Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
                                       Variable 4
; Variable 1 Variable 2 Variable 3
                                    0
                                                 0 ; 1996
    10.3107
                       0
                                                 0 ; 1997
                                    0
                       0
    10.5394
                                                 0 ; 1998
                       0
                                    0
    10.7712
                                    0
                                                 0 ; 1999
    11.0141
                       0
                                                 0 ; 2000
    11.2507
                       0
                                    0
    11.4841
                       0
                                    0
                                                 0 ; 2001
    11.6999
                       0
                                    0
                                                 0 ; 2002
                                    0
                                                 0 ; 2003
    11.8988
                       0
                                    0
                                                 0 ; 2004
                       0
    12.1013
                                                 0; 2005
                       0
                                    0
    12.3135
                                    0
                                                 0 ; 2006
                       0
    12.5288
                                                 0 ; 2007
                       0
                                    0
    12.7468
                                                 0; 2008
                       0
                                    0
    12.9488
                                    0
                                                 0; 2009
                       0
    13.1221
                                    0
                                                 0 ; 2010
    13.2805
                       0
    13.4368
                       0
                                    0
                                                 0 ; 2011
                                    0
                                                 0 ; 2012
    13.5703
                       0
                                    0
                                                 0 ; 2013
                       0
    13.6793
                                                 0 ; 2014
                                    0
                       0
    13.7824
                                    0
                                                 0 ; 2015
    13.8738
                       0
                                    0
                                                 0 ; 2016
                       0
    13.9499
                                                 0 ; 2017
                                    0
    14.0142
                       0
                       0
                                    0
                                                 0 ; 2018
    14.0706
    14.1258
                       0
                                    0
                                                 0 ; 2019
                       0
                                    0
                                                 0 ; 2020
    14.1822
     14.271
                       0
                                    0
                                                 0 ; 2021
    14.3486
                       0
                                    0
                                                 0 ; 2022
                       0
                                    0
                                                 0 ; 2023
    14.3784
                                    0
                                                 0 ; 2024
     14.398
                       0
    14.4119
                       0
                                    0
                                                 0 ; 2025
                                                 0 ; 2026
                                    0
    14.4262
                       0
                                    0
                                                 0 ; 2027
      14.44
; RETAIL
;Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
```

```
0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
; Exogenous Variable Values
; Variable 1 Variable 2 Variable 3
                                       Variable 4
                       0
                                     0
                                                  0; 1996
      37.74
    38.5755
                                                  0 : 1997
                       0
                                     0
                                                  0; 1998
                                     0
                       0
    39.4243
                                                  0; 1999
                       0
                                     0
    40.3141
                                                  0; 2000
                                     0
     41.181
                       0
                                     0
                                                  0 ; 2001
    42.0354
                       0
                                                  0 ; 2002
    42.8251
                       0
                                     0
                                     0
                                                  0 ; 2003
    43.5511
                       0
                                     0
                                                  0 ; 2004
                       0
    44.2944
                                                  0 ; 2005
    45.0701
                       0
                                     0
    45.8591
                       0
                                     0
                                                  0 ; 2006
                                     0
                                                  0 ; 2007
                       0
    46.6567
                                                  0; 2008
                        0
                                     0
    47.3953
                                                  0; 2009
                        0
                                     0
    48.0292
                        ٥
                                     0
                                                  0 ; 2010
    48.6103
                                                  0 ; 2011
                                     0
    49.1811
                        0
                                                  0 ; 2012
                        0
                                     0
    49,6701
                                                  0 ; 2013
                        0
                                     0
    50.0686
                                                  0; 2014
    50.4465
                        0
                                     0
                                                  0 ; 2015
    50.7804
                        0
                                     0
    51.0607
                       0
                                     0
                                                  0 ; 2016
                        0
                                     0
                                                  0 ; 2017
    51.2946
                                     0
                                                  0 ; 2018
    51.5017
                        0
                                     0
                                                  0 ; 2019
     51.704
                        0
                                     0
                                                  0; 2020
    51.9103
                        0
                                                  0 ; 2021
                                     0
    52.2347
                        0
                                     0
                                                  0 ; 2022
                        0
    52.5182
                                                  0 ; 2023
                                     0
    52.6285
                        0
                                                  0 ; 2024
    52.6993
                        0
                                     0
    52.7513
                        0
                                     0
                                                  0 ; 2025
                                     0
                                                  0 ; 2026
     52.804
                        0
                                                  0 ; 2027
     52.857
                                     0
;SCHOOLS
; Forecast
"STK" ; Method
"LIN" ; Form
"NO"
      ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
                                        Variable 4
; Variable 1 Variable 2 Variable 3
                                                  0 ; 1996
    21.6617
                        0
                                     0
    22.1255
                        0
                                     0
                                                  0 ; 1997
                                                  0 ; 1998
    22.4869
                        ٥
                                     0
    22.8583
                        0
                                     0
                                                  0 ; 1999
```

```
23.2496
                                                 0 ; 2001
     23.629
                       0
                                    0
                                    0
                                                 0 ; 2002
                       0
    23.9606
                                                 0 ; 2003
                       0
                                    0
    24.2764
                                                 0 ; 2004
                       0
                                    0
    24.5763
                       0
                                    0
                                                 0 ; 2005
    24.8743
    25.1752
                       0
                                    0
                                                 0 ; 2006
                       0
                                    0
                                                 0 ; 2007
     25.477
                                                 0 ; 2008
                       0
                                    0
    25.7849
                                    0
                                                 0 ; 2009
                       0
    26.0967
                       0
                                    0
                                                 0 ; 2010
    26.4036
                                                 0 ; 2011
                       0
                                    0
    26.7084
                                                 0 ; 2012
                       0
                                    0
    27.0213
                                                 0 ; 2013
                       0
                                    0
     27.343
                                    0
                                                 0 ; 2014
                       0
    27.6668
                       0
                                    0
                                                 0 ; 2015
    27.9955
                                                 0 ; 2016
    28.3291
                       0
                                    0
    28.6608
                       0
                                    0
                                                 0 ; 2017
                       0
                                    0
                                                 0 ; 2018
    28.9935
                                                 0; 2019
                       0
                                    0
    29.3291
                                                 0 ; 2020
    29.6717
                       0
                                    0
                                                 0 ; 2021
                       0
                                    0
    30.0739
                                                 0 ; 2022
                       0
                                    0
    30.3897
                                    0
                                                 0 ; 2023
    30.6291
                       0
                                    0
                                                 0 ; 2024
                       0
    30.8813
                                                 0 ; 2025
                                    0
    31.1385
                       0
    31.4007
                       0
                                    0
                                                 0; 2026
                                                 0 ; 2027
                                    0
     31.663
; COLLEGES
;Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
; Variable 1 Variable 2 Variable 3 Variable 4
                                                 0; 1996
                                    0
    24.3133
                       0
    24.8343
                       0
                                    0
                                                 0 ; 1997
    25.2403
                       0
                                    0
                                                 0 ; 1998
                                                 0; 1999
                       0
                                    0
    25.6571
    26.0954
                       0
                                    0
                                                 0 ; 2000
                       0
                                    0
                                                 0 ; 2001
    26.5212
                                                 0 ; 2002
                                    0
    26.8931
                       0
                                                 0; 2003
    27.2488
                       0
                                    0
    27.5847
                       0
                                    0
                                                 0 ; 2004
                       0
                                    0
                                                 0 ; 2005
    27,9206
                       0
                                    0
                                                 0 ; 2006
    28.2566
                       0
                                    0
                                                 0 ; 2007
    28.5961
    28.9428
                                    0
                                                 0; 2008
```

0

0 ; 2000

```
0; 2009
                                     0
    29.2913
                        0
                                                  0 ; 2010
    29.6362
                        0
                                     0
                        0
                                     0
                                                  0 ; 2011
    29.9794
                        0
                                     0
                                                  0 ; 2012
    30.3297
                                     0
                                                  0 ; 2013
                        0
    30.6908
                                     0
                                                  0 ; 2014
                        0
    31.0537
                                     0
                                                  0 ; 2015
                        0
    31.4237
                                                  0; 2016
                        0
                                     0
    31.7974
                                                  0 ; 2017
                                     0
    32.1693
                        0
                                     0
                                                  0; 2018
    32.5429
                        0
                                     0
                                                  0; 2019
    32.9202
                        0
                        0
                                     0
                                                  0; 2020
    33.3046
                        0
                                     0
                                                  0 ; 2021
    33.7555
                                     0
                                                  0 ; 2022
                        0
    34.1112
                                     0
                                                  0 ; 2023
    34.3789
                        0
                                     0
                                                  0; 2024
                        0
     34.661
                                     0
                                                  0 ; 2025
                        0
    34.9502
                                     0
                                                  0 ; 2026
    35.2448
                        0
                                     0
                        0
                                                  0 ; 2027
      35.54
; RESTAURANTS
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
          0 : Constant Coefficient
         1 ; Variable 1 Coefficient
          0 ; Variable 2 Coefficient
          0 ; Variable 3 Coefficient
          0 ; Variable 4 Coefficient
          0 ; Lag Coefficient
; Exogenous Variable Values
; Variable 1 Variable 2 Variable 3
                                        Variable 4
                        0
                                     0
                                                  0; 1996
    4.88699
   . 4.99529
                        0
                                     0
                                                  0; 1997
                                                  0; 1998
                        0
                                     0
    5.10518
                                                  0; 1999
                        0
                                     0
    5.22034
                                     0
                                                  0; 2000
                        0
    5.33263
                                     0
                                                  0 ; 2001
                        0
    5.44332
                                     0
                                                  0 ; 2002
    5.54554
                        0
                        0
                                     0
                                                  0 ; 2003
    5.63962
    5.73578
                        0
                                     0
                                                  0; 2004
                                                  0 ; 2005
                        0
                                     0
    5.83625
                        0
                                     0
                                                  0; 2006
    5.93847
                        0
                                     0
                                                  0 ; 2007
    6.04165
                                     0
                                                  0 ; 2008
                        0
    6.13733
                                     0
                                                  0; 2009
    6.21943
                                                  0; 2010
                        0
                                     0
    6.29482
                                                  0 ; 2011
    6.36861
                                     0
                        0
                                                  0 ; 2012
    6.43187
                        0
                                     0
                                     0
                                                  0; 2013
    6.48362
                        0
                        0
                                     0
                                                  0 ; 2014
    6.53249
                                                  0 ; 2015
                                     0
    6.57578
                        0
    6.61204
                                     0
                                                  0 ; 2016
                                     0
                                                  0 ; 2017
    6.64222
                        0
```

ے د

```
0
                                    0
                                                 0 ; 2018
    6.66906
                                    0
                                                 0; 2019
                       0
    6.69525
                                    0
                                                 0 ; 2020
    6.72209
                       0
                                    0
                                                 0 ; 2021
     6.7641
                                                 0 ; 2022
                       0
                                    0
    6.80083
                                                 0 ; 2023
                                    0
    6.81505
                       0
                                                 0; 2024
                                    0
    6.82431
                       0
                       0
                                    0
                                                 0; 2025
    6.83086
                                                 0; 2026
                                    0
                       0
    6.83773
                                                 0 ; 2027
                                    0
      6.845
; HEALTH
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
;Exogenous Variable Values
; Variable 1 Variable 2 Variable 3
                                       Variable 4
                                    0
                                                 0 ; 1996
    17.0095
                       0
                       0
                                    0
                                                 0 ; 1997
    17.6409
                                    0
                       0
                                                 0 ; 1998
    18.3513
                                    0
                                                 0 ; 1999
    18.9808
                       0
                                    0
                                                 0 ; 2000
    19.5063
                       0
                                                 0 ; 2001
                       0
                                    0
    19.9891
                                    0
                                                 0 ; 2002
    20.4368
                       0
    20.8578
                       0
                                    0
                                                 0; 2003
                       0
                                    0
                                                 0 ; 2004
    21.2702
                       0
                                    0
                                                 0 ; 2005
    21.6649
    22.0394
                       0
                                    0
                                                 0 ; 2006
                       0
                                    0
                                                 0 ; 2007
    22.4051
                                                 0; 2008
    22.7692
                        0
                                    0
                        0
                                    0
                                                 0 ; 2009
     23.129
    23.4687
                       0
                                    0
                                                 0 ; 2010
                                    0
                       0
                                                 0 ; 2011
    23.7806
                                    0
    24.0599
                       0
                                                 0 ; 2012
    24.3223
                       0
                                    0
                                                 0 : 2013
                       0
                                    0
                                                 0 ; 2014
    24.5966
                                                 0 ; 2015
                        0
                                    0
    24.8922
    25.2025
                        0
                                    0
                                                 0; 2016
                                    0
                                                 0 ; 2017
    25.5105
                       0
                       0
                                    0
                                                 0 ; 2018
    25.8034
                                    0
                                                 0 ; 2019
    26.0812
                        0
    26.3532
                        0
                                    0
                                                 0 ; 2020
                                                 0 ; 2021
    26.6655
                       0
                                    0
                                    0
                                                 0 ; 2022
    26.8373
                       0
    26.8373
                       0
                                    0
                                                 0 ; 2023
                                                 0 ; 2024
    26.8373
                        0
                                    0
                                    0
                                                 0 ; 2025
    26.8373
                        0
    26.8373
                        0
                                    0
                                                 0 ; 2026
```

```
26.837
                       0
                                    0
                                                 0 ; 2027
; LODGING
; Forecast
"STK" ; Method
"LIN" ; Form "NO" ; Lag
         0 ; Constant Coefficient
         1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
; Exogenous Variable Values
; Variable 1 Variable 2 Variable 3 Variable 4
                                                 0; 1996
     8.5662
                       0
                                    0
    8.70539
                                    0
                                                 0; 1997
                       0
                                                 0 ; 1998
                                    0
    8.90452
                       0
    9.09398
                       0
                                    0
                                                 0 ; 1999
                       0
                                    0
                                                 0 ; 2000
    9.27763
    9.45936
                       0
                                    0
                                                 0 ; 2001
    9.64495
                                    0
                                                 0 ; 2002
                       0
                                                 0; 2003
    9.80927
                       0
                                    0
                                                 0; 2004
    9.95233
                       0
                                    0
    10.0877
                       0
                                    0
                                                 0; 2005
                                                 0; 2006
    10.2172
                       0
                                    0
     10.339
                      . 0
                                    0
                                                 0; 2007
    10.4666
                       0
                                    0
                                                 0; 2008
    10.5864
                       0
                                    0
                                                 0; 2009
    10.6889
                       0
                                    0
                                                 0; 2010
    10.7778
                       0
                                    0
                                                 0 ; 2011
                                                 0 ; 2012
                       0
                                    0
    10.8668
                                    0
    10.9422
                       0
                                                 0 ; 2013
                                                 0; 2014
                                   . 0
    11.004
                       0
                                                 0; 2015
                       0
                                    0
    11.0639
                                                 0; 2016
      11.12
                       0
                                    0
                                    0
                                                 0 ; 2017
    11.1722
                       0
                                    0
                                                 0 ; 2018
    11.2109
                       0
                                    0
    11.2399
                       0
                                                 0; 2019
    11.2669
                       0
                                    0
                                                 0 ; 2020
    11.3327
                       0
                                    0
                                                 0 ; 2021
                                    0
                                                 0 ; 2022
    11.4216
                       0
    11.4332
                       0
                                    0
                                                 0 ; 2023
    11.4332
                       0
                                    0
                                                 0 ; 2024
                                    0
                       0
                                                 0 ; 2025
    11.4332
                                    0
                                                 0 ; 2026
    11.4332
                       0
                                    0
                                                 0 ; 2027
     11.433
                       0
; MISCELLANEOUS
; Forecast
"STK" ; Method
"LIN" ; Form
"NO" ; Lag
         0 ; Constant Coefficient
```

```
1 ; Variable 1 Coefficient
         0 ; Variable 2 Coefficient
         0 ; Variable 3 Coefficient
         0 ; Variable 4 Coefficient
         0 ; Lag Coefficient
; Exogenous Variable Values
; Variable 1 Variable 2 Variable 3 Variable 4
    38.6398
                     0
                           0
                                             0; 1996
    39.6319
                     0
                                 0
                                             0; 1997
                                             0; 1998
    40.5795
                     0
                                 0
                                             0 ; 1999
    41.4887
                     0
                                 0
                                             0 ; 2000
    42.3545
                    0
                                 0
                                             0 ; 2001
    43.1861
                     0
                                 0
    43.9493
                     0
                                 0
                                             0 ; 2002
    44.6607
                     0
                                 0
                                            0 ; 2003
    45.3411
                    0
                                 0
                                             0 ; 2004
    46.0111
                    0
                                 0
                                             0; 2005
    46.676
                     0
                                 0
                                          0 ; 2006
                                             0 ; 2007
                     0
                                 0
    47.3419
                                             0 ; 2008
    48.015
                     0
                                 0
                     0
                                             0; 2009
    48.6788
                                 0
    49.3105
                     0
                                 0
                                             0 ; 2010
    49.9205
                     0
                                 0
                                             0 ; 2011
                                             0 ; 2012
    50.5284
                     0
                                 0
                                             0 ; 2013
    51.1373
                     0
                                 0
                                            0 ; 2014
    51.7504
                     0
                                 0
    52.3758
                     0
                                 0
                                            0 ; 2015
    53.0117
                     0
                                 0
                                             0 ; 2016
    53.6434
                     0
                                 0
                                             0 : 2017
    54.2658
                     0
                                 0
                                             0; 2018
                                             0; 2019
                     0
    54.884
                                 0
    55.5054
                     0
                                 0
                                             0 ; 2020
    56.1682
                     0
                                 0
                                            0 ; 2021
    56.6176
                     0
                                 0
                                            0 ; 2022
    56.8423
                     0
                                 0
                                            0 : 2023
    57.0847
                     0
                                 0
                                           . 0 ; 2024
                                            0 ; 2025
    57.3425
                     0
                                 0
    57.6035
                     0
                                            0 ; 2026
     57.866
                     0
                                            0; 2027
; SMALL OFFICES
"C:\COMMEND4\KU98"
                                                                 "NEWFLOOR.WK1"
1996 "SMO"
                     ; Variable 1 Coefficient
0 ""
                   ; Variable 2 Coefficient
tt tf
0 ""
                   ; Variable 3 Coefficient
11 11
0 ""
                   ; Variable 4 Coefficient
; LARGE OFFICES
"c:\COMMEND4\KU98"
                                                                 "NEWFLOOR.WK1"
1996 "LGO"
                      ; Variable 1 Coefficient
```

```
ff 11
11 17
                     ; Variable 2 Coefficient
0 ""
11 11
                     ; Variable 3 Coefficient
0 ""
                     ; Variable 4 Coefficient
0 ""
; WAREHOUSES
                                                                       "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                         ; Variable 1 Coefficient
1996 "WRH"
0 ""
                      ; Variable 2 Coefficient
FF FF
0 ""
                      ; Variable 3 Coefficient
πn
                      ; Variable 4 Coefficient
; FOODSTORES
                                                                        "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                         ; Variable 1 Coefficient
1996 "FOD"
PF 11
0 ""
                      ; Variable 2 Coefficient
17 17
                      ; Variable 3 Coefficient
0 ""
11 11
                      ; Variable 4 Coefficient
; RETAIL
                                                                        "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                         ; Variable 1 Coefficient
1996 "RET"
0 ""
                      ; Variable 2 Coefficient
** **
0 ""
                      ; Variable 3 Coefficient
FF FF
0 ""
                      ; Variable 4 Coefficient
; SCHOOLS
                                                                        "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                         ; Variable 1 Coefficient
1996 "SCH"
0 ""
                      ; Variable 2 Coefficient
FF 18
0 ""
                      ; Variable 3 Coefficient
FF 97
0 ""
                      ; Variable 4 Coefficient
; COLLEGES
                                                                        "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
1996 "COL"
                         ; Variable 1 Coefficient
77 TF
0 ""
                      ; Variable 2 Coefficient
```

```
11 11
                   ; Variable 3 Coefficient
                                                                      FF 15
11 11
                    ; Variable 4 Coefficient
; RESTAURANTS
                                                                      "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                       ; Variable 1 Coefficient
1996 "RES"
0 ""
                     ; Variable 2 Coefficient
                                                                       FF FF
11 17
                    ; Variable 3 Coefficient
77 (1
                   ; Variable 4 Coefficient
; HEALTH
                                                                       "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                       ; Variable 1 Coefficient
1996 "HLT"
                     ; Variable 2 Coefficient
0 ""
                                                                       PT 17
11 11
0 ""
                     ; Variable 3 Coefficient
FF 17
0 ""
                    ; Variable 4 Coefficient
;LODGING
                                                                       "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                       ; Variable 1 Coefficient
1996 "LDG"
0 ""
                     ; Variable 2 Coefficient
                                                                       77 17
ST 88
0 ""
                     ; Variable 3 Coefficient
8F 88
                     ; Variable 4 Coefficient
0 ""
; MISCELLANEOUS
                                                                       "NEWFLOOR.WK1"
"c:\COMMEND4\KU98"
                        ; Variable 1 Coefficient
1996 "MSC"
ET 11
                     ; Variable 2 Coefficient
0 ""
17 17
0 ""
                     ; Variable 3 Coefficient
EF FF
0 ""
                    ; Variable 4 Coefficient
```

; end of file

```
;ED1: Economic Data
    5 ;file version: do not edit
                                                   ;file description
"Commend 3.2 National Forecast."
;Discount Rates
;Block 1 Block 2
                        Block 3
                                    Block 4
"RateBlk1" "RateBlk2" "RateBlk3" "RateBlk4"
;Discount Block Weights
;Block 1 Block 2 Block 3 Block 4
                         25
                25
                                   25 ; SMALL OFFICES
      25
                25
                                   25 ; LARGE OFFICES
      25
                         25
      25
                25
                         25
                                   25 ; WAREHOUSES
      25
                25
                         25
                                   25 ; FOODSTORES
                25
                         25
                                   25 ; RETAIL
      25
      34
                33
                         33
                                    0 ;SCHOOLS
                                    0 ; COLLEGES
      34
                33
                         33
      25
                25
                         25
                                   25 ; RESTAURANTS
      34
                33
                         33
                                    0 ; HEALTH
                                    0 ;LODGING
      34
                33
                         33
                                   25 ; MISCELLANEOUS
      25
                25
                         25
;Price Weights
;Curnt Lag 1 Lag 2 Lag 3 Lag 4 Lag 5
           25
                  25
                          25
                               12.5
; Efficiency Option Elasticities
                                                      XLIT
                                                                        OFEQ
                   VENT
                            WATR
                                     COOK
                                              REFR
                                                               ILIT
                                                                                MISC
  HEAT
           COOL
                                       -1
                                                        -2
                                                                 -5
                                                                          -5
                                                                                   -3
              -5
                               -1
                                                -1
     -5
; SMALL OFFICES
                               -2
                                       -2
                                                -2
                                                        -3
                                                                 -6
                                                                          -6
                                                                                   -5
    -6
                      -6
;LARGE OFFICES
                                                                          -1
                                                                                   -1
                               -1
                                       -1
                                                -6
                                                        -2
                                                                 -3
; WAREHOUSES
                                       -5
                                                -7
                                                                          -5
                                                                                   -4
                               -3
                                                      -1.5
                                                                 -6
                      -3
    -6
              -6
; FOODSTORES
                                     -1.5
                                              -1.5
                                                        -3
                                                               -5.5
                                                                        -4.5
                                                                                 -3.5
   -5.5
           -5.5
                    -3.5
                            -1.5
; RETAIL
                                                               -4.5
                                                        -1
                                                                       -2.5
                                                                                -1.5
   -5.5
           -5.5
                    -2.5
                            -1.5
                                     -1.5
                                              -1.5
; SCHOOLS
                                                -2
                                                      -1.5
                                                                 -6
                                                                                   -3
              -6
                      -3
                               -3
                                       -3
    -6
; COLLEGES
                                                        -2
                                                                                   -4
                      -5
                                                -5
                                                                 -5
                                                                          -3
    -6
              -6
                               -4
                                       -6
; RESTAURANTS
                                                                                   -3
              -6
                      -6
                            -4.5
                                       -4
                                                -3
                                                        -2
                                                                 -6
                                                                          -6
    -6
; HEALTH
                                              -2.5
                                                      -1.5
                                                               -4.5
                                                                       -1.5
                                                                                 -3.5
           -5.5
                    -4.5
                             -3.5
                                     -3.5
  -5.5
; LODGING
                                                                          -4
                                                                                   -3
                      -2
                                                -1
                                                        -1
                                                                 -4
     -4
                               -1
                                       -1
; MISCELLANEOUS
;Fuel Choice Elasticities
; HVAC
                    COOK
                                     XLIT
                                              ILIT
                                                      OFEO
                                                               MISC
          WATR
                            REFR
                                                                 -1 ;SMALL OFFICES
  -3.75
          -0.75
                   -0.75
                                       -1
                                                -1
                                                        -1
                               -1
                               -1
                                                        -1
                                                                 -1 ;LARGE OFFICES
                    -1.5
                                       -1
                                                -1
   -4.5
           -1.5
```

تو ده

-3 -0.75 -4.5 -2.25 -4.13 -1.13 -4.13 -1.13 -4.5 -2.25 -4.5 -3 -4.5 -3.38 -4.13 -2.63 -3 -0.75	-0.75 -3.75 -1.13 -1.13 -2.25 -4.5 -3 -2.63 -0.75	-1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1	; WAREHOUS; FOODSTON ; RETAIL ; SCHOOLS ; COLLEGES; RESTAURA ; HEALTH ; LODGING ; MISCELLA	RES S ANTS
; ;Utilization Ela	atiaitica							
; HEAT COOL	VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
; SMALL OFFICES	-0.13	-0.13	-0.05	-0.1	0.10	0.10		-0.03
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;LARGE OFFICES	-0.15	0.13	0.05	0.1	0.10	0.10	0.05	0.03
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
; WAREHOUSES	0.15	0.13	0.00	J	0.20	0.10	0.00	0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
; FOODSTORES		0.10	0.05	V	0.10	0.10	0.05	0.03
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;RETAIL	0.13	0.13	0.00	7.1	0.10	0.10	0,00	0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;SCHOOLS	0.13	0.15	0100,	• • • •	3.123			0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;COLLEGES	0.13	0.13	0.05	· · ·	0.10	0.10	0.00	0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
; RESTAURANTS	0.13	0.10	0.05	<b>4.1</b>	0.20	0.10	0.00	0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;HEALTH	0.13	0.13	0.00	٠	0,20	0.25	7.55	0.00
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;LODGING	0.13	0.10	0.00	V	0.120	V. 25.	3,33	
-0.18 -0.18	-0.15	-0.15	-0.05	-0.1	-0.18	-0.18	-0.05	-0.05
;MISCELLANEOUS	0.10	0110	3.33					
;					·			
;Weather Elastic	ities							
·	AT COOL		COOL P	EAKHEAT	PEAKHEAT	PEAKCO	OL PEAKC	OOL
•	AS MULT		ELAS	MULT	ELAS	MULT	ELAS	3
"HDD"	1 "CDD"		0.4 "P			"P:CDD"		).4
; SMALL OFFICES								
"HDD"	1 "CDD"		0.35 "P	:HDD"	1	"P:CDD"	0	. 35
; LARGE OFFICES								
"HDD"	1 "CDD"		0.4 "P	:HDD"	1	"P:CDD"	(	0.4
; WAREHOUSES								
"HDD"	1 "CDD"		0.4 "P	:HDD"	1	"P:CDD"	(	).4
; FOODSTORES								
"HDD"	1 "CDD"		0.4 "P	: HDD"	1	"P:CDD"	(	0.4
;RETAIL								
"HDD"	1 "CDD"		0.4 "P	:HDD"	1	"P:CDD"	(	).4
;SCHOOLS								
"HDD"	1 "CDD"		0.4 "P	:HDD"	1	"P:CDD"	(	).4
; COLLEGES								
"HDD"	1 "CDD"		0.45 "P	:HDD"	1	"P:CDD"	0.	. 45 .
; RESTAURANTS								
"HDD"	1 "CDD"		0.35 "P	:HDD"	1	"P:CDD"	0.	. 35
; HEALTH								

;LODGING	1 "CDD"		0.4 "P:			"P:CDD"	,	0.4
"HDD"	1 "CDD"		0.4 "P:	HDD"	1	"P:CDD"	(	0.4
;MISCELLANI					_		•	
;								
;Operating	Hours Elasticit	ties						
; HEAT	COOL VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MIS
0	0.63 0.65	0.8	0.75	0.16	0	0.65	0.52	0.5
"OPHSMO"	; SMALL OFFICES							
0	0.47 0.45	0.7	0.84	0.2	0	0.53	0.47	0.4
"OPHLGO"	; LARGE OFFICES						• • • • •	0.1
0 .	0.67 0.54	0.82	0.82	0.05	0	0.54	0.37	0.3
"OPHWRH"	; WAREHOUSES							•••
0	0.58 0.13	0.7	0.84	0.13	0	0.28	0.2	0.3
"OPHGRC"	; FOODSTORES						• • •	•
0	0.63 0.49	0.79	0.79	0.08	0	0.65	0.38	0.38
"OPHRET"	; RETAIL							
0	0.47 0.36	0.6	0.77	0.14	0	0.77	0.79	0.79
"OPHSCH"	;SCHOOLS	-				- · ·		
0	0.54 0.43	0.67	0.67	0.33	0	0.43	0.43	0.43
"OPHCOL"	; COLLEGES							
0	0.67 0.2	0.56	0.5	0.14	0	0.54	0.54	(
"OPHRES"	; RESTAURANTS							
0	0.56 0.17	0.77	0.88	0.17	0	0.36	0.56	0.1
"OPHHLT"	; HEALTH							
0	0.59 0.19	0.78	0.87	0.29	0	0.59	0.59	0.59
"OPHLDG"	;LODGING							
0	0.35 0.16	0.65	0.8	0.16	0	0.41	0.52	0.52
"OPHMSC"	; MISCELLANEOUS							
;	•							
	Rate Elasticiti	Les						
; HEAT	COOL VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
0	0 0	0	0	0	0	0	Õ	(
11 11	; SMALL OFFICES							
0	0 0	0	0	0	0	0	0	(
11 11	; LARGE OFFICES			•				
0	0 0	0	0	0	0	0	0	(
11 11	; WAREHOUSES							
0	0 0	0	0	0	0	0	0	(
17 91	; FOODSTORES							
	; FOODSTORES 0 0	0	0	0	0	. 0	0	(
0		0	0	0	0	. 0	0	(
0	0 0	0	0	0	0	· 0	0	
" " 0 " "	0 0;RETAIL		_		-	-	_	
0 0	0 0; RETAIL 0 0; SCHOOLS		_		-	-	_	(
0 0	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0	0	0	0	0	0	0	(
0 0	0 0; RETAIL 0 0; SCHOOLS	0	0	0	0	0	0	(
" " O O O O O O O O O O O O O O O O O O	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0 ;COLLEGES 0 0	0	0	0	0	0	0	(
" " O O O O O O O O O O O O O O O O O O	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0 ;COLLEGES	0	0	0 0 0	0	0	0	(
" " O O O O O O O O O O O O O O O O O O	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0 ;COLLEGES 0 0 ;RESTAURANTS	0 0	0 0	0	0 0	0 0 0	0 0	
" " O O O O O O O O O O O O O O O O O O	0 0; RETAIL 0 0; SCHOOLS 0 0; COLLEGES 0 0; RESTAURANTS 0 0	0 0	0 0	0 0 0	0 0	0 0 0	0 0	0
" " O O O O O O O O O O O O O O O O O O	0 0; RETAIL 0 0; SCHOOLS 0 0; COLLEGES 0 0; RESTAURANTS 0 0; HEALTH	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0
	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0 ;COLLEGES 0 0 ;RESTAURANTS 0 0 ;HEALTH 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
	0 0; RETAIL 0 0; SCHOOLS 0 0; COLLEGES 0 0; RESTAURANTS 0 0; HEALTH 0 0; LODGING	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	
	0 0 ;RETAIL 0 0 ;SCHOOLS 0 0 ;COLLEGES 0 0 ;RESTAURANTS 0 0 ;HEALTH 0 0 ;LODGING 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0

.

17	10	0	0 • 51 oc	0 SMALL OFFICES	0	0	0	0	0	0	0
_		0	0	0	0	0	0	0	0	0	0 .
		0	0	LARGE OFFICES	0	0	0	0	0	0	0
17	17	0	0	WAREHOUSES 0	0	0	0	0	0	0	0
**	n	0	;Elec	FOODSTORES 0	0 -	0	0	0	0	0	0
11	п	0	;Elec	C RETAIL 0	0	0	0	0	0	0	0
11	17	0	;Elec	SCHOOLS 0	0	0	0	0	0	0	0
11	**	0	;Elec	COLLEGES 0	0	0	0	0	0	0	0
17	17	0	-	RESTAURANTS	0	0	0	0	0	0	٥
17 .	•			HEALTH 0	0	0	0	0	0	0	0
11	11	0	;Elec	LODGING	_	_	_	_	_		_
11	11	0	0 ;Elec	0 MISCELLANEOUS	0	0	0	0	0	0	0
;		0	0	0	0	0	0	0	0	0	0
••	**	0	0	SMALL OFFICES 0	0	0	0 .	0	0	0	0
77	11	0	0	LARGE OFFICES 0	0	0	0	0	0	0	0
***	**	0	;Gas 0	WAREHOUSES 0	0	0	0	0 .	0	0	0
77	T	0	;Gas 0	FOODSTORES 0	0	0	0	0	0	0	0
**	17	0	;Gas 0	RETAIL 0	o ·	0	0	0	0	0	0
11	17	0	;Gas 0	SCHOOLS 0	0	0	0	0	0	0	0
77	<i>n</i>	0		COLLEGES 0	0	0	0	0	0	0	0
11	11	0		RESTAURANTS 0	0	0	0	0	0	0	0 .
Ħ	**	0	;Gas	HEALTH O	0	0	0	0	0	0	0
17	***	0	;Gas	LODGING 0	0	0	0	0	0	0	0
"	***	U		MISCELLANEOUS	-	· ·	v	•		Ŭ	
; "	**	0		0		0	0	0	0	0	0
11		0	0	SMALL OFFICES 0	0	0	0	0	0	0	0
		0	0	LARGE OFFICES 0	0	0	0	0	0	0	0
		0	0	WAREHOUSES 0	0	0	0	0	0	0	0
		0	0	FOODSTORES 0	0	0	0	0	0	0	0
11	n		;Oil	RETAIL							

0	0 0	0	0	0 .	0	0	0	0
0	;Oil SCHOOLS 0 0	0	0	0	0	0	0	o · .
""	;Oil COLLEGES	0	0	0	0	0	0	0
11 11	;Oil RESTAURAN	rs		•			•	· ·
, n	O 0;Oil HEALTH	0	0	0	0	0	0	0
0	0 0	0	0	0	0	0	0	0
0	Oil LODGING 0	0	0	0	0	0	0	0
п п	;Oil MISCELLAN	EOUS						
; ;								
;Calibratio	on Factors							
; HEAT	COOL VENT	WATR	COOK	REFR	XLIT	ILIT	OFEQ	MISC
1	1 1	·1	1	1	1	1	ī	1
"smelmult"	;Elec SMALL OF		_		_	_	_	_
1	1 1	1	1	1	1	1	1	1
<del></del>	_		-	_	1	_	1	T
ToeTwatt	;Elec LARGE OF			•	•			
	1 1	1	1	1	1	, 1	1	1
"whelmult"	;Elec WAREHOUSE							
1	1 1	1	1	1	1	1	1	1
"fdelmult"	;Elec FOODSTORE	ES						
1	1 1	1	1	1	1	1	1	1
"rtelmult"	;Elec RETAIL							
1	1 1	1	1	1	1	1	1	1
"Scalmul+"	;Elec SCHOOLS	_	_	_		-	_	-
1	1 1	1	1	1	1	1	1	1
TC 1 1 + T		1	_	1	1	Τ.	1	+
"CoeTmult"	;Elec COLLEGES							
1	1 1	1	1	1	1	1	1	1
"rselmult"	;Elec RESTAURAN	NTS						
1	1 1	1	1	. 1	. 1	1	1 '	1
"hlelmult"	;Elec HEALTH							
1	1 1	1	1	1	1	1	1	1
"laelmult"	;Elec LODGING							
1	1 1	. 1	1	1	1	1	1	. 1
!! == 1 == 1 = !!	:Elec MISCELLAN	_	-	_	-	_	-	_
	FIEC MISCELLAR	NECOS						
;		•	•	_	•	•	•	•
0		0	0	0	0	0	0	0
n 11	; Gas SMALL OFF							
0		0	0	0	0	0	0	0
77 11	; Gas LARGE OFFI	CES						
. 0	0 0	0	0	0	0	0	0	0
π π	; Gas WAREHOUSES	3						
0	0 0		0	0	0	0	0	0
n 11	; Gas FOODSTORES		•		•			_
0	0 0	0	0	0	0	0	0	0
n n		U	U	U	U	U	U	Ū
	;Gas RETAIL	•	•	•	•	•	•	^
0	0 0	0	0	0	0	0	0	0
P7 E7	;Gas SCHOOLS							
0	0 0	0	0	0	0	0	0	0
п п	Gas COLLEGES							
0	0 0	. 0	0	0	0	0	0	0
rr 11	Gas RESTAURANT							
0	0 0	0	0	0	0	0	0	0
17 H	;Gas HEALTH	•	J	3	5	•	J	•
	Las meentu							

2.5

							_		_	
	0	0	0	0	0	0	0	0	0	0
11 11	0	;Gas 0	LODGING 0	0	0	0	0	0	0	0 .
11 11	U		MISCELLANE	•	•	J	•		· ·	<b>.</b>
;		,								
	0	0	0	0	0	0	0	0	0	0
11 17	0	;0il 0	SMALL OFFI	CES 0	0	0	0	0	0	0
11 11	J		LARGE OFFI	-	· ·	J	•	Ū	J	J
	0	0	0	0	0	0	0	0	0	0
n 11	_	•	WAREHOUSES		•	•	^	^	•	0
11 11	0	0	0 FOODSTORES	. 0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
17 17	•		RETAIL							
	0	0	0	0	0	0	0	0	0	0
11 11	0	-	SCHOOLS	0	0	0	0 .	0	.0	0
	0	0 :0:1	0 COLLEGES	U	U	U		U	· ·	•
	0	0	0	0	0	0	0	0	0	0
17 17		•	RESTAURANT	'S						
	0	0	0	0	0	0	0	0	0	0
11 17	0	;Oil 0	HEALTH O	0	0	0	. 0	0	0	0
11 11	U		LODGING	U	J	·	J	J	•	· ·
	0	0	0	0	0	0	0	0	0	0
11 11		;Oil	MISCELLANE	COUS	•					
;										
; - Eng	-1 Cha	- T	rtia Factor				•		•	
•	er ona.	re ine.	rila racion							
	TEAT	COOT			COOK	REFR	XLIT	ILIT	OFEO	MISC
; !	HEAT 0.8	COOL 0.8	VENT	WATR 0.8	COOK 0.8	REFR 1	XLIT 1	ILIT 1	OFEQ 1	MISC 1
•		0.8	VENT	WATR				1	1	1
;SM	0.8 ALL OF: 0.8	0.8 FICES 0.8	VENT	WATR					_	
;SM	0.8 ALL OF 0.8 RGE OF	0.8 FICES 0.8 FICES	VENT 1	WATR 0.8 0.8	0.8	1	1	1	1	1
; SM?	0.8 ALL OF 0.8 RGE OF	0.8 FICES 0.8 FICES 0.8	VENT 1	WATR 0.8	0.8	1	1	1	1	1
; SM/ ; LA! ; WA!	0.8 ALL OF 0.8 RGE OF	0.8 FICES 0.8 FICES 0.8	VENT 1	WATR 0.8 0.8	0.8	1	1	1	1	1
; SMZ ; LAI ; WAI	0.8 ALL OF 0.8 RGE OF 0.8 REHOUS 0.8 DDSTOR	0.8 FICES 0.8 FICES 0.8 ES 0.8	VENT 1 1 1 1	WATR 0.8 0.8 0.8	0.8	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
; SM/; LAF; WAF; FOO	0.8 ALL OF 0.8 RGE OF 0.8 REHOUS 0.8 ODSTOR 0.8	0.8 FICES 0.8 FICES 0.8 ES	VENT 1 1	WATR 0.8 0.8	0.8	1 1 1	1 1 1	1 1 1	1 1	1
; SM/; LAF; WAF; FOO	0.8 ALL OF 0.8 RGE OF 0.8 REHOUS 0.8 DDSTOR 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8	VENT 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1
; SMA; LAI; WAI; FOO; RET	0.8 ALL OF 0.8 RGE OF 0.8 REHOUS 0.8 DDSTOR 0.8 TAIL 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8	VENT 1 1 1 1	WATR 0.8 0.8 0.8	0.8	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1
; SMA; LAI; WAI; FOO; RET	0.8 ALL OF 0.8 RGE OF 0.8 REHOUS 0.8 DDSTOR 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8	VENT 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1
; SMZ; LAE; WAE; FOO; RE; SCI	0.8 ALL OF 0.8 REHOUS 0.8 DOSTOR 0.8 FAIL 0.8 HOOLS 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1
; SMZ; LAI; ; WAI; ; FOO; ; RET; ; SCI; ; COI	0.8 ALL OF 0.8 RGE OF 0.8 DDSTOR 0.8 TAIL 0.8 HOOLS 0.8 LLEGES 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1
; SMZ; LAI; ; WAI; ; FOO; ; RET; ; SCI; ; COI	0.8 ALL OF 0.8 RGE OF 0.8 DDSTOR 0.8 TAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1
; SMP; LAH; WAH; FOO; RET; SCI; COI; RES	0.8 ALL OF 0.8 REHOUS 0.8 DDSTOR 0.8 FAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1
; SMP; LAH; WAH; FOO; RET; SCI; COI; RES	0.8 ALL OF 0.8 RGE OF 0.8 DDSTOR 0.8 TAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1
; SMZ; LAH; WAH; FOO; RET; SCI; COI; RES; HEZ	0.8 ALL OF 0.8 REHOUS 0.8 DOSTOR 0.8 FAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA 0.8 ALTH 0.8 DGING	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8 0.8 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1
; SMZ; LAI; ; WAI; ; FOO; ; RE; ; SCI; ; COI; ; RE; ; HEZ; ; LOI	0.8 ALL OF 0.8 REHOUS 0.8 DOSTOR 0.8 FAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA 0.8 ALTH 0.8 DGING 0.8	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1
; SMZ; LAI; ; WAI; ; FOO; ; RE:; ; COI; ; RE:; ; LOI; ; MI;	0.8 ALL OF 0.8 REHOUS 0.8 DOSTOR 0.8 FAIL 0.8 HOOLS 0.8 LLEGES 0.8 STAURA 0.8 ALTH 0.8 DGING	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1
; SMZ; LAI; ; WAI; ; FOO; ; RE; ; COI; ; RE; ; LOI; ; MI; ; MI; ;	O.8 ALL OF O.8 RGE OF O.8 REHOUS O.8 DOSTOR O.8 HOOLS O.8 LLEGES O.8 STAURA O.8 ALTH O.8 DGING O.8 SCELLA	0.8 FICES 0.8 FICES 0.8 ES 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	VENT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WATR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.8 0.8 0.8 0.8 0.8 0.8 0.8	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1

ي د

0.5	0.5	0.	5	0	0	0	0.5	0.5	C	0	
; SMALL OF		٥	_	0	0	0	0.5	0.5	C	O O	
0.5;LARGE OF	0.5	0.	. 5	U	U	U	0.5	0.5	,	, ,	
0.5	0.5	0.	5	0	0	0	0.5	0.5	C	0	
; WAREHOUS											
0.5	0.5	0.	5	0	0	0	0.5	0.5	C	0	
; FOODSTOR											
0.5	0.5	0.	5	0	0	0	0.5	0.5	C	) 0	
RETAIL		_	_	_	_	•	ο σ		_		
0.5	0.5	0.	. 5	0	0	0	0.5	0.5	C	0	
;SCHOOLS 0.5	0.5	. 0.	5	0	0	0	0.5	0.5	C	0	
; COLLEGES		0.	. 5	U	U	U	0.5	0.5	•	, ,	
0.5	0.5	0.	5	0	0	0	0.5	0.5	C	. 0	
; RESTAURA		•	. •	•	•				_	-	
0.5	0.5	0.	.5	0	0	0	0.5	0.5	(	0	
; HEALTH								• *			
0.5	0.5	0.	.5	0	0	0	0.5	0.5	C	0	
; LODGING											
0.5	0.5	0.	. 5	0	0	. 0	0.5	0.5	C	0	
; MISCELLA	MEOUS										
;			<b>C</b> b	_							
;Retrofit	COOL	ration VEN		s ATR	COOK	REFR	XLIT	ILIT			
; HEAT 0.2	0.25	VE.	0 W2	0	0	0	0		· SMAT.T.	OFFICES	
0.2	0.25		0	0	0	0	0		-	OFFICES	
0.2	0.25		0	Ö	Ö	. 0	. 0		; WAREHO		
	0.25			0	0	0	. 0		; FOODS'I		
0.2			0				0		; RETAII		
0.2	0.25		0	0	0	0	0		; SCHOOL		
0.1	0.05		0	0	0	0			; COLLEG		
0.1	0.2		0	0	0	0	0		•		
0.1	0.2		0	0	0	0	0		; RESTAU		
0.2	0.25		0	0	0	0	0		; HEALTH		
0.15	0.25		0	0	0	0	0		;LODGIN		
0.1	0.2		0	0	0	0	U	U	MISCEI	LLANEOUS	
; :Miscella	neous F	- - Court nome	ant Trai	nd Rati	. ·						
· WTPCETTE	meous i	rdarbwe	inc ite	na nac	53						
; Trendl		Trend2	2	Tren	d3	Trend	4	Trend5			
-	Rate	Year	Rate	Year	Rate	Year	Rate	Year	Rate		
1995	1	2000	0.5	0	0	0	0	0	0 ;	SMALL	
OFFICES											
1995	1	2000	0.5	0	0	0	0	0	0 ;	LARGE	
OFFICES											
1995	1	2000	0.5	0	0	0	0	0	0		
; WAREHOUS				_	_		_	_			
1995	1	2000	0.5	0	0	0	0	0	0		
; FOODSTOR		0000			_	_	^	^	^	יד מיתים מ	
1995	1	2000	0.5	0	0	0	0	0		RETAIL	
1995	1	2000	0.5	0	0	0	0	0		SCHOOLS	
1995	1	2000	0.5	0	0	0	0	· 0	-	COLLEGES	
1995	1	2000	0.5	0	0	0	0	U	0		
RESTAURA		2000	0 5	^	^	^	0	0	Λ -	HEALTH	
1995	1	2000	0.5 0.5	0	0	0 0	0	0		LODGING	
1995	1	2000	0.5	U	U	U	U	U	0 ,	TODGING	

- -

ي

; WAREHOUSES

```
0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0
     0
             0
                     0
                             0
; FOODSTORES
                     0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           O ; RETAIL .
     0
             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0 ;SCHOOLS
     0
                     0
                             0
             0
     0
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0 ; COLLEGES
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0
     0
             0
                     0
                             0
; RESTAURANTS
                                                    0
                                                           0
                                    0
                                            0
                                                                   0
                                                                           O ; HEALTH
     0
             0
                     0
                             0
                                            0
                                                    0
                                                           0
     0
             0
                     0
                             ۵
                                    0
                                                                   0
                                                                           0 ; LODGING
                                                    0
                                                           0
                                                                   0
             0
                             0
                                    0
                                            0
     0
                     0
; MISCELLANEOUS
;Thermal Shell Price Elasticities
               Heat Gain
;Heat Loss
             0.1
                               0.1 ; SMALL OFFICES
             0.1
                               0.1 ; LARGE OFFICES
             0.1
                               0.1 ; WAREHOUSES
                               0.1 ; FOODSTORES
             0.1
                               0.1 ; RETAIL
             0.1
                               0.1 ; SCHOOLS
             0.1
                               0.1 ; COLLEGES
             0.1
             0.1
                               0.1 ; RESTAURANTS
             0.1
                               0.1 ; HEALTH
                               0.1 ;LODGING
             0.1
                               0.1 ; MISCELLANEOUS
             0.1
;Thermal Integrity Trends
                                                                Trend5
; Trendl
                 Trend2
                                 Trend3
                                                Trend4
; Year
          Rate
                Year
                         Rate
                                 Year
                                         Rate
                                                Year
                                                        Rate
                                                                Year
                                                                       Rate
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                          0 ;SMALL
  1992
             HEAT
OFFICES --
                                            0
                                                    0 .
                                                           0
                                                                   0
                                                                           0 ;SMALL
             0
                             0
                                    0
  1992
OFFICES --
             COOL
                                    0
                                                    0
                                                           0
                                                                   0
                                                                           0 ; LARGE
  1992
                             0
                                            0
OFFICES --
             HEAT
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0 ; LARGE
  1992
             0
                     0
                             0
                                    0
OFFICES --
              COOL
                                                                           0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
  1992
             0
                     0
; WAREHOUSES --
                   HEAT
 1992
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
; WAREHOUSES --
                   COOL
                     0
                             0
                                    0
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0
  1992
             0
; FOODSTORES --
                   HEAT
                                            0
                                                    0
                                                           0
                                                                   0
                                                                           0
             0
                     0
                             0
                                    0
;FOODSTORES --
                   COOL
                                                    0
                                                                   0
                                                                           0 ; RETAIL --
             0
                     0
                             0
                                    0
                                            0
                                                           0
  1992
HEAT
             0
                     0
                             0
                                    0
                                            0
                                                           0
                                                                   0
                                                                           O ; RETAIL --
  1992
                                                    0
COOL
```

.

1992	0	0	0	0	0	0	0	0	0	;SCHOOLS -
- HEAT 1992	0	0	0	0	0	0	0	0	0	;SCHOOLS
- COOL	J	J	J	J	•	•	•	•	,	, 505022
; 1992	0	0	0	0	0	0	. 0	0	Λ	; COLLEGES
HEAT	U	Ū	U		J		. •	J	J	, conneges
1992	0	0	0	0	0	. 0	0	0	0	; COLLEGES
COOL										
1992	0	0	0	0	0	0	0	0	0	
; RESTAURAN 1992	TS 0	HEAT O	0	0	0	0	. 0	0	0	
; RESTAURAN		COOL	·	J	٠.	J	Ū	Ū	Ū	
;										
1992	0	0	0	0	0	0	0	0	0	;HEALTH
HEAT 1992	0	0	0	0	0	0	0	0	0	;HEALTH
COOL	U	J	J	•	·			J		,
;							_			
1992	0	0	0	0	0	0	0	0	0	;LODGING -
- HEAT 1992	0	0	0	0	0	0	0	0	0	;LODGING -
- COOL	•	_	_		_	-				•
;	0	0	0	0	0	0	0	0	0	
1992 ;MISCELLAN	0 EOUS	0 - HEA	.T	U	v	U	U	U	U	
1992	0	0	0	0	0	٥	0	0	0	
		~~~	+	•						
; MISCELLAN	EOUS	- coo)L							
; MISCELLAN	EOUS		,T							
; ;										
; MISCELLAN ; ; ; Thermal I ;										
; ;Thermal I ; ; Trend6	ntegrit	y Tren Trend7	ds	Trend8		Trend9		Trendl		
; ;Thermal I ; ;Trend6 ; Year R	ntegrit 1 ate 1	y Tren Trend7 (ear	ds Rate	Year	Rate	Year	Rate	Year	Rate	• SMAT.T.
; ;Thermal I ; ;Trend6 ; Year R 0	ntegrit 1 ate 1	y Tren Trend7 (ear 0	ds		Rate 0				Rate 0	;SMALL
; ;Thermal I ; ;Trend6 ; Year R 0 OFFICES	ntegrit ate 1 0 HEAT	Trend7 (ear 0	ds Rate 0	Year		Year	Rate	Year	Rate 0	;SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES	ntegrit ate 1 0 HEAT	Trend7 (ear 0	ds Rate 0	Year 0	0	Year O	Rate 0	Year 0	Rate 0	
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES	ntegrit ate 1 0 HEAT 0	Trend7 (ear 0	ds Rate 0	Year 0 0	0	Year 0 0	Rate 0 0	Year 0 0	Rate 0	;SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES	ntegrit ate 1 0 HEAT 0 COOI	Trend7 (ear 0 0	ds Rate 0	Year 0 0	0	Year O	0 0 0	Year 0	Rate 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT	Trend7 (ear 0 0 0	ds Rate 0	Year 0 0	0	Year 0 0	Rate 0 0	Year 0 0	Rate 0 0	;SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT	Trend7 (ear 0 0 0	Rate 0 0	Year 0 0	0 0 0	Year 0 0	0 0 0	Year 0 0	Rate 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT	Trend7 (ear 0 0 0	Rate 0 0	Year 0 0	0 0 0	Year 0 0	0 0 0	Year 0 0	Rate 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 ; WAREHOUSE	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI	Trend7 (ear 0 0 0 0 0 HEAT	Rate 0 0 0	Year 0 0 0 0	0 0 0	Year 0 0 0 0	0 0 0 0 0 0	Year 0 0 0	Rate 0 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI	Trend7 (ear 0 0 0 0 0 HEAT	Rate 0 0	Year 0 0 0	0 0 0	Year 0 0 0	0 0 0 0	Year 0 0	Rate 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0 ; WAREHOUSE	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI	Trend7 (ear 0 0 0 0 0 HEAT	Rate 0 0 0	Year 0 0 0 0	0 0 0	Year 0 0 0 0	0 0 0 0 0 0	Year 0 0 0	Rate 0 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0; WAREHOUSE	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI 0 SS 0	Trend7 (ear 0 0 0 0 0 HEAT 0 COOL	Rate 0 0 0	Year 0 0 0 0	0 0 0	Year 0 0 0 0	0 0 0 0 0 0	Year 0 0 0	Rate 0 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0; FOODSTORE	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI 0 S 0 S	Trend7 (ear 0 0 0 0 0 HEAT 0 HEAT	Rate 0 0 0 0 0 0 0 0	Year 0 0 0 0 0 0 0 0	0 0 0 0 0	Year 0 0 0 0 0 0 0 0	Rate 0 0 0 0 0 0 0 0	Year 0 0 0 0 0	Rate 0 0 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0; FOODSTORE 0	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI 0 S 0 S 0	Trend7 (ear 0 0 0 0 0 1 0 HEAT 0 COOL HEAT 0	Rate 0 0 0	Year 0 0 0 0 0 0 0 0	0 0 0 0	Year 0 0 0 0 0 0	Rate 0 0 0 0 0	Year 0 0 0 0 0	Rate 0 0 0 0 0 0	; SMALL
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0; FOODSTORE	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI 0 S 0 S 0	Trend7 (ear 0 0 0 0 0 HEAT 0 HEAT	Rate 0 0 0 0 0 0 0 0	Year 0 0 0 0 0 0 0 0	0 0 0 0 0	Year 0 0 0 0 0 0 0 0	Rate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Year 0 0 0 0 0	Rate 0 0 0 0 0 0 0	;SMALL;LARGE;LARGE
;; Thermal I;; Trend6; Year R 0 OFFICES 0 OFFICES 0 OFFICES 0 OFFICES 0; WAREHOUSE 0; FOODSTORE 0	ntegrit ate 1 0 HEAT 0 COOI 0 HEAT 0 COOI 0 S 0 S 0	Trend7 (ear 0 0 0 0 0 1 0 HEAT 0 COOL HEAT 0	Rate 0 0 0 0 0 0 0 0	Year 0 0 0 0 0 0 0 0	0 0 0 0 0	Year 0 0 0 0 0 0 0 0	Rate 0 0 0 0 0 0 0 0	Year 0 0 0 0 0	Rate 0 0 0 0 0 0 0	; SMALL

.

	0	0	0	0	0	0	0	0	0	0 ; RETAIL
C00	L									٠.
	0	0	0	0	0	0	0	0	0	0 ;SCHOOLS -
-	HEAT	,						_		
	0	0	0	0	0	0	0	0	0	0 ;SCHOOLS -
-	COOL	•								
	0	0	0	0 .	0	0	0 -	0	0	0 ; COLLEGES
	HEAT		_		•		•	•		0 007777
	0	0	0	0	0	0	0	0	0	0 ; COLLEGES
	COOL									
	0	0	0	0	0	0	0	0	0	0
; RE	STAURAN	rs	HEAT					_	_	
	0	0	0	0	0	0	0	0	0	0
; RE	STAURANT	rs	COOL							
	0	0	0	0	0	0	0	0	0	O ;HEALTH
HEA	T							•		
	0	0	0	0	0	0	0	0	0	0 ;HEALTH
C00	L									•
	0	0	0	0	0 .	0	0	0	0	0 ;LODGING -
_	HEAT									
	0	0	0	0	0	0	0	0	0	0 ;LODGING -
-	COOL									
	0	0	0	0	0	0	0	0	0	0
;MI	SCELLANE		HEAT	_	_					
•	0	0	0	0	0	0	0	0	0	0
;MI										

; ; end of file

```
;TD1: Technology Data
    2 ;file version: do not edit
                                                   ;file description
"KU 1998 Technology Database"
;Heat Pump Data
;Shares RelEUI
               2 ; SMALL OFFICES
     42
     20
               2 ; LARGE OFFICES
      9
               2 ; WAREHOUSES
     26
               2 ; FOODSTORES
     27
               2 ; RETAIL
     34
               2 ; SCHOOLS
     37
               2 ; COLLEGES
      9
               2 ; RESTAURANTS
     31
               2 ; HEALTH
     23.
               2 ; LODGING
     24
               2 ; MISCELLANEOUS
;Capital Costs
                                            SCH
                                                    COL
                                                             RES
                  WRH
                           FOD
                                   RET
; SMO
         LGO
                                                      3.45
  2.521
           3.118
                   2.521
                            2.389
                                    2.521
                                              3.45
                                                             5.175 ;Elec HEAT
                            2.787
                                    2.919
                                             3.318
                                                     3.318
                                                              5.706 ; Gas HEAT
  2.919
           2.654
                   2.919
                                    3.052
                                             3.981
                                                     3.981
                            2.919
                                                              5.972 ;Oil HEAT
  3.052
           2.919
                   3.052
                                    2.919
                                             6.104
                                                     6.104
                                                              5.706 ; Elec COOL
  3.052
           4.976
                   2.919
                            2.853
  3.848
           5.772
                   3.716
                            3.649
                                    3.716
                                               6.9
                                                       6.9
                                                              6.635 ; Gas COOL
                                    0.664
                                             0.664
                                                     0.664
                                                              4.246 ; Elec VENT
  1.991
                   0.664
                            0.664
           4.047
                    0.04
                                     0.04
                                             0.199
                                                     0.199
                                                              1.725 ; Elec WATR
   0.08
           0.066
                            0.119
                                                     0.159
                                                               1.46 ; Gas WATR
                                    0.053
                                             0.173
           0.053
                    0.04
                            0.133
  0.066
                                                              1.327 ;Oil WATR
  0.066
           0.053
                   0.066
                            0.199
                                    0.066
                                             0.173
                                                     0.159
                                     0.08
                                                     0.199
                                                              3.981 ;Elec COOK
   0.08
            0.08
                   0.027
                            0.133
                                             0.106
                                                              3.981 ; Gas COOK
   0.08
            0.08
                   0.027
                            0.133
                                     0.08
                                             0.106
                                                     0.199
   0.08
            0.08
                   0.027
                            0.133
                                     0.08
                                             0.106
                                                     0.199
                                                              3.981 ;Oil COOK
  0.133
                   5.308
                            6.635
                                    0.133
                                             0.133
                                                     0.133
                                                              3.318 ;Elec REFR
           0.133
                                                     0.265
                                                              0.265 ; Elec XLIT
  0.398
           0.398
                   0.133
                            0.398
                                    0.332
                                             0.265
                                                              3.185 ; Elec ILIT
                                    3.583
                                             2.787
                                                     3.052
  4.246
           4.246
                   1.194
                            4.246
                                    4.645
                                             1.327
                                                     1.327
                                                              1.991 ;Elec OFEQ
  6.635
           6.635
                   0.398
                            4.645
                                    1.991
                                             0.332
                                                     0.664
                                                              3.318 ;Elec MISC
  2.123
           2.654
                   0.664
                            1.659
                                    0.013
                                              0.08
                                                     0.133
                                                              0.013 ; Gas MISC
  0.027
           0.027
                   0.133
                            0.013
                                                              0.013 ;Oil MISC
  0.027
           0.027
                   0.133
                            0.013
                                    0.013
                                              0.08
                                                     0.133
   6.57
            8.39
                    6.42
                              6.2
                                     6.42
                                             10.36
                                                     10.36
                                                              12.55 ; Elec HTPMP
;
;HLT
         LDG
                  MSC
```

```
2.521 ; Elec HEAT
  3.118
          3.118
                   2.919 ; Gas HEAT
  2.654
          2.654
  2.919
          2.919
                   3.052 ;Oil HEAT
                   2.919 ; Elec COOL
  4.246
          4.246
                   3.716 ; Gas COOL
  4.777
          4.777
 3.981
          3.981
                   0.664 ; Elec VENT
 0.212
          0.265
                    0.04 ; Elec WATR
                  0.053 ; Gas WATR
 0.186
          0.186
  0.173
          0.199
                   0.066 ; Oil WATR
  0.265
          0.664
                    0.08 ;Elec COOK
  0.265
          0.664
                    0.08 ;Gas COOK
                    0.08 ;Oil COOK
 0.265
          0.664
  0.212
          0.398
                   0.133 ; Elec REFR
          0.265
                   0.332 ;Elec XLIT
 0.332
 3.185
          2.521
                   3.583 ; Elec ILIT
  9.289
          0.464
                   3.052 ; Elec OFEQ
 1.991
          1.991
                   1.991 ;Elec MISC
 0.265
          0.212
                   0.133 ; Gas MISC
  0.265
          0.212
                   0.133 ;Oil MISC
  7.59
           7.59
                    6.42 ; Elec HTPMP
;
;
;Tradeoff Data
                High
;Elasticity
                         Low
        -1
                  15
                          -20 ; HEAT E
       -1.5
                  20
                          -30 ; HEAT G
                          -30 ; HEAT O
       -1.5
                  20
       -1.5
                  20
                          -30 ; COOL E
                  20
                         -20 ; COOL G
       -1.5
       -1.5
                  20
                          -30 ; VENT E
         -1
                  15
                          -20 ; WATR E
                  20
                          -30 ;WATR G
         -1
         -1
                  20
                          -30 ; WATR O
                          -15 ; COOK E
         -1
                  10
         -1
                  10
                         -20 ; COOK G
         -1
                  10
                          -20 ; COOK O
                          -30 ; REFR E
         -1
                  25
       -1.5
                          -50 ;XLIT E
                  25
       -1.5
                  20
                          -20 ; ILIT E
         -1
                  15
                          -15 ; OFEQ E
         -1
                  15
                         -15 ;MISC E
         -1
                  25
                         -25 ; MISC G
         -1
                  25
                          -25 ;MISC O
      -1.25
                  15
                         -25 ; HTPMP E
```

```
; Efficiency Trend Rate
1 ; Trends Active? ( 1=TRUE 0=FALSE)
                                 Trend3
                                                 Trend4
                                                                Trend5
                  Trend2
; Trendl
                                                 Year
; Year
        Rate
                  Year
                        Rate
                                 Year
                                         Rate
                                                        Rate
                                                                Year
                                                                        Rate
     0
             0
                             0
                                    0
                                            0
                                                    0
                                                            0
                                                                   0
                                                                           0 ; HEAT E --
HiEUI
                                    0
                                            0
                                                    0
                                                            0
                     0
                            0
                                                                   0
                                                                           0 ; HEAT E --
           ્ 0
LowEUI
                                    0
                                            0
                                                    0
                                                            0
                                                                   0
  1995 -0.15
                  2015 -0.075
                                                                           0 ; HEAT G --
HiEUI
  1995 -0.25
                  2015 -0.15
                                            0
                                                    0
                                                            0
                                                                   0
                                                                           0 ; HEAT G --
LowEUI
                                    0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; HEAT O --
  1995
        -0.15
                  2015 -0.075
                                            0
HiEUI
. 1995
       -0.25
                  2015 -0.15
                                    0
                                            0
                                                    0
                                                            0
                                                                   0
                                                                           0 ; HEAT 0 --
LowEUI
  1995
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; COOL E --
          -0.3
                  2015 -0.15
HiEUI
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; COOL E --
  1995
          -0.5
                  2015 -0.25
LowEUI
  1995
          -0.5
                  2015 -0.25
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; COOL G --
HiEUI
                                    0
                                            0
                                                    0
                                                            0
                                                                   0
                                                                           0 ; COOL G --
  1995
            -1
                  2015
                         -0.5
LowEUI
                                                                           0 ; VENT E --
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
     0
             0
                     0
                             0
HiEUI
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; VENT E --
    0
             0
                     0
                             0
LowEUI
                                                                           0 ; WATR E --
                     0
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
HiEUI
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; WATR E --
  1995
        -0.15
                  2015 -0.075
LowEUI
    0
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; WATR G --
HiEUI
  1995
        -0.25
                  2015 -0.15
                                            0
                                                    0
                                                            0
                                                                    0
                                                                           0 ; WATR G --
LowEUI
                                                                   0
                                                                           0 ; WATR 0 --
    0
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                            0
HiEUI
                                                                           0 ; WATR 0 --
                                            0
                                                            0
                                                                   0
 1995
        -0.25
                  2015 -0.15
                                    0
                                                    0
LowEUI
                                                                           0 ; COOK E --
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                            0
                                                                    0
HiEUI
             0
                     0
                             0
                                    0
                                            0
                                                    0
                                                            0
                                                                   0
                                                                           0 ; COOK E --
     0
LowEUI
```

;

0	0	0	0	0	0	. 0	0	0	0	; COOK	G
HiEUI O	0	0	0	0	0	. 0	0	0	0	;COOK	G
LowEUI	J	J	•	-	-	. •	·	•	·	, 0001.	· .
; O HiEUI	0	0	0	0	0	0	0.	0	0	; COOK	0
0 LowEUI	0	0	0	0	0	0	. 0	0	0	; COOK	0
;											
O HiEUI '	0	0	0	0	0	0	0	0	0	; REFR	E
1995 LowEUI	-0.25	2015	-0.15	0	0	0	0	0	0	;REFR	E
,	0	0	0	0	0	0	0	0	0	;XLIT	E
HiEUI O LowEUI	0	0	0	0	0	0	0	0	0	;XLIT	E
; 0	0	0	0	0	0	0	0	0	0	;ILIT	E
HiEUI	0.5	0015	0.05	•	0	0	0	•			
1995 LowEUI	-0.5	2015	-0.25	0	0	0	0	0	U	;ILIT	E
; 1995 HiEUI	-0.15	2015	-0.15	0	0	0	0	0 -	0	;OFEQ	E
1995 LowEUI	-0.25	2015	-0.15	0	0	0	0	0	0	;OFEQ	E
;	0	0	0	0	0	0	0	0	0	;MISC	F
HiEUI			-	_		_		_			
1995 LowEUI	-0.25	2015	-0.15	0	0	0	0	0	U	;MISC	E
; 0	0	0	0	0	0	. 0	0	0	0	;MISC	G
HiEUI O LowEUI	0	0	0	0	0	0	0	0	0	;MISC	G
;											_
O HiEUI	0	0	0	0	0	0	0	0	0	;MISC	0
0 LowEUI	0	0	0	0	0	0	0	0	0	;MISC	0
; 1995	-0.25	2015	-0.15	0	0	0	0	0	0	;HTPMP	E -
- HiEUI 1995		2015	-0.25	0	0	. 0	0	0	0	;HTPMP	E -
- LowEU		2015	0.20	J		J	·	·	·	,	_
;Effici	ency Tre	end Rat	е								
	6							Trend10			
; Year	Rate					Year	Rate	Year I			n
O HiEUI	0	0	0	0	0	0	U		O	; HEAT	E

e 😅

0	0	0	0	0	0	0	0	0	0 ;HEAT E
LowEUI									
0 HiEUI	0	0	0	0	0	0	0	0	0 ;HEAT G
0 LowEUI	0	0	0	0	0	0	0	0	0 ;HEAT G
<i>;</i>	0	0	0	0	0	0	0	0	0 ;HEAT 0
HiEUI O	0	0	0	0	0	0	0	0	0 ;HEAT O
LowEUI									
O HiEUI	0	0	0	0	0	0	0	0	0 ; COOL E
0 LowEUI	0	0	. 0	0	0	0	0	0	0 ; COOL E
;	0	0	0	0	0	0	0	0	0 ; COOL G
HiEUI		. 0	0	0	0	0	0	0	0 ; COOL G
0 LowEUI	0		U	U	U	U	Ü	U	0 ,coon g
, 0	0	0	0	0	0	0	0	0	0 ; VENT E
HiEUI O	0	0	0	0	0	0	0	0	0 ; VENT E
LowEUI									
O HiEUI	0	0	0	0	0	0	0	0	0 ;WATR E
0 LowEUI	0	0	0	0	0	0	0	0	0 ;WATR E
;	0	0	0	0	0	0	0	0	0 ;WATR G
HiEUI O	0	0	0	0	0	0	0	0	0 ;WATR G
LowEUI	U	U	U	O	J	· ·	· ·	J	o ymilia
, 0	0	0	0	0	0	0	0	0	0 ; WATR O
HiEUI O	0	0	0	0	0	0	0	0	0 ;WATR O
LowEUI;						_			
0 HiEUI	0	0	0	0	0	0	0	0	0 ; COOK E
0 LowEUI	0	0	0	0	0	0	0	0	0 ; COOK E
; 0	0	0	0	0	0	0	0	0	0 ; COOK G
HiEUI O	0	0	0	0	0	0	0	0	0 ; COOK G
LowEUI	-	-	-	-					
. O HiEUI	0	0	0	0	0	0	0	0	0 ; COOK O
0	0	0	0	٥	0	0	0	0	0 ; COOK O
LowEUI									

. .

;									
0 HiEUI	0	0	0	0	0	0	0	0	0 ; REFR E
0	0	0	0	0	0	0	0	0	0 ;REFR E
LowEUI									
; 0	0	0	0	0	0	0	0	0	0 ;XLIT E
HiEUI O	0	0	^	0	0	0	•		
LowEUI	U	U	0	0	0	0	0	0	0 ;XLIT E
<i>;</i> 0	0	0	0	0	•	0	•	_	
HiEUI	0	0	0	. 0	0	0	0	0	0 ;ILIT E
0	0	0	0	0	0	0	0	0	0 ; ILIT E
LowEUI ;									
; 0	0	0	0	0	0	0	0	0	0 ;OFEQ E
HiEUI O	0	0	0	0	0	0	0	0	0 ;OFEQ E
LowEUI				-		_	-	· ·	o young n
; 0	0	0	0	. 0	0	0	0	0	0 ;MISC E
HiEUI					Ţ	ŭ		J	o ,Misc E ==
0 LowEUI	0	0	0	0	0	0	0	0	0 ;MISC E
;									
O HiEUI	0	0	0	0	0	0	0	0	0 ;MISC G
0	0	0	0	0	0	0	. 0	0	0 ;MISC G
LowEUI								-	,,,,,,
; 0	0	0	0	0	0	0	0	, O	0 ;MISC O
HiEUI									
0 LowEUI	0	0	0	0	0	0	0.	0	0 ;MISC O
;									•
O - HiEUI	0	0	0	, 0	0	0	0	0	O ;HTPMP E -
0	0	0	0	0	0	0	0	0	O ;HTPMP E -
- LowEUI					•				•
; ;									
;Cost Trend	i Rate	•							
; 0 ;Trends A	Active	e?/ 1=TR∏	F 0=F	AT.SE.)					
;				-					
; Trend1 ; Year Ra	te	Trend2	2 † 0	Trend3	Pato	Trend4	Pate	Trend5	Pa+0
0	0	0	0	0	0	0	0	0	0 ;HEAT E
LowCost 0	Λ	0	0	0	0	0	0	0	O AURAM E
HiCost	J	v	J	J	U	0	0	0	0 ;HEAT E
; 0	0	0	0	0	•	•	•	^	0 - 1111777
LowCost	Ü	0	U	0	0	0	0	0	0 ;HEAT G
0	0	. 0	0	0	0	0	0	0	0 ;HEAT G
HiCost									

; 0	0	0	0	0	0	0	0	0	0 ;HEAT O
LowCost									·.,
0	0	0	0	0	0	0	0	0	0 ; HEAT O
HiCost									
; 0	0	0	0	0	. 0	0	0	0	0 ; COOL E
LowCost									
0	0	0	0	0	0	0	0	0	0 ; COOL E
HiCost									
; 0	0	0	0	0	0	0	0	0	0 ; COOL G
LowCost								•	
0	0	0	0	0	0	0	0	0	0 ; COOL G
HiCost									
;	0	0	0	0	0	0	0	0	0 ; VENT E
LowCost									
0	0	0	0	0	0	0	0	0	O ; VENT E
HiCost									
;	0	0	0	0	0	0	0	0	0 ;WATR E
LowCost									
0	0	0	0	0	0	0	0	0	0 ;WATR E
HiCost									
;	0	. 0	0	0	0	0	0	0	0 ;WATR G
LowCost									
0	0	0	0	0	0	0	0	0	0 ;WATR G
HiCost									
;	0	0	0	0	0	0	0	0	0 ;WATR 0
LowCost	·	•	· ·	•					
0	0	0	0	0	0	0	0	0	0 ;WATR O
HiCost									
; 0	0	0	. 0	0	0	0	0	0	0 ; COOK E
LowCost	Ū	J	J	•		_	_	_	
0	0	0	0	0	0	0	0	0	0 ; COOK E
HiCost									
; 0 .	0	0	0	0	0	0	0	0	0 ; COOK G
LowCost	•	•							
0	0	0	0	0	0	0	0	0	0 ; COOK G
HiCost									
; 0	0	0	0	0	0	0	0	0	0 ; COOK O
LowCost									•
0	0	0	0	0	0	0	0	0	0 ; COOK O
HiCost									
; 0	0	0	0	0	0	0	0	0	0 ;REFR E
LowCost		•							
0	0	0	0	0	0	0	0	0	O ; REFR E
HiCost									
;									

0	0	0	0	0	0	0	0	0	0 ;XLIT E
LowCost 0	0	0	0	0	0	0	0	0	0 ;XLIT E
HiCost ; 0	0	0	0	0	0	0	0	0	0 ;ILIT E
LowCost 0	0	0	0	. 0	0	0	0	0	0 ; ILIT E
HiCost	Ü	· ·	Ū	J	Ü	J	ŭ	Ū	0 , I II I E
; 0 LowCost	0	0	0	0	0	0	0	0	0 ;OFEQ E
0 HiCost	0	0	0	0	0	0	0.	0	0 ;OFEQ E
;	0	0	0	0	0	0 .	0	, O	0 ;MISC E
LowCost 0	0	0	0	0	0	0	0	0	0 ;MISC E
HiCost ;									•
0 LowCost	0	0	0	0	0	0	0	0	0 ;MISC G
0 HiCost	0	0	0	. 0	0	0	0	0	0 ;MISC G
; 0	0	0	0	0	0	0	0	0	0 ;MISC O
LowCost 0	0	0	0	0	0	0	0	0	0 ;MISC O
HiCost ;	•	•	•	•	•	0	•	0	0 1111111111111111111111111111111111111
0 - LowCost	0	0	0	0	0	0	0	0	0;HTPMP E -
0 - HiCost	0	0	0	0	0	0	0	0	0 ; HTPMP E -
; ; 	. J Dat								
;Cost Trer; ; ; Trend6				Trend8		Trend9		Trend10	1
				Year					
0 LowCost									0 ;HEAT E
0 HiCost	0	0	0	0	0	0	0	0	0 ;HEAT E
;	0	0	0	0	0	0	0	0	0 ;HEAT G
LowCost 0	0	0	0	0	0	0	0	0	0 ; HEAT G
HiCost			•						
; 0 LowCost	0	0	0	0	. 0	0	0	0	•
0 HiCost	0	0	0	0	0	0	0	0	0 ;HEAT O
; 0 LowCost	0	0	0	0	0	0	0	0	0 ;COOL E

ن د

0	0	0	0	0	0	0	. 0	0	0 ;COOL E
HiCost;	0	0	0	0	0	0	0	0	0 .0001 0
0 LowCost	0	0	0	0	0	U	U	U	0 ;COOL G
0 HiCost	0	0	0	0	0	0	0	0	0 ; COOL G
; 0	0	0	0	0	0	0	0	0	O ; VENT E
LowCost 0	0	0	0	0	0	0	0	0	0 ; VENT E
HiCost	U	U		· ·	Ū	Ü	Ü	Ū	O , VENT E
0	0	0	0	0	0	0	0	0	0 ;WATR E
LowCost 0	0	0	0	0	0	0	0	0	0 ;WATR E
HiCost ;		0	0	0	0	0	0	0	0 ;WATR G
0 LowCost	0	0	0	U	U	U			•
0 HiCost	0	0	0	0	0	0	0	0	0 ;WATR G
;	0	0	0	0	0	0	0		0 ;WATR 0
0 LowCost	U	. 0	U	U	-				
0 !!iCost	0	0	0	0	0 .	0	0	0	0 ;WATR O
HiCost ;									
0	0	0 -	0	0	0	0	0	0	0 ; COOK E
LowCost 0	0	0	0	0	0	0	0	0	0 ; COOK E
HiCost								•	
; 0	0	0	0	0	0	0	0	0	0 ; COOK G
LowCost 0	0	0	0	0	0	0	0	0	0 ; COOK G
HiCost	Ü	Ū		Ü	ŭ	J	ŭ	· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
; 0	0	0	0	. 0	0	0	0	0	0 ;COOK O
LowCost									
0 HiCost	0	0	0	0	0	0	0	0	0 ; COOK O
;	•	•	•		0	0	0	0	O DEED E
0 LowCost	0	0	0	0	0	0	0	0	0 ;REFR E
0	0	0	0	0	0	0	0	0	0 ;REFR E
HiCost ;									
0	0	0	0	0	0	0	0	0	0 ;XLIT E
LowCost 0	0	0	0	0	0	0	0	0	0 ;XLIT E
HiCost •									
; 0	0	0	0	0	0	0	0	0	O ; ILIT E
LowCost 0	0	0	0	0	0	0	0	0	0 ;ILIT E
HiCost		-	*	_					

υz

•									
; 0	0	0	0	0	0	0	0	0	0 ;OFEQ E
LowCost		•		· ·	•		•	·	O YOLDO E
0	0	0	0	0	0	0	0	0	O ;OFEQ E
HiCost									- , <u>-</u>
;									
0	0	0	0	0	0	0	0	0	0 ; MISC E
LowCost									
0	0	0	0	0	0	0	0	0	0 ;MISC E
HiCost									
;									
0	0	0	0	0	0	0	0	0	0 ;MISC G
LowCost									
0	0	0	0	0	0	0	0	0	0 ;MISC G
HiCost									
;	_	_	_	_	_	_	_	_	
0	0	0	0	0	0	0	0	0	0 ;MISC O
LowCost	•	•	•	•	_	•	^	•	0 1555
0	0	0	0	0	0	0	0	0	0 ;MISC O
HiCost									
<i>;</i> 0	0	0	0	0	0	0	0	0	O . HIMDND D
- LowCost	U	U	U	U	U	U	U	U	O ; HTPMP E -
- Lowcost	0	0	0	0	0	0	0	0	O ; HTPMP E -
- HiCost	U	U	U	U	U	U	U	U	O , RIPMP E -
; •									
Cooling 1	Interact	ion Para	motors						
									•
:		.IOII Fale	merers						,
;				XLIT		ILIT	OFEO	MISC	•
; ; VENT	WATR	COOK	REFR	XLIT 0		ILIT	OFEQ 0.56	MISC 0.56	:SMALL OFFICES
; VENT 0	WATR 0	COOK 0	REFR 0	XLIT 0 0		0.48	0.56	0.56	;SMALL OFFICES ;LARGE OFFICES
; VENT 0 0	WATR 0 0	COOK	REFR	0		0.48	0.56 0.77	0.56 0.77	;LARGE OFFICES
; VENT 0	WATR 0	COOK 0 0	REFR 0 0	0		0.48	0.56 0.77 0.15	0.56 0.77 0.15	;LARGE OFFICES ;WAREHOUSES
; VENT 0 0 0	WATR 0 0 0	COOK 0 0	REFR 0 0 0	0 0 0		0.48 0.7 0.23	0.56 0.77 0.15	0.56 0.77 0.15 0.8	;LARGE OFFICES
; VENT 0 0 0 0	WATR 0 0 0	COOK 0 0 0	REFR 0 0 0 0	0 0 0		0.48 0.7 0.23 0.59	0.56 0.77 0.15 0.8	0.56 0.77 0.15 0.8 0.62	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES
; VENT 0 0 0 0 0	WATR 0 0 0 0	COOK 0 0 0 0	REFR 0 0 0 0	0 0 0 0		0.48 0.7 0.23 0.59 0.53	0.56 0.77 0.15 0.8 0.62	0.56 0.77 0.15 0.8 0.62 0.53	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL
; VENT 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0	COOK 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0	0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS
; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH
; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING
; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH
; VENT 0 0 0 0 0 0 0 0 0 0 0 ;	WATR 0 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I	WATR 0 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating 1	WATR 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0 0 0 ameters	0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I;	WATR 0 0 0 0 0 0 0 0 0 0 0 WATR	COOK 0 0 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0 0 0 ameters	0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING ;MISCELLANEOUS
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I ; VENT 0	WATR 0 0 0 0 0 0 0 0 0 0 0 WATR 0	COOK 0 0 0 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0 0 0 ameters REFR 0	0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING ;MISCELLANEOUS ;SMALL OFFICES
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I ; VENT 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0 0 0 0 0 COOK 0	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5	;LARGE OFFICES ;WAREHOUSES ;FOODSTORES ;RETAIL ;SCHOOLS ;COLLEGES ;RESTAURANTS ;HEALTH ;LODGING ;MISCELLANEOUS ;SMALL OFFICES ;LARGE OFFICES
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I ; VENT 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.53 0.39 0.4 0.73 0.86 0.64 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.93 0.95 0.69 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.95 0.69 0.5 MISC 0.23 0.12 0.18	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I; ; VENT 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28	0.56 0.77 0.15 0.8 0.62 0.53 0.93 0.95 0.69 0.5	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I ; VENT 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5 OFEQ 0.23 0.12 0.18 0.11 0.27	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL
; VENT 0 0 0 0 0 0 0 0 0 ; Heating I; ; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33 0.47	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5 OFEQ 0.23 0.12 0.18 0.11 0.27 0.35	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11 0.27 0.35	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS
; VENT 0 0 0 0 0 0 0 0 0 ; Heating I; ; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33 0.47 0.47	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5 OFEQ 0.23 0.12 0.18 0.11 0.27 0.35 0.35	0.56 0.77 0.15 0.8 0.62 0.53 0.4 0.93 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11 0.27 0.35 0.35	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES
; VENT 0 0 0 0 0 0 0 0 0 ; Heating I; ; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33 0.47 0.47 0.05	0.56 0.77 0.15 0.8 0.62 0.53 0.93 0.95 0.69 0.5 OFEQ 0.23 0.12 0.18 0.11 0.27 0.35 0.35	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11 0.27 0.35 0.35	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating 1 ; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33 0.47 0.47 0.05 0.13	0.56 0.77 0.15 0.8 0.62 0.53 0.93 0.95 0.69 0.5 OFEQ 0.12 0.12 0.18 0.11 0.27 0.35 0.35 0.05	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11 0.27 0.35 0.35 0.05	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES
; VENT 0 0 0 0 0 0 0 0 0 0 ; Heating I ; VENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOK	REFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0		0.48 0.7 0.23 0.59 0.39 0.4 0.73 0.86 0.64 0.5 ILIT 0.27 0.16 0.25 0.28 0.33 0.47 0.47 0.05	0.56 0.77 0.15 0.8 0.62 0.53 0.93 0.95 0.69 0.5 OFEQ 0.23 0.12 0.18 0.11 0.27 0.35 0.35	0.56 0.77 0.15 0.8 0.62 0.53 0.95 0.69 0.5 MISC 0.23 0.12 0.18 0.11 0.27 0.35 0.35 0.05	; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH ; LODGING ; MISCELLANEOUS ; SMALL OFFICES ; LARGE OFFICES ; WAREHOUSES ; FOODSTORES ; RETAIL ; SCHOOLS ; COLLEGES ; RESTAURANTS ; HEALTH

;

```
; Efficiency Parameters
                                         Gas
                                Elec
                        Oil
     Elec
               Gas
                                COOL
                                         COOL
                       HEAT
              HEAT
     HEAT
                                          1 ; SMALL OFFICES
                                11
                      0.7
            0.75
   4.47
                                          1 ; LARGE OFFICES
                                14
                      0.7
            0.75
   3.91
                                          1 ; WAREHOUSES
                                11
            0.75
                      0.7
   3.63
                                          1 ; FOODSTORES
                                11
                      0.7
            0.75
   4.09
                                          1 ; RETAIL
                                12
                      0.7
            0.75
    4.1
                                          1 ; SCHOOLS
                                11
   4.28
            0.75
                      0.7
                                          1 ; COLLEGES
                      0.7
                                11
            0.75
   4.37
                                          1 ; RESTAURANTS
                                11
                      0.7
            0.75
   3.65
                                          1 ; HEALTH
                                14
                      0.7
            0.75
     4.2
                                          1 ; LODGING
                                12
                      0.7
            0.75
       4
                                          1 ; MISCELLANEOUS
                                11
                      0.7
    3.74
            0.75
;Shell Interaction Parameters
              Cooling
;Heating
              Impacts
; Impacts
                     -1 ; SMALL OFFICES
         -1
                     -1 ; LARGE OFFICES
         -1
                     -1 ; WAREHOUSES
         -1
                     -1 ; FOODSTORES
         -1
                     -1 ; RETAIL
         -1
                      -1 ;SCHOOLS
         -1
                     -1 ; COLLEGES
         -1
                      -1 ; RESTAURANTS
         -1
                      -1 ; HEALTH
         -1
                      -1 ;LODGING
         -1
                      -1 ; MISCELLANEOUS
          -1
 ;end of file
```

```
;SD1: Standards and DSM Data
    4 ; file version: do not edit
"1998 KU COMMEND Forecast"
                                                    ;file description
;Standards & DSM Data Definitions
    5 ; Number of Standard Definitions
;Standards & DSM Segment Definitions
; Name
         Long Name
                                    1stYear CompYear
                                                          Max% Isactive(Y/N)
"HEAT"
        "ASHRAE 90.1P HEAT"
                                      1997
                                                1998
                                                            100 "N"
"COOL" "ASHRAE 90.1P COOL"
                                      1997
                                                1998
                                                            100 "N"
"WATER" "ASHRAE 90.1P WATER"
                                      1997
                                                1998
                                                            100 "Y"
"SHELL" "ASHRAE 90.1P SHELL"
                                      1997
                                                1998
                                                            100 "N"
"EPAMO" "EPACT Motors"
                                      1998
                                                2000
                                                            100 "Y"
; Equipment Efficiency Standards
; SMALL OFFICES
          Percent Name
                             Percent Name
                                                Percent Name
                                                                  Percent Name
; Name
Percent
                0 ""
                                   0 ""
                                                     0 11111
11 11
0 ; HEAT E
                                                     0 ""
"HEAT"
               90 ""
0 ; HEAT
               90 ""
                                   0 . " "
"HEAT"
0 ; HEAT
         0
                                                                       0 ""
"COOL"
               95 ""
                                   0 ""
                                                     0 ""
0 ; COOL
                0 ""
                                   0 ""
                                                     0 ""
                                                                       0 ""
0 ; COOL
               95 ""
                                   0 11 11
                                                     0 ""
                                                                     . 0 nn
"EPAMO"
0 ; VENT
               90 ""
                                   0 ""
                                                     0 ""
                                                                       0 ""
"WATER"
0 ; WATR
         Ε
                                   0 ""
               85 ""
                                                     0 ""
"WATER"
                                                                       0 ""
0 ;WATR
                                   0 ""
                                                     0 ""
                                                                       0 ""
"WATER"
               85 ""
0 ; WATR
                0 ""
                                                                       0 ""
                                   0 ""
                                                     0 ""
0 ; COOK E
                0 ""
                                   0 ""
                                                     0 ""
                                                                       0 ""
0 ; COOK G
                0 nm
                                                     0 ""
                                                                       O 82 84
                                   0 ии
0 ; COOK O
                                                     0 ""
                                                                       0 ""
                                   0 ""
0 ; REFR E
                                   0 ""
                                                                       0 77 77
n n
                                                     0 ""
0 ;XLIT E
                                                                       0 111
                0 ""
                                  0 ""
                                                     0 ""
0;ILIT
                                  0 ""
                0 ""
                                                     0 ""
                                                                       0 ""
0 ;OFEQ
"EPAMO"
               95 ""
                                  0 ""
                                                                       0 ""
                                                     0 ""
```

ت ،

0 ;MISC E

nπ		0	tt 1T	0	n n	0	19 11	0	11 11
0 ;MISC	G	0	er er	0	n n	0	TF FT	0	ни
0 ;MISC	٥			-	п п	•	79 TV	,	11 17
"COOL"		95	7F 17	0		O		0	** **
0 ;HTPMP	È								
;									
; LARGE O	FFIC	ES						•	
; Name			: Name	Percent	Name	Percent	: Name	Percent	: Name
Percent									
11 11		0	11 11	0	11 H	0	11 11	0	97 19
0 ;HEAT	E	•		•				_	
"HEAT"	نڌ	90	n n	0	17 17	0	22.77	0	n n
	~	90		U		•		•	
0 ;HEAT	G	00	17 19	•	11 11	0	97 3 7	0	пп
"HEAT"	_	90		0		U		· ·	
0 ;HEAT	0					_		_	
"COOL"		95	TI TI	0	11 11	0	nn	0	n n
0 ;COOL	E								
H II		0	n n	0	11 II	0	W 11	0	17 म
0 ; COOL	G							• • • •	
"EPAMO"		95	11 11	0	17 17	0	H 17	0	88 SE
0 ; VENT	E								
"WATER"	-	90	77 17	0	17 77	٥	n 11	. 0	11 IT
	12	20		·		J		•	
0 ;WATR	E	0.5	H H	•	VI 17	^	nn	0	пп
"WATER"		85		0	•••	0		0	
0 ;WATR	G					_			
"WATER"		85	# #	0	11 H	0	ង แ	0	11 11
0 ;WATR	0								
17 17		0	и и .	0	f7 IT	0	N 11	0	H 11
0 ;COOK	E								
11 17	_	٥	11 11	0	17 17	0	11 11	0	11 17
0 ; COOK	G	J		•		•			
n n	G	O	19 17	0	TT 17	0	n n	0	10 00
	_	U		U		U		U	
0 ; COOK	0	_		_	** **			•	11 11
77 27		0	11 11	0	17 17	0	17 11	. 0	
0 ; REFR	E							_	
17 17		0	17 17	0	11 11	0	. n	0	11 17
0 ;XLIT	E								
19 19		0	10 17	0	17 17	0	пн	0	77 17
O ; ILIT	E								
B 11		0	17 17	0	11 11	0	n n	0	n 11
0 ;OFEQ	E								
"EPAMO"		95	17 17	0	11 11	0	17 TY	0	N 11
0 ;MISC	E	,		J		•			
u u	124	^	m m	0	11 17	٥	ĦП	0	n n
	_	U		U		U		J	
0 ;MISC	G	_				•	# D	•	n n
m 11		0	17 17	0	17 17	U	11 17	0	
0 ;MISC	0							_	
"COOL"		95	nn	0	17 17	0	17 17	0	et 11
0 ;HTPMP	E								
;									
;WAREHOU	SES					-	•		
; Name		rcent	. Name	Percent	t Name	Percent	t Name	Percent	Name
Percent						_ 0_011			
n n		0	nn	. 0	нп	^	FF 19	n	n n
	ਦਾ	U		. 0		U		U	
0 ;HEAT	E								

2.2

e e											
	"HEAT"	90	n n	. 0	n n	0	T W	0	7 7		
	O ;HEAT "HEAT"	G 90	пп	0 '	n n	0	# 17	0	70 70		
	0 ;HEAT "COOL"	O 95	п п	0 '	II II	0	17 17	0	76 14		
	0 ; COOL	E	11 11	0 '	11 ft	0	17 17	0	10 10		
	- •	G		0 1			IT H		97 TI		
	"EPAMO" O ; VENT	95 E									
	"WATER" 0 ;WATR	90 E	TI TI	0	H 11	0	27 17	0	n n		
	"WATER"	85	пп	0	FI 11	0	Ħπ	0	25 36		
	O ;WATR "WATER"	85	п п	0	स रा	. 0	nπ	0	пп		
	0;WATR		17 II	0	n #	0	17 IV	0	9 1 11		
	0 ; COOK	E	нπ	0	TT 57	0	. ##	0	17 TT		
	0 ; COOK	G		0			T II	•	. п н		
	0; COOK	0	17 FF								ı
•	0;REFR		W 14	0	17 II	0	TH II	0	P7 P7	•	
	11 11	0	11 11	0	17 11	0	17 ff	0	tr m		
	O ;XLIT		77 29	0	H 11	0	17 17	0	17 TI		
	O ;ILIT	E 0	т 11	0	H W	0	nn	0	8 9 19		
	0 ;OFEQ "EPAMO"	E 95	11 19	0	n n	0	17 17	0	n n		ı
	0 ;MISC	E	n w .	0		0	n #	. 0	07 TT		
	0 ;MISC	G		_				_			
	0;MISC	-	17 17	0	n n	0	उसे वि		17 ff		
	"COOL" 0;HTPMP	95	пп	0	17 ft	0	17 79	0	T 11	•	
	;										
	; FOODSTO	RES Percent	Name Pe	rcent	Name	Percen	t Name	Percent	Name		
	Percent	0	TT 1T -	0	H 17	0	11 17	0	11 11		
	O ;HEAT "HEAT"	E	m n	0	n n	. 0	11 TO .	0	n n		
	0 ; HEAT	G					11 17		11 11		
	"HEAT" O ;HEAT			0							ı
	"COOL"	95 E	n n	0	17 97	0	11 17		03 14		
	11 17	0	ti fi	0	श ग	0	π ¹⁰	0	म म		
	0 ;COOL "EPAMO"	95	n n	0	II II	0	nn	0	0 11		
	O ; VENT "WATER"	E 90	11 TT	0	IT IT	0	n 11	0	17 17		
•	0 ;WATR	E									

"WATER"	85	пп	0 ""	O 77 17	0 ""
0 ;WATR "WATER"	G 85	## ## .	О ""	0 ""	0 ""
0;WATR	0	пп	O ##	О пп	0 ""
0;COOK	E 0	n n	0 ""	0 ""	0 ""
0;COOK	G 0	пп	0 ""	О ни	0 ""
0;COOK	0 0	ππ	0 ""	О ни	0 ""
O ; REFR	E 0	π π	0 ""	O nu	0 ""
O;XLIT	E	17 TT	0 ""	0 ""	. 0 ""
0;ILIT	0 E		0 ""	•	
0 ;OFEQ	0 E			J	
"EPAMO" 0 ;MISC	95 E		0 ""		0 ""
0;MISC	0 G	11 11	0 ""	0 ""	0 ""
0;MISC	0	11 ft	O ""	О па	0 ""
"COOL" 0 ;HTPMP	95 E	17 17	0 ""	0 ""	0 ""
; ;RETAIL					
; Name	Percen	t Name	Percent Name	Percent Name	Percent Name
Percent	Percent 0	t Name	Percent Name	Percent Name	Percent Name
Percent "" 0 ;HEAT "HEAT"	0 E				
Percent "" 0 ;HEAT	0 E 90 G	πп .	O 16.11	0 ""	O 11 11
Percent "" 0; HEAT "HEAT" 0; HEAT	0 E 90 G	16 FT	0 ""	0 ""	O 1111
Percent "" 0;HEAT "HEAT" 0;HEAT "HEAT" 0;HEAT	0 E 90 G 90 O 95	16 FT	0 mm 0 mm	0 nn	0 mm
Percent "" 0; HEAT "HEAT" 0; HEAT "HEAT" 0; HEAT "COOL" 0; COOL	0 E 90 G 90 O 95 E 0	11 II 11 II 11 II	0 ""	0 "" 0 "" 0 ""	0 mm 0 mm 0 mm
Percent "" 0; HEAT "HEAT" 0; HEAT "HEAT" 0; HEAT "COOL" 0; COOL ""	0 E 90 G 90 O 95 E 0 G 95	11 II II II II II II II II II II II II I	0 "" 0 "" 0 ""	0 "" 0 "" 0 ""	0 mm 0 mm 0 mm
Percent "" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR	0 E 90 G 90 O 95 E 0 G 95 E 90	11 11 11 11 11 11 11 11 11 11 11 11 11	0 "" 0 "" 0 "" 0 ""	0 "" 0 "" 0 "" 0 ""	0 mm 0 mm 0 mm 0 mm
Percent "" 0; HEAT "HEAT" 0; HEAT "COOL" 0; COOL "EPAMO" 0; VENT "WATER" 0; WATR "WATER" 0; WATR	0 E 90 O 95 E 0 G 95 E 90 E 85 G	11 11 11 11 11 11 11 11 11 11 11 11		0 "" 0 "" 0 "" 0 "" 0 ""	O "" O "" O "" O "" O ""
Percent "" 0; HEAT "HEAT" 0; HEAT "COOL" 0; COOL "EPAMO" 0; VENT "WATER" 0; WATR "WATER"	O E 90 O 95 E 0 G 95 E 90 E 85 G 85 O	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 ""	O 1111 O 1111 O 1111 O 1111 O 1111 O 1111 O 1111
Percent "" 0; HEAT "HEAT" 0; HEAT "HEAT" 0; HEAT "COOL" 0; COOL "EPAMO" 0; VENT "WATER" 0; WATR "WATER" 0; WATR "WATER" 0; WATR	O E 90 O 95 E 90 E 85 G 85 O E	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 ""	O 1111 O 1111 O 1111 O 1111 O 1111 O 1111 O 1111 O 1111
Percent "" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR	O E 90 O 95 E 90 E 85 O C C G	11 11 11 11 11 11 11 11 11 11 11 11 11			O "" O "" O "" O "" O "" O "" O "" O ""
Percent "" 0;HEAT "HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;COOK "" 0;COOK	O E 90 O 95 E 90 E 85 O O E 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11			O "" O "" O "" O "" O "" O "" O "" O ""

...

пп	0	10 11	0	II II .	0	17 TV	0	es 19
0;XLIT	E 0	17 11	0	11 1f	` 0	# W	0	ET 11
O;ILIT	E 0	m m	0	11 17	0	n n	0	n a
0 ;OFEQ "EPAMO"	E 95	n n	0	11 11	0	91 H	0	17 17
	E	भ श	. 0	17 IT	0	11 11	0	17 11
0;MISC	G	ក ផ		w 11	0	. пи	0	нп
0 ;MISC.				14 15	0	ππ	0	17 17
"COOL" 0;HTPMP; ;SCHOOLS			J		Ū		Ů	
; Name Percent	Percent	: Name	Percent	Name	Percent	: Name	Percent	Name
16 16		17 17	0	## ##	0	m m	. '0	11 11
O ;HEAT "HEAT"	E 90	11 11	0	3 7	0	47 77	0	17 11
O ;HEAT "HEAT"	G 90	n n	0	10 17	0	11 10	0	11 11
0 ; HEAT "COOL"	O 95	n n	0	70 16	. 0	11 17	0	17 17
0 ; COOL	E 0	P1 97	0	89 79	0	нп	0	n n
0 ;COOL "EPAMO"	G 95	If II	0	97 11	0	77 TF ·	. 0	F9 V9
0 ; VENT "WATER"	E 90	n n	0	## TF	0	11 VI	0	TI 11
0 ;WATR "WATER"	E 85	H H	0	n n	. 0	11 TE	0	пп
0 ;WATR "WATER"	G 85	n n	0	11 11 ·	0	17 17	0	n u
0;WATR	0 0	77 11	0	H II	0	. 17 17	0	пп
0 ;COOK	E 0	TT 11	0	11 17	0	17 17	0	n n
0 ; COOK	G 0	11 11	0	II II	0	97 77	0	n n
0 ; COOK	0 0	77 II	0	71 TT	0	B 78	0	11 11
0;REFR	E	11 11	0	ri tu	0	ti 11	0	11 17
0;XLIT	E	18 9F	0	17 11	0	n n	0	11 11
O;ILIT	E	m m		PF SE	0	11 11	0	11 11
0 ;OFEQ "EPAMO"	E	11 11		n #		BT 18	0	11 11
0 ; MISC	E	er m		JI 19		GB 72	0	11 H
0;MISC	G	P7 10		tr 17		17 17		n n
	0		J		·			

"COOL"	95	11 H	٥	19 17	0	m m	0	11 H
0 ; HTPMP		'	Ū				· ·	
;						•		
; COLLEGE					~ .			
; Name	Percen	t Name	Percent	: Name	Percent	: Name	Percent	Name
Percent	C		0	m m	0	m 11	0	n n
O ; HEAT	E							
"HEAT"	90		0	n n	0	n u	0	nn
0 ; HEAT	G		•			er 11	•	va
"HEAT"		11 11	0	10 11	0		0	17 19
0 ;HEAT "COOL"	0 95	πп	0	n n	0	n n	0	n n
0 ; COOL	E	•	•		•		•	
пп	C	пπ	0	19 19	0	es es	0	n n
0 ;COOL	G				, _		_	
"EPAMO"		11 11	. 0	17 TT	0	W FF	0	FF 79
O ; VENT "WATER"	E	H H	0	tt 11	. 0	11 11	0	n n
0 ;WATR	E		U		. •			
"WATER"	•	W 11	0	n n	0	n 11	0	n n
0 ;WATR	G							•
"WATER"	85	11 11	0	14 13	0	17 11	0	n n
O;WATR	0	##	•	TF 19	0	11 11	•	n n
0 ; COOK	E		0	•••	0		. 0	
##		n n	٥	11 11	0	11 17	0	n n
0 ;COOK	G			•				
11 17	0	17 H	0	11 11	0	65 LB	0	n n
0 ; COOK	0		_		_		_	
n n	_ 0	n n	0	77 17	0	17 17	0	11 11
0 ; REFR	E	nn	0	11 11	0	m m	0	m m
0 ;XLIT	E	•	· ·				·	
n n		нп	0	11 11	0	17 17	0	13 11
O ;ILIT	E							
n n	C	11 11	0	17 17	0	11 11	0	11 11
0 ;OFEQ "EPAMO"	E	11 11	٥	n n	0	11 11	· 0	11 11
0;MISC		,	U		U		· ·	
n n			0	TI II	. 0	u n	0	n n
0 ;MISC	G							
11 Pr	_	at at .	0	14 15	0	11 11	0	11 17
0 ;MISC	0	пп	•	FT 11	0	77 17	0	16 67
"COOL" 0;HTPMP		,	U		U		U	
;								
; RESTAUR	ANTS							
; Name	Percen	t Name	Percent	: Name	Percent	t Name	Percent	: Name
Percent	_		_	88 79	_	** **	^	n 17
	E C	11 H	ט	n n	0	17 18	U	
O ;HEAT "HEAT"		пн	n	89 78	n	17 11	0	H 11
0 ;HEAT	G							
"HEAT"	90	71 17	0	n n	0	17 77	0	n u
O ; HEAT	0							

•:••

						,			
"COOL"		95	TP 19	0	17 17	0	11 11	0	H H
0;COOL	E	0	17 17	0	17 m		пн	٥	37 TF
0	~	U		Ū		·		•	
0 ; COOL	G	95	98 ES	0	27 TZ	0	m 11	0	11 11
"EPAMO"	_	95		U		U		0	
0 ; VENT	E			_		_		_	
"WATER"		90	12 77	0	10 11	0	17 17	0	N 11
0 ;WATR	E								
"WATER"		85	16 41	0	60 A5	0	H TI	0	17 17
O ; WATR	G								
"WATER"		85	11 11	0	TV 14	0	H 11	0	f7 1 7
0 ;WATR	0								
nn		0	n n	0	10 11	0	FF 78	0	11 11
0 ; COOK	E								
11 TI	_	n	77 11	0	17 11	0	n n	0	TT 17
0 ;COOK	G	•		•		·		J	
m m	G	0	ii ii	O	nn	0	81 F1	٥	77 17
	^	U	•	J					
0;COOK	0	_	11 11	•	37 47	^	n n	•	92 9 7
	_	U		U		0	•••	U	
0 ; REFR	E	_		_					
17 77		0	u M	0	IT H	0	11 TF	0	17 17
0 ;XLIT	E								
11 11		0	11 11	0	25 11	0	17 11	0	10 10
0 ;ILIT	E								
77 77		.0	n n	0	85 55	0	11 11	0	17 11
0 ;OFEQ	E								
"EPAMO"	_	95	11 11	0	11 11	0	97 TV	0	PF 19
0 ;MISC	E	30		•		•		Ţ	
T 11	_	0	ff 17	0	PF PF	0	TP TP	0	19 16
O .MTCC	G	U		•		J		U	
0;MISC	G	0	n n	0	11 H	0	11 17	0	19 10
	_	U		U		0		U	
0 ;MISC	0	0.5		•	10 11	•	n n	^	19 19 -
"COOL"	_	95		U		0		U	•• ••
O ;HTPMP	E								
;									
; HEALTH						•			
; Name	P	ercent	: Name	Percent	: Name	Percent	: Nam	e Percent	: Name
Percent									
11 11		0	II II	0	77 17	0	82 TV	0	пп
O ; HEAT	E								
"HEAT"		90	H 17	0	II II	0	11 11	0	11 11
O ; HEAT	G								
"HEAT"		90	нн	0	77 H	0	11 11	0	n n
O ; HEAT	0					_			
"COOL"		95	87 97	0	77 11	0	11 71	. 0	11 11
0 ; COOL	E			•		J		•	
n n		0	пп	. 0	77 17	0	11 11	0	17 19
0 ; COOL	G	U		J		U		U	
	J	95	W 11	^	m 11	^	17 TT	O	11 17
"EPAMO"	T-1	93		U		0		U	•
0 ; VENT	E		***	_		<u>-</u>	** **		** **
"WATER"		90		0	87 YI	0	17 17	0	11 11
O ;WATR	Ε								
"WATER"		85	n H	0	II II	0	11 11	0	17 11
0 ;WATR	G								
"WATER"		85	11 11	0	17 11	0	11 11	0	27 77
O ;WATR	0								

n n		0	11 11	0	17 17	0	er tr	0	n n
0 ; COOK	E	0	11 11	0	n n	0	91 IT	0	пπ
0 ; COOK	G					_			n n
0 ; COOK	0	0	17 17	U	π #	Ū		0	
0 ; REFR	E	0	11 11	0	11 11	0	11 11	0	11 11
11 11		0	11 11	0	11 11	0	19 17	0	n n
0;XLIT	E	0	10 17	0	n ñ	0	H TF	0	n n
O;ILIT	E	0	11 11	0	11 17	0	пπ	0	πn
0 ;OFEQ	E							_	
"EPAMO"	777	95	er 17	0	37 17	0	n n	0	n n
0;MISC	E	0	11 T1	. 0	17 17	0	пп	0	m m
0 ;MISC	G	ŭ		•			•		
77 TF		0	FF 19	0	11 11	0	n n	0	11 11
0 ;MISC	0	0.5	PF 94		11 17	0	n n	0	m m
"COOL" 0;HTPMP	E	95	•• ••	0		U		U	
;									
;LODGING					•				
; Name	₽	ercent	Name	e Percen	t Nar	ne Percent	Name Perce	nt	Name
Percent		0	17 11	0	n n	. 0	пп	0	n n
O ; HEAT	E								
	ш					•	er 14	_	
"HEAT"		90	17 17	0	m tt	0	πn	0	17 11
"HEAT" O ;HEAT "HEAT"	G	90 90		. 0				0	17 II
"HEAT" 0 ;HEAT "HEAT" 0 ;HEAT		90	11 II	0	пп	0	11 12	_	
"HEAT" O ;HEAT "HEAT"	G	90 95	# # # #	. 0	17 17 17 17	0	11 TI	0	17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL	G O E	90 95	11 II	. 0	пп	0	11 11	0	T 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL	G O	90 95 0	11 11 11 17	0	17 17 17 17	0 0	11 11 11 11	0	17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL	G O E	90 95	11 11 11 17	. 0	11 11 11 11	0 0 0	11 11 11 11 11 11	0	17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "" 0;COOL "EPAMO" 0;VENT "WATER"	G O E G	90 95 0 95	11 11 11 17	0	11 11 11 11 11 11 11 11 11 11	0 0 0	11 11 11 11 11 11	0	17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR	G O E G	90 95 0 95 90	11 11 11 11 11 11 11 11		77 11 79 17 19 12 19 17	0 0 0 0	11 11 11 11 11 11 11 11	0 0 0 0	TO 11 TO 11 TO 11 TO 11 TO 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR	G O E G E	90 95 0 95 90	11 17 11 17 11 17		11 11 11 11 11 11 11 11 11 11	0 0 0 0	11 11 11 11 11 11 11 11	0 0 0	17 17 17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR	G O E G	90 95 0 95 90 85	11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II		77 11 17 17 17 17 17 17 17 17 17 17	0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0	TO 11 TO 11 TO 11 TO 11 TO 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR	G O E G E	90 95 0 95 90 85	11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0	77 11 17 17 17 17 17 17 17 17 17 17	0 0 0 0 , 0	11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0	17 17 17 17 17 17 17 17 17 17 17 17
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER"	G O E G E E G O	90 95 0 95 90 85	11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II 11 II	0 0 0 0	77 17 77 17 77 17 77 17 77 17 77 17	0 0 0 0 , 0	11 11 11 11 11 11 11 11 11 11	0 0 0 0 0	17 17 17 17 17 17 17 17 17 17 17 17
"HEAT" O;HEAT "HEAT" O;HEAT "COOL" O;COOL "EPAMO" C;VENT "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR	G O E G E E G	90 95 0 95 90 85 85	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		77 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0	TO T
"HEAT" O;HEAT "HEAT" O;HEAT "COOL" O;COOL "EPAMO" O;VENT "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR	G O E G E E G O E	90 95 0 95 90 85 85	11 11 11 11 11 11 11 11 11 11 11 11 11		77 17 77 17 77 17 77 17 77 17 77 17	0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0	17 17 17 17 17 17 17 17 17 17 17 17
"HEAT" O;HEAT "HEAT" O;HEAT "COOL" O;COOL "EPAMO" C;VENT "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR	G O E G E E G O	90 95 0 95 90 85 85	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		77 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0	TO T
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;COOK "" 0;COOK	G O E G E E G O E	90 95 0 95 90 85 85 0	" " " " " " " " " " " " " " " " " " "		77 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;COOK ";COOK ";COOK	G O E G E E G O E G O	90 95 0 95 90 85 85 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		77 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;COOK "" 0;COOK	G O E G E E G O E G	90 95 0 95 90 85 85 0	" " " " " " " " " " " " " " " " " " "		77 11 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0 0 0	11 11		TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11 TO 11
"HEAT" O;HEAT "HEAT" O;HEAT "COOL" O;COOL "EPAMO" O;VENT "WATER" O;WATR "WATER" O;WATR "WATER" O;WATR "O;COOK "" O;COOK "" O;COOK "" O;COOK	G O E G E E G O E G O	90 95 0 95 90 85 85 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		77 11 17 17 17 17 17 17 17 17 17 17 17 1	0 0 0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		11 11
"HEAT" 0;HEAT "HEAT" 0;HEAT "COOL" 0;COOL "EPAMO" 0;VENT "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;WATR "WATER" 0;COOK "" 0;COOK "" 0;COOK	GOEGEEGOEGOE	90 95 0 95 90 85 85 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		77 TT TT TT TT TT TT TT TT TT TT TT TT T	0 0 0 0 0 0 0	11 11		11 11

٠. . .

ے د

0;OFEQ E										
O ;OFEQ E							•			
"EPRANO" 95 "" 0 "" 0 "" 0 "" 0 "" O ;MISC S			0	11 11	0	n :	0 "	0	•	a in
O',MISC E "" O "" O "" O "" O "" O',MISC G "" O "" O "" O "" O',MISC G "" O "" O "" O "" O',MISC G "" O "" O "" O',MISC G "" O "" O "" O',MISC O "COOL" 95 "" O "" O',MISC O "COOL" 95 "" O',MISC O "" O "" O', HEAT O "" O "" O',HEAT C "HEAT" 90 "" O',HEAT G "HEAT" 90 "" O',HEAT G "HEAT" 90 "" O',HEAT O "HEAT O O',HEAT G "HEAT O O',HEAT G "HEAT O O',HEAT O		E	95	11 11	0	17 1		, u	1	T 11
""		E	93		Ū		U	J		
0	-	_	0	11 11	0	11 1	0 "	^{, 11} 0	1	1 11
0 ;MISC O	0 ;MISC	G					•			
"COOL" 95 "" 0 ""			0	W II	0	19 1	0 "	0	1	1 11
0 ;HTPMP E ; ;MISCELLANEOUS ;Name		0								
; MISCELLANEOUS ; Name		_	95	n n	O		0 "	0	,	, 1¢
MISCELLANEOUS		E								
Name		ANEOI	ıs							
Percent "" 0 #FAT E "HEAT" 90 "" 0 "" 0 "" 0 "" 0 ;HEAT G #HEAT" 90 "" 0 "" 0 "" 0 "" 0 ;HEAT O ;HEAT O	=			L N	ame Percent	: 1	Name Percent	Name Percen	t	Name
O ; HEAT E	•				•					
#HEAT" 90 "" 0 "" 0 "" 0 "" 0 ;HEAT G HEAT 90 "" 0 "" 0 "" 0 "" 0 ;HEAT O COOL" 95 "" 0 "" 0 "" 0 "" 0 ;COOL G "WATER" 90 "" 0 "" 0 "" 0 "" 0 ;WATR G "WATER" 85 "" 0 "" 0 "" 0 "" 0 ;WATR G "WATER" 85 "" 0 "" 0 "" 0 "" 0 ;COOK E "" 0 "" 0 "" 0 "" 0 ;COOK G "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 ;TEFR E "" 0 "" 0 "" 0 "" 0 "" 0 "			0	17 17	0	17 1	0 *	0	•	1 71
O ; HEAT G "HEAT" 90 "" 0 "" 0 "" 0 "" O ; HEAT O O ; HEAT O O ; COOL E "COOL E "EPAMO" 95 "" 0 "" 0 "" 0 "" O ; VENT E "WATER" 90 "" 0 "" 0 "" 0 "" O ; WATR G "WATER" 85 "" 0 "" 0 "" 0 "" O ; WATR O O ; WATR O O ; WATR O O ; COOK E "" 0 "" 0 "" 0 "" 0 "" O ; COOK G "" 0 "" 0 "" 0 "" 0 "" O ; COOK G "" 0 "" 0 "" 0 "" 0 "" O ; REFR E "" 0 "" 0 "" 0 "" 0 "" O ; COOK O O ; REFR E "" 0 "" 0 "" 0 "" 0 "" O ; COOK O O		E					, <u></u>			
#HEAT" 90 "" 0 "" 0 "" 0 "" 0 ;HEAT 0 95 "" 0 "" 0 "" 0 "" 0 ;COOL E		_	90	P 17	0	17 T	0 *	0	1	7 17
0 ;HEAT		G	00	27 m	^	n :	n ^ =			, 11
"COOL" 95 "" 0 "" 0 "" 0 "" 0 ;COOL E		0	90	** **	U		···	· · · · · · · · · · · · · · · · · · ·		•
0 ; COOL E ""		J	95	11 11	n	18 1	. u. U. u) III		r 11
0; COOL G		E	,,		U			· ·		
"EPAMO" 95 "" 0 "" 0 "" 0 "" 0 ; VENT E "WATER" 90 "" 0 "" 0 "" 0 "" 0 ; WATR E "WATER" 85 "" 0 "" 0 "" 0 "" 0 ; WATR O "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK E "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 "" 0 ; XLIT E "" 0 "" 0 "" 0 "" 0 "" 0 ; OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC O "COOL" 95 "" 0 "" 0 "" 0 "" 0 ; HTPMP E		_	0	11 11	0	98 F	0 **	, m	1	1 77
"EPAMO" 95 "" 0 "" 0 "" 0 "" 0 ; VENT E "WATER" 90 "" 0 "" 0 "" 0 "" 0 ; WATR E "WATER" 85 "" 0 "" 0 "" 0 "" 0 ; WATR O "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK E "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 "" 0 ; XLIT E "" 0 "" 0 "" 0 "" 0 "" 0 ; OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ; MISC O "COOL" 95 "" 0 "" 0 "" 0 "" 0 ; HTPMP E	0 ;COOL	G					•			
"WATER" 90 "" 0 "" 0 "" 0 "" 0 ;WATR E "WATER" 85 "" 0 "" 0 "" 0 "" 0 ;WATR G "WATER" 85 "" 0 "" 0 "" 0 "" 0 ;WATR O "" 0 "" 0 "" 0 "" 0 ;COOK E "" 0 "" 0 "" 0 "" 0 "" 0 ;COOK G "" 0 "" 0 "" 0 "" 0 "" 0 ;REFR E "" 0 "" 0 "" 0 "" 0 "" 0 ;XLIT E "" 0 "" 0 "" 0 "" 0 "" 0 ;OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 "" 0 ;MISC G "" 0 "" 0 "" 0 "" 0 ""	"EPAMO"		95	70 07	0	30 P	O 11	о п	1	111
0 ; WATR E "WATER" 85 "" 0 "" 0 "" 0 "" 0 ; WATR O "" 0 "" 0 "" 0 "" 0 ; COOK E "" 0 "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 ; REFR E "" 0 "" 0 "" 0 "" 0 "" 0 ; SLIT E "" 0 "" 0 "" 0 "" 0 ; OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 ; MISC O COOL" 95 "" 0 "" 0 "" 0 ; HTPMP E		E								
"WATER" 85 "" 0 "" 0 "" 0 "" 0;WATR 6 "WATER" 85 "" 0 "" 0 "" 0 "" 0;COOK E "" 0 "" 0 "" 0 "" 0 "" 0;COOK G "" 0 "" 0 "" 0 "" 0 "" 0;COOK O "" 0 "" 0 "" 0 "" 0;COOK O "" 0 "" 0 "" 0 "" 0;COOK O "" 0 "" 0 "" 0 "" 0;REFR E "" 0 "" 0 "" 0 "" 0 "" 0;XLIT E "" 0 "" 0 "" 0 "" 0 "" 0;OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0;MISC G "" 0 "" 0 "" 0 "" 0;MISC G "" 0 "" 0 "" 0 "" 0;MISC O "COOL" 95 "" 0 "" 0 "" 0;HTMP E		_	90	79 11	0	77 1	0 "	0	7	
0 ; WATR G "WATER" 85 "" 0 "" 0 "" 0 "" 0 ; WATR O "" 0 "" 0 "" 0 "" 0 ; COOK E "" 0 "" 0 "" 0 "" 0 ; COOK G "" 0 "" 0 "" 0 "" 0 ; COOK O "" 0 "" 0 "" 0 "" 0 ; REFR E "" 0 "" 0 "" 0 "" 0 ; XLIT E "" 0 "" 0 "" 0 "" 0 ; ILIT E 0 "" 0 "" 0 "" 0 ; OFEQ E "EPAMO" 95 "" 0 "" 0 "" 0 ; MISC G "" 0 "" 0 "" 0 "" 0 ; MISC O ; MISC O ; MISC O ; MISC O ; HTPMP E		E			•					
"WATER" 85 "" 0 "" 0 "" 0 "" 0;WATR 0 0;COOK E "" 0 "" 0 "" 0 "" 0;COOK G "" 0 "" 0 "" 0 "" 0;COOK O "" 0 "" 0 "" 0 "" 0;REFR E "" 0 "" 0 "" 0 "" 0;XLIT E "" 0 "" 0 "" 0 "" 0;ILIT E "" 0 "" 0 "" 0 "" 0;OFEQ E "" 0 "" 0 "" 0 "" 0;MISC G 0;MISC O ;MISC O ;MISC O ;MISC O ;HTPMP E		~	85		U		0 .	0	•	
O; WATR O		G	05	PF 15	n	11 11	n () n	ιπ		r m
0		^	6.5		U		U			
O ; COOK E		•	٥	11 11	0	19 f	n 0 n	ιπ 0	P	; 11
0;COOK G """ 0;COOK O """ 0;TOOK O "" 0;	0 :COOK	E			·			_		
N		_	0	11 17	. 0	N 1	0 "	0		111
O ; COOK O	0 ; COOK	G								
## 0 ## 0 ## 0 ## 0 ## 0 ## 0 ## 0 ##			0	11 11	0	17 F	0 **	0	•	1 17
O; REFR E """ O "" O "" O "" O; XLIT E "" O "" O "" O "" O; ILIT E O "" O "" O "" O; OFEQ E "EPAMO" 95 "" O "" O; MISC E "" O "" O "" O; MISC G "" O "" O "" O; MISC O "COOL" 95 "" O; HTPMP E		0	_		•	-				
"" O "" O "" O "" O "" O;XLIT E "" O "" O "" O "" O "" O;ILIT E "" O "" O "" O "" O;OFEQ E "EPAMO" 95 "" O "" O "" O;MISC E "" O "" O "" O "" O;MISC G "" O "" O "" O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "" O;MISC O "T O "T O "T O "T O "T O "T O "T O "		T-7	0	17 17	0	44 F	0 m	0	•	
O;XLIT E "" O "" O "" O "" O;ILIT E "" O "" O "" O "" O;OFEQ E "EPAMO" 95 "" O "" O "" O;MISC E "" O "" O "" O "" O;MISC G "" O "" O "" O "" O;MISC O "COOL" 95 "" O "" O "" O;HTPMP E		Ľ	n	11 17	n	17 1	TT 0.11	· · · · ·	8	· #
""" O """ O """ O """ O """ O ; ILIT E		E	U		U		U "	U		
O;ILIT E """ O"" O"" O"" O"" O;OFEQ E "EPAMO" 95 "" O "" O "" O;MISC E "" O "" O "" O "" O;MISC G "" O "" O "" O "" O;MISC O "COOL" 95 "" O "" O "" O;HTPMP E ;		_	0	17 55	. 0	17 1	0 "	0	F	117
"" O "" O "" O "" O "" O;OFEQ E "EPAMO" 95 "" O "" O "" O;MISC E "" O "" O "" O "" O;MISC G "" O "" O "" O "" O;MISC O "" O "" O;HIPMP E	O ;ILIT	E			-					
"EPAMO" 95 "" 0 "" 0 "" 0 "" 0;MISC G "" 0 "" 0 "" 0 "" 0;MISC O "COOL" 95 "" 0 "" 0 "" 0;HTPMP E ;			0	11 11	0	17 2	0 "	0	7	π
O;MISC E "" O "" O "" O "" O;MISC G "" O "" O "" O "" O;MISC O "COOL" 95 "" O "" O "" O;HTPMP E ;		E					. <u></u>			. ==
""		_	95.	17 17	0	17 (1	" O "	0	•	• ••
0;MISC G "" 0"" 0"" 0"" 0;MISC O "COOL" 95 "" 0 "" 0 "" 0;HTPMP E ;		Ľ	٥	13 11	^	64 ti	п ^ п	· III	г	1 11
"" 0 "" 0 "" 0 "" 0;MISC 0 "COOL" 95 "" 0 "" 0 "" 0;HTPMP E ;		G	U		U		U "	U		
0; MISC 0 "COOL" 95 "" 0 "" 0 "" 0; HTPMP E;		G	٥	11 11	n	11 11	n 0 H	0	31	11
"COOL" 95 "" 0 "" 0 "" 0 "" ;HTPMP E ;	0 ;MISC	0	_				J			
O ;HTPMP E ;			95	11 11	0	** **	0 n	0	T	177
		E								
;Thermal Efficiency Standards										
	;Thermal	Effi	cier	тсй	Standards					

;

;SMALL C	CET CEC			
; SMALL C	Percent Name	Percent Name	Percent Name	Percent Name
Percent	Letceiir Name	rercent Name	rerectic name	referr wante
"SHELL"	10 ""	0 ""	О ии	0 ""
O ; HEAT	E	· ·	•	V
"SHELL"	10 ""	0 ===	О пп	0 ""
O ; HEAT	G	U	•	U
"SHELL"	10 ""	О ни	O 11 11	0 ""
O ;HEAT	_	U	v	U
"SHELL"	0 10 ""	О пп	0 11 11	0 ""
0 ; COOL	E	U	•	U
"SHELL"	10 ""	О пп	0 ""	0 ""
0 ; COOL	10	U	V	U
0 ; 0001	G			
;				
;LARGE C	PETCEC			
=	Percent Name	Percent Name	Percent Name	Percent Name
;Name Percent	reicent Name	rercent Name	Lercent Name	rercent Name
=	10 ""	О пп	О ин	0 1111
"SHELL" 0 ;HEAT	10	U	U	U
"SHELL"	E 10 ""	0 ""	0 ин	0 11 11
O ;HEAT	10 ···	U	0	U
"SHELL"	10 ""	0 ""	0 ии	0 ""
O;HEAT	_	· ·	Ū	U
"SHELL"	0 10 ""	0 11 11	0 44	О ни
	10	U	O	U
0 ; COOL	E 10 ""	0 ""	0 ""	0 44
"SHELL"	10	0	U	Ų ····
0 ; COOL	G			
;				
;	IERE		•	
; ; ;WAREHOU		Parcent Name	Percent Name	Percent Name
; ; ;WAREHOU ;Name	SES Percent Name	Percent Name	Percent Name	Percent Name
; ;WAREHOU; Name Percent	Percent Name			
; ;WAREHOU; Name Percent "SHELL"	Percent Name	Percent Name	Percent Name	
; ;WAREHOU;Name Percent "SHELL" 0;HEAT	Percent Name 10 "" E	0 ""	0 ""	0 411
; ;WAREHOU;Name Percent "SHELL" 0;HEAT "SHELL"	Percent Name 10 "" E 10 ""		0 44	0 44
; ;WAREHOU;Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT	Percent Name 10 "" E 10 ""	0 ""	О ин	0 ""
; ;WAREHOU;Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL"	Percent Name 10 "" E 10 "" G 10 ""	0 mm 0 mm	0 мп	0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT	Percent Name 10 "" E 10 "" G 10 ""	0 mm	O 1111	0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT	Percent Name 10 "" E 10 "" G 10 "" O	0 mm 0 mm	О ин	0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111	0 "" 0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL"	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E	0 mm	O 1111	0 "" 0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111	0 "" 0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;;	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111	0 "" 0 "" 0 ""
;; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;; ;	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 ""	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111	0 "" 0 "" 0 ""
; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;; ;FOODSTO	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 "" G	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111 O 1111	0 "" 0 "" 0 "" 0 ""
; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;SHELL" ;; ;FOODSTO ;Name	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 ""	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111 O 1111	0 "" 0 "" 0 ""
; ;WAREHOU; Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;SHELL" 0;COOL ;; ;FOODSTO ;Name Percent	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 "" G RES Percent Name	O "" O "" O "" O "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name
;; ;WAREHOU; ;Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;; ;FOODSTO ;Name Percent "SHELL"	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 "" G PES Percent Name	0 "" 0 "" 0 ""	O 1111 O 1111 O 1111 O 1111	0 "" 0 "" 0 "" 0 ""
;; ;WAREHOU; ;Name Percent "SHELL" 0;HEAT "SHELL" 0;HEAT "SHELL" 0;COOL "SHELL" 0;COOL ;; ;FOODSTO ;Name Percent "SHELL" 0;HEAT	Percent Name 10 "" E 10 "" G 10 "" C 10 "" E 10 "" E 10 "" E 10 "" E 10 "" E T O T O T O T O T O T O T O T O T O T	0 "" 0 "" 0 "" 0 "" Percent Name	O "" O "" O "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name
;; WAREHOU; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; COOL "SHELL" 0; COOL ;; FOODSTO; Name Percent "SHELL" 0; HEAT	Percent Name 10 "" E 10 "" G 10 "" C 10 "" E 10 "" E 10 "" E 10 "" E 10 ""	O "" O "" O "" O "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name
;; WAREHOUS; Name Percent "SHELL" O; HEAT "SHELL" O; HEAT "SHELL" O; COOL "SHELL" O; COOL ;; FOODSTO ; Name Percent "SHELL" O; HEAT "SHELL" O; HEAT "SHELL" O; HEAT	Percent Name 10 "" E 10 "" G 10 "" C 10 "" E 10 "" E 10 "" G ORES Percent Name 10 "" E 10 ""	0 "" 0 "" 0 "" Percent Name 0 ""	0 "" 0 "" 0 "" Percent Name 0 ""	0 "" 0 "" 0 "" 0 "" Percent Name 0 ""
;; WAREHOUS; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; COOL "SHELL" 0; COOL ;; FOODSTO ; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL"	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 "" G Percent Name 10 "" E 10 "" G 10 ""	0 "" 0 "" 0 "" 0 "" Percent Name	O "" O "" O "" Percent Name	0 "" 0 "" 0 "" 0 "" Percent Name
;; WAREHOU; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; COOL "SHELL" 0; COOL ;; FOODSTO; Name Percent "SHELL" 0; HEAT	Percent Name 10 "" E 10 "" O 10 "" E 10 "" G ORES Percent Name 10 "" E 10 "" O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 ""	0 "" 0 "" 0 "" Percent Name 0 "" 0 ""	0 "" 0 "" 0 "" 0 "" Percent Name 0 ""
;; WAREHOUS; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; COOL "SHELL" 0; COOL ;; FOODSTO ; Name Percent "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL" 0; HEAT "SHELL"	Percent Name 10 "" E 10 "" G 10 "" O 10 "" E 10 "" G Percent Name 10 "" E 10 "" G 10 ""	0 "" 0 "" 0 "" Percent Name 0 ""	0 "" 0 "" 0 "" Percent Name 0 ""	0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 "" 0 ""

 $\cdot : \cdot \cdot$

- . . . _ .

. ...

		•							
"SHELL"	10 ""	0 ""	0 ""	0 ""					
0 ; COOL	G								
;									
;	•			•					
; RETAIL									
; Name	Percent Name	Percent Name	Percent Name	Percent Name					
Percent									
"SHELL"	10 ""	О пп	О ип	0 "".					
O ; HEAT	E								
"SHELL"	10 ""	0 ""	0 ""	O 11 11					
O ;HEAT	G								
"SHELL"	10 ""	0 ""	0 nn	О ии					
O ;HEAT	0								
"SHELL"	10 ""	0 "	0 11 11	O 11 14					
0 ;COOL	E								
"SHELL"	10 ""	О ии	0 ""	0 ""					
0 ;COOL	G .								
;									
;									
;SCHOOLS		W	Daniel VIII	D W					
; Name	Percent Name	Percent Name	Percent Name	Percent Name					
Percent	10 88	Опл	0 44	Unu					
"SHELL"	10 ""	Оым	0 44	0 ""					
0 ; HEAT	E 10 ""	Umn	Опи	U 1111					
"SHELL"	10 ""	0 ""	0	0 ""					
O ; HEAT	G	Unin	U mu	О ии					
"SHELL"	10 ""	O 40 14	0 ""	0 ""					
0 ; HEAT	0 10 ""	О м.н.	0 ни	0 ""					
"SHELL"		0	0	U					
0 ; COOL "SHELL"	E 10 ""	О ии	О пп	О пп					
-		0	U "	U					
0 ; COOL	G	•							
;									
; COLLEGE	· c								
; Name	Percent Name	Percent Name	Percent Name	Percent Name					
Percent	rercent name	ICT COIL NAME	rerecite Nume	rerecite name					
"SHELL"	10 ""	О ми	O 41	0 ""					
O ;HEAT	E	•	J	•					
"SHELL"	10 ""	0 ""	0 ""	О пп					
O ; HEAT	G	-	_						
"SHELL"	10 ""	0 ""	0 ""	0 nn					
O ; HEAT	0								
"SHELL"	10 ""	. О м. м.	О ии	0 ""					
0 ;COOL	E								
"SHELL"	10 ""	O 24.11	O 11 11	0 ""					
0 ; COOL	G								
;									
;									
RESTAURANTS									
; Name	Percent Name	Percent Name	Percent Name	Percent Name					
Percent			•						
"SHELL"	10 ""	0 ""	0 1111	0 ""					
O ;HEAT	E								
"SHELL"	10 ""	0 ""	0 ""	0 ""					
O ; HEAT	G								

...

	4	^ ==	•	11 11	0	# n	0	n n
"SHELL"	_	0 ""	0	•••	0		0	
0 ;HEAT "SHELL"	0	0 ""	o	и п	0	и п	0	# #
0 ; COOL	E	0	, 0				O	
"SHELL"	-	0 ""	٥	19 17	0	uí u.	0	11 11
0 ; COOL		•	J		J		J	
-	G							
; ;								
;HEALTH				•				
; Name	Perce	nt Name	Percent	t Name	Percent	. Name	Percent	Name
Percent								
"SHELL"	1	О ии	0	15 17	0	n n	0	11 11
0 ; HEAT	E							
"SHELL"	1	0 ""	0	W 11	0	11 11	0	11 H
0 ; HEAT	G							
"SHELL"	1	0 1111	0	IT 17	0	at II	0	77 77
0 ;HEAT	0							
"SHELL"	1	0 нн	0	TT 17	0	17 17	0	11 11
0;COOL	E				_		_	
"SHELL"	1	0 ""	0	OT 17	0	17 17	. 0	11 11
0 ;COOL	G							
;								
;	_							
;LODGING					5		D	
;Name	Perce	nt Name	Percent	r name	Percent	. Name	Percent	: Name
Percent	4	0 11 11	0	m m	0	пп	0	11 11
"SHELL"		0 ""	U		U		U	
0 ;HEAT "SHELL"	E 1	0 ""	0	TF 17	n	11 11	0	17 11
O ; HEAT	G	u	J				J	
"SHELL"	_	0 ""	0	P7 17	0	11 17	0	17 77
0 ;HEAT	0	•	J		ŭ		•	
"SHELL"		0 ""	0	17 17	0	πп	0	11 11
0 ; COOL	E	•	_		_		_	
"SHELL"		0 ""	0	11 11	0	u u	0	IT 11
0 ; COOL	G							
;								
,								
;MISCELI	ANEOUS	. •						
; Name	Perce	nt Name	Percent	t Name	Percent	t Name	Percent	Name
Percent								
"SHELL"		0	0	11 11	0	IT IT	0	וו זו
0 ;HEAT							_	
"SHELL"		0 ""	· 0	19 11	0	17 19	0	TI 11
O ; HEAT			•		•		•	W 11
"SHELL"		0 ""	0	17 17	0	пπ	0	11 11
0 ; HEAT		0 ""	^	n n	^	97 PF	0	пп .
"SHELL"	1	u	0		0		U	
0 ; COOL "SHELL"		0 ""	0	n n	0	IT IV	0	11 11
0 COOF		J	U		U		· ·	
	g							
; ;								
;								
; Equipment Efficiency Incentives								
;								
"N" ;								

```
;Incentives active? ( Y or N )
:SMALL OFFICES
                                           Eff
              Eff
                     Incent% Year
                                                  Incent% Year
                                                                        Eff
                                                                                Incent%
;Year
                0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
     0
                           0
                                                                                      0 ; HEAT
                                                                                                 E
                                             0
                                                        0
                ٥
                           ٥
                                   0
                                                                0
                                                                           0
                                                                                      0 ; HEAT
     0
                                                                                                 G
                0
                           0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; HEAT
     0
                                                                                                 0
     0
                0
                           0
                                   0
                                             0
                                                        0.
                                                                0
                                                                           0
                                                                                      0 ; COOL
                                                                                                 E
                0
                                   0
                                             0
                                                        0
                                                                O
                                                                           0
     0
                           0
                                                                                      0 ; COOL
                                                                                                 G
                                             0
                                                        0
                                                                0
     0
                0
                           0
                                   0
                                                                           0
                                                                                      0 ; VENT
                                                                                                 E
                                             0
                                                        0
                                                                0
     ٥
                0
                           0
                                   0
                                                                           0
                                                                                      0 ; WATR
                                                                                                 E
                                             0
                                                        0
                                   0
                                                                0
     0
                0
                           0
                                                                           0
                                                                                      0
                                                                                        ; WATR
                                                                                                 G
                                             0
                                                        0
                                                                0
     0
                0
                           0
                                   0
                                                                           0
                                                                                      0 ; WATR
                                                                                                 0
     0
                0
                           0
                                   ٥
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; COOK
                                                                                                 E
                0
                                   ٥
                                             ٥
                                                        0
                                                                0
                                                                           0
     0
                           0
                                                                                      0 ; COOK
                                                                                                 G
                                             0
                                                        0
                                                                0
     0
                0
                           0
                                   0
                                                                           0
                                                                                      0 ; COOK
                                                                                                 0
                                             0
     ٥
                ٥
                           ٥
                                   0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; REFR
                                                                                                 Ė
     0
                0
                           0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ;XLIT
                                                                                                 E
                                             0
                                                        0
                                                                0
     0
                0
                                   0
                                                                           0
                                                                                      0;ILIT
                           0
                                                                                                 E
     0
                0
                           G
                                   0
                                             0
                                                        0.
                                                                0
                                                                           0
                                                                                      0 ;OFEQ
                                                                                                 E
                                             0
                                                        0
     0
                0
                           0
                                   0
                                                                0
                                                                           0
                                                                                      0 ;MISC
                                                                                                 E
                                   0
                                             0
                                                        0
                                                                0
                                                                                                 G
     0
                0
                           0
                                                                           0
                                                                                      0 ;MISC
     0
                0
                           0
                                   ٥
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ;MISC
                                                                                                 0
     0
                0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; HTPMP E
                           0
; LARGE OFFICES
              Eff
                     Incent% Year
                                           Eff
                                                  Incent% Year
                                                                        Eff
                                                                               Incent%
;Year
                                                        0
     0
                0
                           0
                                   0
                                             0
                                                               0
                                                                          0
                                                                                      0 ; HEAT
                                                                                                 E
     0
                0
                           0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; HEAT
                                                                                                 G
                0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ;HEAT
     0
                           0
                                                                                                 0
                                             0
                                                                0
                                                                           0
                                                                                      0 ; COOL
     0
                0
                           0
                                   0
                                                        0
                                                                                                 E
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 :COOL
                                                                                                 G
                0
                                             0
                                                        0
                                                               0
                                                                           ٥
                                                                                      0 ; VENT
                                                                                                 E
     0
                           0
                                   0
                                             0
                                                        0
                                                               0
                                                                                                 E
     0
                0
                           0
                                   0
                                                                           0
                                                                                      0 ; WATR
                                             0
                                                        0
                                                                0
                                                                                      0 ; WATR
                                                                                                 G
     0
                0
                           0
                                  0
                                                                           0
     0
                0
                           0
                                   0
                                             0
                                                        0
                                                               0
                                                                           0
                                                                                      0 ; WATR
                                                                                                 0
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                               0
                                                                          0
                                                                                      0 ; COOK
                                                                                                 E
                0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ;COOK
                                                                                                 G
     0
                           0
     0
                0
                           0
                                   0
                                             0
                                                        0
                                                                0
                                                                           0
                                                                                      0 ; COOK
                                                                                                 0
     ٥
                0
                           0
                                  0
                                             0
                                                        0
                                                               0
                                                                          0
                                                                                      0 ; REFR
                                                                                                 E
                                             0
     0
                0
                                   0
                                                        0
                                                               0
                                                                          0
                                                                                      0 ;XLIT
                                                                                                 E
                           0
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                               0
                                                                           0
                                                                                      0;ILIT
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                               0
                                                                          0
                                                                                      0 ;OFEQ
                                                                                                 E
                                             0
     0
                0
                           0
                                  0
                                                        0
                                                               0
                                                                           0
                                                                                      0 ;MISC
                                                                                                 E
                                                                                      0 ;MISC
                                                                                                 G
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                                0
                                                                          0
                                                                                      0 ;MISC
                                             0
                                                               0
                                                                          0
                                                                                                 0
     0
                0
                           0
                                  0
                                                        0
                                                                                      0 ; HTPMP E
                                   0
                                             ٥
                                                        0
                                                               0
                                                                           0
     0
                ٥
:WAREHOUSES
                                           Eff
                                                  Incent% Year
                                                                        Eff
                                                                               Incent%
;Year
              Eff
                     Incent% Year
                                                                                     0 ; HEAT
                0
                                             0
                                                                          0
                                                                                                 E
     0
                           0
                                  0
                                                        0
                                                               0
                                                                                      O ; HEAT
                                                                                                 G
     0
                0
                           0
                                   0
                                             0
                                                        0
                                                                0
                                                                          0
                                                                                                 0
     ٥
                0
                                             0
                                                                          0
                                                                                      0 ; HEAT
                           0
                                  0
                                                        0
                                                               0
                                                                                      0 ;COOL
                                                                                                 E
     0
                0
                           0
                                  0
                                             0
                                                        0
                                                               0
                                                                          0
                                                                                                 G
     0
                0
                                             0
                                                        0
                                                                          0
                                                                                      0 ;COOL
                           0
                                  0
                                                               0
                                             ٥
                                                                          0
                                                                                      0 ; VENT
                                                                                                 E
     0
                0
                           0
                                  0
                                                        0
                                                               0
     0
                0
                                                                                      0 ;WATR
                           0
                                  0
                                                               0
```

0	0	0	0	0	0	0	0	0	; WATR	~
				ō	a	ā	0			G
0	0	0	0					0	;WATR	0
0	0	0	0	0	0	0	0	0	; COOK	E.
0	0	0	0	0	0	0	0	. 0	; COOK	G
0	0	0	0	0	0,	0	0	0	; COOK	0
0	0	0	0	0	0	0	0	0	; REFR	E
٥	0	0	0	0	0	0	0	0	;XLIT	E
ō	0	Ö	Ō	Ō	Ō	0	Ō	0	;ILIT	Ē
	ā		ő	Ŏ	Ŏ	ŏ	ā	0	;OFEQ	
0		0 .								E
0	0	0	0	0	0	0	0	. 0	;MISC	E
. 0	0	٥	0	0	. 0	0	0	0	;MISC	G
0	0	0	0	0	0	0	0	0	; MISC	0
0	0	0	0	0	0	0	0	0	; HTPMP	E
	•	_	-						•	
; FOODSTOR	220									
•		T	V	Eff	Incent%	Vaar	Eff	Incent		
;Year	Eff	Incent%								_
0	0	0	0	0	0	0	0	Ü	; HEAT	E
0	0	0	0	. 0	0	0	0	0	; HEAT	G
0	0	0	0	0	0	0	0	0	; HEAT	0
. 0	0	0	0	0	0	0	0	0	; COOL	E
ő	Ö	Ö	ŏ	ō	Õ	Ō	0	. 0	;COOL	G
								_	-	
0	0	0	0	0	0	0	0	0	; VENT	E
٥	0	0	0	0	0	0	0	0	;WATR	Ē
0	0	0	0	0	0	0	0	0	; WATR	G
0	0	0	0	0	0	C	0	0	; WATR	0
Ō	0	0	0	0	0	0	0	0	; COOK	E
Ö	. 0	Õ	Ö	Ö	Ō	0	ō	Ō	COOK	G
						Ö	0	Ö	; COOK	
0	0	0	0	0	0					0
0	0	. 0	0	. 0	0	0	0	0	; REFR	E
0	0	0	0	0	0	0	0	0	;XLIT	E
0	0	0	0	0	0	0	0 .	0	; ILIT	E
0	0	0	. 0	0	0	0	0	0	;OFEQ	E
ŏ	Õ	Ö	Õ	Õ	Ō	Ō	, 0	Ō	MISC	E
				0	0	ő	.0	Ŏ	;MISC	G
0	0	0	0					_	-	
0	0	0	0	0	0	0	0	0	;MISC	0
0	0	. 0	0	0	0	0	0	. 0	; HTPMP	Ē
;										
;RETAIL		•								
;Year	Eff	Incent%	Year	Eff	Incent%	Year	Eff	Incenta	i	
0	0	0	0	0	0	0	0		; HEAT	E
Õ	Õ	Ö		Ŏ	Ŏ	ō	Ō		HEAT	G
			0							
0	0	0	0	0	0	0	0	_	; HEAT	0
0	0	0	0	0	0	0	0	0	;COOL	E
0	0	0	0	0	0	0	0	0	;COOL	G
0	0	. 0	0	0	0	0	0	0	; VENT	E
0	0	0	0	0	0	0	0	0	;WATR	E
Ō	Õ	Õ	ō	Ō	Ō	Ō	0		; WATR	G
					Ö	ŏ	Ö		;WATR	ō
0	0	0	0	0						
٥	0	0	0	0	0	0	0		; COOK	E
0	0	0	0	0	0	0	0		;COOK	G
0	0	0	0	0	0	0	0		; COOK	0
0	0	0	0	٥	0	0	0	0	; REFR	E
0	0	0	0	0	0	0	0		;XLIT	E
Õ	Ö	Õ	Ö	Ö	Ō	ō	ō		;ILIT	E
Ö	Ö	0	0	0	. 0	0	å		;OFEQ	Ē
0	0	0	0	0	0	0	0		;MISC	E
0	0	0	0	0	0	0	0	0	;MISC	G

. .

- **-**

- .-

								•
0	0	0	0	0	0	0	0	0 ;MISC O
0	0	0	0	0	0	0	0	O ;HTPMP E
; ;SCHOOLS								•••
;SCHOOLS ;Year	Eff	Incent%	Year	Eff	Incent%	Year	Eff	Incent% .
0	0	0	0	0	0	0	0	0;HEAT E
ō	ō	ō	Ö	Ō	Ō	Ö	ō	0;HEAT G
0	0	0	0	0	0	0	Ō	0 ;HEAT O
0 .	0	0	0	0	0	0	0	0 ;COOL E
0	0	0	0	0	0	0	0	0 ;COOL G
0	0	0	0	0	0,	0	0	O; VENT E
0	0	0	0	0	0	0	0	0; WATR E
0	0	0	0	0	0	0	0	0 ;WATR G
0	0	0	0	0	0	0	0	0;WATR O
0	0	0	0	0	0	. 0	0	0 ;COOK E
0	0	0	0	0	0	0	0	0 ;COOK G
0	0	0	. 0	0	0	0	0	0 ;COOK O
0	0	0	0	0	0	. 0	0	0 ; REFR E
0	0	0	0	0	0	. 0	0	0;XLIT E
0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0;ILIT E
0	0	0	0	0	0	0	0	0 ;OFEQ E 0 ;MISC E
0	0	0	0	0	0	0	0	0;MISC E
ő	Ö	. 0	0	0	0	0	0	0;MISC 0
Ö	Ö	0	Ö	0	0	Ö	٥	0;HTPMP E
;	Ŭ	Ū	Ū	J	· ·	Ū	J	o , milmi E
COLLEGES								
;Year	Eff	Incent%	Year	Eff	Incent%	Year	Eff	Incent%
0	0	0	0	0	0	0	0	0;HEAT E
0	0	0	0	0	0	0	0	0 ;HEAT G
0	0	0	0	0	0	0	0	0;HEAT O
0	0	. 0	0	0	0	0	0	0 ; COOL E
0	0	0	0	0	0	0	0	0 ;COOL G
0 .	0	0	0	0	0	0	0	0 ; VENT E
0	0	0	0	0	0.	0	0	0;WATR E
0	0	0	0	0	0	0	0	0; WATR G
0	0	0	0	0	0	0	0	0; WATR O
0	0	0	0	0	0.	0	0	0 ;COOK E
0	0	0	0	0"	. 0	0	0	0 ; COOK G
0	0	0	0	0	0	0	0	0 ;COOK O
0	0	0	0	0	0	0	0	0 ; REFR E
0	0	0	0	0	0	0	0	0 ;XLIT E 0 ;ILIT E
0 0	0	0	0	0	0	0	0	0;ILIT E 0;OFEQ E
0	0	0	0	0	0	0	0	0 ;MISC E
Ö	Ö	0	Ö	0	0	0	0	0 ;MISC G
Ö	ő	Ŏ	Ö	o o	0	Ö	0	0 ;MISC O
Ö	Ö	Ö	Ö	ő	o o	Ö	Ö	0 ;HTPMP E
;					-	•		•
; RESTAURAN	TS				•			
;Year	Eff	Incent%	Year	Eff	Incent%	Year	Eff	Incent%
0	0	0	0	0	0	0	0	0;HEAT E
0	0	0	0	0	0	. 0	. 0	0; HEAT G
0	0	0	0	0	0	0	0	.0 ; HEAT O
0	0	0	0	0	0	0	0	0 ; COOL E
0	0	0	0	0	0	0	0	0 ;COOL G
0	0	0	0	0	0	0	0	0 ; VENT E

. P#

0	0	0	0	0	0	0.	0	0	; WATR	E
ō	Ö	Ö	Ö	Ō	0	0	Ō	Ō	WATR	G
ŏ	Ö	Ŏ	Ö	ō	Ö	ō	ā	Õ	; WATR	
_		0	Õ	Ŏ	Õ	ŏ	0			Q
0	0				0	Ö	0	. 0	; COOK	E
0	0	0	0	0				0	; COOK	G
0	0	0	0	0	0	0	0	0	; COOK	0
0	0	. 0	0	. 0	0	0	0	0	; REFR	E
0	0	0	0	0	0	0	0	0	;XLIT	E
0	0	0	0	0	0	0	0	0	; ILIT	E
0	0	0	0	0	0	0	0	0	;OFEQ	E
0	0	0	0	0	0	0	0	0	;MISC	E
Ö	Ö	Ō	0	0	0	0	0	٥	;MISC	G
ŏ	Ö	0	ŏ	Ö	Ō	Ö	Õ	ō	;MISC	Ö
		0	Ö	0	0	Ö	0			
0	0	U	U	U	U	U	U	0	; HTPMP	E
;										
; HEALTH										
;Year	Eff	Incent%		Eff	Incent%		Eff	Incent		
0	0	0	0	0 .	0	0	0	0	; HEAT	E
0	0	0	0	0	0	0	0	0	; HEAT	G
0	. 0	0	0	0	0	0	0	0	; HEAT	0
0	0	0	0	0	0	. 0	0	0	;COOL	E
Ö	Ō	Ō	Ō	Ō	0	. 0	Õ	0	;COOL	G
ŏ	Ö	Ö	Ö	Ö	Ö	0	Ō	Ö	; VENT	Ē
_					Õ	Õ			-	
0	0	. 0	0	0			0	0	WATR	E
0	0	0	0	0	0	0	0	0	;WATR	G
0	0	0	0	0	0	0	0	0	;WATR	0
0	0	0	0	0	0	0	0	0	; COOK	E
0	0	0	0	0	0	0	0	0	; COOK	G
0	0	0	0	0	0	0	0	0	; COOK	0
Ō	Ō	Ö	Ö	Ō	Ō	0	Ō	0	REFR	E
ő	Ö	0	ő	ů	Ő	Ŏ	ő	Ö	;XLIT	Ē
0	0	0	0	0	0	0	0		;ILIT	E
0	0	O,	0	0	0	0	0		OFEQ	E
0	0	0	0	0	0	0	0		;MISC	E
0	0	. 0	0	0	0	0	0		;MISC	G
0	0	0	0	0	0	0	0	0	;MISC	0
0	0	0	0	0	, O	0	0	0	; HTPMP	E
;										
; LODGING										
;Year	Eff	Incent%	Year	Eff	Incent%	Year	Eff	Incent%		
0	0	0	0	0	0	0	0		; HEAT	E
Ö	Ö	Ŏ	Ö	Ō	Õ	ō	Ō		; HEAT	G
ő	0	0	Ö	Ö	0	Ö	ő		; HEAT	0
	_									
0	0	0	0	0	0	0	0		;COOL	E
0	0	0	0	0	0	0	0		;COOL	G
0	0	0	0	0	0	0	0		; VENT	E
0	0	0	0	0	0	0	0	0	; WATR	E
0	0	0	0	0	0	0	0	0	;WATR	G
0	0	0	0	0	0	0	0	0	; WATR	0
0	0	0	0	0	٥	0	0		COOK	E
Ŏ	Õ	Ö	Ö	0	Õ	ő	- 0		; COOK	G
0	0	0	Ö	0	0	0	0		; COOK	0
									; REFR	
0	0	0	0	0	0	0	0			E
0 .	0	0	0	0	0	0	0		;XLIT	E
0	0	0	0	0	0	0	0		;ILIT	E
0	0	0	0	0	0 -	0	0		;OFEQ	E
0	0	0	0	0	0	0	0	0	;MISC	E

υ¢

```
0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ;MISC
               0
                          0
                                                                                            G
    0
                                            0
                                                             0
                                                      0
                                                                        0
                                                                                   0 ;MISC O
               0
                          0
                                 0
    ٥
               0
                          0
                                 0
                                            0
                                                                                   O ; HTPMP E.
    ٥
; MISCELLANEOUS
             Eff
                    Incent% Year
                                         Eff
                                                Incent% Year
                                                                     Eff
                                                                             Incent%
;Year
                                 ٥
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ; HEAT
                                                                                              E
    0
               0
                          0
                                                      0
                                            0
                                                             0
                                                                        0
    ٥
               0
                          0
                                 0
                                                                                   0 ; HEAT
                                                                                              G
                                            0
                                                      0
                                                             0
                                                                        0
    0
               0
                          0
                                 0
                                                                                   0 ; HEAT
                                                                                             0
                                            ٥
                                                      0
                                                             0
                                                                        0
                                 0
                                                                                   0 ; COOL
                                                                                              E
    0
               0
                          0
                                            0
                                                      0
                                                             0
                                                                        0
    0
               0
                          0
                                 0
                                                                                   0 ; COOL
                                                                                              G
                                            0
                                                      0
                                                             0
                                                                        0
    0
               0
                          0
                                 0
                                                                                   0 ; VENT
                                                                                              E
                                                                        0
               0
                                 0
                                            0
                                                      0
                                                             0
                                                                                   0 ; WATR
                                                                                             E
    0
                          0
    0
               0
                          0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ; WATR
                                                                                             G
    0
               0
                          0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ; WATR
                                                                                             0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ; COOK
                                                                                             E
    0
               0
                          0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                              G
                                                                                   0 ; COOK
    0
               0
                          0 .
                                                      0
                                                             0
                                                                        0
               0
                                 0
                                            0
                                                                                   0 ; COOK
                                                                                             0
    0
                          0
                                                                                   0 ; REFR
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                             E
    0
               0
                          0
                                                             0
                                                                        0
                                                                                   0;XLIT
                                            0
                                                      0
                                                                                             E
    0
               0
                          0
                                . 0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0;ILIT
                                                                                             E
    0
               0
                          0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ;OFEQ
                                                                                             E
    0
               0
                          0
               0
                          0
                                 0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ;MISC
                                                                                             E
    0
                                            0
                                                      0
                                                             0
                                                                        0
                                                                                   0 ;MISC
                                                                                             G
    0
               0
                          0
                                 0
                                                             0
                                                                        0
    0
               0
                          0
                                 0
                                            0
                                                      0
                                                                                   0 ;MISC
                                                      0
                                                             0
                                                                        0
                                                                                   0 ; HTPMP E
               0
                          0
                                 0
                                            0
    0
;Specific DSM Programs
;Specific DSM Program Definitions
"N" ; Active? ( Y or N )
    1 ; Number of Specific Programs
                                                                     MinVint
                                                                               MaxVint
                                                    Use%
                                                              EUI%
    Long Name
                            Bldg
                                         Max8
Active
                                                                             0
                                                                                        0 "Y"
                           11 71
                                             0
                                                       0
                                                                  0
;
;Specific DSM Program Impacts
        1
;
        0 ; HEAT | Elec (kWh)
        0 ; COOL | Elec (kWh)
        O ; VENT|Elec (kWh)
        0 ; WATR | Elec (kWh)
        0 ; COOK | Elec (kWh)
        0 ; REFR|Elec (kWh)
        0 ;XLIT(Elec (kWh)
        0 ; ILIT | Elec (kWh)
        0 ;OFEQ|Elec (kWh)
        0 ;MISC|Elec (kWh)
        0 ; HEAT | Gas (kBtu)
        0 ; COOL | Gas (kBtu)
        0 ; WATR [Gas (kBtu)
        0 ; COOK (Gas (kBtu)
```

ع د

```
0 ;MISC|Gas (kBtu)
       0 ; HEAT | Oil (kBtu)
       0 ; WATR | Oil (kBtu)
       0 ; COOK | Oil (kBtu)
       0 ;MISC|Oil (kBtu)
;Specific DSM Program Diffusion
                                                                            Year
                                                          Year
                                        Year
                               용
                      Year
    Year
용
                                                                      0
                                                                               0
                                                             0
                                           0
                                                    0
                                 0
                         0
                0
       0
;General DSM Programs
;General DSM Program Definitions
"" ;Active? (Y or N)
    0 ; Number of General Programs
                                                            USE%
                                                                    Start
                                                   EUI%
                 EndUse Bldg
                                       Fuel
  Long Name
End Active
;General DSM Program Annual End-Impacts
;end of file
```


a subsidiary of LG&**Energy**

NOV 2 2 1999

A SUBSIDIARY OF LG8**ENERGY**

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE JOINT INTEGRATED RESOURCE PLAN OF LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY UTILITIES COMPANY

CASE NO. 99-430

Volume III Integrated Resource Plan

November 22, 1999

Technical Appendix

KENTUCKY UTILITIES COMPANY and LOUISVILLE GAS & ELECTRIC COMPANY

Analysis of Reserve Margin Planning Criteria

Prepared by

Generation Systems Planning

October 1999

LOUISVILLE GAS AND ELCTRIC/KENTUCKY UTILITIES COMPANY ANALYSIS OF RESERVE MARGIN PLANNING CRITERIA

TABLE OF CONTENTS

EXE	CIIT	VF	SIIA	IM	ARY	7
	\mathbf{c}	7 1	DUI	A 17A.	ли	

INTRODUCTION	1
STUDY METHODOLOGY	2
STUDY ASSUMPTIONS	3
PROSCREEN II BASE ANALYSIS	10
SENSITIVITIES: AVAILABILITY AND LOAD	
SUMMARY AND RECOMMENDATION	16
FIGURES	
APPENDIX A	

ANALYSIS OF LG&E/KU RESERVE MARGIN PLANNING CRITERIA EXECUTIVE SUMMARY

Prior to the merger of the respective companies, Kentucky Utilities Company (KU) used a reserve margin target of 17.6% (representing a 15.0% capacity margin) and Louisville Gas & Electric (LG&E) used a reserve margin target of 16.0% (representing a 13.8% capacity margin) as the planning criteria for resource planning. The need to maintain a level of capacity in reserve is well established in the utility industry. Additional generation capacity must be available should there be an unexpected loss of generation, reduced generation capacity due to equipment problems, unanticipated load growth, variances in load due to extreme weather conditions, and/or disruptions in contracted purchased power. KU's last formal evaluation of the appropriate margin level, which suggested the reserve margin target of 17.6%, was completed in October, 1994. KU was in the process of reviewing its margin criteria at the time the merger with LG&E was under consideration. Results of that abbreviated study indicated that KU could lower its target reserve margin to 15.0%. In generation planning studies LG&E has been using the target reserve margin of 16.0% since 1995. Since the merger, the Companies have been using a planning reserve margin level of 14.0%. Several events have occurred since either company last formally evaluated their margin criteria; KU has installed four 110MW combustion turbines at E.W. Brown, LG&E and KU have merged, the merged company has installed two additional 164MW combustion turbines at E. W. Brown and the wholesale power market has shown price volatility that was unprecedented prior to the summer of 1998. These events further diversify the available generation mix and indicate that the Companies review its margin requirements.

The key variables for studies of this type are: (1) the number and length of planned generating unit outages and maintenance outages, (2) generating unit forced/equivalent forced outage rates, (3) the availability of purchase power capacity for import and (4) the customers perceived cost of unserved/emergency energy. The availability of the Companies' existing units is based on historical data. The availability of proposed generating units is such that it falls within the accepted availability for units of a given type, size and class. Since there is no industry standard for the cost of unserved energy, an EPRI study, adjusted to reflect recent market volatility was used to determine a base unserved energy cost. Sensitivity values around the base value of unserved energy cost were evaluated as were market, load and unit availability sensitivities. The PROSCREEN II computer model was used in the evaluation and the minimization of present value of revenue requirements (PVRR) was used as the primary decision factor.

Optimization study runs were used to create a least costly ordering of supply-side options for various reserve margin levels given each set of key variables. This methodology was repeated for all possible combinations of the key variables over a range of reserve margins. Study cases run for reserve margins around the reserve margin associated with the minimum PVRR did not show a significant increase in PVRR. Therefore, cases with reserve margins that showed PVRR within a small variance of the minimum PVRR were considered as economically equivalent.

The base series of the base case indicates that a 12% target reserve margin represents the greatest system reliability under the given set of assumptions. Furthermore, given the base case assumptions used in this study, together with the detailed sensitivity analysis performed on the purchase power market and summer peak load, a reserve margin in the range of 11%-14% would be optimal.

KENTUCKY UTILITIES COMPANY AND LOUISVILLE GAS & ELECTRIC ANALYSIS OF RESERVE MARGIN PLANNING CRITERIA

INTRODUCTION

Prior to the merger of the respective companies, Kentucky Utilities Company (KU) used a reserve margin¹ target of 17.6% (representing a 15.0% capacity margin²) and Louisville Gas & Electric (LG&E) used a reserve margin target of 16.0% (representing a 13.8% capacity margin) as the planning criteria for generation expansion planning. The need to maintain a level of capacity in reserve is well established in the utility industry. Additional capacity must be available (either in the form of physical generators or purchase power) should there be an unexpected loss of generation, reduced generation capacity due to equipment problems, unanticipated load growth, variances in load due to extreme weather conditions, and/or disruptions in contracted purchased power.

KU's most recent "formal" evaluation of the appropriate margin level suggested a reserve margin target of 17.6%. That analysis was completed in October, 1994. LG&E has been using the target reserve margin of 16.0% since early 1995 in generation planning studies. KU was in the process of reviewing its margin criteria at the time the merger with LG&E was being considered. Results of that abbreviated, pre-merger analysis indicated that KU could potentially lower the target reserve margin to 15.0%. Since the merger, the Companies have been using a planning reserve margin level of 14.0%. Several events have occurred since either company last evaluated their margin criteria: (1) KU has installed four 110MW combustion turbines at E.W. Brown; (2) LG&E and KU have merged; (3) the merged company has installed two additional 164MW combustion turbines at E. W. Brown; and (4) the power market has shown price volatility that was unprecedented

1 Reserve Margin %= (Total Supply Capability - Peak Load) / Peak Load

MAURP1999/Report/99/OPTMARiculoc Page 1 of 17

² Capacity Margin % = (Total Supply Capability - Peak Load) / Total Supply Capability

prior to the summer 1998. The net effect is that the generation system has changed (by the addition of smaller increments of capacity with relatively quick start-up times and the larger pool of supply-side alternatives available to the merged company) and the purchase power market has matured. This study was conducted to evaluate and document the economics of maintaining various target reserve margin levels given these changes. As a result of this study, a recommendation of a target reserve margin for planning purposes can be made.

The study was conducted using the PROSCREEN II (V18R1.1) computer model. PROSCREEN II is a capital and production costing computer model with the capability to compute total fuel, fixed and variable operating costs for existing and future units as well as the capability to develop a least-cost resource plan for future years. PROSCREEN II can also evaluate the reliability of electricity power supply and model power transactions. Finally, PROSCREEN II calculates an annual and study period present-value cost for each computer simulation run. A minimum present value criterion will be used in this study as the principal economic decision parameter.

This report will: (1) provide a summary of the study methodology and assumptions; (2) detail the assumptions that most strongly influence margin analysis; (3) describe the scenarios and sensitivities developed; and finally; (4) suggest the least-cost target reserve margin level for the combined KU/LG&E system.

STUDY METHODOLOGY

The methodology used in the analysis consisted of using PROSCREEN II to create an optimized supply strategy for a specified reserve margin level and set of assumptions/key variables. A series of PROSCREEN II optimizations were made for each set of base case assumptions and sensitivities (discussed later) at each target reserve margin level ranging from 7% to 14%. Seven

percent is an arbitrarily selected low number while fourteen percent is the current planning margin. The optimizations define the optimum generation construction/purchase power level needed to satisfy the user input target reserve margin requirements. The objective of the optimizations is to balance the cost associated with maintaining a reliable supply system with the customers perceived cost of unserved energy. The optimizations produced the least-cost supply-side plans for the Companies (one at each target reserve margin). The reserve margin level which yields the minimum present value revenue requirements for each set of assumptions and key variables could then be determined. The reserve margin levels suggested by the analysis can then by reviewed to determine the least-cost reserve margin planning level for the Companies.

STUDY ASSUMPTIONS

Appendix-A of this report provides detailed information describing the inputs used in the modeling of KU, LG&E and Owensboro Municipal Utilities' (OMU) generating systems. Utilizing the multi-area production costing capability of PROSCREEN II, each utility (LG&E, KU and OMU) is modeled separately. This allows for more accurate simulation of the contractual arrangements between KU and OMU.

Several inputs strongly influence the ability to maintain a planned level of reserve margin in resource expansion studies of this type. These inputs include: (1) the number and length of planned generating unit outages and unit maintenance outages, (2) generating unit forced/equivalent forced outage rates, (3) the availability of purchase power capacity for import and (4) the customers perceived cost of unserved/emergency energy.

(1) Unit Planned Outages

A planned outage (PO) is defined as the removal of a generating unit from service to perform work on specific components that is scheduled well in advance and has a predetermined start date and duration. The guidelines for the scheduling of major and minor planned outages on baseload units in the LG&E and KU systems at the time this analysis was conducted are shown in Table 1.

Table 1
KU/LG&E Planned Outage Practices

	Minor I	Maintenance	Major Maintenance		
	Duration	Time Between	Duration	Time Between	
LG&E	4 weeks	~ 1.5 years	8 weeks	~ 7 years	
KU	3 weeks	~ 1 year	8 weeks	~ 7 years	

As shown in Table 1, LG&E anticipates that on average, units will be out 4 weeks for minor planned outage work every 18 months, while KU anticipates annual minor planned outages to last approximately 3 weeks. Both companies anticipate baseload units requiring an average of 8 weeks to complete a major planned outage every 7 years. These planned maintenance practices were the accepted practices observed by each company prior to the merger. Planned maintenance duration and scheduling philosophies are currently being revised to reflect best practices across both Companies. However, the maintenance practices summarized above should be representative of future maintenance needs.

(2) Unit Forced Outages/Equivalent Forced Outages

Forced outages are events that require the full unit be removed from service immediately. Forced outage rates (FORs) are defined as the total number of forced outage hours/(total number of forced outage hours + total number of service hours). Equivalent forced outage rates (EFORs) are similar to FORs but include hours in which the unit is derated (capable of operating but unable to

operate at full load). FORs and EFORs provide information on how often particular events cause unit outages or derates. The rates are developed from the KU/LG&E Generator Availability Data System (GADS). GADS is a historical database which contains historical unit outage information for each unit. Using data from the six year period 1993-1998, the forced outage rate and equivalent forced outage rate were calculated for each unit.

A maintenance outage (MO) is defined as the removal of a generating unit from service to perform work on specific components that <u>could have</u> been deferred beyond the end of the next weekend, but requires that the unit be removed from service before the next major or minor planned outage. Maintenance outages, like forced outages and forced derates, may occur at any time during the year, may have flexible start dates, and may or may not have a predetermined duration. To capture the random nature of the event that triggers a MO and to maximize the effect of the MO event on system capacity (i.e. reduce the generating system capability during the weekday when load is greatest instead of on the weekend), maintenance outage hours have been included in the modeled forced outage rates of the units.

Table 2 shows the modeled base forced outage rate and modeled base equivalent forced outage rate for each baseload unit.

Table 2
Modeled FOR and EFOR

Unit	FOR %	EFOR %
Brown 1	2.34%	4.13%
Brown 2	2.24%	3.91%
Brown 3	5.41%	6.55%
Cane Run 4	10.03%	11.26%
Cane Run 5	16.08%	19.90%
Cane Run 6	18.64%	21.32%
Ghent 1	6.01%	7.54%
Ghent 2	3.52%	4.08%
Ghent 3	4.23%	4.43%
Ghent 4	4.16%	4.30%
Green River 3	5.50%	5.51%
Green River 4	12.11%	13.87%
Mill Creek 1	10.05%	12.20%
Mill Creek 2	11.09%	12.94%
Mill Creek 3	10.83%	12.56%
Mill Creek 4	8.80%	11.38%
Pineville 3	6.32%	6.33%
Trimble County	4.14%	4.79%
Tyrone 3	3.96%	6.36%

Above includes effects of Maintenance Outage Hours (MOHs)

(3) Availability of Firm Purchase Capability

The Companies are interconnected through their transmission system with nine other control areas. Starting in 1999, the Companies have contracted for the purchase of firm summer capacity from the following two utilities: Electric Energy Incorporated (EEI) and OMU. The contracts with EEI and OMU extend through the study period. The EEI contract is modeled in PROSCREEN II as a purchase power unit with a capacity of 200 MW. The dispatch of purchase power units in PROSCREEN II approximates the actual dispatch of the EEI purchase capacity. KU's future purchases from OMU are modeled using PROSCREEN II's multi-area modeling feature which parallels the actual dispatching of KU and OMU units. However, in order to model a least-cost dispatch of the combined KU/LG&E and OMU generating systems, a detailed model of the OMU

generation system is required. The details of the OMU generation system model and the amount of on-peak capacity available from OMU by year during the study period can be found in Appendix-A.

Additional purchase options that could supply capacity to serve the Companies' peak load requirements are call option purchases and spot (or hourly) purchases. Studies indicate that with two generators out of service on the Companies' system, the transmission system could support up to an additional 800MW of imports. Therefore, eight 100 MW, 100\$/MWh call options were made available to PROVIEW in all summer periods (June-August) for each year thru 2003. It was assumed that price estimates of the option market beyond 2003 were subject to too great a variance for use in this analysis. For the purposes of this study, a call option is defined as a block (100MW) of power available June through August (through 2003 only) and delivered at a fixed energy price (100\$/MWh). If the call option is selected by PROVIEW, the demand cost associated with the call option for the three summer months is paid in full regardless of whether any energy is supplied. Since a call option is in essence a contractual purchase obligation, if selected as a supply-side resource, it is considered to be 100% available. If energy is requested by the purchaser it is supplied at the strike price of 100\$/MWh.

A maximum of 200MW of spot purchases were also modeled in PROVIEW. Spot purchases are short term market purchases that can have a large energy cost and very little or no demand cost associated with them. This cost profile is due to the fact that spot purchases have a short turnaround from when a supplier is notified and when he is expected to deliver. Although spot purchases are normally considered to be non-firm capacity, this study assumes that they contribute toward meeting the Companies target reserve margin. However, to reflect the fact that, on rare occasions, the spot/hourly market may not have power available, the spot market was assumed to have only a 95%

availability. Table 3 and Appendix-A Tables 4, 5, and 6 convey information associated with purchases made available to PROSCREEN II.

Table 3
Modeled Summer Peak Purchases

Supplier	MW	Availability	Term
OMU	*	Smith 1 – 83% Smith 2 – 86%	Throughout Study Period
EEI	200MW	94%	Throughout Study Period
Call Options	8-100MW	100%	June - August 1998 through 2003
Spot	200 MW	95%	June – August 1999 through 2003

^{*}See Appendix-A - Table 5

Aside from the contractual and spot purchases discussed above, one additional purchase type is modeled in PROSCREEN II: emergency or unserved energy.

(4) Cost of Emergency/Unserved Energy

Since the amount of emergency energy determined by the model is a direct measure of the system's inability to meet its demands, emergency purchases are a key factor in determining the optimal target reserve margin level for use in resource planning studies. The cost of emergency/ unserved energy is defined as the cost to a customer during an outage on the transmission or distribution system, or for capacity shortages which would result in a power outage. No industry standard exist for this cost. The perceived and realized cost of this type of energy is highly dependent on customer type (i.e., residential, commercial, industrial), the duration of the outage, and the frequency at which outages occur. A residential customer who might only be inconvenienced by an outage would likely place a lower value on this type of energy than an industrial customer who may incur a substantial economic loss due to an outage. Likewise, within customer classes, the value of unserved energy can vary greatly due to individual customer needs. In addition to variations

customers place on unserved energy, the following attributes of the outage or curtailment may affect the overall perceived value: timing (hour, season), duration, magnitude (partial or total), advance notice given, frequency, and coverage (area affected).

A 1990 EPRI report titled "Cost Benefit Analysis of Power System Reliability Determination of Interruption Costs" addresses the issue of determining a value for customer outages. By analyzing the results of a detailed survey of 27 utilities, the report determined the value those utilities place on unserved energy for reliability planning. The survey results help to determine the value for customer outages that can be applied to unserved energy in this study. Average unserved energy values calculated for each customer class in the EPRI study are shown below in Table 4. The approximate percentage of the Companies' energy sales by class during 1998 is applied to the survey results and a weighted average unserved energy cost estimate is calculated. To reflect the recent volatility of the spot purchase power market, an additional 2\$/kWh is added to the weighted sum.

TABLE 4
OUTAGE COST ESTIMATES

CLASS	AVERAGE ESTIMATE ³ (\$/UNSERVED.kWh)	LG&E/KU CUSTOMER SALES (%)	WEIGHTED COST (\$/UNSERVED kWh)
Residential	0.9	36	0.3
Commercial	7.1	28	2.0
Industrial	7.3	36	2.7
		Weight	ted Sum 4.9
		Market Ad	justment 2.0
		Est. Base Cost of Unserve	ed Energy ~7

Based on the results as shown in Table 4, a base cost of \$7 per kWh for unserved energy is used in this study. An estimate of customer load not served during power outages or capacity

³ EPRI results were presented in mixed year dollars and no attempt was made to escalate these values.

shortages is determined by the PROSCREEN II model and labeled as "Unserved Energy". To consider the sensitivity of results to the base assumption of \$7/kwh value for unserved energy, values of \$5/kwh and \$9/kwh were also evaluated in this study.

PROSCREEN II BASE ANALYSIS

The availability of a 200MW spot market purchase and an unserved energy cost of \$7/kwh were the values used for the base series. Combinations of the spot purchase and various unserved energy costs were evaluated as sensitivities to the base case. Table 5, summarizes the key variables for the six series of cases evaluated. For each series, eight PROVIEW optimizations were conducted with a minimum target reserve margin ranging from 7% to 14% (in 1% increments). Each optimization produced the least-cost supply-side strategy.

Series 2, referred to as the "Base Case Series", utilizes the base key variable assumptions of 200 MW of spot purchase capability and \$7/kwh for unserved energy. Series 1 and Series 6 represent the boundary values for the sensitivity variables analyzed in this study. Series 1, the most optimistic case, simulates the availability of 200MW spot purchase capacity and the lowest cost for unserved energy (\$5/kwh). Series 6, the most pessimistic case, assumes that no spot market purchase capability is available from the market and the highest unserved energy cost (\$9/kwh).

Table 5
Identification of Key Variables Evaluated

	Target Reserve Margin	Spot Purchase	Unserved Energy
Series #	Range Evaluated (%)	Modeled	Cost (\$/kWh)
1	7% to 14% in 1% increments	Yes	5.0
2*	7% to 14% in 1% increments	Yes	7.0
3	7% to 14% in 1% increments	Yes	9.0
4	7% to 14% in 1% increments	No	5.0
5	7% to 14% in 1% increments	No	7.0
6	7% to 14% in 1% increments	No	9.0

^{*}This series contains the "base" assumptions of the spot purchase being available and unserved energy costs of 7\$/kwh.

PROSCREEN II optimizations were conducted to determine the reserve margin level which yields the minimum PVRR under all scenarios. At each target reserve margin level, the key variables were held constant. The optimization studies evaluate the cost and reliability effects of all combinations of potential generating technologies. This produces a list of expansion plans, all of which meet both the pre-specified user constraints and the specific target reserve margin criterion. The capital costs and production costs (including the cost of unserved energy) of each plan determined by the model, and the plan with the lowest PVRR is selected as the least-cost expansion plan for that case. Performing optimization simulations at each reserve margin level assures that the optimal (least costly) ordering of units is maintained. The results of the optimizations determine the reserve margin level at which the minimum PVRR occurs for each series.

The optimization results for the base case series are shown in Figure 1. The larger values of PVRR at the high or low end of the reserve margin scale shown in Figure 1 reflect the increase in costs due to capital expenditures or unserved energy respectively. The increased in PVRR on the upper ends of the curves (higher reserve margin levels), is a function of increase capital expenditures for generation construction associated with maintaining the higher reserve margin. Conversely, the

increase in PVRR values at the lower target reserve margin levels is a function of the value placed on unserved energy. The minimum PVRR (indicated by the arrow), which for the base series occurs at 10% reserve margin, strikes a balance between capital expenditures associated with maintaining reserve margin and the value placed on unserved energy. However, Figure 1 does demonstrate that the PVRR values are relatively the same near and around the minimum PVRR. For example, there is less than 0.5% difference between the PVRR of the 10% reserve margin level and the 9% or 11% reserve margin level. This indicates that at the higher reserve margin levels, a greater level of system reliability can be attained with minimal increase in cost. For this reason, it is difficult to recommend a single reserve margin level in and around the range suggested by the minimum PVRR for each series. Visual inspection of Figure 2, which shows the PVRR of all the series, reveals that all the curves are relatively flat around the minimum values. The overall flatness of the curves around the minimum value suggests that cases with a PVRR value within a small variance of the minimum PVRR could be considered economically identical or nearly identical. Figure 3 illustrates this. All reserve margins that are within 0.5% of the series minimum are considered to be economically equivalent. The reserve margin ranges shown in Figure 3 exceed the series minimum PVRR by less than 0.5%. Considering costs within a range of 0.5% allows for a more narrow analysis of possible reserve margin planning levels. Table 6, below, shows the range of reserve margin levels within 0.5% of the minimum cost for each series. The table summarizes the ranges of reserve margins for each set of case assumptions where the cost of maintaining these reserve margins is equivalent.

Table 6
Reserve Margin Levels Considered
Economically Equivalent

	Spot Purchase	Unserved Energy	Econ. Equivalent
Series #	Modeled	Cost (\$/kWh)	Reserve Margin
1	Yes	5.0	7% to 11%
2*	Yes	7.0	8% to 12%
3	Yes	9.0	9% to 13%
4	No	5.0	7% to 11%
5	No	7.0	9% to 11%
6	No	9.0	9% to 13%

^{*}This series contains the "base" assumptions of the spot purchase being available and unserved energy costs of 7\$/kwh.

The base case series suggests a reserve margin level in the range from 8% to 12%. As previously stated each range of reserve margin levels in Table 6 can be viewed as representing reserve margin levels which can be maintained at approximately equivalent cost. The sensitivity series (Series 1, 3-6) reflects the range of uncertainty inherent in the assumptions and provide a lower and an upper bound to the reserve margin levels suggested by the base series. A 12% reserve margin represents the greatest system reliability at an equivalent cost for the base series. An 11% reserve margin represents the greatest system reliability that is common to all the sensitivity series. These results indicate that given the assumptions, an 11% target reserve margin would provide maximum reliability at the lowest cost (i.e. 11% is the maximum target reserve margin value that occurs in the most cases). Therefore, based on the base analysis, it would appear that the target reserve margin could be reduced to 11%.

SENSITIVITIES: AVAILABILITY AND LOAD

To further enhance the study, a unit availability sensitivity and a load forecast sensitivity were conducted. The base analysis was conducted assuming that the historical unit availabilities are

valid approximations of the units' future performance and that future summer peak loads are "normal." However, it is interesting to note the ranges of optimal reserve margin if future unit availabilities are slightly less available than historical or summer peak load is slightly greater than forecasted.

The estimated modeled availability of the Companies' coal-fired units is approximately 84%. If the forced outage rates of the coal-fired units are increased such that the availability is decreased by about 5% (to 79%) and the above analysis is repeated, Figure 4 is produced. Figure 4 shows the costs associated with maintaining 7% to 14% reserve margin assuming the coal-fired units are just 5% less available than they were in the base case. Notice a shift toward the higher margin levels when Figure 4 is compared with Figure 2. Figure 5 illustrates those ranges over which the associated costs exceed the minimum cost by less than or equal to 5%. These reliability ranges are considered equivalent since very little cost differential exists between them. The equivalent margins of Figure 5 are summarize below in Table 7. Note that the maximum reserve margin level evaluated (14%) was not increased.

Table 7
Reserve Margin Levels Considered
Economically Equivalent (Decreased Availability)

Series #	Spot Purchase Modeled	Unserved Energy Cost (\$/kWh)	Econ. Equivalent Reserve Margin
1	Yes	5.0	10% to 14%
2*	Yes	7.0	12% to 14%
3	Yes	9.0	13% to 14%
4	No	5.0	10% to 14%
5	No	7.0	12% to 14%
6	No	9.0	13% to 14%

^{*}This series contains the "base" assumptions of the spot purchase being available and unserved energy costs of 7\$/kwh.

[&]quot;Decreased Availability" implies a 5% reduction in the Companies' coal-fired weighted equivalent availability.

Decreasing the availability of the coal-fired units by approximately 5% has the effect of shifting the range of economically equivalent reserve margins upwards by about 3% (compare Table 7 to Table 6). For the base series (Series 2), the equivalent reserve margin range changed from 8% -12% to 12%-14%. As anticipated, Series 1, 3-6 also had a slight shift upward in the ranges considered economically equivalent. The maximum target reserve margin value that occurs in the most series after the availability sensitivity is 14%. Therefore, based on an availability sensitivity, no change in the Companies' reserve margin criteria would be necessary.

Increasing the summer (July) peak load forecast by 5% reflects the fact that precise load forecasting is highly unlikely. Evaluating plans for durability in times of higher than anticipated load allows a more thorough strategy and, potentially, a lesser reliance on the high priced summer market. In this sensitivity case, it was assumed that the Companies' July peak load was 5% higher than forecasted. No adjustments were made to the energy in July, so increasing the July peak worsened the monthly load factor and dictated more conservative planning. Figure 6 shows the cost associated with maintaining 7%-14% reserve margin given a higher than forecasted summer peak load. Figure 7 and Table 8, show the equivalent reserve margin ranges resulting from optimizations of a higher than forecasted load scenario. The reserve margins shown in Table 8 are calculated based on the installed capacity and the base load forecast- not the installed capacity and the high load. This is done to better represent the situation where the Companies are anticipating the summer peak loads reflected by the base forecast but the observed peak loads are higher than expected.

Table 8

Reserve Margin Levels Considered

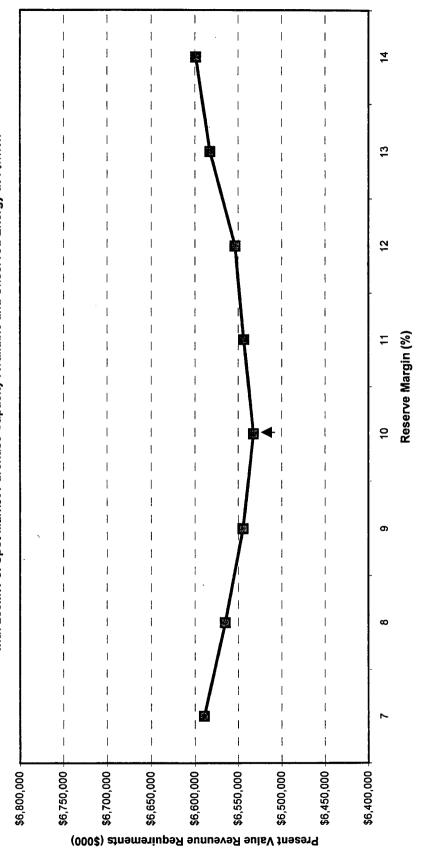
Economically Equivalent (Increased Peak Load)

Series #	Spot Purchase Modeled	Unserved Energy Cost (\$/kWh)	Econ. Equivalent Reserve Margin
1	Yes	5.0	11.3% to 14.5%
2*	Yes	7.0	13.5% to 16.6%
3	Yes	9.0	13.7% to 17.5%
4	No	5.0	11.2% to 14.2%
5	No	7.0	12.3% to 16.5%
6	No	9.0	13.3% to 17.3%

^{*}This series contains the "base" assumptions of the spot purchase being available and unserved energy costs of 7\$/kwh.

Reserve margin values calculated based on installed capacity and base load forecast.

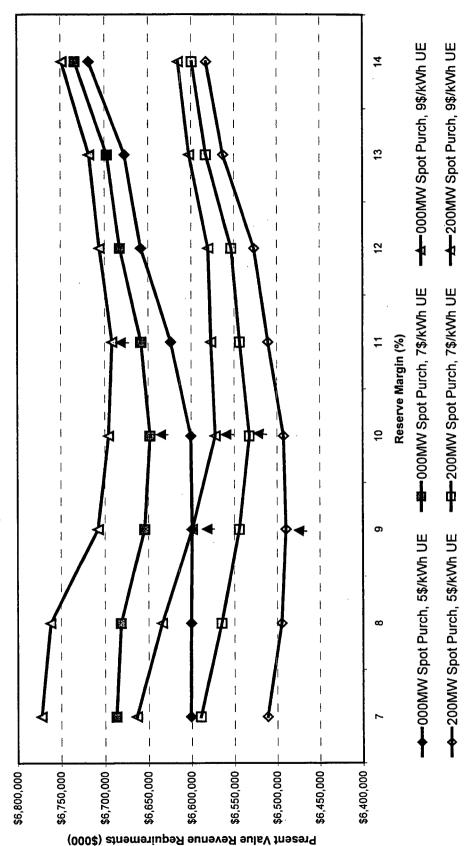
Series 2, when evaluated in a higher than forecasted load scenario results in a range of economically equivalent margins from 13.5% to 16.6%. The minimum and maximum of all other Series are 11.2% for Series 4 and 17.3% for Series 6. The maximum target reserve margin that occurs most frequently in all Series is 14.2%. Therefore, based on a summer peak load sensitivity, no change in the Companies' target reserve margin is necessary.

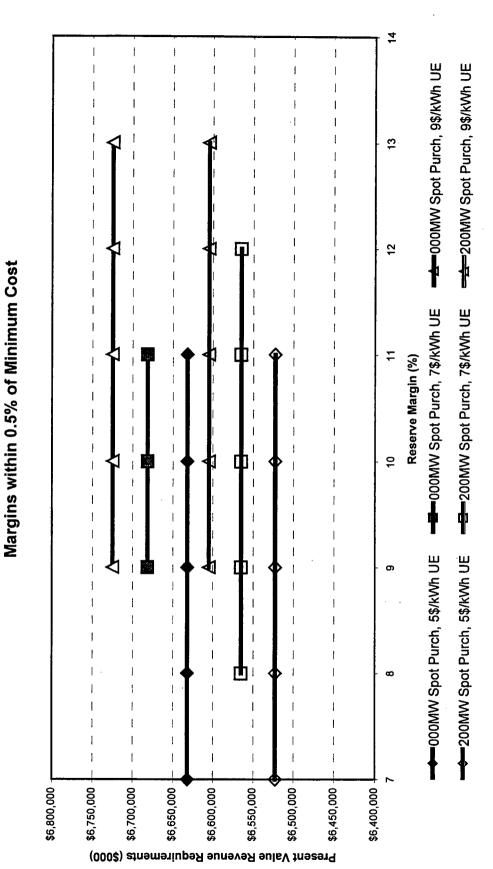

SUMMARY AND RECOMMENDATION

Key variables representing a base case series of simulations and sensitivity were analyzed in optimization studies. The key variables were evaluated over a range of target reserve margin levels. For each series, the minimum reserve margin level was determined. This minimum value strikes the best balance between the value of unserved energy and capital expenditures for generation construction or purchased power options. The balance between unserved energy cost and capital expenditures/purchase power is apparent through graphical analysis as the relatively flat region near and around the minimum PVRR value for each case. This suggests that reserve margins in this region of values can be maintained at or near the same cost. Therefore, the value for reserve margin

at the high end of the base case range of reserve margins can be recommended as the planning reserve margin because it represents the maximum system reliability at the lowest cost. The analysis summarized in Table 6, Table 7 and Table 8 suggest an 11%, 14% and 14.2% reserve margin respectively. These values of reserve margin are the largest that occur in the most ranges, meaning they are the margins that provide the most reliable service at the least cost across a broad range of assumptions. Based upon the base series of the base case, a 12% target reserve margin represents the greatest system reliability under the given set of assumptions. Furthermore, given the assumptions and sensitivities analyzed in this study and the volatile power market environment of the past two summers this analysis suggest on optimal reserve margin in the range of 11% - 14%.

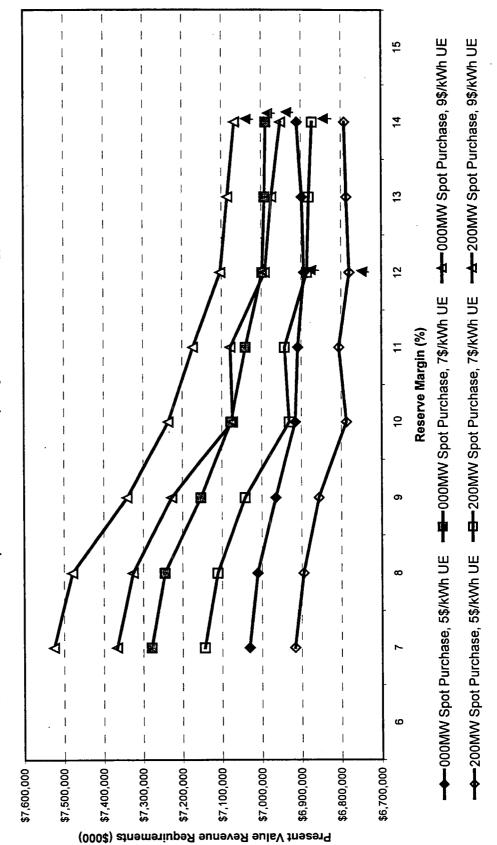
Present Value Rev Requirements vs Reserve Margin


with 200MW of Spot Market Purchase Capacity Available and Unserved Energy at 7\$/kWh

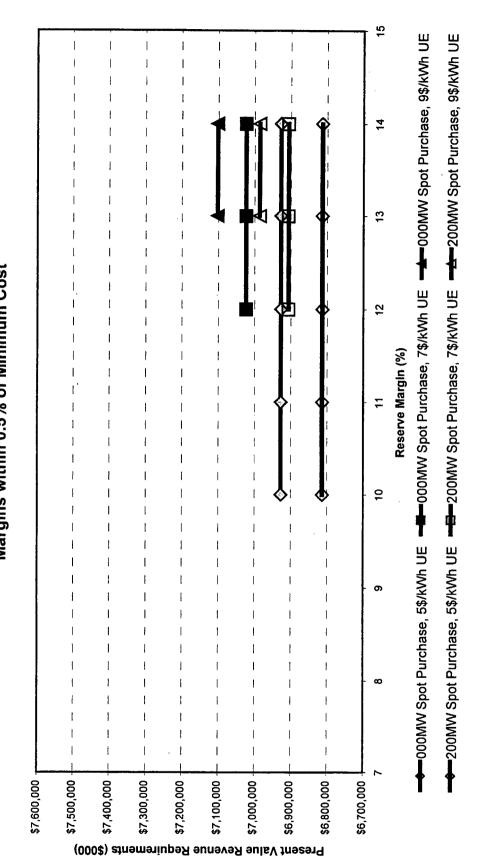

-----200MW Spot Purch, 7\$/kWh UE

Present Value Rev Requirements vs Reserve Margin

With and Without 200MW Spot Market Purchase Capability and Unserved Energy at 5, 7 & 9 \$/kWh

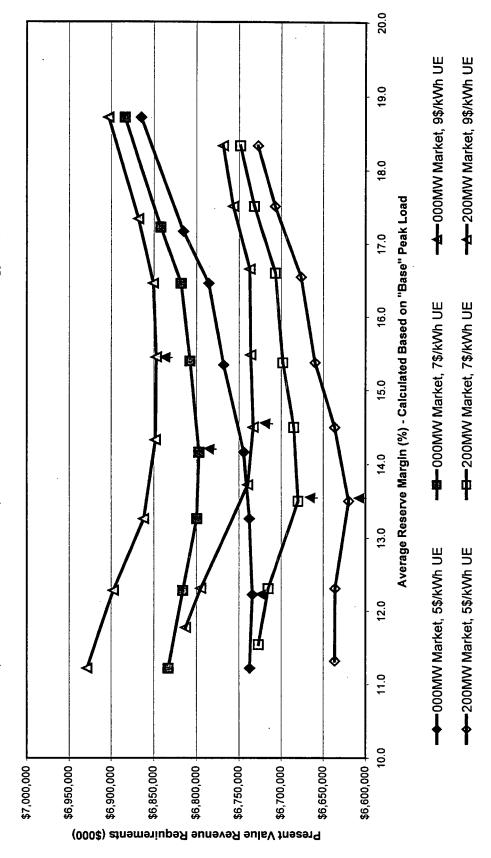


Present Value Rev Requirements vs Reserve Margin

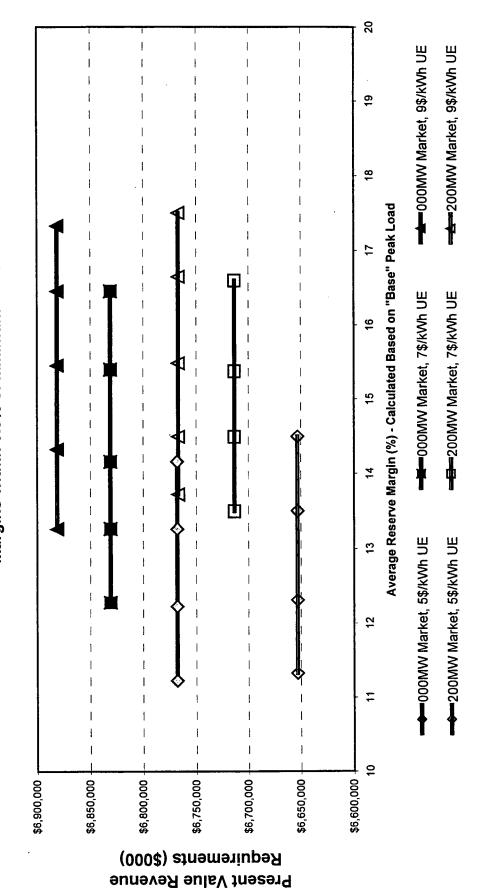


Present Value Rev Requirements vs Reserve Margin

With and Without 200MW Spot Market Purchase Capacity and Unserved Energy at 5, 7 & 9 \$/kWh



Present Value Rev Requirements vs Reserve Margin Margins within 0.5% of Minimum Cost



Present Value Rev Requirements vs Avg Reserve Margin

With and Without 200MW Spot Market Purchase and Unserved Energy at 5, 7 & 9 \$/kWh

Present Value Rev Requirements vs Average Reserve Margin Margins within 0.5% of Minimum Cost

DATA ITEMS USED IN OPTIMAL MARGIN ANALYSIS

Existing System Data

The PROSCREEN-II computer program is used to model Louisville Gas & Electric's (LG&E) and Kentucky Utilities Company's (KU) generating systems. These models simulate the dispatch of both companies generating units and other purchases to serve load, and of Owensboro Municipal Utilities' (OMU) generating units and purchases to serve OMU's load and maintain their reserve requirements. The remaining generation available from OMU's units after meeting their requirements is economically dispatched by the Companies. The following sections outline the information and the sources of the information used in the programs to model KU, LG&E and OMU generating systems.

A) General Data Items

- 1. Base Year 1998
- 2. Study Period 1998 to 2013 (with an additional 15 years of end effects)
- 3. Economic Assumptions

Revenue requirements are determined on an annual basis and discounted to the base year giving a present worth of revenue requirements. Discounting is performed using a discount rate, which is assumed to remain constant for all years.

4. Financial Parameters:

a. Discount Rate:	9.69%
b. Capital/O&M costs Escalation Rates:	3.0%/3.25%
c. Combined Federal and State tax rate:	40.36%
d. Fixed Charge Rates:	
30 Year (CTs)-	13.46%
40 Year (Phase 3 of CC)-	12.36%

5. Retirements

The operating life of all existing units is extended beyond the end of the study period. (no retirements)

6. Unserved Energy Cost

The cost placed on unserved energy is varied from the base value of \$7/kwh (1998\$) to \$5 and \$9/kwh (escalated at 2.0% annually).

7. Load Forecast - See Appendix-A Table 1

LG&E: Energy and Demand Forecast 1998-2028 (Load Forecasting)

KU: Energy and Demand Forecast 1998-2028 (Load Forecasting)

OMU: OMU forecast 1998 through 2007 extended through 2027 (Based on OMU fax received: 7/2/98).

8. Hourly Load File Used

LG&E and KU typical hourly loads files are provided with the forecast by Forecasting. OMU typical hourly loads files are developed based on an OMU historical loadshape.

9. KU/LG&E Unit Data

a. Installed Capacity - See Appendix A Table 2

Based on revised May 20, 1998 Unit Test Results.

b. Equivalent Forced Outage Rate - See Appendix-A Table 2

KU historical GADS data using 5 years of historical data (1993-1998). Five year averages have been increased for inclusion of maintenance outage hours (MOHs) to better reflect actual unit availability of each unit.

c. Heat Rates - See Appendix-A Table 2

1997-1998 adjusted unit heat rate curves.

d. Fuel Cost - See Appendix-A Table 3

Fuel forecast from Fuels Management (Sept-Oct '98)

e. Maintenance Schedules -

Maintenance inputs were determined by reviewing the Companies' projected maintenance as of June 1999. Planned outages are scheduled to optimize reserves and reliability over all months of each year.

10. OMU Unit Data

a. Installed Capacity - (OMU 8/16/97 test data)

OMU (Smith Unit 1): 140 OMU (Smith Unit 2): 274

b. Equivalent Forced Outage Rate

OMU (Smith Unit 1): 10.09% OMU (Smith Unit 2): 6.69%

Based on OMU historical GADS data (1995-1996)

c. Heat Rates -

OMU (Smith Unit 1): 10299 Btu/kWh OMU (Smith Unit 2): 10798 Btu/kWh

- d. Heat Content of Fuel: 11205 Btu/lb.
- e. Maintenance Schedules -

Planned outage inputs were determined by reviewing OMU's seven year planned outage schedule and historical data.

- f. Contract Demand Sale to KU See Appendix-A Table 4 (Based on OMU Fax: 7/2/98)
- g. Fuel Cost See Appendix-A Table 5 (OMU fax: 8/12/93).

Based on fuel information received from Fuel Procurement in Sept/Oct 1998. Fuel costs include associated costs for fuel handling and limestone.

- h. OMU Scrubber O&M (Smith Units 1 & 2)
 - i. Variable O&M: Limestone charges included in fuel cost.
 - ii. Removal Efficiency: 96%

11. Purchases

a. Contract Demand - See Appendix-A Table 4

EEInc. (Firm): 200 MW each year

Virginia Power (Firm): 110MW for Jan-Feb 1998 only.

Cinergy (Firm): 110MW June, July, Aug '98 and Jan, Feb '99 only.

Enron (Firm): 110MW Jan-Feb '99 only.

Market Purchase; Peak Hrs- Off Peak Months

(Purchase Option #2, Firm): 500MW Jan-May, Sept-Dec

Market Purchase; Off Peak Hrs-All Months

(Economy/Non-Firm): 700MW Jan-May, Sep-Dec

500MW June, July & Aug

OVEC (Economy/Non-Firm); KU-9MW Jan-Dec

LG&E-35.4MW July (Varies by month)

PROVIEW 100 Call Option (Firm): 100MW Jun-Aug of 1998-2003

On Peak hours only

PROVIEW Market Purchase Option #1 (Firm): 200MW Jun-Aug on Peak Hrs only

b. Equivalent Forced Outage Rate

EEInc.: -6.39%; Note: KU owns 20% of six units at Joppa. A single purchase unit was used to model KU's portion of the six units. Each unit was assumed to have the same FOR and the probability of KU's 20% being available was assigned to the purchase unit.

Virginia Power: 0.0%

Cinergy: 0.0%

Enron: 0.0%

Market Purchase; Peak Hrs- Off Peak Months Purchase Option #2: 0.0%

Market Purchase; Off Peak Hrs-All Months: 0.0%

OVEC: 0.0%

PROVIEW 100\$ Call Option: 0.0%

PROVIEW Hourly Market Purchase Option #1: 5.0%

c. Full Load Heat Rate (BTU/KWH)

EEInc.: 10500

d. Heat Content of Fuel (BTU/LB)

EEInc.: 10800

e. Fuel Cost

See Appendix-A Table 5

f. Demand Cost

See Appendix-A Table 6

g. Maintenance

EEInc: A 33 MW derate for 13 weeks in the spring and fall (derived from EEInc. Joppa Historical Data).

EXPANSION PLAN ALTERNATIVES

Data used to model expansion plan alternatives. All units are natural gas/oil fired CTs or CCs.

- A) Characteristics of the supply-side alternatives
 - 1. EFOR

All the units in the expansion plan are Combustion Turbines (CTs) with an EFOR= 6.0% or Combined Cycle Units (CCs) with an EFOR= 10%.

Appendix A-Table 1 Summer Peak (MW) /Annual Energy (GWh) Forecasts

	LGE For	LGE Forecasted	KU Fore	KU Forecasted	OMU For	OMU Forecasted
Year	Peak (MW)	Energy (GWh)	Peak (MW)	Energy (GWh)	Peak (MW)	Energy (GWh)
1999	2,532	11,620	3,743	19,339	192	875
2000	2,583	11,858	3,843	19,841	197	899
2001	2,630	12,089	3,911	20,241	198	912
2002	2,677	12,311	3,988.	20,690	200	919
2003	2,724	12,525	4,079	21,167	201	925
2004	2,770	12,717	4,194	21,728	203	932
2002	2,816	12,913	4,295	22,148	204	938
2006	2,868	13,114	4,375	22,584	206	945
2007	2,923	13,322	4,451	23,029	207	952
2008	2,984	13,534	4,522	23,539	210	964
2009	3,039	13,737	4,611	23,922	213	978
2010	3,103	13,952	4,709	24,368	217	993
2011	3,163	14,152	4,806	24,774	220	1,008
2012	3,212	14,338	4,875	25,264	223	1,023
2013	3,265	14,527	4,941	25,630	227	1,038

LGE peak/energy values do not reflect effects of interruptible or sales associated with EKPC.

Appendix A-Table 2 Louisville Gas and Electric/ Kentucky Utilities Generator Data

	Installed	Summer	EFOR %	Heat Rate
Unit	Year	Rating (MW)		(Mbtu/MWh)
Brown 1	1957	104	4.13%	10.433
Brown 2	1963	168	3.91%	9.940
Brown 3	1971	439	6.55%	10.086
Brown 6	1999	164	5.00%	10.500
Brown 7	1999	164	5.00%	10.500
Brown 8	1995	110	7.00%	12.163
Brown 9	1995	110	7.00%	12.163
Brown 10	1995	110	7.00%	12.163
Brown 11	1996	110	7.00%	12.163
Ghent 1	1974	483	7.54%	10.138
Ghent 2	1977	492	4.08%	10.033
Ghent 3	1981	493	4.43%	10.154
Ghent 4	1984	494	4.30%	9.986
Green River 1	1950	26	19.95%	18.000
Green River 2	1950	27	19.95%	18.000
Green River 3	1954	71	5.51%	14.097
Green River 4	1959	103	13.87%	12.037
Tyrone 1	1947	27	4.13%	18.000
Tyrone 2	1948	31	7.58%	18.000
Tyrone 3	1953	71	6.36%	12.934
Dix Dam 1-3	1925	24	0.00%	N/A
Lock 7	1927	2	0.00%	N/A
Haefling 1-3	1970	45	16.50%	18.000
Pineville 3	1951	34	6.33%	12.603
Cane Run 4	1962	155	11.26%	10.452
Cane Run 5	1966	168	19.90%	10.130
Cane Run 6	1969	240	21.32%	9.995
Mill Creek 1	1972	303	12.20%	10.447
Mill Creek 2	1974	301	12.94%	10.586
Mill Creek 3	1978	386	12.56%	10.262
Mill Creek 4	1982	480	11.38%	10.102
Trimble (75%)	1990	371	4.79%	10.033
Cane Run 11	1968	16	53.00%	18.000
Paddys Run 11	1968	17	19.00%	18.000
Paddys Run 12	1968	26	56.00%	18.000
Waterside 7	1964	17	55.00%	17.000
Waterside 8	1964	16	48.00%	18.000
Zorn 1	1969	16	23.00%	N/A
Ohio Falls	1928	48	0.00%	N/A

	GE (
	as		
	GE G		
	1.4# SO2 Gas Gas 6.0# SO2 6.4 # SO2 T.9 # SO2 GE Gas LGE Oil Haeffling 1-3 Brown CT Cane Run 4-6 Mill Creek 1-4 Trimble LGE Gas LGE Oil LGE OIL LGE Gas LGE OIL LGE Gas LGE OIL		7.9 # \$02 7.9 # \$02
	7 7 7		
•	S02		
	iii Creek 1 6.4 # SO2		
3	9-		
Mb	6.0# SO2		
/ \$) s	6.0#		
ost	СТ		
) <u> </u>	Gas		
Fu	<u>8</u>		
ties	ffling 1 Gas		
le 3 Utili	Нае		
Appendix A-Table 3 ric/ Kentucky Util	IIO C		
ix A ntuc	2 K		
Kei	1.4# SO2		
App tric/			
Appendix A-Table 3 Louisville Gas and Electric/ Kentucky Utilities Fuel Costs (\$/Mbtu)	0.8# \$02		
힏			
sar	Ghent .1# SO2		
Ga			
Ville	5.5# SO2		
uis			
٤٠	1,4# SO2		
	1.4 T.y.		
	4.3# SO2		
	Gr River 1-4 Tyrone 3 4.3# SO2 1.4# SO2		
	1-3 1.2# 502		
	u _N		
	8.02 2.3# SO2		
	Year 2 2000 2001 2000 2000 2000 2000 2000 2		

Appendix A-Table 4 Kentucky Utilities/Louisville Gas and Electric July Purchase (MW)

			Market		8-Proview	Proview
Year	EEI	OMU	Off-Peak	OVEC	Call Options	Spot Purch
1999	200	199	500	~40	100	200
2000	200	192	500	~40	100	200
2001	200	186	500	~40	100	200
2002	200	185	500	~40	100	200
2003	200	183	500	~40	100	200
2004	200	182	500	~40		
2005	200	180	500	~40		
2006	200	178	500	~40	_	
2007	200	177	500	~40		
2008	200	175	500	~40		·
2009	200	171	500	~40		
2010	200	168	500	~40		
2011	200	164	500	~40		
2012	200	160	500	~40		
2013	200	156	500	~40		

Confidential Information Redacted

Appendix A-Table 5 **Modeled Fuel Costs Associated with Purchase** Alternatives (\$/Mbtu) EEI OMU Year (Firm) (Firm) 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Appendix A-Table 6 Modeled Purchase Power Demand Costs (\$/MW-Wk) EEI OMU (Firm) (Firm) Year 1,610 1999 2,755 1,661 2,687 2000 2,124 2001 2,736 2,187 2002 2,777 2,112 2003 2,818 2,084 2004 2,859 2005 2,910 2,131 2,179 2006 2,924 2007 2,942 2,323 2,426 2008 2,989 2,359 2009 3,038 2010 3,089 2,320 2,383 2011 3,143 2,445 2012 3,197 3,254 2,602 2013

Note:

EEI and OMU demand charges are for calander years shown.

Kentucky Utilities Company and Louisville Gas & Electric Company

Screening of Demand-Side Management Options

Prepared by

Generation Systems Planning

September 1999

Table of Contents

Introduction	. 1
Qualitative Screening Process	. 1
Qualitative Screening Results	. <i>2</i>
Quantitative Screening Process	. <i>2</i>
Quantitative Screening Results	. <i>5</i>
DSM Resources that failed the Quantitative Screening Process	. <i>5</i>
Air-Air heat pump program (R)	. <i>5</i>
Water Heater Replacement (R)	. 6
Thermal energy storage program (C)	. 6
Low E Windows (R)	. 7
Water heating direct load control program (R,C)	. 7
DSM Resources That Passed Quantitative Screening	. 8
Air conditioning direct load control program (R,C)	. 8
Pool Pump direct load control program (R)	. 9
High efficiency outdoor lighting program (R)(R)	. 9
High efficiency lighting program (C,I)	. 9
Water Heater Wrap Up Program (R)	10
Standby generation program (C,I)	11
Recommendations	12

INTRODUCTION

Kentucky Utilities Company and Louisville Gas & Electric Company (the Companies) evaluate future electric service requirements of customers with balanced consideration of demand-side or supply-side resource options. The purpose of this study is to evaluate and screen available demand-side management (DSM) alternatives to be included in the integrated analysis portion of the 1999 Integrated Resource Plan. The Companies formed an inter-departmental team to select the DSM options. This DSM team brainstormed to identify a broad range of DSM alternatives. Each alternative was investigated and evaluated using a two step screening process. The first step was qualitative in nature, where each alternative was evaluated based on four criteria. The alternatives that passed the first step underwent a second step of screening that was quantitative in nature. The quantitative screening process was broken down into two separate phases and is discussed in the Quantitative Screening Process section of this report. The DSM programs that passed the quantitative screening process were then aggregated into three DSM programs to compete with supply-side alternatives in the integrated analysis.

QUALITATIVE SCREENING PROCESS

The DSM team identified a list of 82 alternatives (referred to as the "long list") to be evaluated (see EXHIBIT DSM-1). Next, criteria were defined to facilitate an objective evaluation of the alternatives. Based upon the Companies' objectives to provide low cost, reliable energy to our customers and the comments from the PSC Staff Report on each of the Companies' most recently filed integrated resource plan (IRP), four criteria were selected. The next task was to assign weights or values to each of the criteria. The highest weights were assigned to the criteria judged to be the most important to develop a successful DSM program.

The two most important criteria were customer acceptance and the effectiveness of each DSM alternative in meeting load shape objectives. Each potential DSM option was evaluated, based on a scale of 0 to 4, using the four criteria. The four criteria, their weights, and an explanation of each are shown on EXHIBIT DSM-2.

QUALITATIVE SCREENING RESULTS

The results of the qualitative screening process are shown on EXHIBIT DSM-3. EXHIBIT DSM-4 depicts a graphical representation of the results of the qualitative screening process. Each bar in the graph represents the weighted average of the evaluations. The weighted averages are ranked from the highest to the lowest. The horizontal dark line on EXHIBIT DSM-3 and EXHIBIT DSM-4 delineates desirable programs produced by the qualitative screening analysis which resulted in sixteen DSM options for further analysis. Of the sixteen programs, nine programs target residential customers, five target commercial customers, and two target industrial customers. These sixteen options were then evaluated in the quantitative screening process.

QUANTITATIVE SCREENING PROCESS

The 16 options that passed the qualitative screening process were modeled in more detail using EPRI's DSManager software. DSManager is a PC-based software package developed by EPS Solutions under contract with EPRI. It is a screening tool that determines the cost effectiveness of DSM options by modeling their costs and benefits over a period of time. The program simplifies the "real world" by using 48 typical days to represent a year. There are four daily load shapes per month, each representing a specific type of day. The day types are high, medium, and low weekday, and weekend. For each of the 16 DSM options that were modeled in

DSManager, load shapes in this 48-day format were developed for scenarios with and without the DSM option. Not every DSM option evaluated required 48 daily load shapes. For example, modeling of the direct load control of central air conditioners required only 16 daily load shapes for each scenario, since air conditioners are only used, generally, during the four hottest months of the year. Also required by the DSManager program is the Companies' aggregate system load shape. This system load shape was converted into 48 daily load shapes. DSManager utilizes marginal energy costs to estimate the change in production costs resulting from the implementation of each DSM option. A detailed production-costing model, ENPRO, was used to determine the marginal energy costs used by DSManager.

DSManager calculates the net present value of the quantifiable costs and benefits assignable to both the Companies and the customers participating in a DSM program. For each DSM initiative, DSManager requires the administrative costs, participant's costs, life span of the technology, expected level of participation, expected level of free-riders, and rate schedules. DSManager calculates changes to the participant's bill, changes in the Companies' revenue, changes in production costs, and changes in the peak demand. The present value for each DSM alternative is calculated, by DSManager, and reported as the costs and benefits using the 5 "California Tests." These 5 tests include the participant, utility cost, ratepayer impact measure (RIM), total resource cost (TRC), and societal cost tests. The Companies used only the participant and TRC tests to screen DSM options. The participant test includes changes in all costs and benefits to the customer installing the DSM option. The TRC test combines the RIM and participant tests and indicates overall benefits of the DSM option to the average customer, whereas the RIM test considers all impacts to the non-participants.

The quantitative screening was set up in two phases. In phase I, the cost to administer the program was not considered and it was assumed that the program had only one participant per company. This phase was created to remove non-cost effective programs. If the benefits of a program do not exceed the cost of the program without the administration cost, then it will not pass with a higher penetration of customers and the added burden of the administrative costs. The only cost included in this phase was the incremental cost of the DSM alternative. For example, the direct load control programs had the cost of installing the control switch on the appliance and the heat pump programs had the incremental cost to install a more efficient HVAC system. Of the sixteen programs evaluated, eleven programs passed the TRC in this phase and were further evaluated in greater detail in phase II of the quantitative analysis. EXHIBIT DSM-5 is a list of the assumptions used in phase I of the quantitative analysis and the resulting TRC benefit cost ratio.

Each program that passed phase I of the quantitative screening process was put through a program design phase (Phase II). The costs to administer the programs and the expected levels of penetration for each Company were added to the 11 programs that passed Phase I. See EXHIBIT DSM-2 for a complete description of the quantitative screening process. A breakdown of the cost to deliver each program to the targeted customers, the number of customers expected to participate in each program, and other pertinent assumptions can be found on EXHIBIT DSM-6 through EXHIBIT DSM-16. The demand and energy impacts of each program along with the free rider penetration and the life of the measure were the same in both phases of the quantitative analysis and are shown on EXHIBIT DSM-5.

OUANTITATIVE SCREENING RESULTS

DSManager calculates the net present value of the costs and benefits of a given DSM program and calculates the benefit to cost ratios for each of the perspectives of the California Tests. Results of the programs evaluated in phase II of the quantitative screening process are shown on EXHIBIT DSM-17. The programs are ranked by the benefit to cost ratios for the TRC test. Several of the programs had infinite benefit to cost ratios for the Participants test since the participants are not expected to have any tangible costs associated with participating in the DSM program.

DSM Resources that failed the Quantitative Screening Process

Below are descriptions of the programs that failed the quantitative screening and the reasons they failed.

Air-Air heat pump program (R)

High efficiency heat pumps have lower peak demands and lower energy usage than standard efficiency models. The highest efficiency models that could be used in residential applications have Seasonal Energy Efficiency Ratios (SEERs) in excess of 16. The federal government established a minimum efficiency SEER standard of 10 that became effective on January 1, 1992, so customers that purchase ultra-high efficiency models can expect significantly lower electricity bills. Furthermore, these higher efficiency models could help the Companies retard its peak demand growth.

For analytical purposes, two programs for residential customers in which the Companies would encourage the purchase of high efficiency heat pumps were analyzed. One program

represented customers that have resistive heat. The other program assumed the participants would have installed a less efficient heat pump if they did not participate. High equipment costs, relative to the energy and demand savings, caused this program to fail the quantitative screening. As mentioned in the Quantitative Screening Process section above, the costs to implement and manage this program were not considered in this evaluation since the costs already outweighed the benefits. Adding additional cost to the program would only have increased the cost side of the equation without changing the benefit side.

Water Heater Replacement (R)

This program would persuade customers with electric water heaters to swap out their electric water heater with a gas water heater. This would remove some load off of the system peak. However, this program failed screening because the energy and demand savings were not significant enough to overcome the cost of installation.

Thermal energy storage program (C)

Thermal energy storage (TES) systems consist of cooling equipment (chillers or icemakers), a thermal storage mass (typically ice, cooled water, or eutectic salt), and a cold air distribution system. Whereas the chillers in a conventional cooling system are sized for the maximum cooling load, the combination of the cooling equipment and the storage tank in a TES system is sized for the maximum cooling load. Consequently, cooling loads that vary dramatically during a day or during a week are the best candidates for TES. Even with assuming the TOD on-peak window would be narrowed from 14 hours to 10 hours, this program failed the quantitative screening because the savings were not enough to overcome the high cost of installation.

Low E Windows (R)

This program would promote the use of low emissivity coatings (Low-E) on windows in residential new construction and existing window replacement. Low-E coatings reduce solar gain in the cooling season and heat loss in the heating season. This program failed because the energy and demand savings were not significant enough to overcome the incremental cost over non-Low-E windows.

Water heating direct load control program (R,C)

Direct load control (DLC) switches can be used to interrupt power to electric water heaters during periods of high electricity demand. The storage aspect of water heaters permits more aggressive cycling strategies than those typically used for air conditioners.

Research indicates that DLC switches installed on water heaters can be expected to decrease demand by an average of 0.3 kilowatts during summer peak periods. While this technology is not as effective at reducing summer peaks as air conditioning DLC, the costs associated with a stand-alone program are comparable. Consequently, the Companies modeled the water heater DLC programs as a "piggyback" to the air conditioning programs. Customers that wanted a DLC switch installed on their air conditioner or heat pump would also be given the opportunity to have a switch installed on their water heater.

Despite this joint program benefit, the water heater DLC program failed the quantitative screening because the benefits of the peak reduction (avoided capacity costs) were not enough to overcome the cost of DLC switches and their installation.

DSM Resources That Passed Quantitative Screening

The programs that passed the quantitative phase of the screening were aggregated into 3 programs and included in the integrated analysis.

Air conditioning direct load control program (R,C)

Direct load control (DLC) of residential and commercial central air conditioners and heat pumps can be an effective method to reduce temperature-sensitive peaks caused by the use of air conditioning equipment. Radio-controlled relay switches can be used to interrupt power to an air conditioner or heat pump compressor unit during periods of high demand. Paging systems in today's marketplace offer the potential to use paging frequencies to communicate with the switches. Air conditioning DLC programs, implemented by a host of utilities throughout the United States, have generally been very successful with regard to customer participation, customer satisfaction and peak reduction. Typically, a cycling strategy is implemented that results in power to compressors being interrupted 20 to 30 minutes each hour.

For analytical purposes, the Companies modeled two DLC programs that targeted central air conditioners and heat pumps, one for residential customers and the other for commercial customers. The Companies would market this program through whatever channels that are determined to be cost-effective. Customers would be encouraged to enter the program by the Companies' offer to apply a monthly credit to their electric bill for each of the four summer months, June through September. Program participants would not incur any direct costs. These two programs were combined with the direct load control of pool pump program to create one DLC program to compete with supply-side alternatives in the integrated analysis.

Pool Pump direct load control program (R)

Direct load control of residential pool pumps can be an effective method to reduce summer peaks. This program is similar to the direct load control program for air conditioning equipment in delivery and would probably be marketed along with any other direct load control program. Typically, swimming pool pumps run non-stop in the summer months and are not required to run 24 hours per day to adequately filter the pool. Therefore, a cycling strategy was assumed to be 8 consecutive hours during the peak days of the summer. Customers would be encouraged to enter the program by the Companies' offer to apply a monthly credit to their electric bill for each of the four summer months. Program participants would not incur any direct costs. This program was combined with the direct load control of air conditioning programs to create one DLC program to compete with supply-side alternatives in the integrated analysis.

High efficiency outdoor lighting program (R)

Many residential customers like outdoor lighting for security and aesthetic reasons. The lowest cost options for customers are the standard incandescent fixtures. This program would encourage customers to install high intensity discharge (HID) fixtures which cost more to install but have considerable energy savings. This program was aggregated with the other lighting programs that passed the screening process and the water heater wrap program.

High efficiency lighting program (C,I)

The efficiency of fluorescent lighting equipment has improved dramatically in recent years. Electronic ballasts and more efficient bulbs offer customers an opportunity

to dramatically reduce their lighting loads. Commercial customers are believed to be the best targets for lighting programs since lighting typically represents a third of their total electricity cost, and the coincidence factor with the Companies' system peaks is high. Although lighting does not typically represent a high percentage of most industrial customers' electricity usage, the load factor and coincidence factor can be quite high.

For analytical purposes, the Companies created and modeled a program to promote high efficiency lighting to commercial and industrial customers. The Companies would encourage customers to retrofit existing lighting programs with high efficiency lighting. Customers would purchase the lighting products through normal sales channels. The Commercial and Industrial High Efficiency Lighting programs were aggregated with the residential lighting program and the water heater wrap program to compete with supply-side alternatives in the integrated analysis.

Water Heater Wrap Up Program (R)

There are approximately 275,000 electric water heaters on the Companies' combined system. Each of these water heaters are heating and storing water constantly to be ready at the twist of a knob. This program would encourage customers to install a water heater blanket to improve the insulation of their electric water heater. This program was combined with the Lighting programs listed above for analysis purposes to create a single "Efficient Lighting" program to compete with the supply-side alternatives in the integrated analysis.

Standby generation program (C,I)

The Companies' customers own a considerable amount of diesel-powered generating equipment. If customers would agree to run these generators at the Companies' request, the Companies could defer peaking capacity additions and compensate these customers through billing credits.

The DSM Team designed a standby generation program based on the LG&E interruptible rate schedule. The primary difference would be that customers would not be required to commit to a firm level of service. They would merely agree to operate their generators at the Companies' request (up to 250 hours per year). Customers would be responsible for all fuel and maintenance costs. The Companies would be responsible for metering costs and would also give customers a \$3.30 per kilowatt-month capacity credit. This capacity credit would be based on the average capacity delivered by the customer during the last five control periods—instances that the Companies asked the customer to run their generator(s). Since capacity payments would be based on delivered capacity rather than contracted capacity, the rate schedule would not contain a penalty clause for nonperformance. However, the Companies' would reserve the right to remove any customer from the program if performance does not meet the Companies' needs or expectations. Energy delivered as part of this program would be purchased from customers at the current avoided energy cost on file with the PSC. Any energy used by customers during control periods would be billed at the customers' normal rate.

Customers participating in the program would be required to either isolate their generators from the Companies' system through the use of open transfer switches or install paralleling equipment, which meets the Companies' protective standards. Since

paralleling equipment can be quite expensive (over \$100,000 per installation), eligible customers could be expected to utilize open transfer switches that many already own.

The Companies could use a variety of methods to dispatch the backup generators. For a small standby generation program, the Companies could require customers to install a dedicated telephone line and could request customers to operate their generator verbally using telephones. The customer would be responsible for starting the generator. If the program expanded significantly, the Companies could use computer-generated facsimile messages to contact customers. The customer would be responsible for starting the generator and calling the Companies' to verify receipt of the fax. Verbal telephone contact could serve as a backup communication system for those customers whose fax machines were busy for an extended period of time. The Commercial and Industrial Standby Generations were combined to create one Standby Generation program to compete with supply-side alternatives in the integrated analysis.

RECOMMENDATIONS

The nine programs that passed the quantitative screening process were aggregated into three DSM programs before competing with the supply-side alternatives in the integrated analysis. The direct load control (DLC) of residential air conditioning, the DLC of swimming pools, and the DLC of commercial air conditioning programs were aggregated into one DLC program. The two standby generation programs (commercial and industrial) were aggregated into another DSM program. The three lighting programs (residential, commercial and industrial) and the water heater wrap program were

aggregated into the third DSM program. Aggregating the programs provided two benefits in the integrated analysis.

- 1. It reduces computer simulation time because of fewer alternatives.
- 2. It makes the DSM programs larger (in peak MW reduction).

Aggregate Program	Individual Programs
Direct Load Control	Residential DLC of Central A/C
(5 phases of 22 MW each)	Residential DLC of Pool Pumps
	Commercial DLC of Central A/C
Efficient Lighting	Residential Outdoor Lighting
(2 phases of 23 MW each)	Commercial Lighting
	Industrial Lighting
	Water Heater Wrap Up
Standby Generation	Commercial Standby Generation
(4 phases of 20 MW each)	Industrial Standby Generation

Each of the three aggregated DSM programs was then broken down into phases of similar size (approximately 20 MW). Multiple phases were used to better approximate the ramping up of participants and peak reduction. The size of each phase was set at comparable levels to level the playing field among the DSM programs. The integrated analysis is used to determine the direction the Companies should go in meeting the future needs of our customers. Any DSM program that passes the integrated analysis would be put through a rigorous design phase and would begin as a pilot program.

DSM program design is a complex, dynamic, and time-consuming activity. With the real cost of electricity decreasing and, more importantly, the percent of income spent on electricity decreasing, conservation measures have been receiving less and less attention over the last few years. The level of participation assumed in these DSM programs may err on the optimistic side to give the DSM programs the benefit of doubt. However, alternatives that are ultimately selected through this evaluation process may not be implemented as they have been described in this document. DSM alternatives that are ultimately implemented will be subjected to a much more rigorous program design cycle, which could result in program concepts and program details being changed significantly.

Long List of DSM Alternatives

Residential

- 1 Direct Load Control of Central Air Conditioning
- 2 Geothermal Heat Pump
- 3 Air-Air Heat Pump (replacing resistive heat)
- 4 Air-Air Heat Pump (replacing heat pump)
- 5 Air-Air Heat Pump (replacing gas heat)
- 6 Room Air Conditioner Replacement
- 7 Gas Air Conditioning
- 8 Electric Thermal Storage (special rate)
- 9 Dual Fuel Heating System
- 10 Direct Load Control of Electric Water Heaters
- 11 Water Heater Replacement (elect. to elect.)
- 12 Water Heater Replacement (elect. to gas)
- 13 Water Heater Replacement (gas to elect.)
- 14 Water Heater Wrap Up
- 15 Conservation Efficient Envelope
- 16 House Doctor Energy Audit
- 17 Energy Efficient Lighting
- 18 High Efficiency Outdoor Lighting (retrofit)
- 19 High Efficiency Outdoor Lighting (new)
- 20 Energy Efficient Products
- 21 Refrigerator Replacement
- 22 Direct Load Control of Swimming Pool Pumps
- 23 Removal of 2nd Refrigerator
- 24 Removal of 2nd Freezer
- 25 Low E Windows (new construction)
- 26 Low Flow Shower Heads
- 27 Setback Thermostats
- 28 Smart Thermostats (special rate)
- 29 TOD Rates
- 30 Seasonal Rate Differential
- 31 Demand Subscription
- 32 Efficient Construction
- 33 Education
- 34 Fuel Cells
- 35 Micro Turbines
- 36 Reciprocating Engines
- 37 Sterling Engines
- 38 Photovoltaic
- 39 Solar Water Heating
- 40 Windmills

Long List of DSM Alternatives

Commerical

- 41 Gas Air Conditioning
- 42 Thermal Energy Storage (special rate)
- 43 Direct Load Control of Central Air Conditioning
- 44 High Efficiency Cooling
- 45 Desiccant Cooling
- 46 Geothermal Heat Pump (new construction)
- 47 Direct Load Control of Electric Water Heaters
- 48 Energy Audit
- 49 High Efficiency Lighting
- 50 Energy Management System
- 51 Polarized Refrigerant Oxidant Agent
- 52 Low E Windows (new construction)
- 53 Convection Ovens
- 54 High Efficiency Fryers
- 55 High Efficiency Motors/ASD Motors
- 56 Refrigeration Case Covers/Doors
- 57 TOD Rates
- 58 Interruptible Rates
- 59 Seasonal Rate Differential
- 60 Education
- 61 Construction Building Standards
- 62 Standby Generation (special rate)
- 63 Fuel Cells
- 64 Micro Turbines
- 65 Sterling Engines
- 66 Photovoltaic
- 67 Solar Water Heating
- 68 Windmills

Industrial

- 69 Thermal Energy Storage (special rate)
- 70 High Efficiency HVAC Systems
- 71 Process and Energy Audit
- 72 High Efficiency Lighting
- 73 Variable Speed Motors
- 74 High Efficiency Motor and Adjustable Speed Drives
- 75 Energy Management System
- 76 Compressed Air System Upgrade
- 77 Refrigeration System Upgrades
- 78 TOD Rates
- 79 Interruptible Rates
- 80 Seasonal Rate Differential
- 81 Education
- 82 Standby Generation (special rate)

DSM Screening Process for 1999 IRP

Qualitative Screening Criteria

Criteria	Description	Weighting
Customer Cost	Will a participant's benefits exceed their costs by utilizing this measure?	20%
Customer Acceptance	Are there an acceptable number of customers willing to participate to create a successful program?	30%
Maturity of Technology/ Data Confidence	Is the technology commercially available? Is the necessary data available to evaluate this measure?	20%
Meets Load Shape Objectives	Does the measure have the ability to reduce the seasonal coincident peak demand or increase the annual system load factor?	30%

Each DSM measure will be given a grade for each criterion based on a zero to four scale with four being an excellent rating. Any DSM measure that fails any one criterion (score of 0), fails the qualitative screening. The weighted averages of the ratings will be calculated and the measures that are below the selected cutoff will be eliminated from further evaluation. The selected cutoff will be determined from any obvious breakpoints between the sorted weighted average scores of the measures.

Quantitative Screening Criteria

The quantitative screening analysis will be performed in DSManager and will consist of the following phases.

Phase I:

Phase I will not include the cost to administer the program and will include only one participant per company. All programs that pass the Total Resource Cost Test (TRC) will be analyzed in Phase II.

Phase II:

Each program passing Phase I will be evaluated again, using all costs including the cost of administration and the best estimate of penetration. Each program has to pass the Participants Test and the TRC to be evaluated further.

Each of the DSM programs that pass Phase II of the quantitative screening may be aggregated to create a larger program(s). The aggregate program(s) will then compete with supply-side options in the integrated planning model.

Preliminary DSM Screening Sorted

			· · · · · · · · · · · · · · · · · · ·			
١						
	1			Maturity of		}
A	1		_	Technology/	Meets Load	
S			Customer	Data	Shape	Weighted
S	Program	Customer Cost		Confidence	Objectives	Average
_ <u> </u> _		20%	30%	20%	30%	
—	Direct Load Control of Electric Water Heaters	4	3	4	4	3.7
_	Direct Load Control of Swimming Pool Pumps	4	3	4	4	3.7
	Direct Load Control of Electric Water Heaters	4	3	4	4	3.7
	Thermal Energy Storage (special rate)	3	3	4	4	3.5
-	High Efficiency Lighting	3	4	4	3	3.5
	Direct Load Control of Central Air Conditioning	4	2	4	4	3.4
-	Direct Load Control of Central Air Conditioning	4	2	4	4	3.4
_	Water Heater Wrap Up	4	4	4	2	3.4
_	Standby Generation (special rate)	2	3	4	4	3.3
	Standby Generation (special rate)	2	3	4	4	3.3
	Air-Air Heat Pump (replacing resistive heat)	3	3	4	3	3.2
	Air-Air Heat Pump (replacing heat pump)	3	3	4	3	3.2
	Water Heater Replacement (elect. to gas)	3	3	4	3	3.2
	High Efficiency Outdoor Lighting (new)	3	3	4	3	3.2
	Low E Windows (new construction) High Efficiency Lighting	3	3	4	3	3.2
	400	3	3	4	3	3.2
17 [Interruptible Rates	3	1	4	4	2.9
18 1	TOD Rates	4	2	3	3	2.9
19 R	Conservation - Efficient Envelope	3	3	4	2	2.9
20 R	House Doctor - Energy Audit	4	4	3	1	2.9
21 R	Energy Efficient Products	3	3	4	2	2.9
22 0	Energy Audit	4	3	3	2	2.9
23 (TOD Rates	4	2	3	3	2.9
24 I	Compressed Air System Upgrade	3	3	4	2	2.9
25 R	Removal of 2nd Refrigerator	4	2	4	2	2.8
26 R	Removal of 2nd Freezer	4	2	4	2	2.8
27 R	Low Flow Shower Heads	4	2	4	2	2.8
28 C	Low E Windows (new construction)	2	3	3	3	2.8
29 I	Thermal Energy Storage (special rate)	2	3	3	3	2.8
30 R	Smart Thermostats (special rate)	3	2	2	4	2.8
31 R	Geothermal Heat Pump	2	2	4	3	2.7
32 R	Air-Air Heat Pump (replacing gas heat)	2	2	4	3	2.7
	Dual Fuel Heating System	2	2	4	3	2.7
34 R	Water Heater Replacement (gas to elect.)	2	2	4	3	2.7
35 R	Efficient Construction	3	3	3	2	2.7
36 C	High Efficiency Cooling	2	2	4	3	2.7
37 C	Geothermal Heat Pump (new construction)	3	3	3	2	2.7
38 C	Energy Management System	3	3	3	2	2.7
	High Efficiency Motors/ASD Motors	3	3	3	2	2.7
	High Efficiency HVAC Systems	2	2	4	3	2.7
	High Efficiency Motor and Adjustable Speed Drive	3	3	3	2	2.7
	Energy Management System	3	3	3	2	2.7
	High Efficiency Outdoor Lighting (retrofit)	2_	3	4	2	2.7
44 R	Education	4	4	2	1	2.7

Preliminary DSM Screening Sorted

17	T	1				
,		1		Maturity of		
٦				Technology/	Meets Load	
S		ļ i	Customer	Data	Shape	Weighted
s	Dan arm m	Customer Cost		Confidence	Objectives	Average
ြ	Program	20%	30%	20%	30%	Average
45 1	Seasonal Rate Differential	4	2	2070	3	2.7
_	Room Air Conditioner Replacement	3	2	4	2	2.6
	Water Heater Replacement (elect. to elect.)	3	2	4	2	2.6
	TOD Rates	4	2	3	2	2.6
	Seasonal Rate Differential	4	2	3	2	2.6
_	Seasonal Rate Differential	4	·2	3	2	2.6
	Setback Thermostats	4	3	3	1	2.6
_	Gas Air Conditioning	2	1	3	4	2.5
	Electric Thermal Storage (special rate)	2	2	3	. 3	2.5
	Energy Efficient Lighting	2	3	3	2	2.5
	Refrigerator Replacement	2	3	3	2	2.5
	Reciprocating Engines	1	2	4	3	2.5
	Gas Air Conditioning	2	1	3	4	2.5
	Convection Ovens	2	3	3	2	2.5
-		2	3	3	2	2.5
	High Efficiency Fryers	3	$\frac{3}{2}$	3	2	2.4
	Refrigeration Case Covers/Doors Education	4	3	2	1	2.4
		3	3	3	1	2.4
	Process and Energy Audit	2	2	4	2	2.4
	Refrigeration System Upgrades	2	2	2	3	2.4
	Desiccant Cooling	3	3	1	2	2.3
	Polarized Refrigerant Oxidant Agent		2	3	2	2.2
	Solar Water Heating	2		3	2	2.2
_	Variable Speed Motors	2	2	2		2.1
	Education	4	2		1	
	Solar Water Heating	1	2	3	2	2
	Fuel Cells	2	2	2	2	2
	Photovoltaic	2	2	2	2	2
	Construction Building Standards	1	2	2	2	1.8
	Sterling Engines	1	1	2	3	1.8
	Micro Turbines	2	2	1	2	1.8
_	Sterling Engines	1	1	2	3	1.8
	Micro Turbines	1	2	11	2	1.6
	Fuel Cells	1	1	2	2	1.5
	R Photovoltaic	1	1	2	2	1.5
	Windmills	11	1	2	2	1.5
	Windmills	11	1	2	2	1.5
-	Demand Subscription	4	0	1	4	0
82 (Interruptible Rates	4	0	4	4	0

Wig. Avg. Rating

EXHIBIT DSM-4 Results of Qualitative Screening

Assumptions and Results of Phase I Quantitative Screening Process

				Per Participant	T T				
					Annual		%		Phase I
Customer	•	Program Name in		Peak kw	kWh	New	Free	Measure	TRC
Class	Program Description	DSManager	Cost	Reduction	Reduction	Participants	Riders	Lifetime	B/C
ပ	Direct Load Control of Central Air Conditioning	99CDLCAC	135	2.4	199	2	0	20	14.55
-	Standby Generation (special rate)	99ISTNDB	20000	1000	184000	2	0	20	9.21
2	Direct Load Control of Central Air Conditioning	99RDLCAC	135	96.0	79.5	2	0	20	5.82
~	Direct Load Control of Swimming Pool Pumps	99RDLCPP	135	0.746	131	2	0	20	4.92
~	WH wrap up	99RWHRAP	15	0.02	258	2	0	20	4.04
၁	Standby Generation (special rate)	99CSTNDB	87500	200	92000	2	0	20	2.63
~	Direct Load Control of Electric Water Heaters	99RDLCWH	135	0.43	0	2	0	20	2.37
၁	Direct Load Control of Electric Water Heaters	99CDLCWH	135	0.3	0	2	0	20	1.64
I	High Efficiency Lighting	991LIGHT	100000	06	628275	2	0	20	1.64
×	High Efficiency Outdoor Lighting (new)	99ROUTLT	65	0.02	459	2	0	20	1.51
C	High Efficiency Lighting	99CLIGHT	50000	45	208328	2	0	20	1.23
22	Air-Air Heat Pump (replacing resistive heat)	99RAAHPR	3500	0.89	10025	2	0	20	0.70
~	Water Heater Replacement (elect. to gas)	99RWHGAS	200	0.43	2800	2	0	20	0.63
ပ	Thermal Energy Storage (special rate)	99CTES	63300	64.95	37328	2	0	20	0.60
~	Low E Windows (new construction)	99RLOWEW	360	0.15	645	2	0	70	0.55
2	Air-Air Heat Pump (replacing heat pump)	99RAAHPA	1000	0.21	1276	2	0	20	0.36

11/8/1999 1:49 PM

Cost of Direct Load Control of Residential Electric Water Heaters

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Direct Program Labor Office Supplies & Expenses Data Processing Advertising Outside Services/Install Equipment Maintenance of Equipment Rebates/Incentives Market Research Program Evaluation		6,062 500 2,000 3,441 10,889 13,781 635 2,618 5,000	6,065 500 2,000 56,063 180,667 225,570 11,198 44,498 0 2,000	6,067 500 2,000 78,162 256,863 319,153 26,562 102,083 1,000	6,069 500 2,000 78,239 265,340 330,962 42,917 159,668 1,000	6,072 500 2,000 78,008 274,627 344,531 60,439 217,253 1,000	6,074 500 2,000 71,545 258,399 326,052 77,627 269,603 1,000	6,077 500 2,000 61,169 227,326 287,952 93,605 314,100 1,000	3,040 250 2,000 41,480 94,368 306,248	3,041 250 2,000 42,891 95,074 288,395 0	3,042 250 500 2,000 41,352 0 95,800 291,066	3,044 250 2,000 42,717 0 96,469 283,737 0
Total Program Expenses		44,926	528,560	792,390	887,693	985,429	1,013,799	994,729	447,885	442,151	434,010	429,717
Program Costs less Incentives less Equipment		28,528	258,493	371,154	397,064	423,645	418,145	392,677	141,638	143,756	142,944	145,980

Number of Customers Penetration	Cumul.	0	175	2,967	908'9	10,645	14,484	17,974	20,940	20,417	19,893	19,404	18,916
Number of Penel	Annual	0	175	2,792	3,839	3,839	3,839	3,490	2,967	(524)	(524)	(489)	(489)
i	1	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

Program Labor assumes 0.1 FTE 2000 through 2006, 0.05 FTE after 2006. Advertising Expense based on \$20 per new participant through 2006. Dutside Services based on installation cost of \$60/switch. Equipment expense based on cost of \$75/switch. Maintenance expense based on \$35/switch on 10% of cumulative switches per year.
assumes 0.1 FTE inse based on \$20 s based on installa nse based on cost oense based on \$3 on \$15 per year.

Cost of Direct Load Control of Residential Pool Pumps

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Direct Program Labor Office Supplies & Expenses		6,062	6,065	6,067	6,069	6,072	6,074	6,077	3,040	3,041	3,042	3,044
Data Processing		2,000	1,000	1,000	1,000	1,000	1,000	1,000	500	200	500	500
Outside Services/Install		1,810	30,025	42,688	44,097	45,640	42,943	37,779	6,894	7,128	6,872	660'2
Equipment Maintenance of Equipment		2,290 106	37,487 1,861	53,040 4,414	55,002 7,132	57,257 10,044	54,186 12,901	47,855 15,556	0 15,683	0 15,800	0 15,921	0 16,032
Rebates/Incentives		435	7,395	16,965	26,535	36,105	44,805	52,200	50,895	49,590	48,372	47,154
Market Research		5,000	0	1,000	0	1,000	0	1,000	0	0	0	0
Program Evaluation		0	0	2,000	0	1,000	0	1,000	0	0	0	1,000
Total Program Expenses		18,775	93,650	140,664	153,338	171,582	174,299	173,132	79,261	78,309	76,957	670,77
Program Costs less Incentives less Equipment		16,049	48,768	70,659	71,800	78,220	75,308	73,078	28,366	28,719	28,585	29,925

										•			
Number of Customers Penetration	Cumul.	0	29	493	1,131	1,769	2,407	2,987	3,480	3,393	3,306	3,225	3,144
Number of Penet	Annual	0	29	464	638	638	638	580	493	(87)	(87)	(81)	(81)
		1999	2000	2001	2002	2003	2004	2002	2006	2002	2008	2009	2010

Program Labor assumes 0.1 FTE 2000 through 2006, 0.05 FTE after 2006.
Advertising Expense based on \$20 per new participant through 2006.
Outside Services based on installation cost of \$60/switch.
Equipment expense based on cost of \$75/switch.
Maintenance expense based on \$35/switch on 10% of cumulative switches per year.
Incentive based on \$15 per year.

Cost of Direct Load Control of Residential Central Air Conditioners

. (,			•	1					•	;	
Program Cost	1999	2000	2001	2002	2003	2004	2005	2008	2007	2008	2009	2010
Direct Program Labor	•	93,600	97,083	100,363	103,675	107,304	111,080	114,947	59,427		63,476	65,570
Office Supplies & Expense	•	2,500	2,000	5,000	6,000	5,000	6,000	6,000	2,500		2,500	2,500
Data Processing		30,000	20,000	20,000	20,000	20,000	20,000	20,000	5,000		6,000	
Advertising	٠	100,000	316,782	443,416	451,841	459,070	427,770	374,876	132,872		133,326	
Outside Services/Install	٠	30,000	1,155,341	1,591,996	1,640,572	1,693,792	1,600,795	1,422,729	357,710		356,976	364,796
Equipment		45,000	1,517,663	1,828,958	1,896,628	1,974,389	1,868,490	1,650,157	•	•		
Maintenance of Equipment		•	•	152,218	245,941	346,353	444,855	536,418	540,790		648,995	552,832
Rebates/Incentives	•	20,000	340,000	780,000	1,220,000	1,660,000	2,060,000	2,400,000	2,340,000		2,224,000	
Market Research		15,000	2,000	10,000	10,000	10,000	10,000	10,000	•		•	2,000
Program Evaluation		•	10,000	20,000	20,000	10,000	30,000	30,000	•			
Total Program Expenses		336,100	3,466,849	4,951,949	5,613,656	6,285,908	6,577,970	6,564,127	3,438,298	3,392,668	3,334,273	3,302,047
Program Costs less Incentives less Equipment	s	271,100	1,609,186	2,342,993	2,497,029	2,651,519	2,649,480	2,513,970	1,098,298	1,112,668	1,110,273	1,134,047

1					·		Program Labor assumes 1.5 FTE 2000 through 2008, 0.75 FTE after 2006.	Advertising Exp. based on \$20 per new part. through 2006, \$1 per cumulative part. after 2006.	Outside Services based on installation cost of \$60/switch.	Equipment expense based on cost of \$75/switch.	Maintenance expense base on \$35/switch on 10% of cumulative switches per year.	Incentive based on \$20 per year.	
O COLOREDO	Cumul.	0	1,000	17,000	39,000	61,000	83,000	103,000	120,000	117,000	114,000	111,200	108,400
	Annual	0	1,000	16,000	22,000	22,000	22,000	20,000	17,000	(3,000)	(3,000)	(2,800)	(2,800)
	•	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

11/8/1999 1:31 PM

EXHIBIT DSM-9

Cost of Water Heater Wrap Up

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007
Direct Program Labor Office Supplies & Expenses Data Processing Advertising Outside Services/install Equipment Maintenance of Equipment Rebates/incentives Market Research Program Evaluation		15,156 250 2,500 122,857 123,750 0 0 5,000	7,581 250 0 157,143 165,000 0 0	7,584 250 196,429 206,250 0 0 0 0 0 5,000	7,586 250 0 117,857 123,750 0 0	00000000	000000000	00000000	00000000
Total Program Expenses		269,513	329,974	415,512	249,444	0	0	0	0

Program Labor assumes 0.25 FTE in 2000 and 0.125 FTE after.
Advertising assumes 7% response rate @\$1 each, \$5000 development.
Outside services - fulfillment @\$25 - 10 from customer
Penetration assumes 3%/year of combined total market of 275,000 res. Elec. WH.
Participation spread equally among KU and LG&E customers.

Customers	Penetration	Cumul.	0	8,250	19,250	33,000	41.250
Number of Customers	Penet	Annual		8,250	11,000	13,750	8.250
		•	1999	2000	2001	2002	2003

Cost of Residential Outdoor Lighting

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007
Direct Program Labor Office Supplies & Expenses Data Processing Advertising Outside Services/Install Equipment Maintenance of Equipment Rebates/Incentives Market Research Program Evaluation		15,156 250 2,500 73,000 73,000 0 365,000 2,500	7,581 250 0 73,000 73,000 73,000 0 365,000 0	7,584 250 73,000 73,000 0 365,000 5,000	7,586 250 0 73,000 73,000 0 365,000	000000000	00000000	00000000	000000000
Total Program Expenses Program Costs less Incentives		536,406	518,831 153,831	523,834 158,834	518,836	0 0	0 0	0 0	0 0

Program Labor assumes 0.25 FTE in 2000 and 0.125 FTE affer.
Advertising assumes, \$5000 development, \$5/participant
Outside services - processing rebates & data processing @ \$5 per participant.
Incentive includes \$25 per participant.
Penetration assumes 2%/year of combined total market of 730,000 res. customers.
Participation spread equally among KU and LG&E customers.
Assumes participants pay \$65 for installing HID instead of incandescent fixtures.

Number of Customers	Penetration	Cumul.	0	14,600	29,200	43,800	58,400
Number of	Penet	Annual		14,600	14,600	14,600	14,600
		I	1999	2000	2001	2002	2003

Cost of Direct Load Control of Commercial Electric Water Heaters

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Direct Program Labor Office Supplies & Expenses Data Processing Advertising Outside Services/Install Equipment Maintenance of Equipment Rebates/Incentives		6,062 2,000 5,000 5,000 1,496 146 600	6,065 500 1,000 1,616 5,177 6,463 453 1,800	6,067 500 1,000 4,040 13,382 16,627 1,249 4,800	6,069 500 1,000 4,041 13,823 17,242 2,097 7,800	6,072 500 1,000 4,042 14,307 17,949 3,005 10,800	6,074 500 1,000 2,830 10,366 13,079 3,714 12,900	6,077 500 1,000 2,022 7,663 9,707 4,291 14,400	3,040 250 500 1,214 4,754 6,045 4,715 15,300	3,041 250 100 0 0 4,875 15,300	3,042 250 100 0 0 0 5,036 15,300	3,044 250 100 0 0 5,202 15,300
Market Research Program Evaluation		0 000'c	2,000	000	1,000	1,000	1,000	1,000	0	0	0	1,000
Total Program Expenses		24,963	25,074	48,665	54,572	59,674	52,463	47,660	35,817	23,566	23,728	24,896
Program Costs less Incentives less Equipment		21,204	16,810	27,238	29,530	30,925	26,484	23,553	14,472	8,266	8,428	9,596

Number of Customers Penetration	Cumul.	0	40	120	320	520	720	860	096	1020	1020	1020	1020
Number of Penel	Annual		000 40				004 200				0 800		2010 0
N	¥	1999	2000	2001	2002	2003 2		2005		2007	2008	2009	2010

Program Labor assumes 0.1 FTE 2000 through 2005, 0.05 FTE affer 2005.
Advertising Expense based on \$20 per new participant through 2006.
Outside Services based on installation cost of \$60/switch.
Equipment expense based on cost of \$75/switch.
Maintenance expense based on \$35/switch on 10% of cumulative switches per year.
Incentive based on \$15 per year.
Participation spread equally among KU and LG&E customers.

Assumptions

EXHIBIT DSM-12

Commercial Standby Generation

				•
2007	28,148 500	10,000 8,000 80,080 0	124,728	3,302 11,512 1,029,600
2006	25,288 500	10,000 8,000 73,920	117,708	3,193 11,177 950,400
2005	24,433 500	10,000 8,000 67,760	110,693	3,085 10,851 871,200
2004	23,607 500	20,000 16,000 61,600	121,707	2,981 10,504 792,000
2003	22,809 500	20,000 16,000 49,280	108,589	2,880 10,169 633,600
2002	66,909 500	20,000 16,000 36,960	140,369	2,788 9,835 475,200
2001	64,709 500	20,000 16,000 24,640 0 2,000	127,849	2,696 9,539 316,800
2000	62,400 500	14,000 20,000 16,000 12,320 2,000	127,220	2,600 9,252 158,400
1999				
Program Cost	Direct Program Labor Office Supplies & Expenses Data Processing	Advertising Outside Services/Install Equipment Rebates/Incentives Market Research Program Evaluation	Total Program Expenses	Participant Cost Maintenance of Equipment Fuel Expense Credit

Program Labor assumes 1 F 1 E 2000 through 2002, 0.33 F 1 E through 2007

Outside services includes installation cost of \$2500 per participant.

Equipment cost is assumed to be \$2000 per participant.

Incentive is based on \$0.01232/kwh, 500kw, and 250 hours.

Maint. Cost assumes \$5/kw/yr, 500 kw

Fuel expense assumes 0.08 gals/kwh, \$0.90/gallon, 500kw, 250 hours of operation.

Participation spread equally among KU and LG&E customers.

Demand Credit (\$3.3/kw/month)(500 kw)(12 months)

Number of Customers	Penetration	Cumul.	0	80	16	24	32	4	4	8	52
Number of	Pene	Annual	0	œ	œ	œ	œ	œ	4	4	4
	1		1999	2000	2001	2002	2003	2004	2005	2006	2007

Cost of Commercial Lighting

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007
Direct Program Labor		30,312	15,162	15,167	15,173	0	0	0	0
Office Supplies & Expenses		250	250	250	250	0	0	0	0
Data Processing		2,500		0	0	0	0	0	0
Advertising		10,000	5,000	5,000	5,000	0	0	0	0
Outside Services/Install		203,000	253,750	304,500	406,000	0	0	0	0
Equipment		0	0	0	0	0	0	0	0
Maintenance of Equipment		0	0	0	0	0	0	0	0
Rebates/Incentives		0	0	0	0	0	0	0	0
Market Research		2,500	0	0	0	0	0	0	0
Program Evaluation		0		2,000	0	2,000	0	0	0
Total Program Expenses		248,562	274,162	329,917	426,423	2,000	0		0

Program Labor assumes 0.5 FTE in 2000 and 0.25 FTE after.
Advertising assumes, \$5000 development, \$5000/year.
Outside services - 35% large audits @ \$350, 65% small audits @ \$800.
Cutside services - 35% large audits @ \$350, 65% small audits @ \$800.
Small = 7,000 sq ft
Assumes 20% implementation.
Participation spread equally among KU and LG&E customers.
Assumes participants pay \$50,000 for re-lamping.

Number of Customers Number of Customers Receiving Audits Implementing Lighting Annual Cumul. 1999 0 2000 400 2001 500 2002 600 2003 1,500 2004 1,500 2005 1,500 2007 1,500 2008 1,500 2009 1,500 2001 1,500 2002 1,500 2003 160 460	Customers	ng Lighting	Cumul.	0	8	9	300	460	
Number of Customers Receiving Audits 1999 Annual Cumul. 1999 400 400 2000 500 900 2001 600 1,500 2002 800 2,300 2003	Number of	Implementi	Annual		8	Ş	120	160	
		,	ļ		2000	2001	2002	2003	
	Customers	ng Audits	Cumul.	0	90	006	1,500	2,300	
	Number of	Receivin	Annual		9	200	909	800	
*****			I						

Cost of Direct Load Control of Commercial Central Air Conditioners

Program Cost	1999	2000	2001	2002	2003	2004	2005	2008	2007	2008	2009	2010
							i i	! !	!		! ! !	! !
Direct Program Labor	,	31,200	32,354	33,454	34,558	35,768	37,020	38,316	19,809	20,483	21,169	21,857
Office Supplies & Expense	•	500	200	200	200	200	600	200	250	250	250	250
Data Processing	•	2,000	2,000	2,000	2,000	2,000	2,000	2,000	200	200	200	600
Advertising	• .	10,000	1,618	4,040	4,041	4,042	2,830	2,022	1,214		•	•
Outside Services/Install		30,000	125,177	13,382	13,823	14,307	10,388	7,663	4,754			
Equipment	•	45,000	6,463	16,627	17,242	17,949	13,079	9,707	6,045	•	•	•
Maintenance of Equipment		•		1,249	2,097	3,005	3,714	4,291	4,715	4,875	5,036	5,202
Rebates/Incentives	•	2,000	000'9	16,000	26,000	36,000	43,000	48,000	51,000	51,000	51,000	51,000
Market Research		5,000	•	1,000	1,000	1,000	1,000	1,000	•	•	•	2,000
Program Evaluation		•	2,000	•	1,000			1,000		•		6,000
Total Program Expenses		125,700	176,110	88,252	102,262	114,570	113,509	114,499	88,287	77,108	77,944	608'88
Program Costs less Incentives less Equipment	ta.	78,700	163,647	55,626	59,019	60,621	67,430	56,792	31,242	26,108	26,944	37,809

r Customer	tration
umber of	Penet
2	

	_												
	Cumul.	o	40	120	320	520	720	860	960	1,020	1,020	1,020	0 1,020
	Annual	0	40	80	200	200	200	140	100	90	0	0	0
-		1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

Program Labor assumes 0.5 FTE 2000 through 2006, 0.25 FTE after 2006.

Advertising Expense based on \$20 per new participant through 2008.

Outside Services based on installation cost of \$80/switch.

Equipment expense based on cost of \$75/switch.

Maintenance expense based on \$35/switch on 10% of cumulative switches per year.

Incentive based on \$50 per year.

Participation spread equally among KU and LG&E customers.

EXHIBIT DSM-15

Industrial Standby Generation

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007
Direct Program Labor Office Supplies & Expenses		62,400 500	64,709 500	66,909 500	22,809 500	23,607	24,433 500	25,288 500	26,148 500
Data Processing Advertising Outside Services/Install		14,000	20,000	20,000	20,000	20,000	10,000	10,000	10,000
Equipment Rebates/Incentives		32,000 24,640	32,000 49,280	32,000 73,920	32,000 98,560	32,000 123,200	16,000 135,520	16,000 147,840	16,000 160,160
Market Research Program Evaluation		2,000	2,000	0					00
Total Program Expenses		155,540	168,489	193,329	173,869	199,307	186,453	199,628	212,808
Participant Cost Maintenance of Equipment Fuel Expense Credit		5,200 18,504 316,800	5,392 19,078 633,600	5,576 19,669 950,400	5,760 20,338 1,267,200	5,961 21,009 1,584,000	6,170 21,702 1,742,400	6,386 22,353 1,900,800	6,603 23,024 2,059,200

Prog	Program Labor assumes 1 F1E 2000 through 2002, 0.33 F1E through 2007
Onts	Outside services includes installation cost of \$2500 per participant.
Equi	Equipment cost is assumed to be \$4000 per participant.
Incer	Incentive is based on \$0.01232/kwh, 500kw, and 250 hours.
Main	Maint. Cost assumes \$5/kw/yr, 1000 kw
Fuel	Fuel expense assumes 0.08 gals/kwh, \$0.90/gallon, 1000kw, 250 hours of operation.
Parti	Participation spread equally among KU and LG&E customers.
Dem	Demand Credit (\$3.3/kw/month)(1000 kw)(12 months)

Customers ration	Cumul.	0	80	16	24	32	4	4	₹	52
Number of Customers Penetration	Annual	0	∞	00	œ	œ	œ	4	4	4
		1999	2000	2001	2002	2003	2004	2005	2006	2007

Cost of Industrial Lighting

Program Cost	1999	2000	2001	2002	2003	2004	2005	2006	2007
Direct Program Labor		30,312	15,162	15,167	15,173	0	0	0	0
Office Supplies & Expenses		250	250	250	220	0	0	0	0
Data Processing		2,500	0	0	0	0	0	0	0
Advertising		3,500	1,000	000,	1,000	0	0	0	0
Outside Services/Install	•	25,000	20,000	20,000	25,000	0	0	0	0
Equipment		0	0	0	0	0	0	0	0
Maintenance of Equipment		0	0	0	0	0	0	0	0
Rebates/Incentives		0	0	0	0	0	0	0	0
Market Research		000'	0	0	0	0	0	0	0
Program Evaluation		0	0	2,500	0	2,000	0	0	0
Total Program Expenses		62,562	66,412	68,917	41,423	2,000	0	0	0

Program Labor assumes 0.5 FTE in 2000 and 0.25 FTE after.
Advertising assumes, \$2500 development, \$1000/year.
Outside services assumes \$500 per audit.
Assume 15% implementation.
Average size 100,000 sq ft.
Participation spread equally among KU and LG&E customers.
Assumes participants pay \$100,000 for re-lamping.

f Customers ting Lighting	Cumul.	0	80	23	38	₹
Number of Implement	Annual		œ	15	15	œ
		1999	2000	2001	2002	2003
Ā	Cumul.	0	20	150	250	300
Number o Receiving	Annua		යි	8	8	20
		1999	2000	2001	2002	2003

11/8/1999 1:30 PM

EXHIBIT DSM-17

Assumptions and Results of Phase II Quantitative Screening Process

						•		
			Per Pa	Per Participant			Phase II B/C Ratio	Ratio
					%			
ustomer		Program Name	Peak kw	Annual kWh	Free	Free Measure		
Class	Program Description	in DSManager	Reduction	Reduction	Riders	Lifetime	Riders Lifetime Participants	TRC
R	High Efficiency Outdoor Lighting (new)	99RLITE2	0.02	459	0	20	12.99	3.75
_	Standby Generation (special rate)	99ISTND2	1000	184000	0	20	3.35	2.59
၁	Standby Generation (special rate)	99CSTND2	200	92000	0	20	3.92	2.45
2	Direct Load Control of Central Air Conditioning 99RDLAC2	99RDLAC2	96.0	79.5	0	20	infinite	1.81
I	High Efficiency Lighting	99ILITE2	06	628275	0	20	3.18	1.64
ပ	Direct Load Control of Central Air Conditioning 99CDLAC2	99CDLAC2	2.4	199	0	20	infinite	1.61
2	Direct Load Control of Swimming Pool Pumps	99RDLCP2	0.746	131	0	20	infinite	1.59
2	WH wrap up	99RWRAP2	0.02	258	0	20	15.46	1.57
၁	High Efficiency Lighting	99CLITE2	45	208328	0	20	2.24	1.21
~	Direct Load Control of Electric Water Heaters	99RDLWH2	0.43	0	0	20	infinite	0.87
٥	Direct Load Control of Electric Water Heaters	99CDLWH2	0.3	0	. 0	20	infinite	0.51

Kentucky Utilities Company and Louisville Gas & Electric Company

Analysis of Supply-Side Technology Alternatives

Prepared by

Generation Systems Planning

August 1999

KENTUCKY UTILITIES COMPANY LOUISVILLE GAS & ELECTRIC COMPANY ANALYSIS OF SUPPLY-SIDE TECHNOLOGY ALTERNATIVES

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	1
	DUCTION	2
DATA S	SOURCES	2
DATA A	ADJUSTMENTS	3
TECHN	OLOGIES SCREENED	6
Coal-	Fueled Technologies	6
1.	Pulverized Coal	
2.	Fluidized - Bed Combustion	7
3.	Integrated Gasification-Combined Cycle (IGCC)	9
Liqui	d/Gas-Fueled Technologies	10
1.	Simple-Cycle Combustion Turbine (CT)	10
2.	Aeroderivative Combustion Turbines	11
3.	Combustion Turbine-Combined Cycle (CT-CC)	
4.	Fuel Cell	12
Renev	wable Resource Technologies	13
1.	Geothermal	13
2.	Solar	
3.	Wind Turbines	16
4.	Municipal Solid Waste	
5.	Biomass	18
Energ	y Storage Technologies	19
1.	Battery Energy Storage (BES)	
2.	Pumped Hydro Energy Storage (PHES)	
3.	Compressed Air Energy Storage (CAES)	21
4.	Compressed Air Energy Storage with Humid Air Turbine (CASH)	21
5.	Super Conducting Magnetic Energy Storage (SMES)	22
Hydr	oelectric Technologies	22
1.	Ohio Falls Expansion	22
2.	IPP Hydro	23
Other	· Technologies	23
1.	Cane Run Rehabilitation with Natural Gas	23
2.	Inlet Air Cooling on Brown CTs	
Nucle	ar-Fueled Technologies	24

SENSI	TIVITY ANALYSIS	25	
Capital Cost Sensitivity			
2.	Technology Operating Efficiency	30	
3.	Fuel Cost	31	
Resultir	ng Scenarios	32	
Screening Analysis		33	
Levelize	ed Screening Methodology and Results	35	
1.	Base Analysis with SO ₂ Impact	35	
2.	Alternative Analysis with CO ₂ Impact	42	
Recom	nendations	. 46	

KENTUCKY UTILITIES COMPANY LOUISVILLE GAS & ELECTRIC COMPANY ANALYSIS OF SUPPLY-SIDE TECHNOLOGY ALTERNATIVES

EXECUTIVE SUMMARY

Kentucky Utilities Company and Louisville Gas and Electric Company ("Companies") conducted a detailed screening analysis of supply-side alternatives in conjunction with the Companies' development of a least-cost generation expansion strategy. The purpose of the screening analysis is to evaluate, compare and suggest the least-cost supply-side technology options for use in subsequent integrated resource optimization analysis.

The TAG Supply program developed by the Electric Power Research Institute (EPRI) is the main source of data for the analysis presented in this study. Adjustments were made to the EPRI data to insure the most accurate estimate of each technology's economic parameters. EPRI based information used in this screening analysis includes technology type, capital cost, operation and maintenance cost, heat rate, level of technological maturity, and the expected commercial operation date. Other alternatives based upon competitive bids, company developed opportunities and IPP proposals were also included.

Alternatives were screened through a levelized screening analysis. In a levelized screening analysis, total costs are calculated for each alternative, at various levels of utilization, over a 30-year period and levelized to reflect uniform payment streams in each year. This method tends to be a more forward-looking method than other methods since it evaluates the economics of owning and operating a unit over a multi-year period. The levelized costs of each alternative at varying capacity factors are then compared and the least-cost technologies for each capacity factor increment throughout the planning period are determined. The screening analysis considered three sensitivity variables; they are capital cost, heat rate and fuel cost. Environmental cost were included in the analysis is several ways. The cost associated with NO_x emission was included in the capital cost of the technology. Environmental cost implications of the current sulfur dioxide emission regulations was considered as part of the base analysis. The impact of potential carbon dioxide emission regulations, although no regulation is currently in place for the emission of this effluent, was also included as an alternative case to the base analysis.

Based on the results of the levelized screening analysis, it is recommended that the technologies listed in Table 1 be retained for further evaluation in integrated resource optimization analysis.

Table 1 Alternative Recommended for further Analysis

Combined Cycle Combustion Turbine Phased – 470 MW
Combined Cycle Combustion Turbine Un-Phased – 345 MW
Combustion Turbine at Brown – 160 MW
Greenfield Site Combustion Turbine – 160 MW
Inlet Air Cooling at existing Brown CT's
IPP Hydro purchase
Pulverized Coal unit at Trimble County – 495 MW

KENTUCKY UTILITIES COMPANY LOUISVILLE GAS AND ELECTRIC COMPANY ANALYSIS OF SUPPLY-SIDE TECHNOLOGY ALTERNATIVES

INTRODUCTION

The purpose of this study is to evaluate various supply-side technology costs and performance estimates for currently available and emerging technologies. Screening of supply-side options is necessary for several reasons. First, each technology is constructed for optimal (least-cost) operation at various levels of utilization. Second, multiple capacity sizes of a particular technology exist from which to choose. Finally, a detailed evaluation (using production costing computer models) of all currently available/emerging technologies is impractical due to the large number of possible alternatives and the significant amount of time required for computer simulation if each were modeled individually. Therefore, it is necessary to reduce the list of possible technology alternatives to a more manageable size. To achieve this, a discussion of the sources for, and adjustments to, the data presented within this analysis and a brief description of each generating technology will be presented. This is followed by a discussion of the levelized screening methodology and associated sensitivities. Finally, the basis for recommending one technology over another and those technologies suggested for additional computer simulation are identified.

DATA SOURCES

The Electric Power Research Institute (EPRI) published their Technical Assessment Guide (TAG) in 1993. Since then, EPRI has developed a computer software package, TAG Supply, that contains the documentation and data in a computer based environment. The latest version of TAG

Supply, TAG Supply for Windows Version 3.08, was utilized as the main source of data. EPRI's April 1999 database release was incorporated into the software package and utilized in the screening analysis. TAG provides data and methods for determining the relative cost and performance of current and advanced electric generation and storage technologies. TAG contains various supply-side technologies, a brief explanation of each technology, facility MW sizes, fuels, and other technology-specific parametric data based on engineering cost studies completed by EPRI, researchers, and manufacturers. EPRI also uses two rating systems to give an overall confidence level to the data associated with each technology. One technology classification system is based on a technology's development status, while the other system is based on the level of effort expended in the design and cost estimate. These rating systems will be discussed later within this document.

TAG Supply is a PC software package that was developed to help tailor the TAG data to a company's specific values as well as organize and store the TAG data. The TAG Supply for Windows Version 3.08 software includes most of the technology specific data from the 1993 published TAG (updated where possible) as well as several new technologies not specifically listed in the 1993 TAG document. It includes the documentation on-line instead of in a published format. EPRI's April 1999 database release used in this analysis contains updated cost, performance and design characteristics for each technology.

DATA ADJUSTMENTS

Adjustments were made to each technology within TAG Supply to insure the most accurate cost and performance estimates for each technology. The following data adjustments were made during the course of this analysis:

(1) regionalized each technology to the East Central region, which includes the Commonwealth of Kentucky

- (2) assigned the Companies' specific economic data (cost of capital, inflation rate, income tax rate and property tax rates), labor rates, and limestone cost representative of the Companies' cost to each technology
- revised combustion turbine (CT) cost for TAG Supply technologies 15.1, 15.2, and 15.3 to reflect current bid prices for these types and sizes of CTs
- (4) adjusted TAG Supply technologies 16.1 and 16.2 to reflect a two (CT) on one (Heat Recovery Steam Generator) design for a combustion turbine combined-cycle (CT-CC) instead of the single shaft CT-CC setup utilized in TAG Supply

The first adjustment, regionalization of each technology to the East Central region, requires further explanation. TAG Supply construction cost estimates are based on technologies constructed across North America. Therefore, EPRI includes "Regionalization Factors" in TAG Supply. Regionalization can be done on a Region-by-Region or State-by-State basis through these regionalization factors. Through regionalization, technologies whose cost estimates were based on construction in other regions and in specific states may be compared on similar economic terms. EPRI divides North America into seven regions and assigns a regionalization factor to each region. Regionalization factors exist in TAG Supply for state to state comparison; however, this detail of an adjustment was not performed for two reasons. First, it is the Companies' opinion that the level of detail represented by the state regionalization factors is not appropriate for a thirty-year analysis. Second, it is not know in which state a selected alternative might be constructed. Therefore, to regionalize to a specific state instead of a region would not be appropriate. Regionalization factors attempt to quantify the cost differences associated with construction of a specific technology in two different regions by inflating or deflating the capital cost of the technology. There are five different cost components of the capital cost to which regionalization factors have been developed (material, labor, productivity, indirects and

subcontracts). A regionalization factor greater than 1.0 indicates a cost increase. A listing of the regions within TAG Supply, the associated regionalization factors and a simple example can be found in Exhibit 1 of Appendix A.

Kentucky is in the East Central Region. Therefore, technologies whose construction costs are developed based on being constructed in another region must be regionalized to the East Central (or target) Region. The capital cost adjustment is accomplished through multiplying each component of the capital cost by the appropriate regionalization factor.

Because regionalization alters only the initial capital cost and does not affect the fuel cost or other economic parameters (i.e., inflation rate, property tax rate, etc.), a second adjustment to the TAG Supply database was performed. The second adjustment consists of assigning the Companies' specific economic data to each technology within TAG Supply. Through this adjustment, technology construction and operation costs more closely approximate those costs incurred within the Companies' service territory. The economic parameters utilized in this study are identified within Exhibit 2 of Appendix A.

Recent bids received by the Companies for CTs indicated that the capital cost utilized by TAG Supply was high. Therefore, the capital costs of the CT's were adjusted to reflect the current bid prices for the machines.

A final adjustment was made to the TAG Supply CT-CC technologies 16.1 and 16.2. The CT-CC technologies utilized by TAG Supply assumes a single shaft design with one CT feeding a heat recovery steam generator (HRSG). Lower cost can be achieved by installing two CTs for each HRSG. EPRI provides cost adjustment factors to be applied to the total plant cost, fixed O&M cost and variable O&M cost of the CT-CC technologies in order to approximate the cost of the 2-on-1

systems. One CT-CC technology in TAG Supply was not adjusted for a 2-on-1 design. Technology 16.3 is based upon the larger "G" class combustion turbines that are in the development stages. To create a 2-on-1 system with these machines would create a much larger unit than would be necessary on the Companies' system. Therefore, this technology was left as a single shaft CT-CC.

The result of the aforementioned adjustments is a database of technologies with a better estimate of technology cost and performance. For convenience, the database resulting from both modifications is referred to as the regionalized database. A description of each of the technology groups included in the analysis follows. Exhibit 3 of Appendix A contains a listing of the technologies screened as well as the categories (i.e. Coal-Fueled Technologies) and sub-categories (i.e. Pulverized Coal) each one is listed under in the following section.

TECHNOLOGIES SCREENED

Coal-Fueled Technologies

1. Pulverized Coal

Conventional pulverized coal-fired units are currently used to supply most of the Companies' present generation needs. State and federal emissions control requirements require that coal-fired units control air emissions, water discharge, and solid waste disposal. Examples of air emission requirements include the 1979 New Source Performance Standards (NSPS) requiring new coal-fired units to use flue gas desulfurization (FGD) systems to control SO₂ emissions, combustion modifications to control NO_x emissions, and either electrostatic precipitators (ESPs) or fabric filters to control particulate emissions.

Conventional pulverized coal generation is a mature technology used throughout the utility industry. Typically, coal-fired units have high capital costs, long construction periods (up to 10 years) and are economical for base load duty. Coal-fired unit cycling and load following is detrimental to the economics of coal generation and increases the maintenance requirement. Several designs and capacity sizes of coal units from TAG Supply as well as an alternative for the installation of a second unit at Trimble County were evaluated.

2. Fluidized - Bed Combustion

Fluidized bed combustion (FBC) boilers with steam turbine generators have been widely used in the United States, Europe, and Japan since the mid-1980s for independent power/cogeneration and utility power. There are two types of FBC: Atmospheric FBC (AFBC) and Pressurized FBC (PFBC).

Atmospheric fluidized-bed combustion (AFBC) combines crushed coal with limestone particles in a bed that is fluidized by upwardly flowing air. AFBC technology allows units to burn a diversity of fuels and simultaneously satisfy environmental requirements without costly control equipment such as FGDs and NO_x control systems.

Cost and performance estimates for these units are based on small scale (less than 200 MW) or pilot plant facilities. These estimates project high capital and operating costs and long construction lead time (up to 10 years). The complexity and non-modular design of AFBC units decreases their availability to below that of combined cycle and coal gasification units. Although most applications of AFBC technology have been relatively small, the upper size limit for a single AFBC boiler is estimated to be between 250 to 300 MW. AFBC technology is currently classified

by EPRI as being in the commercial stage of development and is considered economical for base load duty.

Pressurized Fluidized-Bed Combustion (PFBC) plants have the potential to surpass the efficiency of conventional pulverized coal-fired plants with flue gas desulfurization by as much as 10% and still maintain competitive capital costs. PFBC boilers reduce most of the sulfur emissions from coal combustion by pneumatically injecting crushed coal and dolomite (limestone rich in magnesium carbonate) into the boiler. PFBC plants are similar to AFBC plants except the boiler operates at approximately 10 atmospheres pressure. There are two sub categories of PFBC plants: bubbling fluidized-bed and circulating fluidized-bed. PFBC technology lags AFBC technology by several years.

Advantages of PFBC operation include higher thermal efficiency (in excess of 40%) resulting from the unit's modular makeup, and smaller boiler requirements. The higher thermal efficiency of PFBC technology coupled with its ability to squeeze more generation capacity into limited space make this a desirable technology. High-pressure operation also produces hot gases from the combustor that, after particulate removal, can be used to drive a gas turbine directly, as in a PFBC combined cycle. PFBC operation in combined cycle further improves efficiency. Currently, the leading PFBC technology uses a bubbling fluidized-bed boiler operating at 12 to 16 atm inside a pressure vessel in conjunction with a combined cycle. The capital costs of PFBC plants are eventually expected to be lower than those of other advanced fossil power technologies allowing PFBC to be economical for base load duty.

The screening analysis included a circulating AFBC, several bubbling and circulating PFBC and an advanced design Foster Wheeler PFB technology. In addition to alternatives originating from TAG Supply, the rehabilitation of the retired Cane Run unit 3 with an AFBC boiler was also evaluated.

3. Integrated Gasification-Combined Cycle (IGCC)

Integrated Gasification-Combined Cycle (IGCC) is a method of producing a relatively clean, burnable gas from almost any type of coal. The process involves crushing the coal and partially oxidizing the carbon in the coal. Gas produced from the coal is a clean synthesis gas (syngas) and can be burned in a steam boiler or piped directly into a gas turbine to generate electricity. Emissions of SO₂ and NO_x from these plants are minimal.

IGCC technology consists of burning syngas to drive a combustion turbine while producing steam with recaptured heat to drive a steam turbine. A significant advantage of IGCC is that capacity can be added in stages. When natural gas prices are low, a utility can install a combustion turbine and follow it with a steam turbine in a combined-cycle configuration as needed. If the price of natural gas rises, a coal gasification stage can be added. Higher than average availability rates are typically associated with coal gasification because of the absence of pulverizers, flue gas desulfurization systems, and their modular design.

Since clean syngas replaces the fuel used in the gas turbine, the economics of coal gasification are directly related to natural gas and oil prices. High capital and high operating costs associated with coal gasification make natural gas or oil the economical choice in the near future.

Currently, IGCC technology is in the demonstration stages of development. Several types of IGCC were included in the screening analysis as indicated in Exhibit 3.

Liquid/Gas-Fueled Technologies

1. Simple-Cycle Combustion Turbine (CT)

Simple-cycle combustion turbines (CT) typically consist of an air compressor, a combustor, and an expansion turbine. Gaseous or liquid fuels (natural gas or oil) are burned under pressure in the combustor, resulting in hot gases that pass through an expansion turbine, driving the air compressor and the electrical generator. The most significant effluent from combustion turbines is NO_x , which can be controlled with available technology.

Combustion turbine technology is commercially proven with key features such as relatively low capital cost, short construction lead time (1-3 years), and relative ease of siting. These features, combined with operation over a low range of capacity factors, tend to offset the high (compared to coal) price of oil or natural gas making the combustion turbine an economical option for peaking duty.

The screening analysis included three sizes of simple-cycle combustion turbines (80, 110, and 160 MW) along with an advanced 300 MW CT with cascaded humidified advanced turbine from TAG Supply. The capital cost of the 80, 110, and 160 MW CTs were adjusted as discussed above. Five other CT alternatives were included in the screening analysis. These options were based upon recent bids for the installation of combustion turbines at the Companies' Brown Site. The size of these turbines range from 100 MW to approximately 160 MW.

2. Aeroderivative Combustion Turbines

The aeroderivative CT consists of a jet engine that has been modified for stationary industrial use. This results in a lightweight package with very attractive efficiencies. They are characterized as smaller units (less than 50 MW) and can be installed in relatively short time frames due to the modular components.

Two aeroderivative options were evaluated in the screening analysis. The first was based upon a 45 MW turbine from TAG Supply and the second was based upon a bid received after the recent request for combustion turbines at the Brown site. The price for the aeroderivative option at the Brown site is only valid for the Brown site. Any other installation will incur additional cost for installation.

3. Combustion Turbine-Combined Cycle (CT-CC)

Combustion Turbine-Combined Cycle (CT-CC) plants consist of one or two combustion turbine unit(s) coupled with a Heat Recovery Steam Generator(s) (HRSG). The hot exhaust gases from the combustion turbines are passed through the HRSG, which produces steam to drive a turbine generator. The key features of CT-CC plants are their phased construction (i.e. installing combustion turbines in the first year followed by a steam bottoming cycle in the second year), low capital cost, and high efficiency. The improved efficiency over simple cycle CTs offers a hedge against future fuel cost uncertainties and allows CT-CCs to be utilized for intermediate or base load duty. All components of a CT-CC are commercially available. Two sizes of 2-on-1 CT-CC plants (330 and 470 MW) and one single shaft CT-CC plant (345 MW) were evaluated.

4. Fuel Cell

Fuel cells electrochemically convert the chemical energy in a fuel gas to direct current (dc) electricity. Inverters are required to convert the dc power to ac. Fuel cells can be assembled in blocks to make power plants of varying sizes and capabilities tailored to the utility's load growth and the constraints of the plant site.

Each cell consists of an anode, cathode and an electrolyte. Fuel cells oxidize a fuel (usually natural gas, but hydrogen methane and coal gas can also be used) at the anode which releases electrons into an electrical circuit. Simultaneously, water and heat are produced at either the anode or cathode depending on the electrolyte used. Fuel cells, unlike batteries, do not consume their electrodes with use, but only the fuel and oxygen (in the air) supplied to them.

Since fuel cells operate at constant temperature and pressure, regardless of load, the thermal energy liberated by the electrochemical reaction can be used in thermal bottoming cycles or for cogeneration of steam. Emissions from these plants are low, and generating capacity ranges from 10 to 25 MW. The fuel cell component of the plant has an estimated life of 5 years; therefore, an additional replacement cost was added to the fixed O&M of these options. EPRI estimates that the cost of replacement fuel cells will be about two-thirds of the capital cost of the option. An equivalent 30-year levelized cost representing the cost for replacement over a 30-year period was determined and added to the fixed O&M of the option. Exhibit 4 of Appendix A shows the levelized calculation for the fuel cell replacement that was added to each fuel cell options in the screening analysis.

Currently, larger capacity (>100 MW) fuel cell plants are completing their final stages of pilot plant engineering development. Phased construction of generating units, fuel flexibility between natural gas and distillate oil, quiet operation, minimal emissions, low heat rate and very fast transient response capability are some of the attractive features of this intermediate-load technology. Three major types of fuel cells are currently undergoing development: phosphoric acid, moltencarbonate, and solid oxide. The phosphoric acid technology is the most mature, and therefore, nearest to commercial use. All three types of fuel cells were included in the screening analysis.

Renewable Resource Technologies

1. Geothermal

Geothermal energy is an option to fossil and nuclear fuel technologies. Geothermal energy has been used for many years for space heating, but generating electricity from geothermal energy has been done on a relatively limited scale. In general, geothermal resources are classified in three categories: geopressurized systems, hot, dry rock systems and hydrothermal-convection systems. Geopressurized and hot, dry rock systems are still in the demonstration stage. Unlike any other energy resource, geothermal resource production (fuel supply) and the subsequent energy conversion in a power plant are directly connected. As a result, estimated geothermal plant costs are extremely site specific. Resource (fuel) temperature, well depth, and other site-specific factors affect the cost of the plant.

Geopressure systems are hot water systems, which contain dissolved methane under a high subsurface pressure. Hot dry rock systems are hot rock masses that lack fluid content but are

sufficiently close to the surface to make heat extraction a possibility. Hydrothermal resources consist of hot water and steam which result from heat transferring from geologically active high-temperature belts to nearby aquifers. Hydrothermal-convection systems are subdivided into vapor-dominated and liquid-dominated resources. Binary-cycle technology employs geothermal brine (water) and a heat transfer fluid in a two-step heat exchange to generate vapor that can be used to drive a turbine. The dual-flash geothermal technology involves pumping geothermal fluid from a well drilled into a naturally occurring underground reservoir to the surface. At the surface, high-pressure steam and liquid brine are separated. The liquid brine is then flashed again at a lower pressure to generate low-pressure steam. The high and low pressure steam is then routed directly to a turbine generator. Kentucky may be a suitable location for this technology type primarily because of the geological faults in the western region of the state. These faults may provide access to steam reservoirs and steam extraction with minimal effort.

2. Solar

Solar energy conversion technologies such as solar-thermal and solar-photovoltaic technologies convert the sun's energy to electrical energy. Climatical data of North America reveals a range of solar intensity from an average of 2.8 kwh/m² day in the northeast and northwest to over 7.2 kwh/m² day in the desert southwest. Kentucky receives approximately 3.3 kwh/m² on average of solar energy a day.

Solar thermal power plants convert the solar energy to electricity by first concentrating the incoming sunlight to convert the solar energy to heat and then to electricity. Presently, three solar

thermal technologies are under development. These are central receiver systems, two-axis tracking parabolic dish systems, which focus on a receiver to heat air or fluid to drive engine/generator and solar parabolic trough and steam turbine generator systems. To date the solar thermal trough technology is the only solar thermal technology that has achieved commercial operation at a significant scale. Parabolic dish technology has been tested at small scale, but testing of advanced designs has been limited.

Solar-thermal trough technology uses a steam generator heated by hot oil from a natural gasfired oil heater and/or a solar collector field. The solar collector field provides maximum heat output in the summer. The gas-fired heater is operated to boost output during summer peak hours. This technology has been improved such that an 80 MW plant can operate at a 14% solar to electric net collection efficiency. High capital costs and large land requirements detract from the attractiveness of this technology.

Photovoltaic (PV) power generation differs from solar-thermal technology in that solar energy is converted directly to dc electricity by generating electronic carriers in a semi-conductor material (usually silicon doped with phosphorus and boron). Inverters are then required to convert the dc power to ac. In order of increasing efficiencies, the main PV technologies are thin film, polycrystalline silicon, single-crystal silicon, and concentrator technology. There are two types of photovoltaic generators: flat plate and high concentration. Both the flat plate and high concentration PV generators rely on normal (90° incident angle) radiation. However, high concentration uses optical concentrators to focus the incident radiation on solar cells much smaller in area than the entire module. This provides higher efficiencies but requires additional cost for a two axis solar

tracking system. The conversion efficiency of the best commercial photovoltaic modules is about 12% implying a maximum electric power output of 120 W/M². Hence, large land areas are required to generate commercially significant quantities of electricity. The advantages of PV units are free fuel, zero emissions, high reliability, low O&M cost, and rapid construction. The main disadvantages are the high capital cost, the low production capacity of the PV industry (about 30 MW per year), and the large amount of required land. Furthermore, PV power output is directly proportional to the incident amount of solar radiation, and like solar energy conversion, cannot be dispatched in the absence of storage.

3. Wind Turbines

Current commercial wind turbines produce electrical power at wind speeds exceeding 10 mph. The energy extractable from the wind is proportional to the cube of the wind speed. Historically, wind-turbine generating units have been shown to be cost effective when located at sites with average annual wind speeds exceeding 12 mph. The majority of wind turbine projects have been constructed in California, where high average wind speeds exist. Most wind turbines installed in the United States range from 100 kW to 300 kW. Capacity factors (CF) of these units approach 35% at sites with good wind availability while sites with poor wind availability produce CFs less than 10%. Therefore, wind technology is considered an intermediate-load technology. Local climatological data reflecting western, central, and mountain regions of Kentucky reveal an average wind speed of less than 8 mph. Hence, this technology does not appear to be a viable option for construction in Kentucky due to the lack of consistently high wind speeds.

4. Municipal Solid Waste

Waste-to-energy technologies consist of either mass burning of unprocessed waste in European waterwall incinerators, refuse-derived fuel (RDF) preparation and firing in semi-suspension stoker-fired fluidized-bed boilers, or scrap tire-fired power plants burned in a sloping grate boiler.

Fuel is usually delivered by truck and stored in a large receiving pit with sufficient capacity to store a three to four day supply. A typical 40 MW mass-burn plant utilizes two identical incinerator trains to consume 1600 tons of refuse per day. This amount of refuse typically contains 4900 Btu/lb with 25% ash content. A typical 40 MW RDF plant is designed to consume approximately 1750 tons of refuse derived fuel per day. This amount of RDF typically contains 28.2% moisture, 12% ash, and 5663 Btu/lb. A typical 30 MW scrap tire facility consumes 375 tons of tires per day. Scrap tires typically contain 11900 Btu/lb.

Most waste facilities installed in the future will utilize mass-burn technology. A minimum of 5 years is required to acquire a permit for constructing any of the above technologies in Kentucky. Furnaces, including utility boilers, are exempt from this regulation if they co-fire up to 20 percent RDF in their boilers. Relatively high capital and operation and maintenance costs are associated with all three technologies. All three types of municipal solid waste facilities were modeled in the screening analysis.

5. Biomass

Currently, wood is the primary biomass resource currently used for energy production. With an estimated conversion efficiency of 17 percent and an assumed capacity factor of 80 percent, a 100 MW plant would use the equivalent of 20,000 acres of wood fuel per year. There are a few plants with capacities in the 50 to 70 MW range; however, biomass units usually have capacities less than 40 MW. The size and scale of biomass power generation is presently limited by the availability of fuel within about a 50 or 75 mile radius of the plant.

Currently EPRI and other sponsors are developing a new direct combustion technology, the Whole Tree EnergyTM (WTE) boiler, for application to large-scale power production from woody energy crops. The WTE system involves harvesting of stands of closely-spaced, fast growing whole trees, truck transport, tree storage and drying using air heated by boiler flue gas, combustion of the whole trees in a deep-bed sub-stoichiometric burner at the bottom of the furnace, and burnout of the gases with overfire air in the tall furnace above the fuel bed.

Interest in biomass resources as a source of energy is increasing as a result of environmental concerns. The strengths of natural forest wood as an energy source are the significant environmental advantages that wood offers because it produces substantially lower SO₂ and NO_x emissions when compared with fossil fuels. Furthermore, wood is a renewable energy resource.

Today, biomass fuel is not economical when compared to conventional fossil fuels. Future large-scale expansion of wood power generation depends on development of dedicated energy crop production, efficient power plant technology, and larger unit sizes to achieve economies of scale.

The U. S. Department of Energy and various international organizations are supporting development

of fast growing species, improved energy crop production improvements, and better harvesting techniques that are eventually expected to produce a long-term supply of low-cost fuel. Major economic factors making biomass fuel an expensive alternative are the amount of land required, low crop yield and expensive, inefficient mass harvesting techniques and transportation. The use of biomass for power generation in the U.S. is still limited but does warrant consideration in the future.

Energy Storage Technologies

1. Battery Energy Storage (BES)

With a battery energy storage unit, off-peak energy is used to charge a battery for use during peak periods. Battery plants have an extremely fast response time - zero to full load in less than about 5 milliseconds. Although environmental emissions of BES plants are virtually nonexistent, off-peak energy used to charge these facilities may require additional SO₂ allowances. Two types of BES technologies are currently being developed. These technologies are the lead-acid battery and the advanced battery. The lead-acid BES plant is based on a 20 MW unit designed for 1-hour storage and light or heavy-duty applications. The advanced BES is based on a 20 MW unit designed for 3 or 5-hour storage applications. The relatively low to moderate capital cost associated with BES is tempered by the substantial cost of battery replacement. The service life of battery modules is not expected to be as long as that of the balance of the battery plant; therefore, periodic battery replacement is required over the life of the technology. Costs associated with battery replacement and the frequency at which the batteries must be replaced can be significant and are a function of shelf life, duty cycle and depth of discharge, among other factors.

The cost of battery replacement was included in the capital cost of the option. For the lead acid battery option, it was assumed that the unit would operate at a 50 duty cycle level per year in order to get the maximum life out of the batteries. According EPRI data, this type of operation would result in an additional \$257/kw cost added to the capital cost of the project. Similarly, the 3-hour and 5-hour storage advanced battery options would have an additional cost of \$109/kw and \$157/kw, respectively added to the capital cost of the project. This is based upon a 250 cycle/year operating level.

2. Pumped Hydro Energy Storage (PHES)

Conventional pumped hydro energy storage plants typically use an upper and lower reservoir. Off-peak electric energy is used to pump water from the lower to upper reservoir. Water is then discharged from the upper reservoir through a reversible turbine to produce electricity. The reservoirs are typically sized for 10 hours of generation. On average, hydro facilities are more efficient than conventional and renewable energy sources. Special terrain is required for pumped hydro and their construction costs can vary by as much as 40% from site to site. While emissions from pumped hydro plants are virtually zero when generating, emissions will be released during the off-peak filling of the reservoir if coal-fired generators are used for pumping. One advantage of PHES plants is they can reach nameplate rating generation in two minutes. For the PHES unit used in this screening analysis the nameplate rating corresponds to 1050 MW. Pumped hydro is considered a viable option to serve intermediate load levels.

3. Compressed Air Energy Storage (CAES)

CAES uses an electric motor-driven compressor to pressurize an underground cavern or reservoir (rock, salt, or aquifer) with air during off-peak periods. When the energy is needed, the compressed air is released through a combustion turbine/generator that is fired with natural gas or distillate fuel. With available control equipment, the emissions from CAES plants while generating are one-third the amount generated by oil or gas fired CT units. However, as with the charging of other storage technologies, an increase in emissions is expected when charging. Long construction time, average capital cost, and low operating costs are expected characteristics of these units.

The first U.S. CAES facility was Alabama Electric Cooperative's 110 MW, 26 hour capacity plant. The facility began operation on June 1, 1991. EPRI's machinery cost data was based on this site, whereas the cost for the underground cavern is based on preliminary EPRI studies. Geologic formations in Kentucky are mainly rock and aquifer, both suitable for CAES sites. This intermediate-load technology is currently in the commercial stage.

4. Compressed Air Energy Storage with Humid Air Turbine (CASH)

The integration of a humid air turbine with CAES technology is expected to lower the relative capital cost. However, key technological needs such as the verification of both saturator and combustor performance must be addressed prior to acquiring the full benefits offered by CASH technology. This technology is currently in the pilot stage of development.

5. Super Conducting Magnetic Energy Storage (SMES)

Super Conducting Magnetic Energy Storage (SMES) consists of a doughnut-shaped electromagnetic coil made from low-temperature niobium titanium alloy. It is built in a trench supported by compact soil walls with a diameter and height of 1000 ft and 100 ft respectively. The coil, kept superconductive by a refrigeration system, would generate a magnetic field that would store electric energy without losses. The magnetic field would be discharged to produce electricity, as needed, at almost any power level.

There have been several different types and sizes of SMES systems proposed for utility applications. Currently the development of the technology is mainly for small units, the largest of which can provide about 50MW for 30 seconds. The main advantages of the SMES system are the ability to change power output in less than one 60 Hz ac cycle, the rapid discharge capability, and the expected long life. The difficulty is that in order to maintain the superconducting properties, the coil needs to be maintained at a temperature of –269° C.

Hydroelectric Technologies

1. Ohio Falls Expansion

Expansion of the Ohio Falls station by the additions of units 9 and 10 into existing empty bays was considered as an option in the screening analysis. This expansion included two 209.2" diameter propeller units housed in an extension of the existing powerhouse. These units would rotate at 149 rpm and have a maximum turbine output of 16.8 MW each. Based upon historical river

flow, the expected energy from the expansion units would be approximately 88 GWH annually. Therefore, the maximum capacity factor would be approximately 30%.

2. IPP Hydro

IPP Hydro is a run-of-river, hydroelectric facility with a design rating of 180 MW (108 MW expected summer capacity) of intermediate load serving capacity. There is no fuel associated with this option since it is a run-of-river facility and not a pumped storage facility. The entire cost to the Companies of this option is approximated with an energy charge only. Based upon projected energy output and fact that the project is run-of-the river, the capacity factor was limited to 60%.

Other Technologies

1. Cane Run Rehabilitation with Natural Gas

In addition to the AFBC option mentioned above for the renovation of the retired Cane Run Unit 3, a second alternative included in the screening analysis was based upon the construction of a new gas-fired boiler designed for low NO_x emissions. The option would be equipped with a Selective Noncatalytic Reduction (SNR) system. Other existing generating equipment would be refurbished.

2. Inlet Air Cooling on Brown CTs

The Brown generating station includes 4 ABB 11N2 combustion turbines that have been in operation since the middle 1990's. The available capacity of a combustion turbine is a function of the ambient temperature of the turbine inlet air. The higher the air temperature, the lower the expected capacity of the combustion turbine. During summer days when most combustion turbines

operate to meet the peak demand created by the higher temperatures, cooling the air flowing into the turbine could increase the capacity of the combustion turbine. A Thermal Energy Storage (TES) system, in which a refrigeration system produces ice to be stored in a tank, is used to cool the inlet air to the turbines. Water is circulated around the ice and circulated through coils at the turbine inlets to cool the inlet air of the combustion turbine. The ice can be made and stored in the tank using off-peak power.

The Companies have been working with a local vendor of TES systems to evaluate the cost effectiveness of installation at the Brown CT site. A current proposal would utilize two 2.3 million gallon ice harvesting tanks and create an additional net 20 MW from each CT on a 95° day. Utilization of the TES would also improve the heat rate of the units by about 4.5%.

Nuclear-Fueled Technologies

Nuclear-fueled technologies in general have lost most of their appeal in the electric utility industry because of the negative public attitudes and the uncertainties of obtaining necessary construction and operating licenses. The negative attitude toward nuclear power facilities is evidenced by KRS 278.600-278.610, which prohibits nuclear construction in Kentucky until there is a proven technology for the disposal of high level nuclear waste. Advanced nuclear technology holds promise for the future but until the question of disposing of nuclear waste is resolved, advanced nuclear-fueled technology will not be considered for construction by the Companies.

SENSITIVITY ANALYSIS

Large differences between original cost estimates and actual cost estimates are possible and have occurred on occasion. Some of these differences have resulted from the type of estimate made, such as a "goal" type estimate, without explicit consideration of the likelihood of achievement. Quantifying uncertainties should be an explicit part of developing cost estimates in order to reduce such occurrences. To address this issue, a sensitivity analysis has been implemented into the screening process. The sensitivities address three variables that alter the perceived benefit of each technology. The sensitivities incorporated into the analysis do not exhaust all possible sensitivity variables; however, they do provide valuable information about how well a technology performs under different combinations of economic and operating conditions. The three variables identified for sensitivity analysis in the screening study are capital cost, technology operating efficiency (as measured by heat rate), and fuel cost.

Two cases were analyzed in the screening analysis to evaluate the impact of environmental legislation. Each case included the cost of mitigating NO_x emissions through technology included in the capital cost of the alternative evaluated in TAG Supply. The first case, referred to as the base analysis, includes the impact that the emission of SO₂ can have on the selection of technologies. Current Clean Air Act regulations limit the emission of sulfur dioxide from certain plants. As discussed below, the cost adder is applied to the fuel utilized by the technology. The emission cost is based upon the June 1999 SO₂ allowance price of \$210/ton according to Cantor-Fitzgerald.

The second case, which also includes the cost of SO₂ emissions, evaluates the potential additional cost of carbon dioxide emissions. Due to the possibility that rising concentrations of greenhouse gases might cause undesirable climate change, policies to restrict carbon dioxide emissions, a greenhouse gas, have been *proposed*. One proposed solution is implementation of a carbon tax. A carbon tax could substantially impact the least-cost option resulting from this screening analysis.

The magnitude of proposed carbon taxes varies significantly. EPRI has evaluated the impact of taxes of \$50, \$100 and \$250 per ton of carbon emitted. The International Energy Agency has analyzed the impacts of \$100 per ton of carbon emitted while a NatWest Washington Analysis has documented proposals for a \$50 - \$100 per ton of carbon tax. In this analysis it was assumed that carbon emissions are taxed at the lesser of these values (\$50 per ton). As with the case for SO₂, the cost adder was added to the fuel cost of the technology as discussed below.

1. Capital Cost Sensitivity

EPRI utilizes two rating systems that can be used to adjust the capital cost for each technology type and size in TAG Supply. The first is a "Design and Cost Estimate Rating" and the second is a "Technology Development Rating". Both rating systems center on the issue of uncertainty in cost and performance data. The first rating, summarized in Table 2, is EPRI's a confidence rating measurement, based on design and cost estimates. Through this rating a better understanding of the level of effort expended in the design and cost estimate determination is acquired.

Table 2
Confidence Ratings Based on Design and Cost Estimates¹

	Design Information	Cost Estimate Basis			
Confidence Rating		Major Equipment	Other Materials	Labor	
Actual	Data on detailed process and n	mechanical designs or historical data from existing units.			
Detailed	A complete process design exists. Engineering design 20-40 % complete. Project construction schedule. Contractual conditions and local labor conditions known.	Firm quotations adjusted for possible price escalation with some critical items committed. Pertinent taxes & freight included	Firm unit cost quotes (or current billing costs) based on detailed quantity take-off. Pertinent taxes & freight included	Estimated man- hour units (including assessment) using expected labor rate for each job classification. Pertinent taxes & freight included	
Preliminary	Simplified plus engineering specifics, e.g.: Major equipment specifications. Preliminary piping & instrumentation flow diagrams.	Recent purchase costs (including freight) adjusted to current cost index.	By ratio to major equipment costs on plant parameters.	Labor/material ratios for similar work, adjusted for site conditions and using expected average labor rates.	
Simplified	General site conditions, geographic location & plant layout. Process flow/operation diagram Product output capacities	By overall project or section-by-section based on capacity/cost graphs, ratio methods, and comparison with similar work completed by the contractor, with material adjusted to current cost indices and labor adjusted to site conditions.			
Goal	Technical design and cost goa	al developed from literature data.			

The second rating on which to measure the confidence associated with a particular technology estimate is based on technological development. Table 3 describes EPRI's ratings

¹1993 Technical Assessment Guide, Volume 1: Revision 7; Pg. 8-15 Table 8-9 and Pg. 5-5 Table 5-2.

associated with each stage of development. Technology development begins as an idea and progresses through a commercially viable phase before finally becoming a mature technology.

Table 3
Confidence Rating Based on Technology
Development Status²

Rating	Description					
Mature	Significant commercial experience (several operating commercial units)					
Commercial	Nascent commercial experience					
Demonstration	Concept verified by integrated demonstration unit					
Pilot	Concept verified by small pilot facility					
Laboratory	Concept verified by laboratory studies and initial hardware development					
Idea	No system hardware development					

Based on these two confidence ratings, EPRI formulates overall cost accuracy ranges. The accuracy ranges, shown in Table 4, indicate that the overall cost of a particular technology is a function of two independent items: the level of cost-estimating effort and the degree of technical development of the technology.

²1993 Technical Assessment Guide, Volume 1: Revision 7; Pg. 8-15 Table 8-8.

Table 4
Accuracy Range Estimates for TAG Cost Data³
(Ranges in Percent)

	Technology Development Ratings									
Design & Cost	Mature*	Commercial*	Demo	Pilot	Lab and Idea					
Actual*	-5 to +5	-5 to +5	-	-	-					
Detailed	-5 to+5	-10 to +10	-15 to +20	-	-					
Preliminary	-10 to +10	-15 to +15	-20 to +20	-25 to +30	-30 to +60					
Simplified	-15 to +15	-20 to +20	-25 to +25	-30 to +30	-30 to +80					
Goal	-	-30 to +70	-30 to +80	-30 to +100	-30 to +200					

^{*}It is the Companies' opinion that even mature/actual and commercial/actual technologies are subject to at least a 5% swing in capital cost.

Applying the appropriate accuracy ranges from Table 4 to each regionalized technology in TAG Supply allows a capital cost sensitivity to be performed in the screening analysis. For this analysis the accuracy ranges (or capital cost adjustments) were applied only to the process capital, general facilities and engineering fee portions of a technologies total capital cost. An example, using the regionalized technology 1.1B, is summarized in Table 5.

To represent a capital cost adjustment for those technologies not from TAG Supply, a 5% to 10% adjustment was made to the capital cost of these technologies based upon the Companies' confidence of the estimate. The only option that did not include a adjustment was the IPP Hydro proposal.

Table 5 Capital Cost Sensitivity Using Regionalized Technology 1.1B

Technical Development Rating:

Mature

Design & Cost Estimating Rating:

Preliminary

Implied Accuracy Range*:

-10 to +10

Applicable Capital Cost Components	Base Capital Est.	Low Capital Est.	High Capital Est.
Process Capital	860	860 x 0.90 = 774	860 x 1.10 = 946
General Facilities	0	$0 \times 0.90 = 0$	$0 \times 1.10 = 0$
Engineering Fee	54	54 x 0.90 = 49	54 x 1.10 = 59

^{*}From Table 4

Three capital cost estimates, base, low, and high can be determined can be determined for each technology. Each cost estimate takes into account the amount of effort expended in the design and cost estimate, and the maturity level of the technology itself.

2. Technology Operating Efficiency

The second sensitivity conducted in the screening analysis involved the technology heat rate, referred to as the base heat rate, specified by TAG Supply. Decreasing or increasing the base heat rate represents a better (or worse) than expected efficiency of the operating facility over that expected during the design phase. EPRI does not provide any information as to the minimum or maximum

³1993 Technical Assessment Guide, Volume 1: Revision 7; Pg. 8-16

achievable heat rate for each technology. Therefore, for each technology a \pm 5% adjustment to the heat rate specified by TAG Supply was applied. This adjustment was also applied to the technologies not taken from TAG Supply.

3. Fuel Cost

The third sensitivity conducted in the screening analysis considered the cost of fuel consumed by each technology. The Companies develop 30-year base fuel forecasts for various fuels that are either used, or could be used, at existing plants. In addition, sensitivity fuel forecasts are developed depicting high and low fuel cost scenarios. Representative fuel costs for each technology screened were obtained from the base and sensitivity fuel forecasts and are shown in Exhibit 5(a).

As previously discussed, in an effort to include the impact of SO₂ emissions in the screening study, an adder was applied to the coal prices of Exhibit 5(a). The adder represents, on a cents/MBtu basis, the annual cost of SO₂ allowances. Only technologies whose primary fuel is coal have the adder. The sulfur content of the Low and High Fuel Forecasts was assumed to be equal to that of the Base Fuel Forecast. Therefore, once the adder was determined for the Base Fuel Forecast it could be applied to both the Low and High Forecasts without any further adjustments. Exhibit 5(b) details the calculation of the SO₂ adder. No sensitivity was developed for the SO₂ adder, i.e., no 30-year cost profile for SO₂ per ton was used other than the one in Exhibit 5(b). Inclusion of the SO₂ adder increases the fuel cost from 1 to 9 Cents/MBtu depending on the year and sulfur content. The small impact of the SO₂ adder is due to the fact that all technologies being considered in the analysis have very low SO₂ emissions resulting from either pre/post combustion removal processes. Addition of the SO₂ adder to the Base, Low and High Fuel Forecasts results in the fuel costs used in this

analysis. The specific fuels utilized by each technology evaluated in this analysis are identified in Exhibit 5(c).

The second case was conducted to evaluate the impact of carbon emissions. Carbon emission costs were added to the fuel costs of each technology affected by a carbon tax in a similar manner as was done for SO₂. Technologies that utilized coal or natural gas were the only technologies to which the carbon tax was added. Biomass facilities were assumed to have a net zero carbon dioxide emission rate. The cost of this tax on a cents/MBtu basis is substantial. Bituminous coal prices are increased by \$1.38 per MBtu. Natural gas prices are increased by \$0.79 per MBtu. These estimates were assumed to represent 1999 costs and no escalation was applied to these values throughout the 30 years included in this study.

Resulting Scenarios

The sensitivity analysis would not be as strong as possible if all combinations of sensitivity variables were not analyzed. In other words, because there are three variables in which a sensitivity analysis is being performed (capital cost, heat rate, fuel cost) and each variable has three possible values (base, low or high) - 27 total combinations of sensitivity cases must be evaluated. A separate analysis was performed utilizing the CO₂ cost adder as discussed above. This analysis produced an additional 27 combination of cases to be evaluated.

Page 1 of Exhibit 6 shows the latest available base cost and base heat rate information associated with each of the previously described technologies. All technologies evaluated in this analysis are shown in this exhibit. In addition, pages 2 through 9 of Exhibit 6 illustrates the effects

of the accuracy range adjustments on the base capital cost of and the heat rate adjustments on the base heat rate. These exhibits represent 9 of the 27 possible cases. Applying the Base, Low, and High Fuel cost scenarios of Exhibit 5(a) to these 9 creates the remaining cases.

Screening Analysis

The least-cost operation of the technologies presented in this study occurs over significantly different capacity factors. Therefore, an analysis that compares the total cost for each technology as a function of capacity factor is required. As previously discussed the cost data for all the technologies in this analysis originate from EPRI's TAG Supply or were derived based on information and/or cost estimates received by the Companies.

Each technology on page 1 of Exhibit 6, regardless of viability or technical maturity, was evaluated over a 30-year planning period in all 27 cases. In other words, no technology was excluded from the screening analysis based solely on its technical maturity, practicality, or feasibility. For example, even though climatical information for Kentucky suggests wind turbine technology would not be a practical supply-side option in Kentucky, wind turbine technology was not excluded from the analysis.

Several of the technologies were limited to maximum capacity factors based upon the design characteristics of the option and their application to the Companies service territory. The three battery storage options were limited to a 10% capacity factor based upon the design characteristics of the technology in TAG Supply. Also, in developing the replacement cost estimates previously discussed a maximum duty cycle was assumed in order to limit the replacement cost. SMES was

also limited to a 10% capacity factor due to the design characteristic of this option. For Compressed Air Energy Storage (CAES) and Pumped Hydro Energy Storage (PHES) a maximum capacity factor of 30% was used. This maximum was determined based on the assumption that, at most, the technology would be utilized 5 days a week for the designed 10 hours of storage capability per day for the entire year.

 $[(10hrs/day \times 5 days/wk \times 52 wks/yr) / 8760 hrs/yr] = 29.7\% \approx 30\%$

Two renewable resources were also limited with maximum capacity factors. Solar and Wind power were limited to 20% and 30%, respectively. For solar power, most of the installations have been in the western part of the United States where solar radiation level enable economic installation. For the Midwest, solar radiation levels are not ideal for solar technology. TAG Supply indicates that capacity factors for solar technology located in Nashville, Tennessee would be in the 17-18% range. Assuming the Companies' service territory would be similar to Nashville, a 20% maximum would be conservative. Most of the wind turbine sites are located in California with capacity factors in the 20-35% range. Kentucky wind speeds are significantly lower than those in California; therefore a maximum capacity factor of 30% for wind technologies would also be conservative.

The two hydro options, IPP Hydro and expansion of the Ohio Falls station, were limited to 60% and 30%, respectively. These limitations were based on the projected energy received from these run-of-the river projects.

One other option, inlet air cooling for the Brown CTs, was limited to a maximum 10% capacity factor. The design of this option is based upon a 4 hour per day, 5 days per week operation

scenario. Given the fact that this alternative is used to lower the inlet air temperature of the combustion turbine when ambient air temperatures are in the 90 degree range, the system would not be utilized during the cooler winter, spring and fall periods. Therefore a 10% capacity factor would be conservative.

Levelized Screening Methodology and Results

1. Base Analysis with SO₂ Impact

A 30-year levelized cost methodology was used in this analysis. In this screening analysis, an annual total cost, comprised of capital, fixed O&M, variable O&M, fuel and other costs, is determined for each technology over a range of capacity factors from 0-100% in 10% increments. For each technology, the levelized costs in \$/kW at varying capacity factors were then compared and the least-cost technologies at each capacity factor increment were determined. Levelization allows for the cost of each technology to be compared over the 30-year life of each project. A non-levelized analysis considers the costs of owning and operating the unit for only a single year. Comparison of cost over the life of each technology is more accurate because of the differing annual escalation rates for fuel, O&M and capital associated with determining the total annual cost of each technology. Exhibits 7 and 8 include relevant information, which when utilized in conjunction with Exhibits 5 and 6, allow replication of the results presented here. Exhibit 7 provides a complete source of equations used in the levelization process. Exhibit 8 provides the Adjusted 30-year Levelization Factor (Adj. L_N) for the Base Fuel Forecast and other miscellaneous information referred to within

the equations of Exhibit 7. Adjusted L_Ns for the Low and High Fuel Forecasts can be determined in a similar manner.

Using the equations of Exhibit 7 and the data contained within Exhibits 5(a)-5(c), page 1-9 of Exhibit 6, and Exhibit 7, the total 30-year levelized cost (\$/kw-yr in 1999 dollars) of each technology was calculated for each capacity factor increment. The results of this process are shown in page 1 through 27 of Exhibit 9. The least-costly technologies over all ranges of capacity factors have been identified at the bottom of each case exhibit and are shaded in the tables. Technology capacity factors shown in page 1 through 27 of Exhibit 9 were limited to the maximum allowed by the technology and/or environment in which they operate as discussed above. For easy reference, technologies that have been identified as the least costly technology over any range of capacity factors in at least one of the 27 cases have been summarized below in Table 6.

Table 6 Least-Costly Technologies In At-Least One Sensitivity Case

Brown 5 CT 159MW

Combined Cycle Combustion Turbine Phased – 470 MW

Combined Cycle Combustion Turbine Un-Phased – 345 MW

Compressed Air Energy w/ Humid Air Turbine – 350 MW

Inlet Air Cooling at existing Brown CT's

IPP Hydro purchase

Pulverized Coal unit at Trimble County

Wind Turbines – Class 4 Speed

Exhibit 10 is a graphical representation of the least-cost information associated with technologies of the base case (base capital cost, base heat rate, base fuel prices) only. The intersection of the lines with the vertical axis represents the fixed expenditures (carrying charges and

fixed O&M) associated with the technology. The slope of the line is a function of the variable costs (fuel and variable O&M) that increase in direct proportion to the energy produced. In comparing the technologies identified in Exhibit 10 to those identified in Table 6, it can be seen that Compressed Air Energy with Humid Air Turbine, the un-phased Combined Cycle CT, and the Wind Turbines options became a least cost alternative in one of the remaining sensitivity cases.

Identifying not only the least cost technologies, but also the second least cost and even the third least cost would further enhance the results of this analysis. First, second and third least-cost technology identification is justified by the fact that the \$/kW-yr difference between them may be only several dollars over any increment of capacity factors. The second and third least-cost technologies for at least one capacity factor increment in any of the 27 cases are summarized in Table 7.

Table 7 Second and Third Least-Costly Technologies In At-Least One Sensitivity Case

Aeroderivative CT
Brown 5 CT 159MW
Brown 5 CT 149 MW
Brown 5 CT 164 MW
Combined Cycle Combustion Turbine Phased – 470 MW
Combined Cycle Combustion Turbine Un-Phased – 345 MW
Combustion Turbine with CHAT – 300 MW
Compressed Air Energy w/ Humid Air Turbine – 350 MW
IPP Hydro purchase
Pressurized Fluidized Bed (Circulating, with Reheat) – 360 MW
Pressurized Fluidized Bed (Circulating, Supercritical) – 360 MW
Pulverized Coal unit at Trimble County
Pulverized Coal at Greenfield site – 500 MW
Wind Turbines – Class 4 Speed

The 15 different technology types (inlet air cooling at Brown CT is the only technology that does not show up in Table 7) and sizes specified between Tables 6 and 7 are those which at first glance, appear to deserve consideration in detailed computer models. However, this list needs to be examined further before selecting technologies to pass onto the detailed analysis. There are 891 "opportunities" for each technology to be identified as one of the first three least cost options (i.e., $27 \text{ cases } \times 11 \text{ Capacity Factor ranges } \times 3 = 891$). Table 8, below, identifies how many times a technology appeared as either the first, second or third least cost option over any capacity factor range. All technologies not identified within Table 8 failed to appear as one of the top three least-cost options in any of the cases identified.

Table 8
The Frequency of Occurrence of Each
Technology as First, Second or Third Least Cost

	# O	ccur		
1st	2nd	3rd	Total	Technology Name
21	70	111	202	CT Combined Cycle Un-Phased - 345MW
38	121	37	196	CT Combined Cycle Phased - 470MW
93	2	2	97	IPP Hydro
54	11	28	93	Trimble County 2
20	52	14	86	Brown 5 CT 159MW
54	0	Q	54	IAC at Brown 8-11
0	8	33	41	Brown 5 CT 149MW
0	6	25	31	CT with Cascaded Humidified Advanced Turbine-300MW
9	10	4	23	Compressed Air Energy w/ Humid Air Turbine-350MW
0	8	13	21	Brown 5 CT 164MW
0	0	18	18	Aeroderivative CT
0	7	5	12	Press Fluidized Bed (Circulating, Supercritical)-360MW
8	1	1	10	Wind Turbines-Class 4 Speed-50x750kw
0	0	5	5	Press Fluidized Bed (Circulating, with Reheat)-360MW
0	1	1	2	Pulverized Coal (LSFO)-500MW

Table 8 shows that the 345 MW Un-Phased Combined Cycle unit was selected 202 times as the first, second or third least-cost technology while the Pulverized Coal (LSFO) 500 MW was selected 2 times. Table 8 provides a good starting point for further reducing the list of technologies identified in Tables 6 and 7.

The wind turbine technology for example, appeared in the levelized analysis as one of the least-costly technologies, but historically wind turbines have been cost effective only when located at sites with average wind speeds exceeding 12 mph. Climatological data for Kentucky reveals an average wind speed of less than 8 mph, therefore wind turbine technology may be justifiably removed from the initial list of 15 technologies.

Compressed Air Energy Storage (CAES) with Humid Air Turbine (CASH) is a second technology that should be closely examined. The CASH technology utilized in this analysis is based on salt caverns as the fundamental geologic formation for air storage. Salt cavern based CAES technology is the least capital intensive CAES technology. However, this geologic formation does not exist within Kentucky. Kentucky is geologically located over predominantly rock and porous media. Although these two types of geologic formation are suitable for air storage, the capital cost associated with a CAES facility at these sites would exceed that of storage based on salt caverns. Furthermore, CASH appears as the least cost option only in the low capital cost scenario. Since the technology has only a Pilot/Preliminary rating (according to EPRI's development and design rating system), it has a fairly large capital cost adjustment (-25% in the low scenario). Therefore, since this option is in the pilot development stage and for the reasons previously mentioned the CASH technology identified in Table 7 may be excluded.

1999SupplyScreening.doc

A comparison of Table 6 and Table 7 reveals that four different coal-fired technologies have been identified. They are Trimble County Unit 2, a 360 MW supercritical PFBC unit, a 360 MW PFBC unit with reheat and a 500 MW Pulverized Coal (LSFO) unit. Further analysis will show that the 500 MW Pulverized Coal unit only appears as a second and third least cost option in two scenarios and then only at the 100% capacity factor level. Since this option is so similar to the lower cost Trimble County Unit, this option can be eliminated. Likewise, the 360 MW supercritical PFBC unit was only identified as a second and third least-cost option seven and five times, respectively. Each of these occurred in the 80-100% capacity factor range. Also the 360 MW PFBC unit only showed up five times as a third least-cost option at the 90-100% capacity factor level. For these reasons, these options also can be eliminated.

A final adjustment can be made to the CT technologies listed in Table 8. Of the technologies included in the screening analysis, 5 CT (159 MW, 149 MW, and the 164 MW Brown 5 CT, CT with CHAT, and the Aeroderivative CT at the Brown Site) based alternatives showed upon on the list in Table 8. In looking at the alternatives studied for the final unit at the Brown site, the 159 MW unit shows up as the least cost alternative. The remaining two sizes of CTs only show up as the second and third least cost alternatives and the aeroderivative CT shows up only as a third least-cost option. Based on this analysis, the fact that the bids for these alternative are only valid at the Brown Site, and the fact that detailed bids will be received for multiple sizes and types of CTs at the time installation would occur, only the 159 MW (approximately 160 MW) Brown 5 CT will be passed to the detailed analysis. The other CT alternative can also be eliminated. The CT with CHAT is in

the demonstration stage of development according to EPRI. Further analysis will show that this technology showed up mainly as a third least-cost alternative.

Since this base analysis identified 5 CTs (4 of which are only valid at the Brown Site) and 4 coal-based technologies as potential options listed in Table 8, a second analysis eliminating these multiple alternatives was performed to verify that the screening analysis results would not be biased by the inclusion of these multiple options. Table 9 below identifies how many times a technology appeared as either the first, second or third least-cost option over any capacity factor range with the multiple size CTs and coal based units eliminated prior to the analysis. In comparing Table 8 and Table 9, it can be seen that there are four additional alternatives in the list (160 MW Greenfield CT, Advanced Integration Coal Gasification, 340 MW bubbling PFBC, and Cane Run 3 rehabilitation with AFBC). Three of the four alternatives are again coal-based technologies. The Advanced Integration Coal Gasification is in the pilot stages of development according to EPRI. Therefore it could be eliminated. The bubbling PFBC unit could be eliminated for the same reasons as the circulating PFBC. The Cane Run 3 rehabilitation only showed up in a single third-least cost option and therefore could be eliminated. The final option is the Greenfield Combustion Turbine. Since the other CTs evaluated were only for the Brown site, any additional CTs evaluated would have to be placed at a Greenfield site. Since this Greenfield CT is a least-cost alternative after the Brown CT options, it should be passed onto the integrated analysis for further consideration.

Table 9
The Frequency of Occurrence of Each
Technology as First, Second or Third Least Cost
with multiple size CTs and CT-CC eliminated

	# Occur			
1st	2nd	3rd	Total	Technology Name
38	129	54	221	CT Combined Cycle Phased – 470MW
21	73	112	206	CT Combined Cycle Un-Phased – 345MW
93	2	3	98	IPP Hydro
54	11	28	93	Trimble County 2
20	52	14	86	Brown 5 CT 159MW
54	0	0	54	IAC at Brown 8-11
9	17	15	41	Compressed Air Energy w/ Humid Air Turbine-350MW
0	2	37	39	Greenfield Combustion Turbine – 160 MW
0	6	29	35	CT with Cascaded Humidified Advanced Turbine-300MW
8	1	1	10	Wind Turbines-Class 4 Speed-50x750kw
0	4	1	5	Advanced Int. Coal Gas – 460 MW
0	0	2	2	Press Fluidized Bed (Bubbling, Supercritical)-340MW
0	0	1	1	Advanced Int. Coal Gas – 460 MW

2. Alternative Analysis with CO₂ Impact

As previously discussed, a separate analysis was performed to evaluate the impact of a carbon tax on the outcome of the screening analysis. The same sensitivities (inclusion of the impact of SO₂, variability of capital cost, heat rate and fuel cost) were performed in this analysis as was performed in the base analysis. After implementing a tax of \$50 per ton of carbon emitted, the least-cost technologies in at least one sensitivity case over any capacity factor range were determined just as in the analysis previously presented. For reference, these technologies are listed in Table 10.

Table 10 Least-Costly Technologies In At-Least One Sensitivity Case

Brown 5 CT 159MW

Combined Cycle Combustion Turbine Phased – 470 MW

Combined Cycle Combustion Turbine Un-Phased – 345 MW

Compressed Air Energy w/ Humid Air Turbine – 350 MW

Inlet Air Cooling at existing Brown CT's

IPP Hydro purchase

Wind Turbines – Class 4 Speed

A comparison of Table 10 and Table 6 from above shows that the Trimble County coal unit is no longer a least-cost technology when carbon is taxed at \$50 per ton. Table 11 below identifies those technologies that were either identified as a second or third least-costly technology in the 27 scenarios. A comparison of Table 11 and Table 7 from above shows that the four coal-based technologies (Trimble County unit, 500 MW Pulverized Coal, and the two 360 MW PFBC unit) are no longer included in the list of options. Four additional technologies (Ohio Falls 9 & 10, CAES with Salt Cavern, 3 hr Advanced Battery, and Variable Speed Wind Turbine) show up as a second or third least-costly alternative when the carbon tax is included.

Table 11 Second and Third Least-Costly Technologies In At-Least One Sensitivity Case

Advanced Battery (3 hr) – 20 MW
Aeroderivative CT
Brown 5 CT 159MW
Brown 5 CT 149 MW
Brown 5 CT 164 MW
Combined Cycle Combustion Turbine Phased – 470 MW
Combined Cycle Combustion Turbine Un-Phased – 345 MW
Combustion Turbine with CHAT – 300 MW
Compressed Air Energy w/ Humid Air Turbine
Compressed Air Energy (Salt Cavern)
IPP Hydro purchase
Ohio Falls 9 & 10
Wind Turbines – Class 4 Speed
Wind Turbines – Variable Speed

Table 12 identifies how many times a technology appeared as either the first, second or third least-cost option over any capacity factor range. This table is a good starting point for a more detailed review of the four technologies that show up as a result of a carbon tax of \$50/ton. The CAES plant and variable speed wind turbines can be eliminated for the same reasons as were discussed above under the base analysis. Further evaluation of the Ohio Falls expansion would indicate that it is second least cost option four times and third least cost option eight times; all at the 30% capacity factor level. This is at the high end of the potential for this option to operate. Since there are numerous lower cost options below this capacity factor and the fact that the option is a run-of-river hydro subject to the availability of water, this option would also be eliminated. The final option that can be eliminated is the Advanced Battery option. It was third least cost option in 4 of the scenarios at the 10% capacity factor level. The design of the option included in the screening

analysis had a maximum duty cycle of 250 cycles/year resulting in a maximum potential capacity factor of 8.5% at a 3-hr storage level. To operate at a higher level of duty cycle would incur additional cost for replacement batteries. With this additional cost and the relatively low number of occurrences, this option can be eliminated.

Table 12
The Frequency of Occurrence of Each
Technology as First, Second or Third Least Cost

	# O	ccur		
1st	2nd	3rd	Total	Technology Name
64	114	39	217	CT Combined Cycle Phased – 470MW
44	92	64	200	CT Combined Cycle Un-Phased – 345MW
0	5	116	121	CT with Cascaded Humidified Advanced Turbine-300MW
101	8	1	110	IPP Hydro
8	47	8	63	Brown 5 CT 159MW
54	0	0	54	IAC at Brown 8-11
17	9	5	31	Compressed Air Energy w/ Humid Air Turbine-350MW
0	0	23	23	Brown 5 CT 149MW
9	11	1	21	Wind Turbines-Class 4 Speed-50x750kw
0	0	18	18	Aeroderivative CT
0	4	8	12	Ohio Falls 9 & 10
0	6	5	11	Brown 5 CT 164MW
0	0	5	5	Wind Turbines-Class Variable Speed-50x750kw
0	0	4	4	Advanced Battery (3hr) - 20 MW
0	1	0	1	Compressed Air Energy (Salt Cavern) – 350 MW

The technologies suggested by a levelized screening analysis which includes a \$50 tax on each ton of carbon emitted are not greatly different from those suggested without a carbon tax when the first, second and third least-cost options are considered. Overall, the carbon tax would make fossil fuel options (i.e., pulverized coal facilities) much less economically attractive and consequently would favor supply-side options that are based on renewable resources. In the future, the status of environmental legislation surrounding a carbon tax and other issues will be monitored

closely and their effects on the selection of supply-side options used in the development of the Companies generation expansion strategy will be evaluated.

Recommendations

The technologies remaining comprise the final list of technologies suggested for detailed analysis using PROSCREEN II. Table 13 lists these technologies. The technologies identified will provide a diverse set of alternatives to be evaluated in production and capital costing computer models.

Table 13 Technologies Suggested for Analysis Within PROSCREEN II

Combined Cycle Combustion Turbine Phased – 470 MW
Combined Cycle Combustion Turbine Un-Phased – 345 MW
Combustion Turbine at Brown – 160 MW
Greenfield Site Combustion Turbine – 160 MW
Inlet Air Cooling at existing Brown CT's
IPP Hydro purchase
Pulverized Coal unit at Trimble County – 495 MW

Therefore, based on the results of the levelized screening analysis it is recommended that the technologies shown in Table 13 be retained and utilized in developing an optimal generation expansion strategy.

Exhibit 1

GLOBAL REGIONALIZATION FACTORS of TAG SUPPLY for Windows, Version 3.08

Regionalization Factor

Region Name	Material	Labor	Productivity	Indirects	Subcontracts
East/West Central	0.98	0.93	0.98	1.00	1.00
Northeast	1.00	1.00	1.00	1.00	1.00
Southeast	0.99	0.72	0.88	1.00	1.00
*East Central	1.00	0.96	0.92	1.00	1.00
South Central	1.00	0.69	0.83	1.00	1.00
West Central	0.97	0.95	1.12	1.00	1.00
West	1.00	0.82	0.95	1.00	1.00

^{*}The Commonwealth of Kentucky lies within the East Central Region.

The new cost of the regionalized technology is determined from the equation below.

$$New\ Region\ Cost\ =\ Old\ Region\ Cost\ imes\ rac{New\ Region\ Regionalization\ Factor}{Old\ Region\ Regionalization\ Factor}$$

Economic Parameter Data

Economic Record ID
Owner Costs: Fixed Operating Cost, Months
Production Costs, % of TPI
Fixed Charge Rate 11.94% Base 12.13% Intermediate 12.09% Inlet Air Cooling 13.48%
Land Prices, \$/Acre Urban
Consumables & Disposal Sorbent Prices, \$/Ton Limestone
Labor Rates Fixed O&M Operating Labor Rate, \$/Hr

Technologies Screened

Tech. ID	Technology Description	Category	Sub-Category
1.1B	Pulverized Coal (LSFO)-500MW	Coal	Pulverized Coal
1.1C	Pulverized Coal (LSFO)-400MW	Coal	Pulverized Coal
1.1E	Pulverized Coal (LSFO)-300MW	Coal	Pulverized Coal
1.1G	Pulverized Coal (LSFO)-200MW	Coal	Pulverized Coal
1.1H	Pulverized Coal (LSFO)-300MW X 2	Coal	Pulverized Coal
1.2G	Pulverized Coal Compliance (LSD)- 300MW	Coal	Pulverized Coal
1.5B	Pulverized Coal Supercritical (LSD)- 300MW	Coal	Pulverized Coal
1.5C	Pulverized Coal (Advanced LSFO)- 400MW	Coal	Pulverized Coal
5.4A	Atmosph Fluidized Bed (Circulating)-200MW	Coal	Fluidized Bed Combustion
6.2	Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	Coal	Fluidized Bed Combustion
6.7	Press Fluidized Bed (Bubbling)-350MW	Coal	Fluidized Bed Combustion
6.9	Press Fluidized Bed (Bubbling, Supercritic)-340MW	Coal	Fluidized Bed Combustion
7.2	Press Fluidized Bed (Circulating, with Reheat)-160MW	Coal	Fluidized Bed Combustion
7.3	Press Fluidized Bed (Circulating, with Reheat)-360MW	Coal	Fluidized Bed Combustion
7.8	Press Fluidized Bed (Circulating, Supercritical)-360MW	Coal	Fluidized Bed Combustion
8.1	Foster Wheeler Advanced PFB (Circulating)-688MW	Coal	Fluidized Bed Combustion
10.2B	Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	Coal	Coal Gasification
10.5A	Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	Coal	Coal Gasification
10.5B	Int Coal Gas / CAES with Humid Air Turbine-410MW	Coal	Coal Gasification
10.5C	Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	Coal	Coal Gasification
10.6	Advanced Int. Coal Gas-460MW	Coal	Coal Gasification
15.1	Combustion Turbine Heavy Duty-80MW	Natural Gas	Combustion Turbine
15.2	Combustion Turbine Heavy Duty-110MW	Natural Gas	Combustion Turbine
15.3	Combustion Turbine Heavy Duty-160MW	Natural Gas	Combustion Turbine
15.7	Combustion Turbine Aero- 45MW	Natural Gas	Combustion Turbine - Aeroderivative
16.2	CT Combined Cycle 2on1 - 330MW	Natural Gas	CCCT
16.3	CT Combined Cycle 2on1 - 470MW	Natural Gas	CCCT
16.4	CT Combined Cycle - 345MW	Natural Gas	CCCT
17.2	CT with Cascaded Humidified Advanced Turbine-300MW	Natural Gas	Combustion Turbine
20.1E	Phosphoric Acid Fuel Cell-2.5MW	Natural Gas	Fuel Cell
20.2A	Molten Carbonate Fuel Cell-100MW	Natural Gas	Fuel Cell
20.3D	Solid Oxide Fuel Cell-100MW	Natural Gas	Fuel Cell
21.2	Geothermal: Dual Flash Brine, Air Cooled-24MW	Renewable	Geotherm
22.2C	Solar Photovoltaic:Flat Plate-10x5MW	Renewable	Solar
22.2F	Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	Renewable	Solar
22.3C	Solar Photovoltaic:Fresnel Lens High Concen10x5MW	Renewable	Solar
23.2	Solar Thermal Trough/Gas Hybrid-200MW	Renewable	Solar
24	Wind Turbines-Variable Speed-50x750kw	Renewable	Wind
24.2	Wind Turbines-High Prod Volume-143x350kw	Renewable	Wind
24.6	Wind Turbines-Class 4 Speed-50x750kw	Renewable	Wind
25.1	Municipal Solid Waste: Mass Bum-40MW	Renewable	MSW
25.2	Municipal Solid Waste: Refuse Der40MW	Renewable	MSW
25.3	Municipal Solid Waste: Tire-30MW	Renewable	MSW
26.1	Bio Mass: Wood-Fired Stoker Boiler-50MW	Renewable	BioMass
26.3	Bio Mass: Whole Tree-100MW	Renewable	BioMass
30.2	Lead Acid Battery Storage(1 hr)-20MW	Renewable	Battery
31.1	Advanced Battery (3 hr)-20MW	Storage	Battery
31.2	Advanced Battery (5 hr)-20MW	Storage	Battery
32.1	Pumped Hydro Energy Storage-350MW X 3	Storage	PHES
33.1B	Compressed Air Energy (Salt Cavern) -350MW	Storage	CAES
33.2B	Compressed Air Energy w/ Humid Air Turbine-350MW	Storage	CAES
34.1	Super Conducting Magnetic Energy Storage (2 hr)-500MW	Storage	SMES
1	Cane Run 3 Rehab w/ AFBC	. Coal	Fluidized Bed Combustion
2	Cane Run 3 Rehab w/ Natural Gas	Natural Gas	Other
3	Brown 5 CT 110MW	Natural Gas	Combustion Turbine
4	Brown 5 CT 164MW	Natural Gas	Combustion Turbine
5	Brown 5 CT 102MW	Natural Gas	Combustion Turbine
6	Brown 5 CT 159MW	Natural Gas	Combustion Turbine
7	Brown 5 CT 149MW	Natural Gas	Combustion Turbine
8	IPP Hydro	Renewable	Hydro
9	Aeroderivative CT	Natural Gas	Combustion Turbine - Aeroderivative
10	Ohio Falls 9&10	Renewable	Hydro
11	Trimble County 2	Coal	Pulverized Coal
12	IAC at Brown 8-11	Natural Gas	Other

Fuel Cell Replacement

All cost in \$/kw

Capital Escalation Fixed O&M Escalation

2.0% 4.5%

711 U

	F	hosphoric Acid			Molten Carbonate		Solid Oxide		
	Module	Replacement	Levelized	Module	Replacement	Levelized	Module	Replacement	Levelized
<u></u>	Cost	Cost	Fixed O&M	Cost	Cost	Fixed O&M	Cost	Cost	Fixed O&M
L									
1999									
2000									
2001									
2002									
2003									
2004									
2005									
2006									
2007									
2008									
2009									
2010									
2011									
2012									
2013									
2014									
2015									
2016									
2017									
2018									
2019									
2020									
2021									
2022									
2023									
2024									
2025									
2026									
2027									
2028									

CONFIDENTIAL INFORMATION REDACTED

Fuel Forecast for Screening Analysis

(Cents/MBtu)

	Base Fuel Costs			Low Fuel Costs				High Fuel Costs				
	High	Med	Low		High	Med	Low		High	Med	Low	
	SO₂	SO₂	SO₂	Gas	SO₂_	SO ₂	SO₂	Gas	SO₂	SO ₂	SO ₂	Gas
1999		119	120	243	94	119	120	243	94	119	120	243
2000												
2001												
2002												
2003												
2004												
2005												
2006												
2007												
2008												
2009												
2010												
2011												
2012												
2013												
2014												
2015 2016												
2017												
2017												
2019												
2020												
2021												
2022												
2022												
2024												
2025												
2026												
2027												
2028												

Calculation of SO₂ Adder (Cents/MBtu)

(Post FGD:Assume 95% Removal Eff)

#SO2/MBTU ---->

0.250

0.055

0.105

	SO ₂ \$/ton
	Esc @ VO&M
1999	210
2000	219
2001	229
2002	240
2003	250
2004	262
2005	273
2006	286
2007	299
2008	312
2009	326
2010	341
2011	356
2012	372
2013	389
2014	406
2015	425
2016	444
2017	464 485
2018 2019	485 506
2019	506 529
2021	553
2022	578
2023	604
2024	631
2025	660
2026	689
2027	720
2028	753

High	SO ₂	Low	SO ₂	Med SO ₂				
Base Cost	SO ₂ Adder	Base Cost	SO₂ Adder	Base Cost	SO ₂ Adder			
		·			-			
94	3	120	1	119	1			
,	3		1		1			
	3		1		1			
	3		1		1			
	3		1		1			
	3		· 1		1			
	3		1		1			
	4		1		2			
	4		1		2			
	4		1		2			
	4		1		2			
	4		1		2			
	4		1		2			
	5		1		2 2			
	5		1		2			
	5		1		2			
	5		1		2			
	6		1		2 2			
	6		1		2			
	6		1		3			
	6 7		1		3			
	7		2		3 3			
	7		2		3			
	8		2		3			
	8		2		3			
	8		2		3			
	9		2		4			
	9		2		4			
	9		2		4			

Example calculation of SO₂ adder:

Using High Sulfur Coal = 5#SO2/MBtu

1999 SO₂ \$/Ton = \$210

1999 Base Fuel Cost for 5#SO₂/MBtu = 94 cents/MBtu

Scrubber Removal Efficiency = 95% (for each coal burning technology)

1999 High Sulfur

SO₂ Cost Adder =

3 cents/MBtu

Fuels Utilized by Technology in 1999 Screening Analysis

TAG		1999
SUPPLY		Screening
ID	Generating/ Storage Station Options	Study Uses
30.2	Lead Acid Battery Storage(1 hr)-20MW	Charging Only
31.1	Advanced Battery (3 hr)-20MW	Charging Only
31.2 32.1	Advanced Battery (5 hr)-20MW	Charging Only Charging Only
33.1B	Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW	Gas & Charging
33.2B	Compressed Air Energy w/ Humid Air Turbine-350MW	Gas & Charging
34.1	Super Conducting Magnetic Energy Storage (2 hr)-500MW	Charging Only
1.1B	Pulverized Coal (LSFO)-500MW	High Sulfur Coal
1.1C	Pulverized Coal (LSFO)-400MW	High Sulfur Coal
1.1E	Pulverized Coal (LSFO)-300MW	Medium Sulfur Coal
1.1G	Pulverized Coal (LSFO)-200MW	High Sulfur Coal
1.1H	Pulverized Coal (LSFO)-300MW X 2	High Sulfur Coal
1.2G	Pulverized Coal Compliance (LSD)- 300MW	Low Sulfur Coal
1.5B 1.5C	Pulverized Coal Supercritical (LSD)- 300MW	Low Sulfur Coal
5.4A	Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW	High Sulfur Coal Medium Sulfur Coal
6.2	Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	High Sulfur Coal
6.7	Press Fluidized Bed (Bubbling)-350MW	High Sulfur Coal
6.9	Press Fluidized Bed (Bubbling, Supercritic)-340MW	High Sulfur Coal
7.2	Press Fluidized Bed (Circulating, with Reheat)-160MW	High Sulfur Coal
7.3	Press Fluidized Bed (Circulating, with Reheat)-360MW	High Sulfur Coal
7.8	Press Fluidized Bed (Circulating, Supercritical)-360MW	High Sulfur Coal
8.1	Foster Wheeler Advanced PFB (Circulating)-688MW	High Sulfur Coal
10.2B	Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	High Sulfur Coal
10.5A	Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	High Sulfur Coal
10.5B	Int Coal Gas / CAES with Humid Air Turbine-410MW	High Sulfur Coal
10.5C 10.6	Int Coal Gas/ Molten Carbonate Fuel Cell 400MW Advanced Int. Coal Gas-460MW	High Sulfur Coal
15.1	Combustion Turbine Heavy Duty-80MW	High Sulfur Coal Gas
15.2	Combustion Turbine Heavy Duty-110MW	Gas
15.3	Combustion Turbine Heavy Duty-160MW	Gas
15.7	Combustion Turbine Aero- 45MW	Gas
16.2	CT Combined Cycle 2on1 - 330MW	Gas
16.3	CT Combined Cycle 2on1 - 470MW	Gas
16.4	CT Combined Cycle - 345MW	Gas
17.2	CT with Cascaded Humidified Advanced Turbine-300MW	Gas
20.1E	Phosphoric Acid Fuel Cell-2.5MW	Gas
20.2A	Molten Carbonate Fuel Cell-100MW	Gas
20.3D	Solid Oxide Fuel Cell-100MW	Gas
21.2 22.2C	Geothermal: Dual Flash Brine, Air Cooled-24MW Solar Photovoltaic:Flat Plate-10x5MW	Gas No Fuel
22.2F	Solar Photovoltaic: Plat Plate-10x5MW Solar Photovoltaic: One Axis Tracking Flat Plate-10x5MW	No Fuel
22.3C	Solar Photovoltaic:Fresnel Lens High Concen10x5MW	No Fuel
23.2	Solar Thermal Trough/Gas Hybrid-200MW	No Fuel
24	Wind Turbines-Variable Speed-50x750kw	No Fuel
24.2	Wind Turbines-High Prod Volume-143x350kw	No Fuel
24.6	Wind Turbines-Class 4 Speed-50x750kw	No Fuel
25.1	Municipal Solid Waste: Mass Burn-40MW	No Fuel
25.2	Municipal Solid Waste: Refuse Der40MW	No Fuel
25.3	Municipal Solid Waste: Tire-30MW	No Fuel
26.1	Bio Mass: Wood-Fired Stoker Boiler-50MW	Wood Chips
26.3 1	Bio Mass: Whole Tree-100MW Cane Run 3 Rehab w/ AFBC	Tree High Sulfur Coal
2	Cane Run 3 Rehab w/ Natural Gas	Gas
3	Brown 5 CT 110MW	Gas
4	Brown 5 CT 164MW	Gas
5	Brown 5 CT 102MW	Gas
6	Brown 5 CT 159MW	Gas
7	Brown 5 CT 149MW	Gas
8	IPP Hydro	No Fuel
9	Aeroderivative CT	Gas
10	Ohio Falls 9&10	No Fuel
11	Trimble County 2	High Sulfur Coal
12	IAC at Brown 8-11	Gas

Most optimistic case is to assume no charge for MSW, RDF and Tires.

1999 Generic Unit Construction Costs Base Capital Costs, Base HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 1999s.

					All do	aunst ers zraik	ry 1999\$.	•						
Tech, Development Rating Design & Cost Estim Rating Maximum Cup Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW)	Mature Preliminary 10% -10% 1.1B PC LSFO	Mature Preliminary 10% -10% 1.1C PC LSFO	Mature Preliminary 10% -10% 1.1E PC LSFO	Mature Preliminary 10% -10% 1.1G PC LSFO	Mature Preliminary 10% -10% 1.1H PC LSFO	Mature Preliminary 10% -10% 1.2G PC LSD		Mature Proliminary 10% -10% 1.5C PC LSFO Adv.	Preliminary 15% -15% 5.4A AFBC Circ.	Demonstration Preliminary 20% -20% 6.2 PFBCZx80	Pilot Pretiminary 30% -25% 6.7 PFBC Bub.	Pilot Preliminary 30% -25% 6.9 PFBC Sup.	Demonstration Preliminary 20% -20% 7.2 PFBC Circ.	Pilot Preliminary 30% -25% 7.3 PFBC Ctrc.
Capital Costs (\$AW) Process Capital General Facilities Engineering Fee Project Confingency Process Contingency Total Plant Cost	500	400	300	200	600	300	300	400	200	160	350	350	160	350
Preprod, Inv, Lan Total Generic Unit Cost Fixed O&M (\$/kW-yr)	31.34	38.67	39.51	49.78	31,45	34.87	39.48	37.63	44.03	60.97	37.57	37.26	51.01	36.06
Var. O&M (\$/MV/h) Avg. Heatrate (BTU/kWh)	1,13 9438	1.02 9502	1.17 9507	1.10 9759	1.08 9584	1.06 9432	1.48 9459	1.38 8637	2.36 10025	2.46 9249	1.56 9163	1.85 8720	1.95 9046	1,91 8997
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$AW) Process Capital	Pilot Preliminary 30% -25% 7.8 FBC Circ. Su 350	Pilot Preliminary 30% -25% 8.1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.28 Coal GCC 601	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGCASH 410.2	Demonstration Simplified 25% -25% 10.5C IGMCFC 400	Pilot Preliminary 30% -25% 10.8 Adv. GCC 460.3	Mature Preliminary 10% -10% 15.1 CT 80	Mature Preliminary 10% -10% 15.2 CT	Mature Preliminary 10% -10% 15.3 CT 160	Mature Preliminary 10% -10% 15.7 CT Aero 45	Mature Preliminary 10% -10% 18.2 CT/CC Zon1 330	Mature Preliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Preliminary 20% -20% 16.4 CT/CC 345
General Facilities Engineering Fee Project Cordingency Process Contingency Total Plant Cost Total Plant Cost Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrata (BTU/kWh)	35.85 2.11 8569	30.55 4.48 7650	45.51 1.08 8356	42.67 1.24 8650	47.46 0.82 10320	61.52 4.92 6860	34.28 3.44 7390	8.43 1.00 12906	6.49 1.00 13673	4.97 1.00 11459	12.57 1.00 10524	15.58 0.62 7707	12.23 0.61 7107	13.39 0.64 6954
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/kW)	Demonstration Preliminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Demonstration Simplified 25% -25% 20.2A MC FC 10	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Pilot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 50	Pilot Goal 100% -30% 22.3C PV High Conc 50	Demonstration Simplified 25% -25% 24.2 Wind 50.05	Commercial Goal 70% -30% 24.6 Wind Cl4 37.5	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Tires 30	Commercial Simplified 20% -20% 26.1 Blo Wood 50
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv, Land Total General Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	13.84 2.16 7140	538.51 2.38 9350	126.80 2.07 5600	67.78 0.04 6172	45.14 0.00 29050	9.07 0.00 0	9.80 0.00 0	42.25 0.00 0	25.91 0.00 0	24.47 0.00 0	208.48 25.91 16864	248.51 25.80 16958	132.20 3.60 12737	69.90 2.67 14310
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	Pilot Goal 100% -30%	Mature Preliminary 10% -10%	Pilot Goal 100% -30%	Pifot Goal 100% -30%	Mature Actual 5% -5%	Commercial Actual 5%	Pilot Preliminary 30% -25%	Pilot Goal 100% -30%			10% -10%	10% -10%	5% -5%	5% -5%
TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$AW) Process Capital General Facilities Engineering Fee Project Contingency	26.3 Bio Tree 100	30.2 LeadBat 20	31.1 AdvBat3 20	31.2 AdvBat5 20	32.1 PHES 1050	33.1B CAES 350	33.2B CASH 350	34.1 SMES 500			CR3 AFBC 135	CR3 Gas 135	BRS 110MW 110	BR5 164MW 164
Process Contingency Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/kWh) Avg. Heatrate (BTU/kWh)	51.40 1.75 10979	1.71 8.12 0		1.07 5.13 0	4.60 4.60 0	5.73 0.99 3991	5.04 1.00 6156	5.14 4.11 0			41.17 0.97 10500	41.17 0.00 11100	6.65 1.00 12281	5.00 1.00 10500
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	5% -5%	5% -5%	5% -5%	D% D%	5% -5%	5% -5%	5% -5%	5% -5%		Tag Supply	Tech Name	Table A KWh Input/ KWh Output	1 KWh	
TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$7kW) Process Capital General Facilities Engineering Fee	BR5 102MW 102		BR5 149MW 149	IPP Hydro 160	Aero CT 100	OF 98.10 33.6	TC 2 495	IAC at BR 86		30.2 31.1 31.2 32.1 33.18 33.28 34.1	LondBal AdvBat3 AdvBat5 PHES CAES CASH SMES	1.31 1.14 1.10 1.36	0.79 + 0.46 +	3991
Project Contingency Process Contingency										Notes:	IAC at BR	****	0.775+	11651

		Table A	
ag Supply		KWh Input/	1 KWh Out =
No.	Tech Name	KWh Output	KWhin+ BTU in
30.2	Load/Bail	1.21	
31.1	AdvBat3	1.14	
31.2	AdvBat5	1.10	
32.1	PHES	1.38	
33.18	CAES	1	0.79 + 3991
33.28	CASH	1	0.46 + 6156
34.1	SMES	1.06	
	40-485	1	0.776 4 11851

Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)

Notes:
Technolyses with TAG Supply ID 30.2, 31.1, 31.2, 32.1, 34.1 require energy from Electric Grid.
Technolyses with TAG Supply ID 33.1b, 33.2b and MC at BR require energy from Electric Grid and consume had
Capital Cent adjustments and Hose Rate adjustments apply to all above technologies, regardless of data source (b. TAG or Componies' supplied dets).
TAG based technologies have had Capital Cost adjustments applied to Process Capital, General
Facilities and Engineering Fee only (Process Costingency and Prep., Inv and Land socialistic).

1999 Generic Unit Construction Costs Base Capital Costs, High HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 19993,

					All do	liars are Januar	ry 1999\$.							•
Tech, Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type	Mature Preliminary 10% -10% 1.1B PC LSFO	Mature Preliminary 10% -10% 1.1C PC LSFO	Mature Preliminary 10% -10% 1.1E PC LSFO	Mature Preliminary 10% -10% 1.1G PC LSFO	Mature Preliminary 10% -10% 1.1H PC LSFO	Mature Preliminary 10% -10% 1.2G PC LSD	Mature Preliminary 10% -10% 1.5B PC LSD Sup.	Mature Preliminary 10% -10% 1,5C PC LSFO Adv.	Preliminary 15% -15% 5,4A	Demonstration Preliminary 20% -20% 6.2 PFBC2x80	Pilot Preliminary 30% -25% 6.7 PFBC Sub.	Pilot Preliminary 30% -25% 6.9 PFBC Sup.	Demonstration Preliminary 20% -20% 7.2 PFBC Circ.	Pilot Preliminary 30% -25% 7.3 PFBC Circ.
Size (MW) Capital Costs (\$/kW) Process Capital General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Total Generic Unit Cost Total Generic Unit Cost	500	400	300	200	600	300	300	400	200	160	350	350	160	350
Fixed O&M (\$/kW-yr) Var, O&M (\$/kWh) Avg, Heatrate (BTU/kWh)	31.34 1.13 9910	38.67 1.02 9977	39.51 1.17 9982	49.78 1.10 10247	31.45 1.08 10063	34.87 1.06 9904	39.48 1.48 9932	37.63 1.38 9069	44.03 2.36 10526	60.97 2.46 9711	37.57 1.56 9621	37.26 1.85 9156	51.01 1,95 9498	38.05 1.91 9447
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MMV) Capital Costs (\$/kW) Process Capital General Facilities Engineening Fee Project Contingency Process Contingency Total Plant Cost	Pilot Preliminary 30% -25% 7.8 FBC Circ. Su 350	Pilot Preliminary 30% -25% 8.1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.2B Coal GCC 601	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGCASH 410.2	Demonstration Simplified 25% -25% 10.5C IGMCFC 400	Pilot Preliminary 30% -25% 10.6 Adv. GCC 460.3	Mature Preliminary 10% -10% 15.1 CT 80	Mature Preliminary 10% -10% 15.2 CT	Mature Preliminary 10% -10% 15.3 CT	Mature Preliminary 10% -10% 15.7 CT Aero 45	Mature Preliminary 10% -10% 16.2 CT/CC 2on1 330	Mature Proliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Pretiminary 20% -20% 18.4 CT/CC 345
Preprod, Inv, Land Total Genenic Unit Cost Fixed O&M (\$AtVV-yr) Var, O&M (\$AfVV-yr) Avg, Heatrate (BTU/kWh)	35.85 2.11 8997	30.55 4.48 8033	45.51 1.08 8774	42.67 1.24 9083	47.48 0.82 10836	61.52 4.92 7203	34.28 3.44 7760	8.43 1.00 13551	6.49 1.00 14357	4.97 1,00 12032	12.57 1.00 11050		12.23 0.61 7462	13.39 0.64 7302
Tech Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MV) Capital Costs (\$AVV) Process Capital General Facilities Engresening Fee	Demonstration Preliminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Demonstration Simplified 25% -25% 20.2A MC FC	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Pilot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 50	Pilot Goal 100% -30% 22.3C PV High Conc 80	Demonstration Simplified 25% -25% 24.2 Wind 50.05	Commercial Goal 70% -30% 24.6 Wind Cl4 37.5	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Tires 30	Commercial Simplified 20% -20% 28.1 Blo Wood 50
Project Contingency Process Contingency Total Plant Cost Preprog Inv., Land Total Genenic Unit Cost Fixed O&M (\$AW-yr)	13.84	538.51	126.80	67.78	45.14	9.07	9.80	42.25		24.47	208.48		132.20	69.90
Var O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	2.16 7497	2.38 9818	2.07 5880	0.04 6481	0.00 30503	0.00	0.00 0	0.00	0.00	0.00	25.91 17707	25.80 17806	3.60 13374	2.67 15026
Tech Development Rabng Design & Cost Ester Rasing Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Captal Costs (SNW) Process Capital General Factions	Pilot Goal 100% -30% 26.3 Bio Tree 100	Mature Preliminary 10% -10% 30,2 LeadBat 20	Pilot Goal 100% -30% 31.1 AdvBat3 20	Pilot Goal 100% -30% 31,2 AdvBat5	32.1 PHES	Commercial Actual 5% -5% 33.18 CAES 350	Pilot Preliminary 30% -25% 33,2B CASH 350	Pilot Goal 100% -30% 34.1 SMES 500			10% -10% CR3 AFBC 135	-10% CR3 Gas	5% -5% BR5 110MW 110	5% -5% BR5 164MW 164
Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv. Land Total Generic Unit Cost														
Fixed O&M (\$AvW-yr) Var, Q&M (\$IMWh) Avg, Heatrate (BTU/AWh)	51,40 1,75 11528	8.12		5.13	4,60	5.73 0.99 4191		4.11			41.17 0.97 11025	0.00	1.00	1.00
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Mirimum Cap Cost Adjustment (%) TAG SUPPLY ID Lint Type Lint Type State (MW) Capital Costs (\$7kW) Process Capital General Facilities Engineering Fee Project Contingency	5% -5% BR5 102MW 102	-5% BR\$ 159MW	5% -5% BRS 149MW 149	0% 0% IPP Hydro 180	-5% Aero CT	5% -5% OF 98.10 33.6	-5% TC 2	IAC at BR		Teg Supply Id 30.2 31.1 31.2 32.1 33.18 33.28	Tech Name LeedBei AdvBet3 AdvBet5 PHES CAES CAES SMES IAC et BR	Tuble A IONh Input/ IONh Input/ IONh Cusput 1.31 1.14 1.10 1.36	1 KW KWh in +	4191 6464
Process Contingency Total Plant Cost Preprod, Inv., Land Total Generic Unit Cost										Techonolgies with and consume for Capital Cost edjust	TAG Supply ID 33. uel tments and Heal Ri	2, 31.1, 31.2, 32.1, 3 1b, 33.2b end IAC ele adjustments appl	st BR require enorg y to all above leth:	y from Electric Grid
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	7.17 1.00 12987	1.00	1.00	0.00	4.00	6,91 0.00 0	0.35	. 1.48	ı	TAG based techno	ologies have hed Co	or Companies' sup- spital Cost edjustmer y (Process Continge	its applied to Proce	

Capital Cost edjustments and Heel Rate udjustments apply to all above technologies, regardiess of data source (to. TAG or Companies' supplied data). TAG based technologies have had Capital Cost edjustments applied to Process Capital, General Facilities and Engineering Fee only (Process Contingency and Prep, lev and Land excluded).

1999 Generic Unit Construction Costs Base Capital Costs, Low HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 1999\$,

					All do	ilars are Janus	ry 1999\$.							
Tech. Development Rating	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Commercial	Demonstration	Pilot	Pilot	Demonstration	Pilot
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%)	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 10%	Preliminary 15%	Pretiminary 20%	Preliminary 30%	Pretiminary 30%	Preliminary 20%	Pretiminary 30%
Minimum Cap Cost Adjustment (%)	-10%	-10%	-10%	-10%	-10%	-10%	-10%	-10%	-15%	-20%	-25%	-25%	-20%	-25%
TAG SUPPLY ID Unit Type	1.1B PC LSFO	1.1C PC LSFO	1.1E PC LSFO	1.1G PC LSFO	1.1H PC LSFO	1.2G PC LSD	1.5B	1.5C PC LSFO Adv.	5.4A AFBC Circ.	6.2 PFBC2x80	6.7	6.9	7.2	7.3
Size (MW)	500	400	300	200	600	300	300 Sup.	400	200	160	PFBC Bub. 350	PFBC Sup. 350	PFBC Circ. 160	PFBC Circ. 350
Capital Costs (\$/kW)														
Process Capital General Facilities														
Engineering Fee														
Project Contingency Process Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh)	31,34 1,13	38,67 1,02	39.51 1.17	49.78 1.10	31.45 1.08	34.87 1.06	39.48	37.63	44.03	60.97	37.57	37.26	51.01	38.05
Avg. Heatrate (BTU/kWh)	8966	9027	9032	9271	9105	8960	1.48 8986	1,38 8205	2.36 9524	2.46 8787	1.56 8705	1.85 8284	1.95 8594	1.91 8547
Tech. Development Rating	Pilot	Pilot			Demonstration		Pilot	Mature	Mature	Mature	Mature	Mature	Mature	Demonstration
Design & Cost Estim Rating	Preliminary 30%	Preliminary 30%	Simplified 25%	Simplified 25%	Preliminary	Simplified	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	-25%	-25%	-25%	-25%	20% -20%	25% -25%	30% -25%	10% -10%	10% -10%	10% -10%	10%	10% -10%	10% -10%	20% -20%
TAG SUPPLY ID	7.8	8.1	10.2B	10.5A	10.5B	10.5C	10.6	15.1	15.2	15,3	15.7	16.2	16.3	16.4
Unit Type Size (MW)	FBC Circ. Su 350	Adv. PFBC 687.7	Coal GCC 601	IGCHAT 600	IGCASH	IGMCFC	Adv. GCC	CT	CT	CT	CT Aero	CT/CC 2on1	CT/CC 2on1	CT/CC
Size (MVV) Capital Costs (\$/kW)	350	687.7	901	400	410.2	400	460.3	80	110	160	45	330	470	345
Process Capital			′										· · · =	
General Facilities Engineering Fee														
Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv. Land														
Total Generic Unit Cost														
Fixed O&M (\$/kW-yr)	35.85	30.55	45.51	42.67	47.46	61.52	34.28	8.43	6.49	4.97	12.57	15.58	12.23	13,39
Var. O&M (\$/MWh)	2.11	4.48	1.08	1.24	0.82	4.92	3.44	1.00	1.00	1,00	1.00	0.62	0.61	0.64
Avg. Heatrate (BTU/kWh)	8141	7268	7938	8218	9804	6517	7021	12261	12989	10886	9998	7322	6752	6606
Tech. Development Rating Design & Cost Estim Rating	Demonstration Preliminary	Demonstration Simplified	Demonstration Simplified	Demonstration Simplified	Demonstration	Pilot Goal	Pilot Goal	Pilot Goal	Demonstration Simplified	Commercial Goal	Commercial Simplified	Commercial	Commercial	Commercial Simplified
Maximum Cap Cost Adjustment (%)	20%	25%	25%	25%	20%	100%	100%	100%	25%	70%	20%	Simplified 20%	Simplified 20%	20%
Minimum Cap Cost Adjustment (%)	-20%	-25%	-25%	-25%	-20%	-30%	-30%	-30%	-25%	-30%	-20%	-20%	-20%	-20%
TAG SUPPLY ID Unit Type	17.2 CHAT	20.1E Phos FC	20.2A MC FC	20.3D SolidOX FC	21.2 Geotherm	22.2C PV Flat	22.2F PV Track	22.3C PV High Conc	24.2 Wind	24.6 Wind CI4	25.1 MSW Mass	25.2 MSW RDF	25.3 MSW Tires	26.1 Bio Wood
Size (MW)	300	2.5	10	25	24	50	50	50	50.05	37.5	40	40	30	50
Capital Costs (\$/kW)														
Process Capital General Facilities														
Engineering Fee														
Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr)	13.84	538.51	126.80	67.78	45.14	9.07	9.80	42.25	25.91	24.47	208.48	248.51	132.20	69.90
Var. O&M (\$/MWh) Avg. Hestrate (BTU/kWh)	2.16 6783	2.38 8883	. 2.07 5320	0.04 5863	0.00 27598	0.00	0.00	0.00	0.00 O		25.91 16021	25.80 16110	3.60 12100	2.67 13595
Tech, Development Rating	Pilot	Mature	Pilot	Pilot	Mature	Commercial	Pilot	Pilot						
Design & Cost Estim Rating	Goal	Preliminary	Goal	Goal	Actual	Actual	Preliminary	Goal						
Maximum Cap Cost Adjustment (%)	100%	10%	100%	100%	5%	5%	30%	100%			10%	10%	5%	5%
Minimum Cap Cost Adjustment (%) TAG SUPPLY ID	-30% 26.3	-10% 30.2	-30% 31.1	-30% 31.2	-5% 32 .1	-5% 33.1B	-25% 33.2B	-30% 34.1			-10%	-10%	-5%	-5%
TAG SUPPLY ID Unit Type	26.3 Bio Tree	30.2 LeadBat	31.1 AdvBat3	31.2 AdvBat5	JZ.1 PHES	CAES	JJ.ZB CASH	34.1 SMES			CR3 AFBC	CR3 Gas	BRS 110MW	BR5 164MW
Size (MVV)	100	20	20	20	1050	350	350	500			135	135	110	164
Capital Costs (\$/kW) Process Capital														
General Facilities														
Engineering Fee														
Project Contingency Process Contingency														
- ,														
Total Plant Cost														
Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/KW-yr)	51.40	1.71	0.49 7.06		4.60	5.73	5.04	5.14			41.17	41.17	6.65	5.00
Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	1.75 10430	8.12 0	7.05 0		4.60 0	0.99 3791	1,00 5848	4,11 0			0.97 9975	0.00 1 05 45	1.00 11667	1.00 9975
													_	
Tech, Development Ratino												Table A		
Design & Cost Estim Rating							5%	5%		Tag Supply				Out =
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%)	5%	5%	5%		5%	5%						KWh Input/		
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	5% -5%	5% -5%	5% -5%	0% 0%	5% -5%	5% -5%	-5%	-5%		ы	Tech Name	KWh Output	KWh in +	
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1	LendBal AdvBal3	1,31 1,14		
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW)	-5%	-5%	-5%	0%	-5%	-5%	-5%	-5%		30.2 31.1 31.2	LendBal AdvBat3 AdvBat5	1.31 1.14 1.10		
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/kW)	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1	LendBal AdvBal3	1,31 1,14		BTU in
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MV) Process Capital General Facilities	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.18 33.28	LendBal AdvBat3 AdvBat5 PHES CAES CASH	1.31 1.14 1.10 1.36	KWh in +	87U in 3791
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MM) Capital Costs (\$AVM) Process Capital General Facilities Engineering Fee	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.18	LendBal AdvBat3 AdvBat5 PHES CAES CASH SMES	1.31 1.14 1.10	5.79 + 0.48 +	87U in 3791 5848
Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Process Capital Capital Costs (\$NW) Process Capital General Facilities Engineering Fee Project Contingency	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.18 33.28	LendBal AdvBat3 AdvBat5 PHES CAES CASH	1.31 1.14 1.10 1.36	KWh in +	87U in 3791 5848
Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Captal Costs (\$7XW) Process Capital General Facilities Engineering Fee	-5% BR5 102MW	-5% BR5 159MW	-5% BRS 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		ld 30.2 31.1 31.2 32.1 33.1B 33.2B 34.1	LendBal AdvBarD AdvBarD PHES CAES CASH SMES IAC at BR	1.31 1.14 1.10 1.36	5.79 + 0.48 +	BTU in 3791 5848 11068

		Table A	
Tag Supply		KWh Input/	1 KWh Out =
M	Tech Name	KWh Output	KWh in + BTU in
30.2	LendBal	1,31	
31.1	AdvBat3	1,14	
31.2	AdvBat5	1.10	
32.1	PHES	1.36	
33.1B	CAES	1	0.79 + 3791
33.2B	CASH	t l	0.48 + 5848
34.1	SMES	1.06	
	IAC at BR	ł I	0.775 + 11068

26.46 0.35 9405

8.91 0.00 0

5.50 1.00 10546

30.18 0.00 0

0.00 4.00 9844

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)

1999 Generic Unit Construction Costs High Capital Costs, Base HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 1999\$.

,					All do	ilars are Janua	ry 1999\$.							
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MM) Capital Costs (\$/\(\)\(\)\(\)\(\) Process Capital General Facilities	Mature Preliminary 10% -10% 1.18 PC LSFO 500	Mature Preliminary 10% -10% 1.1C PC LSFO 400	Mature Preliminary 10% -10% 1.1E PC LSFO 300	Mature Preliminary 10% -10% 1.1G PC LSFO 200	Mature Preliminary 10% -10% 1.1H PC LSFO 600	Mature Preliminary 10% -10% 1.2G PC LSD 300	Mature Preliminary 10% -10% 1.5B PC LSD Sup. 300	Mature Preliminary 10% -10% 1.8C PC LSFO Adv. 400	Commercial Preliminary 15% -15% 5.4A AFBC Circ. 200	Demonstration Preliminary 20% -20% 6.2 PFBC2x80 160	Pilot Preliminary 30% -25% 6.7 PFBC Bub. 350	Pilot Preliminary 30% -25% 6.9 PFBC Sup. 350	Demonstration Preliminary 20% -20% 7.2 PFBC Circ. 160	Pilot Preliminary 30% -25% 7.3 PFBC Circ. 350
Engineering Fee Project Contingency Process Contingency														
Total Plant Cost Preprod, Inv., Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	31.34 1.13 9438	38.67 1.02 9502	39.51 1.17 9507	49.78 1.10 9759	31.45 1.08 9584	34.87 1.06 9432	39.48 1.48 9459		44.03 2.36 10025	60.97 2.46 9249	37.57 1.56 9163	37.26 1.85 8720	51.01 1.95 9048	36.05 1.91 8997
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (%/W) Process Capital General Facilities	Pilot Preliminary 30% -25% 7.8 FBC Circ. Su 350	Pilot Preliminary 30% -25% 8,1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.2B Coal GCC 801	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGGASH 410.2	Demonstration Simplified 25% -25% 10.8C IGMCFC 400	Pilot Preliminary 30% -25% 10.6 Adv. GCC 460.3	Mature Preliminary 10% -10% 15.1 CT	Mature Preliminary 10% -10% 15.2 CT	Mature Preliminary 10% -10% 15.3 CT 160	Mature Preliminary 10% -10% 15.7 CT Aero 45	Mature Preliminary 10% -10% 18.2 CT/CC 2on1 330	Mature Preliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Preliminary 20% -20% 18.4 CT/CC 345
Engineering Fee Project Contingency Process Contingency														
Total Plant Cost Preprod, Inv., Land Total Generic Unit Cost													-	
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	35.85 2.11 8569	30.55 4.48 7650	1.08	42.67 1.24 8650	47.46 0.82 10320	61.52 4.92 6860	34.28 3.44 7390	1.00	6.49 1.00 13673	4.97 1.00 11459	12.57 1.00 10524	15.58 0.62 7707	12.23 0.61 7107	13.39 0.64 6954
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (M/V) Capital Costs (\$/KV) Process Capital General Facilities Engineering Fee	Demonstration Preliminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Simplified 25% -25% 20,2A MC FC	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Pilot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 50	22.3C PV High Conc	Demonstration Simplified 25% -25% 24.2 Wind 50,05	Commercial Goal 70% -30% 24.6 Wind Cl4 37.6	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Thres 30	Commercial Simplified 20% -20% 28.1 Blo Wood 50
Project Contingency Process Contingency Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	13.84 2.16 7140	538.51 2.38 9350	2.07	67.78 0.04 6172		9.07 0.00 0	9.80 0.00	0.00	25.91 0.00 0		208.48 25.91 16864	246.51 25.80 16958	132.20 3.60 12737	69.90 2.67 14310
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type	Pilot Goal 100% -30% 26.3 Blo Tree	Mature Preliminary 10% -10% 30.2 LeadBat	Pilot Goal 100% -30% 31.1 AdvBat3	Pilot Goal 100% -30% 31.2 AdvBat5	Mature Actual 5% -5% 32.1 PHES	Commercial Actual 5% -5% 33.18 CAES	Pilot Preliminary 30% -25% 33.2B CASH				10% -10% CR3 AFBC	10% -10% CR3 Gas	5% -5% BR5 110MW	5% -5% BR5 164MW
Size (MW) Capital Costs (\$RW) Process Capital General Facilities Engineering Fee Project Contingency Process Contingency	100	20			1050	350	350				135		110	164
Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Hestrate (BTU/kWh)	51.40 1.75 10979		7.05	5.13	4.60	0,99		4.11			41.17 0.97 10500	0.00	1.00	
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID	5% -5%	-5%	-5%	0%	-5%	5% -5%	-59	-5%		Tag Supply id 30.2	Tech Name	Table A KWh Input/ KWh Output 1.31	1 KWh In +	n Out = BTU in
Unit Type Size (MW) Capital Costs (SRW) Process Capital General Facilities Engineering Fee Project Contingency	BR5 102MW 102	BR5 159MW 159		IPP Hydro 160	Aero CT 100	OF 9&10 33.6	TC 2 49:	IAC at BR		31.1 31.2 32.1 33.18 33.28 34.1	AdvBel3 AdvBel5 PHES CAES CASH SMES IAC at BR	1.14 1.10 1.38	0.79 ÷ 0.46 ÷	6156
Process Contingency Total Plant Cost Preprod, Inv., Land Total Generic Unit Cost											TAG Supply ID 33.		34.1 require energy: at BR require energy	

0.00 4.00 10362 8.91 0.00 0 26.46 0.35 9900

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh) 5.15 1,00 10838

1999 Generic Unit Construction Costs High Capital Costs, High HeatRates urce: EPRI's TAG SUPPLY Version 3.08) All dollars are January 1999\$.

					All do	ilars are Janua	ıry 1999\$.							
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (M/V) Capital Costs (\$/kV/V) Process Capital	Mature Preliminary 10% -10% 1.1B PC LSFO 500	Mature Preliminary 10% -10% 1.1C PC LSFO 400	Mature Preliminary 10% -10% 1.1E PC LSFO 300	Mature Preliminary 10% -10% 1.1G PC LSFO 200	Mature Preliminary 10% -10% 1.1H PC LSFO 600	Mature Preliminary 10% -10% 1.2G PC LSD 300	Mature Preliminary 10% -10% 1.5B PC LSD Sup. 300	Mature Proliminary 10% -10% 1.5C PC LSFO Adv. 400	Preliminary 15% -15% 5.4A	Demonstration Proliminary 20% -20% 8.2 PFBC2x80 160	Pilot Preliminary 30% -25% 8.7 PFBC Bub. 350	Pilot Preliminary 30% -25% 6.9 PFBC Sup. 350	Demonstration Pretiminary 20% -20% 7.2 PFBC Circ. 160	Pilot Pretiminary 30% -25% 7.3 PFBC Circ. 350
General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv., Lanc														
Total Ganeric Unit Cost Fixed O&M (\$/kVV-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kV/h)	31.34 1.13 9910	38.67 1.02 9977	39.51 1.17 9982	49.78 1.10 10247	31.45 1.08 10063	34.87 1.06 9904	39.48 1.48 9932		44.03 2.36 10526	60.97 2.46 9711	37.57 1.56 9621	37.26 1.85 9156	51.01 1.95 9498	36.05 1.91 9447
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MYN) Capital Costs (S/MV) Process Capital General Facilities Engineering Fee Project Contringency	Pilot Preliminary 30% -25% 7.8 FBC Circ. Su 350	Priot Preliminary 30% -25% 8.1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.2B Coal GCC 801	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGCASH 410.2	Demonstration Simplified 25% -25% 10.5C IGMCFC 400	Pilot Preliminary 30% -25% 10.8 Adv. GCC 450.3	Mature Proliminary 10% -10% 15.1 CT	Mature Preliminary 10% -10% 15.2 CT 110	Mature Preliminary 10% -10% 15.3 CT 160	Mature Preliminary 10% -10% 15.7 CT Aero	Maturo Preliminary 10% -10% 16.2 CY/CC 2on1 330	Mature Preliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Preliminary 20% -20% 15.4 CT/CC 345
Process Contingency Total Plant Cost Preprod, Inv. Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg Heatrate (BTU/kWh)	35.85 2.11 8997	30.55 4.48 8033	45.51 1.08 8774	42.67 1.24 9083	47.46 0.82 10836	61.52 4.92 7203	34.28 3.44 7760	8.43 1.00 13551	6.49 1.00 14357	4.97 1.00 12032	12.57 1.00 11050	15.58 0.62 8092	12.23 0.61 7462	13.39 0.64 7302
Tech Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (SAW) Process Capital General Facilities	Demonstration Prefirminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Demonstration Simplified 25% -25% 20.2A MC FC 10	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Pilot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 50	Pilot Goal 100% -30% 22.3C PV High Conc 50	Demonstration Simplified 25% -25% 24.2 Wind 50.05	Commercial Goal 70% -30% 24.6 Wind CI4 37.5	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Tires 30	Commercial Simplified 20% -20% 26.1 Blo Wood 50
Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv. Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var O&M (\$/kW-yr) Avg Heatrate (BTU/kWh)	13.84 2.16 7497	538,51 2.38 9818	126.80 2.07 5880	67.78 0.04 6481	45.14 0.00 30503	9.07 0.00 0	9.80 0.00 0	42.25 0.00 0	25.91 0.00 0	24.47 0.00 0	208.48 25.91 17707	246.51 25.80 17806	132.20 3.60 13374	69.90 2.67 15026
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MVV) Capital Costs (SAVV)	Pilot Goal 100% -30% 26.3 Bio Tree 100	Mature Preliminary 10% -10% 30.2 LeadBat 20	Pilot Goal 100% -30% 31.1 AdvBat3 20	Pilot Goal 100% -30% 31.2 AdvBat5 20	Mature Actual 5% -5% 32.1 PHES 1050	Commercial Actual 5% -5% 33.18 CAES 350	Pitot Preliminary 30% -25% 33.28 CASH 350	Pilot Goal 100% -30% 34.1 SMES 500			10% -10% CR3 AFBC 135	10% -10% CR3 Gas 135	5% -5% BR5 110MW 110	5% -5% BR5 164MW 164
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency														
Total Plant Cost Preprod, Inv. Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	51.40 1.75 11528	1.71 8.12 0	0.49 7.05 0	1.07 5.13 0	4.60 4.60 0	5.73 0.99 4191	5.04 1.00 6464	5,14 4,11 0		·	41,17 0.97 11025	41.17 0.00 11655	6.65 1.00 12895	5.00 1.00 11025
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Contint Costs (SMM)	5% -5% BR5 102MW 102	5% -5% BR5 159MW 159	5% -5% BR5 149MW 149	0% 0% IPP Hydro 160	5% -5% Aero CT 100	5% -5% OF 9&10 33.6	5% -5% TC 2 495	5% -5% IAC at BR 86		30.2 31.1 31.2	Toch Name LeadBal Adv8xt3 Adv6xt5	Table A ICNh Input/ ICNh Cutput 1.31 1.14 1.10	1 KWh KWh in +	
Capital Costs (\$KW) Process Capital General Facilities Engineering Fee Project Contingency Process Contingency			,							32.1 33.18 33.26 34.1	PHES CAES CASH SMES IAC al BR	1.36	0.79 + 0.46 + 0.775 +	6454
Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost									•	Notes: Techonolgies with 1 Techonolgies with 1 and consume for	AG Supply ID 33.11	, 31.1, 31.2, 32.1, 3 b, 33.2b and IAC a	I.1 require energy fr t BR require energy	om Electric Grid. from Electric Grid

		Table A	
Tag Supply		KVMh Input/	1 KWh Out =
kd	Tech Name	KWh Output	KWhin+ BTU in
30.2	LeadBal	1.31	
31.1	Adv8xi3	1.14	
31.2	AdvBet5	1.10	
32.1	PHES	1.36	
33.1B	CAES	1	0.79 + 4191
33.28	CASH		0.45 • 6464
34.1	SMES	1.08	
	IAC at BR	1	0.775 + 12234

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTW/kWh)

7.17 1.00 12987

5.15 1.00 11378

5.50 1.00 11656

0.00 4.00 10880

8.91 0.00 0

26.46 0.35 10395

1999 Generic Unit Construction Costs High Capital Costs, Low HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 1999\$.

					All do	llars are Janua	ry 1999\$.	•						
Tech. Development Rating	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Commercial	Demonstration	Pilot	Pilot	Demonstration	Pilot
Design & Cost Estim Rating	Preliminary	Preliminary	Protiminary	Preliminary	Preliminary	Preliminary	Proliminary	Pretiminary	Preliminary	Preliminary	Preliminary	Pretiminary	Pretiminary	Preliminary
Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	15% -15%	20% -20%	30% -25%	30% -25%	20% -20%	30% -25%
TAG SUPPLY ID	1.1B	1.1C	1.1E	1.1G	1,1H	1.2G	1.5B	1.5C	5.4A	6.2	6.7	6.9	7.2	7.3
Unit Type Size (MVV)	PC LSFO 500	PC LSFO 400	PC LSFO 300	PC LSFO 200	PC LSFO 600	PC LSD 300	PC LSD Sup. 300	PC LSFO Adv. 400	AFBC Circ. 200	PFBC2x80 160	PFBC Bub.	PFBC Sup.	PFBC Circ.	PFBC Circ.
Capital Costs (\$/kW)				200		500	300	400	200	100	350	350	160	350
Process Capital									**					
General Facilities Engineering Fee														
Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv. Land	1													
Total Generic Unit Cost														
Fixed O&M (\$/kV/-yr)	31.34	38.67	39.51	49.78	31,45	34.87	39.48	37.63	44.03	60.97	37,57	37.26	51,01	36.05
Var. O&M (\$/MWh)	1.13	1.02	1,17	1.10	1.08	1.06	1.48	1.38	2.36	2.46	1.58	1.85	1.95	1.91
Avg Heatrate (BTU/kWh)	8966	9027	9032	9271	9105	8960	8986	8205	9524	6787	8705	8284	8594	8547
Tech. Development Rating	Pilot	Pilot	Demonstration	Demonstration	Demonstration	Demonstration	Pilot	Mature	Mature	Mature	Mature			
Design & Cost Estim Rating	Preliminary	Preliminary	Simplified	Simplified	Preliminary	Simplified	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Mature Preliminary	Mature Pretiminary	Demonstration Preliminary
Maximum Cap Cost Adjustment (%)	30%	30%	25%	25%	20%	25%	30%	10%	10%	10%	10%	10%	10%	20%
Minimum Cap Cost Adjustment (%) TAG SUPPLY ID	-25% 7.8	-25% 8.1	-25% 10.2B	-25% 10.5A	-20% 10.58	-25% 10.5C	-25% 10.6	-10% 15.1	-10% 15.2	-10% 15.3	-10% 15,7	-10% 16.2	-10% 16.3	-20% 18.4
Unit Type	FBC Circ. Su	Adv. PFBC	Coal GCC	IGCHAT	IGCASH	IGMCFC	Adv. GCC	CT	CT	CT	CT Aero	CT/CC Zon1	CT/CC 2on1	CT/CC
Size (MW)	350	687.7	601	600	410.2	400	460.3	80	110	160	45		470	345
Capital Costs (\$/kW) Process Capital														
General Facilities														
Engineering Fee														
Project Contingency Process Contingency														
· · · · · · · · · · · · · · · · · · ·														
Total Plant Cost														
Preprod, Inv., Land Total Generic Unit Cost														
was canenic unit cost														
Frand O&M (\$7kW-yr)	35.85	30.55	45.51	42.67	47.46	61.52	34.28	8.43	6.49	4.97	12,57	15.58	12.23	13.39
Var OEM (S/MWh)	2.11	4.48	1.08	1.24	0.82	4.92	3.44	1.00	1.00	1.00	1.00	0.62	0.61	0,64
Avg Heatrata (BTU/kWh)	8141	7268	7938	8218	9804	6517	7021	12261	12989	10886	9998	7322	6752	6606
Tech: Development Rating Design & Cost Estim Rating	Demonstration Preliminary	Demonstration Simplified	Demonstration Simplified	Demonstration Simplified	Demonstration Preliminary	Pilot Goal	Pilot Goal	Pilot Goal	Demonstration Simplified	Commercial Goal	Commercial Simplified	Commercial Simplified	Commercial Simplified	Commercial Simplified
Maximum Cap Cost Adjustment (%)	20%	25%	25%	25%	20%	100%	100%	100%	25%	70%	20%	20%	20%	20%
Minemum Cap Cost Adjustment (%) TAG SUPPLY ID	-20%	-25%	-25%	-25%	-20%	-30%	-30%	-30%	-25%	-30%	-20%	-20%	-20%	-20%
Unit Type	17.2 CHAT	20.1E Phos FC	20.2A MC FC	20.3D SolidOX FC	21.2 Geotherm	22.2C PV Flat	22.2F PV Track	22.3C PV High Conc	24.2 Wind	24,6 Wind C14	25.1 MSW Mass	25.2 MSW RDF	25.3 MSW Tires	25.1 Bio Wood
Size (MW)	300	2.5	10	25	24	. 50	50	50	50.05	37.5	40	40	30	50
Capital Costs. (\$/kW)														
Process Capital General Facilities														
Engineering Fee														
Project Contingency Process Contingency														
Process Conungency														
Total Plant Cost														
Preprod, Inv. Land Total Genenc Unit Cost														
Total Gallette Oral Coat														
Fixed O&M (\$/kW-yr)	13.84	538.51	126.80	67.78	45.14	9.07	9.80	42.25	25.91	24.47	208.48	246.51	132.20	69.90
Var O&M (\$/MWh)	2.16	2.38	2.07	0.04	0.00	0.00	0.00	0.00	0.00	0.00	25.91	25.80	3.60	2.67
Avg Heatrate (BTU/kWh)	6783	8883	5320	5863	27598	0	0	0	0	0	16021	16110	12100	13595
								-						
Tech: Development Rating Design & Cost Estim Rating	Pilot Goal	Mature Preliminary	Pilot Goal	Pilot	Mature Actual	Commercial	Pilot Preliminary	Pilot						
Maximum Cap Cost Adjustment (%)	100%	10%	100%	Goal 100%	ACTUAL 5%	Actual 5%	Preliminary 30%	Gosl 100%			10%	10%	5%	5%
Mınımum Cap Cost Adjustment (%)	-30%	-10%	-30%	-30%	-5%	-5%	-25%	-30%			-10%	-10%	-5%	-5%
TAG SUPPLY ID	26.3	30.2	31.1	31.2	32.1	33.18	33.2B	34.1						
Unit Type Size (MW)	Bio Tree 100	LeadBat 20	AdvBat3 20	AdvBat5 20	PHES 1050	CAES 350	CA8H 350	SMES 500			CR3 AFBC 135	CR3 Gas 135	BR5 110MW 110	8R5 164MW 164
Capital Costs (\$/kW)														
Process Capital														
General Facilities Engineering Fee														
Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv, Land														
Total Generic Unit Cost														
Fixed O&M (\$/kW-yr)	51.40	1.71	0.49	1.07	4.60	5.73	5.04	5.14			41,17	41.17	6.65	5.00
		8.12	7.05	5.13	4.60	0.99	1.00	4.11			0.97		1.00	
	1.75		0	0	0	3791	5848	0			9975	10545	11667	9975
		0								**				
Avg. Heatrate (BTÚ/kWh)	1.75													
Avg. Heatrate (BTU/kWh) Tech. Development Rating	1.75													
Avg. Heatrate (BTU/kWh) Tech. Development Rating Design & Cost Estim Rating	1.75		5%	0%	5%	5%	5%	5%		Tag Supply		Table A KWh Input/	1 KW	Out =
Avg. Heatrate (BTU/k/kh) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minumum Cap Cost Adjustment (%)	1.75 10430	0	5% -5%	0% 0%	5% -5%	5% -5%	5% -5%	5% -5%		kd.	Tech Name	KWh Input/ KWh Output	1 KWh KWh in +	
Avg. Hestrate (BTU/KWh) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY (I)	1.75 10430 5% -5%	5% -5%	-5%	0%	-5%	-5%	-5%	-5%		30.2	LeadBat	KWh Input/ KWh Output		
Avg. Heatrate (BTU/AWA) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10				원 30.2 31.1	LeadBat AdvBat3	KWh Input/ KWh Output 1,31 1,14		
Avg. Heathste (BTU/KWh) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Cost (S/KW)	1.75 10430 5% -5%	5% -5%	-5%	0%	-5%	-5%	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1	LeadBat AdvBat3 AdvBat5 PHES	KWh Input/ KWh Output	KWh in +	BTU In
Avg. Heatrate (BTU/KVM) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Got Adjustment (%) TAG SUPPLY ID Virt Type Size (MW) Capital Costs (\$/KW) Process Capital	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.1B	LondBat AdvBat3 AdvBat5 PHES CAES	KWh Input/ KWh Output 1,31 1,14 1,10	KWh in +	8TU In 3791
Avg. Heatrate (BTU/KVM) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY (D) Unit Type Size (MW) Capital Costs (\$/KW) Process Capital General Facilities	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1	LeadBat AdvBat3 AdvBat5 PHES	IXWh Input/ IXWh Output 1.31 1.14 1.10 1.36	KWh in +	8TU In 3791
Avg. Heatrate (BTU/KWh) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minmum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/KW) Process Capital General Facilities Engineering Fee Project Contingency	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.1B 33.2B	LoadBat AdvBat3 AdvBat5 PHES CAES CASH	KWh Input/ KWh Output 1,31 1,14 1,10	KWh in +	3791 5848
Avg. Heatrate (BTU/KWh) Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (5/KW) Proceas Capital General Facilities Engineering Fee	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		30.2 31.1 31.2 32.1 33.18 33.28 34.1	LondBut AdvButS AdvButS PHES CAES CASH SMES	IXWh Input/ IXWh Output 1.31 1.14 1.10 1.36	0.79 + 0.45 +	3791 5848
General Facilities Engineering Fee Project Contingency	1.75 10430 5% -5% BR5 102MW	5% -5% BR5 159MW	-5% BR5 149MW	0% IPP Hydro	-5% Aero CT	-5% OF 9&10	-5% TC 2	-5% IAC at BR		ld 30.2 31.1 31.2 32.1 33.18 33.28 34.1	LondBet AdvBnCl AdvBnCl AdvBnCs PHES CAES CASH SMES SMES SAC at BR	IXWh Input/ IXWh Output 1.31 1.14 1.10 1.36	0.79+ 0.48+ 0.775+	3791 5842 11068

		Table A	
Tag Supply		KWh Input/	1 KWh Out =
×	Tech Name	KWh Output	KWh in + BTU in
30.2	LeadBat	1,31	
31.1	AdvBat3	1,14	
31.2	Adv8et5	1.10	
32.1	PHES	1.36	
33.1B	CAES		0.79 + 3791
33.28	CASH		0.48 + 5848
34.1	SMES	1.08	
	SAC at SR		0.775 + 11068

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)

1999 Generic Unit Construction Costs Low Capital Costs, Base HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 19995.

					(Mis ING SUPP Name of States		"						
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$AW) Process Capital	Mature Preliminary 10% -10% 1.18 PC LSFO 500	Mature Preliminary 10% -10% 1.1C PC LSFO 400	Mature Preliminary 10% -10% 1.1E PC LSFO 300	Mature Preliminary 10% -10% 1.1G PC LSFO 200	Mature Preliminary 10% -10% 1.1H PC LSFO 600	Mature Preliminary 10% -10% 1.2G PC LSD 300	Mature Preliminary 10% -10% 1.5B PC LSD Sup. 300	Mature Preliminary 10% -10% 1.5C PC LSFO Adv. 400	Commercial Preliminary 15% -15% 5.4A AFBC Circ. 200	Demonstration Pretiminary 20% -20% 6.2 PFBC2x80 160	Pilot Preliminary 30% -25% 5.7 PFBC Bub. 350	Pilot Pretiminary 30% -25% 6.9 PFBC Sup. 350	Demonstration Preliminary 20% -20% 7.2 PFBC Circ. 160	Pilot Preliminary 30% -25% 7.3 PFBC Circ. 350
General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv, Lan	1													
Total Generic Unit Cost									,					
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh)	31.34 1.13	38.67 1.02	39.51 1.17	49.78 1.10	31.45 1.08	34.87 1.06	39.48 1.48	37.63 1.38	44.03 2.36	60.97 2.46	37.57 1.56	37.26 1.85	51.01 1.95	36.05 1.91
Avg. Heatrate (BTU/kWh)	9438	9502	9507	9759	9584	9432	9459		10025	9249	9163	8720	9046	8997
Tech, Development Rating	Pilot	Pilot	Demonstration	Demonstration	Demonstration	Demonstration	Pilot	Mature	Mature	Mature	Mature	Mature	Mature	Demonstration
Design & Cost Estim Rating	Preliminary	Preliminary	Simplified	Simplified	Preliminary	Simplified	Pretiminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary	Preliminary
Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	30% -25%	30% -25%	25% -25%	25% -25%	20% -20%	25% -25%	30% -25%	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	10% -10%	20% -20%
TAG SUPPLY ID	7.8	8.1	10.2B	10.5A	10.5B	10.5C	10.6	15.1	15.2	15.3	15.7	16.2	16.3	16.4
Unit Type Size (MW)	FBC Circ. Su 350	Adv. PFBC 687.7	Coal GCC 601	IGCHAT 600	IGCASH 410.2	IGMCFC 400	Adv. GCC 460.3	CT 80	CT 440	CT 160	CT Aero 45	CT/CC 2on1	CT/CC 2on1	CT/CC
Capital Costs (\$/kW)	330	901.1	901	600	410.2	400	460.3		110	160	45	330	470	345
Process Capital														
General Facilities Engineering Fee Project Contingency Process Contingency	1 5													
Total Plant Cost														
Preprod, Inv, Land Total Generic Unit Cost														
							-					_		
Fixed O&M (\$/kW-yr)	35.85	30.55	45.51	42.67	47.46	61,52	34.28	8.43	6.49	4.97	12.57	15.58	12.23	13.39
Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	2.11 8569	4.48 7650	1.08 8356	1.24 8650	0.82 10320	4.92 6860	3.44 7390	1.00 12906	1.00 13673	1.00 11459	1.00 10524	0.62 7707	0.61 7107	0.64 6954
Tech. Development Rating	Demonstration	Demonstration	Demonstration	Demonstration	Demonstration	Pilot	Pilot	Pilot	Demonstration	Commercial	Commercial	Commercial	Commercial	Commercial
Design & Cost Estim Rating	Preliminary	Simplified	Simplified	Simplified	Preliminary	Goal	Goal	Goal	Simplified	Goal	Simplified	Simplified	Simplified	Simplified
Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	20% -20%	25% -25%	25% -25%	25% -25%	20% -20%	100%	100%	100% -30%	25% -25%	70% -30%	20% -20%	20% -20%	20% -20%	20% -20%
TAG SUPPLY ID	17.2	20.1E	20.2A	20.3D	21.2	22.2C	22.2F	22.3C	24.2	24.6	25.1	25.2	25.3	26.1
Unit Type	CHAT	Phos FC	MC FC	SolidOX FC	Geotherm	PV Flat	PV Track	PV High Conc	Wind	Wind Cl4	MSW Mass	MSW RDF	MSW Tires	Blo Wood
Size (MVV) Capital Costs (\$/kW)	300	2.5	10	25	24	50	50	50	50.05	37.5	40	40	30	50
Process Capital							•						:	
General Facilities														
Engineering Fee Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv. Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr)	13.84	538.51	126.80	67.78	45.14	9.07	9.80	42.25	25.91	24.47	208.48	246.51	132.20	69.90
Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	2.16 714D	2.38 9350	2.07 5600	0.04 6172	0.00 29050	0.00	0.00	0.00	0.00	0.00	25.91 16864	25.80 16958	3.60 12737	2.67 14310
Ang. House to Controlly	1140	3500		0112	20000						10004	10336	12/3/	14310
Tech. Development Rating	Pilot	Mature	Pilot	Pilot	Mature	Commercial	Pilot	Pilat						
Design & Cost Estim Rating	Goal	Preliminary	Goal	Goal	Actual	Actual	Pretiminary	Goal						
Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	100%	10%	100% -30%	100%	5%	5%	30%	100%			10%	10%	5%	5%
TAG SUPPLY ID	26,3	-10% 30.2	31.1	-30% 31.2	-5% 32.1	-5% 33.1B	-25% 33.2B	-30% 34.1			-10%	-10%	-5%	-5%
Unit Type	Bio Tree	LeadBat	AdvBat3	AdvBat5	PHES	CAES	CASH	SMES			CR3 AFBC	CR3 Gas	BR5 110MW	BR5 164MW
Size (MW) Capital Costs (\$/kW)	100	20	20	20	1050	350	350	500			135	135	110	164
Process Capital													-	
General Facilities														
Engineering Fee Project Contingency														
Process Contingency														
Total Plant Cost														
Preprod, Inv. Land														
Total Generic Unit Cost														
Fixed Q&M (\$/kW-yr)	51.40	1.71	0.49	1.07	4.60	5.73	5.04	5.14			41.17	41.17	6.65	5.00
Var. O&M (\$/MWh)	1.75	8.12	7.05	5.13	4,60	0.99	1.00	4.11			0,97	0.00	1.00	1.00
Avg. Heatrate (BTU/kWh)	10979	0	0	0	0	3991	6156	0			10500	11100	12281	10500
Tech. Development Rating					·									
Design & Cost Estim Rating												Table A		
Maximum Cap Cost Adjustment (%)	5%	5%	5%	0%	5%	5%	5%	5%		Tag Supply		KWh Input/		Out =
Minimum Cap Cost Adjustment (%) TAG SUPPLY ID	-5%	-5%	-5%	0%	-5%	-5%	-5%	-5%		30.2	Tech Name LeadBat	KWh Output	KWh In +	BTUIN
Unit Type	BR5 102MW	BR5 159MW	BR5 149MW	IPP Hydro	Aero CT	OF 98.10	TC 2	IAC at BR		31.1	AdvBet3	1,14		
Size (MVV) Capital Costs (\$/kW)	102	159	149	160	100	33.6	495	86		31.2 32.1	AdvBel5 PHES	1.10 1.36		
Process Capital General Facilities										33.18 33.28	CAES		0.79 + 0.46 +	

		Table A	
Tag Supply		KWh Input/	1 KWh Out =
, ld	Tech Name	KWh Output	KWhin+ BTU in
30.2	LeadBat	1.31	
31.1	AdvBet3	1.14	
31.2	AdvBet5	1,10	
32.1	PHES	1.36	
33.18	CAES		0.79 + 3991
33.28	CASH	1 1	0.48 + 6156
34.1	SMES	1.08	
	IAC et RR	1	0.775 + 11651

Motes:

Technologies with TAG Supply ID 30.2, 31.1, 31.2, 32.1, 34.1 require energy from Electric Grid.
Technologies with TAG Supply ID 30.1b, 33.2b and IAC at BR require energy from Electric Grid and consume fuel
Captal Cost adoptaments and Meet Rate adjustments apply to all above technologies,
regardies of date source (e. TAG or Companies' supplied data).
TAG beset lectrologies have had Captal Cost adjustments applied to Process Captal, General
Facilities and Engineering Fee only (Process Contingency and Prep, Inv and Land excladed).

Fixed O&M (\$/kW-yr) Var, O&M (\$/M/Wh) Avg, Heatrate (BTU/kWh)

5.15 1.00 10836

0.00 4.00 10362

8.91 0.00 0

26.46 0.35 9900

1999 Generic Unit Construction Costs Low Capital Costs, High HeatRates Jource: EPRI's TAG SUPPLY Version 1.08) All dollars are January 1999\$.

					All do	ilars are Janua	ry 1999\$.							
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MVV) Capital Costs (S/XVV)	Mature Preliminary 10% -10% 1.18 PC LSFO 500	Mature Preliminary 10% -10% 1.1C PC LSFO 400	Mature Proliminary 10% -10% 1.1E PC LSFO 300	Mature Preliminary 10% -10% 1.1G PC LSFO 200	Mature Preliminary 10% -10% 1.1H PC LSFO 600	Mature Preliminary 10% -10% 1.2G PC LSD 300	Mature Preliminary 10% -10% 1.5B PC LSD Sup. 300	Mature Preliminary 10% -10% 1.8C PC LSFO Adv. 400	Commercial Preliminary 15% -15% 5.4A AFBC Circ. 200	Demonstration Pretiminary 20% -20% 6.2 PFBC2x80 160	Pilot Preliminary 30% -25% 6.7 PFBC Bub. 350	Pilot Preliminary 30% -25% 6.9 PFBC Sup. 350	Demonstration Preliminary 20% -20% 7.2 PFBC Ctrc. 160	Pilot Preliminary 30% -25% 7.3 PFBC Circ. 350
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency														
Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/kWh) Avg. Heatrate (BTU/kWh)	31.34 1.13 9910	38.67 1.02 9977	39.51 1.17 9982	49.78 1.10 10247	31.45 1.08 10063	34.87 1.06 9904	39.48 1.48 9932	37.63 1.38 9069	44.03 2.36 10526	60.97 2.46 9711	37.57 1.56 9621	37.26 1.85 9156	51.01 1.95 9498	36.05 1.91 9447
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$RW) Process Capital	Pilot Preliminary 30% -25% 7.8 FBC Circ, Su 350	Pitot Preliminary 30% -25% 8.1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.2B Coal GCC 801	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGCASH 410.2	Demonstration Simplified 25% -25% 10.5C IGMCFC 400	Pilot Preliminary 30% -25% 10.6 Adv. GCC 480.3	Mature Preliminary 10% -10% 15.1 CT	Mature Preliminary 10% -10% 15.2 CT 110	Mature Preliminary 10% -10% 15.3 CT 180	Mature Preliminary 10% -10% 15.7 CT Aero 45	Mature Preliminary 10% -10% 16.2 GT/CC 2on1 330	Mature Preliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Preliminary 20% -20% 16.4 CT/CC 345
General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv., Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	35.85 2.11 8997	30.55 4.48 8033	45.51 1.08 8774	42.67 1,24 9083	47.46 0.82 10836	61.52 4,92 7203	34.28 3.44 7760	8.43 1.00 13551	6.49 1.00 14357	4,97 1.00 12032	12.57 1.00 11050	15.58 0.62 8092	12.23 0.61 7462	13.39 0.64 7302
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$AW)	Demonstration Preliminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Demonstration Simplified 25% -25% 20.2A MC FC 10	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Pilot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 50	Pilot Goal 100% -30% 22.3C PV High Conc 50	Demonstration Simplified 25% -25% 24.2 Wind 50.05	Commercial Goal 70%, -30% 24.6 Wind Cl4 37.5	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Tires 30	Commercial Simplified 20% -20% 26.1 Blo Wood 50
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/kW-h) Avg. Heatrate (BTU/kWh)	13.84 2.16 7497	538.51 2.38 9818	126.80 2.07 5880	67.78 0.04 6481	45.14 0.00 30503	9.07 0.00 0	9.80 0.00 0	42,25 0.00 0	25.91 0.00 0	24.47 0.00 0	208.48 25.91 17707	246.51 25.80 17806	132.20 3.60 13374	69.90 2.67 15026
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW)	Pilot Goal 100% -30% 26,3 Blo Tree	Mature Preliminary 10% -10% 30.2 LeedBat	Pilot Goal 100% -30% 31.1 AdvBat3	Pilot Goal 100% -30% 31.2 AdvBat5	Mature Actual 5% -5% 32.1 PHES	Commercial Actual 5% -5% 33.1B CAES	Pilot Preliminary 30% -25% 33.2B CASH	Pilot Goal 100% -30% 34.1 SMES			10% -10% CR3 AFBC	10% -10% CR3 Gas	5% -5% BR5 110MW	5% -5% BR5 164MW
Capital Casts (\$/kW) Process Capital General Facilities Engineering Fee Project Contingency Process Contingency	100	20	20	. 20	1050	350	350	500			135	135	110	164
Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	51.40 1,75 11528	1.71 8.12 0	0.49 7.05 0	1.07 5.13 0	4.60 4.60 0	5.73 0.99 4191	5.04 1.00 6464	5.14 4.11 0			41,17 0,97 11025	41.17 0.00 11655	6.65 1.00 12896	5.00 1.00 11025
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	5% -5%	5% -5%	5% -5%	0% 0%	-5%	5% -5%	5% -5%	5% -5%			Tech Name	Table A ICWh teput/ KWh Output	1 KWh KWh in +	
TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/kW) Process Capital General Facilities Engineering Fee Project Contingency	BR5 102MW 102	BRS 159MW 159	BR5 149MW 149	IPP Hydro 180	Aero CT 100	OF 9&10 33.6	TC 2 495	IAC at BR 86		30.2 31.1 31.2 32.1 33.18 33.28 34.1	LeedBet AdvBet3 AdvBet5 PHES CAES CASH SMES IAC at BR	1.31 1.14 1.10 1.35	0.79 ÷ 0.46 ÷	6464
Project Contingency Process Contingency Total Plant Cost Preprod, Inv., Land													0.775 + 4.1 require energy fo	om Electric Grid.

0.00 4.00 10880

8.91 0.00 0

26.46 0.35 10395

		Table A	
Tag Supply		KWh triput/	1 KWh Out =
ld	Tech Name	KWh Output	KWh in + BTU in
30.2	LeedBat	1.31	
31.1	Adv8et3	1.14	
31.2	AdvBat5	1.10	
32.1	PHES	1.36	
33.1B	CAES	1 1	0.79 + 4191
33.2B	CASH	1	0.46 + 6464
34.1	SMES	1.08	
	IAC at BR		0.775 + 12234

Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)

7.17 1.00 12987

1999 Generic Unit Construction Costs Low Capital Costs, Low HeatRates (Source: EPRI's TAG SUPPLY Version 3.08) All dollars are January 19995.

					All do	diars are Janua	ry 1999\$.	•						
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$MW) Process Capital	Mature Preliminary 10% -10% 1.1B PC LSFO 500	Mature Preliminary 10% -10% 1.1C PC LSFO 400	Mature Preliminary 10% -10% 1.1E PC LSFO 300	Mature Preliminary 10% -10% 1,1G PC LSFO 200	Mature Preliminary 10% -10% 1.1H PC LSFO 600	Mature Preliminary 10% -10% 1.2G PC LSD 300	Mature Preliminary 10% -10% 1.5B PC LSD Sup. 300	Mature Preliminary 10% -10% 1.5C PC LSFO Adv. 400	Commercial Preliminary 15% -15% 8.4A AFBC Circ. 200	Demonstration Preliminary 20% -20% 6.2 PFBC2x80 160	Pilot Pretiminary 30% -25% 8.7 PFBC Bub. 350	Pilot Preliminary 30% -25% 6,9 PFBC Sup. 350	Demonstration Preliminary 20% -20% 7.2 PFBC Circ. 160	Pilot Preliminary 30% -25% 7.3 PFBC Ctre. 350
General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost														
Preprod, Inv., Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr)	31.34	38.67	39.51	49.78	31.45	34.87	39.48	37.63	44,03	60,97	37.57	37.26	51.01	36.05
Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	1.13 8966	1.02 9027	1.17 9032	1.10 9271	1,08 9105	1.06 8960	1.48 8986	1.38 8205	2.36 9524	2.46 8787	1.56 8705		1.95 8594	1.91 8547
Tech. Development Rating Dasign & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MVV) Capital Costs (SrkW)	Pilot Preliminary 30% -25% 7.8 FBC Circ. Su 350	Pilot Preliminary 30% -25% 8.1 Adv. PFBC 687.7	Demonstration Simplified 25% -25% 10.28 Coal GCC 601	Demonstration Simplified 25% -25% 10.5A IGCHAT 600	Demonstration Preliminary 20% -20% 10.5B IGCASH 410.2	Demonstration Simplified 25% -25% 10,5C IGMCFC 400	Pilot Preliminary 30% -25% 10.6 Adv. GCC 460.3	Mature Preliminary 10% -10% 15.1 CT 80	Mature Preliminary 10% -10% 15.2 CT 110	Mature Preliminary 10% -10% 15.3 CY 160	Mature Proliminary 10% -10% 15.7 CT Aero 45	Mature Preliminary 10% -10% 18.2 CT/CC 2on1 330	Mature Preliminary 10% -10% 18.3 CT/CC 2on1 470	Demonstration Preliminary 20% -20% 16.4 CT/CC 345
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency Total Plant Cost														
Preprod, Inv. Land Total Genenc Unit Cost														
Fored O&M (\$/kW-yr) Var O&M (\$/kW-yr) Avg Heatrate (BTU/kWh)	35.85 2.11 8141	30.55 4.48 7268	45.51 1.08 7938	42.67 1.24 8218	47.46 0.82 9804	61.52 4.92 6517	34.28 3.44 7021	8.43 1,00 12261	6.49 1.00 12989	4.97 1.00 10886	12.57 1.00 9998	15.58 0.62 7322	12.23 0.61 6752	13,39 0.64 6606
Tech Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%) TAG SUPPLY ID Unit Type Size (MVV) Capital Costs (S/kVV)	Demonstration Preliminary 20% -20% 17.2 CHAT 300	Demonstration Simplified 25% -25% 20.1E Phos FC 2.5	Demonstration Simplified 25% -25% 20.ZA MC FC 10	Demonstration Simplified 25% -25% 20.3D SolidOX FC 25	Demonstration Preliminary 20% -20% 21.2 Geotherm 24	Priot Goal 100% -30% 22.2C PV Flat 50	Pilot Goal 100% -30% 22.2F PV Track 60	Pilot Goal 100% -30% 22.3C PV High Conc 50	Demonstration Simplified 25% -25% 24.2 Wind \$0.05	Commercial Goal 70% -30% 24.6 Wind Cl4 37,5	Commercial Simplified 20% -20% 25.1 MSW Mass 40	Commercial Simplified 20% -20% 25.2 MSW RDF 40	Commercial Simplified 20% -20% 25.3 MSW Tires 30	Commercial Simplified 20% -20% 28.1 Blo Wood 50
Process Capital General Faculties Engineering Fee Project Centingency Process Contingency Total Plant Cost Preprod, Inv., Land Total General Unit Cost														
Fixed O&M. (\$/kW-yr) Var. O&M. (\$/MWh) Avg. Heatrate (8TU/kWh)	13.84 2.16 6783	538.51 2.38 8883	126.80 2.07 5320	67.78 0.04 5863	45.14 0.00 27598	9.07 0.00 0	9.80 0.00 0	42.25 0.00 0	25.91 0.00 0	24.47 0.00 0	208.48 25.91 16021	246.51 25.80 16110	132.20 3.60 12100	69.90 2.67 13595
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	Pilot Goal 100% -30%	Mature Preliminary 10% -10%	Pilot Goal 100% -30%	Pilot Goal 100% -30%	Mature Actual 5% -5%	Commercial Actual 5%	Pilot Preliminary 30% -25%	Pilot Gosi 100% -30%			10%	10% -10%	5% -5%	5% -5%
TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/kW)	26.3 Blo Tree 100	30.2 LeadBat 20	31.1 AdvBat3 20	31.2 AdvBat5 20	32.1 PHES 1050	33.1B CAES 350	33.2B CASH 350	34.1 SMES 500			CR3 AFBC 135	CR3 Gas 135	BR5 110MW 110	BR5 164MW 164
Process Capital General Facilities Engineering Fee Project Contingency Process Contingency														
Total Plant Cost Preprod, Inv, Land Total Generic Unit Cost														
Fixed O&M (\$/kW-yr) Var. O&M (\$/MWh) Avg. Heatrate (BTU/kWh)	51.40 1.75 10430	1,71 8.12 0	0.49 7.05 0	1.07 5.13 0	4.60 4.60 0	5.73 0.99 3791	5.04 1.00 5848	5,14 4,11 O			41.17 0.97 9975	41.17 0.00 10545	6.65 1.00 11667	5.00 1.00 9975
Tech. Development Rating Design & Cost Estim Rating Maximum Cap Cost Adjustment (%) Minimum Cap Cost Adjustment (%)	5% -5%	5% -5%	5% -5%	0% 0%	5% -5%	5% -5%	5% -5%	5% -5%			Tech Name	Table A KWh Input/ KWh Output	1 KWh KWh In +	
TAG SUPPLY ID Unit Type Size (MW) Capital Costs (\$/kW)	BR5 102MW 102	BR5 159MW 159	BR5 149MW 149	IPP Hydro 160	Aero CT 100	OF 9&10 33,6	TC 2 495	IAC at BR 86		30.2 31.1 31.2 32.1	LondBat AdvBat3 AdvBat5 PHES	1.31 1.14 1.10 1.36		

Tech. Development Rating Design & Cost Estim Rating								
Maximum Cap Cost Adjustment (%)	5%	5%	5%	0%	5%	5%	5%	5%
Minimum Cap Cost Adjustment (%)	-5%	-5%	-5%	0%	-5%	-5%	-5%	-5%
TAG SUPPLY ID	V		-5,6	0,0			-0.4	-5%
Unit Type	BR5 102MW	BR5 159MW	BR5 149MW	IPP Hydro	Aero CT	OF 9&10	TC 2	IAC at BR
Size (MW)	102	159	149	160	100	33.6	495	86
Capital Costs (\$/kW)								
Process Capital								
General Facilities								
Engineering Fee								
Project Contingency								
Process Contingency								
Total Plant Cost								
Preprod, Inv. Land								
Total Generic Unit Cost								
Fixed O&M (\$/kW-yr)	7.17	5.15	5,50	30,18	0.00	8.91	26.46	0.93
Var. O&M (\$/MWh)	1,00	1,00	1.00	0.00	4,00	0.00	0.35	1,48
Avg. Heatrate (BTU/kWh)	11751	10294	10546	0	9844	0	9405	11068

		A olds T	
Tag Supply		KWh Input/	1 KWh Out =
M	Tech Name	KWh Output	KWh in + BTU in
30.2	LoadBat	1.31	
31.1	Adv8ni3	1.14	
31.2	Adv8at5	1.10	
32,1	PHES	1.36	
33.18	CAES	1 (0.79 + 3791
33.28	CASH	1 1	0.46 + 5848
34.1	SMES	1.08	
	IAC at BR	1 1	0,775 + 11068

Notes:

Technologies with TAG Supply ID 30.2, 31.1, 31.2, 32.1, 34.1 require energy from Electric Orid.

Technologies with TAG Supply ID 33.1b, 33.2b and IAC at BR require energy from Electric Orid and consume last

Capital Cost ediptriments and Heat Rate edipartments apply to all above technologies, regardless of data source (in. TAG or Companies' supplied data), TAG based (schologies have had Capital Cost ediptriments applied to Process Capital, General Facilities and Engineering Fee only (Process Contingency and Prep. Inv and Land sucluded).

LEVELIZATION EQUATIONS USED IN TECHNOLOGY SCREENING

The total levelized cost of a particular technology in a specific year at a specific capacity factor is comprised of (at most) five separate components. The five possible components are levelized capital cost, levelized fixed cost, levelized variable cost, levelized fuel cost and levelized charging cost. The actual components utilized in calculating total levelized cost vary from technology to technology. For example, some technologies may exclude the charging component while others exclude the fuel component. Basically, technologies fall into four categories: Those that...

- I. Burn fuel only (i.e., Pulverized Coal, Gas Turbine)
- II. Burn no fuel and utilize no "grid" energy (Solar Photo, Wind)
- III. Burn no fuel but utilize "grid" energy for charging (Battery, P-Hydro)
- IV. Burn fuel during generation and utilize "grid" energy for charging (CAES)

A levelization factor (L_n) converts a series of payments that are made over "n" periods and subject to a constant apparent escalation rate into an equivalent levelized payment stream and is calculated as follows:

$$L_n = \underbrace{k \ (1-k^n)}_{a_n \ (1-k)} \qquad \qquad n = \text{number of years} = 30$$

$$k = \underbrace{1+e_a}_{1+i} \qquad \qquad e_a = \text{apparent esc rate including inflation and real}_{escalation \ (i.e., VO&M = 4.5\%)}. \text{ See Exhibit 8.}$$

$$a_n = \underbrace{(1+i)^N - 1}_{i \ (1+i)^N} \qquad \qquad i = \text{Discount Rate} = \text{Present Value Rate} = 9.78\%$$

$$Adj \ L_n = L_n/(1+e_a)$$

The screening analysis utilizes the Adj. L_n . The Adj. L_n make adjustments for beginning/ending year dollars to be consistent with the Companies' economic analysis methods. An Adj. L_n is calculated for the fixed, variable, fuel and charging costs only. The capital cost component does not utilize an Adj. L_n for levelization because it is levelized through a Fixed Charge Rate (FCR)

Definition of Variables:

<u>Variable</u>		Definition (Units)	Source
Year	=	Levelized Year - Base Year	Exhibit 8
Inst Cost	=	Installed Cost or Total Generic Unit Cost (\$/kW)	Exhibit 6
FCR%	==	Fixed Charge Rate (%)	Exhibit 2
Cap Esc%	=	Capital Escalation Rate (%)	Exhibit 8
FO&M	=	Fixed O&M (\$/kW)	Exhibit 6
VO&M	=	Variable O&M (\$/MWh)	Exhibit 6
Fix Esc	=	Fixed O&M Escalation Rate (%)	Exhibit 8
Var Esc	=	Variable O&M Escalation Rate (%)	Exhibit 8
Fix Adj L _n	=	Fixed O&M Levelization Factor	Exhibit 8
Var Adj L,	=	Variable O&M Levelization Factor	Exhibit 8
Fuel Adj L,	=	Fuel Cost Levelization Factor	Base Fuel Only; Exhibit 8
Charge Adj L _n	=	Charging Cost Levelization Factor	Exhibit 8
CF%	=	Capacity Factor (%)	0-100 %
MW	=	Size of Technology (MW)	Exhibit 6
HR ·	=	Heat Rate (Btu/KWh)	Exhibit 6
FC	=	Fuel Cost (\$/MBtu)	Exhibit 5 (a)
Avg Ld IO	=	Average Load (kWh In/kWh Out)	Table A within Exhibit 6
Charge	=	Charging Cost (\$/MWh)	Exhibit 8
SO_2	=	SO ₂ Adder (Cents/MBtu)	Exhibit 5(b)

Cost Components of Technologies that:

I. Burn Fuel Only

Capital = Inst Cost
$$\times$$
 FCR $\% \times (1 + Cap Esc \%)^{Year}$

Fixed = FO &
$$M \times (1 + Fix Esc\%)^{\land Year} \times Fix Adj L_n$$

$$Variable = \frac{VO \& M \times \left(1 + Var \ Esc\%\right)^{^{^{^{^{}}}}} \times CF\% \times 8760 \frac{Hrs}{^{^{^{}}}} \times MW}{MW \times 1000 \frac{KW}{MW}} \times Var \ Adj \ L_{n}$$

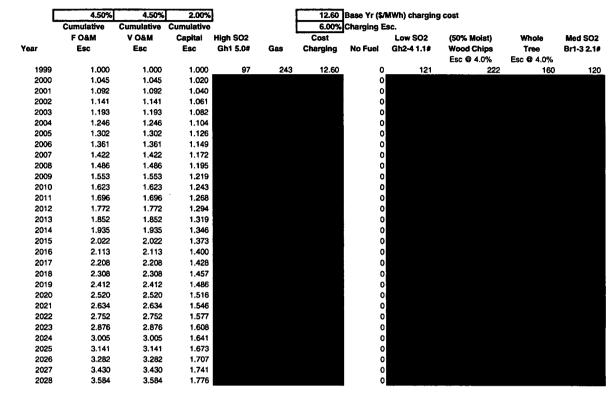
$$Fuel = \frac{MW \times 1000 \frac{KW}{MW} \times 8760 \frac{Hrs}{Year} \times CF\% \times HR \times (FC + SO_2)}{MW \times 1000 \frac{KW}{MW} \times (10)^6 \frac{BTU}{MBTU}} \times Fuel \ Adj \ L_n$$

II. Burn No Fuel and No Charging Energy

Use Capital, Fixed and Variable Equations from above.

III. Burn No Fuel but Utilize Charging Energy

Use Capital, Fixed and Variable Equations from above and Charging.


$$Charging = \frac{Avg\ Ld\ IO \times Charge \times MW \times 8760\ Hrs/Year}{MW \times 1000\ KW/MW} \times Charge\ Adj\ L_n$$

IV. Burn Fuel and Utilize Charging Energy

Use Capital, Fixed, Variable, Fuel and Charging equations from above.

Adjusted L_n and Other Miscellaneous Data

(All Fuel prices are in Cents/MBtu)

Fuel Notes:

When utilized, SO₂ cost adder to High SO2, Low SO2 and Med SO2 Coal assumes 95% FGD removal efficiency.

When utilized, the fuel cost adder representing Carbon Tax was applied to High, Low, & Med Sulfur coals, and Natural Gas.

8-19-99 Fuel Forecast Used. All fuel prices in cents/mmBtu.

Charging cost base upon average cost of off-peak generation.

Tech 26.3 burns Whole Trees whose cost is given in TAG SUPPLY V3.08 as 1.60\$/MBtu (Jan 1995\$). Assumed cost is constance to 1999.

Tech 26.1 burns Wood Chips whose cost is given in TAG SUPPLY V3.08 as 2.22\$/MBtu (Jan 1995\$). Assumed cost is constance to 1999.

		Fixed	Variable	Capital	High SO2	Gas	Charging	No Fuel	Low SO2	(50% Moist) Wood Chips	Whole Tree	Med SO2
Base Year =	1999					., ., . ,			Service and the last	50 S = 1 257		
Levelized Year =	1999							or or entrance	Nii sani ji bee s	การสารให้สหารผู้ใช้		
Ea =		4.50%	4.50%	2.00%								
PV Rate (i) =	9.78%		kin ting	7 - 4 / 1 - 1 - 1 - 1 - 1	1 Santa 115	Same and	racimal indiragi	anda ana	وه المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ا	e e di lese gireces, per este persone	regue ye garakeriya ile 	
k=	·	0.9519	0.9519	0.9291				1				
n=	30		H. 3. 4	550 海 医乳	Jaren State Committee	4.423	(. A. A. Girl	za en 1. donivida	staff-Datribacionis		
An =	9.6027			10回货机	ta Wasi-		Maria.					
ᇉ		1.591	1.591	1.215								
AdjL _n ≃		1.523	1.523	1.191								

Input
Not an Input
Calculated

Change "Levelized Year" to year desired for "Snapshot" year analysis.

Change "n" to 1 for "Snapshot" year analysis and 30 for levelized analysis.

Capital Cost- Base Heat Rate- Base

Heat Rate- Base											
Fuel Forecast- Base	l				Сарас	ity Facto	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141									
Advanced Battery (3 hr)-20MW	75	107									
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	98	125								
				153			****				
Compressed Air Energy w/ Humid Air Turbine-350MW	60	87	114	140							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128			****						
Pulverized Coal (LSFO)-500MW	176	186	197	208	219	230	240	251	262	273	283
Pulverized Coal (LSFO)-400MW	196	207	217	228	238	249	260	270	281	291	302
Pulverized Coal (LSFO)-300MW	201	215	228	241	25 5.	268	281	295	308	322	335
Pulverized Coal (LSFO)-200MW	245	256	267	278	289	300	311	322	333	344	356
Pulverized Coal (LSFO)-300MW X 2	180	191	201	212	222	233	244	254	265	275	286
Pulverized Coal Compliance (LSD)- 300MW	190	204	217	231	244	258	271	285	298	312	325
Pulverized Coal Supercritical (LSD)- 300MW	228	242	256	271	285	299	313	327	341	356	370
Pulverized Coal (Advanced LSFO)- 400MW	203	213	224	234	244	254	264	274	285	295	
	251	267	282	298	314						305
Atmosph Fluidized Bed (Circulating)-200MW	•					330	345	361	377	392	408
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	288	300	312	324	337	349	361	373	385	397
Press Fluidized Bed (Bubbling)-350MW	192	203	214	225	237	248	259	270	281	292	303
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	201	212	223	233	244	255	266	277	288	299
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	246	257	269	280	292	303	314	326	337	349
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	188	200	211	222	234	245	257	268	279	291
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	186	197	208	219	230	241	252	263	274	285
Foster Wheeler Advanced PFB (Circulating)-688MW	163	176	189	203	216	229	243	256	270	283	296
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	255	264	274	283	293	303	312	322	331	341
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	235	245	255	266	276	286	296	306	316	327
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	262	273	284	295	306	317	328	339	350	361
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	351	364	377	391	404	417	430	444	457	470
Advanced Int. Coal Gas-460MW	177	189	201	212	224	236	248	259	271	283	295
Combustion Turbine Heavy Duty-80MW	70	105	140	175	210	245	280	315	350	385	420
Combustion Turbine Heavy Duty-110MW	61	98	135	172	209	246	283	320	357		
										394	431
Combustion Turbine Heavy Duty-160MW	56	87	118	149	180	211	242	273	304	335	366
Combustion Turbine Aero- 45MW	114	143	172	201	230	259	288	317	346	375	404
CT Combined Cycle 2on1 - 330MW	87	108	129	150	172	193	214	235	257	278	299
CT Combined Cycle 2on1 - 470MW	76	95	115	135	154	174	194	213	233	253	273
CT Combined Cycle - 345MW	79	99	118	138	157	176	196	215	234	254	273
CT with Cascaded Humidified Advanced Turbine-300MW	72	94	116	138	159	181	203	225	247	269	291
Phosphoric Acid Fuel Cell-2.5MW	1203	1231	1260	1288	1316	1345	1373	1401	1430	1458	1486
Molten Carbonate Fuel Cell-100MW	373	391	408	426	444	461	479	497	514	532	550
Solid Oxide Fuel Cell-100MW	187	204	220	236	253	269					
							285	302	318	334	351
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	297	374	451	528	606	683	760	837	914	991
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398			****					
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145			****				
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	403	447	491	535	579	623	666	710	754	798
Bio Mass: Whole Tree-100MW	276	301	326	351	376	401	426	450	475	500	525
Cane Run 3 Rehab w/ AFBC	170	181	192	204	215	227	238	249	261	272	284
Cane Run 3 Rehab w/ Natural Gas	127	156	186	215	245	274	304	333	363	393	422
Brown 5 CT 110MW	54	88	122	156	190	224	258	292	326	360	394
						_					
Brown 5 CT 164MW	55	84	113	142	171	200	229	258	287	316	345
Brown 5 CT 102MW	57	91	125	159	193	227	261	295	329	363	397
Brown 5 CT 159MW	51		111	141	171	201	231	261	291	321	351
Brown 5 CT 149MW	52	82	112	142	172	202	232	262	292	322	352
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	52	85	118	151	184	217	250	283	316	349	382
Ohio Falls 9&10	149	149	149	149							
Trimble County 2	153	163	173	183	193	203	213	223	233	243	253
	21	62		103	153	203		223		2.00	203
IAC at Brown 8-11											
Minimum Levelized \$/kW	21	62	111	134	134	134	134	213	233	243	253

Capital Cost-Low

Heat Rate-Low						. =					
Fuel Forecast-Low	0	10%	20%	30%	Сарас 40%	ity Facto		70%	80%	90%	1000/
Technology	95	132	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106									
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	93	119	145							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	74	98	122							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106							****		
	-										
Pulverized Coal (LSFO)-500MW	165	174	184	193	203	212	222	231	241	251	260
Pulverized Coal (LSFO)-400MW	184	193	203	212	221	231	240	250	259	268	278
Pulverized Coal (LSFO)-300MW	189	201	213	225	237	248	260	272	284	296	308
Pulverized Coal (LSFO)-200MW	231	240	250	260	270	279	289	299	308	318	328
Pulverized Coal (LSFO)-300MW X 2	169	178	188	197	206	216	225	235	244	253	263
Pulverized Coal Compliance (LSD)- 300MW	178	190	202	214	225	237	249	261	273	285	297
Pulverized Coal Supercritical (LSD)- 300MW	214	227	239	252	264	276	289	301	314	326	339
Pulverized Coal (Advanced LSFO)- 400MW	191	200	209	219	228	237	246	255	264	273	282
Atmosph Fluidized Bed (Circulating)-200MW	228	242	256	270	283	297	311	325	339	353	367
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	255	266	277	288	299	310	321	332	344	355
Press Fluidized Bed (Bubbling)-350MW	163	173	183	193	203	212	222	232	242	252	262
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	171	180	190	200	210	220	230	240	249	259
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	219	229	240	250	260	271	281	291	301	312
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	162	172	182	193	203	213	223	233	243	253
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	160	170	180	190	200	210	220	230	240	250
Foster Wheeler Advanced PFB (Circulating)-688MW	139	151	163	176	188	201	213	226	238	251	263
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	217	225	234	242	251	259	268	276	284	293
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	201	210	219	228	237	246	254	263	272	281
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	231	241	250	260	270	279	289	299	308	318
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	299	312	324	337	349	361	374	386	399	411
Advanced Int. Coal Gas-460MW	151	162	173	184	195	206	216	227	238	249	260
Combustion Turbine Heavy Duty-80MW	65	95	125	155	185	215	245	275	305	335	365
Combustion Turbine Heavy Duty-110MW	56	88	120	152	184	216	248	280	312	344	376
Combustion Turbine Heavy Duty-160MW	52	79	106	133	160	187	214	241	268	295	322
Combustion Turbine Aero- 45MW	105	130	155	180	205	230	255	280	305	330	355
CT Combined Cycle 2on1 - 330MW	81	99	117	135	153	171	189	207	225	243	261
CT Combined Cycle 2on1 - 470MW	71	87	104	121	138	154	171	188	205	222	238
CT Combined Cycle - 345MW	69	86	102	119	135	152	168	185	201	218	234
CT with Cascaded Humidified Advanced Turbine-300MW	64	83	102	121	140	159	178	197	215	234	253
Phosphoric Acid Fuel Cell-2.5MW	1115	1139	1164	1188	1212	1237	1261	1285	1310	1334	1358
Molten Carbonate Fuel Cell-100MW	332	347	363	378	393	409	424	439	455	470	485
Solid Oxide Fuel Cell-100MW	169	183	197	210	224	238	251	265	279	292	306
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	256	321	386	451	516	581	646	711	776	841
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440						••••		
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-Variable Speed-Sox/Soxw Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der -40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	
Bio Mass: Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cane Run 3 Rehab w/ AFBC	159	169	179	189	199	209	220	230	240	250	260
Cane Run 3 Rehab w/ Natural Gas	120	145	170	194	219	244	269	294	319	344	369
Brown 5 CT 110MW	52	81	110	139	168	197	226	255	284	313	342
Brown 5 CT 164MW	52	77	102	127	152	177	202	227	252	277	302
Brown 5 CT 102MW	55	84	113	142	171	200	229	258	287	316	
Brown 5 CT 159MW	49	74	99	124	149	174	199	224	249	274	299
Brown 5 CT 149MW	50	76	102	128	154	180	206	232	258	284	310
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	78	106	134	162	190	218	246	274	302	330
Ohio Falls 9&10	142	142	142	142		****					
Trimble County 2	148	157	166	175	183	192	201	210	218	227	236
IAC at Brown 8-11	20										
Minimum Levelized \$/kW		56	98	119	134	134	134	185	201	218	234
The second secon											

Capital Cost-Low Heat Rate-Low

Heat Rate-Low											
Fuel Forecast- Base						ity Facto]
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87		****							
Advanced Battery (5 hr)-20MW	77	106	****								
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228				***	****		
Compressed Air Energy (Salt Cavern) -350MW	67	94	121	148						****	
Compressed Air Energy w/ Humid Air Turbine-350MW	50	76	102	128							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
					<u> </u>	L					
Pulverized Coal (LSFO)-500MW	165	175	185	196	206	216	227	237	247	257	268
Pulverized Coal (LSFO)-400MW	184	194	204	214	225	235	245	255	265	275	285
Pulverized Coal (LSFO)-300MW	189	202	215	227	240	253	266	279	291	304	317
Pulverized Coal (LSFO)-200MW	231	241	252	262	273	283	294	304	314	325	335
Pulverized Coal (LSFO)-300MW X 2	169	179	189	199	210	220	230	240	250	260	270
Pulverized Coal Compliance (LSD)- 300MW	178	191	204	217	230	243	256	269	281	294	307
Pulverized Coal Supercritical (LSD)- 300MW	214	228	242	255	269	283	296	310	324	337	351
Pulverized Coal (Advanced LSFO)- 400MW	191	201	211	221	231	241	250	260	270	280	290
Atmosph Fluidized Bed (Circulating)-200MW	228	243	258	273	288	303	318	333	347	362	377
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	256	267	279	291	302	314	326	337	349	361
Press Fluidized Bed (Bubbling)-350MW	163	174	184	195	206	216	227	238	248	259	269
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	171	182	192	203	213	224	234	244	255	265
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	220	231	241	252	263	274	285	296	307	318
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	163	174	185	196	207	217	228	239	250	261
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	160	171	181	192	203	213	224	235	245	256
Foster Wheeler Advanced PFB (Circulating)-688MW	139	152	165	178	191	204	217	230	243	256	269
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	217	226	236	245	254	263	272	281	290	299
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	202	211	221	231	240	250	260	270	279	289
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	232	243	253	264	275	285	296	307	317	328
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	300	313	325	338	351	364	377	390	403	416
Advanced Int. Coal Gas-460MW	151	163	174	185	197	208	219	231	242	254	265
Combustion Turbine Heavy Duty-80MW	65	99	133	167	201	235	269	303	337	371	405
Combustion Turbine Heavy Duty-110MW	56	92	128	164	200	236	272	308	344	380	416
Combustion Turbine Heavy Duty-160MW	52	82	112	142	172	202	232	262	292	322	352
Combustion Turbine Aero- 45MW	105	133	161	189	217	245	273	301	329	357	385
CT Combined Cycle 2on1 - 330MW	81	101	121	141	161	181	202	222	242	262	282
CT Combined Cycle 2on1 - 470MW	71	89	108	127	146	164	183	202	221	240	258
CT Combined Cycle - 345MW	69	88	106	125	143	162	180	199	217	236	254
CT with Cascaded Humidified Advanced Turbine-300MW	64	85	106	127	148	169	190	211	231	252	273
Phosphoric Acid Fuel Cell-2.5MW	1115	1142	1169	1196	1223	1250	1277	1304	1331	1358	1385
Molten Carbonate Fuel Cell-100MW	332	349	365	382	399	415	432	449	465	482	499
Solid Oxide Fuel Cell-100MW	169	185	201	216	232	248	263	279	295	310	326
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	264	337	411	484	557	630	704	777	850	923
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416	-				1			-
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461	i					-	***	****
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440			-	_	****			
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367	-	****						
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	734
Bio Mass: Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cane Run 3 Rehab w/ AFBC	159	170	181	191	202	213	224	235	246	257	268
Cane Run 3 Rehab w/ Natural Gas	120	148	176	204	232	260	288	316	344	372	400
Brown 5 CT 110MW	52	84	116	148	180	212	244	276	308	340	372
Brown 5 CT 164MW	52	79	106	133	160	187	214	241	268	295	322
Brown 5 CT 102MW	55	87	119	151	183	215	247	279	311	343	375
Brown 5 CT 159MW	49	77	105	133	161	189	217	245	273	301	329
Brown 5 CT 149MW	50	79	108	137	166	195	224	253	282	311	340
IPP Hydro	134	134	134	134	194	134	134				
Aeroderivative CT	50	81	112	143	174	205	236	267	298	329	360
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	158	167	177	186	196	206	215	225	234	244
IAC at Brown 8-11	20	59				L					
Minimum Levelized \$/kW		59	102	119	134	134	134	199	217	234	244
•								-			

Capital Cost-Low Heat Rate-Low

Fuel Forecast- High Technology Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy (W Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Press Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	95 55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152 150 139	10% 132 87 106 162 95 77 106 176 195 203 242 180 193 202 245 257 175 172 221	20% 195 123 105 187 206 218 254 191 207 245 213 261 269	30% 228 151 132 198 218 232 266 203 221 260 224 277 282	Capac 40% 210 229 246 278 214 236 275 234 294 295			70% 243 263 289 313 248 279 321 267	80%	90% 266 285 318 336 270 308 351	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Girculating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritic)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW	95 55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	132 87 106 162 95 77 106 195 203 242 180 193 229 202 245 7175		198 218 151 132 198 218 232 266 203 221 260 227 282		221 221 289 225 250 290 245 310					
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Presseluidized Bed (Girculating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	132 87 106 162 95 77 106 195 203 242 180 193 229 202 245 7175		228 151 132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 234 234 234 294	221 221 289 225 250 290 245 310					
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Presseluidized Bed (Girculating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	55 77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	87 106 162 95 77 106 195 203 242 180 193 229 202 245 775 175	195 123 105 187 206 218 254 191 207 245 213 269 187	228 151 132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 234 234 234 294	221 240 261 289 225 250 290 245 310	232 251 275 306 265 306	243 263 289 313 248 279 321	255 274 304 324 259 294		277 296 332 348 281 323
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	77 129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	106 162 95 77 106 176 195 203 242 180 193 229 202 245 275 172	195 123 105 105 187 206 218 254 191 207 245 213 261 269	228 151 132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 218 218 225 234 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	129 67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	162 95 77 106 176 195 203 242 180 193 229 202 245 257 175	195 123 105 187 206 218 254 191 207 245 213 261 269 187	228 151 132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 236 275 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	67 50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	95 77 106 176 195 203 242 180 193 229 202 245 257 175	123 105 187 206 218 254 191 207 245 213 261 269 187	151 132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 236 275 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Compressed Air Energy w/ Hurnid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Hurnid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Hurnid Air Turbine-410MW	50 79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	77 106 195 203 242 180 193 229 202 245 257 175	187 206 218 254 191 207 207 245 243 261 269	132 198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 236 275 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Girculating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW	79 165 184 189 231 169 178 214 191 228 244 163 161 209 152	106 176 195 203 242 180 193 229 202 245 257 175	187 206 218 254 191 207 245 213 261 269	198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 236 275 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Press Fluidized Bed (Girculating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Girculating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supe	165 184 189 231 169 178 214 191 228 244 163 161 209 152	176 195 203 242 180 193 229 202 245 257 175	187 206 218 254 191 207 245 213 261 269	198 218 232 266 203 221 260 224 277 282	210 229 246 278 214 236 275 234 294	221 240 261 289 225 250 290 245 310	232 251 275 301 236 265 306 256	243 263 289 313 248 279 321	255 274 304 324 259 294	266 285 318 336 270 308	277 296 332 348 281 323
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Press Fluidized Bed (Girculating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Girculating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supe	165 184 189 231 169 178 214 191 228 244 163 161 209 152	176 195 203 242 180 193 229 202 245 257 175	206 218 254 191 207 245 213 261 269 187	218 232 266 203 221 260 224 277 282	229 246 278 214 236 275 234 294	240 261 289 225 250 290 245 310	251 275 301 236 265 306 256	243 263 289 313 248 279 321	274 304 324 259 294	285 318 336 270 308	277 296 332 348 281 323
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Frester Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW	184 189 231 169 178 214 191 228 244 163 161 209 152	195 203 242 180 193 229 202 245 257 175 172	206 218 254 191 207 245 213 261 269 187	218 232 266 203 221 260 224 277 282	229 246 278 214 236 275 234 294	240 261 289 225 250 290 245 310	251 275 301 236 265 306 256	263 289 313 248 279 321	274 304 324 259 294	285 318 336 270 308	296 332 348 281 323
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Frester Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine-410MW	184 189 231 169 178 214 191 228 244 163 161 209 152	195 203 242 180 193 229 202 245 257 175 172	206 218 254 191 207 245 213 261 269 187	218 232 266 203 221 260 224 277 282	229 246 278 214 236 275 234 294	240 261 289 225 250 290 245 310	251 275 301 236 265 306 256	263 289 313 248 279 321	274 304 324 259 294	285 318 336 270 308	296 332 348 281 323
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Froster Wheeler Advanced PFB (Circulating)-680MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW	189 231 169 178 214 191 228 244 163 161 209 152	203 242 180 193 229 202 245 257 175 172	218 254 191 207 245 213 261 269 187	232 266 203 221 260 224 277 282	246 278 214 236 275 234 294	261 289 225 250 290 245 310	275 301 236 265 306 256	289 313 248 279 321	304 324 259 294	318 336 270 308	332 348 281 323
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Press Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	231 169 178 214 191 228 244 163 161 209 152	242 180 193 229 202 245 257 175	254 191 207 245 213 261 269 187	266 203 221 260 224 277 282	278 214 236 275 234 294	289 225 250 290 245 310	301 236 265 306 256	313 248 279 321	324 259 294	336 270 308	348 281 323
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW Pulverized Coal (Advanced LSFO)-400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, With Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas / CAES with Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	169 178 214 191 228 244 163 161 209 152	180 193 229 202 245 257 175 172	191 207 245 213 261 269 187	203 221 260 224 277 282	214 236 275 234 294	225 250 290 245 310	236 265 306 256	248 279 321	259 294	270 308	281 323
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Prester Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas // CAES with Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas // CAES with Humid Air Turbine-410MW	178 214 191 228 244 163 161 209 152	193 229 202 245 257 175 172	207 245 213 261 269 187	221 260 224 277 282	236 275 234 294	250 290 245 310	265 306 256	279 321	294	308	323
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Prester Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas // CAES with Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas // CAES with Humid Air Turbine-410MW	214 191 228 244 163 161 209 152	229 202 245 257 175 172	245 213 261 269 187	260 224 277 282	275 234 294	290 245 310	306 256	321	294		323
Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	214 191 228 244 163 161 209 152	229 202 245 257 175 172	245 213 261 269 187	260 224 277 282	275 234 294	290 245 310	306 256	321			
Pulverized Coal (Advanced LSFO)- 400MW Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-68MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	191 228 244 163 161 209 152 150	202 245 257 175 172	213 261 269 187	224 277 282	234 294	245 310	256		3		
Atmosph Fluidized Bed (Circulating)-200MW Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	228 244 163 161 209 152 150	245 257 175 172	261 269 187	277 282	294	310			277	288	
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	244 163 161 209 152 150	257 175 172	269 187	282			327				299
Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	163 161 209 152 150	175 172	187		295			343	360	376	393
Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas W/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	161 209 152 150	172				308	320	333	346	359	372
Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	209 152 150			198	210	222	233	245	257	268	280
Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	152 150	221	184	195	207	218	230	242	253	265	276
Press Fluidized Bed (Circulating, with Reheat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	152 150		233	245	257	269	281	293	305	317	329
Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	150	164	176	187	199	211	223	235	247	259	270
Foster Wheeler Advanced PFB (Circulating)-688MW Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW		161	173				220				
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	1 139			185	196	208		231	243	255	267
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW		152	166	180	194	208	222	235	249	263	277
Int Coal Gas / CAES with Humid Air Turbine-410MW	208	218	228	238	248	258	268	278	288	298	308
	192	203	213	224	234	245	256	266	277	288	298
	221	233	245	256	268	280	291	303	315	326	338
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	300	314	328	341	355	369	383	396	410	424
Advanced Int. Coal Gas-460MW		163	176	188							
	151				200	212	225	237	249	261	274
Combustion Turbine Heavy Duty-80MW	65	102	139	176	213	250	287	324	361	398	435
Combustion Turbine Heavy Duty-110MW	56	95	134	173	212	251	290	329	368	407	446
Combustion Turbine Heavy Duty-160MW	52	85	118	151	184	217	250	283	316	349	382
Combustion Turbine Aero- 45MW	105	135	165	195	225	255	285	315	345	375	405
CT Combined Cycle 2on1 - 330MW	81	103	125	147	169	191	214	236	258	280	302
CT Combined Cycle 2on1 - 470MW	71	91	112	132	153	174	194	215	236	256	277
CT Combined Cycle - 345MW	69	90	110	130	151	171	191	212	232	252	272
										\longrightarrow	
CT with Cascaded Humidified Advanced Turbine-300MW	64	87	110	132	155	178	201	223	246	269	292
Phosphoric Acid Fuel Cell-2.5MW	1115	1144	1174	1203	1232	1262	1291	1320	1350	1379	1408
Molten Carbonate Fuel Cell-100MW	332	350	369	387	405	424	442	460	479	497	515
Solid Oxide Fuel Cell-100MW	169	187	204	221	239	256	273	291	308	325	343
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	272	352	433	514	595	676	757	837	918	999
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
	440	440	440								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW											
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367						****		
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155				****			
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	359	401	443	484	526	568	609	651	693	734
Bio Mass: Whole Tree-100MW	227	251	275	299	322	346	370	394	417	441	465
Cane Run 3 Rehab w/ AFBC	159	171	183	195	207	219	232	244	256	268	280
Cane Run 3 Rehab w/ Natural Gas	120	151	182	212	243	274	305	336	367	398	429
Brown 5 CT 110MW	52	87	122	157	192	227	262	297	332	367	402
Brown 5 CT 164MW	52	82	112	142	172	202	232	262	292	322	
											352
Brown 5 CT 102MW	55	90	125	160	195	230	265	300	335	370	405
Brown 5 CT 159MW	49	80	111	142	173	204	235	266	297	328	359
Brown 5 CT 149MW	50	82	114	146	178	210	242	274	306	338	370
IPP Hydro	134	134	134	134	-134	194	134				
Aeroderivative CT	50	84	118	152	186	220	254	288	322	356	390
Ohio Falls 9&10	142	142	142	142							
							240				
Trimble County 2	148	159	170	181	191	202	213	224	234	245	256
IAC at Brown 8-11	20	62									
Minimum Levelized \$/k	W 20	62	105	119	134	134	134	212	232	245	256

Capital Cost-Low

Heat Rate- Base											
Fuel Forecast-Low		4001				ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106	405		****						
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67 50	93 75	120 100	146				_=-			
Compressed Air Energy w/ Humid Air Turbine-350MW	79	106	***************************************	125				_==			
Super Conducting Magnetic Energy Storage (2 hr)-500MW	/9	100									
But wind Ocal (LCEO) FOOLAN	165	175	184	404	004	014		004	040	050	000
Pulverized Coal (LSFO)-500MW	184	194	204	194	204	214	224	234	243	253	263
Pulverized Coal (LSFO)-400MW			-	213	223	233	243	253	263	273	282
Pulverized Coal (LSFO)-300MW	189 231	201	214	226	238	251	263	275	288	300	312
Pulverized Coal (LSFO)-200MW	169	241 179	251	261	271	282	292	302	312	322	332
Pulverzed Coal (LSFO)-300MW X 2	178	191	189 203	198 215	208 228	218 240	228 253	238 265	248 278	258	267
Pulverized Coal Compliance (LSD)- 300MW	214	227	240	253	266	280				290	303
Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW	191	201	210	220	229		293 249	306	319	332	345
Atmosph Fluidized Bed (Circulating)-200MW	228	243	257	271	286	239 300	315	258 329	268 344	277 358	287
	244	255	267	278	289						373
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW	163	174	184	194	204	301	312 225	324 235	335 246	346	358
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	171	181	191	204	215 212	222	235		256 252	266
Press Fluidized Bed (Bubbling, Supercritic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW	209	219	230	241	251	262	272	283	242 294	304	262
Press Fluidized Bed (Circulating, with Reheat)-160MW	152	163	173	184	194	202	216	283	237	247	315 258
Press Fluidized Bed (Circulating, With Hereat)-SoomW	150	160	170	181	191	201	211	222	232	242	253
Foster Wheeler Advanced PFB (Circulating)-688MW	139	151	164	177	190	202	215	228	241	253	266
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	217	226	235	243	252	261	270	278	287	296
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	201	211	220	230	239	248	258	267	276	286
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	231	241	251	261	271	281	291	301	311	321
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	299	312	325	338	351	363	376	389	402	414
Advanced Int. Coal Gas-460MW	151	162	173	185	196	207	218	229	240	251	262
Combustion Turbine Heavy Duty-80MW	65	96	127	158	189	220	251	282	313	344	375
Combustion Turbine Heavy Duty-110MW	56	89	122	155	188	221	254	287	320	353	386
Combustion Turbine Heavy Duty-160MW	52	80	108	136	164	192	220	248	276	304	332
Combustion Turbine Aero- 45MW	105	131	157	183	209	235	261	287	313	339	365
CT Combined Cycle 2on1 - 330MW	81	100	119	137	156	175	194	213	232	251	270
CT Combined Cycle 2on1 - 470MW	71	88	106	123	141	158	176	193	211	228	246
CT Combined Cycle - 345MW	69	87	104	122	139	156	174	191	208	226	243
CT with Cascaded Humidified Advanced Turbine-300MW	64	84	103	123	143	163	182	202	222	241	261
Phosphoric Acid Fuel Cell-2.5MW	1115	1140	1166	1191	1216	1242	1267	1292	1318	1343	1368
Molten Carbonate Fuel Cell-100MW	332	348	364	380	396	412	428	444	460	476	492
Solid Oxide Fuel Cell-100MW	169	184	199	213	228	243	257	272	287	301	316
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	259	328	396	465	533	602	670	739	807	876
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461		****	****					
Solar Photovoltaic:Fresnet Lens High Concen10x5MW	440	440	440			****	****				
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367	****	-			-			
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155		ł		-			
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449	493	537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159	169	180	191	201	212	222	233	244	254	265
Cane Run 3 Rehab w/ Natural Gas	120	146	172	198	224	250	277	303	329	355	381
Brown 5 CT 110MW	52	82	112	142	172	202	232	262	292	322	352
Brown 5 CT 164MW	52	78	104	130	156	182	208	234	260	286	312
Brown 5 CT 102MW	55	85	115	145	175	205	235	265	295	325	355
Brown 5 CT 159MW	49	76	103	130	157	184	211	238	265	292	319
Brown 5 CT 149MW	50	77	104	131	158	185	212	239	266	293	320
IPP Hydro	134	134	134	134	134	194	134				
Aeroderivative CT	50	79	108	137	166	195	224	253	282	311	340
Ohio Falls 9&10	142	142	142	142	405	404					
Trimble County 2	148	158	167	176	185	194	204	213	222	231	241
IAC at Brown 8-11	20	57	400	440						L 	
Minimum Levelized \$/kW	20	57	100	119	134	134	134	191	208	226	241

Capital Cost-Low Heat Rate- Base

Heat Rate- Base											
Fuel Forecast- Base					Capac	ity Facto	rs				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132		***							
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106		****							
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228			****				
Compressed Air Energy (Salt Cavern) -350MW	67	95	122	150							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	77	104	130							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
Coper Conducting Magnetic Energy Clorage (E my-Sociativ		- 100									
Pulverized Coal (LSFO)-500MW	165	175	186	197	208	219	229	240	251	262	272
Pulverized Coal (LSFO)-400MW	184	195	205	216	226	237	248	258	269		
Pulvenzed Coal (LSFO)-300MW	189	203								279	290
		242	216	229	243	256	269	283	296	310	323
Pulverized Coal (LSFO)-200MW	231		253	264	275	286	297	308	319	330	342
Pulverized Coal (LSFO)-300MW X 2	169	180	190	201	211	222	233	243	254	264	275
Pulverized Coal Compliance (LSD)- 300MW	178	192	205	219	232	246	259	273	286	300	313
Pulverized Coal Supercritical (LSD)- 300MW	214	228	242	257	271	285	299	313	327	342	356
Pulvenzed Coal (Advanced LSFO)- 400MW	191	201	212	222	232	242	252	262	273	283	293
Atmosph Fluidized Bed (Circulating)-200MW	228	244	259	275	291	307	322	338	354	369	385
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	256	268	280	292	305	317	329	341	353	365
Press Fluidized Bed (Bubbling)-350MW	163	174	185	196	208	219	230	241	252	263	274
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	172	183	194	204	215	226	237	248	259	270
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	220	231	243	254	266	277	288	300	311	323
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	163	175	186	197	209	220	232	243	254	266
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	161	172	183	194	205	216	227	238	249	260
Foster Wheeler Advanced PFB (Circulating)-688MW	139	152	165	179	192	205	219	232	246	259	272
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	218	227	237	246	256	266	275	285	294	304
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	202	212	222	233	243	253	263	273	283	294
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	232	243	254	265	276	287	298	309	320	331
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	300	313	326	340	353	366	379	393	406	419
Advanced Int. Coal Gas-460MW	151	163	175	186	198	210	222	233	245	257	269
Combustion Turbine Heavy Duty-80MW	65	100	135	170	205	240					
							275	310	345	380	415
Combustion Turbine Heavy Duty-110MW	56	93	130	167	204	241	278	315	352	389	426
Combustion Turbine Heavy Duty-160MW	52	83	114	145	176	207	238	269	300	331	362
Combustion Turbine Aero- 45MW	105	134	163	192	221	250	279	308	337	366	395
CT Combined Cycle 2on1 - 330MW	81	102	123	144	166	187	208	229	251	272	293
CT Combined Cycle 2on1 - 470MW	71	90	110	130	149	169	189	208	228	248	268
CT Combined Cycle - 345MW	69	89	108	128	147	166	186	205	224	244	263
CT with Cascaded Humidified Advanced Turbine-300MW	64	86	108	130	151	173	195	217	239	261	283
Phosphoric Acid Fuel Cell-2.5MW	1115	1143	1172	1200	1228	1257	1285	1313	1342	1370	1398
Molten Carbonate Fuel Cell-100MW	332	350	367	385	403	420	438	456	473	491	509
Solid Oxide Fuel Cell-100MW	169	186	202	218	235	251	267	284	300	316	333
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	268	345	422	499	577	654	731	808	885	962
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416						****		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119							
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1187 1274
Municipal Solid Waste: Tire-30MW							_				
	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449	493	537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159	170	181	193	204	216	227	238	250	261	273
Cane Run 3 Rehab w/ Natural Gas	120	149	179	208	238	267	297	326	356	386	415
Brown 5 CT 110MW	52	86	120	154	188	222	256	290	324	358	392
Brown 5 CT 164MW	52	81	110	139	168	197	226	255	284	313	342
Brown 5 CT 102MW	55	89	123	157	191	225	259	293	327	361	395
Brown 5 CT 159MW	49	79	109	139	169	199	229	259	289	319	349
Brown 5 CT 149MW	50	80	110	140	170	200	230	260	290	320	350
IPP Hydro	134	134	134	134	134	134	134				
Aeroderivative CT	50	83	116	149	182	215	248	281	314	347	380
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	158	168	178	188	198	208	218	228	238	248
IAC at Brown 8-11	20	61									
Minimum Levelized \$/kW		61	104	119	134	134	134	205	224	238	248
Millianton Pasented Sky	20	Ų,	104	113	104	134	134	200	224	236	240

Capital Cost-Low

Heat Rate- Base										·	
Fuel Forecast- High	<u> </u>			·		ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132							****		
Advanced Battery (3 hr)-20MW	55	87									
Advanced Battery (5 hr)-20MW	77	106									
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							****
Compressed Air Energy (Salt Cavern) -350MW	67	96	124	153							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	78	107	135							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
0.4 10.14.050.500.04	105	177	400	200	040	004	200	040	050	074	000
Pulverized Coal (LSFO)-500MW	165	196	188 207	200 219	212 231	224	236	248 266	259 277	271	283
Pulverized Coal (LSFO)-400MW		204	219	234	249	242 264	254 279	294		289	301
Pulverized Coal (LSFO)-300MW	189 231	243	255	267	279	292	304	316	309 328	323 340	338
Pulverized Coal (LSFO)-200MW											352
Pulverized Coal (LSFO)-300MW X 2	169	181	193	204	216	228	240	252	264	276	287
Pulverized Coal Compliance (LSD)- 300MW	178	193	209	224	239	254	269	285	300	315	330
Pulverized Coal Supercritical (LSD)- 300MW	214 191	230 203	246 214	262	278	293	309	325	341	357	373
Pulverized Coal (Advanced LSFO)- 400MW				225	236	247	259	270	281	292	304
Atmosph Fluidized Bed (Circulating)-200MW	228 244	245 257	263	280 284	297	314	331	349	366	383	400
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2			270		297	310	323	336	350	363	376
Press Fluidized Bed (Bubbling)-350MW	163	175	188	200	212	224	236	248	260	273	285
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	173	185	197	209	221	233	245	257	269	281
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	221	234	246	259	271	283	296	308	321	333
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	164	177 174	189	202	214	227	239	252	264	277
Press Fluidized Bed (Circulating, Supercritical)-360MW	150	162		186	198	210	223	235	247	259	271
Foster Wheeler Advanced PFB (Circulating)-688MW	139	153	167	181	196	210	224	239	253	267	282
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	219	229	240	250	261	271	282	292	302	313
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	203	214	225	236	247	258	270	281	292	303
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	234	246	258	271	283	295	308	320	332	345
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	301	315	329	343	357	372	386	400	414	428
Advanced Int. Coal Gas-460MW	151	164	176	189	202	214	227	240	252	265	277
Combustion Turbine Heavy Duty-80MW	65	104	143	182	221	260	299	338	377	416	455
Combustion Turbine Heavy Duty-110MW	56	97	138	179	220	261	302	343	384	425	466
Combustion Turbine Heavy Duty-160MW	52	87	122	157	192	227	262	297	332	367	402
Combustion Turbine Aero- 45MW	105	137	169	201	233	265	297	329	361	393	425
CT Combined Cycle 2on1 - 330MW	81	104	127	151	174	198	221	244	268	291	315
CT Combined Cycle 2on1 - 470MW	71	92	114	135	157	178	200	221	243	264	286
CT Combined Cycle - 345MW	69	91	112	133	154	176	197	218	239	260	282
CT with Cascaded Humidified Advanced Turbine-300MW	64	88	112	136	159	183	207	231	255	279	303
Phosphoric Acid Fuel Cell-2.5MW	1115	1146	1176	1207	1238	1268	1299	1330	1360	1391	1422
Molten Carbonate Fuel Cell-100MW	332	351	370	389	408	427	446	465	484	503	522
Solid Oxide Fuel Cell-100MW	169	187	205	223	241	259	277	295	313	331	349
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	276	361	446	531	617	702	787	872	957	1042
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416	****							
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440	****							
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119			10:0		4447	4450	
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544		553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	361	405	449		537	581	624	668	712	756
Bio Mass: Whole Tree-100MW	227	252	277	302	327	352	377	401	426	451	476
Cane Run 3 Rehab w/ AFBC	159			197		222	234	247	260	272	285
Cane Run 3 Rehab w/ Natural Gas	120			217	250	282	314	347	379	412	444
Brown 5 CT 110MW	52		126	163		237	274	311	348	385	422
Brown 5 CT 164MW	52			148	180	212	244	276	308	340	372
Brown 5 CT 102MW	55			166	203	240	277	314	351	388	425
Brown 5 CT 159MW	49		+	148		214	247	280	313	346	379
Brown 5 CT 149MW	50		118	152	186	220	254	288	322	356	390
IPP Hydro	134		134	134			134				
Aeroderivative CT	50		120	155	190	225	260	295	330	365	400
Ohio Falls 9&10	142			142							
Trimble County 2	148		-	182	193	204	216	227	238	249	261
IAC at Brown 8-11	20					L	<u></u>		L		
Minimum Levelized \$/k\	v 20	64	107	119	134	134	134	218	238	249	261

Capital Cost-Low Heat Rate- High

. 57

Heat Rate- High											
Fuel Forecast-Low		100/	0000	000/		ity Facto		7001	000/	000/	4000
Technology	95	10% 132	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW	55	87		=							
Advanced Battery (5 hr)-20MW	77	106									
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	94	121	148							
Compressed Air Energy (Sair Cavern) Source Compressed Air Energy w/ Humid Air Turbine-350MW	50	76	102	127							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
Super Conducting Magnetic Energy Storage (2111)-SouthW	13	100									
Pulverized Coal (LSFO)-500MW	165	175	185	196	206	216	227	237	247	257	268
Pulverized Coal (LSFO)-400MW	184	194	205	215	225	235	246	256	266	277	287
Pulverized Coal (LSFO)-300MW	189	202	215	228	241	254	267	280	293	305	318
Pulverized Coal (LSFO)-200MW	231	241	252	263	273	284	294	305	316	326	337
Pulverized Coal (LSFO)-300MW X 2	169	179	190	200	210	220	231	241	251	262	272
Pulverized Coal Compliance (LSD)- 300MW	178	191	204	217	230	243	256	269	281	294	307
Pulverized Coal Supercritical (LSD)- 300MW	214	228	242	255	269	283	296	310	324	337	351
Pulverized Coal (Advanced LSFO)- 400MW	191	201	211	221	231	241	250	260	270	280	290
Atmosph Fluidized Bed (Circulating)-200MW	228	243	258	273	288	303	319	334	349	364	379
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	256	268	279	291	303	315	327	339	350	362
Press Fluidized Bed (Bubbling)-350MW	163	174	184	195	206	216	227	238	248	259	269
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	171	182	193	203	214	224	235	246	256	267
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	220	231	242	253	264	275	286	297	308	319
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	163	174	185	196	207	217	228	239	250	261
Press Fluidized Bed (Circulating, With Netheal)-360MW	150	160	171	182	193	203	214	225	236	247	257
Foster Wheeler Advanced PFB (Circulating)-688MW	139	152	165	178	191	204	217	230	243	256	269
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	218	227	236	245	254	264	273	282	291	301
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	202	211	221	231	240	250	260	270	279	289
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	232	243	253	264	275	285	296	307	317	328
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	300	313	326	339	352	365	378	391	404	417
Advanced Int. Coal Gas-460MW	151	163	174	186	197	209	220	232	243	255	266
Combustion Turbine Heavy Duty-80MW	65	98	131	164	197	230	263	296	329	362	395
Combustion Turbine Heavy Duty-110MW	56	91	126	161	196	231	266	301	336	371	406
Combustion Turbine Heavy Duty-160MW	52	81	110	139	168	197	226	255	284	313	342
Combustion Turbine Aero- 45MW	105	132	159	186	213	240	267	294	321	348	375
CT Combined Cycle 2on1 - 330MW	81	101	120	140	160	180	200	220	239	259	279
CT Combined Cycle 2on1 - 470MW	71	89	107	126	144	162	180	199	217	235	254
CT Combined Cycle - 345MW	69	88	106	124	142	160	178	196	215	233	251
CT with Cascaded Humidified Advanced Turbine-300MW	64	85	105	126	147	167	188	208	229	250	270
Phosphoric Acid Fuel Cell-2.5MW	1115	1141	1168	1194	1220	1247	1273	1299	1326	1352	1378
Molten Carbonate Fuel Cell-100MW	332	349	365	382	399	415	432	449	465	482	499
Solid Oxide Fuel Cell-100MW	169	185	200	215	231	246	261	277	292	307	323
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	263	335	407	479	551	623	695	767	839	911
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119		****	****				****
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	363	409	455	501	547	593	638	684	730	776
Bio Mass: Whole Tree-100MW	227	253	279	305	331	357	383	409	435	461	487
Cane Run 3 Rehab w/ AFBC	159	170	181	192	203	214	225	236	247	258	269
Cane Run 3 Rehab w/ Natural Gas	120	147	175	202	230	257	285	312	340	368	395
Brown 5 CT 110MW	52	83	114	145	176	207	238	269	300	331	362
Brown 5 CT 164MW	52	79	106	133	160	187	214	241	268	295	322
Brown 5 CT 102MW	55	87	119	151	183	215	247	279	311	343	375
Brown 5 CT 159MW	49	77	105	133	161	189	217	245	273	301	329
Brown 5 CT 149MW	50	78	106	134	162	190	218	246	274	302	330
IPP Hydro	134	134	134	134							
Aeroderivative CT	50	81	112	143	174	205	236	267	298	329	360
Ohio Falls 9&10	142	142	142	142			<u> </u>				
Trimble County 2	148	158	168	177	187	197	206	216	226	236	245
IAC at Brown 8-11	20			<u> </u>	L		<u> </u>	<u> </u>			
Minimum Levelized \$/kW	20	59	102	119	134	134	134	196	215	233	245

Capital Cost-Low Heat Rate- High

Heat Rate- High											
Fuel Forecast- Base						ity Facto				2221	
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87					. ==				
Advanced Battery (5 hr)-20MW	77	106									****
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW	129 67	162 95	195 123	228 151							
	50	78	106	133							
Compressed Air Energy w/ Hurnid Air Turbine-350MW	79	106									
Super Conducting Magnetic Energy Storage (2 hr)-500MW	/3	100									
Pulverized Coal (LSFO)-500MW	165	176	187	198	209	220	231	242	253	264	275
Pulverized Coal (LSFO)-300MW	184	195	206	217	228	239	250	261	273	284	295
Pulverized Coal (LSFO)-300MW	189	203	217	231	245	259	273	287	301	315	329
Pulverized Coal (LSFO)-200MW	231	242	254	265	277	288	300	312	323	335	346
Pulverized Coal (LSFO)-300MW X 2	169	180	191	202	213	224	235	246	258	269	280
Pulverized Coal Compliance (LSD)- 300MW	178	192	206	221	235	249	263	277	291	305	320
Pulverized Coal Supercritical (LSD)- 300MW	214	229	244	258	273	288	303	318	332	347	362
Pulverized Coal (Advanced LSFO)- 400MW	191	202	213	223	234	244	255	266	276	287	297
Atmosph Fluidized Bed (Circulating)-200MW	228	244	261	277	293	310	326	342	359	375	391
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	244	256	269	282	294	307	320	332	345	357	370
Press Fluidized Bed (Bubbling)-350MW	163	175	186	198	209	221	232	244	256	267	279
Press Fluidized Bed (Bubbling, Supercritic)-340MW	161	172	184	195	206	218	229	240	252	263	275
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	221	232	244	256	268	280	292	303	315	327
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	164	176	187	199	211	223	235	247	259	270
Press Fluidized Bed (Circulating, With Feridal)-360MW	150	161	173	184	196	207	219	230	242	253	265
Foster Wheeler Advanced PFB (Circulating)-688MW	139	152	166	180	194	208	222	235	249	263	277
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	218	228	238	248	258	267	277	287	297	307
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	202	213	223	234	244	255	265	276	286	297
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	233	245	256	268	280	291	303	315	326	338
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	300	314	327	341	354	368	381	395	409	422
Advanced Int. Coal Gas-460MW	151	163	175	188	200	212	224	236	248	260	272
Combustion Turbine Heavy Duty-80MW	65	102	139	176	213	250	287	324	361	398	435
Combustion Turbine Heavy Duty-110MW	56	95	134	173	212	251	290	329	368	407	446
Combustion Turbine Heavy Duty-160MW	52	85	118	151	184	217	250	283	316	349	382
Combustion Turbine Aero- 45MW	105	135	165	195	225	255	285	315	345	375	405
CT Combined Cycle 2on1 - 330MW	81	103	125	148	170	192	215	237	259	281	304
CT Combined Cycle 2on1 - 470MW	71	91	112	132	153	174	194	215	236	256	277
CT Combined Cycle - 345MW	69	90	110	130	151	171	191	212	232	252	272
CT with Cascaded Humidified Advanced Turbine-300MW	64	87	110	132	155	178	201	223	246	269	292
Phosphoric Acid Fuel Cell-2.5MW	1115	1144	1174	1203	1232	1262	1291	1320	1350	1379	1408
Molten Carbonate Fuel Cell-100MW	332	350	369	387	405	424	442	460	479	497	515
Solid Oxide Fuel Cell-100MW	169	187	204	221	239	256	273	291	308	325	343
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	272	353	434	515	596	677	758	839	920	1001
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155							
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119		****	****				
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929	964	998	1033	1067	1102	1136	1171	1205	1240	1274
Municipal Solid Waste: Tire-30MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-50MW	317	363	409	455	501	547	593	638	684	730	776
Bio Mass: Whole Tree-100MW	227	253	279	305	331	357	383	409	435	461	487
Cane Run 3 Rehab w/ AFBC	159	171	183	195	207	219	231	243	255	267	279
Cane Run 3 Rehab w/ Natural Gas	120	151	182	212	243	274	305	336	367	398	429
Brown 5 CT 110MW	52	87	122	157	192	227	262	297	332	367	402
Brown 5 CT 164MW	52	82	112	142	172	202	232	262	292	322	352
Brown 5 CT 102MW	55	90	125	160	195	230	265	300	335	370	405
Brown 5 CT 159MW	49	80	111	142	173	204	235	266	297	328	359
Brown 5 CT 149MW	50	82	114	146	178	210	242	274	306	338	370
IPP Hydro	134	134	134	134	134	134	***************************************				
Aeroderivative CT	50	84	118	152	186	220	254	288	322	356	390
Ohio Falls 9&10	142	142	142	142							
Trimble County 2	148	159	170	180	191	201	212	223	233	244	254
IAC at Brown 8-11	20	62									
Minimum Levelized \$/kW		62	106	119	134	134	134	212	232	244	254
•								_	_		

Capital Cost-Low

Heat Rate- High											
Fuel Forecast- High						ity Facto					
Technology	0		20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	95	132									
Advanced Battery (3 hr)-20MW	55	87				****					****
Advanced Battery (5 hr)-20MW	77	106									
Pumped Hydro Energy Storage-350MW X 3	129	162	195	228							
Compressed Air Energy (Salt Cavern) -350MW	67	96	126	155							
Compressed Air Energy w/ Humid Air Turbine-350MW	50	79	109	138							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	79	106									
	1										
Pulverized Coal (LSFO)-500MW	165	177	189	202	214	226	239	251	263	275	288
Pulverized Coal (LSFO)-400MW	184	196	209	221	233	245	258	270	282	295	307
Pulverized Coal (LSFO)-300MW	189	205	221	236	252	268	283	299	315	330	346
Pulverized Coal (LSFO)-200MW	231	243	256	269	281	294	306	319	332	344	357
Pulverized Coal (LSFO)-300MW X 2	169	181	194	206	218	230	243	255	267	280	292
Pulverized Coal Compliance (LSD)- 300MW	178	194	210	226	241	257	273	289	305	321	337
Pulverized Coal Supercritical (LSD)- 300MW	214	231	247	264	281	297	314	330	347	364	380
Pulverized Coal (Advanced LSFO)- 400MW	191	203	215	226	238	250	261	273	285	297	308
Atmosph Fluidized Bed (Circulating)-200MW	228	246	264	282	300	318	336	354	372	390	408
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW	244	258 176	272 188	285 201	299 214	313	327	341	355	368	382
Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW	163	173	188	198	214	226 223	239 236	252 248	264 260	277 273	289 285
Press Fluidized Bed (Circulating, with Reheat)-160MW	209	222	235	247	260	273	286	299	312	325	338
Press Fluidized Bed (Circulating, with Reheat)-360MW	152	165	178	191	204	217	229	242	255	268	281
Press Fluidized Bed (Circulating, With Herietal)-360MW	150	162	175	187	200	213	225	238	251	263	276
Foster Wheeler Advanced PFB (Circulating)-688MW	139	153	168	183	198	212	227	242	257	271	286
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	208	219	230	241	252	263	274	285	296	307	318
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	192	204	215	227	238	250	261	273	284	296	307
Int Coal Gas / CAES with Humid Air Turbine-410MW	221	234	247	259	272	285	297	310	323	335	348
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	287	301	316	330	345	359	373	388	402	417	431
Advanced Int. Coal Gas-460MW	151	164	177	191	204	217	230	243	256	269	282
Combustion Turbine Heavy Duty-80MW	65	106	147	188	229	270	311	352	393	434	475
Combustion Turbine Heavy Duty-110MW	56	99	142	185	228	271	314	357	400	443	486
Combustion Turbine Heavy Duty-160MW	52	88	124	160	196	232	268	304	340	376	412
Combustion Turbine Aero- 45MW	105	138	171	204	237	270	303	336	369	402	435
CT Combined Cycle 2on1 - 330MW	81	105	130	154	179	203	227	252	276	301	325
CT Combined Cycle 2on1 - 470MW	71	93	116	138	161	184	206	229	252	274	297
CT Combined Cycle - 345MW	69	92	114	136	159	181	203	226	248	270	292
CT with Cascaded Humidified Advanced Turbine-300MW	64	89	114	139	164	189	214	239	263	288	313
Phosphoric Acid Fuel Cell-2.5MW	1115	1147	1179	1211	1243	1275	1307	1339	1371	1403	1435
Molten Carbonate Fuel Cell-100MW	332	352	372	392	412	432	452	472	492	512	532
Solid Oxide Fuel Cell-100MW	169	188	207	226	245	264	283	302	321	340	359
Geothermal: Dual Flash Brine, Air Cooled-24MW	191	280	369	459	548	638	727	816	906	995	1084
Solar Photovoltaic:Flat Plate-10x5MW	416	416	416								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	461	461	461								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	440	440	440								
Solar Thermal Trough/Gas Hybrid-200MW	359	363	367								
Wind Turbines-Variable Speed-50x750kw	139	139	139	139							
Wind Turbines-High Prod Volume-143x350kw	155	155	155	155						****	
Wind Turbines-Class 4 Speed-50x750kw	119	119	119	119	070	1014	4040		4447	4450	4407
Municipal Solid Waste: Mass Burn-40MW	840	875	910	944	979	1014	1048	1083	1117	1152	1187
Municipal Solid Waste: Refuse Der40MW	929		998	1033	1067	1102	1136		1205	1240	1274
Municipal Solid Waste: Tire-30MW Bio Mass: Wood-Fired Stoker Boiler-50MW	529	534	539	544	548	553	558	563	567	572	577
Bio Mass: Wood-Fired Stoker Boiler-SUMW Bio Mass: Whole Tree-100MW	317	363	409 279	455	501	547	593	638	684	730	776
Cane Run 3 Rehab w/ AFBC	227	253 172		305	331 212	357	383	409	435	461	487
Cane Run 3 Rehab w/ Natural Gas	159 120	154	185 188	198 222	256	225 290	238	251	265	278	291
Brown 5 CT 110MW	52	91	130	169	208	290	325 286	359 325	393 364	427 403	461 442
Brown 5 CT 164MW	52	85	118	151	184	217	250	283	316	349	382
Brown 5 CT 102MW	55	94	133	172	211	250	289	328	367	406	445
Brown 5 CT 159MW	49	83	117	151	185	219	253	287	321	355	389
Brown 5 CT 149MW	50		120	155	190	225	260	295	330	365	400
IPP Hydro	134	134	134	134	134	134		295	330	303	
Aeroderivative CT	50	87	124	161	198	235	272	309	346	383	420
Ohio Falls 9&10	142	142	142	142				303	340	303	420
Trimble County 2	148	160	172	184	196	208	219	231	249		267
IAC at Brown 8-11	20										
Minimum Levelized \$/kV		66	109	119	134	134	134	226	243	255	267
minimum morolanda was		-					,04		2.40		201

Capital Cost- Base

Heat Rate-Low											
Fuel Forecast-Low						ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141									
Advanced Battery (3 hr)-20MW	75	107	****		_=-						
Advanced Battery (5 hr)-20MW	104	133			_==			****			
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233	****						
Compressed Air Energy (Salt Cavem) -350MW	70	96	122	148							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	84	108	132							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128			****		_=-				
D 1 10 - 14 050) F00104	176	405	105	004	014	~~~	200	040	050	000	074
Pulverized Coal (LSFO)-500MW	196	185 205	195 215	204 224	214 233	223	233 252	242 262	252	262	271
Pulverized Coal (LSFO)-400MW	201	213	225	237	249	243 260	272	284	271 296	280 308	290 320
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW	245	254	264	274	284	293	303	313	322	332	
	180	189	199	208	217	227	236	246	255	264	342
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	190	202	214	226	237	249	261	273	285	297	274 309
Pulverized Coal Supercritical (LSD)- 300MW	228	241	253	266	278	290	303	315	328	340	353
Pulverized Coal (Advanced LSFO)- 400MW	203	212	221	231	240	249	258	267	276	285	294
Atmosph Fluidized Bed (Circulating)-200MW	251	265	279	293	306	320	334	348	362	376	390
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	287	298	309	320	331	342	353	364	376	387
Press Fluidized Bed (Bubbling)-350MW	192	202	212	222	232	241	251	261	271	281	291
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	200	209	219	229	239	249	259	269	278	288
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	245	255	266	276	286	297	307	317	327	338
Press Fluidized Bed (Circulating, with Reheat)-760MW	177	187	197	207	218	228	238	248	258	268	278
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	185	195	205	215	225	235	245	255	265	275
Foster Wheeler Advanced PFB (Circulating)-688MW	163	175	187	200	212	225	237	250	262	275	287
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	254	262	271	279	288	296	305	313	321	330
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	234	243	252	261	270	279	287	296	305	314
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	261	271	280	290	300	309	319	329	338	348
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	350	363	375	388	400	412	425	437	450	462
Advanced Int. Coal Gas-460MW	177	188	199	210	221	232	242	253	264	275	286
Combustion Turbine Heavy Duty-80MW	70	100	130	160	190	220	250	280	310	340	370
Combustion Turbine Heavy Duty-110MW	61	_93	125	157	189	221	253	285	317	349	381
Combustion Turbine Heavy Duty-160MW	56	83	110	137	164	191	218	245	272	299	326
Combustion Turbine Aero- 45MW	114	139	164	189	214	239	264	289	314	339	364
CT Combined Cycle 2on1 - 330MW	87	105	123	141	159	177	195	213	231	249	267
CT Combined Cycle 2on1 - 470MW	76	92	109	126	143	159	176	193	210	227	243
CT Combined Cycle - 345MW	79	96	112	129	145	162	178	195	211	228	244
CT with Cascaded Humidified Advanced Turbine-300MW	72	91	110	129	148	167	186	205	223	242	261
Phosphoric Acid Fuel Cell-2.5MW	1203	1227	1252	1276	1300	1325	1349	1373	1398	1422	1446
Molten Carbonate Fuel Cell-100MW	373	388	404	419	434	450	465	480	496	511	526
Solid Oxide Fuel Cell-100MW	187	201	215	228	242	256	269	283	297	310	324
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	285	350	415	480	545	610	675	740	805	870
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623				_=_				
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145					4555		
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	401	443	485	526	568	610	651	693	735	776
Bio Mass: Whole Tree-100MW	276	300	324	348	371	395	419	443	466	490	514
Cane Run 3 Rehab w/ AFBC	170	180	190	200	210	220	231	241	251	261	271
Cane Run 3 Rehab w/ Natural Gas	127	152	177	201	226	251	276	301	326	351	376
Brown 5 CT 10MW	54	83 80	112	141	170	199	228	257	286	315	344
Brown 5 CT 164MW	55 57	86	105 115	130 144	155	180	205	230 260	255	280	305
Brown 5 CT 102MW	51	76	101		173 151	202 176	231	226	289 251	318 276	347
Brown 5 CT 159MW	51	78	104	130							301
Brown 5 CT 149MW	134	134	134	134	156 134	182 134	208 134	234	260	286	312
IPP Hydro	134 52	80	108	134	164	T		248	276	204	220
Aeroderivative CT	149	149				192	220	248	2/6	304	332
Ohio Falls 9&10	153	162	149 171	149 180	100	107	200	215	222	222	544
Trimble County 2	153	***************	1/1	180	188	197	206	215	223	232	241
IAC at Brown 8-11		57 57	101	126	134	134	134	193	210	227	241
Minimum Levelized \$/k	. 	5/	101	120	134	134	134	193	210	221	241

Capital Cost- Base

Page Proceeded Base	t- Base	1999 Dollars (\$/kW yr)												
Comparing December					C	in Case								
Lead Acid Battery Storage (1 hr) 25MW 75 107		 	109/	20%	30%				70%	909/	009/	100%		
Advanced Battery (5 hty-20MW 104 133					_		30%					100%		
Advanced Safery (5 hr)-20MW Append Hydro Entry (Songa-SSONW 3 3 134 167 200 203														
Pumped Hyrior Energy Storman 350MW 70 97 124 51 15 15 15 15 15 15 1														
Compressed Air Energy (Marind Air Untribre-950MW 60 86 112 138					_									
Comparison Air Emergy with Humid Air Turthine SSOMW 101 128						-								
Super Conducting Magnatic Energy Storage (z hr)-SOOMW														
Pubmitated Coal (LSFO)-SOOMW 176 186 196 207 217 227 238 248 288 288 Pubmitated Coal (LSFO)-SOOMW 196 206 216 226 237 247 257 267 277 28														
Pulmertad Coal (LSFO)-HOMM	stang magnete energy etotage (2 m) events	1 70.1												
Pulveristed Coal (LSFO)-HOMM	oal (LSFO)-500MW	176	186	196	207	217	227	238	248	258	268	279		
Pulmerized Coal (LSFO)-300MW 201 214 227 239 232 285 278 291 303 316 328 339 Pulmerized Coal (LSFO)-300MW 245 255 266 276 287 297 308 318 338 339 Pulmerized Coal (LSFO)-300MW 190 200 210 221 221 241 251 261 271 271 272 273 274 275 2												297		
Fluhentad Coal (LSFO)-200MW 245 255 266 276 287 297 306 318 328 333												329		
Fluvntrad Coal (LSFO)-SOONW X 2												349		
Fluvnetzed Coal Compliance (LSD)- 300MW		180	190	200	210	221	231	241	251	261	271	281		
Pubmetred Coal (Advanced LSFO) - 400MW		190	203	216	229	242	255	268	281	293	306	319		
Almosgn Fluidized Bed (Circulating)-200MW	oal Supercritical (LSD)- 300MW	228	242	256	269	283	297	310	324	338	351	365		
Press Fluidzed Bed (Bubbling, Non-Feheral-BOMW X 2	oal (Advanced LSFO)- 400MW	203	213	223	233	243	253	262	272	282	292	302		
Frees Fluidand Bed (Bubbling)-350MW	idized Bed (Circulating)-200MW	251	266	281	296	311	326	341	356	370	385	400		
Fress Fluidzind Bed (Bubbling, Supercritin)-340NW	ed Bed (Bubbling, Non-Reheat)-80MW X 2	276	288	299	311		334		358	369	381	393		
Frees Pludzed Bed (Circulating), with Reheath-160MW 177 188 199 210 221 232 242 253 284 275 Press Fludzed Bed (Circulating), with Reheath-360MW 177 188 199 210 221 221 232 242 253 284 275 Press Fludzed Bed (Circulating), with Reheath-360MW 175 185 199 200 217 228 238 249 260 270 170 270 270 270 270 270 270 270 270 270 2	red Bed (Bubbling)-350MW											298		
Press Fluidized Bed (Circulating, with Reheat)-360MW												294		
Press Fluidized Bod Circulating, Supercritical)-360MW 175 185 196 206 217 228 238 249 260 270 Foster Wheeler Advanced PER (Circulating)-868MW 163 176 189 202 273 282 291 300 309 318 327 110 Coal Gas Methyl humid Air Turbine Certainaer How-960MW 225 235 244 254 264 273 282 293 393 312 21 Int Coal Gas Methyl humid Air Turbine-410MW 251 282 273 283 294 305 315 326 337 347 111 Coal Gas Mother Certainaer How-960MW 177 189 202 273 283 294 305 315 326 337 347 111 Coal Gas Mother Certainaer How Methyl Air Turbine-410MW 177 189 202 273 283 294 305 315 326 337 347 111 Coal Gas Mother Certainaer How Methyl Air Turbine-410MW 177 189 200 211 223 234 245 257 288 280 200 211 223 234 245 257 288 280 200 211 223 234 245 257 288 280 200 211 223 234 245 257 288 280 200 211 230 234 245 257 288 280 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 211 277 313 349 385 200 200 200 200 200 200 200 200 200 20												344		
Faster Wheeler Advanced PTB (Circualing)-688MW												286		
Highly Integrated Coal Gas/Comb Cyc Entrained-9601MW								Ī				281		
Int Coal Gas w Humid Air Turbine (Entrained Flow)-600MW 251 225 235 244 254 264 273 283 293 303 312 1nt Coal Gas / CAES with Humid Air Turbine-410MW 251 262 273 283 294 305 315 326 337 347 1nt Coal Gas / CAES with Humid Air Turbine-410MW 338 351 364 376 389 402 415 428 441 454 Advanced Int. Coal Gas-460MW 770 194 338 351 364 376 389 402 415 428 441 454 Advanced Int. Coal Gas-460MW 770 194 318 172 206 240 274 308 342 375 268 280 Combustion Turbine Heavy Duty-10MW 61 87 133 169 205 241 277 313 349 385 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 296 326 206 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 296 326 206 Combustion Turbine Heavy Duty-10MW 770 170 170 170 180 260 274 308 389 385 CT Combined Cycle 2011 - 300MW 787 170 170 189 226 254 282 310 338 366 CT Combined Cycle 2011 - 300MW 787 170 170 189 226 254 282 310 338 366 CT Combined Cycle 2011 - 300MW 787 170 170 189 226 254 282 310 338 366 CT Combined Cycle 2011 - 300MW 787 170 170 170 170 170 170 170 170 170 17												293		
Int Coal Gas / CAES with Humid Air Turbine-410MW 251 262 273 283 294 395 315 326 337 347 171 Coal Gas/ Molten Carbonate Fuel Cell 400MW 338 351 364 376 389 402 415 428 441 454 Advanced Int. Coal Gas-460MW 177 189 200 211 223 234 245 257 268 280 Combustion Turbine Heavy Duty-80MW 70 104 138 172 206 240 274 308 342 376 Combustion Turbine Heavy Duty-10MW 61 97 133 169 205 241 277 313 349 385 Combustion Turbine Heavy Duty-10MW 61 97 133 169 205 241 277 313 349 385 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 296 326 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 296 326 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 296 326 Combustion Turbine Heavy Duty-10MW 77 114 142 170 199 226 254 282 310 338 366 CT Combined Cycle 20n1 -330MW 87 107 127 147 167 187 208 228 248 288 288 248 248 248 248 248 24												336		
Int Coal Gas/ Mother Carbonate Fuel Cell 400MW 177 189 200 211 223 234 245 257 268 280 Combustion Turbine Heavy Duty-90MW 70 104 138 172 206 240 274 308 342 376 Combustion Turbine Heavy Duty-10MW 61 97 133 169 205 241 277 313 349 385 Combustion Turbine Heavy Duty-10MW 56 86 86 116 146 176 206 236 266 269 326 Combustion Turbine Heavy Duty-10MW 56 86 86 116 146 176 206 236 266 269 326 Combustion Turbine Heavy Duty-10MW 56 86 116 146 176 206 236 266 269 326 200 200 200 200 200 200 200 200 200 2												322		
Advanced Int. Coal Gas-460MW												358		
Combustion Turbine Heavy Duty-10MW									•			467		
Combustion Turbine Heavy Duty-110MW												291		
Combustion Turbine Heavy Duty-160MW									-			410		
Combustion Turbine Aero-45MW												421		
CT Combined Cycle 2on1 - 330MW												356		
CT Combined Cycle 2on1 - 470MW 76	· · · · · · · · · · · · · · · · · · ·											394		
CT Combined Cycle - 345MW 79 98 116 135 153 172 190 209 227 246 CT with Cascaded Humidified Advanced Turbine-300MW 72 93 114 135 156 177 198 219 239 260 Phosphoric Add Fuel Cell-2.5MW 1203 1230 1257 1284 1311 1338 1365 1392 1419 1446 Molten Carbonate Fuel Cell-100MW 373 390 406 423 440 456 473 490 506 523 50id Oxide Fuel Cell-100MW 187 203 219 234 250 266 281 297 313 328 Geothermatic Dual Flash Brine, Air Cooled-2AMW 220 293 366 440 513 586 659 733 806 879 Solar Photovoltaic:Flat Plate-10x5MW 563 563 563 Solar Photovoltaic:Flat Plate-10x5MW 563 563 563 Solar Photovoltaic:Flat Plate-10x5MW 578 578 578 578 Solar Thermal Trough/Gas Hybrid-200MW 390 394 398 Solar Thermal Trough/Gas Hybrid-200MW 390 394 398												288 263		
CT with Cascaded Humidified Advanced Turbine-300MW 72 93 114 135 156 177 198 219 239 260			-									263		
Phosphoric Acid Fuel Cell-2.5MW			•									281		
Molten Carbonate Fuel Cell-100MW 373 390 406 423 440 456 473 490 506 523 506 524 506 524 506 524 506 525 526 526 526 526 527 526 527						-						1473		
Solid Oxide Fuel Cell-100MW												540		
Geothermal: Dual Flash Brine, Air Cooled-24MW 220 293 366 440 513 586 659 733 806 679							-					344		
Solar Photovoltaic:Flat Plate-10x5MW 563 5												952		
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW 523 6														
Solar Photovoltaic:Fresnel Lens High Concen10x5MW 578											 			
Solar Thermal Trough/Gas Hybrid-200MW 390 394 398 Wind Turbines-Variable Speed-50x750kw 171 171 171 171 171 171														
Wind Turbines-Variable Speed-50x750kw 171 172														
Wind Turbines-High Prod Volume-143x350kw 186 186 186 186		171	171	171	171									
Municipal Solid Waste: Mass Burn-40MW 945 980 1015 1049 1084 1119 1153 1188 1222 1257 Municipal Solid Waste: Refuse Der40MW 1040 1075 1109 1144 1178 1213 1247 1282 1316 1351 Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Cane Run 3 Rehab w/ Natural Gas 127 155 183 211 239 267 295 323 351 379 Brown 5 CT 164MW 54		186	186	186	186									
Municipal Solid Waste: Refuse Der40MW 1040 1075 1109 1144 1178 1213 1247 1282 1316 1351 Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 164MW 55 82 109 1	es-Class 4 Speed-50x750kw	145	145	145	145									
Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163	olid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292		
Bio Mass: Wood-Fired Stoker Boiler-SOMW 359 401 443 485 526 568 610 651 693 735 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Cane Run 3 Rehab w/ Natural Gas 127 155 183 211 239 267 295 323 351 379 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 555 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 Brown 5 CT 149MW 52 83 114 134 134 134 134 134 134 134 Chio Falls 9&10 149 149 149 149 -	olid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385		
Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Cane Run 3 Rehab w/ Natural Gas 127 155 183 211 239 267 295 323 351 379 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 159MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 149MW 51 79 107 135 163 191 219 247 275 303 IPP Hydro 134 134 134 134 134 134 134 134 134 134	olid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643		
Cane Run 3 Rehab w/ AFBC 170 181 192 202 213 224 235 246 257 268 Cane Run 3 Rehab w/ Natural Gas 127 155 183 211 239 267 295 323 351 379 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 191 226 255 284 313 IPP Hydro 134	/ood-Fired Stoker Boiler-50MW	359		443		526	568			693	735	776		
Cane Run 3 Rehab w/ Natural Gas 127 155 183 211 239 267 295 323 351 379 Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 <	/hole Tree-100MW	276	300	324	348	371	395	419	443	466	490	514		
Brown 5 CT 110MW 54 86 118 150 182 214 246 278 310 342 Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 1007 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 <	Rehab w/ AFBC	170	181					235	246	257	268	279		
Brown 5 CT 164MW 55 82 109 136 163 190 217 244 271 298 Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>379</td> <td>407</td>						•					379	407		
Brown 5 CT 102MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 134 134 134 134 134 Aeroderivative CT 52 83 114 145 176 207 238 269 300 331 Ohio Falls 9&10 149 149 149 149							•					374		
Brown 5 CT 159MW 51 79 107 135 163 191 219 247 275 303 Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 52 83 114 145 176 207 238 269 300 331 Ohio Falls 9&10 149 149 149 149						+			+			+		
Brown 5 CT 149MW 52 81 110 139 168 197 226 255 284 313 IPP Hydro 134 134 134 134 134 134 134				•										
IPP Hydro 134										+				
Aeroderivative CT 52 83 114 145 176 207 238 269 300 331 Ohio Falls 9&10 149 149 149 149 <td>149MW</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>284</td> <td>313</td> <td>342</td>	149MW						4			284	313	342		
Ohio Falls 9&10 149 149 149			-						-					
						176	207	238	269	300	331	362		
Trimble County 2 153 163 172 182 191 201 211 220 230 239			-						<u> </u>	ļ <u></u>				
								211		230	239	249		
IAC at Brown 8-11					<u> </u>						<u> </u>	249		

Capital Cost- Base

Fige Tenchmology	Heat Rate-Low		Donais (, .,								
Land Add Ballery Stronge(1 hy-20MW 104 161						Cenec	ity Fecto	re				
Land And Battery Storage() In Ny 20NW		0	10%	20%	30%				70%	80%	90%	100%
Abarbarde Battery (5 In)-2084W 104 133												
Abarbance Better (5 hr)-208W												
Pumpet Pylor Elmery Storty												
Compressed AF Energy (Start Cavern) 350AW												
Compressed Air Energy w Humid Air Turtines-30MW 60 87 115 142												
Super Conducting Magnetic Energy Storage (2 In) 500MW											****	
Pulmerand Coal (LSFC)+SOGMW				115	142			_=				
Pubmetric Coal (LSFO)-400MW	Super Conducting Magnetic Energy Storage (2 nr)-500MW	101	128									
Pubmit Coal (LSPO)-400MW		470	407	400		- 004		040	054	000		000
Pulveristed Coal (LSFO):200MW												288
Pubretact Cost (LSFO)-2000MW 2 2 190 291 225 288 280 282 280 315 327 338 330 380 370 381 287 388 380 380 380 380 380 380 380 380 380												308
Filhertiance Cost (LSFC)-300MW X 2												344
Filherted Coal Completine (LSD): 300MW												362
Pulmetad Coal Supercritical (LSD): 000MW												292
Fighter (1997) Figh												335
Amount Fluidized Bed (Circulating)-200MW 251 268 284 300 311 327 333 350 366 383 399 44 Press Fluidized Bed (Bubbling)-350MW 192 204 216 227 239 251 262 274 286 297 328 Press Fluidized Bed (Bubbling)-350MW 192 204 216 227 239 251 262 274 286 297 328 Press Fluidized Bed (Circulating), with Rehealt)-150MW 190 201 213 224 238 247 289 271 282 284 Press Fluidized Bed (Circulating), with Rehealt)-150MW 235 247 259 271 283 286 307 319 331 343 337 Press Fluidized Bed (Circulating), Superritical-360MW 177 188 201 212 224 238 246 289 272 284 289 Press Fluidized Bed (Circulating), Superritical-360MW 175 186 189 201 221 233 246 259 273 287 Press Fluidized Bed (Circulating), Superritical-360MW 175 186 189 201 221 233 246 259 273 287 Press Fluidized Bed (Circulating), SubsWW 153 176 189 202 216 221 233 246 259 273 287 Highly trilegyated Coal Gas/Comb Cyc (Entrained)-601MW 245 255 256 257 257 278 289 299 310 321 Int Coal Gas Whord Carlo Arrival Circulating)-088MW 177 189 202 214 226 238 239 310 321 333 345 356 335 335 Int Coal Gas Whord Carlomath Fluid Air Turbine-410MW 251 253 275 266 269 310 221 333 345 356 346 346 246												380
Fress Fuldzade Bod (Bubbing), Nort-Reheart)-SOMW 192 204 216 227 239 251 362 274 286 297 37 78 197 197 198 198 198 198 198 198 198 198 198 198												311
Press Fuldzed Bed (Babbing)-350MW 192 204 216 227 299 251 282 274 286 297 33 37 Press Fuldzed Bed (Babbing)-350mW 190 201 213 224 236 247 259 271 282 294 37 Press Fuldzed Bed (Circulating), with Reheath-160MW 235 247 259 271 283 296 307 319 331 343 331 343 343 343 343 343 343 343	Atmosph Fluidized Bed (Circulating)-200MW						_					416
Press Fluidized Bed (Bubbling, Superartic)-940MW 190 201 213 224 236 247 259 271 282 284 334 33 33 33 785 785 101620 Bed (Circulating, With Reheat)-950MW 177 189 201 212 224 236 248 250 272 284 285 277 282 284 285 277 282 284 285 277 282 284 285 277 282 284 285 287 28												404
Press Pulidized Bed (Circulating, with Reheat)-HoMMV 225 247 259 271 283 285 307 319 331 343 348 349	Press Fluidized Bed (Bubbling)-350MW			-								309
Press Fluidized Bed (Circulating, Josham) 177												305
Press Fluidized Bed (Circulating), Supercritical)-360MW	Press Fluidized Bed (Circulating, with Reheat)-160MW											355
Press Fluidized Bed (Circulating), Supercritical)-360MW	Press Fluidized Bed (Circulating, with Reheat)-360MW	177	189	201	212	224	236	248	260	272	284	295
Highly Infegrated Coal Gas/Comb Cyc (Entrained)-601MW		175	186	198	210	221	233	245	256	268	280	292
Inf Coal Gas w Humid Air Turbine (Entrained Flow)-600MW 225 236 246 237 267 278 289 299 310 321 333 345 356 347	Foster Wheeler Advanced PFB (Circulating)-688MW	163	176	190	204	218	232	246	259	273	287	301
Inf Coal Gas Vol Humid Air Turbine (Entrained Flow)+000MW 225 236 246 257 267 267 278 289 299 310 321 333 345 356 31 Inf Coal Gas / Coal Air Turbine+10MW 251 253 275 288 298 310 321 333 345 356 33 Inf Coal Gas / Coal Cas + 400MW 251 253 257 275 288 298 310 321 333 345 356 33 Inf Coal Gas / Coal Cas + 400MW 257 258 25	Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	255	265	275	285	295	305	315	325	335	345
Int Coal Gast Mothen Carbonate Fuel Cell 400MW 338 351 385 379 392 406 420 434 447 461 44 447 467 477 189 202 214 226 238 251 283 275 287 38 275 287 38 275 287 38 285 285 285 275 287 38 285 28		225	236	246	257	267	278	289	299	310	321	331
In Coal Gas4 Molten Carbonate Fuel Cell 400MW		251	263	275	286	298	310	321	333	345	356	368
Advanced Int. Coal Cas-460MW		338	351	365	379	392	406	420	434		461	475
Combustion Turbine Heavy Duty-BOMW												300
Combustion Turbine Heavy Duty-10MW												440
Combustion Turbine Heavy Duh' - ISOMW 114 144 174 204 234 264 234 324 334 384 44 47 47 47 47 47 47												451
Combustion Turbine Aero- 45MW												386
CT Combined Cycle 2on1 - 330MW		+										414
CT Combined Cycle 2cn1 - 470MW 76 98 117 137 158 179 199 2220 241 261 22 CT Combined Cycle - 345MW 79 100 120 140 161 181 201 222 242 262 262 27 27 30 120 140 161 181 201 222 242 262 262 27 27 27 28 181 140 163 186 209 231 254 277 30 17 20 181 181 201 222 242 262 262 281 281 281 281 281 281 281 281 281 28												308
CT Combined Cycle - 345MW												282
CT with Cascaded Humidfied Advanced Turbine-300MW 72 95 118 140 163 186 209 231 254 277 36 Phosphoric Aod Fuel Cell-25MW 1203 1232 1262 1231 1320 1350 1379 1408 1438 1467 148 Molten Carbonate Fuel Cell-100MW 373 391 410 428 446 465 483 501 520 538 551 Solid Oxide Fuel Cell-100MW 187 205 222 239 257 274 291 309 326 343 33 Geothermai: Dual Flash Brine, Air Cooled-24MW 220 301 381 462 543 624 705 766 866 947 105 Solar Photovoltaic: Flat Plate-10x5MW 563 563 563 563 563												282
Phosphonic Acid Fuel Cell-2.5MW												300
Moiten Carbonate Fuel Cell-100MW 373 391 410 428 446 465 483 501 520 538 55												
Solid Oxide Fuel Cell-100MW												
Geothermal: Dual Flash Brine, Air Cooled-24MW 220 301 381 462 543 624 705 786 866 947 107												556
Solar Photovoltaic:Flat Plate-10x5MW 563 5												361
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW 523 6		+							_			1028
Solar Photovoltaic:Fresnel Lens High Concen10x5MW 578												
Solar Thermal Trough/Gas Hybrid-200MW 390 394 398												
Wind Turbines-Variable Speed-50x750kw												
Wind Turbines-High Prod Volume-143x350kw 186 186 186 186	Solar Thermal Trough/Gas Hybrid-200MW											
Wind Turbines-Class 4 Speed-50x750kw 145 145 145 145 <td>Wind Turbines-Variable Speed-50x750kw</td> <td>171</td> <td>171</td> <td>171</td> <td>171</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>****</td>	Wind Turbines-Variable Speed-50x750kw	171	171	171	171							****
Municipal Solid Waste: Mass Burn-40MW 945 980 1015 1049 1084 1119 1153 1188 1222 1257 128 Municipal Solid Waste: Refuse Der40MW 1040 1075 1109 1144 1178 1213 1247 1282 1316 1351 138 Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 6 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 77 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 5 Cane Run 3 Rehab w/ AFBC 170 182 194 206 218 230 243 255 267 279 22 Cane Run 3 Rehab w/ Natural Gas 127 158 189 219 250 281 312 343	Wind Turbines-High Prod Volume-143x350kw	186	186	186	186						****	
Municipal Solid Waste: Refuse Der40MW 1040 1075 1109 1144 1178 1213 1247 1282 1316 1351 13 Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 6 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 7 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 5 Cane Run 3 Rehab W/ AFBC 170 182 194 206 218 230 243 255 267 279 22 262 281 312 343 374 406 44 443 486 490 5 5 279 22 261 299 334 369 44 443 486 490 5 48 485 154 159<	Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Tire-30MW 595 600 605 610 614 619 624 629 633 638 6 Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 7 Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 486 490 5 Cane Run 3 Rehab w/ AFBC 170 182 194 206 218 230 243 255 267 279 22 Cane Run 3 Rehab w/ Natural Gas 127 158 189 219 250 281 312 343 374 405 4 Brown 5 CT 110MW 54 89 124 159 194 229 264 299 334 369 44 Brown 5 CT 164MW 55 85 115 145 175 205 235 265 295 325 33	Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Bio Mass: Wood-Fired Stoker Boiler-50MW 359 401 443 485 526 568 610 651 693 735 77	Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 55	Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Whole Tree-100MW 276 300 324 348 371 395 419 443 466 490 55	Bio Mass: Wood-Fired Stoker Boiler-50MW	359	401	443	485	526	568	610	651	693	735	776
Cane Run 3 Rehab w/ AFBC 170 182 194 206 218 230 243 255 267 279 22 Cane Run 3 Rehab w/ Natural Gas 127 158 189 219 250 281 312 343 374 405 44 Brown 5 CT 110MW 54 89 124 159 194 229 264 299 334 369 44 Brown 5 CT 164MW 55 85 115 145 175 205 235 265 295 325												514
Cane Run 3 Rehab w/ Natural Gas 127 158 189 219 250 281 312 343 374 405 43 Brown 5 CT 110MW 54 89 124 159 194 229 264 299 334 369 44 Brown 5 CT 164MW 55 85 115 145 175 205 235 265 295 325 325 Brown 5 CT 102MW 57 92 127 162 197 232 267 302 337 372 44 Brown 5 CT 159MW 51 82 313 144 175 206 237 268 299 330 33 Brown 5 CT 149MW 52 84 116 148 180 212 244 276 308 340 33 IPP Hydro 134 134 134 134 134 134 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34				194		218			-			291
Brown 5 CT 110MW 54 89 124 159 194 229 264 299 334 369 44 Brown 5 CT 164MW 55 85 115 145 175 205 235 265 295 325 32 Brown 5 CT 102MW 57 92 127 162 197 232 267 302 337 372 44 Brown 5 CT 159MW 51 82 \$133 144 175 206 237 268 299 330 3 Brown 5 CT 149MW 52 84 116 148 180 212 244 276 308 340 3 IPP Hydro 134 134 134 134 134 134 <										• 		436
Brown 5 CT 164MW 55 85 115 145 175 205 235 265 295 325 33 Brown 5 CT 102MW 57 92 127 162 197 232 267 302 337 372 44 Brown 5 CT 159MW 51 82 343 144 175 206 237 268 299 330 3 Brown 5 CT 149MW 52 84 116 148 180 212 244 276 308 340 3 IPP Hydro 134 134 134 134 134 134 134												404
Brown 5 CT 102MW 57 92 127 162 197 232 267 302 337 372 44		-							-			355
Brown 5 CT 159MW 51 82 \$\frac{11}{31}\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$												407
Brown 5 CT 149MW 52 84 116 148 180 212 244 276 308 340 3 IPP Hydro 134 134 134 134 134 134 134												361
IPP Hydro 134												372
Aeroderivative CT 52 86 120 154 188 222 256 290 324 358 33 Ohio Falls 9&10 149 149 149 149 Trimble County 2 153 164 175 186 196 207 218 229 239 250 22 IAC at Brown 8-11 21 63		+										
Ohio Falls 9&10 149 149 149 Trimble County 2 153 164 175 186 196 207 218 229 239 250 20 IAC at Brown 8-11 21 63									300	324	250	392
Trimble County 2 153 164 175 186 196 207 218 229 239 250 22 IAC at Brown 8-11 21 63 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>324</td> <td></td> <td>392</td>										324		392
IAC at Brown 8-11 21 63										200		261
			Thomas of the same		100					600		
	IAC at Brown 8-11 Minimum Levelized \$/kW		63	113	134	134	134	134	220	239	250	261

Capital Cost- Base

. . .

Heat Rate- Base											
Fuel Forecast-Low		400/	000/	200		ity Factor		700/	000/	000/]	1000
Technology	104	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW	75	107									
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233							
Compressed Air Energy (Salt Cavern) -350MW	70	96	123	149							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	85	110	135			****				
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
Pulverized Coal (LSFO)-500MW	176	186	195	205	215	225	235	245	254	264	274
Pulverized Coal (LSFO)-400MW	196	206	216	225	235	245	255	265	275	285	294
Pulverized Coal (LSFO)-300MW	201	213 255	226 265	238 275	250 285	263 296	275 306	287 316	300 326	312 336	324
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2	245 180	190	200	209	219	229	239	249	259	269	346 278
Pulverized Coal Compliance (LSD)- 300MW	190	203	215	227	240	252	265	277	290	302	315
Pulverized Coal Supercritical (LSD)- 300MW	228	241	254	267	280	294	307	320	333	346	359
Pulverized Coal (Advanced LSFO)- 400MW	203	213	222	232	241	251	261	270	280	289	299
Atmosph Fluidized Bed (Circulating)-200MW	251	266	280	294	309	323	338	352	367	381	396
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	287	299	310	321	333	344	356	367	378	390
Press Fluidized Bed (Bubbling)-350MW	192	203	213	223	233	244	254	264	275	285	295
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	200	210	220	230	241	251	261	271	281	291
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	245	256	267	277	288	298	309	320	330	341
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	188	198	209	219	230	241	251	262	272	283
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	185	195 188	206 201	216 214	226 226	236 239	247 252	257 265	267 277	278
Foster Wheeler Advanced PFB (Circulating)-688MW	163 245	175 254	263	272	280	289	298	307	315	324	290 333
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	234	244	253	263	272	281	291	300	309	319
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	261	271	281	291	301	311	321	331	341	351
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	350	363	376	389	402	414	427	440	453	465
Advanced Int. Coal Gas-460MW	177	188	199	211	222	233	244	255	266	277	288
Combustion Turbine Heavy Duty-80MW	70	101	132	163	194	225	256	287	318	349	380
Combustion Turbine Heavy Duty-110MW	61	94	127	160	193	226	259	292	325	358	391
Combustion Turbine Heavy Duty-160MW	56	84	112	140	168	196	224	252	280	308	336
Combustion Turbine Aero- 45MW	114	140	166	192	218	244	270	296	322	348	374
CT Combined Cycle 2on1 - 330MW	87	106	125	143	162	181	200	219	238	257	276
CT Combined Cycle 2on1 - 470MW	76 79	93 97	111 114	128 132	146 149	163 166	181 184	198 201	216 218	233 236	251 253
CT Combined Cycle - 345MW CT with Cascaded Humidified Advanced Turbine-300MW	79	92	111	131	151	171	190	210	230	249	269
Phosphoric Acid Fuel Cell-2.5MW	1203	1228	1254	1279	1304	1330	1355	1380	1406	1431	1456
Molten Carbonate Fuel Cell-100MW	373	389	405	421	437	453	469	485	501	517	533
Solid Oxide Fuel Cell-100MW	187	202	217	231	246	261	275	290	305	- 319	334
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	288	357	425	494	562	631	699	768	836	905
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563		****		í				
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	. 394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186 145	186 145	186 145							
Wind Turbines-Class 4 Speed-50x750kw	145 945	980	1015	1049	1084	1119	1153		1222	1257	1292
Municipal Solid Waste: Mass Burn-40MW Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213		1188 1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	403	447	491	535	579	623	666	710	754	798
Bio Mass: Whole Tree-100MW	276	301	326	351	376	401	426	450	475	500	525
Cane Run 3 Rehab w/ AFBC	170	180	191	202	212	223	233	244	255	265	276
Cane Run 3 Rehab w/ Natural Gas	127	153	179	205	231	257	284	310	336	362	388
Brown 5 CT 110MW	54	84	114	144	174	204	234	264	294	324	354
Brown 5 CT 164MW	55	81	107	133	159	185	211	237	263	289	315
Brown 5 CT 102MW	57	87	117	147	177	207	237	267	297	327	357
Brown 5 CT 159MW	51	78	105	132	159	186	213	240	267	294	321
Brown 5 CT 149MW	52	79	106	133	160	187	214	241	268	295	322
IPP Hydro	134 52	134 81	134 110	134 139	134 168	194 197	134 226	255	284	313	342
Aeroderivative CT Ohio Falls 9&10	149	149	149	149	100			255	204	313	342
Trimble County 2	153	163	172	181	190	199	209	218	227	236	248
IAC at Brown 8-11	21	58									
Minimum Levelized \$/kW		58	105	128	134	134	134	198	216	233	246

Capital Cost- Base Heat Rate- Base

Fuel Forecast- High Technology Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW Pulverized Coal (Advanced LSFO)- 400MW	0 104 755 104 134 70 60 101 176 196 201 245 180 190 228	10% 141 107 133 167 99 88 128 188 208 216 257 192	20% 200 127 117 199 219 231 269	233 156 145 211 231	40% 	50%		70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	104 75 104 134 70 60 101 176 196 201 245 180 190 228	141 107 133 167 99 88 128 188 208 216 257	200 127 117 199 219 231	233 156 145 211 231							
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavem) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	75 104 134 70 60 101 176 201 245 180 190 228	107 133 167 99 88 128 188 208 216 257	200 127 117 199 219 231	233 156 145 211 231	 223						
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy (Salt Cavern) -350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	104 134 70 60 101 176 196 201 245 180 190 228	133 167 99 88 128 188 208 216 257 192	200 127 117 199 219 231	233 156 145 211 231	 223						
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	134 70 60 101 176 196 201 245 180 190 228	167 99 88 128 188 208 216 257 192	200 127 117 199 219 231	233 156 145 211 231	 223					****	
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	70 60 101 176 196 201 245 180 190 228	99 88 128 188 208 216 257 192	127 117 199 219 231	156 145 211 231	 223						
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	60 101 176 196 201 245 180 190 228	88 128 188 208 216 257 192	117 199 219 231	145 211 231	223						
Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-300MW 2 Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	101 176 196 201 245 180 190 228	128 188 208 216 257 192	199 219 231	211	223						
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	176 196 201 245 180 190 228	188 208 216 257 192	199 219 231	211 231	223						
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	196 201 245 180 190 228	208 216 257 192	219 231	231	+			 			
Pulverized Coal (LSFO)-400MW Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	196 201 245 180 190 228	208 216 257 192	219 231	231	+						
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	196 201 245 180 190 228	208 216 257 192	219 231	231	+	235	247	259	270	282	294
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	201 245 180 190 228	216 257 192	231		243	254	266	278	289	301	
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	245 180 190 228	257 192		246	261	276	291	306	321	335	313
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW Pulverized Coal Supercritical (LSD)-300MW	180 190 228	192		281	293	306	318	330	342		350
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW	190 228		204	215	227	239	251	263	275	354	366
Pulverized Coal Supercritical (LSD)- 300MW	228		221	236	251	266	281			287	298
		244	260	276	292			297	312	327	342
I dirented ood (naraned Edi O): 400MM		215				307	323	339	355	371	387
Atmosph Fluidized Bed (Circulating)-200MW	251		226	237	248	259	271	282	293	304	316
		268	286	303	320	337	354	372	389	406	423
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW	276	289	302	316	329	342	355	368	382	395	408
	192	204	217	229	241	253	265	277	289	302	314
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	202	214	226	238	250	262	274	286	298	310
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	247	260	272	285	297	309	322	334	347	359
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	189	202	214	227	239	252	264	277	289	302
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	187	199	211	223	235	248	260	272	284	296
Foster Wheeler Advanced PFB (Circulating)-688MW	163	177	191	205	220	234	248	263	277	291	306
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	256	266	277	287	298	308	319	329	339	350
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	236	247	258	269	280	291	303	314	325	336
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	264	276	288	301	313	325	338	350	362	375
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	352	366	380	394	408	423	437	451	465	479
Advanced int. Coal Gas-460MW	177	190	202	215	228	240	253	266	278	291	303
Combustion Turbine Heavy Duty-80MW	70	109	148	187	226	265	304	343	382	421	460
Combustion Turbine Heavy Duty-110MW	61	102	143	184	225	266	307	348	389	430	471
Combustion Turbine Heavy Duty-160MW	56	91	126	161	196	231	266	301	336	371	406
Combustion Turbine Aero- 45MW	114	146	178	210	242	274	306	338	370	402	434
CT Combined Cycle 2on1 - 330MW	87	110	133	157	180	204	227	250	274	297	321
CT Combined Cycle 2on1 - 470MW	76	97	119	140	162	183	205	226	248	269	
CT Combined Cycle - 345MW	79	101	122	143	164	186	207	228	249		291
CT with Cascaded Humidified Advanced Turbine-300MW	72	96	120	144	167	191	215	239		270	292
Phosphoric Acid Fuel Cell-2.5MW	1203	1234	1264	1295	1326	1356			263	287	311
Molton Companie Fuel Call 400484	373	392	411	430			1387	1418	1448	1479	1510
Solid Oxide Fuel Cell-100MW	187	205			449	468	487	506	525	544	563
Geothermal: Dual Flash Brine, Air Cooled-24MW	220		223	241	259	277	295	313	331	349	367
Solar Photovoltaic:Flat Plate-10x5MW		305	390	475	560	646	731	816	901	986	1071
	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398								
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145				-			****
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	403	447	491	535	579	623	666	710	754	798
Bio Mass: Whole Tree-100MW	276	301	326	351	376	401	426	450	475	500	525
Cane Run 3 Rehab w/ AFBC	170	182	195	208	220	233	245	258	271	283	296
Cane Run 3 Rehab w/ Natural Gas	127	159	192	224	257	289	321	354	386	419	451
Brown 5 CT 110MW	54	91	128	165	202	239	276	313	350	387	424
Brown 5 CT 164MW	55	87	119	151	183	215	247	279	311	343	
Brown 5 CT 102MW	57	94	131	168	205	242	279				375
Brown 5 CT 159MW	51	84	117					316	353	390	427
Brown 5 CT 149MW	52			150	183	216	249	282	315	348	381
IPP Hydro		86	120	154	188	222	256	290	324	358	392
	134	134	134	134	134	194	134				****
Aeroderivative CT	52	87	122	157	192	227	262	297	332	367	402
Ohio Falls 9&10	149	149	149	149							
Trimble County 2	153	165	176	187	198	209	221	232	249	254	266
IAC at Brown 8-11	21	65]			
Minimum Levelized \$/kW	21	65	117	134	134	134	134	226	243	254	266

Capital Cost- Base Heat Rate- High

Heat Rate- High											
Fuel Forecast-Low						ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	104	141									
Advanced Battery (3 hr)-20MW	75	107									L
Advanced Battery (5 hr)-20MW	104	133									
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233			****				
Compressed Air Energy (Salt Cavern) -350MW	70	97	124	151							
Compressed Air Energy w/ Humid Air Turbine-350MW	60	86	112	137				****			
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128									
Dubusined Coal (I CEO) FOOLING	176	186	196	207				2.12			 -
Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW	196	206	217	207	217	227 247	238	248	258	268	279
Pulverized Coal (LSFO)-400MW	201	214	227		237		258	268	278	289	299
Pulverized Coal (LSFO)-300MW Pulverized Coal (LSFO)-200MW		255		240	253	266	279	292	305	317	330
Pulverized Coal (LSFO)-300MW X 2	245 180	190	266 201	277 211	287 221	298	308	319	330	340	351
Pulverized Coal Compliance (LSD)- 300MW	190	203	216	229	242	231 255	242	252	262	273	283
Pulverized Coal Supercritical (LSD)- 300MW	228	242	256	269	283	297	268	281	293	306	319
Pulverized Coal (Advanced LSFO)- 400MW	203	213	223	233	243	253	310 262	324	338	351	365
Atmosph Fluidized Bed (Circulating)-200MW	251	266	281	296	311			272	282	292	302
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	288	300	311	323	326	342	357	372	387	402
Press Fluidized Bed (Bubbling)-350MW	192	203	213	224	235	335 245	347	359	371	382	394
Press Fluidized Bed (Bubbling)-350MW Press Fluidized Bed (Bubbling, Supercritic)-340MW	192	203	213	222			256	267	277	288	298
Press Fluidized Bed (Bubbling, Superchitc)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW	235	246	257	268	232 279	243	253	264	275	285	296
Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW	177	188	199	210	279	290 232	301	312	323	334	345
Press Fluidized Bed (Circulating, With Reneat)-360MW Press Fluidized Bed (Circulating, Supercritical)-360MW	177	185	199	210	218	232	242	253	264	275	286
Foster Wheeler Advanced PFB (Circulating)-688MW	163	176	189	207			239	250	261	272	282
					215	228	241	254	267	280	293
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	255	264	273	282	291	301	310	319	328	338
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	225 251	235 262	244 273	254 283	264	273	283	293	303	312	322
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	351	364		294 390	305	315	326	337	347	358
Advanced Int. Coal Gas-460MW	177	189	200	377 212	223	403 235	416 246	429	442	455	468
Combustion Turbine Heavy Duty-80MW	70	103	136	169	202	235	268	258 301	269 334	281	292
Combustion Turbine Heavy Duty-110MW	61	96	131	166	202	236	271	306		367	400
Combustion Turbine Heavy Duty-110MW	56	85	114	143	172	201	230	259	341	376	411
Combustion Turbine Aero- 45MW	114	141	168	195	222	249	276	303	288 330	317 357	346
CT Combined Cycle 2on1 - 330MW	87	107	126	146	166	186	206	226	245	265	384 285
CT Combined Cycle 2on1 - 470MW	76	94	112	191	149	167	185	204	222	240	259
CT Combined Cycle - 345MW	79	98	116	134	152	170	188	206	225	243	261
CT with Cascaded Humidified Advanced Turbine-300MW	72	93	113	134	155	175	196	216	237	258	278
Phosphoric Acid Fuel Cell-2.5MW	1203	1229	1256	1282	1308	1335	1361	1387	1414	1440	1466
Molten Carbonate Fuel Cell-100MW	373	390	406	423	440	456	473	490	506	523	540
Solid Oxide Fuel Cell-100MW	187	203	218	233	249	264	279	295	310	325	341
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	292	364	436	508	580	652	724	796	868	940
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578		****						
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398		****		****				
Wind Turbines-Variable Speed-50x750kw	171	171	171	171							
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186							
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145							
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543	589	635	680	726	772	818
Bio Mass: Whole Tree-100MW	276	302	328	354	380	406	432	458	484	510	536
Cane Run 3 Rehab w/ AFBC	170	181	192	203	214	225	236	247	258	269	280
Cane Run 3 Rehab w/ Natural Gas	127	154	182	209	237	264	292	319	347	375	402
Brown 5 CT 110MW	54	85	116	147	178	209	240	271	302	333	364
Brown 5 CT 164MW	- 55	82	109	136	163	190	217	244	271	298	325
Brown 5 CT 102MW	57	89	121	153	185	217	249	281	313	345	377
Brown 5 CT 159MW	51	79	107	135	163	191	219	247	275	303	331
Brown 5 CT 149MW	52	80	108	136	164	192	220	248	276	304	332
IPP Hydro	134	134	134	134	134	194					
Aeroderivative CT	52	83	114	145	176	207	238	269	300	331	362
Ohio Falls 9&10	149	149	149	149							
Trimble County 2	153	163	173	182	192	202	211	221	231	241	250
IAC at Brown 8-11	21	60									
Minimum Levelized \$/kW	21	60	107	131	134	134	134	204	222	240	250

Capital Cost- Base Heat Rate- High

Heat Rate- High												
Fuel Forecast- Base	ļ.,					ity Facto		<u> </u>				
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
Lead Acid Battery Storage(1 hr)-20MW	104	141							*****			
Advanced Battery (3 hr)-20MW	75	107	****			1		-				
Advanced Battery (5 hr)-20MW	104	133										
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233						-		
Compressed Air Energy (Salt Cavern) -350MW	70	98	126	154								
Compressed Air Energy w/ Humid Air Turbine-350MW	60	88	116	143					****			
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128				***						
Copper Conditioning Integration Energy Country Committee	1											
Pulverized Coal (LSFO)-500MW	176	187	198	209	220	231	242	253	264	275	286	
Pulverized Coal (LSFO)-400MW	196	207	218	229	240	251	262	273	285			
	-			243		i				296	307	
Pulverized Coal (LSFO)-300MW	201	215	229		257	271	285	299	313	327	341	
Pulverized Coal (LSFO)-200MW	245	256	268	279	291	302	314	326	337	349	360	
Pulverized Coal (LSFO)-300MW X 2	180	191	202	213	224	235	246	257	269	280	291	
Pulverized Coal Compliance (LSD)- 300MW	190	204	218	233	247	261	275	289	303	317	332	
Pulverized Coal Supercritical (LSD)- 300MW	228	243	258	272	287	302	317	332	346	361	376	
Pulverized Coal (Advanced LSFO)- 400MW	203	214	225	235	246	256	267	278	288	299	309	
Atmosph Fluidized Bed (Circulating)-200MW	251	267	284	300	316	333	349	365	382	398	414	
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	276	288	301	314	326	339	352	364	377	389	402	
Press Fluidized Bed (Bubbling)-350MW	192	204	215	227	238	250	261	273	285	296	308	
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	201	213	224	235	247	258	269	281	292	304	
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	247	258	270	282	294	306	318	329	341	353	
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	189	201	212	224	236	248	260	272	284	295	
	175	186	198		221	232	244					
Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW	+			209				255	267	278	290	
	163	176	190	204	218	232	246	259	273	287	301	
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	255	265	275	285	295	304	314	324	334	344	
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	235	246	256	267	· 277	288	298	309	319	330	
Int Coal Gas / CAES with Humid Air Turbine-410MW	251	263	275	286	298	310	321	333	345	356	368	
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	351	365	378	392	405	419	432	446	460	473	
Advanced Int. Coal Gas-460MW	177	189	201	214	226	238	250	262	274	286	298	
Combustion Turbine Heavy Duty-80MW	70	107	144	181	218	255	292	329	366	403	440	
Combustion Turbine Heavy Duty-110MW	61	100	139	178	217	256	295	334	373	412	451	
Combustion Turbine Heavy Duty-160MW	56	89	122	155	188	221	254	287	320	353	386	
Combustion Turbine Aero- 45MW	114	144	174	204	234	264	294	324	354	384	414	
CT Combined Cycle 2on1 - 330MW	87	109	131	154	176	198	221	243	265	287	310	
CT Combined Cycle 2011 - 330/11V	76	96	117	137	158	179	199	220	241	261	282	
	79	100	120	140	161	181	201	222	242			
CT Combined Cycle - 345MW										262	282	
CT with Cascaded Humidified Advanced Turbine-300MW	72	95	118	140	163	186	209	231	254	277	300	
Phosphoric Acid Fuel Cell-2.5MW	1203	1232	1262	1291	1320	1350	1379	1408	1438	1467	1496	
Molten Carbonate Fuel Cell-100MW	373	391	410	428	446	465	483	501	520	538	556	
Solid Oxide Fuel Cell-100MW	187	205	222	239	257	274	291	309	326	343	361	
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	301	382	463	544	625	706	787	868	949	1030	
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563	-			-					
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623									
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	578	578	578	****								
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398									
Wind Turbines-Variable Speed-50x750kw	171	171	171	171								
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186								
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145								
	945	980	1015	1049	1084	1119	1153	1400	1000			
Municipal Solid Waste: Mass Burn-40MW								1188	1222	1257	1292	
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385	
Municipal Solid Waste: Tire-30MW	595	600	605	610	614	619	624	629	633	638	643	
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543	589	635	680	726	772	818	
Bio Mass: Whole Tree-100MW	276	302	328	354	380	406	432	458	484	510	536	
Cane Run 3 Rehab w/ AFBC	170	182	194	206	218	230	242	254	266	278	290	
Cane Run 3 Rehab w/ Natural Gas	127	158	189	219	250	281	312	343	374	405	436	
Brown 5 CT 110MW	54	89	124	159	194	229	264	299	334	369	404	
Brown 5 CT 164MW	55	85	115	145	175	205	235	265	295	325	355	
Brown 5 CT 102MW	57	92	127	162	197	232	267	302	337	372	407	
Brown 5 CT 159MW	51	82	113	144	175	206	237	268	299	330	361	
Brown 5 CT 149MW	52	84	116	148	180	212	244	276	308	340	372	
IPP Hydro	134	134	134	194	134	134	134					
Aeroderivative CT	52	86	120	154	188	222	256	290	324	358	392	
Ohio Falls 9&10	149	149	149	149			2.00	_ 230	_ 324	330	392	
					100	2000			Ann			
Trimble County 2	153	164	175	185	196	206	217	228	238	249	259	
IAC at Brown 8-11	21	63			L <u></u>						L	
Minimum Levelized \$/kW	21	63	113	134	134	134	134	220	238	249	259	

Capital Cost- Base 1999 Dollars (\$/kW yr)

Capital Cost- base	1333 Dulla's (#K# 91)												
Heat Rate- High	Capacity Factors												
Fuel Forecast- High	-	400/	000/	000/				700()	9004	000/1	4000/		
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%		
Lead Acid Battery Storage(1 hr)-20MW	104	141											
Advanced Battery (3 hr)-20MW	75	107											
Advanced Battery (5 hr)-20MW	104	133											
Pumped Hydro Energy Storage-350MW X 3	134	167	200	233									
Compressed Air Energy (Salt Cavern) -350MW	70	99	129	158			_				••••		
Compressed Air Energy w/ Humid Air Turbine-350MW	60	89	119	148									
Super Conducting Magnetic Energy Storage (2 hr)-500MW	101	128											
Super conducting magnetic therey clotage (2 m) cooms				-									
Dubinstand Coal (LCEO) FOOMW	176	188	200	213	225	237	250	262	274	286	299		
Pulverized Coal (LSFO)-500MW	\rightarrow				-								
Pulverized Coal (LSFO)-400MW	196	208	221	233	245	257	270	282	294	307	319		
Pulverized Coal (LSFO)-300MW	201	217	233	248	264	280	295	311	327	342	358		
Pulverized Coal (LSFO)-200MW	245	257	270	283	295	308	320	333	346	358	371		
Pulverized Coal (LSFO)-300MW X 2	180	192	205	217	229	241	254	266	278	291	303		
Pulverized Coal Compliance (LSD)- 300MW	190	206	222	238	253	269	285	301	317	333	349		
Pulverized Coal Supercritical (LSD)- 300MW	228	245	261	278	295	311	328	344	361	378	394		
Pulverized Coal (Advanced LSFO)- 400MW	203	215	227	238	250	262	273	285	297	309	320		
Atmosph Fluidized Bed (Circulating)-200MW	251	269	287	305	323	341	359	377	395	413	431		
	276	290	304	317	331	345	359	373	387	400	414		
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2													
Press Fluidized Bed (Bubbling)-350MW	192	205	217	230	243	255	268	281	293	306	318		
Press Fluidized Bed (Bubbling, Supercritic)-340MW	190	202	215	227	240	252	265	277	289	302	314		
Press Fluidized Bed (Circulating, with Reheat)-160MW	235	248	261	273	286	299	312	325	338	351	364		
Press Fluidized Bed (Circulating, with Reheat)-360MW	177	190	203	216	229	242	254	267	280	293	306		
Press Fluidized Bed (Circulating, Supercritical)-360MW	175	187	200	212	225	238	250	263	276	288	301		
Foster Wheeler Advanced PFB (Circulating)-688MW	163	177	192	207	222	236	251	266	281	295	310		
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	245	256	267	278	289	300	311	322	333	344	355		
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	225	237	248	260	271	283	294	306	317	329	340		
		264	277	289	302	315	327						
Int Coal Gas / CAES with Humid Air Turbine-410MW	251							340	353	365	378		
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	338	352	367	381	396	410	424	439	453	468	482		
Advanced Int. Coal Gas-460MW	177	190	203	217	230	243	256	269	282	295	308		
Combustion Turbine Heavy Duty-80MW	70	111	152	193	234	275	316	357	398	439	480		
Combustion Turbine Heavy Duty-110MW	61	104	147	190	233	276	319	362	405	448	491		
Combustion Turbine Heavy Duty-160MW	56	92	128	164	200	236	272	308	344	380	416		
Combustion Turbine Aero- 45MW	114	147	180	213	246	279	312	345	378	411	444		
CT Combined Cycle 2on1 - 330MW	87	111	136	160	185	209	233	258	282	307	331		
	76	98	121	143	166	189	211	234	257	279	302		
CT Combined Cycle 2on1 - 470MW													
CT Combined Cycle - 345MW	79	102	124	146	169	191	213	236	258	280	302		
CT with Cascaded Humidified Advanced Turbine-300MW	72	97	122	147	172	197	222	247	271	296	321		
Phosphoric Acid Fuel Cell-2.5MW	1203	1235	1267	1299	1331	1363	1395	1427	1459	1491	1523		
Molten Carbonate Fuel Cell-100MW	373	393	413	433	453	473	493	513	533	553	573		
Solid Oxide Fuel Cell-100MW	187	206	225	244	263	282	301	320	339	358	377		
Geothermal: Dual Flash Brine, Air Cooled-24MW	220	309	398	488	577	667	756	845	935	1024	1113		
Solar Photovoltaic:Flat Plate-10x5MW	563	563	563										
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	623	623	623										
	578	578	578										
Solar Photovoltaic:Fresnel Lens High Concen10x5MW										_			
Solar Thermal Trough/Gas Hybrid-200MW	390	394	398										
Wind Turbines-Variable Speed-50x750kw	171	171	171	171									
Wind Turbines-High Prod Volume-143x350kw	186	186	186	186					****				
Wind Turbines-Class 4 Speed-50x750kw	145	145	145	145					****	****			
Municipal Solid Waste: Mass Burn-40MW	945	980	1015	1049	1084	1119	1153	1188	1222	1257	1292		
Municipal Solid Waste: Refuse Der40MW	1040	1075	1109	1144	1178	1213	1247	1282	1316	1351	1385		
Municipal Solid Waste: Tire-30MW	595	600	605	610		619	624			638	643		
Bio Mass: Wood-Fired Stoker Boiler-50MW	359	405	451	497	543	589	635			772	818		
	276	302	328	354	380	406	432	458	484	510			
Bio Mass: Whole Tree-100MW											536		
Cane Run 3 Rehab w/ AFBC	170	183	196	209	223	236	249	262	276	289	302		
Cane Run 3 Rehab w/ Natural Gas	127	161	195	229	263	297	332	366	400	434	468		
Brown 5 CT 110MW	54	93	132	171	210	249	288	327	366	405	444		
Brown 5 CT 164MW	55	88	121	154	187	220	253	286	319	352	385		
Brown 5 CT 102MW	57	96	135	174	213	252	291	330	369	408	447		
Brown 5 CT 159MW	51	85	119	153	187	221	255	289		357	391		
Brown 5 CT 149MW	52	87	122	157	192	227	262	297	332	367	402		
IPP Hydro	134	134	134	134						 			
				***************************************		***************************************							
Aeroderivative CT	52	89	126	163		237	274	311	348	385	422		
		140	149	149					l	I '			
Ohio Falls 9&10	149	149							200000000000000000000000000000000000000		000000000000000000000000000000000000000		
Ohio Falls 9&10 Trimble County 2	153	165	177	189	201	213		236	248	260	272		
			177					236	248	260	272		

Capital Cost- High Heat Rate-Low

Land And Battery Storage (I http://DAIW 114	Heat Rate-Low											
Land Acta Battery Stronge If Int /20NW	Fuel Forecast-Low					Capac	ity Facto	rs				
Laad Acta Battery (Storage)(In Pro20NM	Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Abeninced Battery (6 Ihr) 20MW	Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (S In y-20MW) Perpand Hybric Renty (Stange-SSOMW X 3 140 172 260 173 260 174 275 281 174 175 260 176 177 276 177 276 178 178 178 178 178 178 178 1										-		
Pumped Hydro Energy (Sat Current) SSOMM												_
Compressed AF Energy (Hamid AF Lowern) - 350MW							_		_			
Compressed AV Energy Withmid AV Turbine-SOMW 72 96 120 144		_										
Super Conducting Magnetics Energy Storage (2 Inf-SOMW				-								
Pulverized Coal (LSFO)-500MW		72	96	120	144							
Pulverized Coal (LSFO)-JOMMY	Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									-
Pulverized Coal (LSFO)-JOMMY												
Pulverized Coal (LSFO)-JOMMY	Pulverized Coal (LSFO)-500MW	187	196	206	215	225	234	244	253	263	273	282
Pulvertact Orall (LSFO)-200MW												
Pulverland Coal (LSFO)-200MW 2 99 279 289 289 398 318 328 337 347								•				301
Pubmetad Coal (LSFC)-SOMW X 2												333
Pulverlated Coal Compliance (LSD)- 300MW												357
Pulventade Coal Superroritical (LSD)-300MW			200	210	219	228	238	247	257	266	275	285
Pulverlated Coal Supercritical (LSD)- 300MW	Pulverized Coal Compliance (LSD)- 300MW	202	214	226	238	249	261	273	285	297	309	321
Pubmated Coal (Anvanced LSFC)+ GOUNY 215 224 233 243 252 261 270 279 288 297	Pulverized Coal Supercritical (LSD)- 300MW	242	255	267	280	292	304	317	329	342	354	367
Amosph Fluidzed Bed (Circulating)-200MW 275 289 303 317 330 344 388 372 388 409 Press Fluidzed Bed (Bubbling)-Anno-Reneal-PloMW 2 27 237 247 257 267 276 286 296 300 316 Press Fluidzed Bed (Bubbling)-S05MW 227 237 247 257 267 276 288 299 300 316 Press Fluidzed Bed (Bubbling)-S05MW 224 243 243 253 263 273 283 293 303 312 Press Fluidzed Bed (Circulating, with Reheat)-G00MW 261 271 281 282 302 312 332 333 343 353 343 353 247 287 287 288 299 300 316 Press Fluidzed Bed (Circulating, With Reheat)-G00MW 261 271 227 227 248 283 283 333 343 353 289 289 289 289 289 289 289 289 289 289												306
Frees Fluidized Bed (Bubbling), Non-Rehearly-BOWN X 2				-								
Press Fulidzed Bed (Bubbling). SIGNW Press Fulidzed Bed (Bubbling). SIGNW 224 237 247 257 267 276 286 296 306 316 Press Fulidzed Bed (Circulating, with Reheat)-GOMW 261 271 281 292 302 312 333 333 331 342 Press Fulidzed Bed (Circulating, with Reheat)-GOMW 261 271 227 227 248 258 288 276 288 298 Press Fulidzed Bed (Circulating, Supercritical)-SIGNW 262 219 225 235 245 255 265 275 285 298 Press Fulidzed Bed (Circulating, Supercritical)-SIGNW 263 219 225 235 245 255 267 286 299 Press Fulidzed Bed (Circulating, Supercritical)-SIGNW 263 217 227 229 242 255 267 286 299 Press Fulidzed Bed (Circulating)-SIGNW 264 229 291 290 308 316 335 333 342 350 359 Highly Integrated Coal Gas-Comb Cyc, (Entrained-Flow)-Molth W 282 291 290 308 316 335 333 342 350 359 Int Coal Gas Vintural Air Turbine-410MW 263 227 269 302 311 331 391 390 350 360 369 Int Coal Gas Air Molter Carbonate Pulse (Circulating)-SIGNW 268 219 220 241 252 283 273 284 295 500 Advanced Int. Coal Gas-460MW 268 219 220 241 252 283 273 284 295 500 Advanced Int. Coal Gas-460MW 268 219 220 241 252 283 273 284 295 306 Combustion Turbine Heavy Duty-110MW 269 279 130 135 165 195 225 255 285 315 345 Combustion Turbine Heavy Duty-110MW 269 271 141 111 188 195 222 297 322 347 Combustion Turbine Heavy Duty-190MW 275 101 120 141 141 188 195 222 297 372 297 322 347 Combustion Turbine Heavy Duty-190MW 276 101 120 141 141 188 195 222 247 277 297 322 347 Combustion Turbine Heavy Duty-190MW 277 101 120 141 141 188 195 222 247 277 297 322 347 Combustion Turbine Heavy Duty-190MW 278 101 120 141 141 188 195 222 247 277 297 322 347 Combustion Turbine Heavy Duty-190MW 279 101 120 141 141 148 195 252 258 298 290 322 354 Combustion Turbine Heavy Duty-190MW 280 101 120 141 141 148 195 195 222 247 277 297 322 347 Combustion Turbine Heavy Duty-190MW 280 101 120 141 141 148 195 195 222 247 277 297 322 347 Combustion Turbine Heavy Duty-190MW 280 101 120 141 141 141 141 141 141 141 141 141 14												414
Frees Fluidized Bed (Enublishing, Superartile)-9450MW 261 271 261 292 302 125 325 323 333 343 555 Frees Fluidized Bed (Circulating, with Reheat)-160MW 261 277 261 292 302 123 323 333 343 555 Frees Fluidized Bed (Circulating, with Reheat)-360MW 267 217 227 237 248 259 268 276 288 299 Frees Fluidized Bed (Circulating, with Reheat)-360MW 269 218 225 235 245 255 265 275 285 299 Foster Wheeler Advanced PFB (Circulating)-660MW 193 200 217 230 242 255 267 280 292 300 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 262 291 299 308 316 235 333 342 350 358 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 262 291 299 308 316 235 333 342 350 358 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 263 292 302 311 321 333 340 350 360 369 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 264 292 302 311 321 333 340 350 360 369 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 265 292 302 311 321 333 340 350 360 369 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 268 292 302 311 321 340 380 360 369 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 268 292 302 311 321 340 380 360 369 Int Coal Gas V-CaS with Humid Alf Turbine-010MW 270 270 271 271 271 272 272												419
Press Fluidized Bed (Circulating, with Reheat)-160MW 261 271 281 282 302 312 323 333 343 533 Press Fluidized Bed (Circulating, Supercritical)-360MW 207 217 227 237 248 256 268 278 289 299 Press Fluidized Bed (Circulating, Supercritical)-360MW 205 215 225 235 245 259 266 275 285 299 309 Press Fluidized Bed (Circulating)-680MW 193 205 217 220 242 255 267 276 289 299 309 Highly Infograted Chall Gas/Comb Cyc. (Entrained)-601MW 282 291 289 308 316 325 333 342 350 399 359 Inf Coal Gas / Humid Alf Turbine 400MW 285 267 276 285 297 303 312 330 399 399 399 Inf Coal Gas / Humid Alf Turbine 400MW 282 292 302 311 321 331 340 350 390 399 399 Inf Coal Gas / Humid Carbonate Humid Alf Turbine (Entrained)-601MW 282 292 302 311 321 331 340 350 390 399 399 Inf Coal Gas / Humid Carbonate Humid Alf Turbine Humid Alf Turbine 400MW 288 480 413 425 430 412 475 487 560 Advanced Inf. Coal Gas - 465MW 208 219 230 241 252 263 273 284 295 309 Advanced Inf. Coal Gas - 465MW 208 219 230 241 252 263 273 284 295 309 Combustion Turbine Heavy Duty-110MW 66 39 130 162 194 226 258 295 351 345 340 340 340 340 340 340 340 340 340 340								286		306	316	326
Press Fluidzod Bed (Circulating, with Rehealt-)-360MW 207 217 227 237 248 259 268 276 285 299 1979 1979 1979 1979 1979 1979 1979				243	253		273	283	293	303	312	322
Press Fluidzed Bed (Circulating, with Rehealt)-SBOMW 207 217 227 237 248 259 268 276 288 299 Presse Fluidzed Bed (Circulating)-SBOMW 105 215 225 235 245 259 265 265 275 285 299 Foster Wheeler Advanced PFB (Circulating)-SBOMW 193 205 217 230 242 255 267 280 282 305 Inf Coal Gas Corbot Coal Gas Coal Gas Corbot Coal Gas Coal Gas Corbot Coal Gas Coal	Press Fluidized Bed (Circulating, with Reheat)-160MW	261	271	281	292	302	312	323	333	343	353	364
Press Fuldized Bod (Circulating, Supercritical)-950MW 193 205 215 225 235 245 255 265 275 285 295 Foster Wheeler Advanced PTE (Circulating)-868MW 193 206 217 230 242 255 267 280 292 305 14 154 11 14 14 14 16 14 154 154 154 154 154 154 154 154 154	Press Fluidized Bed (Circulating, with Reheat)-360MW	207	217	227	237	248	258	268	278	288	298	308
Foster Wheeler Advanced PFB (Circulating)-689MW												305
Highly Integrated Coal Gas/Comb Cvc (Entrained)-601MW 282 291 299 306 316 325 333 342 350 359 110 Coal Gas W. Humid Air Turbine-410MW 282 292 392 392 311 321 331 340 350 360 360 360 360 360 360 360 360 360 36												317
Int Coal Gas v. Humid Air Turbine (Entrained Flow)-600MW 258 267 276 285 294 303 312 320 329 339 339 Int Coal Gas V-CASE with Humid Air Turbine-410MW 262 292 292 302 311 331 340 350 369 396 396 Int Coal Gas V-CASE with Humid Air Turbine-410MW 388 400 413 425 438 450 452 475 487 500 Advanced Int. Coal Gas 450MW 775 105 135 165 185 225 255 285 315 345 260 200 200 200 200 200 200 200 200 200		_									_	
Int Coal Gas / CAES with Humid Air Turbine-410MW												367
In Coal Gast Mother Carbonate Fuel Cell 400MW 388 400 413 425 438 450 462 475 487 500 447 467 500 447 467 500 447 467 500 447 447 500 547												347
Advanced Int. Coal Gas-460MW											369	379
Combustion Turbine Heavy Duty-10MW		388	400	413	425	438	450	462	475	487	500	512
Combustion Turbine Heavy Duty-110MW	Advanced Int. Coal Gas-460MW	208	219	230	241	252	263	273	284	295	306	317
Combustion Turbine Heavy Duty-110MW	Combustion Turbine Heavy Duty-80MW	75	105	135	165	195	225	255	285	315	345	375
Combustion Turbine Heavy Duty-160MW			98									386
Combined Cycle 2cn1 - 330MW												330
CT Combined Cycle 20n1 - 330MW												
CT Combined Cycle - 345MW												372
CT Combined Cycle - 345MW												272
CT with Cascaded Humidified Advanced Turbine-300MW				_			164	181	198	215	232	248
Phosphoric Acid Fuel Cell-2.5MW 1291 1315 1340 1384 1388 1413 1437 1461 1486 1510 1	CT Combined Cycle - 345MW	89	106	122	139	155	172	188	205	221	238	254
Phosphoric Acid Fuel Cell-2.5MW 1291 1315 1340 1384 1388 1413 1437 1461 1486 1510 1	CT with Cascaded Humidified Advanced Turbine-300MW	80	99	118	137	156	175	194	213	231	250	269
Moiten Carbonate Fuel Cell-100MW		1291	1315	1340	1364	1388	1413	1437	1461			1534
Solid Oxide Fuel Cell-100MW												568
Geothermal: Dual Flash Brine, Air Cooled-24MW 249 314 379 444 509 574 639 704 769 834												
Solar Photovoltaic:Fiat Plate-10x5MW												343
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW							574	639	704	769	834	899
Solar Photovoltaic;Fresnel Lens High Concen10x5MW	Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052		****						
Solar Thermal Trough/Gas Hybrid-200MW	Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Thermal Trough/Gas Hybrid-200MW	Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Wind Turbines-Variable Speed-50x750kw 204 204 204 204 — </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Wind Turbines-High Prod Volume-143x350kw 217 217 217 217 —								-				
Wind Turbines-Class 4 Speed-50x750kw 206 206 206 206 — <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>										_		
Municipal Solid Waste: Mass Bum-40MW 1050 1085 1120 1154 1189 1224 1258 1293 1327 1362 1 Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 Cane Run 3 Rehab w/ AFBC 181 191 201 211 221 221 242 252 262 272 Cane Run 3 Rehab w/ Natural Gas 133 158 183 207 232 257 282 307 332 357 Brown 5 CT 110MW 56 85 114 143 172 201 230												
Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 Cane Run 3 Rehab w/ AFBC 181 191 201 211 221 231 242 252 262 272 Brown 5 CT 110MW 56 85 114 143 172 201 230 259 288 317 Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 164MW 59 88 117 146 175 204 233 262 291 320 <												
Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 Cane Run 3 Rehab w/ AFBC 181 191 201 221 221 221 242 252 262 272 Cane Run 3 Rehab w/ Natural Gas 133 158 183 207 232 257 282 307 332 357 Brown 5 CT 110MW 56 85 114 143 172 201 230 259 288 317 Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 149MW												1397
Bio Mass: Wood-Fired Stoker Boiler-50MW	Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Bio Mass: Wood-Fired Stoker Boiler-50MW	Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Whole Tree-100MW												818
Cane Run 3 Rehab w/ AFBC 181 191 201 211 221 221 242 252 262 272 Cane Run 3 Rehab w/ Natural Gas 133 158 183 207 232 257 282 307 332 357 Brown 5 CT 110MW 56 85 114 143 172 201 230 259 288 317 Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 134 134 134 134 134 134 134 334 134												678
Cane Run 3 Rehab w/ Natural Gas 133 158 183 207 232 257 282 307 332 357 Brown 5 CT 110MW 56 85 114 143 172 201 230 259 288 317 Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Brown 5 CT 110MW 56 85 114 143 172 201 230 259 288 317 Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>282</td></t<>												282
Brown 5 CT 164MW 57 82 107 132 157 182 207 232 257 282 Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 134 134 134 134 134 134 134 134 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>382</td>												382
Brown 5 CT 102MW 59 88 117 146 175 204 233 262 291 320 Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 134 134 134 134 134 34												346
Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278							182	207	232	257	282	307
Brown 5 CT 159MW 53 78 103 128 153 178 203 228 253 278 Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134 <td< td=""><td>Brown 5 CT 102MW</td><td>59</td><td>88</td><td>117</td><td>146</td><td>175</td><td>204</td><td>233</td><td>262</td><td>291</td><td>320</td><td>349</td></td<>	Brown 5 CT 102MW	59	88	117	146	175	204	233	262	291	320	349
Brown 5 CT 149MW 54 80 106 132 158 184 210 236 262 288 IPP Hydro 134	Brown 5 CT 159MW	53	78	103	128	153	178	203	228			303
IPP Hydro 134												314
Aeroderivative CT 55 83 111 139 167 195 223 251 279 307 Chio Falls 9&10 156 156 156 156 Trimble County 2 159 168 177 186 194 203 212 221 229 238 IAC at Brown 8-11 22 58											_	
Ohio Falls 9&10 156 156 156 156										270		225
Trimble County 2 159 168 177 186 194 203 212 221 229 238 IAC at Brown 8-11 22 58 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>223</td> <td></td> <td>279</td> <td></td> <td>335</td>								223		279		335
IAC at Brown 8-11 22 58		$\overline{}$										
				177	186	194	203	212	221	229	238	247
Minimum Levelized \$/kW 22 58 103 128 134 134 134 198 215 232	IAC at Brown 8-11	222	58							L		
	Minimum Levelized \$/kW	22	58	103	128	134	134	134	198	215	232	247

Capital Cost- High

Heat Rate-Low											
Fuel Forecast- Base						ity Factor					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	175									
Advanced Battery (5 hr)-20MW	198	227									****
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	99	126	153							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	98	124	150							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Pulverized Coal (LSFO)-500MW	187	197	207	218	228	238	249	259	269	279	290
Pulverized Coal (LSFO)-400MW	207	217	227	237	248	258	268	278	288	298	308
Pulverized Coal (LSFO)-300MW	214	227	240	252	265	278	291	304	316	329	342
Pulverized Coal (LSFO)-200MW	260	270	281	291	302	312	323	333	343	354	364
Pulverized Coal (LSFO)-300MW X 2	191	201	211	221	232	242	252	262	272	282	292
Pulverized Coal Compliance (LSD)- 300MW	202	215 256	228 270	241 283	254 297	267 311	280 324	293 338	305 352	318 365	331 379
Pulverized Coal Supercritical (LSD)- 300MW	242 215	225	235	245	255	265	274	284	294	304	314
Pulverized Coal (Advanced LSFO)- 400MW	275	290	305	320	335	350	365	380	394	409	424
Atmosph Fluidized Bed (Circulating)-200MW	308	320	331	343	355	366	378	390	401	413	425
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW	227	238	248	259	270	280	291	302	312	323	333
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	234	245	255	266	276	287	297	307	318	328
Press Fluidized Bed (Bubbling, Supercraic)-340MW Press Fluidized Bed (Circulating, with Reheat)-160MW	261	272	283	293	304	315	326	337	348	359	370
Press Fluidized Bed (Circulating, with Reheat)-160MW	207	218	229	240	251	262	272	283	294	305	316
Press Fluidized Bed (Circulating, With Herieat)-360MW	205	215	226	236	247	258	268	279	290	300	311
Foster Wheeler Advanced PFB (Circulating)-688MW	193	206	219	232	245	258	271	284	297	310	323
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	291	300	310	319	328	337	346	355	364	373
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	268	277	287	297	306	316	326	336	345	355
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	293	304	314	325	336	346	357	368	378	389
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	401	414	426	439	452	465	478	491	504	517
Advanced Int. Coal Gas-460MW	208	220	231	242	254	265	276	288	299	311	322
	75	109	143	177	211	245	279	313	347	381	415
Combustion Turbine Heavy Duty-80MW	66	103	138	174	210	246	282	318	354	390	426
Combustion Turbine Heavy Duty-110MW	60	90	120	150	180	210	240	270	300	330	360
Combustion Turbine Heavy Duty-160MW	122	150	178	206	234	262	290	318	346	374	402
Combustion Turbine Aero- 45MW CT Combined Cycle 2on1 - 330MW	92	112	132	152	172	192	213	233	253	273	293
	81	99	118	137	156	174	193	212	231	250	268
CT Combined Cycle 2011 - 470MW	89	108	126	145	163	182	200	219	237	256	274
CT Combined Cycle - 345MW CT with Cascaded Humidified Advanced Turbine-300MW	80	101	122	143	164	185	206	227	247	268	289
Phosphoric Acid Fuel Cell-2.5MW	1291	1318	1345	1372	1399	1426	1453	1480	1507	1534	1561
Molten Carbonate Fuel Cell-100MW	415	432	448	465	482	498	515	532	548	565	582
Solid Oxide Fuel Cell-100MW	206	222	238	253	269	285	300	316	332	347	363
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	322	395	469	542	615	688	762	835	908	981
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic: One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690		699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	443	485	527	568	610	652	693	735	777	818
Bio Mass: Whole Tree-100MW	440	464	488	512	535	559	583	607	630	654	678
Cane Run 3 Rehab w/ AFBC	181	192	203	213	224	235	246	257	268	279	290
Cane Run 3 Rehab w/ Natural Gas	133	161	189	217	245	273	301	329	357	385	413
Brown 5 CT 110MW	56	88	120	152	184	216	248	280	312	344	37€
Brown 5 CT 164MW	57	84	111	138	165	192	219	246	273	300	327
Brown 5 CT 102MW	59	91	123	155	187	219	251	283	315	347	379
Brown 5 CT 159MW	53	81	109	137	165	193	221		277	305	333
	54	83	112	141	170	199	228	257	286	315	344
Brown 5 CT 149MW			104		134		134		T		
Brown 5 CT 149MW IPP Hydro	134	134	134	134			2000 mention 45.500				
		134 86	117	148	179	210	***************************************		303	334	365
IPP Hydro	134			***************************************	179	7	***************************************		303	334	365
IPP Hydro Aeroderivative CT	134 55	86	117	148	179	210	241	272	303 236	334 245	
IPP Hydro Aeroderivative CT Ohio Falls 9&10	134 55 156	86 156 169	117 156 178	148 156	179	210	241	272			365 255

Capital Cost- High Heat Rate-Low

Fael Forecast High T Technology	Heat Rate-Low											
Lad And Battery Storage (In tys 20NV 143 151	Fuel Forecast- High	1				Сарас	ity Facto	rs				
Anthroade Battery (5 hy-20MW) 198 227	Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Advanced Battery (6 Ph/20MM 198 227	Lead Acid Battery Storage(1 hr)-20MW	114	151									
Furnged Lytto Energy (Set Carent) 550MW	Advanced Battery (3 hr)-20MW	143	175					***				
Compressed AF Energy (Start & Charlem) - SSOMM	Advanced Battery (5 hr)-20MW	198	227		****							
Compressed AF Energy (Start & Charlem) - SSOMM	Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy with Humid Air Turkine-SOMW 72 99 127 194												
Super Conducting Magnetic Energy Stonage (ph 9:00MW 175 302												
Phyentered Coal (LSFO)-300MW												
Pubmeted Coal (LEFO)-JOONMY	Coper Conducting Magnetic Energy Clothegy (2 III) Cooling	1										
Pubmeted Coal (LEFO)-JOONMY	Published Cool (I SEO) 500MM	107	100	- 000	200	~~~	040	054				
Pubmeted Coal (LSFO)-SOONW 220 271 288 300 314 329 343 357 Pubmeted Coal (LSFO)-SOONW 280 271 281 282 283 285 307 318 330 341 335 343 355 377 Pubmeted Coal (LSFO)-SOONW 282 191 302 211 225 238 247 288 270 281 282 303 347 Pubmeted Coal (LSFO)-SOONW 282 277 278 288 203 318 334 349 344 379 334 349 344 379 334 349 344 379 348 349 344 379 348 349 344 379 348 349 344 344 34		+										
Pubmend Coal (LSFO)-200MW 290 271 283 295 307 318 330 345 335 365 377 Pubmend Coal Compliance (LSO)-300MW 202 217 221 245 260 247 289 230 318 332 347 Pubmend Coal Compliance (LSO)-300MW 202 217 221 245 260 247 289 330 318 332 347 Pubmend Coal (Advanced LSFO)-400MW 215 226 237 248 256 289 280 241 310 312 323 Pubmend Coal (Advanced LSFO)-400MW 215 226 237 248 256 289 280 241 301 312 323 Pubmend Coal (Advanced LSFO)-400MW 215 226 237 248 256 289 280 241 301 312 323 Pubmend Coal (Advanced LSFO)-400MW 215 226 237 248 256 289 280 241 301 312 323 Press Fluidced Bed (Bubbing)-350MW 227 238 238 346 359 372 348 377 379 321 332 344 Press Fluidced Bed (Bubbing)-350MW 227 238 238 237 238 338 336						_						
Pulvented Coal (LSFO)-300MW X 2												357
Pubmeted Coal Compliance (ISC): 300MW										353	365	377
Pubment Coal Supercritical (150): 0500NV				213	225	236	247	258	270	281	292	303
Fuhrenzed Coal (Advanced LSFO)- 400MW	Pulverized Coal Compliance (LSD)- 300MW	202	217	231	245	260	274	289	303	318	332	347
Epitherized Coal (Advanced LSFC)- 400MW	Pulverized Coal Supercritical (LSD)- 300MW	242	257	273	288	303	318	334	349	364	379	394
Amosph Plutidated Bed (Circulating)-BOMMY X 2 308 321 331 344 357 374 390 407 402 440	Pulvenzed Coal (Advanced LSFO)- 400MW	215	226	237	248	258	269	280	291			
Press Fluidzed Bed (Bubbling), Norn-Reheart)-90MW X 2 727 239 251 352 257 258 277 288 297 309 351 332 348 359 372 389 372 381 332 348 358 375 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389 378 389	Atmosph Fluidized Bed (Circulating)-200MW	275	292	308	324							
Press Fluidzed Bed (Bubbling)-SSGMW Press Fluidzed Bed (Bubbling)-SUPPRESS Fluidzed Bed (Bubbling)-SUPPRESS Fluidzed Bed (Circulating, with Reheal)-HOMW 224 325 247 288 270 281 293 293 395 316 395 396 381 395 396 381 395 396 381 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 395 396 391 391 392 394 396 391 391 392 394 396 391 391 391 391 391 391 391 391 391 391												
#ress Fluidzed Bed (Bubbling, Supercritic)-MOMW #ress Fluidzed Bed (Circulating, With Reheat)-MOMW #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fluidzed Bed (Circulating, With Reheat) #ress Fl												
Press Fluidzed Bod (Circulating, with Rehealy-160MW 207 219 231 242 254 265 278 290 302 311 333 345 357 359 359 351 Press Fluidzed Bod (Circulating, Supermitteal)-360MW 207 219 231 242 254 265 276 289 290 302 311 43 305 Press Fluidzed Bod (Circulating, Supermitteal)-360MW 208 228 284 240 251 263 275 286 298 310 322 255 2561 Wheeler Advanced PTB (Circulating)-850MW 193 206 220 234 248 262 276 289 303 317 331 highly integrated Coal Gas-Good Cyc (Entrained-GotTMW 282 282 302 312 332 342 343 354 354 11 Coal Gas with Humid Air Turbine -110MW 282 282 392 302 312 332 332 343 354 354 11 Coal Gas with Coal Gas-GotMW 388 401 415 439 442 456 470 484 497 511 525 Advanced Int. Coal Gas with Coal Gas-GotMW 388 401 415 439 442 456 470 484 497 511 525 Advanced Int. Coal Gas-GotMW 289 220 233 245 257 269 282 294 300 318 331 Combision Turbine Heavy Duty-110MW 566 105 144 183 22 261 300 339 377 417 456 Combustion Turbine Heavy Duty-110MW 568 105 144 183 22 261 300 339 377 417 456 Combustion Turbine Heavy Duty-110MW 569 105 144 183 222 281 300 339 377 417 456 Combustion Turbine Heavy Duty-110MW 569 105 144 186 222 252 589 291 324 327 590 Combustion Turbine Heavy Duty-110MW 569 105 144 186 222 252 589 291 324 327 590 280 280 280 280 280 280 280 280 280 28	<u> </u>											
Press Fluidzed Bed (Circulating, with Rehealt)-360MW 205 216 228 240 251 828 275 280 302 314 355 Press Fluidzed Bed (Circulating)-Userentical)-360MW 205 216 228 240 251 828 275 286 299 310 322 Foster Wheeler Advanced PFB (Circulating)-688MW 133 206 220 234 248 262 276 289 303 317 331 1447 147 147 147 147 147 147 147 147 1										•		
Press Fulldried Bed (Circulating, Supermittedal)-360MW 193 206 220 21 24 24 24 26 227 27 289 390 317 331 hg/hy integrated Coal Gas/Comb Cvc (Entrained)-601MW 282 282 302 302 312 322 332 342 382 382 382 382 382 384 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 289 279 280 300 311 332 382 343 343 484 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 317 331 1322 332 344 382 382 383 344 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 317 329 341 332 382 343 354 364 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 317 329 341 332 384 376 387 389 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 317 329 341 332 384 394 376 387 389 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 317 329 341 332 284 308 376 387 389 Inc coal Gas / CAES with Humid Air Turbine-410MW 282 284 308 311 322 280 384 376 387 389 389 389 389 389 389 389 389 389 389												
Foster Wheeler Advanced PFB (Circulating)-688MW												
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW							_					
In Coal Gas Vol Humid Air Turbine (Entrained Flow)-GOMW 259 259 279 290 300 311 322 332 343 354 364 101 Coal Gas / Coal Es with Humid Air Turbine-10MW 282 294 306 317 329 341 352 364 376 887 369 In Coal Gas / Coal Gas - Gome 200 200 200 200 200 200 200 200 200 20							-				317	331
In Coal Gas / CAES with Humid Air Turbine-410MW									352	362	372	382
In Coal Gast Mother Carbonate Fuel Cell 400MW		258	269	279	290	300	311	322	332	343	354	364
Advanced Inf. Coal Gas-460MW 209 220 233 245 257 289 282 294 306 318 331	Int Coal Gas / CAES with Humid Air Turbine-410MW	282	294	306	317	329	341	352	364	376	387	399
Advanced Inf. Coal Gas-460MW 75 112 149 186 223 280 282 294 306 318 331	Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	401	415	429	442	456	470	484	497	511	525
Combustion Turbine Heavy Duty-10MW	Advanced Int. Coal Gas-460MW	208	220	233	245	257	269	282	294	306	318	
Combustion Turbine Heavy Duy-10MW	Combustion Turbine Heavy Duty-80MW	75	112	149	186	223						
Combustion Turbine Heavy Duty-160MW												
Combustion Turbine Aero- 45MW												
CT Combined Cycle 2on1 - 330MW 92												
CT Combined Cycle 2-01 - 470MW 81 101 122 142 163 184 204 225 246 266 287 CT Combined Cycle - 345MW 89 110 130 150 171 191 211 232 225 272 238 262 255 308 206	 	•										
CT Combined Cycle - 345MW		+										
CT with Cascaded Humidified Advanced Turbine-300MW												
Phosphoric Acid Fuel Cell-2.5MW												
Moiten Carbonate Fuel Cell-100MW						171	194	217	239	262	285	308
Solid Oxide Fuel Cell-100MW 206 224 241 258 276 293 310 328 345 362 380			1320	1350	1379	1408	1438	1467	1496	1526	1555	1584
Geothermal: Dual Flash Brine, Air Cooled-24MW 249 330 410 491 572 683 734 815 895 976 1057 Solar Photovotlaic:Cheat Plate-10x5MW 1052 1052 1052 1052	Molten Carbonate Fuel Cell-100MW	415	433	452	470	488	507	525	543	562	580	598
Geothermai: Dual Flash Brine, Air Cooled-24MW	Solid Oxide Fuel Cell-100MW	206	224	241	258	276	293	310	328	345	362	380
Solar Photovoltaic:Flat Plate-10x5MW	Geothermal: Dual Flash Brine, Air Cooled-24MW	249	330	410	491	572	653	734	815			
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052		****						
Solar Photovoltaic:Fresnel Lens High Concen10x5MW		-										
Solar Thermal Trough/Gas Hybrid-200MW												
Wind Turbines-Variable Speed-50x750kw 204 204 204 204												
Wind Turbines-High Prod Volume-143x350kw 217 217 217 217												
Wind Turbines-Class 4 Speed-50x750kw 206 206 206 206												
Municipal Solid Waste: Mass Burn-40MW 1050 1085 1120 1154 1189 1224 1258 1293 1327 1362 1397 Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1497 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 669 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 818 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 678 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 254 266 278 290 302 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318												
Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1497 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 818 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 678 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 254 266 278 290 302 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336												
Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 443 485 527 568 610 652 693 735 777 818 Bio Mass: Whole Tree-100MW 440 464 488 512 535 559 583 607 630 654 678 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 254 266 278 290 302 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Erown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Bio Mass: Wood-Fired Stoker Boiler-50MW									1394	1428	1463	1497
Bio Mass: Wood-Fired Stoker Boiler-50MW		661	_			680	685	690	695	699	704	709
Bio Mass: Whole Tree-100MW	Bio Mass: Wood-Fired Stoker Boiler-50MW	401	443	485	527	568	610	652	693	735	777	
Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 254 266 278 290 302 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro		440	464	488	512	535	559	583	607	630		
Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW '57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 134 134 134 134 134 134 134	Cane Run 3 Rehab w/ AFBC	181	193	205								
Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 134 314	Cane Run 3 Rehab w/ Natural Gas											
Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 116 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 34 34 362 374 361 395 361 395 363 374 362 374 362 374		_										
Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 339 374 409 339 374 409 339 374 409 339 374 409 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339 374 339												
Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134												
Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 334												
IPP Hydro 134												
Aeroderivative CT 55 89 123 157 191 225 259 293 327 361 395 Chio Falls 9&10 156 156 156 156 Trimble County 2 159 170 181 192 202 213 224 235 245 256 267 IAC at Brown 8-11 22 64											342	374
Ohio Falls 9&10 156 156 156 156												
Ohio Falls 9&10 156 156 156 156				_	157	191	225	259	293	327	361	395
IAC at Brown 8-11 22 64		156	156	156	156			****				
IAC at Brown 8-11 22 54	Trimble County 2	159	170	181	192	202	213	224	235	245	256	267
	IAC at Brown 8-11	22	64									
	Minimum Levelized S/kW			115	134	134	134	134	225	245	256	267

Capital Cost- High

Heat Rate- Base								*			
Fuel Forecast-Low		400/	000/	200/		ity Facto		7004	200/	2001	10001
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114 143	151 175									
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	98	125	151	****						
Compressed Air Energy w/ Humid Air Turbine-350MW	72	97	122	147							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Pulverized Coal (LSFO)-500MW	187	197	206	216	226	236	246	256	265	275	285
Pulverized Coal (LSFO)-400MW	207	217	227	236	246	256	266	276	286	296	305
Pulverized Coal (LSFO)-300MW	214	226	239	251	263	276	288	300	313	325	337
Pulverized Coal (LSFO)-200MW	260 191	270	280	290	300	311	321	331	341	351	361
Pulverized Coal (LSFO)-300MW X 2 Pulverized Coal Compliance (LSD)-300MW	202	201 215	211 227	220 239	230 252	240 264	250 277	260 289	270 302	280 314	289 327
Pulverized Coal Supercritical (LSD)- 300MW	242	255	268	281	294	308	321	334	347	360	373
Pulverized Coal (Advanced LSFO)- 400MW	215	225	234	244	253	263	273	282	292	301	311
Atmosph Fluidized Bed (Circulating)-200MW	275	290	304	318	333	347	362	376	391	405	420
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	319	331	342	353	365	376	388	399	410	422
Press Fluidized Bed (Bubbling)-350MW	227	238	248	258	268	279	289	299	310	320	330
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	234	244	254	264	275	285	295	305	315	325
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	271	282	293	303	314	324	335	346	356	367
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	218	228	239	249	260	271	281	292	302	313
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	215	225	236	246	256	266	277	287	297	308
Foster Wheeler Advanced PFB (Circulating)-688MW	193	205	218	231	244	256	269	282	295	307	320
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	291	300	309	317	326	335	344	352	361	370
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	258 282	267 292	277 302	286 312	296 322	305 332	314 342	324 352	333 362	342 372	352 382
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	400	413	426	439	452	464	477	490	503	515
Advanced Int. Coal Gas-460MW	208	219	230	242	253	264	275	286	297	308	319
Combustion Turbine Heavy Duty-80MW	75	106	137	168	199	230	261	292	323	354	385
Combustion Turbine Heavy Duty-110MW	66	99	132	165	198	231	264	297	330	363	396
Combustion Turbine Heavy Duty-160MW	60	88	116	144	172	200	228	256	284	312	340
Combustion Turbine Aero- 45MW	122	148	174	200	226	252	278	304	330	356	382
CT Combined Cycle 2on1 - 330MW	92	111	130	148	167	186	205	224	243	262	281
CT Combined Cycle 2on1 - 470MW	81	98	116	199	151	168	186	503	221	238	256
CT Combined Cycle - 345MW	89	107	124	142	159	176	194	211	228	246	263
CT with Cascaded Humidified Advanced Turbine-300MW	80	100	119	139	159	179	198	218	. 238	257	277
Phosphoric Acid Fuel Cell-2.5MW Molten Carbonate Fuel Cell-100MW	1291 415	1316 431	1342 447	1367 463	1392 479	1418 495	1443 511	1468 527	1494 543	1519 559	1544 575
Solid Oxide Fuel Cell-100MW	206	221	236	250	265	280	294	309	324	338	353
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	317	386	454	523	591	660	728	797	865	934
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic: Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430							****	
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206	1100	4004	4050	1000	4007	4000	4007
Municipal Solid Waste: Mass Burn-40MW	1050	1085 1187	1120	1154 1256	1189 1290	1224	1258 1359	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	1394	1428	1463	1497
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	445	489	533	577	621	665	695 708	699 752	704 796	709 840
Bio Mass: Whole Tree-100MW	440	465	490	515	540	565	590	614	639	664	689
Cane Run 3 Rehab w/ AFBC	181	191	202	213	223	234	244	255	266	276	287
Cane Run 3 Rehab w/ Natural Gas	133	159	185	211	237	263	290	316	342	368	394
Brown 5 CT 110MW	56_	86	116	146	176	206	236	266	296	326	356
Brown 5 CT 164MW	57	83	109	135	161	187	213	239	265	291	317
Brown 5 CT 102MW	59	89	119	149	179	209	239	269	299	329	359
Brown 5 CT 159MW	53	80	107	134	161	188	215	242	269	296	323
Brown 5 CT 149MW	54	81	108	135	162	189	216	243	270	297	324
IPP Hydro	134	134	134	134	134		134				
Aeroderivative CT	55 156	156	113	142	171	200	229	258	287	316	345
Ohio Falls 9&10 Trimble County 2	156 159	156 169	156 178	156 187	196	205	215	224	233	242	252
IAC at Brown 8-11	22	59				203			233		#J#
Minimum Levelized \$/kW		59	107	133	134	134	134	203	221	238	252
	_	-		-		-					

Capital Cost- High Heat Rate- Base

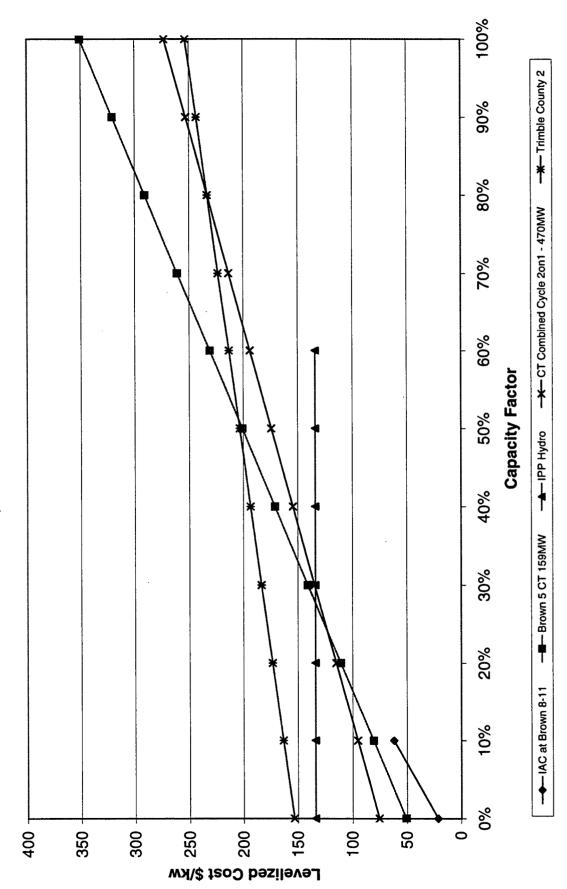
Heat Rate- Base											
Fuel Forecast- Base						ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143	175					****				
Advanced Battery (5 hr)-20MW	198	227									
Pumped Hydro Energy Storage-350MW X 3	140	173	206	239							
Compressed Air Energy (Salt Cavern) -350MW	72	100	127	155							
Compressed Air Energy w/ Humid Air Turbine-350MW	72	99 202	126	152							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202		****							
Pulverized Coal (LSFO)-500MW	187	197	208	219	230	041	054	000	070	204	- 204
Pulverized Coal (LSFO)-300MW	207	218	228	239	249	241 260	251 271	262	273	284	294
	214	228	241					281	292	302	313
Pulverized Coal (LSFO)-300MW				254	268	281	294	308	321	335	348
Pulverized Coal (LSFO)-200MW Pulverized Coal (LSFO)-300MW X 2	260 191	271	282 212	293 223	304 233	315	326	337	348	359	371
	202	202 216	229			244	255	265	276	286	297
Pulverized Coal Compliance (LSD)- 300MW				243	256	270	283	297	310	324	337
Pulverized Coal Supercritical (LSD)- 300MW	242	256	270	285	299	313	327	341	355	370	384
Pulvenzed Coal (Advanced LSFO)- 400MW	215	225	236	246	256	266	276	286	297	307	317
Atmosph Fluidized Bed (Circulating)-200MW	275	291	306	322	338	354	369	385	401	416	432
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	320	332	344	356	369	381	393	405	417	429
Press Fluidized Bed (Bubbling)-350MW	227	238	249	260	272	283	294	305	316	327	338
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	235	246	257	267	278	289	300	311	322	333
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	272	283	295	306	318	329	340	352	363	375
Press Fluidized Bed (Circulating, with Reheat)-360MW	207	218	230	241	252	264	275	287	298	309	321
Press Fluidized Bed (Circulating, Supercritical)-360MW	205	216	227	238	249	260	271	282	293	304	315
Foster Wheeler Advanced PFB (Circulating)-688MW	193	206	219	233	246	259	273	286	300	313	326
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	292	301	311	320	330	340	349	359	368	378
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	268	278	288	299	309	319	329	339	349	360
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	293	304	315	326	337	348	359	370	381	392
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	401	414	427	441	454	467	480	494	507	520
Advanced Int. Coal Gas-460MW	208	220	232	243	255	267	279	290	302	314	326
Combustion Turbine Heavy Duty-80MW	75	110	145	180	215	250	285	320	355	390	425
Combustion Turbine Heavy Duty-110MW	66	103	140	177	214	251	288	325	. 362	399	436
Combustion Turbine Heavy Duty-160MW	60	91	122	153	184	215	246	277	308	339	370
Combustion Turbine Aero- 45MW	122	151	180	209	238	267	296	325	354	383	412
CT Combined Cycle 2on1 - 330MW	92	113	134	155	177	198	219	240	262	283	304
CT Combined Cycle 2on1 - 470MW	81	100	120	140	159	179	199	218	238	258	278
CT Combined Cycle - 345MW	89	109	128	148	167	186	206	225	244	264	283
CT with Cascaded Humidified Advanced Turbine-300MW	80	102	124	146	167	189	211	233	255	277	299
Phosphoric Acid Fuel Cell-2.5MW	1291	1319	1348	1376	1404	1433	1461	1489	1518	1546	1574
Molten Carbonate Fuel Cell-100MW	415	433	450	468	486	503	521	539	556	574	592
Solid Oxide Fuel Cell-100MW	206	223	239	255	272	288	304	321	337	353	370
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	326	403	480	557	635	712	789	866	943	1020
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052			****					
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430				~				****
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	445	489	533	577	621	665	708	752	796	840
Bio Mass: Whole Tree-100MW	440	465	490	515	540	565	590	614	639	664	689
Cane Run 3 Rehab w/ AFBC	181	192	203	215	226	238	249	260	272	283	295
Cane Run 3 Rehab w/ Natural Gas	133	162	192	221	251	280	310	339	369	399	428
Brown 5 CT 110MW	56	90	124	158	192	226	260	294	328	362	396
Brown 5 CT 164MW	57	86	115	144	173	202	231	260	289	318	347
Brown 5 CT 102MW	59	93	127	161	195	229	263	297	331	365	399
Brown 5 CT 159MW	53	83	113	143	173	203	233	263	293	323	353
Brown 5 CT 149MW	54	84	114	144	174	204	234	264	294	324	354
IPP Hydro	134	134	134	184	134	134	134			L	
Aeroderivative CT	55	88	121	154	187	220	253	286	319	352	385
Ohio Falls 9&10	156	156	156	156							
Trimble County 2	159	169	179	189	199	209	219	229	239	249	259
IAC at Brown 8-11	222	63									
Minimum Levelized \$/kW	22	63	113	134	134	134	134	218	238	249	259

Capital Cost- High

Technology	Heat Rate- Base											
Lieal Acid Battery Storage CI In 20MW	Fuel Forecast- High		400/1	000/	999/					000/1	000/1	40004
Advanced Battery (D hty-20MW 145 175												100%
Advanced Battery (S htt)-20MW 198 227												
Pumped Hydro Energy Start Query SSOMW 72 101 129 158												
Compessed Air Energy (Hand & Turben - SSDMW 72 101 128 158											-	
Compressed Air Energy with Humid Air Turtines SSSMM												
Super Conducting Magnetic Energy Storage (a hr)-SOMW												
Pulmertand Coal (LSFO)-S00MW												
Pulmetrical Coal (LSFO)-LOOMW 271 291 290 294 295 274 289 300 311 343 348 348 348 349 34	Out of Contracting Magnetic Energy Cloudy (Emily Committee											
Pulverized Coal (LSFO)-ADOMW	Pulverized Coal (LSFO)-500MW	187	199	210	222	234	246	258	270	281	293	305
Pulmertad Coal (LSFO)-300MW		207	219	230	242	254	265	277	289	300	312	324
Fluidead Coal (LSFO)-SOOMW		214	229	244	259	274	289	304	319	334	348	363
Furbrated Coal (LSFO)-SOOMW	Pulverized Coal (LSFO)-200MW	260	272	284	296	308	321	333	345	357	369	381
Fubretred Coel Supercritical (LSD): 300MW 242 258 274 290 306 321 337 353 369 365 361 Minosph (Advanced LSP): 400MW 215 227 239 29 260 271 283 244 305 365 Almosph Fubridated Bed (Cirulating): 200MW 275 292 310 327 344 361 378 396 413 430 434 340 341 344 381 341 342 342 345 361 378 396 413 430 396 312 334 397 397 398 398 398 398 398 398 398 398 398 398	Pulverized Coal (LSFO)-300MW X 2	191	203	215	226	238	250	262	274	286	298	309
Pubméted Coal (Advanced LSFO) + 400MW	Pulverized Coal Compliance (LSD)- 300MW	202	217	233	248	263	278	293	309	324	339	354
Almosph Fluidized Bed (Circulating)-200MW	Pulverized Coal Supercritical (LSD)- 300MW	242	258	274	290	306	321	337	353	369	385	401
Press Fluidized Bed (Bubbling, Storn-Rehearl-BOMW X 2 398	Pulverized Coal (Advanced LSFO)- 400MW	215	227	238						305	316	328
Fress Fluidzade Bed (Bubbling)-350MW 227 239 252 264 276 288 300 312 324 337 332 932 932 932 932 932 932 933 332 933 332 934 936 938 330 332 932 932 934 936 936 936 936 936 936 936 936 936 936	Atmosph Fluidized Bed (Circulating)-200MW	275							396	413		447
Press Fluidzand Bed (Fluidping, Supercretics)-340NW 261 273 286 248 260 272 284 296 308 330 332 348 330 332 349 380 373 787 1978 1978 1978 1978 1978 1978 1978												440
Press Fluidzed Bed (Circulating, with Reheat)-160MW												349
Frees Fluidized Bed (Circulating, with Reheat)-\$60MW			$\overline{}$								-	344
Frees Fluidized Bed (Circulating, Supercritical)-360MW												385
Foster Wheeler Advanced PFB (Circulating)-698MW												332
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW												326
Int Coal Gas w Humid Air Turbine (Entrained Flow)-BOMMW 288 289 280 291 302 313 324 336 347 388 Int Coal Gas / CAES with Humid Air Turbine-410MW 282 295 307 319 332 344 356 369 381 339 381 int Coal Gas / CAES with Humid Air Turbine-410MW 388 402 416 430 444 458 473 487 501 515 Advanced Int. Coal Gas-460MW 208 221 233 246 259 271 284 297 309 322 242 297 309 348 387 487 501 515 200 235 270 309 322 242 297 309 348 387 426 200 201 201 201 201 201 201 201 201 201												336 387
Int Coal Gas / CAES with Humid Air Tuthine-410MW 282 295 307 319 332 344 356 369 381 393 111 Coal Gas / Molten Carbonate Fuel Cell 400MW 388 402 416 430 444 458 472 487 501 515 545 Advanced Int. Coal Gas-460MW 208 221 233 246 259 271 224 227 309 322 Combustion Turbine Heavy Duty-10MW 66 107 148 189 230 271 312 333 394 435 Combustion Turbine Heavy Duty-10MW 66 107 148 189 230 271 312 333 394 435 Combustion Turbine Heavy Duty-10MW 60 95 130 165 200 235 270 305 340 375 Combustion Turbine Heavy Duty-10MW 80 95 130 165 200 235 270 305 340 375 Combustion Turbine Heavy Duty-10MW 80 95 130 165 200 235 270 305 340 375 Combustion Turbine Heavy Duty-10MW 81 122 154 186 218 250 282 314 346 378 410 CT Combined Cycle 2011 - 330MW 92 115 138 162 185 200 232 255 279 305 140 375 CT Combined Cycle 2011 - 330MW 81 102 124 145 167 188 210 3238 235 274 270 270 270 270 270 270 270 270 270 270												369
Int Coal Gas/ Motten Carbonate Fuel Cell 400MW												406
Advanced Int. Coal Gas-460MW 208 221 233 246 259 271 284 297 309 332 205 207 208 322 207 208 322 207 309 348 387 426 207 208 207 208 327 312 353 394 435 436 208 207 312 353 394 435 394 435 208												529
Combustion Turbine Heavy Duty-80MW												334
Combustion Turbine Heavy Duty-10MW						-						465
Combustion Turbine Heavy Duty-160MW												476
Combistion Turbine Aero-45MW												410
CT Combined Cycle 20n1 - 470MW		122	154	186	218	250	282	314	346	378	410	442
CT Combined Cycle - 345MW	CT Combined Cycle 2on1 - 330MW	92	115	138	162	185	209	232	255	279	302	326
CT with Cascaded Humidified Advanced Turbine-300MW	CT Combined Cycle 2on1 - 470MW	81	102	124	145	167	188	210	231	253	274	296
Phosphoric Acid Fuel Celi-2.5MW	CT Combined Cycle - 345MW	89	111	132	153	174	196	217	238	259	280	302
Molten Carbonate Fuel Cell-100MW	CT with Cascaded Humidified Advanced Turbine-300MW	80									295	319
Solid Oxide Fuel Cell-100MW 206 224 242 260 278 296 314 332 350 368 Geothermal: Dual Flash Brine, Air Cooled-24MW 249 334 419 504 589 675 760 845 930 1015 5014 Flate-10x5MW 1052 1052	Phosphoric Acid Fuel Cell-2.5MW	1291										1598
Geothermal: Dual Flash Brine, Air Cooled-24MW	Molten Carbonate Fuel Cell-100MW											605
Solar Photovoltaic:Flat Plate-10x5MW												386
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW							675				•	1100
Solar Photovoltaic:Fresnel Lens High Concen10x5MW		•										
Solar Thermal Trough/Gas Hybrid-200MW												
Wind Turbines-Variable Speed-50x750kw 204 204 204 204 — </td <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td>		·						_			_	
Wind Turbines-High Prod Volume-143x350kw 217 217 217 217										-		_=_
Wind Turbines-Class 4 Speed-50x750kw 206 206 206 206 — <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td>										·		
Municipal Solid Waste: Mass Burn-40MW 1050 1085 1120 1154 1189 1224 1258 1293 1327 1362 Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 445 489 533 577 621 665 708 752 796 Bio Mass: Whole Tree-100MW 440 465 490 515 540 565 590 614 639 664 Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 110MW 56												
Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 445 489 533 577 621 665 708 752 796 Bio Mass: Whole Tree-100MW 440 465 490 515 540 565 590 614 639 664 Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 110MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1224</td> <td>1258</td> <td>1293</td> <td></td> <td>1362</td> <td>1397</td>							1224	1258	1293		1362	1397
Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 445 489 533 577 621 665 708 752 796 Bio Mass: Whole Tree-100MW 440 465 490 515 540 565 590 614 639 664 Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 10MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1463</td><td>1497</td></td<>											1463	1497
Bio Mass: Wood-Fired Stoker Boiler-50MW 401 445 489 533 577 621 665 708 752 796 Bio Mass: Whole Tree-100MW 440 465 490 515 540 565 590 614 639 664 Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 110MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 149MW 53 86 199 152 185 218 251 284 317 350 Brown 5 CT 149MW 54		• • • • • • • • • • • • • • • • • • • 									704	709
Bio Mass: Whole Tree-100MW 440 465 490 515 540 565 590 614 639 664 Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 110MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 159MW 53 86 319 152 185 218 251 284 317 360 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 1											796	840
Cane Run 3 Rehab w/ AFBC 181 193 206 219 231 244 256 269 282 294 Cane Run 3 Rehab w/ Natural Gas 133 165 198 230 263 295 327 360 392 425 Brown 5 CT 110MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 159MW 53 86 119 152 185 218 251 284 317 350 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 360 IPP Hydro 134 134 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370		•									664	689
Brown 5 CT 110MW 56 93 130 167 204 241 278 315 352 389 Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 159MW 53 86 119 152 185 218 218 218 221 284 317 350 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 134 134 134 134 <t< td=""><td></td><td>181</td><td>193</td><td>206</td><td>219</td><td>231</td><td></td><td></td><td></td><td>282</td><td>294</td><td>307</td></t<>		181	193	206	219	231				282	294	307
Brown 5 CT 164MW 57 89 121 153 185 217 249 281 313 345 Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 159MW 53 86 119 152 185 218 251 284 317 350 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370	Cane Run 3 Rehab w/ Natural Gas	133	165	198	230		295	327	360	392	425	457
Brown 5 CT 102MW 59 96 133 170 207 244 281 318 355 392 Brown 5 CT 159MW 53 86 \$19 152 185 218 251 284 317 350 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370	Brown 5 CT 110MW	+									389	426
Brown 5 CT 159MW 53 86 119 152 185 218 251 284 317 350 Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370											345	377
Brown 5 CT 149MW 54 88 122 156 190 224 258 292 326 360 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370											392	429
IPP Hydro 134 134 134 134 134 134 134 134 134 Aeroderivative CT 55 90 125 160 195 230 265 300 335 370											•	+
Aeroderivative CT 55 90 125 160 195 230 265 300 335 370										 	360	394
											 	
IOhio Falls 9&10 156 156 156		+				195	230			 	370	405
										1		
										249		272
IAC at Brown 8-11		A									260	272

Capital Cost- High

Fuel Forecast-Low Technology Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW Pulverized Coal (LSFO)-400MW	0 114 143 198 140 72 72 72	10% 151 175 227 173 99	20% 206	30%	Capac 40%	50% 	60% 	70% 	80% 	90%	100%
Lead Acid Battery Storage(1 hr)-20MW Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	114 143 198 140 72 72	151 175 227 173								$\overline{}$	100%
Advanced Battery (3 hr)-20MW Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	143 198 140 72 72	175 227 173									
Advanced Battery (5 hr)-20MW Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	198 140 72 72	227 173									
Pumped Hydro Energy Storage-350MW X 3 Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	140 72 72	173			۱ ۱						
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	72 72		ו אחפין								
Compressed Air Energy w/ Humid Air Turbine-350MW Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW	72	99		239						****	
Super Conducting Magnetic Energy Storage (2 hr)-500MW Pulverized Coal (LSFO)-500MW			126	153	_==						
Pulverized Coal (LSFO)-500MW	175	98	124	149							
		202									
	400										
Pulvenzed Coai (LSFO)-400MW	187	197	207	218	228	238	249	259	269	279	290
	207	217	228	238	248	258	269	279	289	300	310
Pulverized Coal (LSFO)-300MW	214	227	240	253	266	279	292	305	318	330	343
Pulverized Coal (LSFO)-200MW	260	270 201	281 212	292 222	302 232	313 242	323	334	345	355	366
Pulverized Coal (LSFO)-300MW X 2	191 202	215	228	241	254	267	253 280	263	273	284	294
Pulverized Coal Compliance (LSD)- 300MW Pulverized Coal Supercritical (LSD)- 300MW	242	256	270	283	297	311		293	305	318	331
Pulverized Coal (Advanced LSFO)- 400MW	215	225	235	245	255	265	324 274	338 284	352 294	365	379
Atmosph Fluidized Bed (Circulating)-200MW	275	290	305	320	335	350	366	381		304	314
	308	320	332	343	355	367	379		396	411	426
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2 Press Fluidized Bed (Bubbling)-350MW	227	238	248	259	270	280	291	391 302	403	414	426 333
	221	234	245	259	266	280	291		312	323	
Press Fluidized Bed (Bubbling, Supercritic)-340MW	261	272	283	256	305	316	327	298	309	319	330
Press Fluidized Bed (Circulating, with Reheat)-160MW Press Fluidized Bed (Circulating, with Reheat)-360MW	207	218	283	294	251	262	272	338	349	360	371
	207	218	229		248			283	294	305	316
Press Fluidized Bed (Circulating, Supercritical)-360MW Foster Wheeler Advanced PFB (Circulating)-688MW	193	206	219	237 232	248	258 258	269 271	280	291	302	312
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	292	301	310	319	328	338	284	297	310	323
			277		297			347	356	365	375
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW Int Coal Gas / CAES with Humid Air Turbine-410MW	258 282	268 293	304	287 314	325	306 336	316 346	326	336	345	355
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	401	414	427	440	453	466	357 479	368	378	389
Advanced int. Coal Gas-460MW	208	220	231	243	254	266	277	289	492 300	505	518
Combustion Turbine Heavy Duty-80MW	75	108	141	174	207	240	273	306	339	312	323
Compustion Turbine Heavy Duty-110MW	66	100	136	171	206	240	276	311		372	405
	60	89	118	147	176	205	234	263	346 292	381 321	416 350
Combustion Turbine Heavy Duty-160MW Combustion Turbine Aero- 45MW	122	149	176	203	230	257	284	311	338	365	392
Combined Cycle 2on1 - 330MW	92	112	131	151	171	191	211	231	250	270	290
CT Combined Cycle 2011 - 330MW CT Combined Cycle 2011 - 470MW	81	99	117	136	154	172	190	209	227	245	264
CT Combined Cycle - 345MW	89	108	126	144	162	180	198	216	235	253	271
CT with Cascaded Humidified Advanced Turbine-300MW	80	101	121	142	163	183	204	224	245	266	286
Phosphoric Acid Fuel Cell-2.5MW	1291	1317	1344	1370	1396	1423	1449	1475	1502	1528	1554
Molten Carbonate Fuel Celi-100MW	415	432	448	465	482	498	515	532	548	565	582
Solid Oxide Fuel Cell-100MW	206	222	237	252	268	283	298	314	329	344	360
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	321	393	465	537	609	681	753	825	897	969
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166								
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206		*					
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	447	493	539	585	631	677	722	768	814	860
Bio Mass: Whole Tree-100MW	440	466	492	518	544	570	596	622	648	674	700
Cane Run 3 Rehab w/ AFBC	181	192	203	214	225	236	247	258	269	280	291
Cane Run 3 Rehab w/ Natural Gas	133	160	188	215	243	270	298	325	353	381	408
Brown 5 CT 110MW	56	87	118	149	180	211	242	273	304	335	366
Brown 5 CT 164MW	57	84	111	138	165	192	219	246	273	300	327
Brown 5 CT 102MW	59	91	123	155	187	219	251	283	315	347	379
Brown 5 CT 159MW	53	81	109	137	165	193	221	249	277	305	333
Brown 5 CT 149MW	54	82	110	138	166	194	222	250	278	306	334
IPP Hydro	134	134	134	194	134	194		<u> </u>			
Aeroderivative CT	55	86	117	148	179	210	241	272	303	334	365
		156	156	156							
Ohio Falls 9&10	156	1 120									
	156 159	169	179	188	198	208	217	227	237	247	250
Ohio Falls 9&10									_	247	250


Capital Cost- High 1999 Dollars (\$/kW yr)

Faul Frameway Statement Technology	Heat Rate- High											
Leach And Saffery Storages (17) A 200W 143 151	Fuel Forecast- Base	ļ.,,	4001									
Advanced Battery (3 th 7-20MW										80%		100%
Advanced Sattery (S. In Y200MV 3												
Purpose Purp											****	
Compressed Air Energy (Nation Air Prints - 350MW 72 100 128 156												
Compressed AF Energy of Hundright Turtime-SSONW 72 100 128 155												
Pubmetace Coal (LSPO)-1500MW												
Pulvetrated Coal (LSFO)-SOOMW												
Pubertact Coal (LSFO)-400MW	Coper Conditioning Magnetic Energy Cloudge (2.11) Coom	1,,0										
Pubertact Coal (LSFO)-400MW	Pulverized Coal (LSFO)-500MW	187	198	209	220	231	242	253	264	275	286	297
Pubertace Coal (LSFO)-SOONW												
Pubertact Coal (LSPC)-SCOMW												
Pubertage Coat (LSPC)-900MW X 2 Pubertage Coat (LSPC)-900MW	Pulverized Coal (LSFO)-200MW	260	271	283	294	306	317					
Puentard Coal Camplainne (LSD)- 300MW		191	202	213	224	235	246	257				
Pubertized Coal (Arbanoed LSFO)- 400MW		202	216	230	245							
Pubertact Coal (Advanced LSFC)- 400MW 215 226 237 247 258 288 279 290 300 311 321 321 324 340 337 338 346 46 422 424 325 324 340 337 338 346 46 422 424 325 324 340 337 338 346 458 427 328 328 327 328 348 337 338 346 428 421 434	Pulverized Coal Supercritical (LSD)- 300MW	242	257	272	286	301	316	331		360		
Press Fluidated Bed (Bubbling, Non-Reheat)-BOMW	Pulverized Coal (Advanced LSFO)- 400MW	215	226	237	247	258	268	279	290			
Press Fluidzed Bed (Bubbling, S50MW 227 239 250 262 273 255 269 308 320 331 343 345 345 345 345 345 345 345 345 345	Atmosph Fluidized Bed (Circulating)-200MW	275	291	308	324	340	357	373	389	406	422	438
Press Fluidzed Bed (Bubbling, Supertricit-340HW	Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	320	333	346	358	371	384	396	409	421	434
Press Fluidzed Bed (Bubbling, Supertriel)-340HW	Press Fluidized Bed (Bubbling)-350MW	227	239	250	262	273	285	296	308	320	331	
Press Fluidzed Bed (Circulating, with Reheal)-160MW 207 219 231 242 254 266 278 290 302 314 335 367 379 37	Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	235	247	258	269	281	292	303	315	326	
Press Fluidized Bed (Circulating, Supercritical)-360MW 193 206 220 234 249 251 262 276 289 303 370 331 1931 Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW 282 282 282 302 312 322 332 341 351 361 371 381 Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW 282 282 282 302 312 322 332 341 351 361 371 381 II Coal Gas Whulmid Air Turbine-410MW 282 282 284 308 371 329 289 300 310 321 331 342 382 383 III Coal Gas Whulmid Air Turbine-410MW 282 282 284 308 371 329 281 303 321 332 344 376 387 389 III Coal Gas Whole Carbonate Flue Cell 400MW 282 282 284 308 371 329 341 332 364 376 387 389 III Coal Gas Whole Carbonate Flue Cell 400MW 282 282 284 308 371 329 341 332 364 376 387 389 III Coal Gas Whole Carbonate Flue Cell 400MW 282 282 284 308 371 329 341 371 382 364 376 387 389 III Coal Gas Whole Carbonate Flue Cell 400MW 388 401 415 428 442 455 469 482 496 510 523 Advanced Int. Coal Gas-460MW 75 112 149 188 222 281 293 305 317 329 Combustion Turbine Heavy Duty-110MW 66 105 144 183 222 261 300 309 376 417 456 Combustion Turbine Heavy Duty-110MW 66 105 144 183 222 261 300 309 376 417 456 Combustion Turbine Heavy Duty-160MW 160 93 126 159 189 225 256 289 121 324 357 390 Combustion Turbine Aerv Carbonate May 189 114 136 159 181 190 30 256 289 129 324 357 390 Combustion Turbine Aerv Carbonate C	Press Fluidized Bed (Circulating, with Reheat)-160MW	261	273	284	296	308	320	332	344	355	367	
Foster Wheeler Advanced PFB (Circulating)-688HW				231				278	290	302	314	
Highly Integrated Coal Gas/Comb Cyc (Entrained)+601MW						251		274	285	297	308	320
Int Coal Gas w/t-Humid Air Turbine (Entrained Flow)-600MW					-							331
Int Coal Gas / CAES with Humid Air Turbine-410MW 388 401 415 429 442 455 469 450 495 510 539 17 039			292			322	332	341	351	361	371	381
Int Coad Gas4 Mothen Carbonate Fuel Cell 400MW 209 220 245 425 469 482 496 510 523 447 Advanced Int Coad Gas4-60MW 209 220 220 245 57 289 281 293 305 317 329 Combustion Turbine Heavy Duty-B0MW 75 112 149 186 220 280 297 334 371 406 445 Combustion Turbine Heavy Duty-B0MW 86 105 144 183 222 281 300 339 378 417 436 465 Combustion Turbine Heavy Duty-B0MW 86 105 144 183 222 281 300 339 378 417 436 435 Combustion Turbine Heavy Duty-B0MW 86 105 144 183 222 281 300 339 378 417 436 435 Combustion Turbine Heavy Duty-B0MW 86 105 144 183 222 281 300 339 378 417 436 436 Combustion Turbine Heavy Duty-B0MW 86 122 152 122 242 272 302 332 324 327 324 357 330 Combustion Turbine Advanced Turbine							310		331	342	352	363
Advanced Int. Coal Gas-460MW 75 1112 49 186 220 223 280 281 297 334 371 408 445 Combustion Turbine Heavy Duty-B0MW 75 1112 49 186 222 281 280 277 334 371 408 445 Combustion Turbine Heavy Duty-H0MW 66 105 144 183 222 281 300 339 378 417 456 Combustion Turbine Heavy Duty-H0MW 86 105 144 183 222 281 300 339 378 417 456 Combustion Turbine Aero-45MW 122 152 182 212 282 280 280 291 324 357 330 302 332 276 277 281 324 357 330 302 332 378 417 456 281 281 281 281 281 281 281 281 281 281												
Combustion Turbine Heavy Duty-10MW 66 6 105 144 183 222 280 297 334 371 408 445 Combustion Turbine Heavy Duty-110MW 66 105 144 183 222 281 300 339 378 417 456 Combustion Turbine Heavy Duty-150MW 60 93 128 1159 192 225 258 291 324 357 330 Combustion Turbine Heavy Duty-150MW 122 152 152 182 212 242 272 302 332 362 392 422 CT combined Cycle 20n1 - 30MW 92 114 136 159 181 203 226 248 270 292 315 CT Combined Cycle 20n1 - 30MW 81 101 122 142 163 184 204 2255 246 266 287 CT Combined Cycle 20n1 - 470MW 81 101 122 142 163 184 204 2255 246 266 287 CT Combined Cycle 20n1 - 470MW 89 110 30 150 177 191 211 223 252 272 292 CT with Cascaded Humidified Advanced Turbine-300MW 80 103 128 148 171 194 217 239 282 285 308 Phosphoric Acid Fuel Cell-150MW 415 433 452 470 488 507 525 543 562 580 598 Solid Oxide Fuel Cell-100MW 206 224 241 258 276 293 310 328 345 362 380 Gethermat: Duty Black Hollow B												
Combustion Turbine Heavy Duty-110MW 66 105 144 193 222 261 300 339 378 417 456 500 450 500												
Combustion Turbine Heavy Duty-160MW												
Combustion Turbine Aero- 45MW 92 114 138 159 181 203 226 248 270 232 352 362 392 422 CT Combined Cycle 2 2011 - 330MW 92 114 138 159 181 203 226 248 270 292 315 CT Combined Cycle 2 2011 - 470MW 81 101 122 142 163 184 204 3225 246 268 265 267 CT Combined Cycle 2 2 45MW 89 110 130 150 171 191 211 232 252 272 272 292 272 White Cascaded Humidified Advanced Turbine-300MW 89 110 130 150 171 191 211 232 252 272 272 292 272 White Cascaded Humidified Advanced Turbine-300MW 1291 1320 1350 1379 1408 1438 1467 1496 1526 1555 1584 Motten Carbonate Fuel Cell-100MW 415 433 452 470 488 507 525 543 562 580 598 Spiciol Code Fuel Cell-100MW 206 524 241 258 276 293 310 328 345 362 380 Geothermal: Dual Flash Brine, Air Cooled-24MW 249 330 411 492 573 654 735 816 897 978 1059 Solar Photovotratic: Che Axis Tracking Flat Plate-10x5MW 1052 1052 1052 1052 1052 1052 1052 1052												
CT Combined Cycle 2on1 - 330MW 92 114 136 159 181 203 226 248 270 292 315 CT Combined Cycle 2on1 - 470MW 81 101 122 142 183 184 204 225 246 266 287 CT Combined Cycle - 345MW 89 110 130 150 171 191 211 232 252 272 292 CT with Cascaded Humidfied Advanced Turbine-300MW 80 103 150 171 191 211 232 252 272 292 CT with Cascaded Humidfied Advanced Turbine-300MW 80 103 126 148 171 194 217 239 262 285 285 286 286 286 286 286 286 286 286 286 286												
CT Combined Cycle - 245MW												
CT Combined Cycle - 345MW												
CT with Cascaded Humidified Advanced Turbine-300MW 120 103 126 148 171 194 217 239 262 285 308 Phosphoric Acid Fuel Cell-2.5MW 1291 1320 1350 1350 1379 1408 1438 1467 1496 1526 1555 1584 Motten Carbonate Fuel Cell-100MW 415 433 4452 470 488 507 525 543 562 580 598 S98 Solid Oxide Fuel Cell-100MW 206 224 241 258 276 293 310 328 345 362 380 Geothermal: Dual Flash Brine, Air Cooled-24MW 209 330 411 492 573 654 735 816 887 978 1059 Soliar Photovoltaic: Flat Plate-10x5MW 1052 1052 1052 1052 1052 1052 1052 1052	 											
Phosphoric Acid Fuel Cell-2.5MW		-										
Molten Carbonate Fuel Cell-100MW												
Solid Oxide Fuel Cell-100MW 206 224 241 258 276 293 310 328 345 362 380												
Geothermal: Dual Flash Brine, Air Cooled-24MW 249 330 411 492 573 654 735 816 897 978 1059 Solar Photovotaic: Flat Plate 1 0x5MW 1052 1052 1052 1052		+										
Solar Photovoltaic: Flat Plate-10x5MW 1052 1052		*										
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW												
Solar Photovoltaic:Fresnel Lens High Concen10x5MW											_	
Solar Thermal Trough/Gas Hybrid-200MW												
Wind Turbines-Variable Speed-50x750kw 204 204 204 204 — </td <td></td> <td></td> <td></td>												
Wind Turbines-High Prod Volume-143x350kw 217 217 217 217 — — — — — — — — — — — — — — — —												
Wind Turbines-Class 4 Speed-50x750kw 206 206 206 206 — — — — — — — — — — — — <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Municipal Solid Waste: Mass Bum-40MW 1050 1085 1120 1154 1189 1224 1258 1293 1327 1362 1397 Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1497 Municipal Solid Waste: Tire-30MW 661 666 667 676 680 685 690 695 699 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 447 493 539 585 631 677 722 768 814 860 Bio Mass: Whole Tree-100MW 440 466 492 518 544 570 596 622 648 674 700 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 164MW 56 91												
Municipal Solid Waste: Refuse Der40MW 1152 1187 1221 1256 1290 1325 1359 1394 1428 1463 1497 Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 447 493 539 585 631 677 722 768 814 860 Bio Mass: Whole Tree-100MW 440 466 492 518 544 570 596 622 648 674 700 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 342 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 164MW 59 94 129 16												1307
Municipal Solid Waste: Tire-30MW 661 666 671 676 680 685 690 695 699 704 709 Bio Mass: Wood-Fired Stoker Boiler-50MW 401 447 493 539 585 631 677 722 768 814 860 Bio Mass: Whole Tree-100MW 440 466 492 518 544 570 596 622 648 674 700 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Bio Mass: Wood-Fired Stoker Boiler-50MW 401 447 493 539 585 631 677 722 768 814 860 Bio Mass: Whole Tree-100MW 440 466 492 518 544 570 596 622 648 674 700 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 870 870 870 870 870 870 870 870 870 870												
Bio Mass: Whole Tree-100MW 440 466 492 518 544 570 596 622 648 674 700 Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_									
Cane Run 3 Rehab w/ AFBC 181 193 205 217 229 241 253 265 277 289 301 Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 374 409 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374					_							
Cane Run 3 Rehab w/ Natural Gas 133 164 195 225 256 287 318 349 380 411 442 Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Brown 5 CT 110MW 56 91 126 161 196 231 266 301 336 371 406 Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 <								-				
Brown 5 CT 164MW 57 87 117 147 177 207 237 267 297 327 357 Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Brown 5 CT 102MW 59 94 129 164 199 234 269 304 339 374 409 Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Brown 5 CT 159MW 53 84 115 146 177 208 239 270 301 332 363 Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 134 34												ĺ
Brown 5 CT 149MW 54 86 118 150 182 214 246 278 310 342 374 IPP Hydro 134 134 134 134 134 134 134 Aeroderivative CT 55 89 123 157 191 225 259 293 327 361 395 Ohio Falls 9&10 156 156 156 156 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
IPP Hydro 134 134 134 134 134 134 134												
Ohio Falls 9&10 156 156 156 156		134	134	134	194	134	134	134				
Ohio Falls 9&10 156 156 156 156					157	191	225	259	293	327	361	395
IAC at Brown 8-11 22 64	Ohio Falls 9&10	156	156	156	156							
IAC at Brown 8-11 22 64	Trimble County 2		<u> </u>	181	191	202	212	223	234	244	255	285
Minimum Levelized \$/kW 22 64 115 134 134 134 134 225 244 255 265		***************************************										
	Minimum Levelized \$/kV	22	64	115	134	134	134	134	225	244	255	265

Capital Cost- High

Heat Rate- High											
Fuel Forecast- High	 					ity Facto					
Technology	0	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lead Acid Battery Storage(1 hr)-20MW	114	151									
Advanced Battery (3 hr)-20MW	143 198	175 227									
Advanced Battery (5 hr)-20MW	140	173	206	239							
Pumped Hydro Energy Storage-350MW X 3	72	101	131	160							
Compressed Air Energy (Salt Cavern) -350MW Compressed Air Energy w/ Humid Air Turbine-350MW	72	101	131	160							
Super Conducting Magnetic Energy Storage (2 hr)-500MW	175	202									
Super Corlodding Magnetic Energy Storage (2 hr)-300/MW	173	202									
Pulverized Coal (LSFO)-500MW	187	199	211	224	236	248	261	273	285	297	310
Pulverized Coal (LSFO)-400MW	207	219	232	244	256	268	281	293	305	318	330
Pulverized Coal (LSFO)-300MW	214	230	246	261	277	293	308	324	340	355	371
Pulverized Coal (LSFO)-200MW	260	272	285	298	310	323	335	348	361	373	386
Pulverized Coal (LSFO)-300MW X 2	191	203	216	228	240	252	265	277	289	302	314
Pulverized Coal Compliance (LSD)- 300MW	202	218	234	250	265	281	297	313	329	345	361
Pulverized Coal Supercritical (LSD)- 300MW	242	259	275	292	309	325	342	358	375	392	408
Pulverized Coal (Advanced LSFO)- 400MW	215	227	239	250	262	274	285	297	309	321	332
Atmosph Fluidized Bed (Circulating)-200MW	275	293	311	329	347	365	383	401	419	437	455
Press Fluidized Bed (Bubbling, Non-Reheat)-80MW X 2	308	322	336	349	363	377	391	405	419	432	446
Press Fluidized Bed (Bubbling)-350MW	227	240	252	265	278	290	303	316	328	341	353
Press Fluidized Bed (Bubbling, Supercritic)-340MW	224	236	249	261	274	286	299	311	323	336	348
Press Fluidized Bed (Circulating, with Reheat)-160MW	261	274	287	299	312	325	338	351	364	377	390
Press Fluidized Bed (Circulating, with Reheat)-100MW	207	220	233	246	259	272	284	297	310	323	336
Press Fluidized Bed (Circulating, With Herieat)-300MW	205	217	230	242	255	268	280	293	306	318	331
Foster Wheeler Advanced PFB (Circulating)-688MW	193	207	222	237	252	266	281	296	311	325	340
Highly Integrated Coal Gas/Comb Cyc (Entrained)-601MW	282	293	304	315	326	337	348	359	370	381	392
Int Coal Gas w/ Humid Air Turbine (Entrained Flow)-600MW	258	270	281	293	304	316	327	339	350	362	373
Int Coal Gas / CAES with Humid Air Turbine-410MW	282	295	308	320	333	346	358	371	384	396	409
Int Coal Gas/ Molten Carbonate Fuel Cell 400MW	388	402	417	431	446	460	474	489	503	518	532
Advanced Int. Coal Gas-460MW	208	221	234	248	261	274	287	300	313	326	339
Combustion Turbine Heavy Duty-80MW	75	116	157	198	239	280	321	362	403	444	485
Combustion Turbine Heavy Duty-10MW	66	109	152	195	238	281	324	367	410	453	496
Combustion Turbine Heavy Duty-110MW	60	96	132	168	204	240	276	312	348	384	420
Combustion Turbine Aero- 45MW	122	155	188	221	254	287	320	353	386	419	452
CT Combined Cycle 2on1 - 330MW	92	116	141	165	190	214	238	263	287	312	336
CT Combined Cycle 2on1 - 470MW	81	103	126	148	171	194	216	239	262	284	307
CT Combined Cycle - 345MW	89	112	134	156	179	201	223	246	268	290	312
CT with Cascaded Humidified Advanced Turbine-300MW	80	105	130	155	180	205	230	255	279	304	329
Phosphoric Acid Fuel Cell-2.5MW	1291	1323	1355	1387	1419	1451	1483	1515	1547	1579	1611
Molten Carbonate Fuel Cell-100MW	415	435	455	475	495	515	535	555	575	595	615
Solid Oxide Fuel Cell-100MW	206	225	244	263	282	301	320	339	358	377	396
Geothermal: Dual Flash Brine, Air Cooled-24MW	249	338	427	517	606	696	785	874	964	1053	1142
Solar Photovoltaic:Flat Plate-10x5MW	1052	1052	1052								
Solar Photovoltaic:One Axis Tracking Flat Plate-10x5MW	1166	1166	1166	****							
Solar Photovoltaic:Fresnel Lens High Concen10x5MW	1037	1037	1037								
Solar Thermal Trough/Gas Hybrid-200MW	422	426	430								
Wind Turbines-Variable Speed-50x750kw	204	204	204	204							
Wind Turbines-High Prod Volume-143x350kw	217	217	217	217							
Wind Turbines-Class 4 Speed-50x750kw	206	206	206	206							
Municipal Solid Waste: Mass Burn-40MW	1050	1085	1120	1154	1189	1224	1258	1293	1327	1362	1397
Municipal Solid Waste: Refuse Der40MW	1152	1187	1221	1256	1290	1325	1359	1394	1428	1463	1497
Municipal Solid Waste: Tire-30MW	661	666	671	676	680	685	690	695	699	704	709
Bio Mass: Wood-Fired Stoker Boiler-50MW	401	447	493	539	585	631	677	722	768	814	860
Bio Mass: Whole Tree-100MW	440	466	492	518	544	570	596	622	648	674	700
Cane Run 3 Rehab w/ AFBC	181	194	207	220	234	247	260	273	287	300	313
Cane Run 3 Rehab w/ Natural Gas	133	167	201	235	269	303	338	372	406	440	474
Brown 5 CT 110MW	56	95	134	173	212	251	290	329	368	407	446
Brown 5 CT 164MW	57	90	123	156	189	222	255	288	321	354	387
Brown 5 CT 102MW	59	98	137	176	215	254	293	332	371	410	449
Brown 5 CT 159MW	53	87	121	155	189	223	257	291	325	359	393
Brown 5 CT 149MW	54	89	124	159	194	229	264	299	334	369	404
IPP Hydro	134	134	134	194	***	134	134		****		
Aeroderivative CT	55	92	129	166	203	240	277	314	351	388	425
Ohio Falls 9&10	156	156	156	156							
Trimble County 2	159	171	183	195	207	219	230	242	254	266	278
IAC at Brown 8-11	22	68									
Minimum Levelized \$/kW		68	121	134	134	134	134	239	254	266	278

Least Costly Technologies Base Capital, Base Heatrate, Base Fuel

KENTUCKY UTILITIES

&

LOUISVILLE GAS & ELECTRIC

Clean Air Act Amendments of 1990 Compliance Plan

1999 Environmental Compliance Analysis

Prepared

October 1999

Ву

GENERATION SYSTEMS PLANNING

TABLE OF CONTENTS

EXECUTI	IVE SUMMARY	. i
Introducti	ion	1
Backgrou	nd	2
Screening	Methodology For Compliance Options	3
Potential (Compliance Technologies	4
Developm	nent of Screening Data and Assumptions	5
Option Sc	creening By Unit	6
Results A	nalysis Of Individual Compliance Options	6
Developm	nent Of Compliance Strategies	8
Analysis (Of Alternative Compliance Plans	8
	Case 01 Case 02 Case 03 1 Case 04 1 Case 05 1 Case 06 1 Case 07 1 y Analysis 1	9 10 10 11 11
	Allowance Price Sensitivity	l4 l4
Conclusio	AIS AND RECOMMENDATIONS	4

Screening Study Assumptions	Appendix A
Compliance Alternatives Screening Study	Appendix B
Compliance Option Screening Summary	Appendix C
Compliance Option Plans Case Studies	Appendix D
Compliance Option Plans SO ₂ Calculations	Appendix E
Compliance Option Plans Sensitivity Summary	Appendix F
Compliance Option Plans Summary	Appendix G

. 5 5

EXECUTIVE SUMMARY

Generation Systems Planning has performed an analysis of environmental compliance options for both Kentucky Utilities Company (KU) and Louisville Gas and Electric Company (LGE) to comply with the Clean Air Act Amendments of 1990 using the most current information available. This compliance assessment uses the Demand and Energy Forecast, Fuel Forecast, Allowance Market Price Forecast, Generation Expansion Plan, Generator Unit Ratings, and Financial parameters current as of August, 1999. This report documents the results and recommendations of this assessment.

Consistent with previous studies the installation of a scrubber on Ghent Unit 2 continues to be an economically favorable part of the Companies' overall compliance plan. However, increasing the removal efficiency (overscrubbing) of the existing Flue Gas Desulfurization (FGD or scrubber) systems (Ghent Unit 1, Trimble County, Mill Creek Units 1, 2, 3 and 4, Cane Run Units 4, 5 and 6) would now be the lowest cost means of reducing total SO₂ emissions and the first step of any compliance plan. After overscrubbing, the scrubbing of Ghent Unit 2 is the next lowest cost compliance option and its economics should continue to be evaluated as the fuel price differences between high and low sulfur coal change.

This conclusion was reached after consideration and analysis of all viable compliance options and a comprehensive set of alternative compliance strategies.

The actual costs for overscrubbing and the achieved removal efficiencies should be reviewed throughout the upcoming year (2000) to verify that the estimated removal costs were accurate and that overscrubbing continues to be an economical strategy to reduce emissions. This option is very flexible in that it can be stopped at any time without any capital investment loss.

The option of scrubbing Ghent Unit 2 should continue to be evaluated closely with respect to expected fuel prices. It is recommended that the Companies analyze the capital costs and fuel savings associated with the Ghent Unit 2 scrubber at some point after implementation of Phase II of the CAAA. This will allow the Companies to evaluate the impacts of Phase II on the fuel markets and to gain a better estimate of the costs and benefits of overscrubbing. The analysis presently shows that the Ghent Unit 2 option is only slightly more economical than relying on allowance purchases.

I. Introduction

As part of KU's and LG&E's (Companies') ongoing planning process, a new assessment of the Companies' Environmental Compliance plans in response to the Clean Air Act Amendments of 1990 (CAAA) was initiated in August 1999. The objective of this report is to summarize the results of the continuing analysis and suggest a recommended compliance plan. The major study input items updated for this analysis include the following:

Demand and Energy Forecast
Fuel Forecast
Allowance Market Price Forecast
Generation Expansion Plan
Generator Unit Ratings
Capital Costs
Financial Parameters

The first step of the analysis was to reevaluate all possible compliance options for each unit through a cost screening process. All options for every unit were evaluated with current information. Options that passed the screening process were then combined into compliance strategies and evaluated in detail in the hourly production costing model, PROSYM and a capital cost evaluation using the Capital Expenditure and Recovery (CER) module of PROSCREEN II.

Compliance assessment is a continuing and ongoing endeavor. As such, this document represents a report of the results to date.

II. Background

KU had begun to analyze options to reduce sulfur dioxide emissions prior to passage of the Clean Air Act Amendments of 1990. LG&E had no obligations for sulfur dioxide emissions under Phase I of the CAAA of 1990. Phase I affected units include all units greater than 100 MW with emissions greater than 2.5 lbs/mmBtu. By the fall of 1991, the analysis had proceeded to the point that decisions were needed with respect to Phase I compliance. It was determined that installation of a scrubber at Ghent Unit No. 1, the Companies' single largest source of sulfur dioxide emissions, would be a cost effective component in any overall plan to meet Phase I requirements and provide substantial flexibility in later decisions with respect to compliance options for Phase II. Thus, on January 2, 1992, an application was filed with the Kentucky Public Service Commission (KPSC) for a Certificate of Public Convenience and Necessity (CCN) to construct the scrubber at Ghent Unit No. 1.

With receipt of the CCN, the installation of the Ghent Unit 1 scrubber went forward with completion planned for January 1, 1995. The Commission's order approved the recommendation

to install a scrubber at Ghent Unit 1. It is also clear that the Commission's granting of the CCN specifically covered no other decision or actions. At the time of the CCN proceeding and receipt of the order, the Companies had no firm plans with respect to additional actions or compliance options. The analyses that supported the decision to build the scrubber at Ghent Unit 1 necessarily addressed an overall, long-term plan. However, these analyses did not produce, or result in, a firm overall compliance plan. Except for the Ghent Unit 1 scrubber, all other elements in the "optimal" plan were viewed as "best current options under review".

Consistent with the Commission's decision, work on the scrubber was the only major action taken with respect to an overall compliance plan. It was not necessary to make commitments with respect to other compliance plan elements at the time. Additional decisions would be made as necessary and only after full and complete analysis of alternatives with consideration of the best available information and recognition of changing circumstances and conditions. Flexibility in terms of timing and alternatives was viewed as a key benefit of installing a scrubber at Ghent Unit 1. The Companies, as part of their on-going planning process, monitor critical inputs and assumptions, and continue to analyze alternatives.

III. Screening Methodology For Compliance Options

The Companies have been monitoring developments in environmental control technologies for fossil-fueled power plants for many years. Since the emergence of proposed acid rain legislation in 1989, and the actual signing of the Clean Air Act Amendments of 1990 (CAAA), significant attention has been focused on options for controlling SO₂ emissions and meeting the requirements established by the CAAA. The knowledge accumulated through previous and ongoing activities was used to develop a complete list of possible compliance options for each generating unit analyzed. The results of the screening analysis reflect the best information currently available.

Units with existing scrubbers were not considered in the screening process (except for Green River Units 1 and 2 that were considered in a retirement option). The screening methodology involved four distinct steps. The first step identified technically feasible compliance options for each plant as well as system-wide compliance options. In identifying feasible compliance options, the approach was to err on the side of inclusion of candidate options rather than exclusion. The second step developed estimates of the cost per ton of SO₂ removed for each feasible option and the third step determined which options, based on estimated SO₂ removal cost, to consider further as part of a compliance plan. The final step of screening was to combine the options identified by the screening process as economical into various alternative candidate compliance plans. These alternative plans would then be subjected to a more detailed assessment using all the evaluation criteria determined to be significant for compliance planning.

The appropriate measure for ranking technically feasible options for screening purposes is dollars per ton of SO₂ removed. Once again, in developing estimates of the cost per ton removed, a

conservative approach was adopted, choosing to err on the side of inclusion. Options were not eliminated based on marginal differences in assumptions.

Cost estimates of technically feasible options were developed for each generating unit, including all applicable cost elements (capital, fuel and O&M). Screening estimates were prepared for a single year of operation. All estimates were in 1999 dollars and capital costs were levelized with a fixed charge rate. The results, in terms of dollars per ton of SO₂ removed, were then compiled in a summary matrix.

The determination of options appropriate for detailed study as part of alternative compliance plans was based primarily on the estimated dollars per ton removal cost in conjunction with the number of tons potentially removable. The first screening limit was set to exclude options that exceeded SO₂ removal cost of \$300 per ton. The \$300 value represents an estimate of the maximum expected price for allowances purchased for use in 2000. Options with a \$300 per ton or greater removal cost are not likely to be beneficial elements of alternative compliance plans and were not considered further.

IV. Potential Compliance Technologies

A key criterion used in identifying feasible options for plants and the combined systems was demonstration of an option's commercial viability; i.e. technologies had to be proven on a commercial scale to be considered feasible.

Four categories of technologies were identified and considered. These included: (1) Flue Gas Desulfurization Systems ("FGD" or "Scrubbers"); (2) Fuel Switching; (3) Repowering; and (4) System Management. The options within each category are delineated below:

- (1) Scrubber Options Wet Flue Gas Desulfurization Process
 - Dry Flue Gas Desulfurization Process
 - Overscrub Existing Scrubbed Units
- (2) Fuel Switching Options Co
- Coal Blending
 - Coal Switching
 - Coal Cleaning
 - Co-firing with Natural Gas
 - Switching to Natural Gas
 - Biomass/Wood

1999 Environmental Compliance Plan Assessment Report October 1999

(3) Repowering Options

- Combustion Turbine/Combined Cycle
- Fluidized Bed Combustion
- Coal Gasification ("IGCC")
- Retirement/New Unit
- (4) System Management Options
- Bulk Power Transactions
- Environmental Dispatch

V. Development of Screening Data and Assumptions

As noted previously, a conservative philosophy was adopted in the development of cost estimates for screening purposes. When there was doubt about an assumption or numerical value, the intent was to use an assumption or select a value that would tend to permit the option to pass the screening test, rather than to result in its exclusion.

Costs were developed in 1999 dollars based on generic information available from EPRI, unless the Companies had access to better values from specific studies concerning its own units. In applying EPRI information, a "small unit" was defined as one having a generating capacity of 200 MW or less.

See Appendix A for specific assumptions used in the development of the screening estimates for options at each unit.

Only non-reheat units (identified in Appendix A) were considered as candidates for early retirement. These units represent the older, less efficient units on the system. Retired capacity would be replaced with natural gas-fired combined-cycle capacity.

The Bulk Power Transaction Option was viewed as being similar to the allowance market and was assigned a similar range of costs (\$190 to \$300 per ton). Thus, by definition, it passed the screening test. The overscrub option for existing scrubbed units ranged from \$50 to \$130 per allowance and will be evaluated in subsequent detailed simulations in PROSYM.

The Environmental Dispatch Option does not lend itself easily to the development of a single year screening estimate. The evaluation recognized Environmental Dispatch as an economic dispatch with environmental costs reflected. This option was assumed to pass the screening without specifically developing a dollar per ton removal cost estimate, and will be analyzed as part of all subsequent detailed simulations in PROSYM and PROSCREEN II.

VI. Option Screening By Unit

Appendix B presents screening worksheets for each non-scrubbed unit. The base conditions for each unit, including generating capacity, capacity factor, heat input, heat rate, fuel quality (pounds of SO₂/mmBtu), annual SO₂ emissions, and fuel cost are shown at the top of the individual unit's worksheet. The elements of the screening estimates, including capital costs (capacity), delta fuel costs, fixed O&M, and variable O&M, are then presented for each compliance option. The resultant SO₂ reduction (tons per year) and the estimate of dollars per ton removed are shown for each option.

If a compliance option was determined to be unfeasible for a particular unit, the worksheet indicates "n/a" and adds a summary explanation for the determination.

VII. Results Analysis Of Individual Compliance Options

Appendix C presents the Summary Screening Matrix. For each unit and for each option in the screening analysis, the estimated tons SO₂ removed and estimated dollar per ton removed are indicated. Options that are not feasible are indicated by "n/a". The total tons of SO₂ that would be emitted in the absence of SO₂ restrictions (i.e., without altering operations expected in the absence of the CAAA) are listed by generating unit or plant. The estimated impact, or SO₂ reduction, due to each compliance option is shown in the matrix. The significance of each potential option can be compared to the estimated total SO₂ removal requirements of 100,000 tons/yr during Phase II. All coal units will be affected in Phase II.

A variation of the Summary Screening Matrix is also shown in Appendix C. This exhibit distinguishes between options with removal costs less than \$300 per ton and removal costs greater than \$300 per ton removed by use of shading.

Bulk power transactions, environmental dispatch, and overscrubbing were all assumed to be deserving of further analysis and consideration in development and study of alternative compliance plans.

Due to their design and present condition, Tyrone Units 1 and 2 (oil- fired units) and Green River Units 1 and 2 (coal-fired units which are already scrubbed) were not specifically considered in the screening analysis except in a retirement option.

Pineville Unit 3 and Tyrone Unit 3 were found to be inappropriate for inclusion in any further analysis. All technically feasible options for these units were too expensive for serious consideration. Even if the capacity factors for the units were substantially increased, none of the options would be economical. In addition, the total available reductions at these units are not

significant when compared to other feasible and more economical options. This result is consistent with the previous screening study.

No option at Green River Units 3 and 4 was below the \$300 per ton removed screening value. The two lowest cost options were fuel switching to compliance coal at \$410 per ton of SO₂ removed, and fuel switching to Powder River Basin coal at approximately \$640 per ton of SO₂ removed. Switching to compliance coal at these units could reduce annual SO₂ emissions by 14,567 tons. Switching to Powder River Basin coal could reduce SO₂ emissions by 16,648 tons. These options provide a significant reduction in SO₂ emissions, but the cost per ton removed is considered too costly. The coal market should continue to be monitored and these options considered if there is a significant reduction in compliance or Powder River Basin coal prices.

No options were found below the \$300 per ton removed screening value at Brown Unit 1. Switching to compliance coal was estimated at \$610 per ton removed, potentially reducing SO₂ emissions by 2,836 tons per year. The next lowest cost option was switching to Powder River Basin coal at \$1,120 per ton removed with a lower reduction potential of 3,971 tons per year. If Brown 1 were to be considered as part of an alternative compliance plan, switching to compliance coal would be the most likely option.

No options were found below the \$300 per ton removed screening value at Brown Units 2 & 3. Switching to compliance coal would reduce emissions by 16,264 tons at \$480 per ton. Blending coal had a higher cost of \$700 per ton removed with a lower reduction of 10,734 tons per year. Previous studies had shown fuel switching Brown Plant to compliance coal to be an economical method to reduce emissions. The economics have changed because Brown Plant has gone from burning 3 lbs/mmBtu coal to burning 2.2 lbs/mmBtu without a significant change in cost. Therefore, switching to compliance coal does not achieve as significant an emissions reduction compared to previous studies, which raises the cost in terms of doller per ton removed.

At Ghent Unit 2, the only viable option is to install additional scrubber modules in addition to the three modules for Ghent Unit 1. Ghent Unit 2 currently burns compliance coal. Installing additional scrubber modules would allow Ghent Unit 2 to burn high sulfur coal. The lower cost of high sulfur coal would offset the cost associated with scrubbing. The result is a reduction in SO₂ emissions of 12,340 tons per year, at a cost of \$20 per ton.

Ghent Units 3 & 4 currently burn compliance coal. The only viable option for these units is to install a wet FGD like that on Ghent Unit 1. Analysis indicates this option would reduce emissions by 24,441 tons at a cost of \$210 per ton. This option is the next lowest cost option after scrubbing Ghent Unit 2 and will be considered in the detailed analysis.

Previous studies had shown that fuel switching Ghent Units 3 & 4 to Powder River Basin coal would be the cheapest alternative. However, after a test burn of this coal was completed in 1999,

it was determined that additional capital costs would be required than previously projected. The test burn also revealed that burning Powder River Basin coal would result in a more significant heatrate degradation. After the additional capital and operating costs were factored in, the fuel switch to Powder River Basin coal failed to pass the screening requirement maximum of \$300 per ton of SO₂ removed.

VIII. Development Of Compliance Strategies

Individual compliance options must be combined into alternative compliance plans, as the individual unit-specific options are insufficient in themselves to bring the Companies into compliance with Phase 2 SO₂ emission limits. The following combinations of compliance options were considered as appropriate for additional analysis by modeling the Companies' production costs through the 15-year planning horizon and deriving a present value of revenue requirements scenario.

- 1) Overscrub all scrubbed units (except Green River Units 1 and 2), buy allowances
- 2) Overscrub all scrubbed units (except Green River Units 1 and 2), Scrub Ghent Unit 2, buy allowances
- 3) Overscrub all scrubbed units (except Green River Units 1 and 2), Scrub Ghent Unit 2, Scrub Ghent Units 3 and 4, buy allowances
- 4) Scrub Ghent Unit 2 only, buy allowances
- 5) Scrub Ghent Units 3 and 4 only, buy allowances
- 6) Buy allowances

IX. Analysis Of Alternative Compliance Plans

Seven alternative compliance plans were developed and evaluated. In addition, selected sensitivity studies were evaluated for the most economical compliance plans. These sensitivities included the analysis of fuel and allowance price fluctuations. Contained below are further descriptions of these specific alternative compliance plans and their results. The plans are based on the concepts listed above. Each of the plans is modeled in a case with high generation levels on all coal-fired units. This was done to provide a conservative estimate for the timing of compliance projects. The timing of compliance options can be impacted by operational deviations due to unplanned outages and changes in expected generation requirements.

Each alternative compliance plan presented below allows for compliance with the SO₂ emissions limitations imposed by the CAAA. These plans, however, do not include the additional costs that

are expected to be required for compliance with the new NO_x limits. Appendix G contains a summary of all of the plans.

Case 01 - is a case where no additional compliance measures are implemented except for the continuing use of an emissions dispatch adder. An environmental dispatch with an SO₂ adder is applied to Phase I units (Ghent Unit 1, Brown Units 1, 2 and 3, and Green River Unit 4) in 1999 and applied to Phase II units (all units greater than 25 MW) in 2000 and beyond. Ultimately, as the allowance bank is depleted, additional allowances must be purchased beginning in 2004. This case reveals that without any further compliance action, the Companies would be out of compliance beginning in the year 2004.

The 15-year PVRR is \$5,695,886,000 and consists of \$4,979,007,000 in production costs, \$638,799,000 in capital costs for anticipated unit additions to meet increasing capacity needs, and \$78,080,000 for purchased allowances. As with the other compliance plans that follow, these are not incremental production and capital costs due only to compliance options, but rather the total required system capital and production costs for system expansion.

Appendix E presents annual emissions of SO₂ by plant for Case 01 and all other cases that were analyzed. The total tonnage of SO₂ listed is for the aggregate of the Phase I units through 1999 and for Phase I and Phase II units in the year 2000 and beyond. This Appendix includes the corresponding sulfur content of the fuel used, as well as scrubber removal efficiency. Zero removal efficiency indicates the absence of scrubbing capability. Also included are annual available allowances, and the resulting allowance bank. The allowances available are base EPA allowances, extension allowances, allowances associated with the OMU purchase power agreement, allowances purchased in the EPA auction, and all additional purchased allowances. The allowance bank is the net number of allowances after the annual reduction to reflect SO₂ emissions in that year. To remain in compliance, the bank must not become negative.

Case 02 - is identical to Case 01 except that the SO_2 adder has been removed. As the allowance bank is depleted, additional allowances must be purchased beginning in 2003. The benefit received from the emissions adder is reduced toward the end of the study period. This results from the coal units reaching their maximum capacity levels and reducing the ability to switch between units with lower sulfur emissions.

The 15-year PVRR is \$5,705,949,000 and consists of \$4,969,875,000 in production costs, \$638,799,000 in capital costs, and \$97,275,000 for purchased allowances. The removal of the emissions adder results in production costs decreasing \$9,132,000 and allowance costs increasing \$19,195,000 over Case 01. The removal of the environmental dispatch also increased the quantity of purchased allowances required from 863,738 to 1,040,844.

The overall economic impact of removing the SO₂ adder was an increase of \$10,063,000 over Case 01. The results of this case comparison indicate that the adder is still an economical compliance option that should be part of any overall compliance plan. As a result, all other possible compliance plans to be evaluated will include an SO₂ adder as a means of achieving an environmental dispatch of generating units.

Case 03 - is identical to Case 01 with the addition of increasing the removal efficiency (overscrubbing) of existing scrubbed units (Ghent Unit 1, Trimble County, Mill Creek Units 1, 2, 3 and 4, Cane Run Units 4, 5 and 6) as a compliance alternative. Ultimately, as the allowance bank is depleted, additional allowances must be purchased beginning in 2010.

The 15-year PVRR is \$5,663,260,000 and consists of \$5,013,129,000 in production costs, \$638,799,000 in capital costs, and \$11,332,000 for purchased allowances. Overscrubbing results in production costs increasing \$34,122,000 and allowance costs decreasing \$66,748,000 over Case 01. Overscrubbing also reduced the quantity of purchased allowances required from 863,738 to 158,271.

The overall economic impact of overscrubbing was a decrease of \$32,626,000 over Case 01. The results of this case reveal that overscrubbing is a very economical means to reduce emissions. Overscrubbing has many advantages over other options because it requires no additional commitment to capital expenditures. If the price of allowances were to change, the economics of overscrubbing could be reevaluated and stopped or continued as the economics indicated without any loss of capital.

Case 04 - is Case 01 with Ghent Unit 2 scrubbed and fuel switched to 5.5# coal in 2003. The purpose of this case is to determine if the scrubbing of Ghent Unit 2 is a more economical way to comply than simply purchasing any required allowances. While this option reduces overall emissions, the addition of the Ghent Unit 2 scrubber does not achieve a delay in the first year requiring purchased allowances over Case 01.

The 15-year PVRR is \$5,692,723,000 and consists of \$4,943,822,000 in production costs, \$682,862,000 in capital costs, and \$66,039,000 for purchased allowances.

The overall economic impact of adding the Ghent Unit 2 scrubber was a decrease of \$3,164,000 over Case 01. The addition of the Ghent Unit 2 scrubber increases capital expenditures \$44,063,000 and reduces production and purchased allowance costs by \$35,185,000 and \$12,041,000, respectively. The quantity of purchased allowances required decreased 125,104 to 738,634.

The results of this case comparison indicate that the addition of the Ghent Unit 2 scrubber is a less costly method of complying than relying only on purchased allowances. This plan begins to have

annual net savings in 2004 and overcomes the accumulated capital cost in 2012. However, the majority of the savings is due to the forecasted fuel savings between 5.5# and compliance coal. The reliance on projected fuel savings makes the scrubbing of Ghent Unit 2 an option that requires continual review. While the capital costs are dependent on construction issues and become firm at the completion of the project, the premium for compliance coal could vary significantly through time. The forecasted savings associated with scrubbing Ghent Unit 2 would quickly disappear if the premium for compliance coal were to decrease or fail to increase through time as in the current fuel forecast. The risk for this option is greater because the identified benefits of scrubbing Ghent Unit 2 are almost completely reliant upon the fuel forecast.

Case 05 - is Case 01 with Ghent 3 and 4 scrubbed and fuel switched to 5.5# coal in 2003. The purpose of this case is to determine if the scrubbing of Ghent 3 and 4 is a more economical way to comply than simply purchasing any required allowances. The addition of the Ghent 3 and 4 scrubber delays the first year requiring purchased allowances to 2005 from 2004.

The 15-year PVRR is \$5,728,286,000 and consists of \$4,912,571,000 in production costs, \$760,355,000 in capital costs, and \$55,360,000 for purchased allowances.

Case 05's total cost is \$32,400,000 more than Case 01. The scrubbing of Ghent 3 and 4 increases capital expenditures \$121,556,000 and reduces production and purchased allowance costs by \$66,436,000 and \$22,720,000, respectively. The quantity of purchased allowances required decreased 235,302 to 628,436.

The results of this case comparison indicate that scrubbing and fuel switching Ghent 3 and 4 to 5.5# coal is a more costly method of complying than relying on only purchased allowances. The majority of the production savings associated with this option result from the fuel price difference between compliance coal and 5.5# coal. If the premium for compliance coal decreases, or fails to escalate as projected in the cases, the fuel savings associated with scrubbing Ghent 3 and 4 will become less significant. The risk for this option is greater because the identified benefits of scrubbing Ghent 3 and 4 are almost completely reliant upon the fuel forecast. This option, while having a significant impact on overall emissions, fails to be more economical than relying on purchased allowances.

Case 06 - is Case 03 (overscrub in 2000) with Ghent Unit 2 scrubbed and fuel switched to 5.5# coal in 2003. The purpose of this case is to combine to economical options into one case and determine the combined impact. The combination of overscrubbing existing units and scrubbing Ghent Unit 2 scrubber delays the first year requiring purchased allowances to 2014 from 2004 in Case 01. This delay is four years longer than in Case-03 where overscrubbing was the only option implemented.

The 15-year PVRR is \$5,662,901,000 and consists of \$4,980,039,000 in production costs, \$682,862,000 in capital costs, and \$0 for purchased allowances.

Case 06's total cost is \$359,000 less than Case 03 and \$32,985,000 less than Case 01. The addition of the Ghent Unit 2 scrubber to Case 03 increases capital expenditures by \$44,063,000 and reduces production and purchased allowance costs by \$33,090,000 and \$11,332,000, respectively. The quantity of purchased allowances required decreased from 158,271 in Case 03 to 0 in Case 01.

The results of this case indicate that the combination of overscrubbing existing units and scrubbing Ghent Unit 2 and fuel switching to 5.5# coal is a less costly method of complying than relying on only purchased allowances and better than either of the options individually.

Case 07 - is Case 06 with Ghent 3 and 4 scrubbed and fuel switched to 5.5# coal in 2010. The purpose of this case is to develop a compliance plan with little or no reliance on the SO₂ allowance market. The addition of the Ghent 3 and 4 scrubbers decreases the 2010 emissions by 30,439 tons. This reduction lowers emissions below the EPA allotment for 2010, but the allotment is exceeded in the remaining years. This case shows that the combination of scrubbing Ghent 2, 3, and 4, and overscrubbing would substantially reduce the reliance on an uncertain SO₂ allowance market. However, based on the current allowance price forecast, the scrubbing of Ghent 3 and 4 is uneconomical.

The 15-year PVRR is \$5,688,432,000 and consists of \$4,959,706,000 in production costs, \$728,726,000 in capital costs, and \$0 for purchased allowances.

Case 07's total cost is \$25,531,000 more than Case 06 and \$7,454,000 less than Case 01. The addition of the Ghent 3 and 4 scrubbers to Case 06 increases capital expenditures by \$45,864,000 and reduces production costs by \$20,333,000. The quantity of purchased allowances remained unchanged in the 15-year period..

The results of this case indicate that while the addition of the Ghent 3 and 4 scrubber increases costs over Case 06, it does identify a plan that would allow the Companies to significantly reduce their reliance on the SO₂ allowance market.

Although scrubbing Ghent 3 and 4 has been identified as more costly than purchasing allowances, this option is the Companies' next best option to reduce overall SO₂ emissions. This option will be shown in 2014 when the depletion of the allowance bank is expected.

X. Sensitivity Analysis

Although the analyses completed above indicate Case 06 as the best compliance plan, a sensitivity analysis was also completed to determine how vulnerable the plan is to changes in forecasted

information. Such a sensitivity analysis will provide valuable insight on exposure. All of the cases except Case 02 were subjected to an allowance price sensitivity to determine if a high or low allowance price would change the ultimate decision of each option. The forecast of allowance prices is subject to significant uncertainty, both in the near term and the long term. This sensitivity analysis will identify if the economics will be altered significantly with a change in the expected value of future allowances.

Cases 01, 04, and 05 were subjected to a high and low fuel price sensitivity. Case 01 was chosen to maintain a constant case to compare against and Cases 04 and 05 were selected to isolate the two scrubber options and because the scrubber options are highly impacted by the forecasted fuel prices.

Finally Cases 04 and 05 were analyzed with a high and low scrubber cost sensitivity. This sensitivity was used to determine if a $\pm 10\%$ change in the capital cost assumption would alter the economics of the analysis.

Appendices D and E include the detailed cost and SO₂ summaries of each sensitivity analysis and Appendix F contains a summary of the results.

Allowance Price Sensitivity: Cases 01, 03, 04, 05, 06, and 07 were modeled with an allowance price of \$150 and \$300, which compares to the base allowance price of \$200. As expected, Cases 07 and 06 were the least sensitive to a change since they required no allowance purchases in the fifteen-year study period. The ranking of the plans was the same in the high allowance price scenarios. However, the rankings changed in the low allowance price scenario. In this scenario, Case 03 (overscrub in 2000 only) became less costly (by \$2,474,000) than Case 06 (Case 03 with scrubbing Ghent Unit 2 in 2003). The reason is that Case 03 relies more on allowance purchases and gets a benefit from the lower allowance price. However, for the same reason Case 03 receives a larger negative benefit in the high allowance case and becomes \$6,025,000 higher than Case 06. Case 06 is the lowest cost alternative in two of the three scenarios and loses to Case 01 by \$2,474,000 in the low allowance price scenario.

Fuel Price Sensitivity: The purpose of this sensitivity analysis was to determine the impact of varying the fuel price would have on the economics of the two scrubber options (Case 04 and Case 05). The high fuel price forecast has an increase in the price gap between compliance and 5.5# coal and the low fuel price forecast has a slight decrease in the price gap between compliance and 5.5# coal. The ranking of the cases did not change in either of the fuel price forecast scenarios. Case 04 where Ghent Unit 2 is scrubbed in 2003 remains more economical than purchasing allowances in each of the scenarios.

Scrubber Price Sensitivity: The purpose of this sensitivity analysis was to determine the impact of a 10% variance in the scrubber installation price on the economics of the two scrubber options

(Case 04 and Case 05). A 10% increase in the scrubber installation cost would make Case 04 \$1,242,000 more costly than relying on allowance purchases. This case was only \$3,164,000 less costly than purchasing allowances in the base case. Reducing the cost of the Ghent Units 3 and 4 scrubbers 10% was not enough to make the option more economic than purchasing allowances. This sensitivity analysis reveals that a less than 10% increase in the cost of the Ghent Unit 2 scrubber could result in this option becoming uneconomical compared to simply purchasing allowances.

XI. Conclusions and Recommendations

The overscrubbing of all scrubbed units (Ghent Unit 1, Trimble County, Mill Creek Units 1, 2, 3 and 4, Cane Run Units 4, 5 and 6) shows to be economically favorable as part of an overall compliance plan. Overscrubbing significantly reduces overall emissions and is more economical than purchasing allowances. In addition to being economically favorable, this compliance option has the additional benefit of flexibility. If the price for allowances purchases were to change or if the estimated cost of overscrubbing changes, the increased scrubbing levels can be adjusted without any stranded capital investment.

The actual costs for overscrubbing and the achieved removal efficiencies should be reviewed throughout the upcoming year (2000) to verify that the estimated removal costs were accurate and that overscrubbing continues to be an economical strategy to reduce emissions. This option is very flexible in that it can be stopped at any time without any capital investment loss.

This analysis continues to show that the scrubbing of Ghent Unit 2 is the Companies' next best compliance option and its economics should be monitored closely as the fuel price differences between high and low sulfur coal change. It is uncertain what effect the mandatory compliance of Phase II units, beginning in 2000, will have on fuel prices. The Ghent Unit 2 option presently shows that it is only slightly more economical than relying on purchased allowances.

This analysis also continues to show that the use of an SO₂ adder is an economical way to reduce annual emissions. The benefit of the adder decreases through time as coal units reach higher capacity factors, reducing the opportunities to switch from higher emitting units to lower emitting units.

Present analyses show that the continued implementation of an SO₂ adder and overscrubbing are economical methods of reducing emissions. The combination of these two compliance options could feasibly delay the need for any additional compliance option implementation until 2010. This conclusion was reached after consideration and analysis of all viable compliance options and a comprehensive set of alternative compliance strategies. Based on current forecasts, assumptions and risk consideration, the combination of overscrubbing and the use of an environmental dispatch adder is the best initial strategy from a least-cost consideration of a CAAA compliance plan which provides the flexibility to meet changing and uncertain conditions in the future.

The option of scrubbing Ghent Unit 2 should continue to be evaluated closely with respect to expected fuel prices. It is recommended that the Companies analyze the capital costs and fuel savings associated with the Ghent Unit 2 scrubber at some point after implementation of Phase II of the CAAA. This will allow the Companies to evaluate the impacts of Phase II on the fuel markets and to gain a better estimate of the costs and benefits of overscrubbing.

Appendix A

Assumptions (1999 \$):

Fixed Charge Rate

13.5%

Small Unit:

200 Mw or less

(source: EPRI FGDCOST program)

Capital F. O&M Var. O&M (\$/kw) (\$/kw-yr) (\$/mwh) \$230 \$10 \$0.34

 Wet FGD:
 Large Units:
 \$230
 \$10

 Small Units:
 \$460
 \$20

Green River switch to 6# Coal at \$0.96 /mmBtu

Dry FGD: Small Units: \$110 \$10 \$2.87

Blend 50%: Blend current coal with compliance coal using a 50%-50% blend

price plus the following blending cost:

Ghent, Pineville: \$0.06 /mmBtu
Brown, Tyrone: \$0.09 /mmBtu
Green River: \$0.28 /mmBtu

Precipitator Rebuild Cost: Precipitator Upgrade Cost:

\$52 /kw (source: EPRI, S&L) \$25 /kw (source: EPRI)

\$0.34

Fuel prices reflect the Companies' current fuel purchases for comparable coal as delivered. PRB coal price reflects the estimated price as delivered to the Mississippi

River plus barge cost to the Ghent plant.

	High sulfur (5#) coal priced at	\$0.94 /mmBtu
Switch MS:	Switch to medium sulfur (3#) coal priced at	\$1.15 /mmBtu
	Green River has incremental transportation cost of	\$0.25 /mmBtu
Switch LS:	Switch to low sulfur (2#) coal priced at	\$1.19 /mmBtu
	Green River has incremental transportation cost of	\$0.25 /mmBtu
Switch Comp:	Switch to compliance (1.2#) coal priced at	\$1.20 /mmBtu
	Green River has incremental transportation cost of	\$0.26 /mmBtu
	Brown has incremental transportation cost of	\$0.17 /mmBtu
	Tyrone has incremental transportation cost of	\$0.18 /mmBtu
Switch PRB:	Switch to Powder River Basin (0.8#) coal priced at Plus incremental transportation cost as follows:	\$1.09 /mmBtu
	Brown, Tyrone, Pineville	\$0.23 /mmBtu
	Green River	\$0.31 /mmBtu
	Fixed O&M cost:	\$6 /kw-yr
	Boiler and unit upgrades for:	· •
	Small Units:	\$230 /kw
	Large Units except Ghent 3&4:	\$115 /kw + 20% derate.
	Ghent 3&4 :	\$50 /kw + 5% derate.
	Ghent 3&4 Heat Rate Penalty:	550 btu/kwh
	Derate Cost:	
	Capacity Replacement Cost Energy Cost:	\$40 M
	Gas priced at \$2.50/mmBtu for	10%

Compliance coal priced at \$1.20/mmBtu for

90%

Gas Co-fire: Co-fire with natural gas priced at \$2.50 /mmBtu

Percent of heat input 10%

Capital upgrade cost \$2 /kw

+ Pipeline cost \$9 M

(assumed complete at Brown)

Switch Gas: Switch fuel to natural gas priced at \$2.50 /mmBtu

Capital upgrade cost \$57 /kw + Pipeline cost \$9 M

(assumed complete at Brown)

Biomass: 1) Co-fire with wood waste priced at \$1.40 /mmBtu

(based on \$2/ton for sawdust and \$10/ton transportation)
Percent of heat input from wood waste

Capital costs: \$50 /kw
Fixed O&M cost \$1 /kw-yr

2) Co-fire with wood waste priced at \$2.07 /mmBtu

(based on \$5/ton for wood chips and \$10/ton transportation)
Percent of heat input 15%
Capital costs: \$50 /kw

Fixed O&M cost \$1 /kw-yr

CT/CC: Repower with combustion turbine / combined cycle

Capital Cost (EPRI TAG cost less \$250/kw credit): \$300 /kw

FBC: Repower with fluidized bed combustion.

Capital Cost (EPRI TAG cost less \$250/kw credit): \$1,050 /kw

IGCC: Repower with integrated coal gasification combined cycle.

Capital Cost (EPRI TAG cost less \$250/kw credit): \$1,200 /kw

Note: Repower technology applicable to small, older units only.

CAAA Compliance Option Screening

Retirements

Assumption:

\$/Ton SO2 Rem.

Consider non-reheat generation as candidates for retirement. Replace capacity with gas-fired combined cycle unit. Combined cycle heatrate assumed 8500 btu/kwh.

Unit	Capability	mmBtu*e6	Tons SO2
Green River 1&2 Green River 3 Tyrone 3 Tyrone 1&2 Pineville 3	60 70 70 60 32	0.5 5.0 1.5 0.5	200 11,500 1,000 100 500
Total	292 M	lw 8.0	13,300
Replacement Cost for 300 Mw CC (\$/kw)	\$500		
Annual Cost (13.5%FCR)	20.3 \$	M/yr	
Fuel Delta @ \$2.5/mmBtu (2.5 -1.2)*8.0mmBtu (Heatrate adjusted)	6.3 \$	M/yr	
Total Annual Cost	26.6 \$	M/yr	

\$1,997

Appendix B

Ghent 2 Unit information for:

Average Annual Data

	Mw Capacity	city	500		Average Amines Heat Input (mmBtu) Finel Cost (\$/mmBtii)	Average Amnual Data Input (mmBtu) Cost (\$/mmBtii)	29,039,000 1.20		Tons SO2 Emitted	Emitted	15,970
	Capacity Heat Rate	Capacity Factor Heat Rate (Btu/kwh)	10,200		Fuel #SO2/mmBtu	/mmBtu	7				
	Canacity	Fixed O&M	2	Variable O&M		Incremental Fuel Cost	Fuel Cost	Total	Ø	SO2 Remova	
	\$/kw M\$/yr	\$/kw-yr	S/yr	\$/mwh		\$/mmBtu	M\$/vr	M\$/yr	%	Tons/vr	\$/Ton
Wet FGD	87	5	1.00	0.34	0.97	-0.26	-7.55	0.29	77%	12,340	20
Dry FGD	N/A - Not mature for large units.	for large units.									
Blend 50%	N/A - Already using compliance coal.	ng compliance	coal.								
Switch MS	N/A - Already using compliance coal	ng compliance	coal.								
Switch LS	N/A - Already using compliance coal	ng compliance	coal.								
Sw. Comp.	N/A - Already using compliance coal	ng compliance	coal.								
Sw. PRB	115. 7.7	7.76	3.00	Other Fuel 2.71	7.72	-0.11	-2.56	15.93	24%	3,804	4,190
Co-fire	20 1.3	1.35 0	0.00	0	0.00	0.13	3.78	5.13	10%	1,597	3,210
Sw. Gas	75 5.0	5.06 0	0.00	0	0.00	1.30	37.75	42.81	100%	15,970	2,680
Blomass	N/A - Not mature for large, baseload	for large, base	eload units.								
Biomass	N/A - Not applicable to large, newer	ble to large, ne	ewer units.								
CT/CC	N/A - Not applicable to large, newer	ble to large, ne	ewer units.								
FBC	N/A - Not applicable to large, newer	tble to large, ne	ewer units.								
2251	N/A - Not applicable to large, newer	ble to large, ne	ewer units.		:						

Ghent 3&4 Unit information for: 1000 65% 10,100 Mw Capacity Capacity Factor Heat Rate (Btu/kwh)

Average Annual Data Heat Input (mmBtu) 57 Fuel Cost (\$/mmBtu) Fuel #SO2/mmBtu

57,509,000 1.20 1.1

Tons SO2 Emitted

31,630

	ğ		ိ	X	Variable O&M	J&M	antal	Fuel Cost	Total		Œ.	
	\$/kw	M\$/yr	\$/kw-yr	M\$/yr	\$/mwh M\$/yr	M\$/yr	\$/mmBtu	M\$/yr	M\$/yr	%	Tons/yr	8
Wet FGD	120	16.20	2	2.00	0.34	1.94	-0.26	-14.95	5.18	77%	24,441	
Dry FGD	N/A - N	N/A - Not mature for large units.	r large units.									
Blend 50%	N/A - Al	N/A - Already using	compliance coal.	coal.				:			ļ	
Switch MS	N/A - Al	N/A - Already using	compliance coal.	coal.								
Switch LS	N/A - Al	N/A - Already using	compliance coal.	coal.								
Sw. Comp.	N/A - Al	N/A - Already using	compliance coal.	coal.								
Sw. PRB	20	6.75	2.5	2.50	Other Fuel 0.67	3.82	-0.11	-2.91	10.16	27%	8,626	
Co-fire	11	1.49	0	0.00	0	0.00	0.13	7.48	8.96	10%	3,163	
Sw. Gas	99	8.91	0	0.00	0	0.00	1.30	74.76	83.67	100%	31,630	
Biomass	N/A - Nc	N/A - Not mature for large, baseload units.	r large, base	load units.								
Biomass	N/A - N	N/A - Not applicable to large, newer units.	to large, ne	wer units.		:						
02/20	N/A - Nc	N/A - Not applicable to large, newer units.	to large, ne	wer units.								į
FBC	N/A - Nc	N/A - Not applicable to large, newer units.	to large, ne	wer units.								{
၁၁၅၊	N/A - Nc	N/A - Not applicable to large, newer units.	to large, ne	wer units.								

	20.000000		1,180	2,830	2,650			
Tons/yr	:		8,626	3,163	31,630			
% 77%	.		27%	10%	100%			

Brown 1 Unit information for: 100 60% 10,800 Mw Capacity Capacity Factor Heat Rate (Btu/kwh)

Heat Input (mmBtu)
Fuel Cost (\$/mmBtu)
Fuel #SO2/mmBtu

5,676,000 1.19 2.2 Average Annual Data

Tons SO2 Emitted

6,240

	Capacity	210	Fixed O&M	Λ	Variable O&M	D&M	Incremental Fuel Cost	Fuel Cost	Total		SO2 Remov
	\$/kw	M\$/vr	\$/kw-yr	IM\$/yr	\$/mwh	M\$/yr	\$/mmBtu	M\$/yr	M\$/yr	%	Tons/yr
Wet FGD	460	6.21	20	2.00	0.34	0.18	0.00	0.00	8.39	%06	5,616
Dry FGD	110	1.49	10	1.00	2.87	1.51	0.00	0.00	3.99	20%	3,120
Blend 50%	52	0.70	0	0.00	0	00:00	0.18	1.02	1.72	23%	1,418
Switch MS	N/A - Already		using 2.2# sulfur coal.	coal.							
Switch LS	N/A - Aiready		using 2.2# sulfur coal.	coal.							
Sw. Comp.	52	0.70	0	0.00	0	00:0	0.18	1.02	1.72	45%	2,836
Sw. PRB	230	3.11	9	09'0	00.0	0.00	0.13	0.74	4.44	64%	3,971
Co-fire	2	0.03	0	00:00	0	00.0	0.13	0.74	0.77	10%	624
Sw. Gas	22	0.77	0	00.00	0	00.00	1.31	7.44	8.21	100%	6,240
Biomass	50	0.68	.	0.10	0	00.0	0.01	90.0	0.83	2%	312
Biomass	50	0.68	-	0.10	0	0.00	0.13	97.0	1.52	15%	986
CT/CC	300	4.05	0	0.00	0	00.0	1.31	7.44	11.49	100%	6,240
FBC	1050	14.18	0	0.00	0	0.00	-0.25	-1.42	12.76	%06	5,616
0091	1200	16.20	0	0.00	0	0.00	-0.25	-1.42	14.78	%66	6,178

al \$/Ton	1,490	1,280	1,220		610	1,120	1,230	1,310	2,670	1,630	1,840	2,270	2,390
O2 Remov Tons/yr	5,616	3,120	1,418		2,836	3,971	624	6,240	312	936	6,240	5,616	6,178
S %	%06	20%	23%		45%	64%	10%	100%	2%	15%	100%	%06	%66

Brown 2&3 Unit information for:

Average Annual Data

	Mw Capacity	> .	260		Heat Input (mmBtu)	Average Aminan Data Input (mmBtu)	32,524,	-	Tons SO2 Emitted	Emitted	35,780
	Capacity Factor Heat Rate (Btu/kwh)	ıctor Btu/kwh)	65% 10,200		Fuel Cost (\$/mmBtu) Fuel #SO2/mmBtu	\$/mmBtu) 'mmBtu	1.19 2.2				
	Capacity	Fixed O&	N	Variable O&M	N&C	Incremental Fuel Cost	Fuel Cost	Total	S	SO2 Remova	8
	/	\$/kw-yr	1\$/yr	\$/mwh		\$/mmBtu	M\$/yr	M\$/vr	%	Tons/yr	\$/Ton
Wet FGD	Ŕ	10	5.60	0.34	1.08	0.00	0.00	24.07	%06	32,202	750
Dry FGD	N/A - Not mature for large units	r large units.									
Blend 50%	22 1.66	0	0.00	0	0.00	0.18	5.85	7.52	30%	10,734	700
Switch MS	N/A - Already using 2.2#	sulfur	coal.								
Switch LS	N/A - Already using 2.2#	sulfur	coal.								
Sw. Comp.	25 1.89	0	0.00	0	0.00	0.18	5.85	7.74	45%	16,264	480
Sw. PRB	186 14.09	9	3.36	Other Fuel 2.71	8.65	0.13	3.38	29.49	62%	22,151	1,330
Co-fire	2 0.15	0	00.00	0	0.00	0.13	4.26	4.41	10%	3,578	1,230
Sw. Gas	57 4.31	0	0.00	0	0.00	1.31	42.61	46.92	100%	35,780	1,310
Biomass	N/A - Not mature for large, baseload units.	ır large, base	load units.				:				
Biomass	N/A - Not applicable to large, newer units.	e to large, ne	wer units.		:						
CT/CC	N/A - Not applicable to large, newer units	e to large, ne	wer units.								
FBC	N/A - Not applicable to large, newer units	e to large, ne	wer units.								
၁၁၁၂	N/A - Not applicable to large, newer units.	e to large, ne	wer units.								

Green River 3&4 Unit information for:

Average Annual Data Heat Input (mmBtu) Fuel Cost (\$/mmBtu) Fuel #SO2/mmBtu 180 60% 11,000

Mw Capacity Capacity Factor Heat Rate (Btu/kwh)

10,407,000 1.01 4

Tons SO2 Emitted

20,810

	Capacity	city	Fixed O&M	5	Variable O&M	O&M	Incremental Fuel Cost	Fuel Cost	Total	S	SO2 Removal	
	\$/kw M\$/yr	M\$/vr	\$/kw-vr	l\$/yr	\$/mwh	M\$/yr	\$/mmBtu	M\$/vr	M\$/yr	%	Tons/yr	쓩
Wet FGD	460	11.18	50	3.60	0.34	0.32	90.0-	-0.52	14.58	85%	17,689	
Dry FGD	110	2.67	10	1.80	2.87	2.72	0.00	0.00	7.19	20%	10,405	
Blend 50%	25	0.61	0	0.00	0	0.00	86.0	3.90	4.51	35%	7,284	
Switch MS	0	0.00	0	0.00	0	0.00	6E:0	4.06	4.06	25%	5,203	
Switch LS	25	0.61	0	0.00	0	0.00	0.43	4.48	5.08	20%	10,405	
Sw. Comp.	52	1.26	0	0.00	0	0.00	0.45	4.68	5.95	70%	14,567	
Sw. PRB	230	5.59	မ	1.08	0.00	0.00	0.39	4.06	10.73	80%	16,648	
Co-fire	52	1.26	0	00.00	0	00.0	0.15	1.55	2.81	10%	2,081	
Sw. Gas	107	2.60	0	0.00	0	0.00	1.49	15.51	18.11	100%	20,810	
Biomass	50	1.22	Ţ	0.18	0	0.00	0.02	0.20	1.60	2%	1,041	
Biomass	50	1.22	-	0.18	0	0.00	0.16	1.65	3.05	15%	3,122	
CT/CC	300	7.29	0	00:0	0	0.00	1.49	15.51	22.80	100%	20,810	
FBC	1050	25.52	0	0.00	0	0.00	-0.07	-0.73	24.79	%06	18,729	İ
2291	1200	29.16	20	3.60	2	1.89	-0.07	-0.73	33.92	%66	20,602	1

		920	069	620	780	490	2	6	350	870	6	980	8	20	,650
# # # # #) -	2 0	39	39	32	94	Þ	79	1,3	.80	1,5,	16	1,10	1,3%	1,68
īd c	2	17,689	10,405	7,284	5,203	10,405	14,567	16,648	2,081	20,810	1,041	3,122	20,810	18,729	20,602
6 6	0	85%	20%	35%	25%	20%	%02	%08	10%	100%	2%	15%	100%	%06	%66
::: :::	:::	80	6	-	9	8	5	9	Ţ.	-	0	5	Q	6	2

Tyrone 3 Unit information for:

Average Annual Data Heat Input (mmBtu) Fuel Cost (\$/mmBtu)

1,420	val	r \$/Ton	3,980	2,070	101 3,230			203 2:060	609 4,360	142 10,410	20 2,960	71 7,800	213 3,660	3,720	78 7,210	96 8,780
Emitted	SO2 Remova	Tons/yr	1,278								1,420			1,420	1,278	1,406
Tons SO2 Emitted		%	%06	20%	4%			14%	43%	10%	100%	2%	15%	100%	%06	%66
	Total	M\$/vr	5.09	1.47	0.33			0.42	2.65	1.48	4.20	0.55	0.78	5.28	9.21	12.34
2,024,000 1.29 1.4	Fuel Cost	M\$/vr	-0.71	-0.71	0.09			0.18	90.00	0.24	2.45	0.01	0.24	2.45	-0.71	-0.71
Heat Input (mmBtu) Fuel Cost (\$/mmBtu) Fuel #SO2/mmBtu	Incremental Fuel Cost	\$/mmBtu	-0.35	-0.35	90.02			0.09	0.03	0.12	1.21	0.01	0.12	1.21	-0.35	-0.35
Heat Input (mmBtu) Fuel Cost (\$/mmBtu Fuel #SO2/mmBtu	D&M	M\$/yr	0.05	0.44	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.31
	Variable O&M	\$/mwh	0.34	2.87	0			0	0.00	0	0	0	0	0	0	8
70 25% 13,200		\$/yr	1.40	0.70	0.00	coal.	coal.	0.00	0.42	0.00	0.00	0.07	0.07	0.00	0.00	1.40
y Ictor Btu/kwh)	Fixed O&M		50	10	0			0	O	0	0			0	0	20
Mw Capacity Capacity Factor Heat Rate (Btu/kwh)	λis	٧	4.35	1.04	0.24	N/A - Already using low sulfu	N/A - Already using low sulfur	0.24	2.17	1.23	1.75	0.47	0.47	2.84	9.92	11.34
	Capacity	\$/kw	460	110	25	N/A - Al	N/A - AI	25	530	131	186	50	50	300	1050	1200
			Wet FGD	Dry FGD	Blend 50%	Switch MS	Switch LS	Sw. Comp.	Sw. PRB	Co-fire	Sw. Gas	Вютавя	Biomass	CT/CC	FBC	2251

Pineville 3 Unit information for:

Mw Capacity Capacity Factor Heat Rate (Btu/kwh)

32 25% 13,350

Average Annual Data Heat Input (mmBtu) Fuel Cost (\$/mmBtu) Fuel #SO2/mmBtu

936,000 1.04 1.4

Tons SO2 Emitted

099

	Canacity	Ąio	Fixed O&M	>	Variable O&M	78M	Incremental Fuel Cost	Fuel Cost	Total		SO2 Removal	<u></u>
	\$/kw	٧r		\$/yr	\$/mwh		\$/mmBtu	M\$/yr	M\$/yr	%	Tons/yr	\$/Ton
Wet FGD	460	1.99	20	0.64	0.34	0.05	-0.10	-0.09	2.56	64%	424	6,030
Dry FGD	110	0.48	10	0.32	2.87	0.20	-0.10	-0.09	0:00	20%	930	2,740
Blend 50%	25	0.11	0	00:0	0	00.00	0.14	0.13	0.24	7%	6 47	5,070
Switch MS	N/A - A	N/A - Aiready using low sulf	g low sulfur coal.	oal.								
Switch LS	N/A - A	N/A - Already using low sulf	y low sulfur coal	oal.								
Sw. Comp.	25	0.11	0	0.00	0	00.0	0.16	0.15	0.26	14%	94	2,730
Sw. PRB	230	0.99	9	0.19	0.00	00.0	0.28	0.26	1.45	43%	283	5,120
Co-fire	283.25	1.22	0	0.00	0	00.00	0.15	0.14	1.36	10%	99	20,610
Sw. Gas	338.25	1.46	0	0.00	0	00.0	1.46	1.37	2.83	100%	99 %	4,280
Biomass	20	0.22	1	0.03	0	0.00	0.05	0.05	0.26	2%	33	8,030
Biomass	20	0.22	1	0.03	0	0.00	0.15	0.14	0.39	15%	66 %	3,970
CT/CC	300	1.30	0	0.00	0	0.00	1.46	1.37	2.66	100%	99 %	4,030
FBC	1050	4.54	0	0.00	0	0.00	-0.10	-0.09	4.44	%06	594	7,480
2291	1200	5.18	0	0.00	0	0.00	0.10	-0.09	5.09	%66	653	7,790

Appendix C

Summary Screening Matrix CAAA Compliance Options \$/Ton SO2 Removed

Alternative	Pin 3	Tyr 1&2	Tyr 3	GR 1&2	GR 3&4	Br 1	Br 2&3	Gh 2	Gh 3&4
Wet FGD	6,030	Oil Fired	3,980	Already Scrubbed	820	1,490	750	20	210
Dry FGD	2,740	Oil Fired	2,070	Already Scrubbed	069	1,280	n/a	n/a	n/a
Blend Coal	5,070	Oil Fired	3,230	Already Scrubbed	620	1,220	700	n/a	n/a
Switch Coal MS LS Comp		Oil Fired	n/a n/a 2,060	Already Scrubbed	780 490 410 640	n/a 0 610	n/a 0 480	n/a n/a n/a 4 190	n/a n/a n/a 1 180
Co-fire Gas	"	Oil	10,410	Already Scrubbed	1,350	1,230	1,230	3,210	2,830
Switch Gas	4,280	Oil Fired	2,960	Already Scrubbed	870	1,310	1,310	2,680	2,650
Biomass 5% 15%		Oil Fired	7,800	Already Scrubbed	1,540 980	2,670	n/a	n/a	n/a
CT/CC	4,030	Oil Fired	3,720	Aiready Scrubbed	1,100	1,840	n/a	n/a	n/a
FBC	7,480	Oil Fired	7,210	Already Scrubbed	1,320	2,270	n/a	n/a	n/a
Gasification	7,790	Oil Fired	8,780	Already Scrubbed	1,650	2,390	n/a	n/a	n/a
Retirement			2,000			n/a	n/a	n/a	n/a

Overscrub Existing Scrubbed Units: \$50 - \$130 /Ton

Bulk Power Transactions: \$190 - \$300 /Ton

Environmental Dispatch

08/23/99

Summary Screening Matrix CAAA Compliance Options \$/Ton SO2 Removed > \$300 Shaded

Alternative	Pin 3	Tyr 1&2	Tyr 3	GR 182	GR 3&4	Br 1	Br 2&3	Gh 2	Gh 3&4
Wet FGD	6,030		3,980	Aiready Scrubbed	820	1,490	750	20	210
Dry FGD	2,740	Oil Fired	2,070	Already Scrubbed	069	1,280	n/a	n/a	n/a
Blend Coal	5,070	Oil Fired	3,230	Already Scrubbed	620	1,220	700	n/a	n/a
Switch Coal MS LS Comp	n/a n/a 2,730 5,120	Oil Fired	n/a n/a 2,060 4,360	Already Scrubbed	780 490 410 640	n/a 0 610 1,120	n/a 0 480 1,330	n/a n/a n/a 4,190	n/a n/a n/a 1,180
Co-fire Gas	20,610	Oil Fired	10,410	Already Scrubbed	1,350	1,230	1,230	3,210	2,830
Switch Gas	4,280	Oil Fired	2,960	Already Scrubbed	870	1,310	1,310	2,680	2,650
Biomass 5% 15%	8,030 3,970	Oil Fired	7,800	Already Scrubbed	1,540 980	2,670 1,630	n/a	n/a	n/a
CT/CC	4,030	Oil Fired	3,720	Already Scrubbed	1,100	1,840	n/a	n/a	n/a
FBC	7,480	Oil Fired	7,210	Already Scrubbed	1,320	2,270	n/a	n/a	n/a
Gasification	7,790	Oil Fired	8,780	Already Scrubbed	1,650	2,390	n/a	n/a	n/a
Retirement			2,000			n/a	n/a	n/a	n/a

Overscrub Existing Scrubbed Units: \$50 - \$130 /Ton

Bulk Power Transactions: \$190 - \$300 /Ton

Environmental Dispatch

Summary Screening Matrix CAAA Compliance Options Tons of SO2 Removed per year

Alternative	Pin 3	Tyr 1&2	Tyr 3	GR 1&2	GR 3&4	Br 1	Br 2&3	Gh 2	Gh 3&4
NOCAAA Tons Emitted	099	Oil	1420	Already Scrubbed	20,810	6,240	35,780	15,970	31,630
Wet FGD	424	Oil Fired	1,278	Already Scrubbed	17,689	5,616	32,202	12,340	24,441
Dry FGD	330	Oil	710	Already Scrubbed	10,405	3,120	n/a	n/a	n/a
Blend Coal	47	Oil Fired	101	Already Scrubbed	7,284	1,418	10,734	n/a	n/a
Switch Coal MS	n/a		n/a		5,203	n/a	n/a	n/a	n/a
ST	n/a	ō	n/a		10,405	0	0	n/a	n/a
Comp PRB	94 283	Fired	203 609	Scrubbed	14,567 16,648	2,836 3,971	16,264 22,151	n/a 3,804	n/a 8,626
Co-fire Gas	99	Oil Fired	142	Already Scrubbed	2,081	624	3,578	1,597	3,163
Switch Gas	099	Oil Fired	1,420	Aiready Scrubbed	20,810	6,240	35,780	15,970	31,630
Biomass 5% 15%	33 8	Oil	71	Already Scrubbed	1,041	312 936	e/u	n/a	n/a
CT/CC	099	Oil	1,420	Already Scrubbed	20,810	6,240	n/a	n/a	n/a
FBC	594	Oil Fired	1,278	Already Scrubbed	18,729	5,616	n/a	n/a	n/a
Gasification	653	Oil Fired	1,406	Already Scrubbed	20,602	6,178	n/a	n/a	n/a
Retirement			13,300			n/a	n/a	n/a	n/a

Overscrub Existing Scrubbed Units: 40,000

Bulk Power Transactions & Allowance Trading

Environmental Dispatch

Appendix D

		ပိ	st Comp	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-02	1AA-02			Case: CAAA-01	AAA-01			ï
	Scrub:	No Environmental Dispatch	ntai Dispatch		Scrub:					
									OIFFE	DIFFERENCE
	Fuel Switch:				Fuel Switch:				CALCUI	CALCULATIONS
······································	Purchase:	1,040,844 Allowances	Allowances		Purchase:		863,738 Allowances			
200		Allowance	Conito	Total	Broduction	Allowance	Capital	Total	Total	Cumulative Total
1999	i citarina i	2	- Capital	BO		•			(1,121)	(1,121)
2000		•	228			ı	228		(929)	(1,797)
2001		•	7,968			,	7,968		(986)	(2,733)
2002		,	28,557			ı	28,557		(20)	(3,502)
2003		3,381	42,224			1	42,224		2,749	(753)
2004		11,476	52,842			4,746	52,842		6,043	5,291
2002		10,983	60,801			9,538	60,801		821	6,111
2006		10,447	62,450			9,107	62,450		762	6,873
2007		10,095	60,783			8,945	60,783		625	7,497
2008		9,221	60,104			8,249	60,104		206	8,003
2009		8,730	58,106			7,754	58,106		520	8,523
2010		8,901	54,427			8,015	54,427		455	8,978
2011		8,563	51,917			7,721	51,917		404	9,382
2012		7,938	50,403			7,169	50,403		362	9,743
2013		7,540	47,989			6,837	47,989		320	10,063
Totals	4,969,875	97,275	638,799	5,705,949	4,979,007	78,080	638,799	5,695,886	10,063	

		ပိ	Cost Comp	mparison of Alternative Compliance Plans	f Alterna	tive Com	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
· 5 ·		Case: CAAA-03	AAA-03			Case: CAAA-01	AAA-01			
	Scrub:	Scrub: 2000: Overscrub Scrubbed Units	ub Scrubbed U	nits	Scrub:					
									DIFFE	DIFFERENCE
	Fuel Switch:				Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	158,271	Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capitai	Total	Total	Cumulative Total
1999		•	•			•	•			
2000		•	228			•	228		3,122	3,122
2001		•	2,968			•	7,968		2,819	5,941
2002		•	28,557			1	28,557		2,865	8,806
2003		•	42,224			1	42,224		2,857	11,663
2004		•	52,842			4,746	52,842		(1,966)	969'6
2002		•	60,801			9,538	60,801		(6,944)	2,753
2006		•	62,450			9,107	62,450		(6,572)	(3,819)
2007		•	60,783			8,945	60,783		(6,571)	(10,390)
2008		•	60,104			8,249	60,104		(2,986)	(16,376)
2009		•	58,106			7,754	58,106		(5,571)	(21,947)
2010		595	54,427			8,015	54,427		(2,390)	(27,337)
2011		3,803	51,917			7,721	51,917		(1,945)	(29,281)
2012		3,535	50,403			7,169	50,403		(1,750)	(31,032)
2013		3,429	47,989			6,837	47,989		(1,594)	(32,626)
Totals	5,013,129	11,332	638,799	5,663,260	4,979,007	78,080	638,799	5,695,886	(32,626)	

		Cos	Cost Compa	arison of	Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-04	1AA-04			Case: CAAA-01	1AA-01			
	Scrub:	2003: Scrub Ghent 2	nent 2		Scrub:				DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	738,634	738,634 Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		-				•	•		•	
2000		1	910			,	228		682	682
2001		•	11,260				7,968		3,292	3,974
2002		•	33,159			ı	28,557		4,602	8,576
2003		•	48,057			ı	42,224		2,594	11,170
2004		2,045	57,931			4,746	52,842		(1,192)	9,978
2005		8,199	65,241			9,538	60,801		(464)	9,484
2006		7,843	66,324			9,107	62,450		(988)	8,598
2007		1,771	64,163			8,945	60,783		(1,224)	7,373
2008		7,141	63,052			8,249	60,104		(1,482)	5,892
2009		6,830	60,677			7,754	58,106		(1,205)	4,687
2010		7,044	56,668			8,015	54,427		(1,803)	2,884
2011		6,820	53,867			7,721	51,917		(1,922)	962
2012		6,308	52,097			7,169	50,403		(2,035)	(1,073)
2013		6,037	49,456			6,837	47,989		(2,091)	(3,164)
Totals	4,943,822	66,039	682,862	5,692,723	4,979,007	78,080	638,799	5,695,886	(3,164)	

		Ŝ	Cost Comp	arison o	mparison of Alternative Compliance Plans	tive Con	pliance	Plans		
				All Cost	All Costs in 1999 PV \$1000	9 PV \$10	00			
		Case: CAAA-05	AAA-05			Case: C	Case: CAAA-01			/-
	Scrub:				Scrub:					•
		2003: Scrub Ghent 3 and 4	hent 3 and 4						DIFFE	DIFFERENCE
	Fuel Switch:	2003: Ghent 3 and 4 (5.	and 4 (5.5#)		Fuel Switch:				CALCU	CALCULATIONS
***	Purchase:	628,436 Allowanc	Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•			•	•
2000		•	2,109			•	228		1,881	1,881
2001		•	17,049			•	7,968		9,081	10,962
2002		1	41,250			•	28,557		12,693	23,655
2003		1	58,316			•	42,224		9,078	32,733
2004		1	66,881			4,746	52,842		2,480	35,212
2005		9/6,376	73,051			9,538	60,801		2,312	37,524
2006		6,856	73,137			9,107	62,450		2,295	39,819
2007		6,731	70,107			8,945	60,783		699	40,482
2008		6,285	68,237			8,249	60,104		342	40,824
2009		5,830	65,198			7,754	58,106		(788)	40,036
2010		6,208	60,610			8,015	54,427		(1,322)	38,714
2011		6,049	57,298			7,721	51,917		(1,821)	36,893
2012		2,657	52'0'59			7,169	50,403		(1,892)	35,002
2013		5,367	52,037			6,837	47,989		(2,602)	32,400
Totals	4,912,571	55,360	760,355	5,728,286	4,979,007	78,080	638,799	5,695,886	32,400	

		Š	Cost Compa	mparison of Alternative Compliance Plans	Alterna	tive Com	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-06	1AA-06			Case: CAAA-01	AAA-01			
	Scrub:	Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2	b Scrubbed Ui nent 2	nits	Scrub:				OIFFEF	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(2.5#)		Fuel Switch:				CALCUL	CALCULATIONS
	Purchase:	,	Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	,			•	•		,	•
2000		٠	910			•	228		3,804	3,804
2001		•	11,260			•	7,968		6,111	9,915
2002		•	33,159			•	28,557		7,467	17,382
2003		ı	48,057			•	42,224		5,655	23,037
2004		•	57,931			4,746	52,842		(231)	22,806
2002		•	65,241			9,538	60,801		(5,884)	16,922
2006		•	66,324			9,107	62,450		(2,989)	10,934
2007		ı	64,163			8,945	60,783		(6,417)	4,517
2008		ı	63,052			8,249	60,104		(6,164)	(1,647)
2009		•	60,677			7,754	58,106		(2,684)	(7,331)
2010		,	56,668			8,015	54,427		(909'9)	(13,937)
2011		•	53,867			7,721	51,917		(265'9)	(20,533)
2012		ı	52,097			7,169	50,403		(6,294)	(26,828)
2013		•	49,456			6,837	47,989		(6,157)	(32,985)
Totals	4,980,039	•	682,862	5,662,901	4,979,007	78,080	638,799	5,695,886	(32,985)	

		ပိ	Cost Comp	arison o	f Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cos	ts in 199	All Costs in 1999 PV \$1000	00		1	
		Case: C	Case: CAAA-06			Case: C	Case: CAAA-03			
	Scrub:	Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2	ub Scrubbed L hent 2	Inits	Scrub:	Scrub: 2000: Overscrub Scrubbed Units	ub Scrubbed L	Jnits	DIFFE	DIFFERENCE
· · · · · · · · · · · · · · · · · · ·	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCU	CALCULATIONS
	Purchase:	•	Allowances		Purchase:		158,271 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		1	,				ŧ		٠	
2000		•	910			ı	228		682	682
2001		•	11,260			P	7,968		3,292	3,974
2002		,	33,159			•	28,557		4,602	8,576
2003		•	48,057			•	42,224		2,799	11,375
2004		,	57,931			•	52,842		1,735	13,110
2005		,	65,241				60,801		1,060	14,170
2006		•	66,324			,	62,450		583	14,753
2007		1	64,163			,	60,783		154	14,907
2008		•	63,052			•	60,104		(178)	14,729
2009		•	60,677			•	58,106		(113)	14,616
2010		•	56,668			565	54,427		(1,217)	13,400
2011		•	53,867			3,803	51,917		(4,652)	8,748
2012		•	52,097			3,535	50,403		(4,544)	4,204
2013		•	49,456			3,429	47,989		(4,563)	(329)
Totals	4,980,039	•	682,862	5,662,901	5,013,129	11,332	638,799	5,663,260	(359)	

		S	st Comp	arison o	Cost Comparison of Alternative Compliance Plans	tive Com	pliance	Plans		
				All Cost	All Costs in 1999 PV \$1000	9 PV \$10	00			
		Case: CAAA-07	4AA-07			Case: CAAA-01	AAA-01			
	Scrub:	Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2 2010: Scrub Ghent 3 and 4	ub Scrubbed U hent 2 hent 3 and 4	nits	Scrub:				DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#) 2010: Ghent 3 and 4 (5.5#)	(5.5#) and 4 (5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:		Allowances		Purchase:	863,738	863,738 Allowances			•
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capitaí	Total	Total	Cumulative Total
1999		•	•			•	•		•	•
2000		•	910			•	228		3,804	3,804
2001		•	11,260			B	2,968		6,111	9,915
2002		,	33,159			•	28,557		7,467	17,382
2003		1	48,057			•	42,224		5,655	23,037
2004		•	57,931			4,746	52,842		(231)	22,806
2002		,	65,241			9,538	60,801		(5,884)	16,922
2006		•	66,324			9,107	62,450		(2,989)	10,934
2007		•	65,287			8,945	60,783		(5,293)	5,641
2008		•	68,480			8,249	60,104		(136)	4,905
2009		•	68,265			7,754	58,106		1,904	608'9
2010		•	66,288			8,015	54,427		(2,376)	4,434
2011		•	62,260			7,721	51,917		(3,450)	984
2012		•	59,419			7,169	50,403		(3,776)	(2,792)
2013		•	55,845			6,837	47,989		(4,661)	(7,454)
Totals	4,959,706	•	728,726	5,688,432	4,979,007	78,080	638,799	5,695,886	(7,454)	

		Č	st Comp	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	90			
	Scrub:	Case: CAAA-03 Low Allowance Price Scrub: 2000: Overscrub Scrubbed Units	AAA-03 Price Ib Scrubbed U.	nits	Scrub:	Case: CAAA-01 Low Allowance Price	AAA-01 • Price			
									DIFFE	DIFFERENCE
	Fuel Switch:				Fuel Switch:				CALCUI	CALCULATIONS
,	Purchase:	158,271	158,271 Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999			٠			•	•		•	
2000		•	228			•	228		3,122	3,122
2001		•	7,968			ı	7,968		2,819	5,941
2002		•	28,557			ı	28,557		2,865	8,806
2003		,	42,224			•	42,224		2,857	11,663
2004		•	52,842			3,559	52,842		(780)	10,883
2002		1	60,801			7,153	60,801		(4,559)	6,324
2006		1	62,450			6,830	62,450		(4,295)	2,029
2007		•	60,783			6,709	60,783		(4,335)	(2,306)
2008		•	60,104			6,187	60,104		(3,924)	(6,230)
2009		1	58,106			5,816	58,106		(3,632)	(9,862)
2010		424	54,427			6,011	54,427		(3,527)	(13,390)
2011		2,852	51,917			5,791	51,917		(3962)	(14,355)
2012		2,651	50,403			5,377	50,403		(842)	(15,197)
2013		2,572	47,989			5,128	47,989		(742)	(15,939)
Totals	5,013,129	8,499	638,799	5,660,427	4,979,007	58,560	638,799	5,676,366	(15,939)	

		Š	Cost Comp	arison o	emparison of Alternative Compliance Plans	tive Com	pliance	Plans		
				All Cost	All Costs in 1999 PV \$1000	PV \$100	00			
	Scrub:	Case: CAAA-03 High Allowance Price Scrub: 2000: Overscrub Scrubbed Units	AAA-03 e Price ub Scrubbed ∪	Inits	Scrub:	Case: CAAA-01 High Allowance Price	AAA-01 9 Price			
									DIFFE	DIFFERENCE
	Fuel Switch:			٠	Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	158,271	Allowances		Purchase:	863,738	863,738 Allowances			
300%	Brodiotion	Allowance	Costico	Total	Drodiotion	Allowance	Conitol	Total	Total	Cumulative
1999		2	Capital	- Otal	IOISAROLL		Capital	Ota	,	1
2000		•	228			•	228		3,122	3,122
2001		•	7,968			•	7,968		2,819	5,941
2002		ı	28,557			•	28,557		2,865	8,806
2003		,	42,224			•	42,224		2,857	11,663
2004		ı	52,842			7,118	52,842		(4,339)	7,324
2002		1	60,801			14,307	60,801		(11,713)	(4,389)
2006		1	62,450			13,661	62,450		(11,125)	(15,514)
2007		•	60,783			13,417	60,783		(11,043)	(26,558)
2008		ı	60,104			12,373	60,104		(10,111)	(36,669)
2009		1	58,106			11,632	58,106		(9,448)	(46,116)
2010		848	54,427			12,022	54,427		(9,114)	(55,231)
2011		5,704	51,917			11,581	51,917		(3,304)	(59,134)
2012		5,302	50,403			10,753	50,403		(3,567)	(62,702)
2013		5,144	47,989			10,256	47,989		(3,298)	(99)
Totals	5,013,129	16,998	638,799	5,668,926	4,979,007	117,120	638,799	5,734,926	(66,000)	

·		Š	Cost Comp	arison of	Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-04 Low Allowance Price 2003: Scrub Ghent 2	AAA- 04 Price hent 2		Scrub:	Case: CAAA-01 Low Allowance Price	AAA-01 Price			
				-					DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(2.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:		738,634 Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999										•
2000		1	910			ı	228		682	682
2001		•	11,260			ı	7,968		3,292	3,974
2002		•	33,159			•	28,557		4,602	8,576
2003		,	48,057			ı	42,224		2,594	11,170
2004		1,534	57,931			3,559	52,842		(517)	10,653
2002		6,149	65,241			7,153	60,801		(129)	10,494
2006		5,882	66,324			6,830	62,450		(220)	9,923
2007		5,828	64,163			6,709	60,783		(931)	8,993
2008		5,356	63,052			6,187	60,104		(1,205)	7,788
2009		5,123	60,677			5,816	58,106		(974)	6,814
2010		5,283	56,668			6,011	54,427		(1,560)	5,254
2011		5,115	53,867			5,791	51,917		(1,696)	3,557
2012		4,731	52,097			5,377	50,403		(1,820)	1,738
2013		4,528	49,456			5,128	47,989		(1,891)	(153)
Totals	4,943,822	49,529	682,862	5,676,213	4,979,007	58,560	638,799	5,676,366	(153)	

		SOO	Cost Comp	arison of	Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
:	Scrub:	Case: CAAA-04 High Allowance Price 2003: Scrub Ghent 2	IAA-04 Price		Scrub:	Case: CAAA-01 High Allowance Price	AAA-01 Price		<u> </u>	D E E E E E E
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	738,634	Allowances		Purchase:	863,738	863,738 Allowances			1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999	6	•	,			-	1		•	•
2000		•	910				228		682	682
2001		•	11,260			ı	7,968		3,292	3,974
2002	8	•	33,159			•	28,557		4,602	8,576
2003	8	•	48,057			ı	42,224		2,594	11,170
2004		3,068	57,931			7,118	52,842		(2,542)	8,628
2002	19	12,299	65,241			14,307	60,801		(1,164)	7,464
2006	10	11,764	66,324			13,661	62,450		(1,519)	5,946
2007		11,656	64,163			13,417	60,783		(1,811)	4,135
2008	3	10,712	63,052			12,373	60,104		(2,035)	2,099
2009		10,246	60,677			11,632	58,106		(1,667)	432
2010	0	10,566	56,668			12,022	54,427		(2,288)	(1,856)
2011		10,230	53,867			11,581	51,917		(2,372)	(4,228)
2012	3	9,461	52,097			10,753	50,403		(2,466)	(6,694)
2013		9;056	49,456			10,256	47,989		(2,491)	(9,184)
Totals	4,943,822	850'66	682,862	5,725,742	4,979,007	117,120	638,799	5,734,926	(9,184)	

		S	st Comp	arison o	f Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	ts in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-05 Low Allowance Price	AAA- 05 Price		Scrub:	Low A	Case: CAAA-01 llowance Price			
		2003: Scrub Ghent 3 and 4	hent 3 and 4						DIFFE	DIFFERENCE
	Fuel Switch:	2003: Ghent 3 and 4 (5.	and 4 (5.5#)		Fuel Switch:				CALCU	CALCULATIONS
	Purchase:	628,436	Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			,	•			-
2000		•	2,109			ı	228		1,881	1,881
2001		•	17,049			ı	7,968		9,081	10,962
2002		•	41,250			,	28,557		12,693	23,655
2003		•	58,316			1	42,224		9,078	32,733
2004		•	66,881			3,559	52,842		3,666	36,399
2005		4,782	73,051			7,153	60,801		3,102	39,501
2006		5,142	73,137			6,830	62,450		2,858	42,359
2007		5,049	70,107			6,709	60,783		1,216	43,575
2008		4,714	68,237			6,187	60,104		833	44,408
2009		4,373	65,198			5,816	58,106		(302)	44,101
2010		4,656	60,610			6,011	54,427		(871)	43,231
2011		4,537	57,298			5,791	51,917		(1,403)	41,828
2012		4,243	52,075			5,377	50,403		(1,514)	40,314
2013		4,025	52,037			5,128	47,989		(2,235)	38,080
Totals	4,912,571	41,520	760,355	5,714,446	4,979,007	58,560	638,799	5,676,366	38,080	

		SoS	st Comp	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-05 High Allowance Price	\AA-05 Price		Scrub:	Case: CAAA-01 High Allowance Price	AAA-01 e Price			
		2003: Scrub Ghent 3 ar	nent 3 and 4					1	DIFFE	DIFFERENCE
,	Fuel Switch:	2003: Ghent 3 and 4 (5	and 4 (5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	628,436	628,436 Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capitai	Total	Total	Cumulative Total
1999			•				•		•	,
2000		•	2,109			•	228		1,881	1,881
2001		•	17,049			,	7,968		9,081	10,962
2002		•	41,250			,	28,557		12,693	23,655
2003		•	58,316			•	42,224		8/0'6	32,733
2004			66,881			7,118	52,842		107	32,839
2005		9,564	73,051			14,307	60,801		731	33,570
2006		10,284	73,137			13,661	62,450		1,170	34,740
2007		10,097	70,107			13,417	60,783		(444)	34,296
2008		9,428	68,237			12,373	60,104		(629)	33,656
2009		8,745	65,198			11,632	58,106		(1,750)	31,906
2010		9,313	60,610			12,022	54,427		(2,225)	29,681
2011		9,073	57,298			11,581	51,917		(2,657)	27,024
2012		8,486	52,075			10,753	50,403		(2,647)	24,377
2013		8,051	52,037			10,256	47,989		(3,337)	21,039
Totals	4,912,571	83,040	760,355	5,755,966	4,979,007	117,120	638,799	5,734,926	21,039	

		Ö	Cost Comp	arison o	f Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
			į	All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-06 Low Allowance Price Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2	AAA-06 Price ub Scrubbed U hent 2	nits	Scrub:	Case: CAAA-01 Low Allowance Price	AAA-01 Price		3410	DIFFERENCE
•	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCU	CALCULATIONS
	Purchase:	•	Allowances		Purchase:		863,738 Allowances			.,
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•				•		٠	•
2000		•	910			•	228		3,804	3,804
2001		•	11,260			1	7,968		6,111	9,915
2002		ı	33,159			ı	28,557		7,467	17,382
2003		•	48,057			,	42,224		5,655	23,037
2004		1	57,931			3,559	52,842		926	23,993
2005		1	65,241			7,153	60,801		(3,500)	20,493
2006		•	66,324			6,830	62,450		(3,712)	16,781
2007		•	64,163			6,709	60,783		(4,181)	12,601
2008		ŧ	63,052			6,187	60,104		(4,102)	8,499
2009		1	60,677			5,816	58,106		(3,745)	4,754
2010		1	56,668			6,011	54,427		(4,602)	151
2011		,	53,867			5,791	51,917		(4,666)	(4,515)
2012		1	52,097			5,377	50,403		(4,502)	(9,017)
2013		•	49,456			5,128	47,989		(4,448)	(13,465)
Totals	4,980,039	2	682,862	5,662,901	4,979,007	58,560	638,799	5,676,366	(13,465)	

		ő	st Compa	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00	;		
	Scrub:	Case: CAAA-06 High Allowance Price Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2	AAA-06 Price b Scrubbed Unent 2	nits	Scrub:	Case: CAAA-01 High Allowance Price	AAA- 01 9 Price		OIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	ı	Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999			•			•			•	•
2000		•	910			•	228		3,804	3,804
2001		1	11,260			•	7,968		6,111	9,915
2002		ı	33,159			,	28,557		7,467	17,382
2003		1	48,057			•	42,224		5,655	23,037
2004		•	57,931			7,118	52,842		(2,604)	20,434
2005		•	65,241			14,307	60,801		(10,653)	9,781
2006		,	66,324			13,661	62,450		(10,542)	(191)
2007		,	64,163			13,417	60,783		(10,889)	(11,651)
2008		•	63,052			12,373	60,104		(10,289)	(21,939)
2009		ı	60,677			11,632	58,106		(9,561)	(31,500)
2010		•	56,668			12,022	54,427		(10,614)	(42,114)
2011		•	53,867			11,581	51,917		(10,457)	(52,571)
2012		•	52,097			10,753	50,403		(6,879)	(62,449)
2013			49,456			10,256	47,989		(9,576)	(72,025)
Totals	4,980,039	•	682,862	5,662,901	4,979,007	117,120	638,799	5,734,926	(72,025)	

		တ	st Comp	arison o	Cost Comparison of Alternative Compliance Plans	tive Con	npliance	Plans		
				All Cos	All Costs in 1999 PV \$1000	9 PV \$10	00			
	Scrub:	Case: CAAA-07 Low Allowance Price Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2 2010: Scrub Ghent 3 and 4	AAA-07 Price Ub Scrubbed Uhent 2 hent 3 and 4	inits	Scrub:	Low A	Case: CAAA-01 llowance Price		DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#) 2010: Ghent 3 and 4 (5.5#)	(5.5#) and 4 (5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	•	Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•	•		•	•
2000		•	910			•	228		3,804	3,804
2001		•	11,260			•	7,968		6,111	9,915
2002		•	33,159			•	28,557		7,467	17,382
2003		1	48,057			ı	42,224		5'655	23,037
2004			57,931			3,559	52,842		926	23,993
2005		•	65,241			7,153	60,801		(3,500)	20,493
2006		,	66,324			6,830	62,450		(3,712)	16,781
2007		•	65,287			6,709	60,783		(3,057)	13,725
2008		•	68,480			6,187	60,104		1,326	15,051
2009		•	68,265			5,816	58,106		3,843	18,894
2010		•	66,288			6,011	54,427		(372)	18,522
2011		ı	62,260			5,791	51,917		(1,520)	17,002
2012		•	59,419			5,377	50,403		(1,984)	15,018
2013		•	55,845			5,128	47,989		(2,952)	12,066
Totals	4,959,706	-	728,726	5,688,432	4,979,007	58,560	638,799	5,676,366	12,066	

		ő	st Comp	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00	:		
	Scrub:	Case: CAAA-07 High Allowance Price Scrub: 2000: Overscrub Scrubbed Units 2003: Scrub Ghent 2 2010: Scrub Ghent 3 and 4	AAA-07 Price to Scrubbed Unent 2 nent 3 and 4	nits	Scrub:	Case: CAAA-01 High Allowance Price	AAA-01 9 Price		DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#) 2010: Ghent 3 and 4 (5.5#)	(5.5#) and 4 (5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	•	Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capitai	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999			•			•			•	•
2000		•	910			•	228		3,804	3,804
2001		1	11,260			1	7,968		6,111	9,915
2002		•	33,159			1	28,557		7,467	17,382
2003		,	48,057			•	42,224		5,655	23,037
2004		•	57,931			7,118	52,842		(5,604)	20,434
2002		•	65,241			14,307	60,801		(10,653)	9,781
2006		•	66,324			13,661	62,450		(10,542)	(191)
2007		•	65,287			13,417	60,783		(6,765)	(10,527)
2008		,	68,480			12,373	60,104		(4,861)	(15,387)
2009		,	68,265			11,632	58,106		(1,973)	(17,360)
2010		1	66,288			12,022	54,427		(6,383)	(23,743)
2011		•	62,260			11,581	51,917		(7,310)	(31,053)
2012		•	59,419			10,753	50,403		(7,361)	(38,414)
2013		1	55,845			10,256	47,989		(8,080)	(46,494)
Totals	4,959,706	•	728,726	5,688,432	4,979,007	117,120	638,799	5,734,926	(46,494)	

		ဝိ	st Comp	arison of	f Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
			i	All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-04HF	A-04HF			Case: CAAA-01HF	AA-01HF			
	Scrub:	2003: Scrub Ghent 2	ent 2		Scrub:				OIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
<u> </u>	Purchase:	744,635 Allowan	Allowances		Purchase:		870,740 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•	•		•	•
2000		ı	910			1	228		682	682
2001		,	11,260			•	7,968		3,292	3,974
2002		1	33,159			•	28,557		4,602	8,576
2003		•	48,057			,	42,224		1,791	10,367
2004		2,054	57,931			4,753	52,842		(2,107)	8,260
2002		8,229	65,241			695'6	60,801		(1,408)	6,852
2006		7,882	66,324			9,152	62,450		(1,806)	5,046
2007		7,819	64,163			8,999	60,783		(2,148)	2,899
2008		7,192	63,052			8,306	60,104		(2,424)	474
2009		688'9	60,677			7,821	58,106		(2,050)	(1,576)
2010		7,103	26,668			980'8	54,427		(2,749)	(4,325)
2011		6,885	53,867			7,798	51,917		(2,870)	(7,195)
2012		6,379	52,097			7,255	50,403		(2,992)	(10,187)
2013		6,109	49,456			6,923	47,989		(3,052)	(13,239)
Totals	5,214,831	66,542	682,862	5,964,235	5,260,013	78,663	638,799	5,977,474	(13,239)	

		S	Cost Comp	omparison of Alternative Compliance Plans	f Alterna	tive Com	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-04L	AA-04LF			Case: CA	Case: CAAA-01LF			
	Scrub:	2003: Scrub Ghent 2	hent 2		Scrub:				DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(2.5#)		Fuel Switch:				CALCU	CALCULATIONS
	Purchase:		730,848 Allowances		Purchase:		851,996 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•	•		•	
2000		1	910			ı	228		682	682
2001		ı	11,260			•	7,968		3,292	3,974
2002		ı	33,159			1	28,557		4,602	8,576
2003		ı	48,057			•	42,224		2,278	10,854
2004		1,824	57,931			4,488	52,842		(1,389)	9,466
2005		8,148	65,241			9,458	60,801		(265)	8,873
2006		7,791	66,324			9,019	62,450		(882)	7,989
2007		7,723	64,163			8,860	60,783		(1,144)	6,845
2008		7,094	63,052			8,164	60,104		(1,329)	5,515
2009		6,778	60,677			7,670	58,106		(1,011)	4,504
2010		686'9	56,668			7,925	54,427		(1,534)	2,970
2011		6,753	53,867			7,619	51,917		(1,605)	1,366
2012		6,237	52,097			7,061	50,403		(1,672)	(306)
2013		2,967	49,456		:	6,729	47,989		(1,682)	(1,989)
Totals	4,632,104	65,304	682,862	5,380,270	4,666,468	76,992	638,799	5,382,259	(1,989)	

		Š	Cost Comp	arison of	Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-05HI	AA-05HF			Case: CAAA-01HF	AA-01HF			
	Scrub:				Scrub:					
		2003: Scrub Ghent 3 and 4	hent 3 and 4						DIFFE	DIFFERENCE
	Fuel Switch:	2003: Ghent 3 and 4 (5.5#)	and 4 (5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	633,216	Allowances		Purchase:	870,740	870,740 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999						•				
2000		•	2,109			•	228		1,881	1,881
2001		•	17,049			ı	7,968		9,081	10,962
2002		ı	41,250			•	28,557		12,693	23,655
2003		•	58,316			ı	42,224		7,288	30,943
2004		•	66,881			4,753	52,842		699	31,612
2002		6,426	73,051			9,569	60,801		521	32,133
2006		6,894	73,137			9,152	62,450		223	32,692
2007		6,774	70,107			8,999	60,783		(1,198)	31,495
2008		6,330	68,237			8,306	60,104		(1,437)	30,057
2009		5,878	65,198			7,821	58,106		(2,670)	27,388
2010		6,258	60,610			8,086	54,427		(3,215)	24,172
2011		960'9	57,298			7,798	51,917		(3,733)	20,440
2012		5,707	52,075			7,255	50,403		(3,716)	16,724
2013		5,411	52,037			6,923	47,989		(4,553)	12,171
Totals	5,173,516	55,774	760,355	5,989,645	5,260,013	78,663	638,799	5,977,474	12,171	

		Š	st Comp	arison of	Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
		Case: CAAA-05LF	AA-05LF			Case: CAAA-01LF	AA-01LF			
	Scrub:				Scrub:					
		2003: Scrub Ghent 3 and 4	nent 3 and 4	-					DIFFE	DIFFERENCE
	Fuel Switch:	2003: Ghent 3 and 4 (5	and 4 (5.5#)	٠	Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	625,480	625,480 Allowances		Purchase:	851,996	851,996 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•	J		•	•
2000		•	2,109			•	228		1,881	1,881
2001		ı	17,049			•	2,968		9,081	10,962
2002		•	41,250			•	28,557		12,693	23,655
2003		•	58,316			,	42,224		8,472	32,127
2004		•	66,881			4,488	52,842		2,365	34,492
2005		6,169	73,051			9,458	60,801		2,018	36,510
2006		6,852	73,137			9,019	62,450		2,335	38,845
2007		6,739	70,107			8,860	60,783		861	39,706
2008		6,290	68,237			8,164	60,104		652	40,358
2009		5,842	65,198			7,670	58,106		(325)	40,006
2010		6,204	60,610			7,925	54,427		(782)	39,224
2011		6,033	57,298			7,619	51,917		(1,187)	38,038
2012		5,619	52,075			7,061	50,403		(1,184)	36,854
2013		5,325	52,037			6,729	47,989		(1,775)	35,078
Totals	4.601.909	55.072	760.355	5.417,337	4,666,468	76,992	638,799	5,382,259	35,078	
	2021,021,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

		S	st Comp	arison o	f Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-04 10% Higher Scrubber Cost 2003: Scrub Ghent 2	AAA-04 rubber Cost hent 2		Scrub:	Case: CAAA-01	AAA-01			
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	DIFFERENCE
19.18 a	Purchase:		738,634 Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•			•	•		1	
2000		•	826			•	228		750	750
2001		,	11,589			•	7,968		3,621	4,371
2002		1	33,619			ı	28,557		5,062	9,433
2003		1	48,641			ı	42,224		3,178	12,611
2004		2,045	58,440			4,746	52,842		(683)	11,928
2005		8,199	65,685			9,538	60,801		(20)	11,878
2006		7,843	66,711			9,107	62,450		(499)	11,379
2007		1,771	64,501			8,945	60,783		(988)	10,492
2008		7,141	63,347			8,249	60,104		(1,187)	908'6
2009		06,830	60,934			7,754	58,106		(948)	8,358
2010		7,044	56,892			8,015	54,427		(1,579)	6,779
2011		6,820	54,062			7,721	51,917		(1,727)	5,052
2012		6,308	52,266			7,169	50,403		(1,866)	3,186
2013		6,037	49,603			6,837	47,989		(1,944)	1,242
Totals	4,943,822	66,039	687,268	5,697,129	4,979,007	78,080	638,799	5,695,886	1,242	

C:CAAA1999'Allowance Template.xls 11/8/1999 11:35 AM

		So	st Comp	Cost Comparison of Alternative Compliance Plans	f Alterna	tive Com	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-04 10% Lower Scrubber Cost 2003: Scrub Ghent 2	AAA-04 rubber Cost hent 2		Scrub:	Case: CAAA-01	AAA-01		DIFFE	DIFFERENCE
	Fuel Switch:	Fuel Switch: 2003: Ghent 2 (5.5#)	(5.5#)		Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:	738,634	738,634 Allowances		Purchase:	863,738	863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		•	•				•		•	•
2000		,	841			•	228		613	613
2001		ı	10,931			•	7,968		2,963	3,576
2002		ı	32,698			•	28,557		4,141	7,717
2003		1	47,474			•	42,224		2,011	9,728
2004		2,045	57,422			4,746	52,842		(1,701)	8,027
2002		8,199	64,797			9,538	60,801		(828)	680'2
2006		7,843	65,937			9,107	62,450		(1,273)	5,816
2007		1,77,1	63,825			8,945	60,783		(1,562)	4,253
2008		7,141	62,757			8,249	60,104		(1,777)	2,477
2009		6,830	60,420			7,754	58,106		(1,462)	1,015
2010		7,044	56,444			8,015	54,427		(2,027)	(1,012)
2011		6,820	53,672			7,721	51,917		(2,117)	(3,129)
2012		6,308	51,927			7,169	50,403		(2,205)	(5,334)
2013		6,037	49,310			6,837	47,989		(2,237)	(7,571)
Totals	4,943,822	66,039	678,455	5,688,316	4,979,007	78,080	638,799	5,695,886	(7,571)	

		Ö	st Comp	arison o	f Alterna	Cost Comparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-05 10% High Scrubber Cost	AAA-05 Ibber Cost		Scrub:	Case: CAAA-01	AAA-01			
		2003: Scrub Ghent 3 and 4	hent 3 and 4						DIFFE	DIFFERENCE
· · · · · · · · · · · · · · · · · · ·	Fuel Switch:	2003: Ghent 3 and 4 (5.	and 4 (5.5#)	٠	Fuel Switch:				CALCUI	CALCULATIONS
	Purchase:		628,436 Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		5	•			•	•		٠	•
2000		ı	2,297			,	228		2,069	2,069
2001		•	17,957			•	2,968		686'6	12,058
2002		ı	42,520			•	28,557		13,963	26,021
2003		1	59,925				42,224		10,687	36,708
2004		ı	68,285			4,746	52,842		3,884	40,591
2005		6,376	74,276			9,538	60,801		3,537	44,128
2006		6,856	74,206			9,107	62,450		3,364	47,492
2007		6,731	71,039			8,945	60,783		1,595	49,087
2008		6,285	69,050			8,249	60,104		1,155	50,242
2009		5,830	62,908			7,754	58,106		(82)	50,164
2010		6,208	61,228			8,015	54,427		(704)	49,460
2011		6,049	57,836			7,721	51,917		(1,283)	48,177
2012		5,657	55,543			7,169	50,403		(1,424)	46,754
2013		5,367	52,442			6,837	47,989		(2,197)	44,557
Totals	4,912,571	55,360	772,512	5,740,443	4,979,007	78,080	638,799	5,695,886	44,557	

		Š	Cost Comp	arison o	f Alterna	mparison of Alternative Compliance Plans	pliance	Plans		
				All Cost	s in 1999	All Costs in 1999 PV \$1000	00			
	Scrub:	Case: CAAA-05 10% Lower Scrubber Cost	AAA-05 rubber Cost		Scrub:	Case: CAAA-01	AAA-01			
		2003: Scrub Ghent 3 and 4	hent 3 and 4						DIFFE	DIFFERENCE
	Fuel Switch:	2003: Ghent 3 and 4 (5	and 4 (5.5#)		Fuel Switch:				CALCU	CALCULATIONS
	Purchase:	628,436	628,436 Allowances		Purchase:		863,738 Allowances			
Year	Production	Allowance Purchase	Capital	Total	Production	Allowance Purchase	Capital	Total	Total	Cumulative Total
1999		,					,		•	,
2000		ı	1,921			,	228		1,693	1,693
2001		,	16,141			,	2,968		8,173	9,866
2002		ı	39,981			,	28,557		11,424	21,290
2003		,	56,707			,	42,224		7,469	28,759
2004		,	65,477			4,746	52,842		1,076	29,834
2002		6,376	71,826			9,538	60,801		1,087	30,921
2006		6,856	72,069			9,107	62,450		1,227	32,148
2007		6,731	69,174			8,945	60,783		(270)	31,878
2008		6,285	67,423			8,249	60,104		(472)	31,406
2009		5,830	64,489			7,754	58,106		(1,497)	59,909
2010		6,208	59,992			8,015	54,427		(1,940)	27,969
2011		6,049	56,759			7,721	51,917		(2,360)	25,609
2012		5,657	54,608			7,169	50,403		(2,359)	23,251
2013		5,367	51,632			6,837	47,989		(3,007)	20,244
Totals	4,912,571	55,360	748,199	5,716,130	4,979,007	78,080	638,799	5,695,886	20,244	

Appendix E

				SO2	SUM	MARY	BY Y	EAR							
CASE: CAAA-01 FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 2	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 3 Ghent 4	0.0 0.0	1,1 1,1	1.1	1.1 1.1	1.1 1.1	1.1 1.1									
Green River 1	0.0	4.3	1.1 4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	- 4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6 Mill Creek 1	0.0	6.0	6.0	6.0	6.0	6.0 5.7	6.0	6.0	6.0						
Mill Creek 2	0.0 0.0	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7
Mill Creek 3	0.0	5.7	5.7	5.7 5.7	5.7	5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7	5.7	5.7 5.7	5.7 5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%
Brown 3 Ghent 1	0.0% 92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	0.0% 90.0%	0.0% 90.0%
Ghent 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%
Cane Run 6 Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
			0004		0000	0004		acac	2027	2000	0000	0040	0044	0040	0040
TONS SO2 EMITTED Brown 1	1999 4509	2000 5805	2001 6164	2002 6261	2003 6413	2004 6475	2005 6544	2006 6069	2007 7067	2008 7346	2009 7315	2010 7396	2011 7455	2012 7552	2013 6798
Brown 2	8401	9659	8964	10329	10679	10339	10765	11014	11303	10492	11655	11708	11758	11935	12042
Brown 3	20171	23067	24182	25517	26310	23686	26826	27328	28089	28835	28391	26218	28890	29226	29442
Ghent 1	7462	9563	10685	10780	9765	10894	10852	10854	9732	10890	10879	10859	10876	10895	9780
Ghent 2	0	15564	16382	16490	14434	16244	16477	16732	17050	17499	15528	17260	17370	17474	17531
Ghent 3	0	18565	18188	16260	18340	18314	18522	18854	19221	17349	19406	19484	19460	19736	19853
Ghent 4	0	18583	16229	18182	18330	18223	18373	16711	19078	19306	19186	19340	19318	17520	19613
Green River 1	0	500	526	527	527	643	653	695	686	704	665	726	735	674	682
Green River 2	0	326	399	506	542	623	657	742	726	766	690	780	722	694	727
Green River 3	0	8072	8384	7637	8456	8990	8989	9015	9638	8953	9735	9942	9957	10103	10101
Green River 4 Pineville 3	8035 0	10170 1136	10795 1140	12036 1139	10750 1001	11907 1149	12653 1210	12871 1250	13551 1375	14102 1433	12325 1345	14128 1390	14449 1406	14864 1231	15010
Tyrone 3	0	2059	2099	2224	2084	2319	2401	2499	2697	2895	2741	2810	2732	2720	1444 2790
Cane Run 4	. 0	5671	5841	6106	5971	5768	5637	5934	6341	6100	5803	6181	6148	6452	5584
Cane Run 5	. 0	5803	5294	6157	6455	6242	6533	6228	5726	6153	6200	6165	6295	6536	6222
Cane Run 6	ő	6097	6484	6243	6667	6728	7046	7128	6928	7065	6899	6826	6172	7247	7240
Mill Creek 1	ŏ	10441	9401	10959	10538	10651	10736	10592	11074	9924	10698	11408	10907	11078	11585
Mill Creek 2	ō	11183	12372	11823	13042	12567	13040	13823	12751	11926	13374	13281	13056	13940	13372
Mill Creek 3	0	16931	17863	15901	18089	18482	17863	18157	18513	17903	18648	16479	17900	18083	18893
Mill Creek 4	0	20405	22540	22003	22370	23097	20344	22291	22048	22761	22324	22548	23392	20623	22604
Trimble County 1	0	11744	11943	11913	10787	11662	12187	11715	11604	12217	11703	12098	11514	11805	11697
TOTAL TONS SO2 EMITTED	48578	211343	215874	218992	221550	225001	228307	230500	235193	234619	235508	237027	240508	240388	243010
ALLOWANCES KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	137423	0	13/423	137423
OMU EXTRA	11140	2562	2481	2565	2354	2337	2315	2287	2272	2350	2222	2236	2133	2082	2032
PURCHASE	0	0	0	0	0	37091	80234	82456	87163	86510	87528	97368	100951	100882	103554
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

(1998 Bank of 268724 allowances)

ALLOWANCES (+/-) 45853 -63023 -67635 -70668 -73437 -39814

ENDING ALLOWANCE BANK 314577 251554 183919 113251 39814

٠ - -

TOTAL ALLOWANCES 94431 148320 148239 148323 148113 185187 228307 230500 235193 234619 235508 237027 240508 240388 243010

4	0	
		,

CASE: CAAA-02				•			. – .								
FUEL #/MBTU SO2	1999	2000	2001	2002	2009	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3 Ghent 1	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5
Ghent 2	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 3	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 4	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4 Cane Run 5	0.0 0.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.0 6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	************	xxxxxxxxxxxxxxxxxxxx		escontentinococc		90000000000000000000000000000000000000		000000000000000000000000000000000000000	######################################	000000000000000000000000000000000000000		000000000000000000000000000000000000000	bbaccecons respectables	000 0000 00000000000000000000000000000	www.co.co.co.co.co.co.co.co.co.co.co.co.co.
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3 Ghent 1	0.0% 92.9%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%	0.0% 90.0%
Ghent 1 Ghent 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77,2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8%	80.8%	80.8%
Cane Run 6 Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	82.4% 81.7%	82.4% 81.7%	82.4% 81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
000000000000000000000000000000000000000	romanument to the contract		::::::::::::::::::::::::::::::::::::::	AND BOOK OF THE PERSON	0.000.00.000.0000.000	***************************************	480850000000000000000000000000000000000	sarananas da sentententente	eta uma antico con contro con contro con contro con contro con contro con contro con contro con contro con con		udascocercine reservene	ecoex conservation (CC) 2004	CONCRETE CONTRACT TO SE	000000000000000000000000000000000000000	v 12.20000777777774
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	5561	6254	6951	7212	7492	7601	7718	7041	8065	8238	8233	8348	8317	8467	7712
Brown 2	11322 24381	11194 25183	10292 26407	11672 27921	12107 29054	12037 26187	12239 29634	12416 30256	12722 30975	11715 31835	13070 31469	13194 29064	13195 32096	13386 32546	13458 32837
Brown 3 Ghent 1	7469	9536	10650	10748	9731	10870	10833	10838	9720	10880	10874	10854	10872	10893	9779
Ghent 2	0	14222	14837	14999	13120	14707	14936	15104	15566	16022	14207	15788	15955	15952	16106
Ghent 3	ŏ	17052	16681	14868	16591	16528	16836	17103	17585	15985	17737	17860	17821	18063	18210
Ghent 4	0	17171	14933	16631	16634	16496	16689	15178	17478	17718	17449	17758	17683	16046	17983
Green River 1	Ō	499	528	529	527	643	653	695	686	704	665	726	748	711	733
Green River 2	0	337	402	507	553	623	657	742	726	766	690	780	789	730	798
Green River 3	0	12216	12454	11515	12742	12986	13091	13308	13477	12266	13840	13933	13951	14146	14183
Green River 4	16587	16954	17517	18274	16960	18964	18993	19013	19061	19172	17200	19123	19163	19239	19152
Pineville 3	0	1108	1069	1121	993	1136	1196	1240	1364	1432	1344	1390	1417	1236	1456
Tyrone 3	0	2051 5989	2092 6027	2222 6277	2082 6195	2319 5983	2398 5768	2497 6125	2695 6519	2894 6280	2740 6013	2810 6383	2857 6312	2934	2972
Cane Run 4 Cane Run 5	0	5989 5768	5263	6124	6405	5983 6202	5/68 6512	6203	5704	6144	6200	6166	6300	6626 6540	5756 6211
Cane Run 6	0	5862	6240	6105	6415	6569	6880	6958	6801	6921	6766	6719	6085	7119	7146
Mill Creek 1	Ö	10501	9483	11048	10619	10780	10845	10679	11205	10022	10822	11501	11004	11179	11656
Mill Creek 2	ő	11862	13051	12345	13900	13293	13757	14589	13359	12466	14072	13864	13670	14520	13929
Mill Creek 3	Ō	17309	18261	16246	18430	18906	18183	18519	18895	18232	18980	16757	18226	18370	19156
Mill Creek 4	0	20809	22936	22367	22759	23602	20726	22707	22482	23144	22716	22881	23784	20914	22913
Trimble County 1	0	11687	11841	11793	10670	11514	12047	11549	11435	12088	11557	11991	11387	11681	11590
TOTAL TONS SO2 EMITTED	65320	223564	227915	230523	233976	237944	240588	242760	246519	244923	246640	247887	251630	251298	253735
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11156	2734	2627	2681	2499	2487	2440	2413	2389	2454	2340	2335	2240	2173	2117
PURCHASE	0	0	0	0	24551	89699	92390	94588	98371	96711	98542	108129	111966	111701	114194
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL ALLOWANCES	94447	148493	148386	148439	172809	237944	240588	242760	246519	244923	246640	247887	251630	251298	253735
ALLOWANCES (+/-)	29127	-75071	-79529	-82084	-61168	0	0	0	0	0	0	0	0	0	0
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)	297851	222780	143251	61168	0	0	0	0	0	0	0	0	0	0	0

-57

S

	,			002	. 00111	MARY	D , ,								
ASE: CAAA-03 UEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	20
rown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2
rown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2
rown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2
ihent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	ţ
ihent 2	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
ihent 3	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
ihent 4	0.0	1.1	1.1	1,1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
ireen River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
reen River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
reen River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
reen River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
ineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
yrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
ane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
ane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
ane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
fill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
fill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
fill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
fill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
rimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	
CRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2
rown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0
rown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0
rown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
Shent 1	92.9%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95
ihent 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
hent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
hent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
ireen River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80
ireen River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80
ireen River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	C
ireen River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	C
ineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
yrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	(
ane Run 4	77.2%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85
ane Run 5	80.8%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85
ane Run 6	82.4%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90
fill Creek 1	81.7%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90
fill Creek 2	77.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90
fill Creek 3	78.3%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90
fill Creek 4	77.8%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90
rimble County 1	87.4%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93
ONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Irown 1	4509	5803	6160	6251	6411	6474	6543	6068	7066	7345	7314	7396	7455	7552	(
Brown 2	8401	9655	8956	10322	10672	10336	10762	11011	11301	10491	11655	11708	11758	11933	12
Brown 3	20171	23060	24164	25506	26297	23680	26820	27323	28087	28833	28390	26217	28889	29224	29
Shent 1	7462	4780	5341	5388	4881	5446	5425	5426	4865	5444	5439	5430	5438	5447	
Shent 2	0	15522	16350	16476	14421	16236	16471	16729	17048	17498	15527	17260	17369	17472	17
Shent 3	0	18500	18137	16243	18320	18302	18513	18850	19218	17346	19405	19483	19459	19734	1!
Shent 4	0	18508	16178	18159	18305	18208	18363	16706	19076	19304	19185	19339	19317	17519	19
Green River 1	0	500	526	527	527	643	653	695	686	704	665	726	735	674	
Green River 2	ŏ	326	394	506	542	623 ·	657	742	726	766	690	780	722	694	
Green River 3	ŏ	8072	8380	7632	8456	8990	8989	9015	9638	8953	9735	9942	9957	10103	1
Green River 4	8035	10170	10793	12034	10750	11905	12652	12869	13550	14102	12325	14128	14449	14864	1
Pineville 3	0	1136	1138	1138	1001	1149	1210	1250	1375	1433	1345	1390	1406	1231	•
vrone 3	ŏ	2059	2095	2221	2084	2319	2401	2499	2697	2895	2741	2810	2732	2720	:
Cane Run 4	Ö	3725	3879	4029	3940	3795	3709	3911	4176	4018	3832	4082	4063	4270	
Cane Run 5	Ö	4281	4000	4684	4852	4721	4965	4758	4417	4740	4776	4765	4886	5084	
Cane Run 6	ő	3428	3685	3542	3771	3804	4000	4042	3929	4013	3910	3872	3502	4111	
Mill Creek 1	0	5718	5132	5987	5747	5805	5850	5760	6028	5402	5817	6195	5918	6010	·
Mill Creek 2	0	5316	5795	5496	6131	5872	6083	6427	5888	5511	6184	6124	6017	6407	
Mill Creek 3	ő	7900	8306	7386	8374	8559	8255	8394	8556	8268	8603	7603	8257	8340	
fill Creek 4	ő	9304	10227	9982	10152	10495	9229	10102	9991	10301	10105	10192	10575	9318	1
rimble County 1	Ö	6518	6624	6605	5986	6469	6761	6498	6439	6782	6496	6719	6394	6557	
TOTAL TONS SO2 EMITTED	48578	164279	166258	170115	171619	173829	178311	179073	184755	184150	184138	186161	189297	189264	19 ⁻
ALLOWANCES	7000	4.45555	4 4	4.45755	445	4.45===	4.6755	4.45===	4.45===	4.0	4.6500	407.00	407.00	407405	, -
(U/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	13
(U/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	
OMU EXTRA	11140	2590	2511	2588	2381	2364	2338	2311	2295	2370	2241	2251	2150	2096	
PURCHASE	0	0	0	0	0	0	0	0	0	0	0	6865	49723	49744	5
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FOTAL ALLOWANCES	94431	148348	148269	148346	148139	148122	148097	148069	148053	148128	148000	146540	189297	189264	19
ALLOWANCES (+/-)	45853	-15931	-17989	-21769	-23480	-25707	-30214	-31004	-36702	-36022	-36138	-39621	0	0	
ENDING ALLOWANCE BANK	314577	298647	280657	258888	235408	209701	179487	148483	111781	75759	39621	0	0	0	

SO2 SUMMARY BY YEAR CASE: CAAA-07															
CASE: CAAA-07 FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 2 Ghent 3	0.0 0.0	1.1 1.1	1.1 1.1	1.1 1.1	5.5 1.1	5.5 1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 4	0.0	1.1	1,1	1.1	1.1	1.1	1.1 1.1	1.1 1.1	1.1 1.1	1.1 1.1	1.1 1.1	5.5 5.5	5.5 5.5	5.5 5.5	5.5 5.5
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5 Cane Run 6	0.0 0.0	6.0 6.0													
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3 Ghent 1	0.0% 92.9%	0.0% 95.0%													
Ghent 2	0.0%	0.0%	0.0%	0.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	95.0%	95.0%	95.0%	95.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	95.0%	95.0%	95.0%	95.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4 Pineville 3	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%										
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%
Cane Run 4	77.2%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%
Cane Run 5	80.8%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%
Cane Run 6	82.4%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Mill Creek 1	81.7%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Mill Creek 2	77.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Mill Creek 3	78.3%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Mill Creek 4 Trimble County 1	77.8% 87.4%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%	90.0% 93.0%
•													00.070	00.070	00.070
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1 Brown 2	4509 8401	5803 9655	6160 8956	6251 10322	6191 10110	6171 9589	6270 10087	5795 10318	6750 10641	7045 9858	7000 10963	6658 10077	6703 10221	6778	6050
Brown 3	20171	23060	24164	25506	25457	22790	25807	26180	27030	27763	27362	24091	26661	10189 26656	10230 26648
Ghent 1	7462	4780	5341	5388	4870	5435	5415	5417	4854	5436	5431	5395	5398	5421	4868
Ghent 2	0	15522	16350	16476	4758	5316	5321	5332	5360	5395	4834	5093	5105	5176	5183
Ghent 3	0	18500	18137	16243	17170	16944	17311	17601	18067	16394	18473	5404	5418	5454	5462
Ghent 4	0	18508	16178	18159	17120	16831	17078	15582	17881	18163	18139	5326	5330	4834	5378
Green River 1	0	500	526	527	541	643	653	705	686	703	665	744	739	687	705
Green River 2 Green River 3	0	326 8072	394 8380	506 7632	529 8481	639 9051	675 9004	742 9024	727 9649	765 8964	690 9693	783 10001	727 10054	702 10149	740
Green River 4	8035	10170	10793	12034	10398	11443	12184	12306	13045	13494	11932	12910	13170	13219	10153 13348
Pineville 3	0	1136	1138	1138	998	1165	1223	1254	1375	1428	1352	1411	1419	1241	1463
Tyrone 3	0	2059	2095	2221	2106	2345	2409	2513	2702	2910	2754	2850	2737	2756	2817
Cane Run 4	0	3725	3879	4029	3852	3758	3670	3880	4155	4002	3824	3838	3814	4065	3540
Cane Run 5	0	4281	4000	4684	4806	4690	4931	4744	4398	4733	4772	4523	4680	4904	4694
Cane Run 6	0	3428	3685	3542	3732	3785	3976	4020	3920	3999	3903	3706	3339	3891	3935
Mill Creek 1 Mill Creek 2	0	5718 5316	5132 5795	5987 5496	5689 6074	5762 5825	5804 6043	5735 6398	6011 5874	5384 5499	5806 6178	5908	5660 5786	5814	6073
Mill Creek 3	0	7900	5795 8306	7386	8334	5825 8527	8226	6398 8367	5874 8544	5499 8258	6178 8598	5805 7452	5786 8100	6183 8235	5964 8600
Mill Creek 4	0	9304	10227	9982	10123	10472	9198	10089	9983	10293	10097	10031	10420	9229	10123
Trimble County 1	ő	6518	6624	6605	5947	6435	6727	6471	6421	6763	6488	6580	6288	6501	6446
TOTAL TONS SO2 EMITTED	48578	164279	166258	170115	157285	157615	162008	162474	168070	167247	168954	138584	141767	142083	142420
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11140	2590	2511	2588	2385	2367	2342	2313	2296	2371	2242	2270	2166	2107	2052
PURCHASE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
TOTAL ALLOWANCES	94431	148348	148269	148346	148143	148125	148100	148071	148054	148129	148000	139693	139589	139530	139475
ALLOWANCES (+/-)	45853	-15931	-17989	-21769	-9141	-9490	-13908	-14403	-20016	-19118	-20953	1109	-2178	-2552	-2944
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)	314577	298647	280657	258888	249747	240257	226349	211946	191930	172812	151859	152967	150789	148237	145293

Y YEAR	
--------	--

CASE: CAAA-06		_													
UEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	201
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.
Shent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.
Shent 2	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.
Shent 3	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1,1	1.1	1.1	1.1	1.1	1.
Shent 4	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.
Green River 2			4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.
	0.0	4.3													
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	į
	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	è
rimble County 1	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	•
	4000			0000	2002	0004	2005	2000	0007	0000					
CRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	20
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6
Shent 1	92.9%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.
Shent 2	0.0%	0.0%	0.0%	0.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.0%	95.
Shent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
Shent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.
ireen River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
yrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.
ane Run 4	77.2%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.
Cane Run 5	80.8%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.
Cane Run 6	82.4%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.
	81.7%			90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	
Mill Creek 1		90.0%	90.0%												90.
Mill Creek 2	77.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.
Mill Creek 3	78.3%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.
Mill Creek 4	77.8%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0
Trimble County 1	87.4%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.0%	93.
						contaction of the second				Mark Version and American Street	soverdono menero				denous de la comp
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	21
Brown 1	4509	5803	6160	6251	6191	6171	6270	5795	6750	7045	7000	7063	7097	7195	64
Brown 2	8401	9655	8956	10322	10110	9589	10087	10318	10641	9858	10963	10980	11046	11151	112
Brown 3	20171	23060	24164	25506	25457	22790	25807	26180	27030	27763	27362	25087	27747	27919	280
Shent 1	7462	4780	5341	5388	4870	5435	5415	5417	4854	5436	5431	5423	5433	5445	41
Shent 2	0	15522	16350	16476	4758	5316	5321	5332	5360	5395	4834	5409	5411	5444	5
	0				17170	16944	17311	17601					18328		
Shent 3	-	18500	18137	16243	-				18067	16394	18473	18313		18610	18
Ghent 4	0	18508	16178	18159	17120	16831	17078	15582	17881	18163	18139	18182	18186	16493	18
Green River 1	0	500	526	527	541	643	653	705	686	703	665	731	736	684	
Green River 2	0	326	394	506	529	639	675	742	727	765	690	780	723	695	
Green River 3	0	8072	8380	7632	8481	9051	9004	9024	9649	8964	9693	9969	9966	10084	10
Green River 4	8035	10170	10793	12034	10398	11443	12184	12306	13045	13494	11932	13387	13793	14044	14
Pineville 3	0	1136	1138	1138	998	1165	1223	1254	1375	1428	1352	1389	1420	1236	1
Tyrone 3	Ö	2059	2095	2221	2106	2345	2409	2513	2702	2910	2754	2813	2721	2722	2
Cane Run 4	ő	3725	3879	4029	3852	3758	3670	3880	4155	4002	3824	4074	4050	4252	3
	Ö	4281	4000	4684	4806	4690	4931	4744	4398	4733	4772	4760	4879	5080	4
Cane Run 5															
Cane Run 6	0	3428	3685	3542	3732	3785	3976	4020	3920	3999	3903	3866	3498	4094	4
Mill Creek 1	0	5718	5132	5987	5689	5762	5804	5735	6011	5384	5806	6183	5907	6006	6
Mill Creek 2	0	5316	5795	5496	6074	5825	6043	6398	5874	5499	6178	6116	6012	6401	e
Mill Creek 3	0	7900	8306	7386	8334	8527	8226	8367	8544	8258	8598	7597	8250	8337	ε
fill Creek 4	0	9304	10227	9982	10123	10472	9198	10089	9983	10293	10097	10189	10573	9314	10
rimble County 1	0	6518	6624	6605	5947	6435	6727	6471	6421	6763	6488	6711	6389	6555	€
TOTAL TONS SO2 EMITTED	48578	164279	166258	170115	157285	157615	162008	162474	168070	167247	168954	169023	172163	171762	173
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	
OMU EXTRA	11140	2590	2511	2588	2385	2367	2342	2313	2296	2371	2242	2251	2151	2097	2
PURCHASE	0	2330	2311	2300	2000	0	0	2010	0	2071	0	0	2131	2037	-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SELL	_	-	-							-	-	_		_	
FOTAL ALLOWANCES	94431	148348	148269	148346	148143	148125		148071	148054	148129	148000	139675	139574	139520	139
ALLOWANCES (+/-)	45853	-15931	-17989	-21769	-9141	-9490	-13908	-14403	-20016	-19118	-20953	-29348	-32589	-32242	-34
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)	314577	298647	280657	258888	249747	240257	226349	211946	191930	172812	151859	122510	89921	57679	2

CASE: CAAA-04 2001 2010 FUEL #/MBTU SO2 1999 2000 2002 2003 2004 2005 2006 2007 2008 2009 2011 2012 2013 Brown 1 2.2 2.2 2.2 22 2.2 2.2 2.2 2.2 Brown 2 2.2 Brown 3 2.2 2.2 2.2 Ghent 1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Ghent 2 0.0 1.1 1.1 1.1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 0.0 1.1 1.1 1.1 1.1 1.1 1.1 Ghent 3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.0 Ghent 4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 Green River 1 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 43 4.3 43 Green River 2 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Green River 3 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 43 4.3 Green River 4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Pineville 3 0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Tyrone 3 0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Cane Run 4 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Cane Run 5 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Cane Run 6 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Mill Creek 1 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 2 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 3 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 4 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Trimble County 1 0.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 SCRUBBER REMOVAL EFF. 1999 2001 2002 2003 2004 2006 2007 2008 2010 2011 2012 2013 2000 2005 2009 Brown 1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Brown 2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Brown 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 90.0% 92.9% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% Ghent 1 90.0% 0.0% 0.0% 0.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% Ghent 2 0.0% 90.0% 90.0% 90.0% 0.0% Ghent 3 0.0% Ghent 4 Green River 1 80.0% Green River 2 80.0% Green River 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Green River 4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Pineville 3 0.0% 0.0% 0.0% 0.0% 0.0% **0.0%** 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Tyrone 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% Cane Run 4 77.2% 77.2% 77.2% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% Cane Run 5 80.8% 82.4% 82.4% Cane Run 6 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% Mill Creek 1 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 77.9% Mill Creek 2 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% Mill Creek 3 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 77.8% Mill Creek 4 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% Trimble County 1 87.4% TONS SO2 EMITTED 1999 2000 2001 2002 2003 2004 2005 2007 2008 2009 2010 2006 2011 2012 2013 Brown 1 4509 5805 6164 6261 6197 6174 6273 5798 6751 7047 7001 7065 7098 7196 6486 Brown 2 8401 9659 8964 10329 10122 9597 10097 10326 10645 9862 10965 10983 11049 11155 11242 Brown 3 20171 23067 24182 25517 25476 22803 25821 26191 27037 27768 27365 25089 27751 27924 28081 Ghent 1 7462 9563 10685 10780 9748 10875 10835 10839 9712 10874 10864 10848 10866 10890 9777 Ghent 2 15564 16382 16490 9520 10640 10649 10675 10725 10798 9673 10825 10827 10891 10888 n 16403 18565 18188 16260 17231 16984 17349 17622 18079 18477 18317 18335 18619 18804 Ghent 3 0 Ghent 4 18583 16229 18182 17206 16894 17134 15609 17901 18177 18146 18187 18189 16498 18528 Green River 1 500 526 527 541 643 653 705 686 703 665 731 736 684 700 Green River 2 399 506 529 675 742 765 326 639 727 690 780 723 695 724 8481 0 8384 7637 9051 9004 9024 9649 8964 9969 8072 9693 9966 10084 10117 Green River 3 8035 Green River 4 10170 10795 12036 10400 11444 12185 12310 13045 13495 11932 13388 13794 14046 14193 Pineville 3 0 1136 1140 1139 998 1165 1223 1254 1375 1428 1352 1389 1420 1236 1441 Tyrone 3 ٥ 2059 2099 2224 2106 2345 2409 2513 2702 2910 2754 2813 2721 2722 2790 Cane Run 4 5841 6106 5826 5688 5554 5874 6296 6066 5773 6158 6120 6416 n 5671 5572 5803 5294 6157 6364 6190 6484 6205 5696 6138 6158 6285 Cane Run 5 0 6196 6531 6210 6484 6584 Cane Run 6 6097 6243 6684 6991 7080 6905 7036 6885 6814 6162 7211 7233 Mill Creek 1 10441 9401 10959 10412 10556 10640 10533 11039 9889 10680 11385 10883 11071 11574 Mill Creek 2 11183 12372 11823 12902 12438 12895 13745 12713 11892 13346 13251 13042 13917 13360 16931 17863 15901 17982 18402 17781 18100 18481 17875 18628 16467 17881 18073 Mill Creek 3 18887 22738 22540 20276 22535 20405 22003 22277 23029 22251 22022 22310 23383 20613 Mill Creek 4 22601 12179 0 11943 11913 10715 11597 12122 11661 11569 11684 12081 11499 Trimble County 1 11744 11797 11694 TOTAL TONS SO2 EMITTED 48578 211343 215874 218992 211614 213837 217048 219056 223754 223005 225080 225233 228727 228270 230899 ALLOWANCES KU/LGE BASE 78235 145758 145758 145758 145758 145758 145758 145758 145758 145758 145758 137423 137423 137423 137423 KU/LGE EXTENSION 5056 n ٥ n O n n n 0 n O Λ n 0 0 OMU EXTRA 2562 11140 2481 2565 2358 2340 2318 2289 2273 2351 2222 2236 2133 2082 2033 15985 **PURCHASE** 0 0 0 0 68972 71009 75723 74895 77100 85573 89170 88764 91443 0 0 0 0 0 0 0 ٥ 0 0 TOTAL ALLOWANCES 94431 148320 148239 148323 148116 164084 217048 219056 223754 223005 225080 225233 228727 228270 230899 -67635 49753 ALLOWANCES (+/-) 45853 -63023 -70668 -63498 0 ٥ 0 0 0 n 0 0 0 ENDING ALLOWANCE BANK 314577 251554 183919 113251 49753 0 0 0 0 0 0 0 0 0 0 (1998 Bank of 268724 allowances

SO2 SUMMARY BY YEAR	
---------------------	--

CAST: CAAA OF	,			002		MARY	<i>-</i>							
CASE: CAAA-05 FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
ent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
ent 2	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
hent 3	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Shent 4	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
ireen River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
					_									
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Trimble County 1	0.0	6.5	6.5	0.5	0.5	0.5	Q. 5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Brown 1 Brown 2	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%
Cane Run 6	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%
									81.7%					
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%		81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Brown 1	4509	5805	6164	6261	6213	6183	6321	5842	6810	7067	7011	7074	7121	7232
Brown 2	8401	9659	8964	10329	10108	9632	10156	10378	10644	9968	10972	10959	11036	11132
Brown 3	20171	23067	24182	25517	25614	22983	26106	26530	27296	28057	27456	25334	27941	28200
Ghent 1	7462	9563	10685	10780	9697	10812	10780	10787	9662	10815	10807	10813	10826	10863
Ghent 2	0	15564	16382	16490	13419	14938	15371	15647	15966	16554	14621	16200	16323	16461
Ghent 3	0	18565	18188	16260	10789	10689	10723	10748	10774	9717	10810	10859	10860	10941
Ghent 4	Ö	18583	16229	18182	10640	10561	10562	9515	10620	10678	10636	10692	10676	9679
Green River 1	Ô	500	526	527	516	639	674	705	687	707	674	738	736	685
	•													
Green River 2	0	326	399	506	543	653	695	742	708	766	689	781	724	699
Green River 3	0	8072	8384	7637	8500	9128	9023	9036	9673	8997	9741	9999	10059	10131
Green River 4	8035	10170	10795	12036	10594	11671	12448	12586	13217	13754	12033	13722	13970	14226
Pineville 3	0	1136	1140	1139	1022	1197	1232	1252	1383	1440	1369	1399	1426	1234
Tyrone 3	Ö	2059	2099	2224	2115	2349	2418	2547	2738	2922	2763	2825	2747	2732
Cane Run 4	Ô	5671	5841	6106	5565	5522	5417	5785	6236	5968	5715	6104	6058	6360
	•					6085								
Cane Run 5	0	5803	5294	6157	6268		6363	6125	5649	6085	6127	6101	6240	6487
Cane Run 6	0	6097	6484	6243	6431	6564	6881	7014	6850	6991	6843	6775	6122	7159
Mill Creek 1	0	10441	9401	10959	10014	10250	10317	10270	10819	9708	10444	11172	10697	10936
Mill Creek 2	0	11183	12372	11823	12421	12046	12481	13413	12440	11623	13053	12953	12821	13711
Mill Creek 3	ŏ	16931	17863	15901	17530	18106	17481	17849	18273	17687	18435	16311	17709	17982
	ő	20405	22540	22003	21889	22654	19938	21980	21826	22543	22125	22346	23210	20522
Mill Creek 4 Trimble County 1	0	11744	11943	11913	10336	11219	11736	11379	11362	11988	11472	11933	11351	11752
TOTAL TONS SO2 EMITTED	48578	211343			200224		207125				213796	215090	218650	
	403/6	£11343	£100/4	£10332	200224	200010	20/123	210129	20000	214032	213130	£ 13090	£1003U	£13124
ALLOWANCES KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	10,420
		_	-			-				-	-	-	-	
OMU EXTRA	11140	2562	2481	2565	2376	2355	2333	2300	2281	2359	2231	2243	2139	2086
	0	0	0	0	0	0	53635 0	62071 0	65593 0	65915 0	65807 0	75424 0	79088 0	79615
PURCHASE	^		U	J	J	U	U	U	U	J	U	U	J	U
PURCHASE SELL	0			446	44646		004=05	040155	046000		040-00			
PURCHASE SELL TOTAL ALLOWANCES	94431	148320		148323							213796	215090		
PURCHASE SELL	_		148239 -67635	148323 -70668	148134 -52090	148114 -55763	201726 -5399	210129 0	213633 0	214032 0	213796 0	215090 0	218650 0	219124

CASE: CAAA-01HE 2001 2007 FUEL #/MBTU SO2 2000 2002 2003 2004 2005 2008 2009 1999 2006 2010 2011 2012 2013 Brown 1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 22 Brown 2 22 22 22 22 22 2.2 22 22 22 22 22 22 2.2 2.2 22 Brown 3 22 22 2.2 22 22 2.2 22 2.2 22 22 2.2 2.2 22 2.2 2.2 Ghent 1 55 5.5 55 5.5 5.5 5.5 5.5 55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Ghent 2 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 Ghent 3 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 Ghent 4 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 Green River 1 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Green River 2 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Green River 3 0.0 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 Green River 4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 Pineville 3 1.4 1.4 1.4 1.4 1.4 1.4 14 Tyrone 3 0.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 14 6.0 6.0 6.0 6.0 6.0 Cane Run 4 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Cane Run 5 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Cane Run 6 0.0 60 6.0 60 6.0 60 60 60 60 6.0 60 60 60 6.0 6.0 Mill Creek 1 0.0 5.7 5.7 57 5.7 5.7 57 5.7 57 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 2 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 3 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 Mill Creek 4 0.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 6.5 6.5 6.5 6.5 6.5 6.5 Trimble County 1 0.0 6.5 6.5 6.5 6.5 6.5 SCRUBBER REMOVAL EFF. 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Brown 1 0.0% Brown 2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Brown 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Ghent 1 92.9% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% <u>ዓ</u>በ በ% 90.0% 90.0% 90.0% 90.0% 90.0% 90.0% Ghent 2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Ghent 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Ghent 4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% Green River 1 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% Green River 2 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% Green River 3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Green River 4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Pineville 3 0.0% Tyrone 3 0.0% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% 77.2% Cane Run 4 77.2% 77.2% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% 80.8% Cane Run 5 80.8% Cane Run 6 82 4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82.4% 82 4% Mill Creek 1 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% 81.7% Mill Creek 2 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% 77.9% Mill Creek 3 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 78.3% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% 77.8% Mill Creek 4 77.8% Trimble County 1 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% 87.4% TONS SO2 EMITTED 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 6381 4509 6183 6243 6226 5946 6929 7183 Brown 1 5806 6151 7117 7281 7344 7510 6770 10788 Brown 2 8401 9658 8926 10153 10394 10038 10503 11110 10344 11504 11581 11651 11852 11983 Brown 3 20171 23065 24116 25224 25818 23250 26390 26890 27716 28487 28102 25977 28684 29040 29303 Ghent 1 7462 9565 10691 10785 9770 10900 10856 10856 9734 10891 10880 10860 10876 10895 9780 Ghent 2 15591 16395 16622 14534 16344 16561 16705 17089 17515 15531 17214 17319 17371 17407 18607 18201 16351 18449 18408 18594 18908 19256 17361 19406 19453 19410 19649 19750 Ghent 3 0 Ghent 4 18623 16240 18276 18427 18309 18439 16759 19111 19325 19183 19316 19268 17445 19506 Green River 1 500 526 529 527 643 653 695 686 704 665 726 735 674 682 Green River 2 326 399 507 553 623 657 742 726 766 690 780 722 694 727 8073 8385 7636 8493 9051 9038 9067 9724 9040 9813 10073 10072 10298 Green River 3 10360 8035 12573 13346 14419 15075 Green River 4 10223 10864 12028 11187 13685 13468 15309 15751 16302 16496 1140 1142 1140 1008 1153 1211 1250 1367 1433 1345 1391 1406 Pineville 3 n 1227 1445 2061 2224 2082 2401 2499 2894 2740 2727 2099 2319 2696 2810 2704 Tyrone 3 n 2752 5657 6354 5530 6129 5998 5946 6116 5816 Cane Run 4 0 5878 5783 6196 6159 6471 5588 5608 6200 6439 6240 6542 6246 5741 6250 6582 Cane Run 5 ٥ 5347 6179 6232 6348 6256 6259 7062 6943 6917 6846 6192 Cane Run 6 5971 6518 6674 6741 7153 7093 7266 7260 Mill Creek 1 O 10529 9362 10913 10562 10660 10743 10588 11072 9908 10672 11360 10873 11045 11545 Mill Creek 2 0 11310 12336 11783 13096 12599 13067 13848 12773 11939 13375 13275 13063 13952 13404 Mill Creek 3 17019 17830 15884 18126 18517 17897 18195 18559 17938 18698 16519 17958 18140 18953 O 20468 20375 22095 22530 21995 22402 23138 22327 22806 22376 22596 23454 20680 Mill Creek 4 22658 12212 12242 Trimble County 1 11753 11956 11929 10803 11695 11743 11637 11728 12113 11533 11824 TOTAL TONS SO2 EMITTED 48578 211424 215890 218749 221585 225211 228582 230923 235738 235239 236274 237907 241538 241620 244331 ALLOWANCES 78235 145758 145758 145758 145758 145758 145758 145758 145758 145758 145758 137423 137423 137423 KU/I GE BASE 137423 5056 KU/LIGE EXTENSION n O n 0 0 0 0 n 0 0 ۵ 0 a n 2290 OMU EXTRA 11140 2564 2486 2570 2367 2353 2330 2303 2367 2240 2250 2151 2099 2047 **PURCHASE** 0 O 37150 80493 82862 87689 87114 88276 98233 101964 102098 104861 Ω O n O O SELL 0 n n n n n n n O n 148125 228582 235738 235239 TOTAL ALLOWANCES 94431 148322 148244 148328 185261 230923 236274 237907 241538 241620 244331 ALLOWANCES (+/-) 45853 -63102 -67646 -70421 -73459 -39950 0 0 0 0 0 0 ٥ 0 ENDING ALLOWANCE BANK 314577 251475 183830 113409 39950 0 0 0 0 0 0 0 0 0 0 (1998 Bank of 268724 allowances)

CASE: CAAA-01LF	•			-			<i>-</i>								
FUEL #/MBTU SO2	1999	2000	2001	. 2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1 Ghent 2	5.5 0.0	5.5	5.5 1.1	5.5	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1	5.5 1.1
Ghent 3	0.0	1.1 1.1	1.1	1.1 1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 4	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6 Mill Creek 1	0.0 0.0	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7	6.0 5.7
Mill Creek 2	0.0	5.7 5.7	5.7 5.7	5.7 5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
•							./		-						
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0% 0.0%	90.0%	90.0%	90.0% 0.0%	90.0%	90.0%
Gheat 3	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%
Ghent 3 Ghent 4	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%
Cane Run 6	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3% 77.8%	78.3% [*] 77.8%	78.3% 77.8%									
Mill Creek 4 Trimble County 1	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.6% 87.4%	77.6% 87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
Thinble County 1	07.470	07.476	07.470	07.476	07.476	07.470	07.470	07.470	01.470	07.470	07.470	07.470	07.470	07.470	07.470
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	4509	5796	6137	6163	6262	6295	6391	5911	6889	7171	7140	7219	7273	7424	6650
Brown 2	8401	9630	8892	10100	10307	9892	10355	10627	10921	10158	11253	11290	11362	11505	11583
Brown 3	20171	23039	24069	25151	25705	23108	26207	26664	27459	28194	27732	25605	28233	28514	28702
Ghent 1	7462	9565	10692	10785	9770	10901	10856	10857	9736	10892	10882	10861	10877	10896	9782
Ghent 2	0	15620	16457	16710	14640	16489	16741	17026	17330	17803	15809	17588	17692	17855 20028	17919
Ghent 3	0	18633	18248	16408	18539	18516	18727 18565	19070 16901	19436 19279	17546 19513	19632 19420	19724 19572	19710 19586	17780	20151 19926
Ghent 4 Green River 1	0	18651 500	16281 526	18334 527	18515 527	18417 643	653	695	686	704	665	726	735	674	682
Green River 2	0	326	399	506	553	623	657	742	726	766	690	780	722	694	727
Green River 3	ō	8062	8370	7618	8366	8935	8968	8928	9525	8892	9651	9887	9772	9929	9934
Green River 4	8035	10161	10703	11754	10745	11887	12549	12684	13343	13752	11972	13543	13803	14022	14050
Pineville 3	0	1141	1144	1142	1040	1175	1221	1266	1404	1448	1388	1400	1394	1192	1400
Tyrone 3	0	2059	2099	2224	2082	2319	2400	2499	2696	2894	2740	2810	2727	2704	2752
Cane Run 4	0	5508	5842	6076	5904	5723	5588	5898	6309	6074	5788	6164	6136	6446	5587
Cane Run 5	0	5583	5310	6150	6354	6150	6448	6154	5679	6098	6138	6131	6278	6530	6217
Cane Run 6	0	5946	6468	6218	6630	6688	7025	7107	6910	7048	6875	6805	6154	7213	7217
Mill Creek 1	0	10547	9390	10955	10617	10734	10806	10652	11124	9982	10759	11462	10938	11107	11621
Mill Creek 2	0	11320	12345	11806	13139	12632 18474	13101 17848	13876 18144	12784 18482	11964 17868	13412 18610	13296 16450	13060 17859	13929 18039	13363 18849
Mill Creek 3 Mill Creek 4	0	17014 20464	17831 22514	15867 21978	18102 22383	23106	20329	22271	22017	22729	22286	22509	23342	20576	22558
Trimble County 1	0	11753	11954	11926	10800	11683	12202	11730	11623	12230	11708	12103	11514	11803	11697
TOTAL TONS SO2 EMITTED	48578			218397	220978	224387	227636	229699		233725		235925	239169	238857	241366
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	145756	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11140	2562	2481	2563	2356	2338	2314	2283	2267	2346	2215	2230	2125	2074	2026
PURCHASE	0	0	0	0	0	35079	79563	81658	86333	85621	86574	96272	99620	99360	101916
SELL	ŏ	ŏ	ŏ	ŏ	ō	0	0	0	0	0	0	0	0	0	0
TOTAL ALLOWANCES	94431	148320	148239	148322	148114	183175	227636	229699	234358	233725	234547	235925	239169	238857	241366
ALLOWANCES (+/-)	45853	-62996	-67430	-70075	-72864	-41212	0	0	0	0	0	0	0	0	0
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)		251581	184152	114076	41212	0	0	0	0	0	0	0	0	0	0

CASE: CAAA-04HF		,		00.			. – .								
FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 2	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 3	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 4	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3	4.3
Green River 4 Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	4.3 1.4	4.3 1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		***************	************				***********		*****************	9980 8022 12 12 12 12 12 18			*****************	00000000000000000000000000000000000000	***************************************
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2 Brown 3	0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	0.0% 90.0%
Ghent 2	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%
Cane Run 6	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3% 77.8%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4 Trimble County 1	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%	77.8% 87.4%
Timble County 1	G7.476	U7.470	07.476	07.476	07.470	07.476	07.476	07.476	07.470	07.476	07.470	Q7.476	07.478	07.476	07.476
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	4509	5806	6151	6183	6050	5967	6143	5682	6642	6904	6848	6959	7005	7150	6445
Brown 2	8401	9658	8926	10153	9894	9367	9889	10145	10490	9734	10828	10861	10939	11059	11163
Brown 3	20171	23065	24116	25224	25101	22486	25490	25855	26744	27486	27114	24866	27552	27721	27906
Ghent 1	7462	9565	10691	10785	9759	10886	10844	10846	9719	10879	10868	10849	10867	10890	9776
Ghent 2	0	15591	16395	16622	9597	10700	10699	10710	10746	10817	9684	10833	10832	10894	10888
Ghent 3	0	18607	18201	16351	17309	17059	17400	17669	18105	16401	18470	18269	18268	18499	18676
Ghent 4	0	18623	16240	18276	17259	16949	17162	15638	17915	18180	18138	18153	18127	16402	18402
Green River 1	0	500	526	529	541	643	653	705	686	703	665	731	736	684	700
Green River 2	0	326 8073	399 8385	507 7636	558 8507	639 9094	675 9050	742 9064	727 9720	765 9025	690 9783	780 10060	723 10059	695	724
Green River 3 Green River 4	8035	10223	10864	12028	10790	12007	12769	12986	13760	14342	12881	14396	14908	10212 15307	10279 15543
Pineville 3	0	1140	1142	1140	1010	1170	1223	1255	13700	1428	1351	1390	1421	1233	1444
Tyrone 3	0	2061	2099	2224	2104	2345	2408	2513	2702	2909	2754	2813	2717	2706	2753
Cane Run 4	ő	5530	5878	6129	5853	5719	5592	5903	6321	6092	5807	6187	6144	6450	5585
Cane Run 5	Ō	5608	5347	6200	6367	6191	6499	6226	5720	6166	6243	6225	6338	6576	6234
Cane Run 6	0	5971	6518	6259	6600	6706	7023	7115	6930	7068	6906	6838	6185	7249	7260
Mill Creek 1	0	10529	9362	10913	10421	10557	10639	10523	11036	9870	10652	11335	10846	11035	11534
Mill Creek 2	0	11310	12336	11783	12937	12463	12925	13763	12734	11901	13344	13245	13046	13932	13393
Mill Creek 3	0	17019	17830	15884	18003	18424	17803	18129	18521	17908	18675	16502	17936	18125	18944
Mill Creek 4	0	20468	22530	21995	22297	23053	20297	22281	22064	22781	22358	22579	23442	20668	22654
Trimble County 1	0	11753	11956	11929	10716	11615	12135	11678	11590	12198	11704	12090	11511	11808	11696
TOTAL TONS SO2 EMITTED	48578	211424	215890	218749	211672	214040	217317	219428	224239	223555	225763	225961	229600	229296	231998
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11140	2564	2486	2570	2373	2357	2334	2307	2292	2368	2241	2251	2152	2099	2048
PURCHASE	0	0	0	0	0	16056	69224	71363	76189	75429	77764	86286	90025	89773	92527
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL ALLOWANCES	94431	148322	148244	148328	148131	164172	217317	219428	224239	223555	225763	225961	229600	229296	231998
ALLOWANCES (+/-)	45853	-63102	-67646	-70421	-63541	-49868	0	0	o	0	0	0	o	0	0
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)		251475	183830	113409	49868	0	0	0	0	0	0	0	0	0	0

CASE: CAAA O41 E	,	V		001	. 00111	WAT	ווסו	EAR							
CASE: CAAA-04LF FUEL#/MBTU SQ2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2 5.5	2.2	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5	2.2 5.5								
Ghent 1 Ghent 2	5.5 0.0	1.1	5.5 1.1	1.1	5.5 5.5	5.5 5.5	5.5 5.5	5.5 5.5	5.5	5.5 5.5	5.5 5.5	5.5 5.5	5.5 5.5	5.5 5.5	5.5
Ghent 3	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 4	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4 1.4	1.4	1.4	1.4	1.4	1.4						
Tyrone 3 Cane Run 4	0.0 0.0	1.4 6.0	1.4 6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	1.4 6.0	1.4 6.0	1.4 6.0	1.4 6.0	1.4 6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0% 0.0%	90.0% 90.0%	90.0% 90.0%	90.0% 90.0%	90.0% 90.0%	90.0% 90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 2 Ghent 3	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	90.0%	90.0%	0.0%	90.0%	0.0%	90.0% 0.0%	90.0% 0.0%	90.0% 0.0%	90.0% 0.0%	90.0% 0.0%	90.0% 0.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5 Cane Run 6	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%	80.8% 82.4%
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	4509	5796	6137	6163	6094	6045	6174	5702	6644	6934	6880	6943	6986	7133	6385
Brown 2	8401	9630	8892	10100	9845	9286	9821	10060	10391	9639	10674	10682	10776	10854	10908
Brown 3	20171	23039	24069	25151	25050	22430	25428	25771	26643	27385	26939	24708	27344	27489	27604
Ghent 1	7462	9565	10692	10785	9761	10887	10846	10851	9729	10888	10878	10859	10876	10895	9781
Ghent 2	0	15620	16457	16710	9607	10705	10709	10723	10766	10841	9714	10869	10883	10947	10939
Ghent 3	0	18633	18248	16408	17429	17190	17556	17868	18315	16620	18733	18599	18622	18986	19176
Ghent 4	0	18651	16281	18334	17380	17088	17333	15811	18119	18422	18415	18461	18498	16815	18931
Green River 1	0	500	526 300	527 506	541 550	643	653 675	705	686	703	665	731	736	684	700
Green River 2 Green River 3	0	326 8062	399 8370	506 7618	558 8359	639 8967	675 8984	742 8972	727 9540	765 8900	690 9632	780 9901	723 9785	695 9941	724 9996
Green River 4	8035	10161	10703	11754	10472	11504	12188	12237	12957	13296	11668	13032	13338	13424	13478
Pineville 3	0	1141	1144	1142	1043	1194	1234	1274	1405	1445	1396	1400	1409	1199	1402
Tyrone 3	ō	2059	2099	2224	2104	2344	2408	2512	2701	2909	2754	2813	2717	2706	2753
Cane Run 4	0	5508	5842	6076	5688	5643	5503	5833	6261	6030	5748	6128	6087	6396	5563
Cane Run 5	0	5583	5310	6150	6261	6096	6386	6123	5645	6079	6127	6118	6262	6515	6209
Cane Run 6	0	5946	6468	6218	6544	6640	6960	7048	6873	7005	6859	6784	6132	7156	7190
Mill Creek 1	0	10547	9390	10955	10473	10632	10687	10584	11084	9942	10744	11445	10922	11103	11618
Mill Creek 2	0	11320 17014	12345 17831	11806 15867	12981 17975	12485 18376	12965 17748	13789 18064	12737 18454	11923 17845	13386 18598	13273 16439	13051 17851	13918	13362 18848
Mill Creek 3 Mill Creek 4	0	20464	22514	21978	22274	23006	20244	22228	21998	22713	22275	22498	23340	18045 20569	22558
Trimble County 1	0	11753	11954	11926	10712	11599	12121	11687	11602	12219	11706	12098	11513	11802	11694
TOTAL TONS SO2 EMITTED	48578	211316	215669	218397	211151	213398	216619	218586	223278	222504	224481	224561	227846	227272	229817
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11140	2562	2481	2563	2361	2342	2317	2286	2268	2346	2215	2230	2125	2074	2026
PURCHASE	0	0	0	0	0	14255	68544	70542	75252	74400	76508	84907	88298	87774	90368
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL ALLOWANCES	94431	148320	148239	148322	148119	162355	216619	218586	223278	222504	224481	224561	227846	227272	229817
ALLOWANCES (+/-)	45853	-62996	-67430	-70075	-63033	-51044	0	0	0	0	0	0	0	0	0
ENDING ALLOWANCE BANK (1998 Bank of 268724 allowances)	314577	251581	184152	114076	51044	0	0	0	0	0	0	0	0	0	0

CASE: CAAA-05HF		,		00,		11417									
FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2:2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 2	0.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Ghent 3	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 4	0.0	1.1	1.1	1.1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Green River 1	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0 0.0	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7 5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0						5.7 5.7		5.7 5.7		5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7 e s	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7 6.5	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.0	0.5	0.5	0.0	6.5	0.5	6.5	0.5	6.5	6.5	6.5	6.5	6.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2042	2013
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2012 0.0%	0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%
Cane Run 5	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%
Cane Run 6	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
			******************************				**************								
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	4509	5806	6151	6183	6073	5983	6199	5721	6710	6941	6862	6973	7044	7182	6455
Brown 2	8401	9658	8926	10153	9964	9472	10008	10238	10527	9852	10856	10840	10924	11023	11110
Brown 3	20171	23065	24116	25224	25340	22736	25836	26233	27046	27801	27240	25133	27724	27972	28101
Ghent 1	7462	9565	10691	10785	9721	10836	10801	10804	9677	10829	10818	10819	10828	10861	9751
Ghent 2	0	15591	16395	16622	13502	15028	15433	15692	15986	16554	14613	16128	16240	16317	16392
Ghent 3	0	18607	18201	16351	10868	10772	10799	10814	10825	9762	10850	10890	10887	10950	10950
Ghent 4	0	18623	16240	18276	10713	10639	10633	9569	10672	10720	10674	10722	10698	9688	10760
Green River 1	0	500	526	529	532	639	674	705	687	707	674	738	736	685	701
Green River 2	0	326	399	507	560	653	695	742	708	766	689	781	724	699	728
Green River 3	0	8073	8385	7636	8529	9175	9073	9087	9758	9078	9864	10120	10181	10293	10385
Green River 4	8035	10223	10864	12028	10997	12228	12998	13242	13844	14498	12811	14580	14884	15242	15400
Pineville 3	0	1140	1142	1140	1032	1194	1233	1253	1378	1439	1368	1399	1427	1236	1459
Tyrone 3	0	2061 5530	2099 5878	2224 6129	2112 5597	2348 5543	2417 5443	2547 5814	2737 6256	2921 5989	2762 5736	2825 6128	2742 6079	2723	2760
Cane Run 4	0	5608	5347	6200	6253	6087	6374	6145	5664	6110	6173	6162	6290	6385 6535	5549 6192
Cane Run 5 Cane Run 6	0	5971	6518	6259	6449	6588	6913	7046	6877	7023	6870	6801	6152	6535 7194	6192 7225
	0	10529	9362	10913	10006	10234	10297	10246	10799	9676	10403	11113	10644	10889	
Mill Creek 1 Mill Creek 2	0	11310	12336	11783	12451	12065	12489	13421	12449	11620	13041	12936	12812	13719	11382 13190
Mill Creek 3	. 0	17019	17830	15884	17519	18095	17478	17853	18291	17709	18463	16333	17738	18001	18812
Mill Creek 4	0	20468	22530	21995	21876	22636	19933	21987	21848	22568	22152	22376	23242	20557	22542
Trimble County 1	0	11753	11956	11929	10268	11159	11676	11341	11334	11965	11447	11917	11295	11688	11586
TOTAL TONS SO2 EMITTED					200361		207402								221428
A) I OWANIPED															
ALLOWANCES	70005	145750	145750	145750	1/5750	145750	1/5750	145750	145750	145750	145750	107/00	107400	107/00	407/00
KU/LGE BASE	78235	145758	145758	145758		145758	145758		145758	145758	145758			137423	
KU/LGE EXTENSION	5056	2564	2496	0 2570	3306	2270	2356	2222	2205	0	2254	2263	2162	2107	0
OMU EXTRA	11140	2564	2486	2570	2396	2379	2356	2323	2305	2380	2254	2263	2163	2107	2054
PURCHASE SELL	0	0	0	0	0	0	54056 0	62419 0	66010 0	66389 0	66353 0	76026 0	79706 0	80306 0	81951 0
TOTAL ALLOWANCES		148322	148244	148328		148137		210500	214073	_	214365	215712	219292		221428
ALLOWANCES (+/-)	45853	-63102	-67646	-70421	-52206	-55971	-5232	210500	214073	214528	214365	215/12	219292	219836	221428
ENDING ALLOWANCE BANK			183830		61203	5232	-5232	0	0	0	0	0	0	0	0
(1998 Bank of 268724 allowances)							,	-	,	,	•	•	•	,	•

R		
	_	

CASE: CAAA-05LF	'			502	2 3014	IIVIAN	101	LAN							
FUEL #/MBTU SO2	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Brown 3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Ghent 1	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Ghent 2	0.0	1.1	1.1	1.1	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Ghent 3	0.0	1.1	1.1	1.1	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Ghent 4 Green River 1	0.0 0.0	1.1 4.3	1.1 4.3	1.1 4.3	0.6 4.3	0.6 4.3	0.6 4.3	0.6	0.6 4.3	0.6	0.6	0.6	0.6	0.6	0.6
Green River 2	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3	4.3 4.3
Green River 3	0.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Green River 4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
Pineville 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Tyrone 3	0.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1,4	1.4	1.4	1.4	1.4	1.4	1.4
Cane Run 4	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 5	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Cane Run 6	0.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Mill Creek 1	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 2	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 3	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Mill Creek 4	0.0	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
Trimble County 1	0.0	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
SCRUBBER REMOVAL EFF.	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2042
Brown 1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2010 0.0%	2011 0.0%	2012 0.0%	2013 0.0%
Brown 2	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Brown 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 1	92.9%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 2	0.0%	0.0%	0.0%	0.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%	90.0%
Ghent 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Ghent 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 1	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 2	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
Green River 3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Green River 4	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Pineville 3	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Tyrone 3 Cane Run 4	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	77.2%	0.0% 77.2%	0.0%	0.0%	0.0%	0.0%
Cane Run 5	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	80.8%	77.2% 80.8%	77.2% 80.8%	77.2% 80.8%	77.2% 80.8%
Cane Run 6	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%	82.4%
Mill Creek 1	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%	81.7%
Mill Creek 2	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%	77.9%
Mill Creek 3	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%	78.3%
Mill Creek 4	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%	77.8%
Trimble County 1	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%	87.4%
				**********										65866694E7E7E7E76	tonobenoerts-reserve-
TONS SO2 EMITTED	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Brown 1	4509 8401	5796 9630	6137 8892	6163 10100	6140 9949	6095 9437	6246 9988	5760 10213	6726 10501	6990 9821	6927 10820	6994 10805	7043	7179	6474
Brown 2 Brown 3	20171	23039	24069	25151	25329	22715	25815	26206	27018	27773	27204	25088	10910 27696	10986 27907	11048 28036
Ghent 1	7462	9565	10692	10785	9724	10841	10813	10824	9705	10860	10848	10841	10855	10881	9769
Ghent 2	0	15620	16457	16710	13638	15210	15658	15968	16265	16888	14941	16579	16701	16917	17018
Ghent 3	ō	18633	18248	16408	10871	10779	10824	10863	10891	9840	10926	10956	10963	11014	11004
Ghent 4	0	18651	16281	18334	10716	10646	10658	9618	10740	10790	10742	10781	10767	9741	10807
Green River 1	0	500	526	527	532	639	674	705	687	707	674	738	736	685	701
Green River 2	0	326	399	506	560	653	695	742	708	766	689	781	724	699	728
Green River 3	0	8062	8370	7618	8435	9021	9004	9029	9603	8923	9670	9913	9888	9963	10013
Green River 4	8035	10161	10703	11754	10669	11735	12441	12518	13166	13574	11864	13378	13601	13726	13790
Pineville 3	0	1141	1144	1142	1062	1241	1246	1266	1406	1459	1409	1409	1414	1209	1414
Tyrone 3	0	2059	2099	2224	2112	2348	2417	2546	2737	2921	2762	2825	2742	2723	2760
Cane Run 4 Cane Run 5	0	5508 5583	5842 5310	6076 6150	5540 6175	5497 6010	5394 6290	5768 6056	6214 5601	5947 6032	5701 6071	6088 6062	6043 6217	6354 6480	5533 6169
Cane Run 6	0	5946	6468	6218	6401	6531	6864	6987	6827	6969	6821	6749	6095	7111	6168 7164
Mill Creek 1	0	10547	9390	10955	10038	10290	10338	10321	10877	9789	10550	11288	10789	11008	11527
Mill Creek 2	Ö	11320	12345	11806	12486	12087	12516	13443	12458	11679	13141	13055	12895	13778	13234
Mill Creek 3	Ö	17014	17831	15867	17481	18036	17431	17821	18269	17690	18445	16322	17724	17968	18770
Mill Creek 4	Ō	20464	22514	21978	21836	22573	19889	21964	21819	22559	22131	22365	23216	20502	22494
Trimble County 1	0	11753	11954	11926	10250	11134	11666	11471	11475	12096	11581	12012	11415	11746	11648
TOTAL TONS SO2 EMITTED	48578	211316	215669	218397	199943	203514	206867	210088	213695	214071	213917	215029	218434	218577	220098
ALLOWANCES															
KU/LGE BASE	78235	145758	145758	145758	145758	145758	145758	145758	145758	145758	145758	137423	137423	137423	137423
KU/LGE EXTENSION	5056	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OMU EXTRA	11140	2562	2481	2563	2382	2360	2333	2295	2274	2350	2219	2233	2128	2075	2027
PURCHASE	0	0	0	0	0	0	51897	62035	65663	65962	65940	75373	78883	79079	80648
SELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL ALLOWANCES	94431	148320	148239	148322	148140	148118	199989	210088	213695	214071	213917	215029	218434	218577	220098
ALLOWANCES (+/-)	45853	-62996	-67430	-70075	-51803	-55395	-6878	0	0	0	0	0	0	0	0
ENDING ALLOWANCE BANK		251581	184152	114076	62273	6878	0	0	0	0	. 0	o	0	0	o
(1998 Bank of 268724 allowances)	•														

Allowance Price Sensitivity Analysis

(All Costs in 1999 PV \$1000)

BASE ALLOWANCE PRICE FORECAST (\$200)

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-03	5,013,129	11,332	638,799	5,663,260	(32,626)
Case: CAAA-04	4,943,822	66,039	682,862	5,692,723	(3,164)
Case: CAAA-05	4,912,571	55,360	760,355	5,728,286	32,400
Case: CAAA-06	4,980,039	•	682,862	5,662,901	(32,985)
Case: CAAA-07	4,959,706	-	728,726	5,688,432	(7,454)

HIGH ALLOWANCE PRICE FORECAST (\$300)

	Production	Allowance			Incr over
Case	Cost	Cost	Capital	Total	01
Case: CAAA-01	4,979,007	117,120	638,799	5,734,926	Base
Case: CAAA-03	5,013,129	16,998	638,799	5,668,926	(66,000)
Case: CAAA-04	4,943,822	99,058	682,862	5,725,742	(9,184)
Case: CAAA-05	4,912,571	83,040	760,355	5,755,966	21,039
Case: CAAA-06	4,980,039	-	682,862	5,662,901	(72,025)
Case: CAAA-07	4,959,706	-	728,726	5,688,432	(46,494)

LOW ALLOWANCE PRICE FORECAST (\$150)

	Production	Allowance			Incr over
Case	Cost	Cost	Capital	Total	01
Case: CAAA-01	4,979,007	58,560	638,799	5,676,366	Base
Case: CAAA-03	5,013,129	8,499	638,799	5,660,427	(15,939)
Case: CAAA-04	4,943,822	49,529	682,862	5,676,213	(153)
Case: CAAA-05	4,912,571	41,520	760,355	5,714,446	38,080
Case: CAAA-06	4,980,039	-	682,862	5,662,901	(13,465)
Case: CAAA-07	4,959,706	-	728,726	5,688,432	12,066

Fuel Price Sensitivity Analysis

(All Costs in 1999 PV \$1000)

BASE FUEL PRICE FORECAST

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-04	4,943,822	66,039	682,862	5,692,723	(3,164)
Case: CAAA-05	4,912,571	55,360	760,355	5,728,286	32,400

HIGH FUEL PRICE FORECAST

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01HF	5,260,013	78,663	638,799	5,977,474	Base
Case: CAAA-04HF	5,214,831	66,542	682,862	5,964,235	(13,239)
Case: CAAA-05HF	5,173,516	55,774	760,355	5,989,645	12,171

LOW FUEL PRICE FORECAST

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01LF	4,666,468	76,992	638,799	5,382,259	Base
Case: CAAA-04LF	4,632,104	65,304	682,862	5,380,270	(1,989)
Case: CAAA-05LF	4,601,909	55,072	760,355	5,417,337	35,078

Scrubber Price Sensitivity Analysis

(All Costs in 1999 PV \$1000)

BASE SCRUBBER PRICE FORECAST

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-04	4,943,822	66,039	682,862	5,692,723	(3,164)
Case: CAAA-05	4,912,571	55,360	760,355	5,728,286	32,400

BASE SCRUBBER PRICE FORECAST +10%

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-04	4,943,822	66,039	687,268	5,697,129	1,242
Case: CAAA-05	4,912,571	55,360	772,512	5,740,443	44,557

BASE SCRUBBER PRICE FORECAST -10%

Case	Production Cost	Allowance Cost	Capital	Total	Incr over 01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-04	4,943,822	66,039	678,455	5,688,316	(7,571)
Case: CAAA-05	4,912,571	55,360	748,199	5,716,130	20,244

Summary Of All Cases

(All Costs in 1999 PV \$1000)

ALL CASES COMPARED TO CAAA-01

	Production	Allowance			Incr over
Case	Cost	Cost	Capital	Total	01
Case: CAAA-01	4,979,007	78,080	638,799	5,695,886	Base
Case: CAAA-01 \$150 Allowance	4,979,007	58,560	638,799	5,676,366	(19,520)
Case: CAAA-01 \$300 Allowance	4,979,007	117,120	638,799	5,734,926	39,040
Case: CAAA-01HF	5,260,013	78,663	638,799	5,977,474	281,588
Case: CAAA-01LF	4,666,468	76,992	638,799	5,382,259	(313,628)
Case: CAAA-02	4,969,875	97,275	638,799	5,705,949	10,063
Case: CAAA-03	5,013,129	11,332	638,799	5,663,260	(32,626)
Case: CAAA-03 \$150 Allowance	5,013,129	8,499	638,799	5,660,427	(35,459)
Case: CAAA-03 \$300 Allowance	5,013,129	16,998	638,799	5,668,926	(26,960)
Case: CAAA-04	4,943,822	66,039	682,862	5,692,723	(3,164)
Case: CAAA-04 \$150 Allowance	4,943,822	49,529	682,862	5,676,213	(19,673)
Case: CAAA-04 \$300 Allowance	4,943,822	99,058	682,862	5,725,742	29,856
Case: CAAA-04HF	5,214,831	66,542	682,862	5,964,235	268,349
Case: CAAA-04LF	4,632,104	65,304	682,862	5,380,270	(315,616)
Case: CAAA-04	4,943,822	66,039	678,455	5,688,316	(7,571)
Case: CAAA-04	4,943,822	66,039	687,268	5,697,129	1,242
Case: CAAA-05	4,912,571	55,360	760,355	5,728,286	32,400
Case: CAAA-05 \$150 Allowance	4,912,571	41,520	760,355	5,714,446	18,560
Case: CAAA-05 \$300 Allowance	4,912,571	83,040	760,355	5,755,966	60,080
Case: CAAA-05HF	5,173,516	55,774	760,355	5,989,645	293,759
Case: CAAA-05LF	4,601,909	55,072	760,355	5,417,337	(278,549)
Case: CAAA-05	4,912,571	55,360	748,199	5,716,130	20,244
Case: CAAA-05	4,912,571	55,360	772,512	5,740,443	44,557
Case: CAAA-06	4,980,039	•	682,862	5,662,901	(32,985)
Case: CAAA-06 \$150 Allowance	4,980,039	-	682,862	5,662,901	(32,985)
Case: CAAA-06 \$300 Allowance	4,980,039	-	682,862	5,662,901	(32,985)
Case: CAAA-07	4,959,706	•	728,726	5,688,432	(7,454)
Case: CAAA-07 \$150 Allowance	4,959,706	-	728,726	5,688,432	(7,454)
Case: CAAA-07 \$300 Allowance	4,959,706	-	728,726	5,688,432	(7,454)

Appendix G

Kentucky Utilities Company and Louisville Gas & Electric Company

Optimal Integrated Resource Plan Analysis

Prepared by

Generation Systems Planning

October, 1999

LOUISVILLE GAS AND ELETRIC/KENTUCKY UTILITIES COMPANY OPTIMAL INTEGRATED RESOURCE PLAN ANALYSIS

TABLE OF CONTENTS

Executive Summary

INTRODUCTION1
An Overview of the PROSCREEN II Computer Model2
Minimum Reserve Margin Target Criterion3
Preliminary Supply-Side Technology Screening Analysis4
Table 1 Supply-Side Technologies Suggested for Analysis4
Demand-Side Technology Screening Analysis6
Table 2 Demand-Side Technologies Suggested for Analysis6
Fuel Price and Load Sensitivity Analyses6
Table 3 Probability of Sensitivity Occurring8
Table 4 Probability of Scenario Occurring9
PROSCREEN II Optimizations10
Table 5 First Year Available for Each Unit Included in Optimization Study Runs 12
Table 6 Results of supply-side PRV Optimization Runs14
Table 7 First Year Available for Each DSM alternative Included in Optimization Study Runs 15
Table 8 Results of Optimization Runs with DSM16
Table 9 Thirty Year Least Cost Integrated Resource Plan on the Base Load Forecast 18
Conclusion and Pacammendation

EXECUTIVE SUMMARY

Kentucky Utilities and Louisville Gas & Electric (the Companies) develop a joint Optimal Integrated Resource Plan annually. The purpose of this study is to update this ongoing analysis and determine a 30-year optimal resource strategy for the Companies. The optimal strategy is determined based on a minimum expected Present Value of Revenue Requirements (PVRR) criterion over a 30-year planning horizon and subject to certain constraints, including a target reserve margin of 12% and unit operating characteristics.

As precursors to the optimization process, two independent technology screening analyses were conducted, one for supply-side alternatives and the other for demand-side management (DSM) programs. The purpose of the supply-side screening analysis was to evaluate, compare and suggest the least-cost supply-side options to use in PROSCREEN II optimizations. An independent screening analysis was conducted for demand-side management that evaluated and recommended DSM alternatives for evaluation in PROSCREEN II. In order to consider uncertainty in the process, a sensitivity analysis was implemented within optimization study simulations. Three load forecast sensitivities and three fuel price sensitivities were developed along with probabilities of occurrence. The sensitivities were used to develop nine scenarios that in turn were analyzed using PROSCREEN II optimizations.

Because of computer run time and storage limitations, certain logical constraints were implemented in PROSCREEN II. DSM projects tend to be small in nature and would only serve to delay the supply-side expansion strategy and not to change it. Therefore, supply-side optimizations were run and then another set of optimizations was performed in which DSM projects were allowed to compete against the supply-side options that were selected during the supply-side optimizations. This step greatly reduced computer run time without adversely affecting the integrity of the optimization process.

A review of the best plans in each of the nine load / fuel scenarios indicates that there are no major differences between any of the plans, other than the IPP Hydro option appearing in two of the unlikely scenarios. All of the plans suggest completion of the E. W. Brown CT site, implementation of DSM, and several greenfield CTs before the first Combined Cycle unit. Therefore, it is recommended that the resulting optimal integrated resource plan be used as the Companies' 30-year plan with emphasis placed on the completion of the E. W. Brown CT site and implementation of the selected DSM alternatives followed by construction of another CT site as soon as practical.

INTRODUCTION

The purpose of this study is to determine a single 30-year Integrated Resource Plan for Kentucky Utilities Company and Louisville Gas & Electric Company (the Companies). The optimal plan is determined based on a minimum expected Present Value of Revenue Requirements (PVRR) criterion over a 30-year planning horizon and subject to certain constraints, including a target reserve margin of 12% and unit operating characteristics.

This report will first discuss the various modules of the PROSCREEN II computer model used in the analysis. Next, the reserve margin used in this analysis will be discussed briefly. The results of the supply-side screening analysis will then be discussed. An independent screening of Demand-side Management options has also been completed and will be discussed. Based upon these analyses, initial lists of technologies of various types and capacities will be suggested for further analysis within the optimization module of PROSCREEN II. Nine sensitivity scenarios, developed from three load forecasts and three fuel forecasts, will be analyzed in computer optimizations; the least-cost strategies suggested by the optimization module will then be analyzed to develop a 30-year Integrated Resource Plan.

An Overview of the PROSCREEN II Computer Model

The Load Forecast Adjustment (LFA), Generation and Fuel (GAF), Proview (PRV), and Capital Expenditure and Recovery (CER) modules of the PROSCREEN II computer model were used in the study. The PROSCREEN II computer software program can be used to either optimize a set of resource alternatives (determine a least-cost strategy under a prescribed set of constraints and assumptions) or evaluate a single pre-specified a given plan. PROSCREEN II input parameters are described in Appendix A.

The LFA module allows the user to create monthly company load shapes to be transferred to the GAF module for production costing purposes. Inputs to the LFA are the Companies' peak and energy load forecasts (inclusive of energy savings associated with existing DSM), and the Companies' typical load shapes.

The GAF module simulates power system operation using a load-duration curve production costing technique. Production costs including fuel, incremental operation and maintenance (O&M), and purchase power costs are calculated in this module. Inputs to the GAF include generating unit and purchase power characteristics.

PRV is an optimization module that evaluates all combinations of potential options to produce a list of resource plans, subject to user specified constraints, that satisfy the Companies' minimum target reserve margin criterion. PRV uses a production cost analysis together with an analysis of new construction expenditures or costs to implement DSM alternatives to suggest an optimal and several suboptimal resource plans based on the minimum PVRR criterion. PRV receives revenue requirements information associated with capital expenditures from the CER.

Inputs to PRV include generic generating unit characteristics from the GAF, DSM information from the LFA, and construction/implementation parameters.

The CER module calculates revenue requirements associated with capital expenditures for both construction and in-service periods. PRV receives project-specific revenue requirement profiles for possible in-service dates from the CER for use in optimizations. The revenue requirement profiles are combined with the GAF production cost analysis to produce a total system revenue requirement for the study period. The CER contains capital information on resource projects associated with the optimal Integrated Resource Plan. Inputs to the CER include construction cost profiles, depreciation schedules, and various economic assumptions.

Minimum Reserve Margin Target Criterion

A study was performed to determine an optimal reserve margin criterion to be used by the Companies. The base case series (base assumptions) from this study indicates that a 12% target reserve margin represents the greatest system reliability under the given set of assumptions. This study further indicated that an optimal target reserve margin in the range of 11% to 14% would provide an adequate and reliable system to meet customers' demand. In the development of the optimal integrated resource plan, the Companies used a reserve margin target of 12% to represent a base case scenario. Details of this study can be found in the report titled *Analysis of Reserve Margin Planning Criteria* (October 1999) in Volume III, Technical Appendix.

Preliminary Supply-Side Technology Screening Analysis

As a precursor to the optimization process, a technology screening analysis was conducted. The purpose of the screening analysis was to evaluate, compare and suggest the least-cost supply-side options to use in PROSCREEN II optimizations. The following is a summary of the results of this supply-side screening analysis. Details of this report titled *Analysis of Supply-Side Technology Alternatives* (August 1999) can be found in Volume III, Technical Appendix. The technologies that were suggested for detailed analysis within the PROSCREEN II production costing model optimizations are shown in Table 1.

Table 1 Supply-Side Technologies Suggested for Analysis Within PROSCREEN II

Combined Cycle Combustion Turbine Phased – 470 MW
Combined Cycle Combustion Turbine Un-Phased – 345 MW
Combustion Turbine at Brown – 160 MW
Greenfield Site Combustion Turbine – 160 MW
Inlet Air Cooling at existing Brown CTs – 80 MW
IPP Hydro purchase – 114 MW
Pulverized Coal unit at Trimble County – 495 MW

The options listed in Table 1 are the ones that passed the screening. Inlet Air Cooling has been independently evaluated and selected for possible summer 2000 in-service; therefore, this study assumes this option will be completed by summer 2000. The other supply-side options shown in Table 1 were evaluated using PROSCREEN II.

It is important to note here that no purchase power options other than the hydro option were passed from the screening analysis to PROSCREEN II. Purchase power was not considered as an alternative in this analysis because of the current dynamic nature of the wholesale purchase power market. The wholesale market now has very little if any excess generation and peaking purchase opportunities of the type historically available do not exist. What does exist is a highly volatile

developing electric energy trading marketplace, which was discussed in depth in the Companies' CCN filing (case number 99-056) for the E. W. Brown units 6 and 7. This new market is making the traditional *Request for Proposal* (RFP) for purchase power process impractical today. However, at this time the Companies continue to pursue possible opportunities through the RFP process and through participation in the wholesale marketplace on a real time basis. Currently, in this process, peaking type purchase opportunities are compared to CT construction alternatives to arrive at an optimal strategy. Peaking type purchase power opportunities in optimizations would serve only to evaluate the delay of CT construction for short periods of time, which is already being considered by the Companies in greater detail. Thus peaking type purchase power need not be considered in optimizations thereby reducing computer run-time and storage needs. Regardless of the method, the Companies will continue to evaluate the benefits of purchase power through participation in the wholesale marketplace on a real time basis as a method to delay generation construction.

Demand-Side Technology Screening Analysis

In addition to the supply-side screening discussed above, a demand-side screening was performed. The demand-side options that passed the screening are small and have been combined into three programs for further analysis within PROSCREEN II optimizations. These three options are shown in Table 2 below.

Table 2 DSM Programs Suggested for Analysis Within PROSCREEN II

Direct Load Control – 5 phases – total 110.7 MW Efficient Lighting – 2 phases – total 47.3 MW Standby Generation – 4 phases – total 82.4 MW

The DSM options in Table 2 were analyzed using PROSCREEN II and allowed to compete with the supply-side options from Table 1. Details of the DSM screening can be found in the report tiled *Screening of Demand-Side Management (DSM) Options* (September 1999) in Volume III, Technical Appendix.

Fuel Price and Load Sensitivity Analyses

The supply-side and demand-side screening analyses suggested that the technologies and sizes shown in Table 1 and Table 2 are the technology types and sizes which should be analyzed in detail by PROSCREEN II. The next step in the development of an optimal plan was to evaluate these supply-side and demand-side options in detail beginning with a sensitivity analysis. A sensitivity analysis was conducted using various fuel forecast and load forecast scenarios within optimization study simulations.

The fuel forecast is one of the significant factors influencing the Companies' optimal integrated resource plan. Generating units considered in the Companies' resource planning models

(see Table 1) utilize both coal and gas as the primary fuels. The CT and CCCT technologies for example are gas fired while the Trimble County unit is a coal-fired technology. Thus, gas and coal prices may have a significant impact on the selection of an optimal technology type. Therefore, in order to evaluate the effect of gas and coal prices, a fuel sensitivity analysis was incorporated into the Companies' process of determining an optimal integrated resource plan.

In summary, three fuel price forecasts have been developed and were used in optimizations. It should be noted that no fuel sensitivities were considered for the hydro purchase option because it was considered representative of a firm offer.

The load forecast is another significant factor influencing the Companies' integrated resource plan. Each supply-side technology is designed for optimal unit performance at various levels of utilization. CTs, for instance while relatively inexpensive to construct (compared to coal-fired units), are more costly to operate and maintain. Conversely, coal-fired units, while expensive to construct, are relatively inexpensive to operate and maintain. The economics of adding a supply-side option to any generation system is based on the expected costs of operating and maintaining the unit over the full range of loads it is expected to serve. Significant economic penalties (costs higher than expected) may be incurred if the unit is operated above or below the level it was planned to serve. For example, if a CT was added to a system in which load was greater than forecasted, the utilization of the CT may exceed the economical range for which it was planned. In other words, it may have been more economical to install intermediate load serving capacity (such as CCCTs) instead. Thus, load growth scenarios that are different from that which is expected may have a significant impact on the selection of an optimal technology type. Therefore, in order to evaluate the effect of various load forecasts, a load sensitivity analysis was incorporated into the process of determining an optimal resource plan.

In summary, the load sensitivity analysis consists of evaluating the effect of three load forecasts on the selection of resource alternatives. The three forecasts depict an expected system load growth case, a case where system load growth exceeds expected growth and a case in which system load growth is less than expected. For reference, the resulting forecasts are termed the *base*, *high* and *low*. The details of and the basis for the various load forecasts are described in Volume II, Technical Appendix.

The load forecasts together with the fuel forecasts result in the nine sensitivity scenarios used in the determination of the Companies' optimal integrated resource plan. "Scenario" is used to describe a particular load forecast/fuel forecast combination. There are nine possible combinations of load/fuel scenarios that were used in optimizations.

With the development of the three load forecast sensitivities and the three fuel price sensitivities, probabilities of occurrence were also developed. These probabilities are based on the same WEFA data that was used in development of the forecasts and are shown in Table 3.

Table 3
Probability of Sensitivity Occurring

Fue	Price	L	oad
Scenario	Probability	Scenario	Probability
High	15%	High	15%
Base	70%	Base	70%
Low	15%	Low	15%

From the probabilities of occurrence shown in Table 3, the probability of each of the nine possible combinations occurring can be determined. This is done by multiplying the probability of

the fuel price sensitivity occurring by the probability of the load forecast sensitivity occurring for each of the nine scenarios. The resulting probabilities of occurrence are shown in Table 4.

Table 4
Probability of Scenario Occurring

Scenario	Load Sensitivity	Fuel Sensitivity	Probability
1	High	High	2.25%
2	High	Base	10.50%
3	High	Low	2.25%
4	Base	High	10.50%
5	Base	Base	49.00%
6	Base	Low	10.50%
7	Low	High	2.25%
8	Low	Base	10.50%
9	Low	Low	2.25%
		Total	100.00%

As can be seen from Tables 3, there is an 70.0% probability that the base load forecast will occur, and only a 30.0% probability that either the high or low load forecast will occur. Additionally, the probabilities on the fuel side are heavily weighted toward the Base forecast. Therefore, as should be expected, the Base forecasts are significantly more likely to occur than either the High or Low forecasts.

PROSCREEN II Optimizations

Computer run-time and storage limitations make it impractical to include all of the units which passed the supply-side screening analysis (those listed in Table 1) and those that passed the demand-side screening (those listed in Table 2) in a single **unrestricted** computer optimization run. Therefore, to facilitate the analysis and ensure that accurate results were obtained, additional steps were taken before optimizations were performed.

The first step was to separate the supply-side optimizations from the demand-side optimization runs. DSM projects tend to be small in nature and would only serve to delay the supply-side expansion strategy and not to change it. Therefore, supply-side optimizations were run and then another set of optimizations was performed in which DSM projects were allowed to compete against the supply-side options that were selected during the supply-side optimizations. This step greatly reduced computer run time without adversely affecting the integrity of the optimization process.

Next, a review of Table 1 was conducted to determine if any technologies could be logically eliminated from the supply-side computer optimizations. As has already been mentioned, inlet air cooling at the existing Brown CTs has already been studied and the Companies believe it will be implemented by summer 2000. As a result, it was not evaluated in these optimization runs, as it would only extend run time and disk storage needs. The only other logical elimination that might be made involves the two different combined cycle units in Table 1. One is a phased construction project and the other is un-phased. It would seem that because of the Companies' annual load growth and the fact that the phased unit is less costly on a dollar per kW basis (see *Analysis of*

Supply-Side Technology Alternatives (August 1999), Volume III, Technical Appendix) that the unphased unit could be eliminated. However, the un-phased unit is a newer technology with a better heatrate (more efficient), thus it remained an alternative through the supply-side optimizations.

Next, any constraints that would limit the evaluation of unreasonable combinations of units in PRV optimizations were imposed. One user-specified constraint in relation to new generating unit options is the earliest possible in-service date for each unit considered. The first year a technology is allowed to be considered as an alternative (the in-service date) by PRV does not unjustly restrict the technologies but simply excludes years in which installation would not be feasible (i.e. a coal-fired unit could not be permitted, constructed and operational within 5 years). Table 5 lists the units considered in the optimization study runs (i.e. those suggested by the screening analysis) and their associated earliest in-service date.

Table 5
First Year Available for Each Unit Included in
Optimization Study Runs

Unit	First Year Available
Combined Cycle Combustion Turbine Phased – 470 MW, Phase 1	2002
Combined Cycle Combustion Turbine Phased – 470 MW, Phase 2	2002
Combined Cycle Combustion Turbine Phased – 470 MW, Phase 3	2003
Combined Cycle Combustion Turbine Un-Phased – 345 MW	2002
Combustion Turbine at Brown – 160 MW	2001
Greenfield Site Combustion Turbine – 160 MW	2001
IPP Hydro purchase – 114 MW	2001
Pulverized Coal unit at Trimble County – 495 MW	2005

Although single cycle combustion turbines were modeled as available for in-service in 2001, there is a very high probability that none will be available that soon. By allowing PROSCREEN II to install CTs as early as 2001, it clearly demonstrates the Companies' need for peaking capacity as soon as possible. Recent CT market information indicates that CTs may not be available for inservice until 2004. Therefore, unless something becomes available the Companies may be forced to buy peaking power until physical capacity can be constructed.

In addition to the modeling constraints in Table 5, other constraints can also reduce computer run-time and potential storage limitations. Some of these constraints were used in the PRV optimizations and are discussed below.

- 1) There is only one CT available for installation at the E. W. Brown site. This site was originally designed to support and had the necessary permits, including air permits for the construction of eight 110 MW nominally rated CTs. However, when Brown 7 and 6 (164 MW summer rated units) were added, the permits and site design will now only support the addition of one unit up to approximately 160 MW.
- 2) The construction of a phased Greenfield Combined Cycle unit was limited so that the individual units are installed in the correct order (Phase 1 (CT), Phase 2 (CT), and then Phase 3 (HSRG)). Another restriction is that the first Combined Cycle unit must be completed before a second one is started.
- 3) The Hydro based purchase option was modeled available for in-service between 2001 and 2003, and limited to one installation. The desire to evaluate the economics of a hydro-based purchase within the next few years, leads to the limited in-service time period. The purchase was limited to one installation due to the limited availability of hydro-based purchase power options.

With the above-mentioned constraints in place, the supply-side optimizations can be performed. As discussed earlier, PRV analyzes all possible combinations of alternatives using the GAF to determine operation costs and using information from the CER to determine capital costs. PRV then rank orders the expansion plans by PVRR. The order of unit installation for the best plan for each of the nine optimizations (one optimization for each scenario in Table 4) is shown in Table 6. The plans are shown here without dates in order to show how the ordering of units changes with the different scenarios; the installation dates are not as important in this stage of the analysis as is expansion strategy. However, the plans are shown with dates in Appendix B.

Table 6 Results of supply-side PRV Optimization Runs

Load		BASE			HIGH			LOW	
Fuel	Base	High	Low	Base	High	Low	Base	High	Low
Scenario	5	4	6	2	1	3	8	7	9
	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT
	10 160 GRCT	9 160 GRCT	11 160 GRCT	10 160 GRCT	5 160 GRCT	14 160 GRCT	9 160 GRCT	2 160 GRCT	13 160 GRCT
	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 114 HYDRO	1 470 CCCT	1 470 CCCT	1 114 HYDRO	1 470 CCCT
	1 160 GRCT	1 160 GRCT	15 160 GRCT	1 160 GRCT	7 160 GRCT	1 160 GRCT	4 160 GRCT	6 160 GRCT	8 160 GRCT
	1 470 CCCT	1 470 CCCT		1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	
	2 160 GRCT	1 160 GRCT		5 160 GRCT	2 160 GRCT	1 160 GRCT	5 160 GRCT	2 160 GRCT	
	1 470 CCCT	1 470 CCCT		1 470 CCCT	2 470 CCCT	1 470 CCCT		1 470 CCCT	
	7 160 GRCT	9 160 GRCT		1 160 GRCT	1 160 GRCT	13 160 GRCT		8 160 GRCT	
				1 470 CCCT	1 470 CCCT				
				9 160 GRCT	2 160 GRCT				
					1 470 CCCT				
					5 160 GRCT				
Probability	49.00%	10.50%	10.50%	10.50%	2.25%	2.25%	10.50%	2.25%	2.25%

Notes to Table 6:

- 1) 160 BRCT is a 160 MW CT at E. W. Brown
- 2) 160 GRCT is a 160 MW Greenfield CT
- 3) 470 CCCT is a 470 MW Greenfield Phased Combined Cycle Combustion Turbine
- 4) 114 HYDRO is the 114 MW IPP hydro facility

Several observations and conclusions can be drawn from Table 6.

- 1) The un-phased combined cycle unit was not selected in any scenario. This is reasonable due to its higher cost and large size.
- 2) The Trimble County coal unit was not selected in any of the scenarios.
- 3) The IPP hydro option is in the least cost plan for only two of the nine scenarios with a combined 4.50% probability of occurrence.
- 4) The E. W. Brown CT site is completed as the first option in all nine scenarios.
- 5) At least eight additional CTs are built before the first combined cycle unit in all scenarios.
- 6) The high fuel cases tend to favor combined cycle units more than the low fuel cases. This makes sense because the combined cycle units are more efficient than the simple cycle combustion turbines.
- 7) The optimal plan in each scenario uses 160 MW Greenfield CTs to complete construction at the end of the study period.

The next step was to let the DSM options from Table 2 compete with the supply-side plans from Table 6. This was accomplished by fixing the ordering of the simple cycle combustion turbine units and the combined cycle combustion turbine units and letting PROSCREEN II determine if it is economical to use any of the DSM options to delay the supply-side expansion plan. In the plans where the IPP Hydro option was chosen, its order was not fixed with the other supply-side options; it's in-service date was allowed to float. The reason it was allowed to float was because of its limited in-service dates and the desire to let DSM options delay construction of supply-side options. For example, if the Hydro unit installation order was fixed with the other options, it would limit the ability of the DSM options to delay the other supply-side options. The DSM options from Table 2 that were analyzed are shown in Table 7 along with their first year available.

Table 7
First Year Available for Each DSM Program Included in
Optimization Study Runs

Unit	Year first phase available
Direct Load Control – 5 phases – total 110.7 MW	2001
Efficient Lighting – 2 phases – total 47.3 MW	2002
Standby Generation – 4 phases – total 82.4 MW	2001

The optimizations can install only one phase of a DSM program per year. This is to simulate the penetration that is anticipated with each type of DSM program. In order to equalize competition between the programs, each phase of all DSM alternatives was made approximately 20 MW. The lighting program is smaller and thus 20 MW would not be achievable by 2001, therefore, it's first phase was modeled available beginning in 2002. However if the option is selected, the program

itself can be started earlier than 2002. The results of the optimizations with DSM are shown below in Table 8.

Table 8
Results of Optimization Runs with DSM

Load	5 DLC 5 DLC 5 DLC 2 LGHT 2 LGHT 2 LGHT 3 STDBY 3 STDBY 4 STDB 10 160 GRCT 9 160 GRCT 11 160 GF 1 470 CCCT 1 470 CCCT 1 470 CCC			HIGH			LOW		
Fuel	Base	High	Low	Base	High	Low	Base	High	Low
Scenario	5	4	6	2	1	3	8	7	9
	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT	1 160 BRCT
	5 DLC	5 DLC	5 DLC	4 DLC	4 DLC	3 DLC	5 DLC	5 DLC	4 DLC
	2 LGHT	2 LGHT	2 LGHT	2 LGHT	2 LGHT	2 LGHT	2 LGHT	2 LGHT	2 LGHT
	3 STDBY	3 STDBY	4 STDBY	3 STDBY	3 STDBY	3 STDBY	4 STDBY	4 STDBY	2 STDBY
	10 160 GRCT	9 160 GRCT	11 160 GRCT	10 160 GRCT	2 160 GRCT	14 160 GRCT	9 160 GRCT	2 160 GRCT	13 160 GRCT
	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 114 HYDRO	1 470 CCCT	1 470 CCCT	1 114 HYDRO	1 470 CCCT
	1 160 GRCT	1 160 GRCT	14 160 GRCT	1 160 GRCT	10 160 GRCT	1 160 GRCT	4 160 GRCT	6 160 GRCT	7 160 GRCT
	1 470 CCCT	1 470 CCCT		1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	1 470 CCCT	
	2 160 GRCT	1 160 GRCT		5 160 GRCT	2 160 GRCT	1 160 GRCT	4 160 GRCT	2 160 GRCT	
	1 470 CCCT	1 470 CCCT		1 470 CCCT	2 470 CCCT	1 470 CCCT		1 470 CCCT	
	6 160 GRCT	8 160 GRCT		1 160 GRCT	1 160 GRCT	11 160 GRCT		6 160 GRCT	
				1 470 CCCT	1 470 CCCT				
				7 160 GRCT	2 160 GRCT				
					1 470 CCCT				
					4 160 GRCT				
Probability	49.00%	10.50%	10.50%	10.50%	2.25%	2.25%	10.50%	2.25%	2.25%

Notes to Table 8:

- 1) 160 BRCT is a 160 MW CT at E. W. Brown
- 2) 160 GRCT is a 160 MW Greenfield CT
- 3) 470 CCCT is a 470 MW Greenfield Phased Combined Cycle Combustion Turbine
- 4) 114 HYDRO is the 114 MW IPP hydro facility
- 5) DLC is one phase of the Direct Load Control DSM program
- 6) LGHT is one phase of the Efficient Lighting DSM program
- 7) STDBY is one phase of the Standby Generation DSM program
- 8) The DSM programs are installed in phases, but are shown together in the table for simplicity.
- 9) Occasionally, other alternatives are installed during implementation of the multiple phases of the various DSM programs, but are shown after the DSM in the table for simplicity.

The results of the nine scenario optimizations with DSM shown in Table 8, confirm the observations and conclusions mentioned after Table 6. Additionally, all scenarios utilized at least two phases of each of the DSM options available in the optimization to delay the supply-side options selected in the previous optimizations.

Table 8 represents optimal resource plans the Companies should follow given the occurrence of the nine defined scenarios. The purpose of this analysis is to recommend a single strategy for the Companies to follow, which is most optimal given the nine possible scenarios (future outcomes). The most straight-forward analysis would be to evaluate how each of the nine optimal plans in Table 8 perform (calculate 30 year PVRR) in the other eight remaining scenarios. For example, what is the PVRR of the optimal base fuel, base load plan (Scenario 5) given the high load, high fuel scenario? However this analysis would be impractical for the following reasons:

- The large difference in resource needs between the different load scenarios make it impossible to model the high load plans in the low load scenarios (there isn't enough load to fully implement the suggested resource plan). Likewise, the resource plan does not suggest enough generation resources in the low load scenarios to model in the base and high load scenarios.
- 2) Conducting the 81 (9 optimal plans x 9 scenarios) computer runs necessary for this type of analysis is possible. However, considering that the results would be only approximations (comment 1 above), the time and computer storage requirements involved are not justified.
- There is a 70.0% probability that the base load will occur, leaving only a relatively small probability that the high or low forecasts will occur (see Table 3).
- 4) There are no major differences in optimal plans for any of the scenarios other than the number of DSM options selected in each plan and the IPP Hydro option appearing in two unlikely scenarios until well into the future.

Furthermore, as time progresses and the Companies have a better idea of demand needs and fuel prices, the Companies would adjust and therefore, running the various plans through the other scenarios would not be an accurate representation of the future. Still, the goal of this study is to recommend the 30-year optimal resource plan for use in developing long-term plans for the Companies. Given that there are no major differences between the plans and the fact that most future studies will use at least the base load and base fuel forecast (some will consider load and/or fuel sensitivities), the plan that this study recommends is the one from Scenario 5. This strategy will be

re-evaluated annually and modified as necessary. The Base Case plan by year for the forecasted base load is shown in Table 9.

Table 9
Thirty Year Least Cost Integrated Resource Plan on the Base Load Forecast

Year	Resource	Year	Resource
1999		2014	160 MW Greenfield CT Unit 11
2000		2015	160 MW Combined Cycle CT 2 P1
2001	160 MW Brown CT Unit 5	2016	160 MW Combined Cycle CT 2 P2
	160 MW Greenfield CT Unit 1		150 MW Combined Cycle CT 2 P3
	160 MW Greenfield CT Unit 2		
	22.1 MW DLC program		
2002	160 MW Greenfield CT Unit 3	2017	160 MW Greenfield CT Unit 12
1	22.1 MW DLC program		
	20.6 MW Standby Generation program		·
	23.2 MW Efficient Lighting program	2010	160.7
2003	22.1 MW DLC program	2018	160 MW Greenfield CT Unit 13
	20.6 MW Standby Generation program		
	23.2 MW Efficient Lighting program	2010	160 2 50 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
2004	160 MW Greenfield CT Unit 4	2019	160 MW Combined Cycle CT 3 P1
	22.1 MW DLC program		
2005	20.6 MW Standby Generation program	2020	160) 674 6 1 1 1 6 1 6 7 2 70
2005	160 MW Greenfield CT Unit 5	2020	160 MW Combined Cycle CT 3 P2
2006	22.1 MW DLC program	2001	150 MW C 1 1 1 C 1 CT 2 P2
2006	160 MW Greenfield CT Unit 6	2021	150 MW Combined Cycle CT 3 P3
2007	160 MW Greenfield CT Unit 7	2022	160 MW Greenfield CT Unit 14
2008	160 MW Greenfield CT Unit 8	2023	160 MW Greenfield CT Unit 15
2009	160 MW Greenfield CT Unit 9	2024	160) 574 G 5 11 677 W 16
2010	160 MW Greenfield CT Unit 10	2025	160 MW Greenfield CT Unit 16
2011	160 MW Combined Cycle CT 1 P1	2026	160 MW Greenfield CT Unit 17
2012	150 MW Combined Cycle CT 1 P2	2027	160 MW Greenfield CT Unit 18
2013	160 MW Combined Cycle CT 1 P3	2028	160 MW Greenfield CT Unit 19

Conclusion and Recommendation

As a result of the above analysis, it is recommended that the strategy shown in Table 9 be used as the Companies' 30-year integrated resource plan. Emphasis should be placed on the completion of the E. W. Brown CT site, development of a Greenfield CT site, and implementation of the selected DSM initiatives. There is currently a shortage of viable combustion turbine options available due to today's market conditions. Therefore, it is recommended that the Companies begin implementation of the each DSM alternative as soon as possible, while continuing to pursue CT construction options. As the DSM pilot (first phase) programs are phased in and their benefits are quantified, the Companies' resource plan should be re-evaluated considering the results of the DSM initiatives. It is further recommended that purchase power continue to be reviewed as an option to delay generation construction. Should a hydro based option become available and economical, the expansion strategy should be re-evaluated with that consideration. Finally, it is recommended that the integrated resource planning process continue to be conducted on an annual basis.

DATA ITEMS USED IN OPTIMAL INTEGRATED RESOURCE PLAN ANALYSIS

Existing System Data

The PROSCREEN-II computer program is used to model Louisville Gas & Electric's (LG&E) and Kentucky Utilities Company's (KU) generating systems. These models simulate the dispatch of both companies generating units and other purchases to serve load, and of Owensboro Municipal Utilities' (OMU) generating units and purchases to serve OMU's load and maintain their reserve requirements. The remaining generation available from OMU's units after meeting their requirements is economically dispatched by the Companies. The following sections outline the information and the sources of the information used in the programs to model KU, LG&E and OMU generating systems.

A) General Data Items

- 1. Base Year 1999
- 2. Study Period 1999 to 2028
- 3. Economic Assumptions

Revenue requirements are determined on an annual basis and discounted to the base year giving a present worth of revenue requirements. Discounting is performed using a discount rate, which is assumed to remain constant for all years.

4. Financial Parameters:

a. Discount Rate:

9.78%

s:

b. Capital/O&M costs Escalation Rates:c. Combined Federal and State tax rate:

2.0%/4.50% 40.36%

5. Retirements

The operating life of all existing units is extended beyond the end of the study period. (no retirements)

- 6. Unserved Energy Cost 400 \$/MWh in 1999, escalated at 2.0% annually.
- 7. Load Forecast The details of and the basis for the various load forecasts are described in Volume II, Technical Appendix.
- 8. KU/LG&E Unit Data

a. Installed Capacity - See Appendix A Table 1

Based on revised May 20, 1998 Unit Test Results.

b. Equivalent Forced Outage Rate - See Appendix-A Table 1

KU historical GADS data using 5 years of historical data (1993-1998). Five year averages have been increased for inclusion of maintenance outage hours (MOHs) to better reflect actual unit availability of each unit. EFOR's have been trended to reflect the Companies' targets.

c. Heat Rates - See Appendix-A Table 1

1997-1998 adjusted unit heat rate curves.

d. Fuel Cost - See Appendix-A Table 2,3,4

Fuel forecast approved by Fuels Management (August, 1999)

e. Maintenance Schedule

The Companies' most recent maintenance schedule as of the time of this analysis was performed.

- 9. OMU Unit Data
 - a. Installed Capacity (OMU 8/16/97 test data)

OMU (Smith Unit 1): 140 OMU (Smith Unit 2): 274

b. Equivalent Forced Outage Rate

OMU (Smith Unit 1): 10.09% OMU (Smith Unit 2): 6.69%

Based on OMU historical GADS data (1995-1996)

c. Heat Rates

OMU (Smith Unit 1): 10299 Btu/kWh OMU (Smith Unit 2): 10798 Btu/kWh

d. Maintenance Schedules

Planned outage inputs were determined by reviewing OMU's seven year planned outage schedule and historical data.

- e. Contract Demand Sale to KU See Appendix-A Table 5 (Based on OMU Fax: 7/2/98)
- f. Fuel Cost See Appendix-A Tables 2,3,4

Based on fuel information received from Fuel Procurement. Fuel costs include associated costs for fuel handling and limestone.

- g. OMU Scrubber O&M (Smith Units 1 & 2)
 - i. Variable O&M: Limestone charges included in fuel cost.
 - ii. Removal Efficiency: 96%

10. Purchases

a. Contract Demand - See Appendix-A Table 5

EEInc. (Firm): 200 MW each year

OVEC (Economy/Non-Firm):

KU - 9MW Jan-Dec

LG&E- 35.4MW July (Varies by month)

b. Equivalent Forced Outage Rate

EEInc.: - 6.39%; Note: KU owns 20% of six units at Joppa. A single purchase unit was used to model KU's portion of the six units. Each unit was assumed to have the same FOR and the probability of KU's 20% being available was assigned to the purchase unit.

c. Full Load Heat Rate (BTU/KWH)

EEInc.: 10500

OVEC:

Not applicable because purchase was not modeled as a unit but a specified MW/MWH monthly profile

d. Heat Content of Fuel (BTU/LB)

EEInc.: 10800

OVEC:

Not applicable because purchase was not modeled as a unit but a specified

MW/MWH monthly profile

e. Fuel Cost

See Appendix-A Tables 2,3,4

f. Demand Cost

See Appendix-A Table 5

g. Maintenance

EEInc: A 33 MW derate for 13 weeks in the spring and fall (derived from EEInc. Joppa Historical Data).

OVEC:

None

APPENDIX B

Appendix A-Table 1 Louisville Gas and Electric/ Kentucky Utilities Generator Data

								Full Load Heat
	Installed	Summer			orced Out			Rate
Unit	Year	Rating (MW)	1999	2000	2001	2002	2003-2028	(Mbtu/MWh)
Brown 1	1957	104	4.65%	4.47%	4.29%	4.12%	3.94%	10.427
Brown 2	1963	168	4.40%	4.63%	4.87%	5.10%	5.34%	9.940
Brown 3	1971	439	14.15%	11.87%	9.58%	7.30%	5.02%	10.095
Brown 6	1999	164	6.00%	6.00%	6.00%	6.00%	6.00%	10.500
Brown 7	1999	164	6.00%	6.00%	6.00%	6.00%	6.00%	10.500
Brown 8	1995	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 9	1994	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 10	1995	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 11	1996	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Cane Run 4	1962	155	12.04%	10.02%	7.99%	5.96%	3.94%	10.441
Cane Run 5	1966	168	20.05%	16.02%	11.99%	7.97%	3.94%	10.151
Cane Run 6	1969	240	21.36%	17.36%	13.35%	9.34%	5.34%	9.992
Cane Run 11	1968	16	53.00%	53.00%	53.00%	53.00%	53.00%	18.000
Dix Dam 1-3	1925	24	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Ghent 1	1974	483	8.17%	7.38%	6.59%	5.80%	5.02%	10.138
Ghent 2	1977	492	3.96%	4.23%	4.49%	4.75%	5.02%	10.008
Ghent 3	1981	493	4.80%	4.85%	4.91%	4.96%	5.02%	10.150
Ghent 4	1984	494	4.66%	4.75%	4.84%	4.93%	5.02%	9.984
Green River 1	1950	26	27.00%	22.95%	18.90%	14.85%	10.80%	18.000
Green River 2	1950	27	66.27%	52.40%	38.53%	24.67%	10.80%	18.000
Green River 3	1954	71	7.69%	6.75%	5.81%	4.88%	3.94%	11.633
Green River 4	1959	103	16.80%	13.58%	10.37%	7.15%	3.94%	10.539
Haefling 1-3	1970	45	13.10%	13.10%	13.10%	13.10%	13.10%	18.000
Lock 7	1927	2**	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Mill Creek 1	1972	303	12.19%	10.48%	8.77%	7.05%	5.34%	10.434
Mill Creek 2	1974	301	12.98%	11.07%	9.16%	7.25%	5.34%	10.583
Mill Creek 3	1978	386	12.80%	10.93%	9.07%	7.20%	5.34%	10.270
Mill Creek 4	1982	480	11.39%	9.79%	8.20%	6.61%	5.02%	10.124
Ohio Falls	1928	48	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Paddys Run 11	1968	17	19.00%	19.00%	19.00%	19.00%	19.00%	18.000
Paddys Run 12	1968	26	19.00%	19.00%	19.00%	19.00%	19.00%	18.000
Pineville 3	1951	34	4.23%	5.44%	6.64%	7.85%	9.05%	13.742
Trimble (75%)	1990	371	6.22%	5.92%	5.62%	5.32%	5.02%	10.041
Tyrone 1	1947	27	4.63%	5.74%	4.96%	6.84%	9.05%	18.000
Tyrone 2	1948	31	59.24%	46.69%	34.14%	21.60%	9.05%	18.000
Tyrone 3	1953	71	6.50%	5.86%	5.22%	4.58%	3.94%	12.931
Waterside 7	1964	17	55.00%	55.00%	55.00%	55.00%	55.00%	17.000
Waterside 8	1964	16	48.00%	48.00%	48.00%	48.00%	48.00%	18.000
Zorn 1	1969	16	23.00%	23.00%	23.00%	23.00%	23.00%	N/A

Notes:

^{1) • =} Brown 8-11 are modeled as 110 MW in 1999 and 130 from 2000 on, due to inlet air cooling

^{2) ** =} Not counted as Firm Capacity for Reserve Margin Calculations

Appendix A-Table 1 Louisville Gas and Electric/ Kentucky Utilities Generator Data

								Full Load Heat
	Installed	Summer	E	quivalent F	Forced Out	age Rate	(%)	Rate
Unit	Year	Rating (MW)	1999	2000	2001	2002	2003-2028	(Mbtu/MWh)
Brown 1	1957	104	4.65%	4.47%	4.29%	4.12%	3.94%	10.427
Brown 2	1963	168	4.40%	4.63%	4.87%	5.10%	5.34%	9.940
Brown 3	1971	439	14.15%	11.87%	9.58%	7.30%	5.02%	10.095
Brown 6	1999	164	6.00%	6.00%	6.00%	6.00%	6.00%	10.500
Brown 7	1999	164	6.00%	6.00%	6.00%	6.00%	6.00%	10.500
Brown 8	1995	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 9	1994	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 10	1995	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Brown 11	1996	130*	6.00%	6.00%	6.00%	6.00%	6.00%	12.163
Cane Run 4	1962	155	12.04%	10.02%	7.99%	5.96%	3.94%	10.441
Cane Run 5	1966	168	20.05%	16.02%	11.99%	7.97%	3.94%	10.151
Cane Run 6	1969	240	21.36%	17.36%	13.35%	9.34%	5.34%	9.992
Cane Run 11	1968	16	53.00%	53.00%	53.00%	53.00%	53.00%	18.000
Dix Dam 1-3	1925	24	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Ghent 1	1974	483	8.17%	7.38%	6.59%	5.80%	5.02%	10.138
Ghent 2	1977	492	3.96%	4.23%	4.49%	4.75%	5.02%	10.008
Ghent 3	1981	493	4.80%	4.85%	4.91%	4.96%	5.02%	10.150
Ghent 4	1984	494	4.66%	4.75%	4.84%	4.93%	5.02%	9.984
Green River 1	1950	26	27.00%	22.95%	18.90%	14.85%	10.80%	18.000
Green River 2	1950	27	66.27%	52.40%	38.53%	24.67%	10.80%	18.000
Green River 3	1954	71	7.69%	6.75%	5.81%	4.88%	3.94%	11.633
Green River 4	1959	103	16.80%	13.58%	10.37%	7.15%	3.94%	10.539
Haefling 1-3	1970	45	13.10%	13.10%	13.10%	13.10%	13.10%	18.000
Lock 7	1927	2**	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Mill Creek 1	1972	303	12.19%	10.48%	8.77%	7.05%	5.34%	10.434
Mill Creek 2	1974	301	12.98%	11.07%	9.16%	7.25%	5.34%	10.583
Mill Creek 3	1978	386	12.80%	10.93%	9.07%	7.20%	5.34%	10.270
Mill Creek 4	1982	480	11.39%	9.79%	8.20%	6.61%	5.02%	10.124
Ohio Falls	1928	48	0.00%	0.00%	0.00%	0.00%	0.00%	N/A
Paddys Run 11	1968	17	19.00%	19.00%	19.00%	19.00%	19.00%	18.000
Paddys Run 12	1968	26	19.00%	19.00%	19.00%	19.00%	19.00%	18.000
Pineville 3	1951	34	4.23%	5.44%	6.64%	7.85%	9.05%	13.742
Trimble (75%)	1990	371	6.22%	5.92%	5.62%	5.32%	5.02%	10.041
Tyrone 1	1947	27	4.63%	5.74%	4.96%	6.84%	9.05%	18.000
Tyrone 2	1948	31	59.24%	46.69%	34.14%	21.60%	9.05%	18.000
Tyrone 3	1953	71	6.50%	5.86%	5.22%	4.58%	3.94%	12.931
Waterside 7	1964	17	55.00%	55.00%	55.00%	55.00%	55.00%	17.000
Waterside 8	1964	16	48.00%	48.00%	48.00%	48.00%	48.00%	18.000
Zorn 1	1969	16	23.00%	23.00%	23.00%	23.00%	23.00%	N/A

Notes:

^{1) * =} Brown 8-11 are modeled as 110 MW in 1999 and 130 from 2000 on, due to inlet air cooling

^{2) ** =} Not counted as Firm Capacity for Reserve Margin Calculations

Appendix A - Table 2 Base Fuel Forecast - August 1999 (Cents/MBTU)

_	_			_,_																				_										
2	6.5#																																	
WC	5.7#																																	
CR	#.9																																	
Smith	ō																																	
HAEF	Gas																																	
-	Gas																																	
	ō																																	
EEInc.	0.8.#																																	
Smith	-																																	
PN 3	1.4#																																	
TY3 [1.4#																																	
G Rvr	4.3#																																	
	1.1#																																	
Ghent	2.5#																																	
	2.2# 5																																	
\dashv	Year 2	1999	2000	2001	2002	2003	2004	1000	2002	2006	2007	2008	2007	2009	2010	2011	2012	2012	2010	400	2013	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

Generation Planning

Appendix A - Table 3 High Fuel Forecast - August 1999 (Cents/MBTU)

																•																	
TC	6.5#																																
MC	2.7#																																
CR	6.#																																
Smith	ΙΘ																																
HAEF	Gas																																
	Gas																																
	ö																																
EEInc.	0.8.#																																
Smith	6. #																																
PN 3	1.4#																																
TY 3	1.4#																																
G Rvr	4.3#																																
tue	1.1#																																
Ghent	5.5#																																
Brown	2.2#																																
_	Year	1999	2000	2001	2002	2003	2004	2005	2000	2000	2002	2008	2009	2010	2011	2012	2016	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028

Generation Planning

Appendix A - Table 4 Low Fuel Forecast - August 1999 (Cents/MBTU)

_	Τ-	_													•															
TC	6.5#																													
MC	5.7#																													
CR	#.9																													
Smith	ō																													
HAEF	Gas																													
	Gas																													
	ō																													
EEInc.	0.8.#																													
Smith	#.9																													
PN 3	1.4#																													
TY3	1.4#																													
G Rvr	4.3#																													
Н	1.1#																													
Ghent	2.5#																													
	2.2#																													
Н		1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027

CONFIDENTIAL INFORMATION REDACTED

Mo Assoc	Appendix A-Table 5 Modeled Fuel Costs Associated with Purchase Alternatives (\$/Mbtu)									
Year	EEI (Firm)	OMU (Firm)								
1999	(1 (1111)	(1 1111)								
2000										
2001										
2001										
2002										
2004										
2005										
2006										
2007										
2008										
2009										
2010										
2011										
2012										
2013										
2014										
2015										
2016										
2017										
2018										
2019										
2020										
2021										
2022										
2023										
2024										
2025										
2026										
2027										
2028										

Appendix B-Table 1 Results of Supply-Side Optimizations

- 5 7

								L O W	
	Base	High	Low	Base	High	Low	Base	High	Low
Scenario	2	4	9	2	-	3	8	7	9
1999									
8									
ō	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT	1 - 160 BRCT
	2 - 160 GRCT	2 - 160 GRCT	2 - 160 GRCT	3 - 160 GRCT	3 - 160 GRCT	3 - 160 GRCT	2 - 160 GRCT	2 - 160 GRCT	2 - 160 GRCT
2002	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 114 HYDR	1 - 160 GRCT
03	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
					1 - 114 HYDR				
2004	2 - 160 GRCT	2 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
2005	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GBCT
2006	Ι.	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	2 - 160 GBCT	1 - 160 GBCT	1 160 GBCT	1 160 GBCT	1 160 CDCT
2007	T.	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GBCT	1 - 160 GBCT	200	1 160 CPCT	DUD OOL
2008	Τ.	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GBCT	200	1 160 GBCT
				1 - 160 CCPH2		2	2000		2000
2009	1 - 160 CCPH1	1 - 160 CCPH2	1 - 160 GRCT	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
2010	1 - 160 CCPH2	1 - 150 CCPH3	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 CCPH1	1 - 160 GRCT
2011	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 CCPH2	1 - 160 CCPH1	1 - 160 CCPH2	1 - 160 CCPH1	1 - 160 CCPH2	1 - 160 CCPH2	1 - 160 GBCT
				¥=	1 - 150 CCPH3	1		: _	5
2012	1 - 160 GRCT	1 - 160 CCPH1	1 - 150 CCPH3	드	1 - 160 GRCT	1 - 160 CCPH2	1 - 150 CCPH3	1 - 150 CCPH3	1 - 160 GRCT
П						1 - 150 CCPH3			
- 1		-	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
- 1	1 - 160 CCPH2	က	1 - 160 GRCT	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 GRCT	1 - 160 CCPH1
2015	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 GRCT	2 · 160 GRCT		1 - 160 CCPH2	1 - 160 GRCT	1 - 160 CCPH1	
T	10000	7110000	1000	,	1 - 150 CCPH3	1 - 150 CCPH3			
2010	1 - 160 GHCI	1 - 160 CCPH1	1 - 160 GHCI	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 GRCT	1 - 160 CCPH2	1 - 160 CCPH2
2017	1 - 160 GRCT	1 - 160 CCPH2	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 CCPH2	1 - 160 CCPH1		1 - 150 CCPH3	1 - 150 CCPH3
Γ		_		Т	1 - 150 CCPH3			21 100 001 -	
2018	1 - 160 CCPH1	1 - 150 CCPH3	1 - 160 GRCT		1 - 160 GRCT	1 - 160 CCPH2	1 - 160 CCPH1		1 - 160 GRCT
- 1				1 - 150 CCPH3		1 - 150 CCPH3			
- 1	1 - 160 CCPH2		9	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 GRCT	1 - 160 CCPH2	1 - 160 GRCT	1 - 160 GRCT
2020	1 - 150 CCPH3	1 - 160 GRCI	1 - 160 GRCT	1 - 160 CCPH1	1 - 160 CCPH2	1 - 160 GRCT	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 GRCT
2021	1 - 160 GRCT	1 - 160 GBCT	1 - 160 GBCT	1 - 160 CCPH2	1 - 150 CCPH3	2 180 GBCT		+ 460 CDCT	
Τ		2	200	1 - 150 CCPH3	100001-1	י מים מים		1 - 100 GHC1	
2022	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
2003	1 - 160 GBCT	1 - 160 GBCT	1 160 GBCT	160 CBCT	4 460 CCB 14	160 CDCT	1 460 CBCT		100000
Τ	2	Т	10000	DUD OOL - I	1 - 160 CCPH2	יייייייייייייייייייייייייייייייייייייי	יייייייייייייייייייייייייייייייייייייי		1 - 100 GHC1
ĺ	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 150 CCPH3	1 - 160 GRCT		1 - 160 GRCT	
ı		1 - 160 GRCT	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT		1 - 160 GRCT
[1 - 160 GRCT	1 - 160 GRCT		1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
2027	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	- 160 GRCT	2 - 160 GRCT	1 - 160 GRCT		1 - 160 GRCT	
8			1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	2 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT
Probability	49.00%	10.50%	10.50%	10.50%	2.25%	2.25%	10.50%	2.25%	2.25%

Appendix B-Table 2
Results of Optimizations with DSM

	Low	6			- 160 BRCT	- 160 GRCT		1 - DLC, LIT		1 - DLC, LIT, STD	1 - 160 GRCT	1 - DLC, STD	1 - 160 GRCT	1 - DLC		- 160 GRCT	- 160 GRCT	- 160 GRCT	1 - 160 GRCT	- 160 GRCT		160 GRCT	1 - 160 GRCT				1 - 160 GRCT	- 160 GRCT	1 - 160 CCPH1		1 - 160 CCPH2	1 - 150 CCPH3		- 160 GRCT		1000	- 160 GHC	- 160 GRCT	5	- 160 GRCT		- 160 GRCT			- 160 GRCT	1 - 160 GRCT	2.25%
LOW	High	7			- 160 BRCT 1	- 160 GRCT 2	_	1 - DLC, LIT, STD 1		1 - DLC, LIT, STD 1	- 114 HYDR 1	1 - DLC, STD 1	- 160 GRCT 1	- DLC		1 - 160 GRCT 1	F		Ī	- 160 GRCT	+		1 - 160 CCPH2 1			<u> </u>	3	-	- 160 GRCT 1		- 160 CCPH1	- 160 CCPH2		-		,	- 160 GHCI	. 160 GRCT	+	- 160 GRCT 1 -	t	- 160 GRCT 1 -	H		- 160 GRCT 1 -	- 160 GRCT 1-	2.25%
	Base	8			1 - 160 BRCT 1	2 - 160 GRCT 2	1 - DLC, STD 1	1 - DLC, LIT, STD 1		1 - DLC, LIT, STD 1	1 - 160 GRCT 1	1 - DLC, STD 1		1-DLC	1 - 160 GRCT	1 - 160 GRCT	Ī		-	2 - 160 GRCT 1			1 - 160 CCPH1 1		1 - 160 CCPH2		3		1 - 160 GRCT 1		1 - 160 GRCT 1	1 - 160 GRCT 1			T	T	1 - 100 CCPHZ	1 - 150 CCPH3 1			1 - 160 GRCT			I - 160 GRCT	1 - 160 GRCT 1	1 - 160 GRCT 1	10.50%
	Low	3			1 - 160 BRCT	3 - 160 GRCT	1 - DLC, STD	STD	1 - 160 GRCT	1 - DLC, LIT, STD		2 - 160 GRCT		1 - 160 GRCT		1 - 160 GRCT		Γ	2 - 160 GRCT	Γ		1 - 160 GRCT	1 - 160 CCPH1			1 - 150 CCPH3				1 - 150 CCPH3		1 - 160 CCPH1		1 - 160 CCPH2	6		ו - ופט מאכיו	2 - 160 GRCT		1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT		2 - 160 GRCT 1	1 - 160 GRCT 1	Г	2.25%
нівн	High	1			1 - 160 BRCT	2 - 160 GRCT	1 - 114 HYDR	1 - DLC, LIT, STD	1 - 160 GRCT	1 - DLC, LIT, STD	1 - 160 GRCT	1 - DLC, STD	1 - 160 GRCT	1 - DLC	1 - 160 GRCT	1 - 160 GRCT		2 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT			1 - 160 CCPH2	1 - 150 CCPH3	1 - 160 GRCT								9	1 - 160 GRCT		1 - 150 CCPH1	- 150 CCPH3	T	Ī	I - 160 GRCT	1 - 160 CCPH1	- 160 CCPH2	- 150 CCPH3		1 - 160 GRCT	2 - 160 GRCT	2.25%
	Base	2			1 - 160 BRCT	3 - 160 GRCT	_	310	1 - 160 GRCT	1 - DLC, LIT, STD		2 - 160 GRCT					Ī.	Γ	1 - 160 CCPH1	1 - 160 CCPH2	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 CCPH1		1 - 160 CCPH2	1 - 150 CCPH3		- 160 GRCT	2 - 160 GRCT			1 - 160 CCPH1			- 150 CCPH3	1 - 160 GHC!	T	1 - 160 CCPH2	1 - 150 CCPH3	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT				- 160 GRCT	10.50%
	Low	9			- 160 BRCT		1 - DLC, STD		1 - 160 GRCT	1 - DLC, LIT, STD			1 - 160 GRCT		SHCT		1 - 160 GRCT			1 - 160 GRCT	Γ	П	1 - 160 CCPH1		1 - 160 CCPH2		1 - 150 CCPH3	· 160 GRCT			- 160 GRCT	1 - 160 GRCT				1 - 100 GRC1	DUD DOI -	2 - 160 GRCT	Γ			1 - 160 GRCT 1				- 160 GRCT 11	10.50%
BASE	High	4			1 - 160 BRCT	2 - 160 GRCT	1 - DLC	1 - DLC, LIT, STD	1 - 160 GRCT	1 - DLC, LIT, STD		1 - DLC, STD	1 - 160 GRCT	1 - DLC	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 GRCT	1 - 160 CCPH1		1 - 160 CCPH2	1 - 150 CCPH3		1 - 160 GRCT		╗	╗	1 - 150 CCPH3	1 - 160 GRCT	٦	1 - 160 CCPH2		1 - 150 CCPH3		1 - 160 GBCT		1 - 160 GRCT		1 - 160 GRCT	П	1 - 160 GRCT			1 - 160 GRCT	- 160 GRCT	10.50%
	Base	5				2 - 160 GRCT		1 - DLC, LIT, STD	_	1 - DLC, LIT, STD			RCT				<u> </u>	_		1 - 160 GRCT	П		1 - 160 CCPH2		1 - 150 CCPH3	٦	1 - 160 GRCT	١	1	္ဌ		1 - 160 GRCT	1	1 - 160 CCPH1	T	1 - 150 CCFH2	T	1 - 160 GRCT		1 - 160 GRCT 1		- 160 GRCT 1				_	49.00%
Load	Fuel	Scenario	1999	2000	- 1		7	2002	╗	2003	╗	2004	7	2005		5006			5009		П	П	2012	7	2013	- 1	2014	- 1	2016			2018	T	5018		2027	1	2022		2023	2024	2025			٦	7	Probability

Project No.	DESCRIPTION	Expected Completion Date
1.	Reconductor the Brown Plant to Danville North Tap section of the Brown Plant to Lebanon 138 kV line with 954 kcm ACSR.	Mar-2000
2.	Add 138 kV terminal facilities at Fawkes for retermination of EKPC's Fawkes - JK Smith 138 kV line	May-2000
3.	Add a second 345 kV circuit between Middletown and Trimble Co on the existing towers.	May-2000
4.	Construct 2.7 miles of 69 kV line from Algonquin to Seminole using 795 kcm ACSR (or AA) conductor.	May-2000
5.	Construct a 138 kV line from Brown CT's to Brown North using bundled 954 kcm ACSR.	May-2000
6.	Construct a 138 kV line from circuit 3823 to International for conversion from 69 kV to 138 kV.	May-2000
7.	Install a 138/69 kV, 83 MVA transformer at West Cliff and install two 138 kV breakers.	May-2000
8.	Install a 34.5 kV, 6.9 MVAR capacitor at TipTop #1.	May-2000
9.	Install a 69 kV, 14.4 MVAR capacitor at Campbellsburg EK.	May-2000
10.	Install a 69 kV, 16.2 MVAR capacitor at Barlow.	May-2000
11.	Install a 69 kV, 81.0 MVAR capacitor at Canal.	May-2000
12.	Install a third 345-138 kV, 448 MVA transformer at Middletown.	May-2000
13.	Reconductor both Brown Plant to West Cliff 138 kV lines with 795 kcm ACSR conductor.	May-2000
14.	Replace the 138/69 kV, 50 MVA transformer at Ohio Co with an 83 MVA transformer.	May-2000
15.	Install a 69 kV, 10.8 MVAR capacitor at St. Paul.	Nov-2000
16.	Install a second 138-69 kV, 133 MVA transformer at Fawkes.	Nov-2000

Project No.	DESCRIPTION	Expected Completion Date
17.	Rebuild the 397.5 kcm ACSR portion of the Fawkes to Richmond 69 kV line using 795 kcm ACSR.	Nov-2000
18.	Construct 6 miles of 138 kV line from Middletown to Collins using 795 kcm ACSR and construct a 138-69 kV, 112 MVA substation at Collins.	May-2001
19.	Install a 69 kV line exit at Lebanon and construct 1.2 miles of 69 kV line from Lebanon to Lebanon Industrial using 397 kcm ACSR.	May-2001
20.	Install a 69 kV, 40.5 MVAR capacitor at Collins.	May-2001
21.	Reconductor the Tyrone to Florida Tile sections of the Bonds Mill to Tyrone 69 kV line with 795 kcm ACSR and increase the maximum operating temperature of the Florida Tile to Lawrenceburg section to 100C.	May-2001
22.	Replace the 2/0 Cu conductor in the Parker Seal to Winchester section of the Clark County to Winchester 69 kV line with 397 kcm ACSR.	May-2001
23.	Replace the Boonesboro North 138/69 kV 83 MVA transformer with a 100 MVA transformer.	May-2001
24.	Install a 69 kV, 13.2 MVAR capacitor at Pineville #722.	Nov-2001
25.	Construct a 138-69 kV, 100 MVA substation in Bourbon County near the intersection of EKPC's Avon - Renaker 138 kV line and KU's Lexington Plant - Millersburg 69 kV line.	May-2002
26.	Install 138 kV breakers on the Lebanon 138-69 kV transformers.	May-2002
27.	Install a 69 kV, 54.0 MVAR capacitor at East Frankfort.	May-2002
28.	Install a 69 kV, 81.0 MVAR capacitor at Middletown.	May-2002
29.	Install a third 138/69 kV, 100 MVA at East Frankfort and reconfigure the bus such that two transformers and two lines to Frankfort City stay in service for any contingency.	May-2002
30.	Reconductor the 795 kcm ACSR portion of the Loudon Avenue to Avon 138 kV line with 954 kcm ACSR.	May-2002

Project No.	DESCRIPTION	Expected Completion Date
31.	Install a second 500/161 kV, 400 MVA transformer at Pocket North.	Nov-2002
32.	Replace the Lake Reba Tap 161/138 kV, 100 MVA transformer with a 120 MVA transformer.	Nov-2002
33.	Construct a 138-69 kV, 100 MVA substation Blue Lick and construct 2 miles of 69 kV line to circuit 6676.	May-2003
34.	Install a 345/138 kV, 400 MVA transformer at Brown North.	May-2003
35.	Install a 69 kV, 9.1 MVAR capacitor at Science Hill.	May-2003
36.	Install a second 161/69 kV, 50 MVA transformer at Taylor County.	May-2003
37.	Reconductor the Brown Plant to Fawkes 138 kV line with 795 kcm ACSR.	May-2003
38.	Construct a 138/69 kV, 83MVA substation near Centerfield, Ky connecting LG&E's Middletown - Trimble Co 138 kV line to KU's Eminence - LaGrange Penal 69 kV line.	May-2004
39.	Replace the 138/69 kV, 83 MVA transformer at Bardstown with a 100 MVA transformer.	May-2004
40.	Construct 22 miles of 161 kV line from Grahamville to Wickliffe using 556 kcm ACSR (operate at 69 kV) and add one 69 kV line exit at Grahamville and Wickliffe.	Oct-2004
41.	Energize the second Brown-Pineville 345 kV circuit.	Nov-2004
42.	Establish a 345 kV interconnection with Cinergy near New Albany by connecting LGEE's Paddys West to Northside 345 kV line and Cinergy's Ramsey to Speed 345 kV line.	May-2005
43.	Reconductor the West Frankfort-Clay Village Tap-Shelbyville East sections of the West Frankfort-Shelyville 69 kV line using 397 kcm ACSR conductor.	May-2005
44.	Construct 2 miles of 69 kV double circuit line from Bond to the Dorchester-St. Paul line using 397 kcm ACSR and add two 69 kV line exits at Bond.	Nov-2005

Project No.	DESCRIPTION	Expected Completion Date
45.	Install a second 161-69 kV, 112 MVA transformer at Pittsburg.	Nov-2005
46.	Install a third 161/69 kV, 112 MVA transformer at Elihu.	Nov-2005
47.	Reconductor the 266 kcm ACSR conductor in the Green County EKPC-Greensburg KU section of the Green County EKPC-Taylor County 69 kV line using 397 kcm ACSR conductor.	May-2007
48.	Replace the 161-69 kV, 56 MVA transformer at Beattyville with a 93 MVA unit.	Nov-2007
49.	Replace the Pineville 161/69 kV, 93 MVA transformer with a 149 MVA unit.	Nov-2007
50.	Construct 4 miles of 161kV line from Taylor County to EKPC's Green County-Marion County 161kV line using 556 kcm ACSR conductor and install four 161kV breakers at Taylor County.	May-2009
51.	Replace the Adams 138/69 kV, 83 MVA transformer with a 100 MVA transformer.	May-2009
52.	Replace the Loudon Ave 138/69 kV, 100 MVA transformer (T-359) with a 133 MVA transformer.	May-2009
53.	Install a third 161/69 kV, 83 MVA transformer at Dorchester.	Nov-2009

Recommendations in PSC Staff Reports on Past IRP Filings

The Companies reviewed the Staff Report on the 1993 Integrated Resource Plan of the Louisville Gas & Electric Company dated March 1995 and the Staff Report on the 1996 Integrated Resource Plan of the Kentucky Utilities Company dated March 1999. As the Staff noted in the latter report, a joint filing does not easily lend itself to responding to specific recommendations based on either previous independent filing. Thus, many of the suggestions were somewhat general in nature. The Companies have made every effort to respond to both the specific and general recommendations that were made in both reports. Responses to the specific suggestions and/or recommendations in both reports are described in the sections that follow.

LG&E 1993 IRP Report

Load Forecasting

• Expand the peak demand analysis, possibly using additional sectoral or end-use detail.

As a result of the May 1998 merger of LG&E and KU, the load forecasting functions of the two utilities have been integrated into a single group (Forecasting and Market Analysis Department). KU has successfully implemented end-use modeling approaches using the REEPS (Residential End-Use Energy Planning System) and COMMEND (Commercial End-Use Model) EPRI developed models. The integration with KU's Forecasting Staff will facilitate the effort to build similar end-use models for the LG&E service area. Therefore, prior efforts to develop a residential hourly load model by using the data compiled from the Southeast End-Use Data Exchange Project and the end-use modeling software called "SHAPES II." have been abandoned. The sectoral end-use models and hourly load shapes will allow LG&E to disaggregate its peak demand forecast for sectoral details. As a next step the HELM (Hourly Electric Load Model) model will be utilized to combine class energy sales forecasts with estimated class load shapes to generate a demand forecast built from class and customer-level data.

• Explicitly analyze the issue of fuel choice for space heating and cooling, particularly with respect to the competitiveness of heat pumps.

LG&E's gas and electricity rates have been stable since the 1991 General Rate Case, with an apparent cost advantage of gas fuel over electricity for space heating. Recent fuel cost studies show a conventional heat pump in LG&E's service territory costs about 30% more than a high-efficiency gas furnace to produce 1,000,000 Btu's of heating output. Therefore, the choice of heat pump for space heating and cooling is mainly driven by non-availability of gas service in the area, not by a competitive

advantage of heat pump. This is why the choice of heat pump is much more prevalent in the rural areas where gas utility service is not available.

The residential appliance saturation survey conducted in 1995 shows that about 8.0% of LG&E's residential customers own a heat pump. 18.1% of the residential customers who reside outside of Jefferson County use a heat pump for space heating and airconditioning, while only 6.9% of Jefferson County residents rely on a heat pump. LG&E's gas service is available to 87.1% of the Jefferson County population, compared to 50.4% of Oldham County, 64.0% of Bullitt County, 19.0% of Nelson County and 14.4% of Hardin County.

As LG&E's gas mains are extended to those rural areas, the percentage of residential electric space heating customers to total residential customers is expected to gradually decline. For residential energy sales forecasts included in this filing, the percentage for electric space heating is assumed to decrease from 12.8% in 1999 to 11.5% in 2014. Historical and projected numbers of total residential customers and electric space heating customers are provided in Volume II, Technical Appendix.

Demand-Side Management

• LG&E should expand the initial DSM option list, even including options that are not applicable to LG&E or that have load shape impacts that are inconsistent with LG&E's load shape objectives. Clearly inappropriate options can be screened out in the qualitative analysis, but at least there is documentation that LG&E considered the options.

The initial list of DSM options was considerably expanded since the 1993 LG&E IRP. The list includes options that may not be applicable to the Companies. Details are provided in Exhibit DSM-3 in the report titled *Screening of Demand-Side Management (DSM) Options* (September 1999) in Volume III, Technical Appendix.

• LG&E should reconsider the criteria used in the qualitative screen. Specifically, LG&E should eliminate the criteria of "effect on summer peak," "implementation cost," "cost recovery required," "need for incentives/rebates," and "technological and administrative obstacles." Instead, LG&E may wish to consider "inconsistent with load shape objectives," "insufficient eligible market," "poor customer acceptance," "highly negative utility experience," and "immature/unavailable technology" as reasons for eliminating options in this initial screen. For each rejection, LG&E should document the source(s) of the information on which the assessment was based.

The Companies have incorporated the Staff Recommendations concerning the criteria for qualitative screening. Details are provided in Exhibit DSM-2 in the report titled

Screening of Demand-Side Management (DSM) Options (September 1999) in Volume III, Technical Appendix.

• In the next IRP filing, LG&E should provide concise and organized data sheets for each DSM program screened in the quantitative analysis.

The Companies have provided detailed summary sheets for each program evaluated in Phase II of the quantitative analysis. (See Exhibit DSM-6 through Exhibit DSM-16 in the report titled *Screening of Demand-Side Management (DSM) Options* (September 1999) in Volume III, Technical Appendix.) The Companies also provide a high-level screening summary of the programs in each phase of the quantitative screening process. (See Exhibit DSM-5 and Exhibit DSM-17 in the aforementioned report.)

Supply-Side Resource Assessment

• Include key supporting data and calculations in the filing, rather than in workpapers.

Throughout this IRP, key supporting data and calculations are either included directly in the appropriate paragraph(s) of the section, or included in the standalone reports found in the filing in Volume III, Technical Appendix. Specifically in reference to the data contained in the supply-side screening analysis, the detailed data and calculations can be found in the report titled *Analysis of Supply-Side Technology Alternatives* (August 1999) in Volume III, Technical Appendix.

• Expand the scope of "plant costs" to include land, inventory, and associated costs.

The scope of the "plant costs" has been expanded. Details on the plant costs can be found in the report titled *Analysis of Supply-Side Technology Alternatives* (August 1999) in Volume III, Technical Appendix. The capital costs have been divided into the various cost categories as defined by EPRI in their TAG Supply database. The cost categories include process capital, general facilities, engineering fee, project contingency, process contingency, and pre-production, inventory, and land.

• Where appropriate, supplement TAG data with more local and current information.

The TAG database utilized in the screening analysis was EPRI's April 1999 database release. Appropriate adjustments were made to the combustion turbine capital costs based upon recent bid prices for combustion turbines. Details of the supply-side screening analysis can be found in the report titled *Analysis of Supply-Side Technology Alternatives* (August 1999) in Volume III, Technical Appendix.

• Expand the analysis of the Ohio Falls rehabilitation to screen discrete options that might be cost-effective if implemented separately.

LG&E's 1993 Integrated Resource Plan indicated that a rehabilitation of the Ohio Falls Station was a least cost option. A more in-depth evaluation of the condition of the Ohio Falls station is currently underway within the Companies. Details of this evaluation have not been completed and were not included in the Companies 1999 Integrated Resource Plan. However, the results of the evaluation when completed will be utilized in the Companies on-going planning process.

Option Integration and Plan Optimization

• Is the current end-year-mix-optimization step a reliable screening method? Is LG&E relying on this step to capture end-effects? Does it accurately capture these effects?

Yes, the end-year-mix-optimization step referred to in the LG&E 1993 IRP is a reliable method for screening supply-side resource options. However, this step was not required in the 1999 IRP since the number of options considered in the integrated analysis was more manageable with the current version of PROSCREEN II and the computing power available today.

• Unexpectedly low or high gas and oil prices could conceivably affect the selection and timing of resources.

The fuel price sensitivity performed in the 1999 IRP allows for the optimization of the selection and timing of resources.

• Complete re-optimization of the resource plan under alternative future scenarios may not be the most meaningful approach. LG&E should consider revising the methodology to focus on assessing the risk-weighted costs associated with several possible next steps the utility could take.

The 1999 IRP sensitivity analysis on fuel price and load forecast indicates that the type of resource does not vary over the first 10 years of the plan; only the timing of the resources changes. The Companies view the filed IRP as a snapshot of an on-going process. Therefore, the Companies will be able to adjust the plan according to forces that would affect the plan.

KU 1996 IRP Report

Future Electricity Requirements

• KU should continue the development of its demand forecast using EPRI's HELM model to better enable it to account for changing end uses in its various sales sectors.

KU continued to develop its database for the HELM model as stated above with regard to the separation of commercial and industrial sales into their own unique load shapes. KU has used its load research data to update the shapes of the other classes and major customers so that the derived system load shaped remains reflective of current load conditions. In order to capture the effect of changing end-uses over time in an efficient manner in the future we will focus on accurate modeling of the class and customer level load shapes as they change over time. In addition, examination of the value of a hybrid econometric/HELM demand forecasting process that would capture the strengths of both methodologies will be considered.

LG&E's projected system demand and load shape is now read into HELM as a separate class in order to create the combined company forecast. KU/LG&E will be developing a class-level demand forecast for LG&E using the knowledge gained from modeling the KU system.

• KU should report on its work to develop a service area demographic and economic forecast that will produce region specific forecasts of model drivers.

KU successfully implemented the Kentucky Utilities Service Territory Model (KUSTEM) as documented above and in Section 5. The model's value in capturing the economic growth of the territory is reflected in the fact that upon its implementation KU's energy forecast showed increases which were later supported by actual sales.

A new region for the LG&E service territory has been developed for the model, and was used in the establishment of the customer forecast for the LG&E system. KU/LG&E intend to increase the application of the model to the LG&E territory. KU/LG&E is also working to introduce a housing starts forecast module to the model that will enable the household forecast to be separated into forecasts by housing type such as single family, multi-family and mobile homes.

• KU should, to the extent possible, report on and reflect in its forecasts, the impacts of increasing competition in the electric industry.

Integrated resource planning and regulatory reviews are based on the assumption that the electric utility will continue to have a monopoly on providing electric service and will require extensive amounts of capital to generate power over the next 20 to 30 years. The

use of competition in place of regulation clearly will change this basic assumption supporting integrated resource planning and regulatory review. The application of integrated resource planning and regulatory review to a competitive industry provides only questionable benefits. While KU agrees that the introduction of competition into the electric utility industry is likely to occur, KU does not agree that consideration of the issue of a fully competitive industry is appropriate within the context of an IRP regulatory scheme.

• KU should attempt, either in the body of its forecasts, or in its uncertainty analysis, to incorporate the impacts of potential environmental costs such as those associated with EPA's recent decision to impose NOx reductions on sources in the eastern United States.

The issue of environmental costs with regard to the forecast concerns the final price of electricity as seen by the consumer and the consumer's responsiveness to changes in price. As a consequence of the merger with LG&E, the combined companies have instituted a one percent merger sur-credit and committed to a five year freeze on base rates, which effectively work to lower real electric price. KU includes the price of electricity as an explanatory variable in it's forecasting models where it appears to be of reasonable statistical significance. However, the usage of electricity in KU territory appears to be fairly price inelastic, and it would require price increases which significantly offset the factors constraining price increases in order to experience a measureable reduction in load. KU's internal price forecast reflects expected environmental costs and optimistic/pessimistic price forecasts are a component of the uncertainty analysis developed for the forecast.

Demand-Side Management

• KU should not conduct judgmental screening after the detailed cost-effectiveness screening.

The Companies did not conduct judgmental screening after the detailed cost-effectiveness screening in the 1999 IRP.

• KU should clarify its DSM objectives and specify DSM screening criteria at every stage that are consistent with meeting its objectives.

The DSM objective is stated in the Introduction of the report titled *Screening of Demand-Side Management (DSM) Options* (September 1999) in Volume III, Technical Appendix. The DSM screening criteria at each stage is highlighted in the report.

• At each stage of DSM screening KU should specifically outline how the established criteria were used to eliminate or pass each DSM alternative.

See Exhibit DSM-2 in the report titled Screening of Demand-Side Management (DSM) Options (September 1999) in Volume III, Technical Appendix.

• KU should continue to develop DSM assumptions that are specific to its service territory.

The Companies' assumptions regarding DSM are specific to the service territories of KU and LG&E.

• KU should consider fully incorporating DSM resource options into its expansion plan in a true integrated analysis where the planning model can choose between individual supply and demand options.

The DSM resource options that passed the DSM screening were fully incorporated into the integrated analysis. See the report titled *Optimal Integrated Resource Plan* (October 1999) in Volume III, Technical Appendix.

• KU should report on the findings of DSM research, particularly related to commercial and industrial applications which showed the greatest potential for cost-effectiveness according to the Total Resource Cost test.

The Companies have gained considerable experience from LG&E's Commercial Audit program. Efficient lighting is one of the most economical choices of commercial and industrial customers, and is one of several commercial and/or industrial applications that passed the screening analysis. Use of wireless communication/paging technology for Direct Load Control (DLC) applications is another example of a recent development that passed the screening analysis. The cost effective alternatives according to the Total Resource Cost (TRC) test are discussed in further detail in the report titled Screening of Demand-Side Management (DSM) Options (September 1999) in Volume III, Technical Appendix.

• KU should report on any changes to its DSM activities based on the results of the DSM screening using its new avoided costs.

The screening analysis discussed in the report titled *Screening of Demand-Side Management (DSM) Options* (September 1999) in Volume III, Technical Appendix is based on updated avoided costs.

• KU should provide a detailed discussion of how its DSM objectives, analysis and planning have been impacted due to the merger between LG&E and KU.

The impacts on DSM objectives, analysis and planning due to the merger between LG&E and KU are discussed in Volume I, Section 6.

Integration and Plan Optimization

• To the extent that demand-side resources are reflected in its resource optimizations, KU should strive to fully integrate such resources into its analysis and identify the assumptions used at each step of the development of the optimal expansion plan.

Demand and supply-side resources were included in the optimization process and allowed to compete against each other to develop the least cost plan.

• KU should report on the results of its further analysis of its Clean Air Act compliance plan, particularly with respect to the option of installing a scrubber at Ghent Unit 2 and the timing of such installation.

Details on the Companies Clean Air Act compliance plan can be found in the report titled Clean Air Act Amendments of 1990 Compliance Plan, 1999 Environmental Compliance Analysis (September 1999) in Volume III, Technical Appendix.

• In consideration of changes brought about as a result of the merger of KU and LG&E, KU should discuss any changes or re-evaluations of its planning reserve margin for use in future integrated resource plans.

Several events have impacted the determination of the reserve margin used in this analysis. The events include not only the merger of KU and LG&E, but also the addition of combustion turbines and changes in the wholesale power marketplace. These events further diversify the resource mix available to the Companies, which suggests that a re-evaluation of the reserve margin criteria is warranted. The details of that evaluation are discussed in detail in the report titled *Analysis of Reserve Margin Planning Criteria* (August 1999) in Volume III, Technical Appendix.